WO2022178739A1 - Scheduling request (sr) handling for relay-based communications - Google Patents

Scheduling request (sr) handling for relay-based communications Download PDF

Info

Publication number
WO2022178739A1
WO2022178739A1 PCT/CN2021/077785 CN2021077785W WO2022178739A1 WO 2022178739 A1 WO2022178739 A1 WO 2022178739A1 CN 2021077785 W CN2021077785 W CN 2021077785W WO 2022178739 A1 WO2022178739 A1 WO 2022178739A1
Authority
WO
WIPO (PCT)
Prior art keywords
resources
resource
transmitting
relay
wireless communication
Prior art date
Application number
PCT/CN2021/077785
Other languages
French (fr)
Inventor
Luanxia YANG
Changlong Xu
Shaozhen GUO
Jing Sun
Xiaoxia Zhang
Rajat Prakash
Siyi Chen
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2021/077785 priority Critical patent/WO2022178739A1/en
Publication of WO2022178739A1 publication Critical patent/WO2022178739A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/76Admission control; Resource allocation using dynamic resource allocation, e.g. in-call renegotiation requested by the user or requested by the network in response to changing network conditions
    • H04L47/762Admission control; Resource allocation using dynamic resource allocation, e.g. in-call renegotiation requested by the user or requested by the network in response to changing network conditions triggered by the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/0827Triggering entity
    • H04W28/0835Access entity, e.g. eNB
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to wireless communication systems, and more particularly to communicating scheduling requests (SRs) between devices having access to one or more relays.
  • SRs scheduling requests
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • a wireless multiple-access communications system may include a number of base stations (BSs) , each simultaneously supporting communications for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • BSs base stations
  • UE user equipment
  • NR next generation new radio
  • LTE long-term evolution
  • NR next generation new radio
  • 5G 5 th Generation
  • LTE long-term evolution
  • NR next generation new radio
  • NR is designed to provide a lower latency, a higher bandwidth or a higher throughput, and a higher reliability than LTE.
  • NR is designed to operate over a wide array of spectrum bands, for instance, from low-frequency bands below about 1 gigahertz (GHz) and mid-frequency bands from about 1 GHz to about 6 GHz, to high-frequency bands such as millimeter wave (mmWave) bands.
  • GHz gigahertz
  • mmWave millimeter wave
  • NR is also designed to operate across different spectrum types, from licensed spectrum to unlicensed and shared spectrum. Spectrum sharing enables operators to opportunistically aggregate spectrums to dynamically support high-bandwidth services. Spectrum sharing can extend the benefit of NR technologies to operating entities that may not have access to a licensed spectrum.
  • a relay device which may itself be a UE, may be used in situations where a UE and BS are distant. For instance, a UE may be positioned at a distance far from the BS where a direct communication link between the UE and the BS would be unreliable, or where communication through one or more relays would be more reliable than a direct link. Relays positioned between the UE and the BS may forward traffic between the UE and BS. Relays may transmit traffic through other relays, with communication between the UE and the BS involving multiple hops based on the number of relays between the UE and BS.
  • a method of wireless communication performed by a base station includes transmitting, to one or more wireless communication devices, a scheduling request (SR) configuration indicating a plurality of resources.
  • the method further includes receiving, from a first wireless communication device of the one or more wireless communication devices, an SR in a first resource of the plurality of resources, wherein the SR and the first resource are associated with a user equipment (UE) connected to the first wireless communication device.
  • BS base station
  • SR scheduling request
  • a base station includes a transceiver configured to transmit, to one or more wireless communication devices, a scheduling request (SR) configuration indicating a plurality of resources.
  • the transceiver is further configured to receive, from a first wireless communication device of the one or more wireless communication devices, an SR in a first resource of the plurality of resources, wherein the SR and the first resource are associated with a user equipment (UE) connected to the first wireless communication device.
  • UE user equipment
  • a computer-readable medium having program code recorded thereon, the program code including code for causing a base station (BS) to transmit, to one or more wireless communication devices, a scheduling request (SR) configuration indicating a plurality of resources.
  • the program code further includes code for causing the BS to receive, from a first wireless communication device of the one or more wireless communication devices, an SR in a first resource of the plurality of resources, wherein the SR and the first resource are associated with a user equipment (UE) connected to the first wireless communication device.
  • BS base station
  • SR scheduling request
  • an apparatus includes means for transmitting, to one or more wireless communication devices, a scheduling request (SR) configuration indicating a plurality of resources; and means for receiving, from a first wireless communication device of the one or more wireless communication devices, an SR in a first resource of the plurality of resources, wherein the SR and the first resource are associated with a user equipment (UE) connected to the first wireless communication device.
  • SR scheduling request
  • a method of wireless communication performed by a user equipment includes receiving, from one or more wireless communication devices, a scheduling request (SR) configuration indicating a plurality of resources. The method also includes transmitting, to the one or more wireless communication devices, one or more SRs using one or more resources of the plurality of resources.
  • SR scheduling request
  • a user equipment includes a transceiver configured to receive, from one or more wireless communication devices, a scheduling request (SR) configuration indicating a plurality of resources.
  • the transceiver is further configured to transmit, to the one or more wireless communication devices, one or more SRs using one or more resources of the plurality of resources.
  • a computer-readable medium having program code recorded thereon, the program code including code for causing a user equipment (UE) to receive, from one or more wireless communication devices, a scheduling request (SR) configuration indicating a plurality of resources.
  • the program code further includes code for causing the UE to transmit, to the one or more wireless communication devices, one or more SRs using one or more resources of the plurality of resources.
  • an apparatus includes means for receiving, from one or more wireless communication devices, a scheduling request (SR) configuration indicating a plurality of resources; and transmitting, to the one or more wireless communication devices, one or more SRs using one or more resources of the plurality of resources.
  • SR scheduling request
  • a method of wireless communication performed by a wireless communication device includes receiving, from a base station (BS) , a scheduling request (SR) configuration indicating a plurality of resources. The method also includes receiving, from a UE, an SR in a first resource of the plurality of resources. The method further includes transmitting, to the BS, a first communication signal including the SR.
  • BS base station
  • SR scheduling request
  • a wireless communication device includes a transceiver configured to receive, from a base station (BS) , a scheduling request (SR) configuration indicating a plurality of resources.
  • the transceiver is also configured to receive, from a UE, an SR in a first resource of the plurality of resources.
  • the transceiver is further configured to transmit, to the BS, a first communication signal including the SR.
  • a computer-readable medium having program code recorded thereon, the program code including code for causing a wireless communication device to receive, from a base station (BS) , a scheduling request (SR) configuration indicating a plurality of resources.
  • the program code also includes code for causing the wireless communication device to receive, from a UE, an SR in a first resource of the plurality of resources.
  • the program code further includes code for causing the wireless communication device to transmit, to the BS, a first communication signal including the SR.
  • an apparatus includes means for receiving, from a base station (BS) , a scheduling request (SR) configuration indicating a plurality of resources; means for receiving, from a UE, an SR in a first resource of the plurality of resources; and means for transmitting, to the BS, a first communication signal including the SR.
  • BS base station
  • SR scheduling request
  • FIG. 1 illustrates a wireless communication network according to one or more aspects of the present disclosure.
  • FIG. 2 illustrates communication scenario according to one or more aspects of the present disclosure.
  • FIG. 3 is a sequence diagram illustrating a communication method according to one or more aspects of the present disclosure.
  • FIG. 4 is a sequence diagram illustrating a communication method according to one or more aspects of the present disclosure.
  • FIG. 5 illustrates a scheduling request (SR) configuration scheme indicating multiple SR resources according to one or more aspects of the present disclosure.
  • SR scheduling request
  • FIG. 6 illustrates an SR configuration scheme indicating multiple SR resources according to one or more aspects of the present disclosure.
  • FIG. 7 is a block diagram of an example base station (BS) according to one or more aspects of the present disclosure.
  • FIG. 8 is a block diagram of an example user equipment (UE) according to one or more aspects of the present disclosure.
  • FIG. 9 is a block diagram of an example relay according to one or more aspects of the present disclosure.
  • FIG. 10 is a flow diagram illustrating an SR communication method according to one or more aspects of the present disclosure.
  • FIG. 11 is a flow diagram illustrating an SR communication method according to one or more aspects of the present disclosure.
  • FIG. 12 is a flow diagram illustrating an SR communication method according to one or more aspects of the present disclosure.
  • wireless communications systems also referred to as wireless communications networks.
  • the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, Global System for Mobile Communications (GSM) networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single-carrier FDMA
  • LTE Long Term Evolution
  • GSM Global System for Mobile Communications
  • 5G 5 th Generation
  • NR new radio
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • GSM Global System for Mobile communications
  • LTE long term evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP)
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP 3rd Generation Partnership Project
  • 3GPP long term evolution LTE
  • LTE long term evolution
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • the present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
  • 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface.
  • LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks.
  • the 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with a ULtra-high density (e.g., ⁇ 1M nodes/km 2 ) , ultra-low complexity (e.g., ⁇ 10s of bits/sec) , ultra-low energy (e.g., ⁇ 10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ⁇ 99.9999%reliability) , ultra-low latency (e.g., ⁇ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ⁇ 10 Tbps/km 2 ) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
  • IoTs Internet of things
  • the 5G NR may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI) ; having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • TTI transmission time interval
  • MIMO massive multiple input, multiple output
  • mmWave millimeter wave
  • Scalability of the numerology in 5G NR with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments.
  • subcarrier spacing may occur with 15 kHz, for instance over 5, 10, 20 MHz, and the like bandwidth (BW) .
  • BW bandwidth
  • subcarrier spacing may occur with 30 kHz over 80/100 MHz BW.
  • subcarrier spacing may occur with 60 kHz over a 160 MHz BW.
  • subcarrier spacing may occur with 120 kHz over a 500 MHz BW.
  • the scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For instance, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency.
  • QoS quality of service
  • 5G NR also contemplates a self-contained integrated subframe design with uplink (UL) /downlink (DL) scheduling information, data, and acknowledgement in the same subframe.
  • the self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive UL/DL that may be flexibly configured on a per-cell basis to dynamically switch between UL and DL to meet the current traffic needs.
  • Communication between wireless communication devices may be aided by one or more additional wireless communication devices, which may act as relays between the UE and the BS.
  • Each relay may itself be a UE.
  • communication between a UE and a BS may be more reliable if routed through one or more relays positioned between the UE and the BS than if routed through a direct link between the UE and the BS. This may be the case, for instance, if the UE is outside the coverage area of the BS, or close to the outer boundaries of the coverage area.
  • a signal from the UE to BS may travel through a single relay (e.g., over two hops, one from the UE to the relay, and one from the relay to the BS) , or through multiple relays, and vice versa.
  • a UE may be positioned where it may be able to use more than one relay to communicate with a BS.
  • multiple UEs may be able to share access to the same relay, which may cause the shared relay to combine data from the multiple UEs before transmitting the data to the BS (directly, or via additional relays) .
  • the shared relay may break up combined data transmissions from the BS, and transmit the data intended for each UE to the intended UE.
  • the UE may send a scheduling request (SR) to the BS to request an UL resource for the data transmission. For instance, the UE may transmit the SR to request uplink-shared channel (UL-SCH) resources (e.g., time-frequency resources) for UL data transmission.
  • UL-SCH uplink-shared channel
  • the UE may transmit an SR to the BS directly. For instance, the UE may transmit an SR on the physical uplink control channel (PUCCH) using preconfigured and/or periodically reoccurring PUCCH resources dedicated to the UE.
  • PUCCH physical uplink control channel
  • a dedicated scheduling-request mechanism it may be unnecessary for the UE to provide its identity because the identity of the transmitting UE is typically known from the resources upon which the SR is transmitted. If the channel quality between the UE and the BS is poor, however, one or more relays may be used to improve the communication quality.
  • the present application provides techniques for handling SRs in scenarios in which one or more relays are used for communications between a BS and a UE.
  • a relay may act as an intermediary between the UE and the BS.
  • Aspects of the present disclosure may improve communication quality between the UE and the BS in relation to communicating SR resources.
  • a BS may configure a plurality of SR resources and transmit, to one or more wireless communication devices, an SR configuration indicating the plurality of resources.
  • the one or more wireless communication devices may include one or more relays and/or one or more UEs.
  • the BS may already be connected to the UE (either directly, or through one or more of the relays) , for instance, through a radio resource control (RRC) connection setup procedure.
  • RRC radio resource control
  • the BS may configure multiple SR resources for each SR of one or more UEs.
  • the multiple SR resources may have the same configurations (e.g., frequency resource domain, periodicity, symbol location, etc. ) , except for the time-offset of the resources.
  • a first SR resource and a second SR resource of the plurality of SR resources may be offset by a slot.
  • the plurality of SR resources may have an independent configuration (e.g., with different resource in a frequency domain) .
  • the BS may configure one SR resource for each SR of one or more UEs and an UL resource for the relay to forward the SR of the one or more UEs to the BS.
  • the UL resource may be, for instance, in a PUCCH or physical uplink shared channel (PUSCH) for the relay to forward the SRs of the UEs.
  • PUSCH physical uplink shared channel
  • the relay may receive the SR configuration and forward the SR configuration to the UE.
  • the UE and the relay may have a reliable connection and accordingly, the UE may have a higher probability of receiving the SR configuration from the relay compared to the BS.
  • the UE may receive the SR configuration from the relay.
  • the UE may transmit, to the relay, one or more SRs using a first set of SR resources of the plurality of resources indicated by the SR configuration.
  • the relay may receive the one or more SRs in the first set of resources and forward the one or more SRs in a second set of resources of the plurality of resources indicated by the SR configuration.
  • the BS may receive the UE’s SRs on the second set of resources and accordingly schedule resources for the UE’s transmission of UL data.
  • the relay may forward the SR of each UE independently.
  • the BS may configure multiple SR resources for each SR of one or more UEs, and the number of scheduled resources may be the same as the number of UEs whose SRs are forwarded by the relay.
  • the relay may aggregate the SRs of multiple UEs and transmit the aggregated SRs to the BS.
  • the BS may configure one SR resource for each SR of one or more UEs and an UL resource for the relay to forward the SR of the one or more UEs to the BS, and the relay may use the configured PUCCH or the PUSCH resource (s) to forward the multiple UE’s SR to the BS.
  • the relay may receive a first SR from a first UE and a second SR from a second UE, aggregate the first and second SRs, and forward the aggregated SRs to the BS.
  • the relay may use a header to identify the UEs and their SRs.
  • the relay may transmit a PUCCH signal or a PUSCH signal carrying a header including a first cell-radio network transmission identifier (C-RNTI) that identifies the first UE and a second C-RNTI that identifies the second UE.
  • the PUCCH signal or the PUSCH signal may also include the first and second SRs.
  • the relay may transmit a PUCCH signal or a PUSCH signal carrying a header including a first dynamically assigned value or number that identifies the first UE and a second dynamically assigned value or number that identifies the second UE.
  • the PUCCH signal or the PUSCH signal may also include the first and second SRs.
  • the relay may transmit a PUCCH signal or a PUSCH signal including a bitmap, where each UE of a plurality of UEs corresponds to a fixed location in the bitmap. In some instances, the relay may transmit a PUCCH signal or a PUSCH signal including a bitmap, where each UE of a plurality of UEs corresponds to a location in the bitmap, and the location is based on a UE-identifier of the respective UE.
  • the bitmap may include a SR of a UE. For instance, the bitmap may include the first SR of the first UE and the second SR of the second UE.
  • a first value of a bit (e.g., 1) may indicate that the signal includes an SR from a respective UE, and a second value of the bit (e.g., 0) may indicate that the signal is devoid of an SR from a respective UE.
  • the relay may be used to improve the communication quality between the BS and the UE and provide a higher degree of reliability for data transmissions. If the UE transmits the SR to the BS directly and the channel quality between these devices is poor, then the BS may not receive the SR and accordingly may not schedule resources for the UE’s transmission of UL data. Additionally or alternatively, communications between the UE and the BS may be improved (e.g., a higher throughput) because the UE may use the relay, which may have a better connection to the BS than the UE, to transmit the SR to the BS.
  • FIG. 1 illustrates a wireless communication network 100 according to some aspects of the present disclosure.
  • the network 100 may be a 5G network.
  • the network 100 includes a number of BSs 105 (individually labeled as 105a, 105b, 105c, 105d, 105e, and 105f) and other network entities.
  • a BS 105 may be a station that communicates with UEs 115 (individually labeled as 115a, 115b, 115c, 115d, 115e, 115f, 115g, 115h, and 115k) and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like.
  • eNB evolved node B
  • gNB next generation eNB
  • Each BS 105 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to this particular geographic coverage area of a BS 105 and/or a BS subsystem serving the coverage area, depending on the context in which the term is used.
  • a BS 105 may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a small cell may be referred to as a small cell BS, a pico BS, a femto BS or a home BS.
  • the BSs 105d and 105e may be regular macro BSs, while the BSs 105a-105c may be macro BSs enabled with one of three dimension (3D) , full dimension (FD) , or massive MIMO.
  • the BSs 105a-105c may take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity.
  • the BS 105f may be a small cell BS which may be a home node or portable access point.
  • a BS 105 may support one or multiple (e.g., two, three, four, and the like) cells.
  • the network 100 may support synchronous or asynchronous operation.
  • the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time.
  • the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
  • the UEs 115 are dispersed throughout the wireless network 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like.
  • a UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like.
  • PDA personal digital assistant
  • WLL wireless local loop
  • a UE 115 may be a device that includes a Universal Integrated Circuit Card (UICC) .
  • a UE may be a device that does not include a UICC.
  • UICC Universal Integrated Circuit Card
  • the UEs 115 that do not include UICCs may also be referred to as IoT devices or internet of everything (IoE) devices.
  • the UEs 115a-115d are examples of mobile smart phone-type devices accessing network 100.
  • a UE 115 may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like.
  • MTC machine type communication
  • eMTC enhanced MTC
  • NB-IoT narrowband IoT
  • the UEs 115e-115h are examples of various machines configured for communication that access the network 100.
  • the UEs 115i-115k are examples of vehicles equipped with wireless communication devices configured for communication that access the network 100.
  • a UE 115 may be able to communicate with any type of the BSs, whether macro BS, small cell, or the like.
  • a lightning bolt (e.g., communication links) indicates wireless transmissions between a UE 115 and a serving BS 105, which is a BS designated to serve the UE 115 on the DL and/or UL, desired transmission between BSs 105, backhaul transmissions between BSs, or sidelink transmissions between UEs 115.
  • the BSs 105a-105c may serve the UEs 115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity.
  • the macro BS 105d may perform backhaul communications with the BSs 105a-105c, as well as small cell, the BS 105f.
  • the macro BS 105d may also transmits multicast services which are subscribed to and received by the UEs 115c and 115d.
  • Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
  • the BSs 105 may also communicate with a core network.
  • the core network may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • IP Internet Protocol
  • At least some of the BSs 105 (e.g., which may be an example of a gNB or an access node controller (ANC) ) may interface with the core network through backhaul links (e.g., NG-C, NG-U, etc. ) and may perform radio configuration and scheduling for communication with the UEs 115.
  • the BSs 105 may communicate, either directly or indirectly (e.g., through core network) , with each other over backhaul links (e.g., X1, X2, etc. ) , which may be wired or wireless communication links.
  • backhaul links e.g., X1, X2, etc.
  • the network 100 may also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such as the UE 115e, which may be a drone. Redundant communication links with the UE 115e may include links from the macro BSs 105d and 105e, as well as links from the small cell BS 105f.
  • UE 115f e.g., a thermometer
  • UE 115g e.g., smart meter
  • UE 115h e.g., wearable device
  • the network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such asV2V, V2X, C-V2X communications between a UE 115i, 115j, or 115k and other UEs 115, and/or vehicle-to-infrastructure (V2I) communications between a UE 115i, 115j, or 115k and a BS 105.
  • V2V dynamic, low-latency TDD/FDD communications
  • V2X V2X
  • C-V2X C-V2X communications between a UE 115i, 115j, or 115k and other UEs 115
  • V2I vehicle-to-infrastructure
  • the network 100 utilizes OFDM-based waveforms for communications.
  • An OFDM-based system may partition the system BW into multiple (K) orthogonal subcarriers, which are also commonly referred to as subcarriers, tones, bins, or the like. Each subcarrier may be modulated with data.
  • the subcarrier spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system BW.
  • the system BW may also be partitioned into subbands.
  • the subcarrier spacing and/or the duration of TTIs may be scalable.
  • the BSs 105 can assign or schedule transmission resources (e.g., in the form of time-frequency resource blocks (RB) ) for DL and UL transmissions in the network 100.
  • DL refers to the transmission direction from a BS 105 to a UE 115
  • UL refers to the transmission direction from a UE 115 to a BS 105.
  • the communication can be in the form of radio frames.
  • a radio frame may be divided into a plurality of subframes or slots, for instance, about 10. Each slot may be further divided into mini-slots. In a FDD mode, simultaneous UL and DL transmissions may occur in different frequency bands.
  • each subframe includes a UL subframe in a UL frequency band and a DL subframe in a DL frequency band.
  • UL and DL transmissions occur at different time periods using the same frequency band.
  • a subset of the subframes (e.g., DL subframes) in a radio frame may be used for DL transmissions and another subset of the subframes (e.g., UL subframes) in the radio frame may be used for UL transmissions.
  • each DL or UL subframe may have pre-defined regions for transmissions of reference signals, control information, and data.
  • Reference signals are predetermined signals that facilitate the communications between the BSs 105 and the UEs 115.
  • a reference signal can have a particular pilot pattern or structure, where pilot tones may span across an operational BW or frequency band, each positioned at a pre-defined time and a pre-defined frequency.
  • a BS 105 may transmit cell specific reference signals (CRSs) and/or channel state information –reference signals (CSI-RSs) to enable a UE 115 to estimate a DL channel.
  • CRSs cell specific reference signals
  • CSI-RSs channel state information –reference signals
  • a UE 115 may transmit sounding reference signals (SRSs) to enable a BS 105 to estimate a UL channel.
  • Control information may include resource assignments and protocol controls.
  • Data may include protocol data and/or operational data.
  • the BSs 105 and the UEs 115 may communicate using self-contained subframes.
  • a self-contained subframe may include a portion for DL communication and a portion for UL communication.
  • a self-contained subframe can be DL-centric or UL-centric.
  • a DL-centric subframe may include a longer duration for DL communication than for UL communication.
  • a UL-centric subframe may include a longer duration for UL communication than for DL communication.
  • the network 100 may be an NR network deployed over a licensed spectrum.
  • the BSs 105 can transmit synchronization signals (e.g., including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) ) in the network 100 to facilitate synchronization.
  • the BSs 105 can broadcast system information associated with the network 100 (e.g., including a master information block (MIB) , remaining system information (RMSI) , and other system information (OSI) ) to facilitate initial network access.
  • MIB master information block
  • RMSI remaining system information
  • OSI system information
  • the BSs 105 may broadcast the PSS, the SSS, and/or the MIB in the form of synchronization signal block (SSBs) and may broadcast the RMSI and/or the OSI over a physical downlink shared channel (PDSCH) .
  • the MIB may be transmitted over a physical broadcast channel (PBCH) .
  • PBCH physical broadcast channel
  • a UE 115 attempting to access the network 100 may perform an initial cell search by detecting a PSS from a BS 105.
  • the PSS may enable synchronization of period timing and may indicate a physical layer identity value.
  • the UE 115 may then receive a SSS.
  • the SSS may enable radio frame synchronization, and may provide a cell identity value, which may be combined with the physical layer identity value to identify the cell.
  • the PSS and the SSS may be located in a central portion of a carrier or any suitable frequencies within the carrier.
  • the UE 115 may receive a MIB.
  • the MIB may include system information for initial network access and scheduling information for RMSI and/or OSI.
  • the UE 115 may receive RMSI and/or OSI.
  • the RMSI and/or OSI may include radio resource control (RRC) information related to random access channel (RACH) procedures, paging, control resource set (CORESET) for physical downlink control channel (PDCCH) monitoring, physical UL control channel (PUCCH) , physical UL shared channel (PUSCH) , power control, and SRS.
  • RRC radio resource control
  • the UE 115 can perform a random access procedure to establish a connection with the BS 105.
  • the random access procedure may be a four-step random access procedure.
  • the UE 115 may transmit a random access preamble and the BS 105 may respond with a random access response.
  • the random access response (RAR) may include a detected random access preamble identifier (ID) corresponding to the random access preamble, timing advance (TA) information, an UL grant, a temporary cell-radio network temporary identifier (C-RNTI) , and/or a backoff indicator.
  • ID detected random access preamble identifier
  • TA timing advance
  • C-RNTI temporary cell-radio network temporary identifier
  • the UE 115 may transmit a connection request to the BS 105 and the BS 105 may respond with a connection response.
  • the connection response may indicate a contention resolution.
  • the random access preamble, the RAR, the connection request, and the connection response can be referred to as message 1 (MSG1) , message 2 (MSG2) , message 3 (MSG3) , and message 4 (MSG4) , respectively.
  • the random access procedure may be a two-step random access procedure, where the UE 115 may transmit a random access preamble and a connection request in a single transmission and the BS 105 may respond by transmitting a random access response and a connection response in a single transmission.
  • the UE 115 and the BS 105 can enter a normal operation stage, where operational data may be exchanged.
  • the BS 105 may schedule the UE 115 for UL and/or DL communications.
  • the BS 105 may transmit UL and/or DL scheduling grants to the UE 115 via a PDCCH.
  • the scheduling grants may be transmitted in the form of DL control information (DCI) .
  • the BS 105 may transmit a DL communication signal (e.g., carrying data) to the UE 115 via a PDSCH according to a DL scheduling grant.
  • the UE 115 may transmit a UL communication signal to the BS 105 via a PUSCH and/or PUCCH according to a UL scheduling grant.
  • the connection may be referred to as an RRC connection.
  • the UE 115 is actively exchanging data with the BS 105, the UE 115 is in an RRC connected state.
  • the UE 115 may initiate an initial network attachment procedure with the network 100.
  • the BS 105 may coordinate with various network entities or fifth generation core (5GC) entities, such as an access and mobility function (AMF) , a serving gateway (SGW) , and/or a packet data network gateway (PGW) , to complete the network attachment procedure.
  • 5GC fifth generation core
  • AMF access and mobility function
  • SGW serving gateway
  • PGW packet data network gateway
  • the BS 105 may coordinate with the network entities in the 5GC to identify the UE, authenticate the UE, and/or authorize the UE for sending and/or receiving data in the network 100.
  • the AMF may assign the UE with a group of tracking areas (TAs) .
  • TAs tracking areas
  • the UE 115 can move around the current TA.
  • the BS 105 may request the UE 115 to update the network 100 with the UE 115’s location periodically.
  • the UE 115 may only report the UE 115’s location to the network 100 when entering a new TA.
  • the TAU allows the network 100 to quickly locate the UE 115 and page the UE 115 upon receiving an incoming data packet or call for the UE 115.
  • the BS 105 may communicate with a UE 115 using HARQ techniques to improve communication reliability, for instance, to provide a URLLC service.
  • the BS 105 may schedule a UE 115 for a PDSCH communication by transmitting a DL grant in a PDCCH.
  • the BS 105 may transmit a DL data packet to the UE 115 according to the schedule in the PDSCH.
  • the DL data packet may be transmitted in the form of a transport block (TB) . If the UE 115 receives the DL data packet successfully, the UE 115 may transmit a HARQ ACK to the BS 105.
  • TB transport block
  • the UE 115 may transmit a HARQ NACK to the BS 105.
  • the BS 105 may retransmit the DL data packet to the UE 115.
  • the retransmission may include the same coded version of DL data as the initial transmission.
  • the retransmission may include a different coded version of the DL data than the initial transmission.
  • the UE 115 may apply soft combining to combine the encoded data received from the initial transmission and the retransmission for decoding.
  • the BS 105 and the UE 115 may also apply HARQ for UL communications using substantially similar mechanisms as the DL HARQ.
  • the network 100 may operate over a system BW or a component carrier (CC) BW.
  • the network 100 may partition the system BW into multiple BWPs (e.g., portions) .
  • a BS 105 may dynamically assign a UE 115 to operate over a certain BWP (e.g., a certain portion of the system BW) .
  • the assigned BWP may be referred to as the active BWP.
  • the UE 115 may monitor the active BWP for signaling information from the BS 105.
  • the BS 105 may schedule the UE 115 for UL or DL communications in the active BWP.
  • a BS 105 may assign a pair of BWPs within the CC to a UE 115 for UL and DL communications.
  • the BWP pair may include one BWP for UL communications and one BWP for DL communications.
  • network 100 may be an integrated access backhaul (IAB) network.
  • IAB may refer to a network that uses a part of radio frequency spectrum for backhaul connection of BSs (e.g., BSs 105) instead of optical fibers.
  • the IAB network may employ a multi-hop topology (e.g., a spanning tree) to transport access traffic and backhaul traffic.
  • one of the BSs 115 may be configured with an optical fiber connection in communication with a core network.
  • the BS 105 may function as an anchoring node (e.g., a root node) to transport backhaul traffic between a core network and other BSs 105 in the IAB network.
  • one BS 105 may serve the role of a central node in conjunction with connections to a core network.
  • BSs 105 and the UEs 115 may be referred to as relay nodes in the network.
  • FIG. 2 illustrates a communication scenario 200 that includes relays 224, 226, and 228 according to one or more aspects of the present disclosure.
  • the scenario 200 may correspond to a communication scenario in the network 100.
  • the relays 224, 226, and 228 may be wireless communication devices configured to operate as relays to assist coverage-limited UEs 115 communicate with the BS 105.
  • the relays 224, 226, and 228 can be UEs similar to the UE 115.
  • scenario 200 includes a BS 105, three relays 224, 226, and 228, and a UE 115, but a greater or fewer number of each type of device may be supported.
  • Two different communication links 220 (which includes links 230, 232, and 236) and 240 (which includes links 234 and 238) are shown originating from and terminating at UE 115.
  • the BS 105 and UE 115 may communicate via relays 226 and 228 using communication link 220, and/or via relay 224 using link 240. Communication between the BS 105 and the UE 115 may be more effective over links 220 and/or 240 than over a direct connection between the two devices when, for instance, UE 115 is distant from the BS 105 (e.g., outside or near the boundary of the coverage area of BS 105) , and relay 224, or relays 226 and 228, is/are between the BS 105 and the UE 115.
  • Link 220 connects UE 115 to BS 105 (in three hops) through relays 228 and 226, and link 240 connects UE 115 to BS 105 (in two hops) through relay 224.
  • Data transmitted from the UE 115 (in an upstream direction) on link 220 travels through link 236 to relay 228, which then transmits it over link 232 to relay 226, which finally transmits it over link 230 to BS 105.
  • Data transmitted from the UE 115 (in an upstream direction) to the BS 105 over link 240 travels through link 238 to relay 224, which then transmits it to BS 105 over link 234.
  • UE 115 may transmit data over one or both links 220 and 240.
  • BS 105 may transmit data (in a downstream direction) to UE 115 over link (s) 220 and/or 240, with the data flowing to the UE 115 in reverse order from the upstream transmission.
  • Data transmitted by the UE 115 to the BS 105 via the relays 224 and/or the relays 226 and 228 may be handled by each relay at the physical layer, forwarding the data to the BS 105 (in some instances with additional headers or information) without involving other layers (e.g., the medium access control (MAC) layer) .
  • MAC medium access control
  • a UE 115 may transmit an SR to a BS 105 using a link 220 and/or a link 240. Because additional UEs 115 (not illustrated) may communicate via relays 224, 226, and/or 228, each relay transmitting data between the UEs 115 and the BS 105 may combine data from multiple UEs 115.
  • the UE 115 may send an SR to the BS 105 to request an UL resource for the data transmission. For instance, the UE 115 may transmit the SR to request uplink-shared channel (UL-SCH) resources for UL data transmission.
  • the BS 105 may configure a plurality of SR resources. Each SR configuration may correspond to one or more logical channels, and each logical channel may be mapped to zero or one SR configuration. The SR configuration may be configured, for instance, by RRC. If more than one SR is triggered simultaneously, the UL-SCH resource (s) may be allocated based on the logical channel prioritization.
  • the UE 115 may transmit an SR to the BS 105 directly. For instance, the UE 115 may transmit an SR on the PUCCH using preconfigured and periodically reoccurring PUCCH resources dedicated to the UE 115. With a dedicated scheduling-request mechanism, it may be unnecessary for the UE 115 to provide its identity because the identity of the transmitting UE is typically known from the resources upon which the SR is transmitted. If the channel quality between the UE 115 and the BS 105 is poor, one or more relays (e.g., relay 224, relay 226, and/or relay 228 of FIG. 2) may be used to improve the communication quality.
  • the present application provides techniques for handling SRs in scenarios in which one or more relays are used for communications between a BS 105 and a UE 115.
  • FIG. 3 is a sequence diagram illustrating a communication method 300 according to one or more aspects of the present disclosure.
  • the communication method 300 may be performed by a BS 105, a UE 115, and a relay 302, communicating under scenario 200 as illustrated in communication scenario 200 of FIG. 2.
  • the relay 302 may correspond to relay 224, 226, and/or 228 of FIG. 2.
  • the BS 105 may configure a plurality of resources for an SR transmission.
  • An SR configuration may indicate the plurality of configured resources.
  • the SR configuration may be for one or more UEs 115, one or more relays 302, or a combination of one or more UEs 115 and one or more relays 302.
  • the plurality of resources may include one or more SR resources for the UE 115 to transmit one or more SRs to one or more relays 302 and/or one or more SR resources for the relay 302 to forward the UE 115’s one or more received SRs to the BS 105.
  • the BS 105 may transmit the SR configuration to the relay 302.
  • the BS 105 may establish a connection (e.g., an RRC connection) with the UE 115 via the relay 302.
  • the UE 115 may be outside or near the boundary of the coverage area of the BS 105, and the relay 302 may be between the BS 105 and the UE 115.
  • BS 105 may also transmit the SR configuration transmitted to the relay 302 (at action 310) to the UE 115.
  • the relay 302 may transmit the SR configuration to the UE 115.
  • the relay 302 may forward the SR configuration received from the BS 105 (at action 310) to the UE 115.
  • the BS 105 may transmit the SR configuration to the UE 115.
  • the UE 115 may receive the SR configuration from the relay 302 and/or the BS 105.
  • the UE 115 may transmit an SR to the relay 302. For instance, the UE 115 may use one or more SR resources of the plurality of SR resources for transmitting one or more SRs to the BS 105 via the relay 302. The UE 115 may transmit the SR when the UE 115 has UL data to transmit to the BS 105. The relay 302 may receive the SR on an SR resource indicated by the SR configuration from the UE 115.
  • the relay 302 transmits a communication signal including the SR to the BS 105.
  • the BS 105 may configure multiple SR resources for each SR of the UE 115.
  • the relay 302 may forward, to the BS 105, the SR of the UE 115 independently from other SRs (requested by other UEs 115) .
  • the number of scheduled SR resources may be the same as the number of UEs 115 whose SRs are to be forwarded by the relay 302.
  • FIG. 4 is a sequence diagram illustrating a communication method 400 according to one or more aspects of the present disclosure.
  • the communication method 400 may be performed by a BS 105, a UE 115, a UE 404, and a relay 402, communicating under scenario 200 as illustrated in communication scenario 200 of FIG. 2.
  • the relay 402 may correspond to the relay 224, 226, and/or 228 of FIG. 2 and/or relay 302 of FIG. 3.
  • the BS 105 may configure a plurality of resources for an SR transmission.
  • the action 405 may correspond to action 305 in FIG. 3.
  • the BS 105 may transmit the SR configuration to the relay 402.
  • the action 410 may correspond to action 310 in FIG. 3.
  • the relay 402 may transmit the SR configuration to the UE 115.
  • the action 415 may correspond to action 315 in FIG. 3.
  • the relay 402 may transmit the SR configuration to the UE 404.
  • the action 420 may correspond to action 315 in FIG. 3.
  • the UE 115 may transmit a first SR to the relay 402.
  • the action 425 may correspond to action 320 in FIG. 3.
  • the UE 404 may transmit a second SR to the relay 402.
  • the action 430 may correspond to action 320 in FIG. 3.
  • the relay 402 may receive the first SR on a first SR resource indicated by the SR configuration from the UE 115 and may receive the second SR on a second SR resource indicated by the SR configuration from the UE 404.
  • the relay 402 transmits a first communication signal including the first SR to BS 105.
  • the action 435 may correspond to action 325 in FIG. 3.
  • the relay 402 transmits a second communication signal including the second SR to BS 105.
  • the action 440 may correspond to action 325 in FIG. 3.
  • the relay 402 may transmit the first and second SRs to the BS 105 in a variety of ways.
  • the relay 402 may forward the SR of each UE 115, 404 independently to the BS 105.
  • the relay 402 may execute actions 435 and 440 independently from each other.
  • the BS 105 may configure multiple SR resources for each SR of the UE 115 and/or the UE 404.
  • the number of scheduled resources may be the same as the number of UEs (e.g., UE 115 and UE 404) whose SRs are to be forwarded by the relay 302.
  • the BS 105 may configure two scheduled resources for the two UEs 115, 404.
  • the BS 105 may configure a first SR resource of the plurality of resources for the UE 115 and a second SR resource of the plurality of resources for the UE 404.
  • the relay 402 may aggregate the SRs of multiple UEs (e.g., UE 115 and UE 404) and transmit the aggregated SRs to the BS 105.
  • the BS 105 may configure one SR resource for each SR of the UEs 115, 404 and an UL resource for the relay 402 to forward the SR to the BS 105.
  • the UL resource may be, for instance, a PUCCH resource or a PUSCH resource.
  • the relay 402 may transmit one communication signal including both the first SR from the UE 115 and the second SR from the UE 404 to the BS 105.
  • the BS 105 may use PDCCH and/or MAC-CE to activate the relay 402 to forward the one or more SRs of the one or more UEs.
  • the BS 105 transmits, to the relay 402, a first PDCCH signal including an activation for forwarding the SRs of a specified UE 115 to the BS 105.
  • the relay 402 may receive the first PDCCH signal and may transmit, using a configured grant UL resource indicated by the SR configuration for forwarding the SRs of the specified UE 115 to the BS 105, the first communication signal including the first SR of the UE 115 in response to receiving the activation.
  • the relay 402 may continue to use the configured grant UL resource for forwarding the one or more SRs of the specified UE 115 to the BS 105 until the relay 402 receives a second PDCCH signal including a deactivation of the configured grant UL resource for forwarding SRs of the specified UE 115 to the BS 105.
  • the BS 105 may transmit the second PDCCH signal to the relay 402.
  • the BS 105 transmits, to the relay 402, a first MAC-CE including an indication of an UL resource and including an activation for forwarding the SRs of a specified UE 115 to the BS 105.
  • the relay may receive the first MAC-CE and may transmit, using the UL resource indicated by the SR configuration for forwarding the SRs of the specified UE 115 to the BS 105, the first communication signal including the first SR of the UE 115 in response to receiving the activation.
  • the relay 402 may continue to use the UL resource for forwarding the one or more SRs of the specified UE 115 to the BS 105 until the relay 402 receives an indication that the UL resource is disabled.
  • the first MAC-CE may carry a time duration indicating for how long the relay 402 may use the UL resource for forwarding the SRs of the specified UE 115 to the BS 105.
  • the relay 402 may stop using the UL resource for forwarding the SRs of the specified UE 115 to the BS 105 when the time duration expires.
  • the BS 105 may transmit, to the relay 402, a PDCCH signal including an indication of a deactivation of the UL resource for forwarding the SRs of the specified UE 115 to the BS 105.
  • the relay 402 may stop using the UL resource for forwarding the SRs of the specified UE 115 to the BS 105 in response to receiving the deactivation.
  • the UE 115 is provided as one instance for simplicity, and the discussion of activation and deactivation for forwarding the SRs of a specified UE to the BS 105 applies to other UEs (e.g., UE 404) and to the multiple UEs that are connected to the relay 402.
  • the relay 402 may use configured PUCCH or PUSCH to forward the SRs from the multiple UEs to the BS 105.
  • the BS 105 may preconfigure the PUSCH for the relay 402 to forward the one or more SRs from the multiple UEs to the BS 105.
  • the BS 105 may dynamically grant PUSCH to the relay 402, which may use this available PUSCH to transmit the one or more SRs from the multiple UEs to the BS 105. If PUCCH or PUSCH carries the SRs of multiple UEs, the relay 402 may identify the UEs with an SR carried in the PUCCH or PUSCH.
  • the relay 402 uses an identifier that identifies the UEs with an SR carried in the PUCCH or PUSCH. In some instances, the relay 402 transmits the first communication signal at action 435 and the second communication signal at action 440 by transmitting a PUCCH signal or a PUSCH signal carrying a header including a first cell-radio network transmission identifier (C-RNTI) that identifies the UE 115 and a second C-RNTI that identifies the UE 404.
  • C-RNTI cell-radio network transmission identifier
  • the length of a C-RNTI may be long (e.g., 32 bits) , potentially resulting in a large payload.
  • the relay 402 may use a dynamically assigned UE-identifier that is assigned to and identifies the UEs with an SR carried in the PUCCH or PUSCH.
  • the BS 105 or the relay 402 may determine and/or assign the dynamically assigned UE-identifiers to the UEs. If the relay 402 assigns the dynamically assigned UE-identifiers to the connected UEs, then the BS 105 may schedule the UL resource for the user through the same relay 402.
  • the relay 402 transmits the first communication signal at action 435 and the second communication signal at action 440 by transmitting a PUCCH signal or the PUSCH signal carrying a header including a first dynamically assigned number that identifies the UE 115 and a second dynamically assigned number that identifies the UE 404. For instance, if the relay 402 is connected to thirty-two UEs, the dynamically assigned number may have five bits, with each value indicating one of the thirty-two UEs.
  • the relay 402 may use a bitmap including one or more SRs of one or more UEs of a plurality of UEs.
  • a PUCCH signal or a PUSCH signal may include the bitmap.
  • each UE of the plurality of UEs may correspond to a fixed location in the bitmap, where a first value of a bit (e.g., 1) indicates that the communication signal includes an SR from the corresponding UE, and a second value of the bit (e.g., 0) indicates that the communication signal is devoid of an SR from the corresponding UE.
  • the relay 402 or the BS 105 may assign a location in the bitmap to each UE connected to the relay.
  • each UE of the plurality of UEs corresponds to a location in the bitmap, and the location is based on a UE-identifier of the respective UE.
  • a bit value of 1 may indicate that the communication signal includes an SR from the corresponding UE
  • a bit value of 0 may indicate that the communication signal is devoid of an SR from the corresponding UE.
  • the relay 402 or the BS 105 may assign a location in the bitmap to each UE connected to the relay 402.
  • the relay 402 may define a method to map the UE-identifiers to the locations in the bitmap.
  • the relay 402 may sort the UE-identifiers in an order (e.g., ascending order or descending order) and map the UE-identifiers to locations in the bitmap based on the order.
  • the relay 302 may be connected to multiple UEs (e.g., the UE 115 and the UE 402) . It may be desirable for the BS 105 to configure/schedule SR resources for the relay 302 such that collisions between receiving an SR from a UE and transmitting an SR to another relay or to the BS 105 are avoided. If a collision occurs such that the relay 305 is scheduled to receive, from a UE, an SR on an SR resource and is also scheduled to forward a UE’s SR on that same SR resource, the relay 305 may determine to use the SR resource to forward the UE’s SR to the other relay or to the BS 105. For instance, the relay 305 may ignore the UE’s SR.
  • the BS 105 and the UE 115 may have multiple links between them (e.g., communication link 220 and communication links 240 in FIG. 2) .
  • a relay e.g., the relays 224, 226, 228 in FIG. 2, the relay 302 in FIG. 3, or the relay 402 in FIG. 4
  • the SR may be transmitted on multiple links.
  • the present application provides techniques for handling one or more SR transmissions with multiple routes.
  • the BS 105 preconfigures multiple SR resources for the UE 115 to transmit one or more SRs to one or more relays.
  • the UE 115 may be connected to multiple relays, and the number of SR resources may be the same as the number of relays connected to the UE 115. For instance, one logical channel may be mapped to more than one SR.
  • each SR may include a first SR parameter (e.g., SR-transMax) indicating a maximum number of times a UE 115 may transmit and/or re-transmit an SR for an SR resource and/or may include a second SR parameter (e.g., SR-prohibitTimer parameter) indicating a timeout value for a timer for transmission of the SR on PUCCH.
  • the RRC may configure the first and the second parameters, per SR.
  • the UE 115 may receive the RRC configuration for the first and second parameters from the BS 105, either directly or indirectly via the relay 402.
  • the UE 115 may start the initial RACH process again to connect to the BS 105. In some instances, the UE 115 may transmit an SR, start the timer with the timeout value upon transmission of the SR, and may not transmit another SR until the timer expires.
  • the MAC entity may be unable to perform the SR transmission.
  • the second SR parameter is based on at least one of a transmission latency over a longest link of a plurality of links between the BS 105 and the UE 115 or a transmission latency over a shortest link of a plurality of links between the BS 105 and the UE 115.
  • the second SR parameter is based on a transmission latency over a longest link of a plurality of links between the BS 105 and the UE 115.
  • a PUCCH transmit power configuration may be based on distances between the UE 115, the relay, and the BS 105. The distance between the UE 115 and the BS 105 and the distance between the UE 115 and the relay may be different.
  • the BS 105 configures a PUCCH transmit power configuration for the UE 115.
  • the BS 105 may transmit the PUCCH transmit power configuration to the relay and/or the UE 115.
  • the number of PUCCH transmit power configurations that are configured may be a sum of the number of relays connected to the UE 115 and one.
  • the BS 105 may configure two PUCCH transmit power configurations for the UE 115, where one PUCCH transmit power configuration is for the UE 115 to transmit a SR to the relay, and the other one is for the UE 115 to transmit the SR to the BS 105. In some instances, if more than one relay is connected to the UE 115, the BS 105 may configure a total number of PUCCH transmit power configurations, where the total number is a sum of the number of relays connected to the UE 115 and one.
  • the BS 105 may have a one-to-one mapping of the wireless communication device (e.g., UE 115 or the relay) to the particular PUCCH transmit power configuration. In some aspects, the BS 105 divides the PUCCH transmit power into different levels for the PUCCH transmit power configuration. For instance, the transmit power may be related to the distance between the UE 115 and the BS 105 and/or the distance between the UE 115 and the relay.
  • Multiple routes may be used to transmit the UE 115’s SR from the UE 115 to the BS 105, with one or more relays in between the UE 115 and the BS 105 assisting in the SR transmission.
  • the UE 115 and/or the relay transmits the SR through multiple configured resources.
  • the UE 115 and/or the relay randomly selects one resource to transmit or forward the SR. For instance, the UE 115 and/or the relay may select the closest available resource. The closest available resource may refer to the next available resource for the UE 115 and/or the relay to transmit or forward the SR.
  • the BS 105 transmits an indication of a channel quality (e.g., a reference signal received power (RSRP) , signal-to-noise-ratio (SNR) , and/or signal-to-interference-plus-noise-ratio (SINR) ) for each resource of the plurality of resources indicated in the SR configuration to the UE 115 and/or the relay.
  • a channel quality e.g., a reference signal received power (RSRP) , signal-to-noise-ratio (SNR) , and/or signal-to-interference-plus-noise-ratio (SINR)
  • the UE 115 and/or the relay may receive the indication of the channel quality and may select an SR resource having a best channel condition of the one or more received channel conditions.
  • the UE 115 and/or the relay may transmit one or more SRs using the selected resource.
  • the BS 105 may configure a plurality of SR resources for an SR transmission.
  • the BS 105 may configure one SR resource for each SR of the UE 115 and an UL resource for the relay to forward the SR to another relay or to the BS 105.
  • the UL resource may be, for instance, PUCCH or PUSCH for the relay to forward the SR.
  • the BS 105 may configure multiple SR resources for each SR of the UE 115.
  • each SR resource of the multiple SR resources may have the same configuration (e.g., frequency location, slot location, periodicity, etc. ) , except for the time-offset of the SR resources, as illustrated and discussed in relation to FIG. 5.
  • each SR resource of the multiple SR resources may have an independent configuration, as illustrated and discussed in relation to FIG. 6.
  • FIG. 5 illustrates an SR configuration scheme 500 indicating multiple SR resources according to one or more aspects of the present disclosure.
  • the SR configuration scheme 500 may correspond to a SR configuration scheme in the network 100.
  • the x-axis represents time in some arbitrary units
  • the y-axis represents frequency in some arbitrary units.
  • the BS 105 may transmit an SR configuration including the plurality of SR resources 502, 504, 506, 508, and 510 (each occupying one or more symbols in time and one or more subcarriers in frequency) .
  • the BS 105 may configure the SR resources 502 and 506 for the UE 115 to transmit an SR to the relay 302 (see FIG.
  • the SR resources 504, 508, and 510 may configure the SR resources 504, 508, and 510 for the relay 302 to forward the UE 115’s SR to another relay or to the BS 105.
  • the SR resources 502 and 506 are SR resources for the UE 115, as indicated by the dot-patterned boxes, to transmit the UE 115’s SR to the relay 302.
  • the SR resources 504, 508, and 510 are SR resources for the relay 302, as indicated by the stripe-patterned boxes, to transmit the UE 115’s SR to the BS 105.
  • the BS 105 may allocate each SR resource of the plurality of SR resources 502, 504, 506, 508, and 510 in the same frequency band.
  • each SR resource of the plurality of SR resources 502, 504, 506, 508, and 510 may have the same frequency allocation, the same symbol location (s) , and/or the same SR periodicity.
  • each resource 502, 504, 506, 508, and/or 510 may occupy one or more symbols in time.
  • the resources 502, 505, 506, 508, and 510 may occupy the same frequency subcarriers, but time offset from each other by one or more symbols or one or more slots.
  • the UE 115’s resources 502 and 506 may be time offset from the relay 302’s resources 504, 508, and 510.
  • some of the resources 502, 505, 506, 508, and/or 510 may be offset from each other by a slot and may be located at the same symbol within a slot.
  • resource 502 may be located at symbol 3
  • resource 504 may be located at symbols 3 and 5 of a slot
  • resource 506 and 508 are located at symbol 3 and 5 of another slot.
  • the resources 502, 504, 506, 508, and/or 510 may be in any suitable configuration in time.
  • FIG. 6 illustrates an SR configuration scheme 600 indicating multiple SR resources according to one or more aspects of the present disclosure.
  • the SR configuration scheme 600 may correspond to a SR configuration scheme in the network 100.
  • the x-axis represents time in some arbitrary units
  • the y-axis represents frequency in some arbitrary units.
  • the BS 105 may configure a plurality of SR resources for an SR transmission.
  • the BS 105 may transmit an SR configuration including the plurality of SR resources 602, 604, 606, 608, and 610.
  • the BS 105 may configure the SR resources 602 and 606 for the UE 115 to transmit a SR to the relay 302 (see FIG.
  • the SR resources 604, 608, and 610 may configure the SR resources 604, 608, and 610 for the relay 302 to forward the UE 115’s SR to another relay or to the BS 105.
  • the SR resources 602 and 606 are SR resources for the UE 115, as indicated by the dot-patterned boxes.
  • the SR resources 604, 608, and 610 are SR resources for the relay 302, as indicated by the stripe-patterned boxes.
  • the time-frequency domain of the SR resources for the UE 115 may be independent from the SR resources for the relay 302.
  • the SR resources 602 and 606 for the UE 115 may be located at a first frequency band with a first time-offset
  • the SR resources 604, 608, and 610 for the relay 302 may be located at a second frequency band with a second time-offset, where the first frequency band is independent from the second frequency band, and the first time-offset is independent from the second time-offset.
  • the first frequency band and the second frequency band may correspond to different portions within a channel bandwidth where the UE 115, the relay 402, and the BS 105 may communicate with each other.
  • FIG. 7 is a block diagram of an example BS 700 according to one or more aspects of the present disclosure.
  • the BS 700 may be a BS 105 as discussed in FIGS. 1-6 and 10.
  • the BS 700 may include a processor 702, a memory 704, an SR module 708, a transceiver 710 including a modem subsystem 712 and a radio frequency (RF) unit 714, and one or more antennas 716.
  • RF radio frequency
  • the processor 702 may have various features as a specific-type processor. For instance, these may include a central processing unit (CPU) , a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a controller, a field programmable gate array (FPGA) device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 702 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 704 may include a cache memory (e.g., a cache memory of the processor 702) , random access memory (RAM) , magnetoresistive RAM (MRAM) , read-only memory (ROM) , programmable read-only memory (PROM) , erasable programmable read only memory (EPROM) , electrically erasable programmable read only memory (EEPROM) , flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 704 may include a non-transitory computer-readable medium.
  • the memory 704 may store instructions 706.
  • the instructions 706 may include instructions that, when executed by the processor 702, cause the processor 702 to perform operations described herein, for instance, aspects of FIGS. 1-6 and 10. Instructions 706 may also be referred to as program code.
  • the program code may be for causing a wireless communication device to perform these operations, for instance by causing one or more processors (such as processor 702) to control or command the wireless communication device to do so.
  • processors such as processor 702
  • the terms “instructions” and “code” should be interpreted broadly to include any type of computer-readable statement (s) .
  • the terms “instructions” and “code” may refer to one or more programs, routines, sub-routines, functions, procedures, etc. “Instructions” and “code” may include a single computer-readable statement or many computer-readable statements.
  • the SR module 708 may be implemented via hardware, software, or combinations thereof.
  • the SR module 708 may be implemented as a processor, circuit, and/or instructions 706 stored in the memory 704 and executed by the processor 702.
  • the SR module 708 can be integrated within the modem subsystem 712.
  • the SR module 708 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 712.
  • the SR module 708 may communicate with one or more components of BS 700 to implement various aspects of the present disclosure, for instance, aspects of FIGS. 1-6 and 10.
  • the SR module 708 may transmit, to one or more wireless communication devices, an SR configuration indicating a plurality of resources.
  • the one or more wireless communication devices may include, for instance, a UE 115, 404, 800 and/or a relay 900.
  • a UE may be configured to act as a relay.
  • the BS 700 may already be in communication with the UE 115 (either directly, or through one of the relays) .
  • the SR module 708 may further be configured to receive, from a first wireless communication device (e.g., from a relay on the link between the UE 115 and the BS 700) of the one or more wireless communication devices, an SR in a first resource of the plurality of resources, where the SR and the first resource are associated with a UE connected to the first wireless communication device.
  • a first wireless communication device e.g., from a relay on the link between the UE 115 and the BS 700
  • the transceiver 710 may include the modem subsystem 712 and the RF unit 714.
  • the transceiver 710 can be configured to communicate bi-directionally with other devices, such as the UE 115, 404, 800 and/or the relay 900 (which may be UEs 115, 404, 800) and/or another core network element.
  • the modem subsystem 712 may be configured to modulate and/or encode data according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc.
  • the RF unit 714 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc.
  • the RF unit 714 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 710, the modem subsystem 712 and/or the RF unit 714 may be separate devices that are coupled together at the BS 700 to enable the BS 700 to communicate with other devices.
  • the RF unit 714 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 716 for transmission to one or more other devices.
  • the antennas 716 may further receive data messages transmitted from other devices and provide the received data messages for processing and/or demodulation at the transceiver 710.
  • the transceiver 710 may provide the demodulated and decoded data (e.g., SR configuration, communication signals, data signals, etc. ) to the SR module 708 for processing.
  • the antennas 716 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
  • the transceiver 710 is configured to transmit, to one or more wireless communication devices (e.g., the UE 800 and/or the relay 900) , an SR configuration indicating a plurality of resources.
  • the transceiver 710 is further configured to receive, from a first wireless communication device (e.g., the relay 900) of the one or more wireless communication devices, an SR in a first resource of the plurality of resources, where the SR and the first resource are associated with a UE connected to the first wireless communication device.
  • FIG. 8 is a block diagram of an example UE 800 according to one or more aspects of the present disclosure.
  • the UE 800 may be, for instance, a UE 115 or a UE 404.
  • the UE 800 may be connected to the BS 700 through a relay and/or may be configured as a relay (e.g., a UE 115 configured as a relay) .
  • the UE 800 may include a processor 802, a memory 804, an SR module 808, a transceiver 810 including a modem subsystem 812 and an RF unit 814, and one or more antennas 816.
  • These elements may be coupled with one another.
  • the term “coupled” may refer to directly or indirectly coupled or connected to one or more intervening elements. For instance, these elements may be in direct or indirect communication with each other, for instance via one or more buses.
  • the processor 802 may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 802 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 804 may include a cache memory (e.g., a cache memory of the processor 802) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, solid state memory device, hard disk drives, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 804 includes a non-transitory computer-readable medium.
  • the memory 804 may store, or have recorded thereon, instructions 806.
  • the instructions 806 may include instructions that, when executed by the processor 802, cause the processor 802 to perform the operations described herein with reference to a UE 115 or an anchor in connection with aspects of the present disclosure, for instance, aspects of FIGS. 1-6 and 11. Instructions 806 may also be referred to as code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 7.
  • the SR module 808 may be implemented via hardware, software, or combinations thereof.
  • the SR module 808 may be implemented as a processor, circuit, and/or instructions 806 stored in the memory 804 and executed by the processor 802.
  • the SR module 808 can be integrated within the modem subsystem 812.
  • the SR module 808 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 812.
  • the SR module 808 may communicate with one or more components of wireless communication device 800 to implement various aspects of the present disclosure, for instance, aspects of FIGS. 1-6 and 11.
  • the UE 800 may be a UE 115.
  • the UE 800 will be referred to as a UE 115 to distinguish it from other wireless communication devices configured to operate as relays.
  • the SR module 808 may receive, from one or more wireless communication devices (e.g., a relay 900) , an SR configuration indicating a plurality of resources.
  • Each UE 800 of the one or more wireless communication devices 800 may be connected to a BS 700 through a relay 900.
  • the wireless communication devices may include UEs (similar to UE 115) configured to act as relays and/or may include BSs (similar to BS 105) .
  • the SR module 808 may further be configured to transmit, to the one or more wireless communication devices, one or more SRs using one or more resources of the plurality of resources.
  • the UE 800 may also act as a relay for another UE 115.
  • the UE 800 may be a UE 115 configured to act as a relay between a BS 700 and a different UE 115, for instance, as discussed with respect to FIGS. 2-6 and 10-12.
  • the transceiver 810 may include the modem subsystem 812 and the RF unit 814.
  • the transceiver 810 can be configured to communicate bi-directionally with other devices, such as the BSs 105 and 700.
  • the modem subsystem 812 may be configured to modulate and/or encode the data from the memory 804 and/or the SR module 808 according to a modulation and coding scheme (MCS) , e.g., a low-density parity check (LDPC) coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc.
  • MCS modulation and coding scheme
  • LDPC low-density parity check
  • the RF unit 814 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc.
  • modulated/encoded data e.g., data signals, communication signals, reference signals, SR configuration, etc.
  • the RF unit 814 may be further configured to perform analog beamforming in conjunction with the digital beamforming.
  • the modem subsystem 812 and the RF unit 814 may be separate devices that are coupled together at the UE 800 to enable the UE 800 to communicate with other devices.
  • the RF unit 814 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 816 for transmission to one or more other devices.
  • the antennas 816 may further receive data messages transmitted from other devices.
  • the antennas 816 may provide the received data messages for processing and/or demodulation at the transceiver 810.
  • the transceiver 810 may provide the demodulated and decoded data (e.g., data signals, communication signals, reference signals, SRs, etc. ) to the SR module 808 for processing.
  • the antennas 816 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
  • the transceiver 810 is configured to receive, from one or more wireless communication devices, an SR configuration indicating a plurality of resources.
  • the transceiver 810 is further configured to transmit, to the one or more wireless communication devices, one or more SRs using one or more resources of the plurality of resources.
  • FIG. 9 is a block diagram of an example relay 900 according to one or more aspects of the present disclosure.
  • the relay 900 may be a wireless communication device, for instance, a UE 115.
  • a UE 115 may be configured as the relay 900.
  • the relay 900 may include a processor 902, a memory 904, an SR module 908, a transceiver 910 including a modem subsystem 912 and an RF unit 914, and one or more antennas 916. These elements may be coupled with one another.
  • the term “coupled” may refer to directly or indirectly coupled or connected to one or more intervening elements. For instance, these elements may be in direct or indirect communication with each other, for instance via one or more buses.
  • the processor 902 may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 902 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 904 may include a cache memory (e.g., a cache memory of the processor 902) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, solid state memory device, hard disk drives, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 904 includes a non-transitory computer-readable medium.
  • the memory 904 may store, or have recorded thereon, instructions 906.
  • the instructions 906 may include instructions that, when executed by the processor 902, cause the processor 902 to perform the operations described herein with reference to a UE 115, a relay 302, or an anchor in connection with aspects of the present disclosure, for instance, aspects of FIGS. 1-6 and 12. Instructions 906 may also be referred to as code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 7.
  • the SR module 908 may be implemented via hardware, software, or combinations thereof.
  • the SR module 908 may be implemented as a processor, circuit, and/or instructions 906 stored in the memory 904 and executed by the processor 902.
  • the SR module 908 can be integrated within the modem subsystem 912.
  • the SR module 908 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 912.
  • the SR module 908 may communicate with one or more components of the relay 900 to implement various aspects of the present disclosure, for instance, aspects of FIGS. 1-6 and 12.
  • the relay 900 may be a UE 115 and/or a relay 302.
  • the SR module 908 may receive, from a BS 700, an SR configuration indicating a plurality of resources.
  • a UE 115 may be connected to the BS 700 via the relay 900.
  • the SR module 908 may be further configured to receive, from a UE 800, an SR in a first resource of the plurality of resources.
  • the SR module 908 may be further configured to transmit, to the BS 700, a first communication signal including the SR.
  • the transceiver 910 may include the modem subsystem 912 and the RF unit 914.
  • the transceiver 910 can be configured to communicate bi-directionally with other devices, such as the BSs 105 and 700.
  • the modem subsystem 912 may be configured to modulate and/or encode the data from the memory 904 and/or the SR module 908 according to an MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc.
  • the RF unit 914 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc.
  • modulated/encoded data e.g., data signals, communication signals, reference signals, SR configuration, SRs, etc.
  • modulated/encoded data e.g., data signals, communication signals, reference signals, SR configuration, SRs, etc.
  • the RF unit 914 may be further configured to perform analog beamforming in conjunction with the digital beamforming.
  • the modem subsystem 912 and the RF unit 914 may be separate devices that are coupled together at the relay 900 to enable the relay 900 to communicate with other devices.
  • the RF unit 914 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 916 for transmission to one or more other devices.
  • the antennas 916 may further receive data messages transmitted from other devices.
  • the antennas 916 may provide the received data messages for processing and/or demodulation at the transceiver 910.
  • the transceiver 910 may provide the demodulated and decoded data (e.g., data signals, communication signals, reference signals, SRs, etc. ) to the SR module 908 for processing.
  • the antennas 916 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
  • the transceiver 910 is configured to receive, from a BS 700, an SR configuration indicating a plurality of resources.
  • the transceiver 910 is further configured to receive, from a UE 800, an SR in a first resource of the plurality of resources.
  • the transceiver 910 is further configured to transmit, to the one or more wireless communication devices (e.g., BS 700) , one or more SRs using one or more resources of the plurality of resources.
  • FIG. 10 is a flow diagram illustrating an SR communication method 1000 according to one or more aspects of the present disclosure.
  • a computing device e.g., a processor, processing circuit, and/or other suitable component
  • the wireless communication device may be a BS 700.
  • the BS 700 may utilize one or more components, such as the processor 702, the memory 704, the SR module 708, the transceiver 710, the modem 712, the RF unit 714, and the one or more antennas 716, to execute the blocks of method 1000.
  • the method 1000 may employ similar mechanisms as described in FIGS. 1-7 and 10.
  • the method 1000 includes a number of enumerated blocks, but aspects of the method 1000 may include additional blocks before, after, and in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
  • the BS 700 transmits, to one or more wireless communication devices 900 and/or one or more UEs 800, an SR configuration indicating a plurality of resources.
  • Each UE 800 may be configured to operate as a relay.
  • the means for performing the operations of block 1002 can, but do not necessarily, include the processor 702, the memory 704, the SR module 708, the transceiver 710, the modem 712, the RF unit 714, and the one or more antennas 716 with reference to FIG. 7.
  • the plurality of resources includes multiple SR resources for each SR of the UE. In some aspects, the plurality of resources includes one SR resource for each SR of the UE and further includes an UL resource for the first wireless communication device to forward the SR of the UE to the BS.
  • the BS 700 receives, from a first wireless communication device of the one or more wireless communication devices (e.g., via a relay on the link between the UE 115 and the BS 700) , an SR in a first resource of the plurality of resources, wherein the SR and the first resource are associated with a UE connected to the first wireless communication device.
  • the SR in the first resource may be the SR for the UE.
  • the means for performing the operations of block 1004 can, but do not necessarily, include the processor 702, the memory 704, the SR module 708, the transceiver 710, the modem 712, the RF unit 714, and the one or more antennas 716 with reference to FIG. 7.
  • the SR configuration includes a configured grant UL resource for forwarding the SR of the UE to the BS
  • the BS 700 transmits, to the first wireless communication device (e.g., relay 900) , a PDCCH signal including an activation for forwarding the SR of the UE to the BS 700.
  • the BS 700 may receive the SR of the UE on the configured grant UL resource.
  • the BS 700 transmits, to the first wireless communication device (e.g., relay 900) , a MAC-CE including an indication of an uplink resource and an activation for forwarding the SR of the UE to the BS 700.
  • the BS 700 may receive the SR using the uplink resource in response to receiving the MAC-CE.
  • the BS 700 may transmit, to the first wireless communication device (e.g., relay 900) , a PDCCH signal or a MAC-CE indicating a third resource of the plurality of resources is for the first UE and the second UE.
  • the first wireless communication device e.g., relay 900
  • a PDCCH signal or a MAC-CE indicating a third resource of the plurality of resources is for the first UE and the second UE.
  • the BS 700 may receive, from the first wireless communication device of the one or more wireless communication devices, a second SR in a second resource of the plurality of resources.
  • the BS 700 may receive a first communication signal including the SR of a first UE and may receive a second communication signal including the second SR of a second UE.
  • the first communication signal may be different from the second communication signal.
  • the plurality of resources may include multiple SR resources for each SR of the first and second UEs.
  • the BS 700 transmits, to the relay 900, a PUCCH transmit power configuration for the UE 800.
  • FIG. 11 is a flow diagram illustrating an SR communication method 1100 according to one or more aspects of the present disclosure. Aspects of the method 1100 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the blocks.
  • the wireless communication device may be a UE 800.
  • the UE 800 may utilize one or more components, such as the processor 802, the memory 804, the SR module 808, the transceiver 810, the modem 812, the RF unit 814, and the one or more antennas 816, to execute the blocks of method 1100.
  • the method 1100 may employ similar mechanisms as described in FIGS. 1-6, 8, and 11.
  • the method 1100 includes a number of enumerated blocks, but aspects of the method 1100 may include additional blocks before, after, and in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
  • the UE 800 receives, from one or more wireless communication devices, an SR configuration indicating a plurality of resources.
  • the one or more wireless communication devices may include the BS 700 and/or the relay 900.
  • the one or more wireless communication devices may be, for instance, the BS 700 and/or the relay 900.
  • the means for performing the operations of block 1102 can, but do not necessarily, include the processor 802, the memory 804, the SR module 808, the transceiver 810, the modem 812, the RF unit 814, and the one or more antennas 816 with reference to FIG. 8.
  • the UE 800 transmits, to the one or more wireless communication devices, one or more SRs using one or more resources of the plurality of resources.
  • the one or more wireless communication devices may include the relay 900.
  • the UE 800 may transmit the one or more SRs by transmitting a SR using multiple resources of the plurality of resources.
  • the UE 800 selects a resource of the plurality of resources and transmits the SR using the selected resource.
  • the means for performing the operations of block 1104 can, but do not necessarily, include the processor 802, the memory 804, the SR module 808, the transceiver 810, the modem 812, the RF unit 814, and the one or more antennas 816 with reference to FIG. 8.
  • the BS 700 sends a RRC configuration to the UE 800 either directly or indirectly via the relay 900.
  • the UE 115 may receive the RRC configuration for a first SR parameter and a second SR parameter from the BS 105, either directly or indirectly via the relay 402.
  • the first SR parameter (e.g., SR-transMax) may indicate a maximum number of times a UE 800 may transmit and/or re-transmit an SR for an SR resource
  • the second SR parameter e.g., SR-prohibitTimer parameter
  • the RRC may configure the first and the second parameters, per SR.
  • the UE 800 may transmit an SR, start the timer with the timeout value upon transmission of the SR, and may not transmit another SR until the timer expires.
  • the second SR parameter may be based on at least one of a transmission latency over a longest link of a plurality of links between the BS 700 and the UE 800 or a transmission latency over a shortest link of a plurality of links between the BS 700 and the UE 800.
  • the second SR parameter may be based on a transmission latency over a longest link of a plurality of links between the BS 700 and the UE 800.
  • a RRC may set a PUCCH transmit power configuration based on distances between the UE 800, the relay 900, and the BS 700.
  • the distance between the BS 700 and the UE 800 and the distance between the UE 800 and the relay 900 may be different.
  • FIG. 12 is a flow diagram illustrating an SR communication method 1200 according to one or more aspects of the present disclosure. Aspects of the method 1200 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the blocks.
  • the wireless communication device may be a relay 900.
  • the relay 900 may utilize one or more components, such as the processor 902, the memory 904, the SR module 908, the transceiver 910, the modem 912, the RF unit 914, and the one or more antennas 916, to execute the blocks of method 1200.
  • the method 1200 may employ similar mechanisms as described in FIGS. 1-6, 9, and 12.
  • the method 1200 includes a number of enumerated blocks, but aspects of the method 1200 may include additional blocks before, after, and in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
  • the relay 900 receives, from a BS 700, an SR configuration indicating a plurality of resources.
  • the relay 900 may transmit the SR configuration to one or more UEs 800.
  • the means for performing the operations of block 1202 can, but do not necessarily, include the processor 902, the memory 904, the SR module 908, the transceiver 910, the modem 912, the RF unit 914, and the one or more antennas 916 with reference to FIG. 9.
  • the plurality of resources includes multiple SR resources for each SR of the UE 800. In some aspects, the plurality of resources includes one SR resource for each SR of the UE and further includes an UL resource for the relay 900 to forward the SR of the UE 800 to the BS 700.
  • the relay 900 receives, from a UE 800, an SR in a first resource of the plurality of resources.
  • the means for performing the operations of block 1204 can, but do not necessarily, include the processor 902, the memory 904, the SR module 908, the transceiver 910, the modem 912, the RF unit 914, and the one or more antennas 916 with reference to FIG. 9.
  • the relay 900 transmits, to the BS 700, a first communication signal including the SR.
  • the means for performing the operations of block 1206 can, but do not necessarily, include the processor 902, the memory 904, the SR module 908, the transceiver 910, the modem 912, the RF unit 914, and the one or more antennas 916 with reference to FIG. 9.
  • the relay 900 receives, from a second UE, a second SR in a second resource of the plurality of resources.
  • the relay 900 may transmit, to the BS 700, a second communication signal including the second SR.
  • the first communication signal including the SR is different from the second communication signal including the second SR.
  • the relay 900 transmits the first SR and the second SR using a third resource of the plurality of resources indicated by the SR configuration.
  • the SR configuration may include a configured grant UL resource for forwarding the SR of the UE to the BS.
  • the relay 900 receives, from the BS 700, a PDCCH signal including an activation for forwarding the SR of the UE to the BS, and transmits the SR using the configured grant UL resource in response to receiving the activation.
  • the relay 900 receives, from the BS 700, a MAC-CE including an indication of an UL resource and an activation for forwarding the SR of the UE 800 to the BS 700.
  • the relay 900 may transmit the SR using the UL resource in response to receiving the MAC-CE.
  • the relay 900 may receive, from the BS 700, a PDCCH signal or a MAC-CE indicating the third resource is for the first UE and the second UE.
  • the relay 900 may transmit a PUCCH signal or a PUSCH signal carrying the first and second SRs.
  • the PUCCH signal or the PUSCH signal carries a header including a first C-RNTI that identifies the first UE and a second C-RNTI that identifies the second UE.
  • the PUCCH signal or the PUSCH signal carries a header including a first dynamically assigned number that identifies the first UE and a second dynamically assigned number that identifies the second UE.
  • the PUCCH signal or the PUSCH signal includes a bitmap, wherein each UE of a plurality of UEs corresponds to a fixed location in the bitmap, wherein a bit value of 1 indicates that the first communication signal includes an SR from a respective UE, and a bit value of 0 indicates that the first communication signal is devoid of an SR from a respective UE.
  • the PUCCH signal or the PUSCH signal includes a bitmap, wherein each UE of a plurality of UEs corresponds to a location in the bitmap, and the location is based on a UE-identifier of the respective UE, wherein a bit value of 1 indicates that the first communication signal includes an SR from a respective UE, and a bit value of 0 indicates that the first communication signal is devoid of an SR from a respective UE.
  • the relay 900 may receive, from the BS 700, a PUCCH transmit power configuration for the UE 800.
  • Further aspects of the present disclosure include a method of wireless communication performed by a BS, the method including: transmitting, to one or more wireless communication devices, a SR configuration indicating a plurality of resources; and receiving, from a first wireless communication device of the one or more wireless communication devices, an SR in a first resource of the plurality of resources, wherein the SR and the first resource are associated with a UE connected to the first wireless communication device.
  • the BS may receive the SR in the first resource by receiving the SR for the UE.
  • the plurality of resources includes multiple SR resources for each SR of the UE.
  • the plurality of resources includes one SR resource for each SR of the UE and further includes an UL resource for the first wireless communication device to forward the SR of the UE to the BS.
  • the SR configuration includes a configured grant UL resource for forwarding the SR of the UE to the BS, and the BS transmit, to the first wireless communication device, a PDCCH signal including an activation for forwarding the SR of the UE to the BS.
  • the BS may receive the SR by receiving the SR on the configured grant UL resource.
  • Further aspects of the present disclosure include a method of wireless communication performed by a wireless communication device, the method including: receiving, from a BS, a SR configuration indicating a plurality of resources; receiving, from a UE, an SR in a first resource of the plurality of resources; and transmitting, to the BS, a first communication signal including the SR.
  • the method may also include transmitting, to the UE, the SR configuration indicating the plurality of resources.
  • the method may further include receiving, from a second UE, a second SR in a second resource of the plurality of resources; and transmitting, to the BS, a second communication signal including the second SR, wherein the first communication signal is different from the second communication signal.
  • the plurality of resources includes multiple SR resources for each SR of the first and second UEs.
  • the SR configuration includes a configured grant UL resource for forwarding the SR of the UE to the BS, and the method further includes receiving, from the BS, a PDCCH signal including an activation for forwarding the SR of the UE to the BS, where transmitting the first communication signal includes transmitting the SR using the configured grant UL resource in response to receiving the activation.
  • the method also includes receiving, from the BS, a MAC-CE including an indication of an UL resource and an activation for forwarding the SR of the UE to the BS, wherein transmitting the first communication signal includes transmitting the SR using the UL resource in response to receiving the MAC-CE.
  • the method further includes receiving, from a second UE, a second SR in a second resource of the plurality of resources, wherein transmitting the first communication signal includes transmitting the first communication signal including the first SR and the second SR using a third resource of the plurality of resources.
  • the method further includes receiving, from the BS, a PDCCH signal or a MAC-CE indicating the third resource is for the first UE and the second UE.
  • transmitting the first communication signal includes transmitting a PUCCH signal or a physical uplink shared channel (PUSCH) signal carrying the first and second SRs.
  • transmitting the PUCCH signal or the PUSCH signal includes transmitting the PUCCH signal or the PUSCH signal further carrying a header including a first C-RNTI that identifies the first UE and a second C-RNTI that identifies the second UE.
  • transmitting the PUCCH signal or the PUSCH signal includes transmitting the PUCCH signal or the PUSCH signal further carrying a header including a first dynamically assigned number that identifies the first UE and a second dynamically assigned number that identifies the second UE.
  • transmitting the PUCCH signal or the PUSCH signal includes transmitting a bitmap, where each UE of a plurality of UEs corresponds to a fixed location in the bitmap, where a bit value of 1 indicates that the first communication signal includes an SR from a respective UE, and a bit value of 0 indicates that the first communication signal is devoid of an SR from a respective UE.
  • transmitting the PUCCH signal or the PUSCH signal includes transmitting a bitmap, where each UE of a plurality of UEs corresponds to a location in the bitmap, and the location is based on a UE-identifier of the respective UE, wherein a bit value of 1 indicates that the first communication signal includes an SR from a respective UE, and a bit value of 0 indicates that the first communication signal is devoid of an SR from a respective UE.
  • the SR configuration includes a first number of SR resources, and the wireless communication device is connected to the first number of UEs.
  • the method also includes setting an SR parameter based on a transmission latency over a longest link of a plurality of links between the BS and the UE, the SR parameter indicating a timer for transmission of the SR on PUCCH, and the SR including the SR parameter.
  • the method further includes setting an SR parameter based on at least one of a transmission latency over a longest link of a plurality of links between the BS and the UE or a transmission latency over a shortest link of a plurality of links between the BS and the UE, the SR parameter indicating a timer for transmission of the SR on PUCCH, and the SR including the SR parameter.
  • the method also includes receiving, from the BS, a PUCCH transmit power configuration for the UE.
  • Further aspects of the present disclosure include a method of wireless communication performed by a UE, the method including: receiving, from one or more wireless communication devices, an SR configuration indicating a plurality of resources; and transmitting, to the one or more wireless communication devices, one or more SRs using one or more resources of the plurality of resources.
  • transmitting the one or more SRs includes transmitting a SR using multiple resources of the plurality of resources.
  • the method also includes selecting a resource of the plurality of resources, wherein transmitting the one or more SRs includes transmitting a SR using the selected resource.
  • selecting the resource includes selecting a closest available resource of the plurality of resources.
  • the method also includes receiving an indication of a channel quality for each resource of the plurality of resources; and selecting, based on receiving the one or more indications, a resource having a best channel condition, where transmitting the one or more SRs includes transmitting a SR using the selected resource.
  • a wireless communication device including a transceiver configured to: receive, from a BS, an SR configuration indicating a plurality of resources; receive, from a user equipment (UE) , a SR in a first resource of the plurality of resources; and transmit, to the BS, a first communication signal including the SR.
  • the transceiver may be configured to: receive, from a second UE, a second SR in a second resource of the plurality of resources; and transmit, to the BS, a second communication signal including the second SR, wherein the first communication signal is different from the second communication signal, and wherein the plurality of resources includes multiple SR resources for each SR of the first and second UEs.
  • the transceiver may be configured to receive, from a second UE, a second SR in a second resource of the plurality of resources, wherein transmitting the first communication signal includes transmitting the first communication signal including the first SR and the second SR using a third resource of the plurality of resources.
  • Information and signals may be represented using any of a variety of different technologies and techniques. For instance, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other aspects and implementations are within the scope of the disclosure and appended claims. For instance, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • “or” as used in a list of items indicates an inclusive list such that, for instance, a list of [at least one of A, B, or C] means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .

Abstract

Wireless communications systems and methods related to routing scheduling request (SR) communications in a relay environment are provided. A relay may receive, from a base station (BS), a scheduling request (SR) configuration indicating a plurality of resources. The relay may forward the SR configuration to a user equipment (UE) and may receive, from the UE, an SR in a resource of the plurality of resources. The relay may transmit, to the BS, a communication signal including the SR. Other aspects and features are also described.

Description

SCHEDULING REQUEST (SR) HANDLING FOR RELAY-BASED COMMUNICATIONS
Luanxia Yang, Changlong Xu, Shaozhen Guo, Jing Sun, Xiaoxia Zhang, Rajat Prakash, Siyi Chen
TECHNICAL FIELD
This application relates to wireless communication systems, and more particularly to communicating scheduling requests (SRs) between devices having access to one or more relays.
INTRODUCTION
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . A wireless multiple-access communications system may include a number of base stations (BSs) , each simultaneously supporting communications for multiple communication devices, which may be otherwise known as user equipment (UE) .
To meet the growing demands for expanded mobile broadband connectivity, wireless communication technologies are advancing from the long-term evolution (LTE) technology to a next generation new radio (NR) technology, which may be referred to as 5 th Generation (5G) . For instance, NR is designed to provide a lower latency, a higher bandwidth or a higher throughput, and a higher reliability than LTE. NR is designed to operate over a wide array of spectrum bands, for instance, from low-frequency bands below about 1 gigahertz (GHz) and mid-frequency bands from about 1 GHz to about 6 GHz, to high-frequency bands such as millimeter wave (mmWave) bands. NR is also designed to operate across different spectrum types, from licensed spectrum to unlicensed and shared spectrum. Spectrum sharing enables operators to opportunistically aggregate spectrums to dynamically support high-bandwidth services. Spectrum sharing can extend the benefit of NR technologies to operating entities that may not have access to a licensed spectrum.
One approach to providing high-reliability communication is to use relays to facilitate communication between a BS and a UE. A relay device, which may itself be a UE, may be used in situations where a UE and BS are distant. For instance, a UE may be positioned at a distance far from the BS where a direct communication link between the UE and the BS would be unreliable, or where communication through one or more relays would be more reliable than a direct link. Relays  positioned between the UE and the BS may forward traffic between the UE and BS. Relays may transmit traffic through other relays, with communication between the UE and the BS involving multiple hops based on the number of relays between the UE and BS.
BRIEF SUMMARY OF SOME EXAMPLES
The following summarizes some aspects of the present disclosure to provide a basic understanding of the discussed technology. This summary is not an extensive overview of all contemplated features of the disclosure and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in summary form as a prelude to the more detailed description that is presented later.
In one aspect of the disclosure, a method of wireless communication performed by a base station (BS) includes transmitting, to one or more wireless communication devices, a scheduling request (SR) configuration indicating a plurality of resources. The method further includes receiving, from a first wireless communication device of the one or more wireless communication devices, an SR in a first resource of the plurality of resources, wherein the SR and the first resource are associated with a user equipment (UE) connected to the first wireless communication device.
In an additional aspect of the disclosure, a base station (BS) includes a transceiver configured to transmit, to one or more wireless communication devices, a scheduling request (SR) configuration indicating a plurality of resources. The transceiver is further configured to receive, from a first wireless communication device of the one or more wireless communication devices, an SR in a first resource of the plurality of resources, wherein the SR and the first resource are associated with a user equipment (UE) connected to the first wireless communication device.
In an additional aspect of the disclosure, a computer-readable medium having program code recorded thereon, the program code including code for causing a base station (BS) to transmit, to one or more wireless communication devices, a scheduling request (SR) configuration indicating a plurality of resources. The program code further includes code for causing the BS to receive, from a first wireless communication device of the one or more wireless communication devices, an SR in a first resource of the plurality of resources, wherein the SR and the first resource are associated with a user equipment (UE) connected to the first wireless communication device.
In an additional aspect of the disclosure, an apparatus includes means for transmitting, to one or more wireless communication devices, a scheduling request (SR) configuration indicating a plurality of resources; and means for receiving, from a first wireless communication device of the one or more wireless communication devices, an SR in a first resource of the plurality of resources,  wherein the SR and the first resource are associated with a user equipment (UE) connected to the first wireless communication device.
In an additional aspect of the disclosure, a method of wireless communication performed by a user equipment (UE) includes receiving, from one or more wireless communication devices, a scheduling request (SR) configuration indicating a plurality of resources. The method also includes transmitting, to the one or more wireless communication devices, one or more SRs using one or more resources of the plurality of resources.
In an additional aspect of the disclosure, a user equipment (UE) includes a transceiver configured to receive, from one or more wireless communication devices, a scheduling request (SR) configuration indicating a plurality of resources. The transceiver is further configured to transmit, to the one or more wireless communication devices, one or more SRs using one or more resources of the plurality of resources.
In an additional aspect of the disclosure, a computer-readable medium having program code recorded thereon, the program code including code for causing a user equipment (UE) to receive, from one or more wireless communication devices, a scheduling request (SR) configuration indicating a plurality of resources. The program code further includes code for causing the UE to transmit, to the one or more wireless communication devices, one or more SRs using one or more resources of the plurality of resources.
In an additional aspect of the disclosure, an apparatus includes means for receiving, from one or more wireless communication devices, a scheduling request (SR) configuration indicating a plurality of resources; and transmitting, to the one or more wireless communication devices, one or more SRs using one or more resources of the plurality of resources.
In an additional aspect of the disclosure, a method of wireless communication performed by a wireless communication device includes receiving, from a base station (BS) , a scheduling request (SR) configuration indicating a plurality of resources. The method also includes receiving, from a UE, an SR in a first resource of the plurality of resources. The method further includes transmitting, to the BS, a first communication signal including the SR.
In an additional aspect of the disclosure, a wireless communication device includes a transceiver configured to receive, from a base station (BS) , a scheduling request (SR) configuration indicating a plurality of resources. The transceiver is also configured to receive, from a UE, an SR in a first resource of the plurality of resources. The transceiver is further configured to transmit, to the BS, a first communication signal including the SR.
In an additional aspect of the disclosure, a computer-readable medium having program code recorded thereon, the program code including code for causing a wireless communication device to  receive, from a base station (BS) , a scheduling request (SR) configuration indicating a plurality of resources. The program code also includes code for causing the wireless communication device to receive, from a UE, an SR in a first resource of the plurality of resources. The program code further includes code for causing the wireless communication device to transmit, to the BS, a first communication signal including the SR.
In an additional aspect of the disclosure, an apparatus includes means for receiving, from a base station (BS) , a scheduling request (SR) configuration indicating a plurality of resources; means for receiving, from a UE, an SR in a first resource of the plurality of resources; and means for transmitting, to the BS, a first communication signal including the SR.
Other aspects and features of the present invention will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific, exemplary aspects of the present invention in conjunction with the accompanying figures. While features of the present invention may be discussed relative to certain aspects and figures below, all aspects of the present invention can include one or more of the advantageous features discussed herein. In other words, while one or more aspects may be discussed as having certain advantageous features, one or more of such features may also be used in accordance with the various aspects of the invention discussed herein. In similar fashion, while exemplary aspects may be discussed below as device, system, or method aspects, it should be understood that such exemplary aspects can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a wireless communication network according to one or more aspects of the present disclosure.
FIG. 2 illustrates communication scenario according to one or more aspects of the present disclosure.
FIG. 3 is a sequence diagram illustrating a communication method according to one or more aspects of the present disclosure.
FIG. 4 is a sequence diagram illustrating a communication method according to one or more aspects of the present disclosure.
FIG. 5 illustrates a scheduling request (SR) configuration scheme indicating multiple SR resources according to one or more aspects of the present disclosure.
FIG. 6 illustrates an SR configuration scheme indicating multiple SR resources according to one or more aspects of the present disclosure.
FIG. 7 is a block diagram of an example base station (BS) according to one or more aspects of the present disclosure.
FIG. 8 is a block diagram of an example user equipment (UE) according to one or more aspects of the present disclosure.
FIG. 9 is a block diagram of an example relay according to one or more aspects of the present disclosure.
FIG. 10 is a flow diagram illustrating an SR communication method according to one or more aspects of the present disclosure.
FIG. 11 is a flow diagram illustrating an SR communication method according to one or more aspects of the present disclosure.
FIG. 12 is a flow diagram illustrating an SR communication method according to one or more aspects of the present disclosure.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some aspects, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
This disclosure relates generally to wireless communications systems, also referred to as wireless communications networks. In various aspects, the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, Global System for Mobile Communications (GSM) networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks. As described herein, the terms “networks” and “systems” may be used interchangeably.
An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA, and GSM are part of universal mobile telecommunication system (UMTS) . In particular, long term evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided  from an organization named “3rd Generation Partnership Project” (3GPP) , and cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These various radio technologies and standards are known or are being developed. For instance, the 3rd Generation Partnership Project (3GPP) is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the UMTS mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
In particular, 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks. The 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with a ULtra-high density (e.g., ~1M nodes/km 2) , ultra-low complexity (e.g., ~10s of bits/sec) , ultra-low energy (e.g., ~10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ~99.9999%reliability) , ultra-low latency (e.g., ~ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ~ 10 Tbps/km 2) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
The 5G NR may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI) ; having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR, with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments. For instance, in various outdoor and macro coverage deployments of less than 3GHz FDD/TDD implementations, subcarrier spacing may occur with 15 kHz, for instance over 5, 10, 20 MHz, and the like bandwidth (BW) . For other various outdoor and  small cell coverage deployments of TDD greater than 3 GHz, subcarrier spacing may occur with 30 kHz over 80/100 MHz BW. For other various indoor wideband implementations, using a TDD over the unlicensed portion of the 5 GHz band, the subcarrier spacing may occur with 60 kHz over a 160 MHz BW. Finally, for various deployments transmitting with mmWave components at a TDD of 28 GHz, subcarrier spacing may occur with 120 kHz over a 500 MHz BW.
The scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For instance, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency. The efficient multiplexing of long and short TTIs to allow transmissions to start on symbol boundaries. 5G NR also contemplates a self-contained integrated subframe design with uplink (UL) /downlink (DL) scheduling information, data, and acknowledgement in the same subframe. The self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive UL/DL that may be flexibly configured on a per-cell basis to dynamically switch between UL and DL to meet the current traffic needs.
Various other aspects and features of the disclosure are further described below. It should be apparent that the teachings herein may be embodied in a wide variety of forms and that any specific structure, function, or both being disclosed herein is merely representative and not limiting. Based on the teachings herein one of an ordinary level of skill in the art should appreciate that an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways. For instance, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein. For instance, a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer. Furthermore, an aspect may comprise at least one element of a claim.
Communication between wireless communication devices, for instance, a user equipment (UE) and a base station (BS) may be aided by one or more additional wireless communication devices, which may act as relays between the UE and the BS. Each relay may itself be a UE. For instance, in some situations, communication between a UE and a BS may be more reliable if routed through one or more relays positioned between the UE and the BS than if routed through a direct link between the UE and the BS. This may be the case, for instance, if the UE is outside the coverage area of the BS, or close to the outer boundaries of the coverage area. A signal from the  UE to BS may travel through a single relay (e.g., over two hops, one from the UE to the relay, and one from the relay to the BS) , or through multiple relays, and vice versa.
In some aspects, a UE may be positioned where it may be able to use more than one relay to communicate with a BS. In other words, there may be multiple links available to the UE, each link involving a different relay, or a different series of relays. In addition, multiple UEs may be able to share access to the same relay, which may cause the shared relay to combine data from the multiple UEs before transmitting the data to the BS (directly, or via additional relays) . Similarly, the shared relay may break up combined data transmissions from the BS, and transmit the data intended for each UE to the intended UE.
When the UE has uplink (UL) data to transmit and the BS has not yet configured an UL resource for the UE to transmit the UL data on, the UE may send a scheduling request (SR) to the BS to request an UL resource for the data transmission. For instance, the UE may transmit the SR to request uplink-shared channel (UL-SCH) resources (e.g., time-frequency resources) for UL data transmission. The UE may transmit an SR to the BS directly. For instance, the UE may transmit an SR on the physical uplink control channel (PUCCH) using preconfigured and/or periodically reoccurring PUCCH resources dedicated to the UE. With a dedicated scheduling-request mechanism, it may be unnecessary for the UE to provide its identity because the identity of the transmitting UE is typically known from the resources upon which the SR is transmitted. If the channel quality between the UE and the BS is poor, however, one or more relays may be used to improve the communication quality.
The present application provides techniques for handling SRs in scenarios in which one or more relays are used for communications between a BS and a UE. A relay may act as an intermediary between the UE and the BS. Aspects of the present disclosure may improve communication quality between the UE and the BS in relation to communicating SR resources. For instance, a BS may configure a plurality of SR resources and transmit, to one or more wireless communication devices, an SR configuration indicating the plurality of resources. The one or more wireless communication devices may include one or more relays and/or one or more UEs. The BS may already be connected to the UE (either directly, or through one or more of the relays) , for instance, through a radio resource control (RRC) connection setup procedure. In some aspects, the BS may configure multiple SR resources for each SR of one or more UEs. In some cases, the multiple SR resources may have the same configurations (e.g., frequency resource domain, periodicity, symbol location, etc. ) , except for the time-offset of the resources. For instance, a first SR resource and a second SR resource of the plurality of SR resources may be offset by a slot. In some cases, the plurality of SR resources may have an independent configuration (e.g., with  different resource in a frequency domain) . In some aspects, the BS may configure one SR resource for each SR of one or more UEs and an UL resource for the relay to forward the SR of the one or more UEs to the BS. The UL resource may be, for instance, in a PUCCH or physical uplink shared channel (PUSCH) for the relay to forward the SRs of the UEs.
The relay may receive the SR configuration and forward the SR configuration to the UE. The UE and the relay may have a reliable connection and accordingly, the UE may have a higher probability of receiving the SR configuration from the relay compared to the BS. The UE may receive the SR configuration from the relay. When the UE has UL data to transmit, the UE may transmit, to the relay, one or more SRs using a first set of SR resources of the plurality of resources indicated by the SR configuration. The relay may receive the one or more SRs in the first set of resources and forward the one or more SRs in a second set of resources of the plurality of resources indicated by the SR configuration. The BS may receive the UE’s SRs on the second set of resources and accordingly schedule resources for the UE’s transmission of UL data.
In some aspects, the relay may forward the SR of each UE independently. For instance, the BS may configure multiple SR resources for each SR of one or more UEs, and the number of scheduled resources may be the same as the number of UEs whose SRs are forwarded by the relay.
In some aspects, the relay may aggregate the SRs of multiple UEs and transmit the aggregated SRs to the BS. For instance, the BS may configure one SR resource for each SR of one or more UEs and an UL resource for the relay to forward the SR of the one or more UEs to the BS, and the relay may use the configured PUCCH or the PUSCH resource (s) to forward the multiple UE’s SR to the BS. In some instances, the relay may receive a first SR from a first UE and a second SR from a second UE, aggregate the first and second SRs, and forward the aggregated SRs to the BS. The relay may use a header to identify the UEs and their SRs. In some instances, the relay may transmit a PUCCH signal or a PUSCH signal carrying a header including a first cell-radio network transmission identifier (C-RNTI) that identifies the first UE and a second C-RNTI that identifies the second UE. The PUCCH signal or the PUSCH signal may also include the first and second SRs. In some instances, the relay may transmit a PUCCH signal or a PUSCH signal carrying a header including a first dynamically assigned value or number that identifies the first UE and a second dynamically assigned value or number that identifies the second UE. The PUCCH signal or the PUSCH signal may also include the first and second SRs.
In some aspects, the relay may transmit a PUCCH signal or a PUSCH signal including a bitmap, where each UE of a plurality of UEs corresponds to a fixed location in the bitmap. In some instances, the relay may transmit a PUCCH signal or a PUSCH signal including a bitmap, where each UE of a plurality of UEs corresponds to a location in the bitmap, and the location is based on a  UE-identifier of the respective UE. The bitmap may include a SR of a UE. For instance, the bitmap may include the first SR of the first UE and the second SR of the second UE. A first value of a bit (e.g., 1) may indicate that the signal includes an SR from a respective UE, and a second value of the bit (e.g., 0) may indicate that the signal is devoid of an SR from a respective UE.
Aspects of the present disclosure can provide several benefits. For instance, the relay may be used to improve the communication quality between the BS and the UE and provide a higher degree of reliability for data transmissions. If the UE transmits the SR to the BS directly and the channel quality between these devices is poor, then the BS may not receive the SR and accordingly may not schedule resources for the UE’s transmission of UL data. Additionally or alternatively, communications between the UE and the BS may be improved (e.g., a higher throughput) because the UE may use the relay, which may have a better connection to the BS than the UE, to transmit the SR to the BS.
FIG. 1 illustrates a wireless communication network 100 according to some aspects of the present disclosure. The network 100 may be a 5G network. The network 100 includes a number of BSs 105 (individually labeled as 105a, 105b, 105c, 105d, 105e, and 105f) and other network entities. A BS 105 may be a station that communicates with UEs 115 (individually labeled as 115a, 115b, 115c, 115d, 115e, 115f, 115g, 115h, and 115k) and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like. Each BS 105 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to this particular geographic coverage area of a BS 105 and/or a BS subsystem serving the coverage area, depending on the context in which the term is used.
BS 105 may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell. A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . A BS for a macro cell may be referred to as a macro BS. A BS for a small cell may be referred to as a small cell BS, a pico BS, a femto BS or a home BS. In FIG. 1, the  BSs  105d and 105e may be regular macro BSs, while the BSs 105a-105c may be macro BSs enabled with one of three dimension (3D) , full dimension (FD) , or massive MIMO. The BSs 105a-105c may take advantage of their higher  dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity. The BS 105f may be a small cell BS which may be a home node or portable access point. A BS 105 may support one or multiple (e.g., two, three, four, and the like) cells.
The network 100 may support synchronous or asynchronous operation. For synchronous operation, the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time. For asynchronous operation, the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
The UEs 115 are dispersed throughout the wireless network 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like. A UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like. In one aspect, a UE 115 may be a device that includes a Universal Integrated Circuit Card (UICC) . In another aspect, a UE may be a device that does not include a UICC. In some aspects, the UEs 115 that do not include UICCs may also be referred to as IoT devices or internet of everything (IoE) devices. The UEs 115a-115d are examples of mobile smart phone-type devices accessing network 100. A UE 115 may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like. The UEs 115e-115h are examples of various machines configured for communication that access the network 100. The UEs 115i-115k are examples of vehicles equipped with wireless communication devices configured for communication that access the network 100. A UE 115 may be able to communicate with any type of the BSs, whether macro BS, small cell, or the like. In FIG. 1, a lightning bolt (e.g., communication links) indicates wireless transmissions between a UE 115 and a serving BS 105, which is a BS designated to serve the UE 115 on the DL and/or UL, desired transmission between BSs 105, backhaul transmissions between BSs, or sidelink transmissions between UEs 115.
In operation, the BSs 105a-105c may serve the  UEs  115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity. The macro BS 105d may perform backhaul communications with the BSs 105a-105c, as well as small cell, the BS 105f. The macro BS 105d may also transmits multicast services which are subscribed to and received by the  UEs  115c and 115d. Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
The BSs 105 may also communicate with a core network. The core network may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. At least some of the BSs 105 (e.g., which may be an example of a gNB or an access node controller (ANC) ) may interface with the core network through backhaul links (e.g., NG-C, NG-U, etc. ) and may perform radio configuration and scheduling for communication with the UEs 115. In various cases, the BSs 105 may communicate, either directly or indirectly (e.g., through core network) , with each other over backhaul links (e.g., X1, X2, etc. ) , which may be wired or wireless communication links.
The network 100 may also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such as the UE 115e, which may be a drone. Redundant communication links with the UE 115e may include links from the  macro BSs  105d and 105e, as well as links from the small cell BS 105f. Other machine type devices, such as the UE 115f (e.g., a thermometer) , the UE 115g (e.g., smart meter) , and UE 115h (e.g., wearable device) may communicate through the network 100 either directly with BSs, such as the small cell BS 105f, and the macro BS 105e, or in multi-action-size configurations by communicating with another user device which relays its information to the network, such as the UE 115f communicating temperature measurement information to the smart meter, the UE 115g, which is then reported to the network through the small cell BS 105f. The network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such asV2V, V2X, C-V2X communications between a  UE  115i, 115j, or 115k and other UEs 115, and/or vehicle-to-infrastructure (V2I) communications between a  UE  115i, 115j, or 115k and a BS 105.
In some implementations, the network 100 utilizes OFDM-based waveforms for communications. An OFDM-based system may partition the system BW into multiple (K) orthogonal subcarriers, which are also commonly referred to as subcarriers, tones, bins, or the like. Each subcarrier may be modulated with data. In some aspects, the subcarrier spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system BW. The system BW may also be partitioned into subbands. In other aspects, the subcarrier spacing and/or the duration of TTIs may be scalable.
In some aspects, the BSs 105 can assign or schedule transmission resources (e.g., in the form of time-frequency resource blocks (RB) ) for DL and UL transmissions in the network 100. DL refers to the transmission direction from a BS 105 to a UE 115, whereas UL refers to the transmission direction from a UE 115 to a BS 105. The communication can be in the form of radio frames. A radio frame may be divided into a plurality of subframes or slots, for instance, about 10. Each slot may be further divided into mini-slots. In a FDD mode, simultaneous UL and DL  transmissions may occur in different frequency bands. For instance, each subframe includes a UL subframe in a UL frequency band and a DL subframe in a DL frequency band. In a TDD mode, UL and DL transmissions occur at different time periods using the same frequency band. For instance, a subset of the subframes (e.g., DL subframes) in a radio frame may be used for DL transmissions and another subset of the subframes (e.g., UL subframes) in the radio frame may be used for UL transmissions.
The DL subframes and the UL subframes can be further divided into several regions. For instance, each DL or UL subframe may have pre-defined regions for transmissions of reference signals, control information, and data. Reference signals are predetermined signals that facilitate the communications between the BSs 105 and the UEs 115. For instance, a reference signal can have a particular pilot pattern or structure, where pilot tones may span across an operational BW or frequency band, each positioned at a pre-defined time and a pre-defined frequency. For instance, a BS 105 may transmit cell specific reference signals (CRSs) and/or channel state information –reference signals (CSI-RSs) to enable a UE 115 to estimate a DL channel. Similarly, a UE 115 may transmit sounding reference signals (SRSs) to enable a BS 105 to estimate a UL channel. Control information may include resource assignments and protocol controls. Data may include protocol data and/or operational data. In some aspects, the BSs 105 and the UEs 115 may communicate using self-contained subframes. A self-contained subframe may include a portion for DL communication and a portion for UL communication. A self-contained subframe can be DL-centric or UL-centric. A DL-centric subframe may include a longer duration for DL communication than for UL communication. A UL-centric subframe may include a longer duration for UL communication than for DL communication.
In some aspects, the network 100 may be an NR network deployed over a licensed spectrum. The BSs 105 can transmit synchronization signals (e.g., including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) ) in the network 100 to facilitate synchronization. The BSs 105 can broadcast system information associated with the network 100 (e.g., including a master information block (MIB) , remaining system information (RMSI) , and other system information (OSI) ) to facilitate initial network access. In some aspects, the BSs 105 may broadcast the PSS, the SSS, and/or the MIB in the form of synchronization signal block (SSBs) and may broadcast the RMSI and/or the OSI over a physical downlink shared channel (PDSCH) . The MIB may be transmitted over a physical broadcast channel (PBCH) .
In some aspects, a UE 115 attempting to access the network 100 may perform an initial cell search by detecting a PSS from a BS 105. The PSS may enable synchronization of period timing and may indicate a physical layer identity value. The UE 115 may then receive a SSS. The SSS  may enable radio frame synchronization, and may provide a cell identity value, which may be combined with the physical layer identity value to identify the cell. The PSS and the SSS may be located in a central portion of a carrier or any suitable frequencies within the carrier.
After receiving the PSS and SSS, the UE 115 may receive a MIB. The MIB may include system information for initial network access and scheduling information for RMSI and/or OSI. After decoding the MIB, the UE 115 may receive RMSI and/or OSI. The RMSI and/or OSI may include radio resource control (RRC) information related to random access channel (RACH) procedures, paging, control resource set (CORESET) for physical downlink control channel (PDCCH) monitoring, physical UL control channel (PUCCH) , physical UL shared channel (PUSCH) , power control, and SRS.
After obtaining the MIB, the RMSI and/or the OSI, the UE 115 can perform a random access procedure to establish a connection with the BS 105. In some instances, the random access procedure may be a four-step random access procedure. For instance, the UE 115 may transmit a random access preamble and the BS 105 may respond with a random access response. The random access response (RAR) may include a detected random access preamble identifier (ID) corresponding to the random access preamble, timing advance (TA) information, an UL grant, a temporary cell-radio network temporary identifier (C-RNTI) , and/or a backoff indicator. Upon receiving the random access response, the UE 115 may transmit a connection request to the BS 105 and the BS 105 may respond with a connection response. The connection response may indicate a contention resolution. In some instances, the random access preamble, the RAR, the connection request, and the connection response can be referred to as message 1 (MSG1) , message 2 (MSG2) , message 3 (MSG3) , and message 4 (MSG4) , respectively. In some instances, the random access procedure may be a two-step random access procedure, where the UE 115 may transmit a random access preamble and a connection request in a single transmission and the BS 105 may respond by transmitting a random access response and a connection response in a single transmission.
After establishing a connection, the UE 115 and the BS 105 can enter a normal operation stage, where operational data may be exchanged. For instance, the BS 105 may schedule the UE 115 for UL and/or DL communications. The BS 105 may transmit UL and/or DL scheduling grants to the UE 115 via a PDCCH. The scheduling grants may be transmitted in the form of DL control information (DCI) . The BS 105 may transmit a DL communication signal (e.g., carrying data) to the UE 115 via a PDSCH according to a DL scheduling grant. The UE 115 may transmit a UL communication signal to the BS 105 via a PUSCH and/or PUCCH according to a UL scheduling grant. The connection may be referred to as an RRC connection. When the UE 115 is actively exchanging data with the BS 105, the UE 115 is in an RRC connected state.
In some aspects, after establishing a connection with the BS 105, the UE 115 may initiate an initial network attachment procedure with the network 100. The BS 105 may coordinate with various network entities or fifth generation core (5GC) entities, such as an access and mobility function (AMF) , a serving gateway (SGW) , and/or a packet data network gateway (PGW) , to complete the network attachment procedure. For instance, the BS 105 may coordinate with the network entities in the 5GC to identify the UE, authenticate the UE, and/or authorize the UE for sending and/or receiving data in the network 100. In addition, the AMF may assign the UE with a group of tracking areas (TAs) . Once the network attach procedure succeeds, a context is established for the UE 115 in the AMF. After a successful attach to the network, the UE 115 can move around the current TA. For tracking area update (TAU) , the BS 105 may request the UE 115 to update the network 100 with the UE 115’s location periodically. Alternatively, the UE 115 may only report the UE 115’s location to the network 100 when entering a new TA. The TAU allows the network 100 to quickly locate the UE 115 and page the UE 115 upon receiving an incoming data packet or call for the UE 115.
In some aspects, the BS 105 may communicate with a UE 115 using HARQ techniques to improve communication reliability, for instance, to provide a URLLC service. The BS 105 may schedule a UE 115 for a PDSCH communication by transmitting a DL grant in a PDCCH. The BS 105 may transmit a DL data packet to the UE 115 according to the schedule in the PDSCH. The DL data packet may be transmitted in the form of a transport block (TB) . If the UE 115 receives the DL data packet successfully, the UE 115 may transmit a HARQ ACK to the BS 105. Conversely, if the UE 115 fails to receive the DL transmission successfully, the UE 115 may transmit a HARQ NACK to the BS 105. Upon receiving a HARQ NACK from the UE 115, the BS 105 may retransmit the DL data packet to the UE 115. The retransmission may include the same coded version of DL data as the initial transmission. Alternatively, the retransmission may include a different coded version of the DL data than the initial transmission. The UE 115 may apply soft combining to combine the encoded data received from the initial transmission and the retransmission for decoding. The BS 105 and the UE 115 may also apply HARQ for UL communications using substantially similar mechanisms as the DL HARQ.
In some aspects, the network 100 may operate over a system BW or a component carrier (CC) BW. The network 100 may partition the system BW into multiple BWPs (e.g., portions) . A BS 105 may dynamically assign a UE 115 to operate over a certain BWP (e.g., a certain portion of the system BW) . The assigned BWP may be referred to as the active BWP. The UE 115 may monitor the active BWP for signaling information from the BS 105. The BS 105 may schedule the UE 115 for UL or DL communications in the active BWP. In some aspects, a BS 105 may assign a  pair of BWPs within the CC to a UE 115 for UL and DL communications. For instance, the BWP pair may include one BWP for UL communications and one BWP for DL communications.
In some aspects, network 100 may be an integrated access backhaul (IAB) network. IAB may refer to a network that uses a part of radio frequency spectrum for backhaul connection of BSs (e.g., BSs 105) instead of optical fibers. The IAB network may employ a multi-hop topology (e.g., a spanning tree) to transport access traffic and backhaul traffic. For instance, one of the BSs 115 may be configured with an optical fiber connection in communication with a core network. The BS 105 may function as an anchoring node (e.g., a root node) to transport backhaul traffic between a core network and other BSs 105 in the IAB network. In some other instances, one BS 105 may serve the role of a central node in conjunction with connections to a core network. And in some arrangements, BSs 105 and the UEs 115 may be referred to as relay nodes in the network.
FIG. 2 illustrates a communication scenario 200 that includes  relays  224, 226, and 228 according to one or more aspects of the present disclosure. The scenario 200 may correspond to a communication scenario in the network 100. The  relays  224, 226, and 228 may be wireless communication devices configured to operate as relays to assist coverage-limited UEs 115 communicate with the BS 105. In some instances, the  relays  224, 226, and 228 can be UEs similar to the UE 115. For simplicity, scenario 200 includes a BS 105, three  relays  224, 226, and 228, and a UE 115, but a greater or fewer number of each type of device may be supported.
Two different communication links 220 (which includes links 230, 232, and 236) and 240 (which includes links 234 and 238) are shown originating from and terminating at UE 115.
The BS 105 and UE 115 may communicate via  relays  226 and 228 using communication link 220, and/or via relay 224 using link 240. Communication between the BS 105 and the UE 115 may be more effective over links 220 and/or 240 than over a direct connection between the two devices when, for instance, UE 115 is distant from the BS 105 (e.g., outside or near the boundary of the coverage area of BS 105) , and relay 224, or relays 226 and 228, is/are between the BS 105 and the UE 115. Link 220 connects UE 115 to BS 105 (in three hops) through  relays  228 and 226, and link 240 connects UE 115 to BS 105 (in two hops) through relay 224.
Data transmitted from the UE 115 (in an upstream direction) on link 220 travels through link 236 to relay 228, which then transmits it over link 232 to relay 226, which finally transmits it over link 230 to BS 105. Data transmitted from the UE 115 (in an upstream direction) to the BS 105 over link 240 travels through link 238 to relay 224, which then transmits it to BS 105 over link 234. UE 115 may transmit data over one or both  links  220 and 240. Similarly, BS 105 may transmit data (in a downstream direction) to UE 115 over link (s) 220 and/or 240, with the data flowing to the UE 115 in reverse order from the upstream transmission. Data transmitted by the UE 115 to the BS 105  via the relays 224 and/or the  relays  226 and 228 may be handled by each relay at the physical layer, forwarding the data to the BS 105 (in some instances with additional headers or information) without involving other layers (e.g., the medium access control (MAC) layer) .
In some aspects, a UE 115 may transmit an SR to a BS 105 using a link 220 and/or a link 240. Because additional UEs 115 (not illustrated) may communicate via  relays  224, 226, and/or 228, each relay transmitting data between the UEs 115 and the BS 105 may combine data from multiple UEs 115.
When the UE 115 has UL data to transmit and the BS 105 has not yet configured an UL resource for the UE 115 to transmit the UL data on, the UE 115 may send an SR to the BS 105 to request an UL resource for the data transmission. For instance, the UE 115 may transmit the SR to request uplink-shared channel (UL-SCH) resources for UL data transmission. The BS 105 may configure a plurality of SR resources. Each SR configuration may correspond to one or more logical channels, and each logical channel may be mapped to zero or one SR configuration. The SR configuration may be configured, for instance, by RRC. If more than one SR is triggered simultaneously, the UL-SCH resource (s) may be allocated based on the logical channel prioritization.
The UE 115 may transmit an SR to the BS 105 directly. For instance, the UE 115 may transmit an SR on the PUCCH using preconfigured and periodically reoccurring PUCCH resources dedicated to the UE 115. With a dedicated scheduling-request mechanism, it may be unnecessary for the UE 115 to provide its identity because the identity of the transmitting UE is typically known from the resources upon which the SR is transmitted. If the channel quality between the UE 115 and the BS 105 is poor, one or more relays (e.g., relay 224, relay 226, and/or relay 228 of FIG. 2) may be used to improve the communication quality. The present application provides techniques for handling SRs in scenarios in which one or more relays are used for communications between a BS 105 and a UE 115.
FIG. 3 is a sequence diagram illustrating a communication method 300 according to one or more aspects of the present disclosure. The communication method 300 may be performed by a BS 105, a UE 115, and a relay 302, communicating under scenario 200 as illustrated in communication scenario 200 of FIG. 2. The relay 302 may correspond to relay 224, 226, and/or 228 of FIG. 2.
At action 305, the BS 105 may configure a plurality of resources for an SR transmission. An SR configuration may indicate the plurality of configured resources. The SR configuration may be for one or more UEs 115, one or more relays 302, or a combination of one or more UEs 115 and one or more relays 302. For instance, the plurality of resources may include one or more SR  resources for the UE 115 to transmit one or more SRs to one or more relays 302 and/or one or more SR resources for the relay 302 to forward the UE 115’s one or more received SRs to the BS 105.
At action 310, the BS 105 may transmit the SR configuration to the relay 302. For instance, the BS 105 may establish a connection (e.g., an RRC connection) with the UE 115 via the relay 302. The UE 115 may be outside or near the boundary of the coverage area of the BS 105, and the relay 302 may be between the BS 105 and the UE 115. In some aspects, BS 105 may also transmit the SR configuration transmitted to the relay 302 (at action 310) to the UE 115.
At action 315, the relay 302 may transmit the SR configuration to the UE 115. In some aspects, the relay 302 may forward the SR configuration received from the BS 105 (at action 310) to the UE 115. In some aspects, the BS 105 may transmit the SR configuration to the UE 115. The UE 115 may receive the SR configuration from the relay 302 and/or the BS 105.
At action 320, the UE 115 may transmit an SR to the relay 302. For instance, the UE 115 may use one or more SR resources of the plurality of SR resources for transmitting one or more SRs to the BS 105 via the relay 302. The UE 115 may transmit the SR when the UE 115 has UL data to transmit to the BS 105. The relay 302 may receive the SR on an SR resource indicated by the SR configuration from the UE 115.
At action 325, the relay 302 transmits a communication signal including the SR to the BS 105. In some aspects, the BS 105 may configure multiple SR resources for each SR of the UE 115. The relay 302 may forward, to the BS 105, the SR of the UE 115 independently from other SRs (requested by other UEs 115) . The number of scheduled SR resources may be the same as the number of UEs 115 whose SRs are to be forwarded by the relay 302.
FIG. 4 is a sequence diagram illustrating a communication method 400 according to one or more aspects of the present disclosure. The communication method 400 may be performed by a BS 105, a UE 115, a UE 404, and a relay 402, communicating under scenario 200 as illustrated in communication scenario 200 of FIG. 2. The relay 402 may correspond to the  relay  224, 226, and/or 228 of FIG. 2 and/or relay 302 of FIG. 3.
At action 405, the BS 105 may configure a plurality of resources for an SR transmission. The action 405 may correspond to action 305 in FIG. 3. At action 410, the BS 105 may transmit the SR configuration to the relay 402. The action 410 may correspond to action 310 in FIG. 3.
At action 415, the relay 402 may transmit the SR configuration to the UE 115. The action 415 may correspond to action 315 in FIG. 3. At action 420, the relay 402 may transmit the SR configuration to the UE 404. The action 420 may correspond to action 315 in FIG. 3.
At action 425, the UE 115 may transmit a first SR to the relay 402. The action 425 may correspond to action 320 in FIG. 3. At action 430, the UE 404 may transmit a second SR to the relay 402. The action 430 may correspond to action 320 in FIG. 3.
The relay 402 may receive the first SR on a first SR resource indicated by the SR configuration from the UE 115 and may receive the second SR on a second SR resource indicated by the SR configuration from the UE 404.
At action 435, the relay 402 transmits a first communication signal including the first SR to BS 105. The action 435 may correspond to action 325 in FIG. 3. At action 440, the relay 402 transmits a second communication signal including the second SR to BS 105. The action 440 may correspond to action 325 in FIG. 3. The relay 402 may transmit the first and second SRs to the BS 105 in a variety of ways. In some aspects, the relay 402 may forward the SR of each UE 115, 404 independently to the BS 105. For instance, the relay 402 may execute  actions  435 and 440 independently from each other. In some instances, the BS 105 may configure multiple SR resources for each SR of the UE 115 and/or the UE 404. The number of scheduled resources may be the same as the number of UEs (e.g., UE 115 and UE 404) whose SRs are to be forwarded by the relay 302. For instance, the BS 105 may configure two scheduled resources for the two UEs 115, 404. The BS 105 may configure a first SR resource of the plurality of resources for the UE 115 and a second SR resource of the plurality of resources for the UE 404.
In some aspects, the relay 402 may aggregate the SRs of multiple UEs (e.g., UE 115 and UE 404) and transmit the aggregated SRs to the BS 105. In some instances, the BS 105 may configure one SR resource for each SR of the UEs 115, 404 and an UL resource for the relay 402 to forward the SR to the BS 105. The UL resource may be, for instance, a PUCCH resource or a PUSCH resource. If the relay 402 aggregates the SRs (e.g., the first SR in action 425 and the second SR in action 430) of the multiple UEs (e.g., the UE 115 and the UE 404) and transmits the aggregated SRs to the BS 105, then the relay 402 may transmit one communication signal including both the first SR from the UE 115 and the second SR from the UE 404 to the BS 105.
The BS 105 may use PDCCH and/or MAC-CE to activate the relay 402 to forward the one or more SRs of the one or more UEs. In some aspects, the BS 105 transmits, to the relay 402, a first PDCCH signal including an activation for forwarding the SRs of a specified UE 115 to the BS 105. The relay 402 may receive the first PDCCH signal and may transmit, using a configured grant UL resource indicated by the SR configuration for forwarding the SRs of the specified UE 115 to the BS 105, the first communication signal including the first SR of the UE 115 in response to receiving the activation. The relay 402 may continue to use the configured grant UL resource for forwarding the one or more SRs of the specified UE 115 to the BS 105 until the relay 402 receives a second  PDCCH signal including a deactivation of the configured grant UL resource for forwarding SRs of the specified UE 115 to the BS 105. The BS 105 may transmit the second PDCCH signal to the relay 402.
In some aspects, the BS 105 transmits, to the relay 402, a first MAC-CE including an indication of an UL resource and including an activation for forwarding the SRs of a specified UE 115 to the BS 105. The relay may receive the first MAC-CE and may transmit, using the UL resource indicated by the SR configuration for forwarding the SRs of the specified UE 115 to the BS 105, the first communication signal including the first SR of the UE 115 in response to receiving the activation. The relay 402 may continue to use the UL resource for forwarding the one or more SRs of the specified UE 115 to the BS 105 until the relay 402 receives an indication that the UL resource is disabled. In some instances, the first MAC-CE may carry a time duration indicating for how long the relay 402 may use the UL resource for forwarding the SRs of the specified UE 115 to the BS 105. The relay 402 may stop using the UL resource for forwarding the SRs of the specified UE 115 to the BS 105 when the time duration expires. In some instances, the BS 105 may transmit, to the relay 402, a PDCCH signal including an indication of a deactivation of the UL resource for forwarding the SRs of the specified UE 115 to the BS 105. The relay 402 may stop using the UL resource for forwarding the SRs of the specified UE 115 to the BS 105 in response to receiving the deactivation. It should be understood that the UE 115 is provided as one instance for simplicity, and the discussion of activation and deactivation for forwarding the SRs of a specified UE to the BS 105 applies to other UEs (e.g., UE 404) and to the multiple UEs that are connected to the relay 402.
The relay 402 may use configured PUCCH or PUSCH to forward the SRs from the multiple UEs to the BS 105. In some aspects, the BS 105 may preconfigure the PUSCH for the relay 402 to forward the one or more SRs from the multiple UEs to the BS 105. In some aspects, the BS 105 may dynamically grant PUSCH to the relay 402, which may use this available PUSCH to transmit the one or more SRs from the multiple UEs to the BS 105. If PUCCH or PUSCH carries the SRs of multiple UEs, the relay 402 may identify the UEs with an SR carried in the PUCCH or PUSCH. In some aspects, the relay 402 uses an identifier that identifies the UEs with an SR carried in the PUCCH or PUSCH. In some instances, the relay 402 transmits the first communication signal at action 435 and the second communication signal at action 440 by transmitting a PUCCH signal or a PUSCH signal carrying a header including a first cell-radio network transmission identifier (C-RNTI) that identifies the UE 115 and a second C-RNTI that identifies the UE 404. The length of a C-RNTI may be long (e.g., 32 bits) , potentially resulting in a large payload.
To reduce the payload size, the relay 402 may use a dynamically assigned UE-identifier that is assigned to and identifies the UEs with an SR carried in the PUCCH or PUSCH. The BS 105 or  the relay 402 may determine and/or assign the dynamically assigned UE-identifiers to the UEs. If the relay 402 assigns the dynamically assigned UE-identifiers to the connected UEs, then the BS 105 may schedule the UL resource for the user through the same relay 402. In some instances, the relay 402 transmits the first communication signal at action 435 and the second communication signal at action 440 by transmitting a PUCCH signal or the PUSCH signal carrying a header including a first dynamically assigned number that identifies the UE 115 and a second dynamically assigned number that identifies the UE 404. For instance, if the relay 402 is connected to thirty-two UEs, the dynamically assigned number may have five bits, with each value indicating one of the thirty-two UEs.
In some aspects, the relay 402 may use a bitmap including one or more SRs of one or more UEs of a plurality of UEs. A PUCCH signal or a PUSCH signal may include the bitmap. In some instances, each UE of the plurality of UEs may correspond to a fixed location in the bitmap, where a first value of a bit (e.g., 1) indicates that the communication signal includes an SR from the corresponding UE, and a second value of the bit (e.g., 0) indicates that the communication signal is devoid of an SR from the corresponding UE. The relay 402 or the BS 105 may assign a location in the bitmap to each UE connected to the relay. In some instances, each UE of the plurality of UEs corresponds to a location in the bitmap, and the location is based on a UE-identifier of the respective UE. In some cases, a bit value of 1 may indicate that the communication signal includes an SR from the corresponding UE, and a bit value of 0 may indicate that the communication signal is devoid of an SR from the corresponding UE. The relay 402 or the BS 105 may assign a location in the bitmap to each UE connected to the relay 402. In some cases, the relay 402 may define a method to map the UE-identifiers to the locations in the bitmap. The relay 402 may sort the UE-identifiers in an order (e.g., ascending order or descending order) and map the UE-identifiers to locations in the bitmap based on the order.
The relay 302 may be connected to multiple UEs (e.g., the UE 115 and the UE 402) . It may be desirable for the BS 105 to configure/schedule SR resources for the relay 302 such that collisions between receiving an SR from a UE and transmitting an SR to another relay or to the BS 105 are avoided. If a collision occurs such that the relay 305 is scheduled to receive, from a UE, an SR on an SR resource and is also scheduled to forward a UE’s SR on that same SR resource, the relay 305 may determine to use the SR resource to forward the UE’s SR to the other relay or to the BS 105. For instance, the relay 305 may ignore the UE’s SR.
In some aspects, the BS 105 and the UE 115 may have multiple links between them (e.g., communication link 220 and communication links 240 in FIG. 2) . For instance, when the UE 115 transmits an SR to a relay (e.g., the  relays  224, 226, 228 in FIG. 2, the relay 302 in FIG. 3, or the  relay 402 in FIG. 4) that forwards the SR to the BS 105, the SR may be transmitted on multiple links. The present application provides techniques for handling one or more SR transmissions with multiple routes. In some instances, the BS 105 preconfigures multiple SR resources for the UE 115 to transmit one or more SRs to one or more relays. The UE 115 may be connected to multiple relays, and the number of SR resources may be the same as the number of relays connected to the UE 115. For instance, one logical channel may be mapped to more than one SR.
In some aspects, each SR may include a first SR parameter (e.g., SR-transMax) indicating a maximum number of times a UE 115 may transmit and/or re-transmit an SR for an SR resource and/or may include a second SR parameter (e.g., SR-prohibitTimer parameter) indicating a timeout value for a timer for transmission of the SR on PUCCH. The RRC, for instance, may configure the first and the second parameters, per SR. The UE 115 may receive the RRC configuration for the first and second parameters from the BS 105, either directly or indirectly via the relay 402. If the UE 115 has exceeded the number attempts specified by the first SR parameter, the UE 115 may start the initial RACH process again to connect to the BS 105. In some instances, the UE 115 may transmit an SR, start the timer with the timeout value upon transmission of the SR, and may not transmit another SR until the timer expires.
If the second parameter is running (the timer is in progress) , the MAC entity may be unable to perform the SR transmission. In some aspects, the second SR parameter is based on at least one of a transmission latency over a longest link of a plurality of links between the BS 105 and the UE 115 or a transmission latency over a shortest link of a plurality of links between the BS 105 and the UE 115. In some aspects, the second SR parameter is based on a transmission latency over a longest link of a plurality of links between the BS 105 and the UE 115.
In some aspects, a PUCCH transmit power configuration may be based on distances between the UE 115, the relay, and the BS 105. The distance between the UE 115 and the BS 105 and the distance between the UE 115 and the relay may be different. In some aspects, the BS 105 configures a PUCCH transmit power configuration for the UE 115. The BS 105 may transmit the PUCCH transmit power configuration to the relay and/or the UE 115. The number of PUCCH transmit power configurations that are configured may be a sum of the number of relays connected to the UE 115 and one. In some instances, if one relay is between the UE 115 and the BS 105, the BS 105 may configure two PUCCH transmit power configurations for the UE 115, where one PUCCH transmit power configuration is for the UE 115 to transmit a SR to the relay, and the other one is for the UE 115 to transmit the SR to the BS 105. In some instances, if more than one relay is connected to the UE 115, the BS 105 may configure a total number of PUCCH transmit power configurations, where the total number is a sum of the number of relays connected to the UE 115  and one. In some aspects, the BS 105 may have a one-to-one mapping of the wireless communication device (e.g., UE 115 or the relay) to the particular PUCCH transmit power configuration. In some aspects, the BS 105 divides the PUCCH transmit power into different levels for the PUCCH transmit power configuration. For instance, the transmit power may be related to the distance between the UE 115 and the BS 105 and/or the distance between the UE 115 and the relay.
Multiple routes may be used to transmit the UE 115’s SR from the UE 115 to the BS 105, with one or more relays in between the UE 115 and the BS 105 assisting in the SR transmission. In some aspects, the UE 115 and/or the relay transmits the SR through multiple configured resources. In some aspects, the UE 115 and/or the relay randomly selects one resource to transmit or forward the SR. For instance, the UE 115 and/or the relay may select the closest available resource. The closest available resource may refer to the next available resource for the UE 115 and/or the relay to transmit or forward the SR. In some aspects, the BS 105 transmits an indication of a channel quality (e.g., a reference signal received power (RSRP) , signal-to-noise-ratio (SNR) , and/or signal-to-interference-plus-noise-ratio (SINR) ) for each resource of the plurality of resources indicated in the SR configuration to the UE 115 and/or the relay. The UE 115 and/or the relay may receive the indication of the channel quality and may select an SR resource having a best channel condition of the one or more received channel conditions. The UE 115 and/or the relay may transmit one or more SRs using the selected resource.
As discussed, the BS 105 may configure a plurality of SR resources for an SR transmission. In some instances, the BS 105 may configure one SR resource for each SR of the UE 115 and an UL resource for the relay to forward the SR to another relay or to the BS 105. The UL resource may be, for instance, PUCCH or PUSCH for the relay to forward the SR. In some instances, the BS 105 may configure multiple SR resources for each SR of the UE 115. In some cases, each SR resource of the multiple SR resources may have the same configuration (e.g., frequency location, slot location, periodicity, etc. ) , except for the time-offset of the SR resources, as illustrated and discussed in relation to FIG. 5. In some cases, each SR resource of the multiple SR resources may have an independent configuration, as illustrated and discussed in relation to FIG. 6.
FIG. 5 illustrates an SR configuration scheme 500 indicating multiple SR resources according to one or more aspects of the present disclosure. The SR configuration scheme 500 may correspond to a SR configuration scheme in the network 100. In FIG. 5, the x-axis represents time in some arbitrary units, and the y-axis represents frequency in some arbitrary units. The BS 105 may transmit an SR configuration including the plurality of  SR resources  502, 504, 506, 508, and 510 (each occupying one or more symbols in time and one or more subcarriers in frequency) . The  BS 105 may configure the  SR resources  502 and 506 for the UE 115 to transmit an SR to the relay 302 (see FIG. 3) and may configure the SR resources 504, 508, and 510 for the relay 302 to forward the UE 115’s SR to another relay or to the BS 105. The  SR resources  502 and 506 are SR resources for the UE 115, as indicated by the dot-patterned boxes, to transmit the UE 115’s SR to the relay 302. The SR resources 504, 508, and 510 are SR resources for the relay 302, as indicated by the stripe-patterned boxes, to transmit the UE 115’s SR to the BS 105.
In some aspects illustrated in FIG. 5, the BS 105 may allocate each SR resource of the plurality of  SR resources  502, 504, 506, 508, and 510 in the same frequency band. In some aspects, each SR resource of the plurality of  SR resources  502, 504, 506, 508, and 510 may have the same frequency allocation, the same symbol location (s) , and/or the same SR periodicity. In some instances, each  resource  502, 504, 506, 508, and/or 510 may occupy one or more symbols in time. In some aspects, the  resources  502, 505, 506, 508, and 510 may occupy the same frequency subcarriers, but time offset from each other by one or more symbols or one or more slots. The UE 115’s  resources  502 and 506 may be time offset from the relay 302’s resources 504, 508, and 510. In some instances, some of the  resources  502, 505, 506, 508, and/or 510 may be offset from each other by a slot and may be located at the same symbol within a slot. For instance, resource 502 may be located at symbol 3, and resource 504 may be located at symbols 3 and 5 of a slot, and/or resource 506 and 508 are located at symbol 3 and 5 of another slot. The  resources  502, 504, 506, 508, and/or 510 may be in any suitable configuration in time.
FIG. 6 illustrates an SR configuration scheme 600 indicating multiple SR resources according to one or more aspects of the present disclosure. The SR configuration scheme 600 may correspond to a SR configuration scheme in the network 100. In FIG. 6, the x-axis represents time in some arbitrary units, and the y-axis represents frequency in some arbitrary units. The BS 105 may configure a plurality of SR resources for an SR transmission. The BS 105 may transmit an SR configuration including the plurality of  SR resources  602, 604, 606, 608, and 610. The BS 105 may configure the  SR resources  602 and 606 for the UE 115 to transmit a SR to the relay 302 (see FIG. 3) and may configure the SR resources 604, 608, and 610 for the relay 302 to forward the UE 115’s SR to another relay or to the BS 105. The  SR resources  602 and 606 are SR resources for the UE 115, as indicated by the dot-patterned boxes. The SR resources 604, 608, and 610 are SR resources for the relay 302, as indicated by the stripe-patterned boxes.
In FIG. 6, the time-frequency domain of the SR resources for the UE 115 may be independent from the SR resources for the relay 302. In some aspects, the  SR resources  602 and 606 for the UE 115 may be located at a first frequency band with a first time-offset, and the SR resources 604, 608, and 610 for the relay 302 may be located at a second frequency band with a  second time-offset, where the first frequency band is independent from the second frequency band, and the first time-offset is independent from the second time-offset. The first frequency band and the second frequency band may correspond to different portions within a channel bandwidth where the UE 115, the relay 402, and the BS 105 may communicate with each other.
FIG. 7 is a block diagram of an example BS 700 according to one or more aspects of the present disclosure. The BS 700 may be a BS 105 as discussed in FIGS. 1-6 and 10. As shown, the BS 700 may include a processor 702, a memory 704, an SR module 708, a transceiver 710 including a modem subsystem 712 and a radio frequency (RF) unit 714, and one or more antennas 716. These elements may be coupled with one another. The term “coupled” may refer to directly or indirectly coupled or connected to one or more intervening elements. For instance, these elements may be in direct or indirect communication with each other, for instance via one or more buses.
The processor 702 may have various features as a specific-type processor. For instance, these may include a central processing unit (CPU) , a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a controller, a field programmable gate array (FPGA) device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 702 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 704 may include a cache memory (e.g., a cache memory of the processor 702) , random access memory (RAM) , magnetoresistive RAM (MRAM) , read-only memory (ROM) , programmable read-only memory (PROM) , erasable programmable read only memory (EPROM) , electrically erasable programmable read only memory (EEPROM) , flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory. In some aspects, the memory 704 may include a non-transitory computer-readable medium. The memory 704 may store instructions 706. The instructions 706 may include instructions that, when executed by the processor 702, cause the processor 702 to perform operations described herein, for instance, aspects of FIGS. 1-6 and 10. Instructions 706 may also be referred to as program code. The program code may be for causing a wireless communication device to perform these operations, for instance by causing one or more processors (such as processor 702) to control or command the wireless communication device to do so. The terms “instructions” and “code” should be interpreted broadly to include any type of computer-readable statement (s) . For instance, the terms “instructions” and  “code” may refer to one or more programs, routines, sub-routines, functions, procedures, etc. “Instructions” and “code” may include a single computer-readable statement or many computer-readable statements.
The SR module 708 may be implemented via hardware, software, or combinations thereof. For instance, the SR module 708 may be implemented as a processor, circuit, and/or instructions 706 stored in the memory 704 and executed by the processor 702. In some instances, the SR module 708 can be integrated within the modem subsystem 712. For instance, the SR module 708 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 712. The SR module 708 may communicate with one or more components of BS 700 to implement various aspects of the present disclosure, for instance, aspects of FIGS. 1-6 and 10.
For instance, the SR module 708 may transmit, to one or more wireless communication devices, an SR configuration indicating a plurality of resources. The one or more wireless communication devices may include, for instance, a  UE  115, 404, 800 and/or a relay 900. A UE may be configured to act as a relay. The BS 700 may already be in communication with the UE 115 (either directly, or through one of the relays) . The SR module 708 may further be configured to receive, from a first wireless communication device (e.g., from a relay on the link between the UE 115 and the BS 700) of the one or more wireless communication devices, an SR in a first resource of the plurality of resources, where the SR and the first resource are associated with a UE connected to the first wireless communication device.
As shown, the transceiver 710 may include the modem subsystem 712 and the RF unit 714. The transceiver 710 can be configured to communicate bi-directionally with other devices, such as the  UE  115, 404, 800 and/or the relay 900 (which may be UEs 115, 404, 800) and/or another core network element. The modem subsystem 712 may be configured to modulate and/or encode data according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc. The RF unit 714 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data (data signals, SRs, communication signals, etc. ) from the modem subsystem 712 (on outbound transmissions) . The RF unit 714 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 710, the modem subsystem 712 and/or the RF unit 714 may be separate devices that are coupled together at the BS 700 to enable the BS 700 to communicate with other devices.
The RF unit 714 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to  the antennas 716 for transmission to one or more other devices. The antennas 716 may further receive data messages transmitted from other devices and provide the received data messages for processing and/or demodulation at the transceiver 710. The transceiver 710 may provide the demodulated and decoded data (e.g., SR configuration, communication signals, data signals, etc. ) to the SR module 708 for processing. The antennas 716 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
In some instances, the transceiver 710 is configured to transmit, to one or more wireless communication devices (e.g., the UE 800 and/or the relay 900) , an SR configuration indicating a plurality of resources. The transceiver 710 is further configured to receive, from a first wireless communication device (e.g., the relay 900) of the one or more wireless communication devices, an SR in a first resource of the plurality of resources, where the SR and the first resource are associated with a UE connected to the first wireless communication device.
FIG. 8 is a block diagram of an example UE 800 according to one or more aspects of the present disclosure. The UE 800 may be, for instance, a UE 115 or a UE 404. In some instances, the UE 800 may be connected to the BS 700 through a relay and/or may be configured as a relay (e.g., a UE 115 configured as a relay) . As shown, the UE 800 may include a processor 802, a memory 804, an SR module 808, a transceiver 810 including a modem subsystem 812 and an RF unit 814, and one or more antennas 816. These elements may be coupled with one another. The term “coupled” may refer to directly or indirectly coupled or connected to one or more intervening elements. For instance, these elements may be in direct or indirect communication with each other, for instance via one or more buses.
The processor 802 may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 802 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 804 may include a cache memory (e.g., a cache memory of the processor 802) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, solid state memory device, hard disk drives, other forms of volatile and non-volatile memory, or a combination of different types of memory. In an aspect, the memory 804 includes a non-transitory computer-readable medium. The memory 804 may store, or have recorded thereon, instructions 806. The instructions 806 may include instructions that, when executed by the processor 802, cause the processor 802 to perform the operations described herein with reference to a UE 115 or an anchor in connection with aspects  of the present disclosure, for instance, aspects of FIGS. 1-6 and 11. Instructions 806 may also be referred to as code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 7.
The SR module 808 may be implemented via hardware, software, or combinations thereof. For instance, the SR module 808 may be implemented as a processor, circuit, and/or instructions 806 stored in the memory 804 and executed by the processor 802. In some aspects, the SR module 808 can be integrated within the modem subsystem 812. For instance, the SR module 808 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 812. The SR module 808 may communicate with one or more components of wireless communication device 800 to implement various aspects of the present disclosure, for instance, aspects of FIGS. 1-6 and 11.
For instance, the UE 800 may be a UE 115. For clarity, the UE 800 will be referred to as a UE 115 to distinguish it from other wireless communication devices configured to operate as relays. The SR module 808 may receive, from one or more wireless communication devices (e.g., a relay 900) , an SR configuration indicating a plurality of resources. Each UE 800 of the one or more wireless communication devices 800 may be connected to a BS 700 through a relay 900. For instance, the wireless communication devices may include UEs (similar to UE 115) configured to act as relays and/or may include BSs (similar to BS 105) .
The SR module 808 may further be configured to transmit, to the one or more wireless communication devices, one or more SRs using one or more resources of the plurality of resources. The UE 800 may also act as a relay for another UE 115. For instance, the UE 800 may be a UE 115 configured to act as a relay between a BS 700 and a different UE 115, for instance, as discussed with respect to FIGS. 2-6 and 10-12.
As shown, the transceiver 810 may include the modem subsystem 812 and the RF unit 814. The transceiver 810 can be configured to communicate bi-directionally with other devices, such as the  BSs  105 and 700. The modem subsystem 812 may be configured to modulate and/or encode the data from the memory 804 and/or the SR module 808 according to a modulation and coding scheme (MCS) , e.g., a low-density parity check (LDPC) coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc. The RF unit 814 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data (e.g., data signals, communication signals, reference signals, SR configuration, etc. ) from the modem subsystem 812 (on outbound transmissions) . The RF unit 814 may be further configured to perform analog beamforming in conjunction with the digital  beamforming. Although shown as integrated together in transceiver 810, the modem subsystem 812 and the RF unit 814 may be separate devices that are coupled together at the UE 800 to enable the UE 800 to communicate with other devices.
The RF unit 814 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 816 for transmission to one or more other devices. The antennas 816 may further receive data messages transmitted from other devices. The antennas 816 may provide the received data messages for processing and/or demodulation at the transceiver 810. The transceiver 810 may provide the demodulated and decoded data (e.g., data signals, communication signals, reference signals, SRs, etc. ) to the SR module 808 for processing. The antennas 816 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
In an instance, the transceiver 810 is configured to receive, from one or more wireless communication devices, an SR configuration indicating a plurality of resources. The transceiver 810 is further configured to transmit, to the one or more wireless communication devices, one or more SRs using one or more resources of the plurality of resources.
FIG. 9 is a block diagram of an example relay 900 according to one or more aspects of the present disclosure. The relay 900 may be a wireless communication device, for instance, a UE 115. In some instances, a UE 115 may be configured as the relay 900. As shown, the relay 900 may include a processor 902, a memory 904, an SR module 908, a transceiver 910 including a modem subsystem 912 and an RF unit 914, and one or more antennas 916. These elements may be coupled with one another. The term “coupled” may refer to directly or indirectly coupled or connected to one or more intervening elements. For instance, these elements may be in direct or indirect communication with each other, for instance via one or more buses.
The processor 902 may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 902 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 904 may include a cache memory (e.g., a cache memory of the processor 902) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, solid state memory device, hard disk drives, other forms of volatile and non-volatile memory, or a combination of different types of memory. In an aspect, the memory 904 includes a non-transitory computer-readable medium. The memory 904 may store, or have recorded thereon, instructions 906. The instructions 906 may  include instructions that, when executed by the processor 902, cause the processor 902 to perform the operations described herein with reference to a UE 115, a relay 302, or an anchor in connection with aspects of the present disclosure, for instance, aspects of FIGS. 1-6 and 12. Instructions 906 may also be referred to as code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 7.
The SR module 908 may be implemented via hardware, software, or combinations thereof. For instance, the SR module 908 may be implemented as a processor, circuit, and/or instructions 906 stored in the memory 904 and executed by the processor 902. In some aspects, the SR module 908 can be integrated within the modem subsystem 912. For instance, the SR module 908 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 912. The SR module 908 may communicate with one or more components of the relay 900 to implement various aspects of the present disclosure, for instance, aspects of FIGS. 1-6 and 12.
For instance, the relay 900 may be a UE 115 and/or a relay 302. The SR module 908 may receive, from a BS 700, an SR configuration indicating a plurality of resources. A UE 115 may be connected to the BS 700 via the relay 900. The SR module 908 may be further configured to receive, from a UE 800, an SR in a first resource of the plurality of resources. The SR module 908 may be further configured to transmit, to the BS 700, a first communication signal including the SR.
As shown, the transceiver 910 may include the modem subsystem 912 and the RF unit 914. The transceiver 910 can be configured to communicate bi-directionally with other devices, such as the  BSs  105 and 700. The modem subsystem 912 may be configured to modulate and/or encode the data from the memory 904 and/or the SR module 908 according to an MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc. The RF unit 914 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data (e.g., data signals, communication signals, reference signals, SR configuration, SRs, etc. ) from the modem subsystem 912 (on outbound transmissions) . The RF unit 914 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 910, the modem subsystem 912 and the RF unit 914 may be separate devices that are coupled together at the relay 900 to enable the relay 900 to communicate with other devices.
The RF unit 914 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 916 for transmission to one or more other devices. The antennas 916 may further receive data messages transmitted from other devices. The antennas 916 may provide the received  data messages for processing and/or demodulation at the transceiver 910. The transceiver 910 may provide the demodulated and decoded data (e.g., data signals, communication signals, reference signals, SRs, etc. ) to the SR module 908 for processing. The antennas 916 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
In some instances, the transceiver 910 is configured to receive, from a BS 700, an SR configuration indicating a plurality of resources. The transceiver 910 is further configured to receive, from a UE 800, an SR in a first resource of the plurality of resources. The transceiver 910 is further configured to transmit, to the one or more wireless communication devices (e.g., BS 700) , one or more SRs using one or more resources of the plurality of resources.
FIG. 10 is a flow diagram illustrating an SR communication method 1000 according to one or more aspects of the present disclosure. Aspects of the method 1000 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for executing or performing the blocks. For instance, the wireless communication device may be a BS 700. The BS 700 may utilize one or more components, such as the processor 702, the memory 704, the SR module 708, the transceiver 710, the modem 712, the RF unit 714, and the one or more antennas 716, to execute the blocks of method 1000. The method 1000 may employ similar mechanisms as described in FIGS. 1-7 and 10. As illustrated, the method 1000 includes a number of enumerated blocks, but aspects of the method 1000 may include additional blocks before, after, and in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
At block 1002, the BS 700 transmits, to one or more wireless communication devices 900 and/or one or more UEs 800, an SR configuration indicating a plurality of resources. Each UE 800 may be configured to operate as a relay. In some aspects, the means for performing the operations of block 1002 can, but do not necessarily, include the processor 702, the memory 704, the SR module 708, the transceiver 710, the modem 712, the RF unit 714, and the one or more antennas 716 with reference to FIG. 7.
In some aspects, the plurality of resources includes multiple SR resources for each SR of the UE. In some aspects, the plurality of resources includes one SR resource for each SR of the UE and further includes an UL resource for the first wireless communication device to forward the SR of the UE to the BS.
At block 1004, the BS 700 receives, from a first wireless communication device of the one or more wireless communication devices (e.g., via a relay on the link between the UE 115 and the BS 700) , an SR in a first resource of the plurality of resources, wherein the SR and the first resource are associated with a UE connected to the first wireless communication device. The SR in the first  resource may be the SR for the UE. In some aspects, the means for performing the operations of block 1004 can, but do not necessarily, include the processor 702, the memory 704, the SR module 708, the transceiver 710, the modem 712, the RF unit 714, and the one or more antennas 716 with reference to FIG. 7.
In some aspects, the SR configuration includes a configured grant UL resource for forwarding the SR of the UE to the BS, and the BS 700 transmits, to the first wireless communication device (e.g., relay 900) , a PDCCH signal including an activation for forwarding the SR of the UE to the BS 700. The BS 700 may receive the SR of the UE on the configured grant UL resource. In some aspects, the BS 700 transmits, to the first wireless communication device (e.g., relay 900) , a MAC-CE including an indication of an uplink resource and an activation for forwarding the SR of the UE to the BS 700. The BS 700 may receive the SR using the uplink resource in response to receiving the MAC-CE. In some aspects, the BS 700 may transmit, to the first wireless communication device (e.g., relay 900) , a PDCCH signal or a MAC-CE indicating a third resource of the plurality of resources is for the first UE and the second UE.
The BS 700 may receive, from the first wireless communication device of the one or more wireless communication devices, a second SR in a second resource of the plurality of resources. In some instances, the BS 700 may receive a first communication signal including the SR of a first UE and may receive a second communication signal including the second SR of a second UE. The first communication signal may be different from the second communication signal. In some cases, the plurality of resources may include multiple SR resources for each SR of the first and second UEs. In some aspects, the BS 700 transmits, to the relay 900, a PUCCH transmit power configuration for the UE 800.
FIG. 11 is a flow diagram illustrating an SR communication method 1100 according to one or more aspects of the present disclosure. Aspects of the method 1100 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the blocks. For instance, the wireless communication device may be a UE 800. The UE 800 may utilize one or more components, such as the processor 802, the memory 804, the SR module 808, the transceiver 810, the modem 812, the RF unit 814, and the one or more antennas 816, to execute the blocks of method 1100. The method 1100 may employ similar mechanisms as described in FIGS. 1-6, 8, and 11. As illustrated, the method 1100 includes a number of enumerated blocks, but aspects of the method 1100 may include additional blocks before, after, and in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
At block 1102, the UE 800 receives, from one or more wireless communication devices, an SR configuration indicating a plurality of resources. For instance, the one or more wireless communication devices may include the BS 700 and/or the relay 900. The one or more wireless communication devices may be, for instance, the BS 700 and/or the relay 900. In some aspects, the means for performing the operations of block 1102 can, but do not necessarily, include the processor 802, the memory 804, the SR module 808, the transceiver 810, the modem 812, the RF unit 814, and the one or more antennas 816 with reference to FIG. 8.
At block 1104, the UE 800 transmits, to the one or more wireless communication devices, one or more SRs using one or more resources of the plurality of resources. For instance, the one or more wireless communication devices may include the relay 900. The UE 800 may transmit the one or more SRs by transmitting a SR using multiple resources of the plurality of resources. In some aspects, the UE 800 selects a resource of the plurality of resources and transmits the SR using the selected resource. In some aspects, the means for performing the operations of block 1104 can, but do not necessarily, include the processor 802, the memory 804, the SR module 808, the transceiver 810, the modem 812, the RF unit 814, and the one or more antennas 816 with reference to FIG. 8.
In some aspects, the BS 700 sends a RRC configuration to the UE 800 either directly or indirectly via the relay 900. The UE 115 may receive the RRC configuration for a first SR parameter and a second SR parameter from the BS 105, either directly or indirectly via the relay 402. The first SR parameter (e.g., SR-transMax) may indicate a maximum number of times a UE 800 may transmit and/or re-transmit an SR for an SR resource, and the second SR parameter (e.g., SR-prohibitTimer parameter) may indicate a timeout value for a timer for transmission of the SR on PUCCH. The RRC, for instance, may configure the first and the second parameters, per SR. In some instances, the UE 800 may transmit an SR, start the timer with the timeout value upon transmission of the SR, and may not transmit another SR until the timer expires. In some aspects, the second SR parameter may be based on at least one of a transmission latency over a longest link of a plurality of links between the BS 700 and the UE 800 or a transmission latency over a shortest link of a plurality of links between the BS 700 and the UE 800. In some aspects, the second SR parameter may be based on a transmission latency over a longest link of a plurality of links between the BS 700 and the UE 800. In some aspects, a RRC may set a PUCCH transmit power configuration based on distances between the UE 800, the relay 900, and the BS 700. The distance between the BS 700 and the UE 800 and the distance between the UE 800 and the relay 900 may be different.
FIG. 12 is a flow diagram illustrating an SR communication method 1200 according to one or more aspects of the present disclosure. Aspects of the method 1200 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the blocks. For instance, the wireless communication device may be a relay 900. The relay 900 may utilize one or more components, such as the processor 902, the memory 904, the SR module 908, the transceiver 910, the modem 912, the RF unit 914, and the one or more antennas 916, to execute the blocks of method 1200. The method 1200 may employ similar mechanisms as described in FIGS. 1-6, 9, and 12. As illustrated, the method 1200 includes a number of enumerated blocks, but aspects of the method 1200 may include additional blocks before, after, and in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
At block 1202, the relay 900 receives, from a BS 700, an SR configuration indicating a plurality of resources. The relay 900 may transmit the SR configuration to one or more UEs 800. In some aspects, the means for performing the operations of block 1202 can, but do not necessarily, include the processor 902, the memory 904, the SR module 908, the transceiver 910, the modem 912, the RF unit 914, and the one or more antennas 916 with reference to FIG. 9.
In some aspects, the plurality of resources includes multiple SR resources for each SR of the UE 800. In some aspects, the plurality of resources includes one SR resource for each SR of the UE and further includes an UL resource for the relay 900 to forward the SR of the UE 800 to the BS 700.
At block 1204, the relay 900 receives, from a UE 800, an SR in a first resource of the plurality of resources. In some aspects, the means for performing the operations of block 1204 can, but do not necessarily, include the processor 902, the memory 904, the SR module 908, the transceiver 910, the modem 912, the RF unit 914, and the one or more antennas 916 with reference to FIG. 9.
At block 1206, the relay 900 transmits, to the BS 700, a first communication signal including the SR. In some aspects, the means for performing the operations of block 1206 can, but do not necessarily, include the processor 902, the memory 904, the SR module 908, the transceiver 910, the modem 912, the RF unit 914, and the one or more antennas 916 with reference to FIG. 9.
In some aspects, the relay 900 receives, from a second UE, a second SR in a second resource of the plurality of resources. The relay 900 may transmit, to the BS 700, a second communication signal including the second SR. In some instances, the first communication signal including the SR is different from the second communication signal including the second SR. In some instances, the  relay 900 transmits the first SR and the second SR using a third resource of the plurality of resources indicated by the SR configuration.
In some instances, the SR configuration may include a configured grant UL resource for forwarding the SR of the UE to the BS. In some aspects, the relay 900 receives, from the BS 700, a PDCCH signal including an activation for forwarding the SR of the UE to the BS, and transmits the SR using the configured grant UL resource in response to receiving the activation. In some instances, the relay 900 receives, from the BS 700, a MAC-CE including an indication of an UL resource and an activation for forwarding the SR of the UE 800 to the BS 700. The relay 900 may transmit the SR using the UL resource in response to receiving the MAC-CE. In some aspects, the relay 900 may receive, from the BS 700, a PDCCH signal or a MAC-CE indicating the third resource is for the first UE and the second UE.
In some aspects, the relay 900 may transmit a PUCCH signal or a PUSCH signal carrying the first and second SRs. In some instances, the PUCCH signal or the PUSCH signal carries a header including a first C-RNTI that identifies the first UE and a second C-RNTI that identifies the second UE. In some instances, the PUCCH signal or the PUSCH signal carries a header including a first dynamically assigned number that identifies the first UE and a second dynamically assigned number that identifies the second UE.
In some instances, the PUCCH signal or the PUSCH signal includes a bitmap, wherein each UE of a plurality of UEs corresponds to a fixed location in the bitmap, wherein a bit value of 1 indicates that the first communication signal includes an SR from a respective UE, and a bit value of 0 indicates that the first communication signal is devoid of an SR from a respective UE. In some instances, the PUCCH signal or the PUSCH signal includes a bitmap, wherein each UE of a plurality of UEs corresponds to a location in the bitmap, and the location is based on a UE-identifier of the respective UE, wherein a bit value of 1 indicates that the first communication signal includes an SR from a respective UE, and a bit value of 0 indicates that the first communication signal is devoid of an SR from a respective UE. In some aspects, the relay 900 may receive, from the BS 700, a PUCCH transmit power configuration for the UE 800.
Further aspects of the present disclosure include a method of wireless communication performed by a BS, the method including: transmitting, to one or more wireless communication devices, a SR configuration indicating a plurality of resources; and receiving, from a first wireless communication device of the one or more wireless communication devices, an SR in a first resource of the plurality of resources, wherein the SR and the first resource are associated with a UE connected to the first wireless communication device. The BS may receive the SR in the first resource by receiving the SR for the UE. In some aspects, the plurality of resources includes  multiple SR resources for each SR of the UE. In some aspects, the plurality of resources includes one SR resource for each SR of the UE and further includes an UL resource for the first wireless communication device to forward the SR of the UE to the BS. In some aspects, the SR configuration includes a configured grant UL resource for forwarding the SR of the UE to the BS, and the BS transmit, to the first wireless communication device, a PDCCH signal including an activation for forwarding the SR of the UE to the BS. The BS may receive the SR by receiving the SR on the configured grant UL resource.
Further aspects of the present disclosure include a method of wireless communication performed by a wireless communication device, the method including: receiving, from a BS, a SR configuration indicating a plurality of resources; receiving, from a UE, an SR in a first resource of the plurality of resources; and transmitting, to the BS, a first communication signal including the SR. The method may also include transmitting, to the UE, the SR configuration indicating the plurality of resources. The method may further include receiving, from a second UE, a second SR in a second resource of the plurality of resources; and transmitting, to the BS, a second communication signal including the second SR, wherein the first communication signal is different from the second communication signal. In some aspects, the plurality of resources includes multiple SR resources for each SR of the first and second UEs. In some aspects, the SR configuration includes a configured grant UL resource for forwarding the SR of the UE to the BS, and the method further includes receiving, from the BS, a PDCCH signal including an activation for forwarding the SR of the UE to the BS, where transmitting the first communication signal includes transmitting the SR using the configured grant UL resource in response to receiving the activation.
In some aspects, the method also includes receiving, from the BS, a MAC-CE including an indication of an UL resource and an activation for forwarding the SR of the UE to the BS, wherein transmitting the first communication signal includes transmitting the SR using the UL resource in response to receiving the MAC-CE. In some aspects, the method further includes receiving, from a second UE, a second SR in a second resource of the plurality of resources, wherein transmitting the first communication signal includes transmitting the first communication signal including the first SR and the second SR using a third resource of the plurality of resources. In some aspects, the method further includes receiving, from the BS, a PDCCH signal or a MAC-CE indicating the third resource is for the first UE and the second UE.
In some aspects, transmitting the first communication signal includes transmitting a PUCCH signal or a physical uplink shared channel (PUSCH) signal carrying the first and second SRs. In some instances, transmitting the PUCCH signal or the PUSCH signal includes transmitting the PUCCH signal or the PUSCH signal further carrying a header including a first C-RNTI that  identifies the first UE and a second C-RNTI that identifies the second UE. In some instances, transmitting the PUCCH signal or the PUSCH signal includes transmitting the PUCCH signal or the PUSCH signal further carrying a header including a first dynamically assigned number that identifies the first UE and a second dynamically assigned number that identifies the second UE. In some instances, transmitting the PUCCH signal or the PUSCH signal includes transmitting a bitmap, where each UE of a plurality of UEs corresponds to a fixed location in the bitmap, where a bit value of 1 indicates that the first communication signal includes an SR from a respective UE, and a bit value of 0 indicates that the first communication signal is devoid of an SR from a respective UE. In some instances, transmitting the PUCCH signal or the PUSCH signal includes transmitting a bitmap, where each UE of a plurality of UEs corresponds to a location in the bitmap, and the location is based on a UE-identifier of the respective UE, wherein a bit value of 1 indicates that the first communication signal includes an SR from a respective UE, and a bit value of 0 indicates that the first communication signal is devoid of an SR from a respective UE.
In some aspects, the SR configuration includes a first number of SR resources, and the wireless communication device is connected to the first number of UEs. In some aspects, the method also includes setting an SR parameter based on a transmission latency over a longest link of a plurality of links between the BS and the UE, the SR parameter indicating a timer for transmission of the SR on PUCCH, and the SR including the SR parameter. In some aspects, the method further includes setting an SR parameter based on at least one of a transmission latency over a longest link of a plurality of links between the BS and the UE or a transmission latency over a shortest link of a plurality of links between the BS and the UE, the SR parameter indicating a timer for transmission of the SR on PUCCH, and the SR including the SR parameter. In some instances, the method also includes receiving, from the BS, a PUCCH transmit power configuration for the UE.
Further aspects of the present disclosure include a method of wireless communication performed by a UE, the method including: receiving, from one or more wireless communication devices, an SR configuration indicating a plurality of resources; and transmitting, to the one or more wireless communication devices, one or more SRs using one or more resources of the plurality of resources. In some aspects, transmitting the one or more SRs includes transmitting a SR using multiple resources of the plurality of resources. In some aspects, the method also includes selecting a resource of the plurality of resources, wherein transmitting the one or more SRs includes transmitting a SR using the selected resource. In some instances, selecting the resource includes selecting a closest available resource of the plurality of resources. In some instances, the method also includes receiving an indication of a channel quality for each resource of the plurality of resources; and selecting, based on receiving the one or more indications, a resource having a best  channel condition, where transmitting the one or more SRs includes transmitting a SR using the selected resource.
Further aspects of the present disclosure include a wireless communication device, including a transceiver configured to: receive, from a BS, an SR configuration indicating a plurality of resources; receive, from a user equipment (UE) , a SR in a first resource of the plurality of resources; and transmit, to the BS, a first communication signal including the SR. The transceiver may be configured to: receive, from a second UE, a second SR in a second resource of the plurality of resources; and transmit, to the BS, a second communication signal including the second SR, wherein the first communication signal is different from the second communication signal, and wherein the plurality of resources includes multiple SR resources for each SR of the first and second UEs. The transceiver may be configured to receive, from a second UE, a second SR in a second resource of the plurality of resources, wherein transmitting the first communication signal includes transmitting the first communication signal including the first SR and the second SR using a third resource of the plurality of resources.
Information and signals may be represented using any of a variety of different technologies and techniques. For instance, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other aspects and implementations are within the scope of the disclosure and appended claims. For instance, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring,  or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations. Also, as used herein, including in the claims, “or” as used in a list of items (for instance, a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for instance, a list of [at least one of A, B, or C] means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .
As those of some skill in this art will by now appreciate and depending on the particular application at hand, many modifications, substitutions and variations can be made in and to the materials, apparatus, configurations and methods of use of the devices of the present disclosure without departing from the spirit and scope thereof. In light of this, the scope of the present disclosure should not be limited to that of the particular aspects illustrated and described herein, as they are merely by way of some examples thereof, but rather, should be fully commensurate with that of the claims appended hereafter and their functional equivalents.

Claims (30)

  1. A method of wireless communication performed by a base station (BS) , the method comprising:
    transmitting, to one or more wireless communication devices, a scheduling request (SR) configuration indicating a plurality of resources; and
    receiving, from a first wireless communication device of the one or more wireless communication devices, an SR in a first resource of the plurality of resources, wherein the SR and the first resource are associated with a user equipment (UE) connected to the first wireless communication device.
  2. The method of claim 1, wherein receiving the SR in the first resource includes receiving the SR for the UE.
  3. The method of claim 1, wherein the plurality of resources includes multiple SR resources for each SR of the UE.
  4. The method of claim 1, wherein the plurality of resources includes one SR resource for each SR of the UE and further includes an uplink (UL) resource for the first wireless communication device to forward the SR of the UE to the BS.
  5. The method of claim 1, wherein the SR configuration includes a configured grant UL resource for forwarding the SR of the UE to the BS, the method further comprising:
    transmitting, to the first wireless communication device, a physical downlink control channel (PDCCH) signal including an activation for forwarding the SR of the UE to the BS, wherein receiving the SR includes receiving the SR on the configured grant UL resource.
  6. A method of wireless communication performed by a wireless communication device, the method comprising:
    receiving, from a base station (BS) , a scheduling request (SR) configuration indicating a plurality of resources;
    receiving, from a UE, an SR in a first resource of the plurality of resources; and
    transmitting, to the BS, a first communication signal including the SR.
  7. The method of claim 6, the method comprising:
    transmitting, to the UE, the SR configuration indicating the plurality of resources.
  8. The method of claim 6, the method comprising:
    receiving, from a second UE, a second SR in a second resource of the plurality of resources; and
    transmitting, to the BS, a second communication signal including the second SR, wherein the first communication signal is different from the second communication signal.
  9. The method of claim 8, wherein the plurality of resources includes multiple SR resources for each SR of the first and second UEs.
  10. The method of claim 8, wherein the SR configuration includes a configured grant UL resource for forwarding the SR of the UE to the BS, the method further comprising:
    receiving, from the BS, a physical downlink control channel (PDCCH) signal including an activation for forwarding the SR of the UE to the BS, wherein transmitting the first communication signal includes transmitting the SR using the configured grant UL resource in response to receiving the activation.
  11. The method of claim 8, comprising:
    receiving, from the BS, a media access control-control element (MAC-CE) including an indication of an UL resource and an activation for forwarding the SR of the UE to the BS, wherein transmitting the first communication signal includes transmitting the SR using the UL resource in response to receiving the MAC-CE.
  12. The method of claim 6, comprising:
    receiving, from a second UE, a second SR in a second resource of the plurality of resources, wherein transmitting the first communication signal includes transmitting the first communication signal including the first SR and the second SR using a third resource of the plurality of resources.
  13. The method of claim 12, the method comprising:
    receiving, from the BS, a physical downlink control channel (PDCCH) signal or a MAC-CE indicating the third resource is for the first UE and the second UE.
  14. The method of claim 12, wherein transmitting the first communication signal includes transmitting a physical uplink control channel (PUCCH) signal or a physical uplink shared channel (PUSCH) signal carrying the first and second SRs.
  15. The method of claim 14, wherein transmitting the PUCCH signal or the PUSCH signal includes transmitting the PUCCH signal or the PUSCH signal further carrying a header  including a first cell-radio network transmission identifier (C-RNTI) that identifies the first UE and a second C-RNTI that identifies the second UE.
  16. The method of claim 14, wherein transmitting the PUCCH signal or the PUSCH signal includes transmitting the PUCCH signal or the PUSCH signal further carrying a header including a first dynamically assigned number that identifies the first UE and a second dynamically assigned number that identifies the second UE.
  17. The method of claim 14, wherein transmitting the PUCCH signal or the PUSCH signal includes transmitting a bitmap, wherein each UE of a plurality of UEs corresponds to a fixed location in the bitmap, wherein a first value of a bit indicates that the first communication signal includes an SR from a respective UE, and a second value of the bit indicates that the first communication signal is devoid of an SR from a respective UE.
  18. The method of claim 14, wherein transmitting the PUCCH signal or the PUSCH signal includes transmitting a bitmap, wherein each UE of a plurality of UEs corresponds to a location in the bitmap, and the location is based on a UE-identifier of the respective UE, wherein a first value of a bit indicates that the first communication signal includes an SR from a respective UE, and a second value of the bit indicates that the first communication signal is devoid of an SR from a respective UE.
  19. The method of claim 6, wherein the SR configuration includes a first number of SR resources, and the wireless communication device is connected to the first number of UEs.
  20. The method of claim 6, the method comprising:
    setting an SR parameter based on a transmission latency over a longest link of a plurality of links between the BS and the UE, the SR parameter indicating a timer for transmission of the SR on PUCCH, and the SR including the SR parameter.
  21. The method of claim 6, the method comprising:
    setting an SR parameter based on at least one of a transmission latency over a longest link of a plurality of links between the BS and the UE or a transmission latency over a shortest link of a plurality of links between the BS and the UE, the SR parameter indicating a timer for transmission of the SR on PUCCH, and the SR including the SR parameter.
  22. The method of claim 6, the method comprising:
    receiving, from the BS, a PUCCH transmit power configuration for the UE.
  23. A method of wireless communication performed by a user equipment (UE) , the method comprising:
    receiving, from one or more wireless communication devices, a scheduling request (SR) configuration indicating a plurality of resources; and
    transmitting, to the one or more wireless communication devices, one or more SRs using one or more resources of the plurality of resources.
  24. The method of claim 23, wherein transmitting the one or more SRs includes transmitting a SR using multiple resources of the plurality of resources.
  25. The method of claim 23, further comprising:
    selecting a resource of the plurality of resources, wherein transmitting the one or more SRs includes transmitting a SR using the selected resource.
  26. The method of claim 25, wherein selecting the resource includes selecting a closest available resource of the plurality of resources.
  27. The method of claim 25, further comprising:
    receiving an indication of a channel quality for each resource of the plurality of resources; and
    selecting, based on receiving the one or more indications, a resource having a best channel condition, wherein transmitting the one or more SRs includes transmitting a SR using the selected resource.
  28. A wireless communication device, comprising:
    a transceiver configured to:
    receive, from a base station (BS) , a scheduling request (SR) configuration indicating a plurality of resources;
    receive, from a user equipment (UE) , a SR in a first resource of the plurality of resources; and
    transmit, to the BS, a first communication signal including the SR.
  29. The wireless communication device of claim 28, wherein the transceiver is configured to:
    receive, from a second UE, a second SR in a second resource of the plurality of resources; and
    transmit, to the BS, a second communication signal including the second SR, wherein the first communication signal is different from the second communication signal, and wherein the plurality of resources includes multiple SR resources for each SR of the first and second UEs.
  30. The wireless communication device of claim 28, wherein the transceiver is configured to:
    receive, from a second UE, a second SR in a second resource of the plurality of resources, wherein transmitting the first communication signal includes transmitting the first communication signal including the first SR and the second SR using a third resource of the plurality of resources.
PCT/CN2021/077785 2021-02-25 2021-02-25 Scheduling request (sr) handling for relay-based communications WO2022178739A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/077785 WO2022178739A1 (en) 2021-02-25 2021-02-25 Scheduling request (sr) handling for relay-based communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/077785 WO2022178739A1 (en) 2021-02-25 2021-02-25 Scheduling request (sr) handling for relay-based communications

Publications (1)

Publication Number Publication Date
WO2022178739A1 true WO2022178739A1 (en) 2022-09-01

Family

ID=83048634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077785 WO2022178739A1 (en) 2021-02-25 2021-02-25 Scheduling request (sr) handling for relay-based communications

Country Status (1)

Country Link
WO (1) WO2022178739A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122739A1 (en) * 2014-02-16 2015-08-20 Lg Electronics Inc. Method and apparatus for transmitting scheduling request using contention-based resources in wireless communication system
WO2020074069A1 (en) * 2018-10-09 2020-04-16 Nokia Technologies Oy Enhanced scheduling request transmissions in wireless networks
CN112335323A (en) * 2018-09-27 2021-02-05 松下电器(美国)知识产权公司 User equipment and base station related to uplink control data transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122739A1 (en) * 2014-02-16 2015-08-20 Lg Electronics Inc. Method and apparatus for transmitting scheduling request using contention-based resources in wireless communication system
CN112335323A (en) * 2018-09-27 2021-02-05 松下电器(美国)知识产权公司 User equipment and base station related to uplink control data transmission
WO2020074069A1 (en) * 2018-10-09 2020-04-16 Nokia Technologies Oy Enhanced scheduling request transmissions in wireless networks

Similar Documents

Publication Publication Date Title
US10912012B2 (en) Initial network access for downlink unlicensed deployment
US11272526B2 (en) Efficient operation with unlicensed downlink (DL) and licensed uplink (UL) by transmission of selective DL messages using licensed UL
US11770850B2 (en) Channel access priority for sidelink and relay communications in NR-U
US11638173B2 (en) Channel access priority for NR-U data bearers
US11304229B2 (en) Constraints on no listen-before-talk (LBT) transmission during uplink/downlink (UL/DL) switches
US11677524B2 (en) QCL determination for A-CSI-RS in full duplex systems
WO2022072250A2 (en) Beam group specific medium access control-control element (mac-ce) based beam failure recovery (bfr) requests
US20230029858A1 (en) Rules for overlapped signals with full duplex capability
WO2021138796A1 (en) Downlink control information size and buffering limits for combination dci
US20220231811A1 (en) Multiplexing synchronization signal blocks, control resource set, and system information blocks
WO2022178658A1 (en) Initial network access with multiple relays
WO2021159456A1 (en) Channel occupancy time-structure information (cot-si) for multiple transmission-reception points (trps)
WO2022178739A1 (en) Scheduling request (sr) handling for relay-based communications
WO2022178744A1 (en) Relay selection for multi-relay communications
WO2022178829A1 (en) Indication of a beam direction associated with a beam application time
US11895634B2 (en) Control resource set (CORESET) configuration for narrowband new radio (NR)
WO2022165741A1 (en) Multiple-link routing for time-sensitive communications
US20220369301A1 (en) Common beam direction indication for single-target and multi-target communications
WO2022160111A1 (en) Multi-user grant for uplink transmission with survival time requirement
WO2023019458A1 (en) Beam management for multiple transport block transmission with repetitions
WO2023155042A1 (en) Reference cell and reference timing determination for multiple transmission-reception (multi-trp) communications
WO2023164834A1 (en) Random access channel occasion configurations for random access preamble repetitions
WO2022165757A1 (en) User equipment capability for transmission-reception point-specific (trp-specific) beam failure recovery (bfr)
WO2022077449A1 (en) Long physical uplink control channel (pucch) format for multi-slot transmissions
WO2021248317A1 (en) Dynamic switching between power mode configurations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927183

Country of ref document: EP

Kind code of ref document: A1