WO2022160111A1 - Multi-user grant for uplink transmission with survival time requirement - Google Patents

Multi-user grant for uplink transmission with survival time requirement Download PDF

Info

Publication number
WO2022160111A1
WO2022160111A1 PCT/CN2021/073907 CN2021073907W WO2022160111A1 WO 2022160111 A1 WO2022160111 A1 WO 2022160111A1 CN 2021073907 W CN2021073907 W CN 2021073907W WO 2022160111 A1 WO2022160111 A1 WO 2022160111A1
Authority
WO
WIPO (PCT)
Prior art keywords
grant
survival time
resource
transmitting
receiving
Prior art date
Application number
PCT/CN2021/073907
Other languages
French (fr)
Inventor
Luanxia YANG
Changlong Xu
Jing Sun
Xiaoxia Zhang
Rajat Prakash
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2021/073907 priority Critical patent/WO2022160111A1/en
Publication of WO2022160111A1 publication Critical patent/WO2022160111A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements

Definitions

  • This application relates to wireless communication systems, and more particularly to performing uplink transmission with a survival time requirement.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • a wireless multiple-access communications system may include a number of base stations (BSs) , each simultaneously supporting communications for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • BSs base stations
  • UE user equipment
  • NR next generation new radio
  • LTE long term evolution
  • NR next generation new radio
  • 5G 5 th Generation
  • LTE long term evolution
  • NR next generation new radio
  • NR is designed to provide a lower latency, a higher bandwidth or a higher throughput, and a higher reliability than LTE.
  • NR is designed to operate over a wide array of spectrum bands, for example, from low-frequency bands below about 1 gigahertz (GHz) and mid-frequency bands from about 1 GHz to about 6 GHz, to high-frequency bands such as millimeter wave (mmWave) bands.
  • GHz gigahertz
  • mmWave millimeter wave
  • NR is also designed to operate across different spectrum types, from licensed spectrum to unlicensed and shared spectrum. Spectrum sharing enables operators to opportunistically aggregate spectrums to dynamically support high-bandwidth services. Spectrum sharing can extend the benefit of NR technologies to operating entities that may not have access to a licensed spectrum.
  • NR has enabled and/or expanded wireless network deployment uses cases and scenarios, such as industrial wireless sensor networks or industrial Internet of Things (IIoT) . Accordingly, communication improvements for industrial wireless sensor networks or IIoT networks may also yield benefits.
  • IIoT industrial Internet of Things
  • a method of wireless communication performed by a user equipment (UE) .
  • the method includes receiving, from a base station (BS) , a first grant for transmitting a data packet associated with a survival time; and transmitting, to the BS based on the first grant, the data packet using a first resource associated with the survival time.
  • BS base station
  • a method of wireless communication performed by a base stations (BS) .
  • the method includes transmitting, to a user equipment (UE) , a first grant for transmitting a data packet associated with a survival time; and receiving, from the UE based on the first grant, the data packet in a first resource associated with the survival time.
  • UE user equipment
  • a user equipment includes a processor and a transceiver coupled to the processor, wherein the transceiver is configured to receive, from a base station (BS) , a first grant for transmitting a data packet associated with a survival time; and transmit, to the BS based on the first grant, the data packet using a first resource associated with the survival time.
  • BS base station
  • a base station includes processor and a transceiver coupled to the processor, wherein the transceiver is configured to transmit, to a user equipment (UE) , a first grant for transmitting a data packet associated with a survival time; and receive, from the UE based on the first grant, the data packet in a first resource associated with the survival time.
  • UE user equipment
  • FIG. 1 illustrates a wireless communication network according to some aspects of the present disclosure.
  • FIG. 2 is a timing diagram illustrating a radio frame structure according to some aspects of the present disclosure
  • FIG. 3 illustrates a communication scenario involving a survival time period according to some aspects of the present disclosure.
  • FIG. 4 illustrates a communication scenario involving a survival time period according to some aspects of the present disclosure.
  • FIG. 5A is a sequence diagram illustrating a communication method with survival time transmissions according to some aspects of the present disclosure.
  • FIG. 5B illustrates a multi-user grant for survival time transmission according to some aspects of the present disclosure.
  • FIG. 6 illustrates a multi-user grant for survival time transmission according to some aspects of the present disclosure.
  • FIG. 7A illustrates a multi-user grant for survival time transmission according to some aspects of the present disclosure.
  • FIG. 7B illustrates a grant for survival time transmission according to some aspects of the present disclosure.
  • FIG. 7C illustrates a grant for survival time transmission according to some aspects of the present disclosure.
  • FIG. 8A is a sequence diagram illustrating a communication method with survival time transmissions according to some aspects of the present disclosure.
  • FIG. 8B illustrates a multi-user grant for survival time transmission according to some aspects of the present disclosure.
  • FIG. 9 is a sequence diagram illustrating a communication method with survival time transmissions according to some aspects of the present disclosure.
  • FIG. 10 illustrates a block diagram of a base station (BS) according to some aspects of the present disclosure.
  • FIG. 11 illustrates a block diagram of a user equipment (UE) according to some aspects of the present disclosure.
  • FIG. 12 is a flow diagram of a wireless communication method according to some aspects of the present disclosure.
  • FIG. 13 is a flow diagram of a wireless communication method according to some aspects of the present disclosure.
  • wireless communications systems also referred to as wireless communications networks.
  • the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, Global System for Mobile Communications (GSM) networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single-carrier FDMA
  • LTE Long Term Evolution
  • GSM Global System for Mobile Communications
  • 5G 5 th Generation
  • NR new radio
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • GSM Global System for Mobile communications
  • LTE long term evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP)
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP 3rd Generation Partnership Project
  • 3GPP long term evolution LTE
  • LTE long term evolution
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • the present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
  • 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface.
  • the 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with a ULtra-high density (e.g., ⁇ 1M nodes/km 2 ) , ultra-low complexity (e.g., ⁇ 10s of bits/sec) , ultra-low energy (e.g., ⁇ 10+years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ⁇ 99.9999%reliability) , ultra-low latency (e.g., ⁇ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ⁇ 10 Tbps/km 2 ) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
  • IoTs Internet of things
  • the 5G NR may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI) ; having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • TTI transmission time interval
  • MIMO massive multiple input, multiple output
  • mmWave millimeter wave
  • Scalability of the numerology in 5G NR with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments.
  • subcarrier spacing may occur with 15 kHz, for example over 5, 10, 20 MHz, and the like bandwidth (BW) .
  • BW bandwidth
  • subcarrier spacing may occur with 30 kHz over 80/100 MHz BW.
  • the subcarrier spacing may occur with 60 kHz over a 160 MHz BW.
  • subcarrier spacing may occur with 120 kHz over a 500 MHz BW.
  • the scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency.
  • QoS quality of service
  • 5G NR also contemplates a self-contained integrated subframe design with UL/downlink scheduling information, data, and acknowledgement in the same subframe.
  • the self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive UL/downlink that may be flexibly configured on a per-cell basis to dynamically switch between UL and downlink to meet the current traffic needs.
  • an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways.
  • an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein.
  • such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein.
  • a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer.
  • an aspect may comprise at least one element of a claim.
  • An industrial Internet of Things (IIoT) network may include a massive number of IIoT devices or UEs (e.g., machines, industrial equipment, motors, actuators, smart meters, smart sensors, and/or the like) positioned densely within an area, such as an industrial plant or factory. In some deployments, there can be one IIoT device or UE or per square meter. Each IIoT device may each collect data and/or measurements and upload the data and/or to measurements a network server (e.g., a BS) .
  • a network server e.g., a BS
  • IIoT uplink traffic may typically include data packets with a small packet size (e.g., a few bytes to tens of bytes) and with relatively long transmission intervals (i.e., at a low data rate)
  • uplink traffic in an IIoT or industrial wireless sensor network can be intensive (heavy loading) due to the massive number of IIoT devices or UEs densely positioned within an area.
  • IIoT data communication may have a moderate reliability and latency requirement.
  • IIoT data communication may be of a non-ultra-reliable low-latency communication (URLLC) traffic type.
  • hybrid automatic repeat request (HARQ) techniques can be applied to IIoT data communication to improve communication reliability.
  • a transmitting device may transmit a data packet to a receiving receive (target device) , and the target device may feedback a reception status of the data packet to the source device. For instance, if the target device receives and decodes the data packet successfully, the target device may transmit a HARQ acknowledgement (ACK) to the source device.
  • ACK HARQ acknowledgement
  • the target device may transmit a HARQ negative-acknowledgements (NACK) to the source device.
  • NACK negative-acknowledgements
  • the resource device may retransmit the data packet to the target device.
  • HARQ may be applied to DL communication in which a BS is a transmitting or source device and a served UE is a receiving or target device.
  • HARQ may also be applied to UL communication in which a UE is a transmitting or source device and a serving BS is a receiving or target device.
  • an IIoT application may have a certain survival time requirement.
  • the connection between a UE (an IIoT device) and a BS may be in an up state (during a period referred to as “up time” ) while messages transmitted from the UE to the BS are successfully received and decoded by the BS.
  • up time a period of time without a message being successfully transmitted and received (e.g., because of a series of failed transmissions and retransmissions)
  • the connection between the UE and BS may enter a period of survival time (while the applications remain in an up state) .
  • the survival time indicates a period of time after which the connection between the devices (or applications on the devices) may be deemed to have failed or become unavailable if a message is not successfully communicated between the devices. More specifically, survival time may refer to the time duration for which data sent between communicating applications (transmitting and receiving) can be lost without affecting normal operations. If a message is successfully communicated during the survival time, the period of survival time ends. If no messages are successfully received and decoded before the survival time expires, the connection may be considered down (during a period referred to as “down time” ) , and the UE may adjust transmission parameters or reestablish communication with the BS. For example, the UE may increase its transmit power, lower the modulation and coding scheme (MCS) used to transmit data to the BS, or perform a link failure recovery procedure.
  • MCS modulation and coding scheme
  • the signaling overhead and delay associated with transmitting NACKs from a BS to the UEs and transmitting scheduling grants for retransmission from the BS to the UEs can be large.
  • the large signaling overhead and delay associated with NACKs and retransmission scheduling can cause challenges in meeting the survival time requirement.
  • a BS may transmit a multi-user grant to a plurality of UEs (e.g., a specific group of UEs) for survival time transmissions.
  • a survival time transmission may refer to a transmission during a survival time period.
  • the multi-user grant is an aggregation of a plurality of grants, where each of the plurality of grants is designated to one of the plurality of UEs.
  • a first grant of the plurality of grants is for a first UE of the plurality of UEs to transmit a data packet associated with a survival time.
  • the data packet may be associated with an application (e.g., an IIoT application, such as a sensor application, an automation application) executing at the UE, and the application may be communicating with an application executing at the BS.
  • the UE may be operating within the survival time and the data packet is to be transmitted during a period of the survival time.
  • the first UE may transmit the data packet using a first resource associated with the survival time.
  • the BS may transmit the multi-user grant in the form of downlink control information (DCI) via a physical downlink control channel (PDCCH) .
  • the DCI may include a cyclic redundancy check (CRC) masked by a survival time specific radio network temporary identifier (RNTI) .
  • RNTI radio network temporary identifier
  • the plurality of UEs may monitor for the multi-user grant according to the survival time specific RNTI.
  • the BS may transmit the multi-user grant along with user data via a PDSCH. For instance, the BS may transmit a data block (atransport block) including the multi-user grant via the PDSCH.
  • the BS may assign each UE of the plurality of UEs a fixed location (e.g., bit position or octet position) within the multi-user grant where a grant for the UE may be located.
  • the BS may preconfigure the plurality of UEs with a survival time transmission resource pool, for example, via radio resource control (RRC) signaling.
  • the survival time transmission resource pool may include a plurality of resources.
  • the plurality of resources are time-frequency resources, which may occupy one or more symbols in time and one or more subcarriers in frequency.
  • the BS may include an ACK/NACK feedback in each grant of the plurality of grants.
  • the ACK/NACK feedback may be associated with a previous data packet received by the BS from a respective UE.
  • the first UE may select the first resource from the preconfigured survival time transmission resource pool upon receiving a NACK feedback from the first grant.
  • the BS may dynamically configure a survival time transmission resource pool for the plurality of UEs and include an indication or a configuration of the survival time transmission resource pool in the multi-user grant.
  • the BS may include an ACK/NACK feedback in each grant of the plurality of grants, and the first UE may select the first resource from the indicated survival time transmission resource pool upon receiving a NACK feedback from the first grant.
  • the BS when the BS preconfigure or dynamically configure the survival time transmission resource pool to be shared by the plurality of UEs for survival time transmissions, the BS may control the plurality of UEs in accessing the survival time transmission resource pool so that collision may be reduced.
  • the BS may include an indication of a threshold in the multi-user grant.
  • the threshold is a data priority threshold associated with a survival time.
  • the priority of a data packet may be defined based on an amount of time (or a percentage of the survival time) that has elapsed since the beginning of a survival time period or an amount of remaining time in the survival time period.
  • the priority of a data packet to be transmitted during a survival time period may increase as the transmission time of the data packet gets closer to the end of the survival time period. Accordingly, the first UE may transmit the data packet using the first resource based on a first time period associated with the survival time satisfying the threshold.
  • the first time period may correspond to a period that has elapsed since the beginning of the survival time.
  • the BS may include an indication in each grant of the plurality of grants to further control access to the survival time transmission resource pool by each individual UE. For instance, the indication may indicate whether use of the survival time transmission resource pool is allowed for the UE. Additionally or alternatively, the BS may partition the survival time transmission resource pool into a first portion and a second portion. The BS may assign the first portion for last survival time transmissions. A last survival time transmission may refer to a last transmission attempt in a survival time period before the survival time period ends. The BS may assign the second portion for non-last survival time transmissions. The BS may also include an access indication in each grant of the plurality of grants to further control access to the first portion and/or the second portion by each individual UE.
  • the access indication may indicate whether use of the first portion for a non-last survival time transmission is allowed.
  • the BS may allow a certain UE to use the first portion for a last survival time transmission, but not for a non-last survival time transmission, and may allow a certain UE to use the first portion for any survival time transmission irrespective of whether a survival time transmission is a last survival time transmission or not.
  • the BS may preconfigure each UE of the plurality of UEs with a resource specifically for survival time transmission. For instance, the BS may preconfigure the first UE with the first resource to be specifically used for survival time transmission.
  • the BS may include an ACK/NACK feedback in each grant of the plurality of grants, and the first UE may use the first resource to transmit the data packet associated with the survival time upon receiving a NACK feedback from the first grant.
  • the BS may configure two or more UEs with the same resource for survival time transmission. For instance, the BS may also configure a second UE of the plurality of UEs with the same first resource as the first UE.
  • the BS may include an indication of whether use of the survival time transmission resource pool is allowed in each respective grant for the first UE and the second UE.
  • one or more other UEs of the plurality of UEs may not be operating within a survival time at the time when the multi-user grant is received.
  • a second grant of the plurality of grants associated with a second UE of the plurality of UEs may indicate an ACK feedback.
  • the second UE may disregard or ignore the second grant and refrain from using a resource from a survival time transmission resource pool (preconfigured or dynamically configured) or a preconfigured survival time transmission resource for a transmission.
  • the pre-configuration of the survival time transmission resource pool and the use of a multi-user grant to grant UEs access to the survival time transmission resource pool can reduce loading at the BS and/or signaling overhead.
  • the dynamic configuration of a survival time transmission resource pool provides the BS with flexibility in adjusting the size (number of resources) of the survival time transmission resource pool, and thus may allow for an improved resource utilization efficiency.
  • the use of preconfigured survival time transmission specific resources for each UE can avoid or reduce collision.
  • the inclusion of a data priority threshold in multi-user grant can also avoid or reduce collision in the survival time transmission resource pool.
  • the inclusion of an indication of whether use of the survival time transmission resource pool or survival time transmission resource is allowed in each grant for each individual UE can provide the BS with further control over each individual UE in accessing the survival time transmission resource pool or the survival time transmission resource.
  • the partitioning of a survival time transmission resource pool into a first portion for last survival time transmission and a second, separate portion for non-last survival time transmission can further reduce collision and may increase the likelihood of the BS receiving and decoding the last survival time transmission successfully.
  • FIG. 1 illustrates a wireless communication network 100 according to some aspects of the present disclosure.
  • the network 100 may be a 5G network.
  • the network 100 includes a number of base stations (BSs) 105 (individually labeled as 105a, 105b, 105c, 105d, 105e, and 105f) and other network entities.
  • a BS 105 may be a station that communicates with UEs 115 (individually labeled as 115a, 115b, 115c, 115d, 115e, 115f, 115g, 115h, and 115k) and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like.
  • eNB evolved node B
  • gNB next generation eNB
  • Each BS 105 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to this particular geographic coverage area of a BS 105 and/or a BS subsystem serving the coverage area, depending on the context in which the term is used.
  • a BS 105 may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a small cell may be referred to as a small cell BS, a pico BS, a femto BS or a home BS. In the example shown in FIG.
  • the BSs 105d and 105e may be regular macro BSs, while the BSs 105a-105c may be macro BSs enabled with one of three dimension (3D) , full dimension (FD) , or massive MIMO.
  • the BSs 105a-105c may take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity.
  • the BS 105f may be a small cell BS which may be a home node or portable access point.
  • a BS 105 may support one or multiple (e.g., two, three, four, and the like) cells.
  • the network 100 may support synchronous or asynchronous operation.
  • the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time.
  • the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
  • the UEs 115 are dispersed throughout the wireless network 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like.
  • a UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like.
  • PDA personal digital assistant
  • WLL wireless local loop
  • a UE 115 may be a device that includes a Universal Integrated Circuit Card (UICC) .
  • a UE may be a device that does not include a UICC.
  • UICC Universal Integrated Circuit Card
  • the UEs 115 that do not include UICCs may also be referred to as IoT devices or internet of everything (IoE) devices.
  • the UEs 115a-115d are examples of mobile smart phone-type devices accessing network 100.
  • a UE 115 may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like.
  • MTC machine type communication
  • eMTC enhanced MTC
  • NB-IoT narrowband IoT
  • the UEs 115e-115h are examples of various machines configured for communication that access the network 100.
  • the UEs 115i-115k are examples of vehicles equipped with wireless communication devices configured for communication that access the network 100.
  • a UE 115 may be able to communicate with any type of the BSs, whether macro BS, small cell, or the like.
  • a lightning bolt e.g., communication links indicates wireless transmissions between a UE 115 and a serving BS 105, which is a BS designated to serve the UE 115 on the downlink (DL) and/or uplink (UL) , desired transmission between BSs 105, backhaul transmissions between BSs, or sidelink transmissions between UEs 115.
  • the BSs 105a-105c may serve the UEs 115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity.
  • the macro BS 105d may perform backhaul communications with the BSs 105a-105c, as well as small cell, the BS 105f.
  • the macro BS 105d may also transmits multicast services which are subscribed to and received by the UEs 115c and 115d.
  • Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
  • the BSs 105 may also communicate with a core network.
  • the core network may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • IP Internet Protocol
  • At least some of the BSs 105 (e.g., which may be an example of a gNB or an access node controller (ANC) ) may interface with the core network through backhaul links (e.g., NG-C, NG-U, etc. ) and may perform radio configuration and scheduling for communication with the UEs 115.
  • the BSs 105 may communicate, either directly or indirectly (e.g., through core network) , with each other over backhaul links (e.g., X1, X2, etc. ) , which may be wired or wireless communication links.
  • the network 100 may also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such as the UE 115e, which may be a drone. Redundant communication links with the UE 115e may include links from the macro BSs 105d and 105e, as well as links from the small cell BS 105f.
  • UE 115f e.g., a thermometer
  • UE 115g e.g., smart meter
  • UE 115h e.g., wearable device
  • the network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such asV2V, V2X, C-V2X communications between a UE 115i, 115j, or 115k and other UEs 115, and/or vehicle-to-infrastructure (V2I) communications between a UE 115i, 115j, or 115k and a BS 105.
  • V2V dynamic, low-latency TDD/FDD communications
  • V2X V2X
  • C-V2X C-V2X communications between a UE 115i, 115j, or 115k and other UEs 115
  • V2I vehicle-to-infrastructure
  • the network 100 utilizes OFDM-based waveforms for communications.
  • An OFDM-based system may partition the system BW into multiple (K) orthogonal subcarriers, which are also commonly referred to as subcarriers, tones, bins, or the like. Each subcarrier may be modulated with data.
  • the subcarrier spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system BW.
  • the system BW may also be partitioned into subbands.
  • the subcarrier spacing and/or the duration of TTIs may be scalable.
  • the BSs 105 can assign or schedule transmission resources (e.g., in the form of time-frequency resource blocks (RB) ) for downlink (DL) and uplink (UL) transmissions in the network 100.
  • DL refers to the transmission direction from a BS 105 to a UE 115
  • UL refers to the transmission direction from a UE 115 to a BS 105.
  • the communication can be in the form of radio frames.
  • a radio frame may be divided into a plurality of subframes or slots, for example, about 10. Each slot may be further divided into mini-slots. In a FDD mode, simultaneous UL and DL transmissions may occur in different frequency bands.
  • each subframe includes a UL subframe in a UL frequency band and a DL subframe in a DL frequency band.
  • UL and DL transmissions occur at different time periods using the same frequency band.
  • a subset of the subframes (e.g., DL subframes) in a radio frame may be used for DL transmissions and another subset of the subframes (e.g., UL subframes) in the radio frame may be used for UL transmissions.
  • each DL or UL subframe may have pre-defined regions for transmissions of reference signals, control information, and data.
  • Reference signals are predetermined signals that facilitate the communications between the BSs 105 and the UEs 115.
  • a reference signal can have a particular pilot pattern or structure, where pilot tones may span across an operational BW or frequency band, each positioned at a pre-defined time and a pre-defined frequency.
  • a BS 105 may transmit cell specific reference signals (CRSs) and/or channel state information –reference signals (CSI-RSs) to enable a UE 115 to estimate a DL channel.
  • CRSs cell specific reference signals
  • CSI-RSs channel state information –reference signals
  • a UE 115 may transmit sounding reference signals (SRSs) to enable a BS 105 to estimate a UL channel.
  • Control information may include resource assignments and protocol controls.
  • Data may include protocol data and/or operational data.
  • the BSs 105 and the UEs 115 may communicate using self-contained subframes.
  • a self-contained subframe may include a portion for DL communication and a portion for UL communication.
  • a self-contained subframe can be DL-centric or UL-centric.
  • a DL-centric subframe may include a longer duration for DL communication than for UL communication.
  • a UL-centric subframe may include a longer duration for UL communication than for UL communication.
  • the network 100 may be an NR network deployed over a licensed spectrum.
  • the BSs 105 can transmit synchronization signals (e.g., including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) ) in the network 100 to facilitate synchronization.
  • the BSs 105 can broadcast system information associated with the network 100 (e.g., including a master information block (MIB) , remaining system information (RMSI) , and other system information (OSI) ) to facilitate initial network access.
  • MIB master information block
  • RMSI remaining system information
  • OSI system information
  • the BSs 105 may broadcast the PSS, the SSS, and/or the MIB in the form of synchronization signal block (SSBs) over a physical broadcast channel (PBCH) and may broadcast the RMSI and/or the OSI over a physical downlink shared channel (PDSCH) .
  • PBCH physical broadcast channel
  • PDSCH physical downlink shared channel
  • a UE 115 attempting to access the network 100 may perform an initial cell search by detecting a PSS from a BS 105.
  • the PSS may enable synchronization of period timing and may indicate a physical layer identity value.
  • the UE 115 may then receive a SSS.
  • the SSS may enable radio frame synchronization, and may provide a cell identity value, which may be combined with the physical layer identity value to identify the cell.
  • the PSS and the SSS may be located in a central portion of a carrier or any suitable frequencies within the carrier.
  • the UE 115 may receive a MIB.
  • the MIB may include system information for initial network access and scheduling information for RMSI and/or OSI.
  • the UE 115 may receive RMSI and/or OSI.
  • the RMSI and/or OSI may include radio resource control (RRC) information related to random access channel (RACH) procedures, paging, control resource set (CORESET) for physical downlink control channel (PDCCH) monitoring, physical UL control channel (PUCCH) , physical UL shared channel (PUSCH) , power control, and SRS.
  • RRC radio resource control
  • the UE 115 can perform a random access procedure to establish a connection with the BS 105.
  • the random access procedure may be a four-step random access procedure.
  • the UE 115 may transmit a random access preamble and the BS 105 may respond with a random access response.
  • the random access response (RAR) may include a detected random access preamble identifier (ID) corresponding to the random access preamble, timing advance (TA) information, a UL grant, a temporary cell-radio network temporary identifier (C-RNTI) , and/or a backoff indicator.
  • ID detected random access preamble identifier
  • TA timing advance
  • C-RNTI temporary cell-radio network temporary identifier
  • the UE 115 may transmit a connection request to the BS 105 and the BS 105 may respond with a connection response.
  • the connection response may indicate a contention resolution.
  • the random access preamble, the RAR, the connection request, and the connection response can be referred to as message 1 (MSG1) , message 2 (MSG2) , message 3 (MSG3) , and message 4 (MSG4) , respectively.
  • the random access procedure may be a two-step random access procedure, where the UE 115 may transmit a random access preamble and a connection request in a single transmission and the BS 105 may respond by transmitting a random access response and a connection response in a single transmission.
  • the UE 115 and the BS 105 can enter a normal operation stage, where operational data may be exchanged.
  • the BS 105 may schedule the UE 115 for UL and/or DL communications.
  • the BS 105 may transmit UL and/or DL scheduling grants to the UE 115 via a PDCCH.
  • the scheduling grants may be transmitted in the form of DL control information (DCI) .
  • the BS 105 may transmit a DL communication signal (e.g., carrying data) to the UE 115 via a PDSCH according to a DL scheduling grant.
  • the UE 115 may transmit a UL communication signal to the BS 105 via a PUSCH and/or PUCCH according to a UL scheduling grant.
  • the connection may be referred to as an RRC connection.
  • the UE 115 is actively exchanging data with the BS 105, the UE 115 is in an RRC connected state.
  • the UE 115 may initiate an initial network attachment procedure with the network 100.
  • the BS 105 may coordinate with various network entities or fifth generation core (5GC) entities, such as an access and mobility function (AMF) , a serving gateway (SGW) , and/or a packet data network gateway (PGW) , to complete the network attachment procedure.
  • 5GC fifth generation core
  • AMF access and mobility function
  • SGW serving gateway
  • PGW packet data network gateway
  • the BS 105 may coordinate with the network entities in the 5GC to identify the UE, authenticate the UE, and/or authorize the UE for sending and/or receiving data in the network 100.
  • the AMF may assign the UE with a group of tracking areas (TAs) .
  • TAs tracking areas
  • the UE 115 can move around the current TA.
  • the BS 105 may request the UE 115 to update the network 100 with the UE 115’s location periodically.
  • the UE 115 may only report the UE 115’s location to the network 100 when entering a new TA.
  • the TAU allows the network 100 to quickly locate the UE 115 and page the UE 115 upon receiving an incoming data packet or call for the UE 115.
  • the BS 105 may communicate with a UE 115 using HARQ techniques to improve communication reliability, for example, to provide a URLLC service.
  • the BS 105 may schedule a UE 115 for a PDSCH communication by transmitting a DL grant in a PDCCH.
  • the BS 105 may transmit a DL data packet to the UE 115 according to the schedule in the PDSCH.
  • the DL data packet may be transmitted in the form of a transport block (TB) . If the UE 115 receives the DL data packet successfully, the UE 115 may transmit a HARQ ACK to the BS 105.
  • TB transport block
  • the UE 115 may transmit a HARQ NACK to the BS 105.
  • the BS 105 may retransmit the DL data packet to the UE 115.
  • the retransmission may include the same coded version of DL data as the initial transmission.
  • the retransmission may include a different coded version of the DL data than the initial transmission.
  • the UE 115 may apply soft combining to combine the encoded data received from the initial transmission and the retransmission for decoding.
  • the BS 105 and the UE 115 may also apply HARQ for UL communications using substantially similar mechanisms as the DL HARQ.
  • the network 100 may operate over a system BW or a component carrier (CC) BW.
  • the network 100 may partition the system BW into multiple BWPs (e.g., portions) .
  • a BS 105 may dynamically assign a UE 115 to operate over a certain BWP (e.g., a certain portion of the system BW) .
  • the assigned BWP may be referred to as the active BWP.
  • the UE 115 may monitor the active BWP for signaling information from the BS 105.
  • the BS 105 may schedule the UE 115 for UL or DL communications in the active BWP.
  • a BS 105 may assign a pair of BWPs within the CC to a UE 115 for UL and DL communications.
  • the BWP pair may include one BWP for UL communications and one BWP for DL communications.
  • FIG. 2 is a timing diagram illustrating a radio frame structure 200 according to some aspects of the present disclosure.
  • the radio frame structure 200 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications.
  • the BS may communicate with the UE using time-frequency resources configured as shown in the radio frame structure 200.
  • the x-axes represent time in some arbitrary units and the y-axes represent frequency in some arbitrary units.
  • the radio frame structure 200 includes a radio frame 201.
  • the duration of the radio frame 201 may vary depending on the aspects. In an example, the radio frame 201 may have a duration of about ten milliseconds.
  • the radio frame 201 includes M number of slots 202, where M may be any suitable positive integer. In an example, M may be about 10.
  • Each slot 202 includes a number of subcarriers 204 in frequency and a number of symbols 206 in time.
  • the number of subcarriers 204 and/or the number of symbols 206 in a slot 202 may vary depending on the aspects, for example, based on the channel bandwidth, the subcarrier spacing (SCS) , and/or the CP mode.
  • One subcarrier 204 in frequency and one symbol 206 in time forms one resource element (RE) 212 for transmission.
  • a resource block (RB) 210 is formed from a number of consecutive subcarriers 204 in frequency and a number of consecutive symbols 206 in time.
  • a BS may schedule a UE (e.g., UE 115 in FIG. 1) for UL and/or DL communications at a time-granularity of slots 202 or mini-slots 208.
  • Each slot 202 may be time-partitioned into K number of mini-slots 208.
  • Each mini-slot 208 may include one or more symbols 206.
  • the mini-slots 208 in a slot 202 may have variable lengths. For example, when a slot 202 includes N number of symbols 206, a mini-slot 208 may have a length between one symbol 206 and (N-1) symbols 206.
  • a mini-slot 208 may have a length of about two symbols 206, about four symbols 206, or about seven symbols 206.
  • the BS may schedule UE at a frequency-granularity of a resource block (RB) 210 (e.g., including about 12 subcarriers 204 in 1 symbol, 2 symbols, ..., 14 symbols) .
  • RB resource block
  • FIG. 3 illustrates a communication scenario 300 involving a survival time period according to some aspects of the present disclosure.
  • the scenario 300 may correspond to a communication scenario in the network 100.
  • Survival time may refer to a time period during which an application consuming a communication service may continue without an anticipated (correctly decoded) message as defined in 3GPP.
  • a UE 115 is transmitting a series of messages (e.g., including sensor data and/or measurements) to a BS 105.
  • Messages A, B, C, and D are successfully transmitted by the UE 115 and received and decoded by the BS 105 at actions 302, 304, 306, and 308 respectively.
  • the messages A-D may be associated with an application over a communication service or connection between the UE 115 and the BS 105.
  • the connection between UE 115 and BS 105 can be characterized as being in an up time period 340.
  • BS 105 may expect a subsequent transmission from UE 115 by deadline 345, after which the connection may enter a survival time period 350 if no transmission is received. More specifically, the application may enter the survival time period 350 if no correctly decoded message is received after the deadline 345.
  • UE 115 may transmit messages E, F, and G at actions 310, 312, and 314, respectively, all of which the BS 105 may fail to receive or decode correctly (e.g., because of a degraded connection caused by interference or other causes) , causing the connection (or application) to enter the survival time period 350 at deadline 345.
  • the application may remain in an up state during the survival time period 350. In other words, the survival time period 350 is within the up time period 340 at the application as shown. If no messages are received during the survival time period 350 (prior to deadline 355) , the connection may enter a down time period 360. Following the expiration of the survival time period 350 at deadline 355, the UE 115 and BS 105 may take recovery actions to restore the connection.
  • the UE 115 may increase its transmit power, lower the modulation and coding scheme (MCS) used to transmit data to the BS 105, or perform a link failure recovery procedure.
  • MCS modulation and coding scheme
  • UE 115 may continue to transmit messages during the time period 360, which may continue to fail, such as message H at action 316.
  • the connection may transition to a period of up time 370. So long as messages are received by the BS 105 at the expected time, the connection may remain in the up time period 370.
  • BS 105 successfully receives messages K, L, and M at actions 320, 322, and 324, respectively.
  • the survival time period 350 may be defined in terms of a number of lost messages. For instance, in the scenario 300, a survival time may allow for 4 consecutive lost messages (e.g., the messages E, F, G, H) .
  • FIG. 4 illustrates a communication scenario 400 involving a survival time period 420 according to some aspects of the present disclosure.
  • the scenario 400 may correspond to a communication scenario in the network 100.
  • Scenario 400 illustrates a survival time definition that may be better suited to more timing stringent use cases such as motion control involving close-loop control of machines or periodic communication.
  • Periodic communication may refer to transmission of data or messages that occur periodically.
  • a sensor related application may update sensor data or measurement based on periodic sensor monitoring of a characteristic parameter.
  • the update time or update period may be referred to as a transfer interval between successive transmission of data (e.g., sensor data) .
  • a periodic communication is started once and may continue to transmit data or messages at an expected rate unless a stop command is issued.
  • the survival time period 420 is based on a transfer interval (the time between successive transmissions) rather than an expected message delivery time (or number or expected message delivery) as in scenario 300.
  • the UE 115 may transmit message A at action 401, which is successfully received by the BS 105.
  • the message A may be associated with an application or transmission that is periodic (i.e., with an expected duration between every two transmissions) .
  • the connection between UE 115 and BS 105 is in an up time period 402.
  • the UE 115 transmits message B at action 410, which is not successfully received by the BS 105.
  • the time between the transmission of message A and the transmission of message B is the transfer interval 405.
  • the connection between UE 115 and BS 105 enters survival time period 420 immediately after the failed transmission of message B. This is due to the BS 105 expecting a next message according to the transfer interval.
  • the connection (application) may be considered to be in a down state or a down time if the next message (B) does not arrive at the expected time.
  • the periodic communication is expected to transmit one message at every 1 ms, and thus the time between two successive messages may be 1 ms long and the survival time period 420 may also be 1 ms long.
  • the connection may enter a period of down time as in scenario 300 (not illustrated) and perform the same or similar recovery operations to those in scenario 300. If, however, a message is successfully transmitted before the expiration of the survival time period 420 (e.g., message C at action 425) , the connection may transition out of the survival time period 420 without entering a down time period so long as messages (not illustrated) continue to be successfully transmitted at the expected transfer interval.
  • FIG. 3 and FIG. 4 are described in the context where the UE 115 is a source device (that originates data) and the BS 105 is a target device (that receives data) , it should be understood that in other examples the BS 105 can be a source device while the UE 115 may be target device and similar survival time scenarios as the scenario 300 and/or 400 may occur between the BS 105 and the UE 115 in a DL direction.
  • the network 100 may be an IIoT network and may include a massive number of UEs 115 that are IIoT devices.
  • the UEs 115 may include machines, industrial equipment, motors, actuators, smart meters, smart sensors, and/or the like.
  • Each UE 115 may upload sensor data and/or measurements to a network server, which may correspond to a BS 105.
  • the BS 105 and the UEs 115 may apply HARQ techniques to communicate the sensor data and/or measurements.
  • IIoT applications may have a certain survival time requirement as discussed above with reference to FIGS. 3 and 4.
  • a BS 105 may provide a UE 115 with a grant specifically for a survival time transmission (atransmission within a survival time period such as the period 350 and/or the period 420) .
  • the BS 105 may aggregate multiple survival time transmission grants for a group of UEs 115 into a multi-user grant and may transmit the multi-user grant to the group of UEs 115.
  • Each survival time transmission grant may be assigned to one of the UEs 115 and may include an ACK or an NACK for a previous data packet received by the BS 105 from the respective UE 115.
  • the UE 115 may transmit a data packet associated with a survival time using a first resource associated with the survival time.
  • the UE 115 may select the first resource from a survival time transmission resource pool preconfigured by BS 105 as discussed below with reference to FIGS. 5A-5B.
  • the UE 115 may select the first resource from a survival time transmission resource pool dynamically configured by the BS 105 and indicated in the multi-user grant as discussed below with reference to FIGS. 8A-8B.
  • the BS 105 may preconfigure the UE 115 with the first resource for survival time transmission as discussed below with reference to FIG. 9.
  • the BS 105 may include various options in the multi-user grant to control the usages of preconfigured or dynamically configured survival time transmission resources as discussed below with reference to FIGS. 6 and 7A-7C.
  • FIG. 5A and 5B are discussed in relation to each other to illustrate survival time transmission using a preconfigured survival time transmission resource pool.
  • FIG. 5A is a sequence diagram illustrating a communication method 500 with survival time transmissions according to some aspects of the present disclosure.
  • the method 500 may be performed by wireless sensor networks or IIoT networks, such as the networks 100. More specifically, the method 500 is performed by a BS 105 and a plurality of UEs 115 (e.g., K number of UEs 115) .
  • the plurality of UEs 115 may be IIoT devices (e.g., wireless sensors, smart meters, machines, industrial equipment, actuators, motors, etc. ) similar to the UEs 115f-115h shown in FIG. 1.
  • the BS 105 may utilize one or more components, such as the processor 1002, the memory 1004, the survival time module 1008, the transceiver 1010, the modem 1012, and the one or more antennas 1016 shown in FIG. 10, to execute the actions of the method 500.
  • the UEs 115 may utilize one or more components, such as the processor 1102, the memory 1104, the survival time module 1108, the transceiver 1110, the modem 1112, and the one or more antennas 1116 shown in FIG. 11, to execute the actions of the method 500.
  • each UE 115 of the plurality of UEs 115 may establish a connection (e.g., an RRC connection) with the BS 105, for example, by performing an initial network access procedure as discussed above with reference to FIG. 1.
  • Each UE 115 may be executing a certain application communicating with a corresponding application at the BS 105, and may transmit data packets (e.g., including sensor data and/or measurements) associated with the application to the BS 105.
  • the BS 105 may be a network server that collects and/or analyze the data.
  • the BS 105 may also generate commands to control the UEs 115.
  • the method 500 is described with respect to a first UE 115 of the plurality of UEs 115. However, similar operations may be performed between each of the plurality of UEs 115 and the BS 105.
  • a BS 105 may preconfigure a survival time transmission resource pool for the plurality of UEs 115 to transmit data packets during a respective survival time period. Subsequently, the BS 105 may transmit a multi-user grant to the plurality of UEs 115 to grant usage of resources from the survival time transmission resource pool based on various conditions as discussed below.
  • the BS 105 transmits a configuration for a survival time transmission resource pool.
  • the resource pool may include a plurality of resources (e.g., time-frequency resources as shown in FIG. 2) .
  • the resource pool may include one or more symbols (e.g., the symbols 206) in time and one or more subcarriers (e.g., the subcarriers 204) in frequency.
  • the plurality of resources can include resources that are contiguous in time, resources that are distributed in time, resources that are contiguous in frequency, and/or resources that are distributed in frequency.
  • the BS 105 may allocate the resource pool specifically for survival time transmission so that a UE 115 operating within a survival time period may quickly use a resource from the resource pool to transmit a data packet.
  • the BS 105 may transmit the configuration for the survival time transmission resource pool via an RRC configuration.
  • the first UE 115 transmits M number of data packets to the BS 105.
  • the data packets may include data and/or measurements obtained or sensed by the first UE 115.
  • the data packets may be associated with an application executing between the first UE 115 and the BS 105.
  • the application may have a certain survival time requirement, which may be in terms of a number of failed transmission attempts or a duration with lost or failed data reception before the application will enter a down-time (e.g., the down-time 360) .
  • the first UE 115 may transmit one data packet at a time and the data packets may be spaced apart in time, for example, according to a certain data upload or update schedule.
  • the first UE 115 may apply HARQ techniques to the transmission of the M data packets, and the BS 105 may feedback to the UE 115 an ACK or a NACK for each data packet.
  • the BS 105 may decode each of the M data packets as it arrived.
  • the first data packet to the (M-1) th data packets are successfully decoded by the BS 105.
  • the BS 105 fails to receive the M th data packet as shown at action 522, and thus a survival time period 502 (associated with an application at the BS 105) may begin.
  • the BS 105 transmits a multi-user grant (e.g., the multi-user grant 560 shown in FIG. 5B) including a plurality of grants.
  • a multi-user grant (e.g., the multi-user grant 560 shown in FIG. 5B) including a plurality of grants.
  • Each grant of the plurality of grants is assigned to one of the plurality of UEs 115, for example, to transmit a data packet associated with corresponding survival time.
  • Each grant may indicate an ACK feedback or a NACK feedback for a packet received from a corresponding UE 115.
  • the BS 105 may transmit the multi-user grant 560 in the form of downlink control information (DCI) in a PDCCH.
  • the DCI may include a cyclic redundancy check (CRC) portion that is masked by a survival time transmission specific RNTI.
  • the survival time transmission specific RNTI may be referred to as a cell-survival time-RNTI (C-ST-RNTI) .
  • the BS 105 may configure the plurality of UEs 115 (aspecific group of UEs) with the C-ST-RNTI. Accordingly, the UEs 115 may perform PDCCH monitoring based on the C-ST-RNTI.
  • each UE 115 may blindly decode for PDCCH candidates in a PDCCH monitoring occasion (e.g., time-frequency resources configured for PDCCH transmission) .
  • a PDCCH monitoring occasion e.g., time-frequency resources configured for PDCCH transmission
  • the UE 115 may determine that the PDCCH candidate carries a multi-user grant 560.
  • the BS 105 may transmit the multi-user grant 560 as a part of a PDSCH transmission. For instance, the BS 105 may transmit a transport block including the multi-user grant 560 in a PDSCH. In other words, the multi-user grant 560 is piggybacked (transmitted along) with PDSCH data in the transport block.
  • FIG. 5B illustrates a multi-user grant 560 for survival time transmission according to some aspects of the present disclosure.
  • the multi-user grant 560 is an aggregation of a plurality of grants 570 (shown as 570a, 570b, ..., 570c) .
  • each UE 115 may be assigned with a fixed location (e.g., bit positions or octet positions) within the multi-user grant 560.
  • a first block in the multi-user grant 560 is a grant 570a assigned to the first UE 115 denoted as UE-1
  • a next second block in the multi-user grant 560 is a grant 570b assigned to a second UE 115 (of the plurality of UEs 115) denoted as UE-2
  • a last block in the multi-user grant 560 is a grant 570c assigned to a K th UE 115 (of the plurality of UEs 115) denoted as UE-K.
  • the BS 105 may configure the UE 115 with bit positions and/or octet positions within the multi-user grant 560 via an RRC configuration.
  • the BS 105 may indicate the first block position (e.g., bit 0 to bit L-1) to the first UE 115, indicate the second block position (e.g., bit L to bit 2L-1) to the second UE 115, and so on.
  • first block position e.g., bit 0 to bit L-1
  • second block position e.g., bit L to bit 2L-1
  • each grant 570 includes an ACK/NACK field 572 (shown as A/N) .
  • the ACK/NACK field 572 may indicate an ACK/NACK feedback for a previous packet transmitted by a corresponding UE 115 to the BS 105.
  • the BS 105 may therefore set the ACK/NACK field 572 in the grant 570a to a NACK feedback.
  • the first UE 115 may select a first resource (e.g., a time-frequency resource) from the survival time transmission resource pool for transmitting a next data packet during the survival time 502.
  • a first resource e.g., a time-frequency resource
  • the preconfigured survival time transmission resource pool may be shared by the plurality of UEs 115.
  • the first UE 115 may randomly select the first resource from the survival time transmission resource pool.
  • the UE 115 may transmit a data packet (e.g., the (M+1) th data packet) using the first resource during the survival time 502.
  • the data packet may be a retransmission of the M th data packet that failed decoding at the BS 105.
  • one or more of the plurality of UEs 115 may not be operating within a survival time at the time when the multi-user grant 560 is received at action 530.
  • the grant 570b for a second UE 115 (UE-2) of the plurality of UEs 115 may indicate an ACK feedback.
  • the second UE 115 may disregard or ignore the grant 570b. In other words, the second UE 115 may refrain from using a resource from the preconfigured survival time transmission resource pool for transmission upon receiving the ACK feedback.
  • the utilization of a preconfigured the survival time transmission resource pool along with the multi-user grant can reduce loading at BS 105.
  • the loading can be large if the BS 105 dynamically allocates or configures a survival time transmission resource for each UE 115 operating within a survival time.
  • the signaling overhead and delay can be large if the BS 105 transmits a separate survival time transmission grant along with the resource allocation for each UE 115.
  • the method 500 is efficient for survival time transmission in terms of loading at the BS 105 and/or signaling overhead/delay and may also decrease the likelihood of the BS 105 or the UEs 115 entering a down-time.
  • FIG. 6 illustrates a multi-user grant 600 for survival time transmission according to some aspects of the present disclosure.
  • the BS 105 may utilize the multi-user grant 600 instead of the multi-user grant 560 at action 530 of the method 500.
  • the multi-user grant 600 is substantially similar to the multi-user grant 560.
  • the multi-user grant 600 includes an aggregation of a plurality of grants 570 (shown as 570a, 570b, ...., 570c) for the plurality of UEs 115.
  • the multi-user grant 600 includes a threshold 610.
  • the location of the threshold 610 may also be fixed within the multi-user grant 600.
  • FIG. 6 illustrates the threshold 610 positioned at the end of the multi-user grant 600, the threshold 610 can be positioned at any location within the multi-user grant 600.
  • the BS 105 may dynamically configure the threshold 610 to control access to the survival time transmission resource pool (e.g., to reduce collision) .
  • the threshold 610 is a data priority threshold.
  • the priority of a data packet may be defined based on an amount of time (or a percentage of the survival time) that has elapsed since the beginning (starting time) of a survival time period or an amount of remaining time in the survival time period.
  • a survival time period 602 starts at time T0 and ends at time T4.
  • the survival time period 602 may correspond to the survival time 350, 420, and/or 502.
  • a data packet transmitted during the survival time period 602 and before time T1 may be assigned a first priority
  • a data packet transmitted after time T1 and before T2 may be assigned a second priority
  • a data packet transmitted after time T2 and before time T3 may be assigned a third priority
  • a data packet transmitted after time T3 and before T4 may be assigned a fourth priority.
  • the first priority, the second priority, the third priority, and the fourth priority may be in an increasing priority order.
  • the priority of a data packet may become higher as the transmission time for the data packet becomes closer to the survival time deadline (the end of the survival time period 602 at time T4) .
  • the data packet may have the first priority.
  • the data packet may have the second priority higher than the first priority.
  • the data packet may have the third priority.
  • the BS 105 may define a fewer number of data priorities (e.g., 2) or a greater number of data priorities (e.g., 4, 5 or more) associated with survival time transmissions.
  • the BS 105 may set a data priority for the threshold 610 to the second priority to indicate that a UE 115 may select a resource from the survival time transmission resource pool to transmit a data packet if the data packet is of the second priority or higher (e.g., the second priority or the third priority) . Accordingly, a UE 115 may further determine whether to select a resource from the survival time transmission resource pool for transmitting a data packet based on a period that has elapsed since the start of a survival time period. In this way, the BS 105 may give priority to a UE 115 closer to a survival time deadline to utilize resources from the survival time transmission resource pool, and thus the number of UEs 115 competing for a resource in the survival time transmission resource pool may reduce.
  • the BS 105 may configure the UEs 115 with a mapping between data priorities and time periods within a survival time. Different UEs and/or different applications may have different survival time durations, for example, depending on quality of service (QoS) requirements, and the BS 105 may define a mapping between data priorities and time periods within a survival time, for example, in terms of a percentage of time elapsed since the start of a survival time.
  • QoS quality of service
  • FIG. 7A illustrates a multi-user grant 700 for survival time transmission according to some aspects of the present disclosure.
  • the BS 105 may utilize the multi-user grant 700 instead of the multi-user grant 560 at action 530 of the method 500.
  • the multi-user grant 700 is substantially similar to the multi-user grant 560.
  • the multi-user grant 700 includes an aggregation of a plurality of grants 770 (shown as 770a, 770b, ...., 770c) for the plurality of UEs 115, where each grant 770 includes an ACK/NACK field 572.
  • the BS 105 may further include an indication field 772 (shown as Ind) in each grant 770.
  • the BS 105 may dynamically configure the indication field 772 to control access to the survival time transmission resource pool on an individual UE basis. In other words, the BS 105 may control each UE 115 in accessing the survival time transmission resource pool.
  • each indication field 772 is a 1-bit field as shown in FIG. 7B. In another aspects, each indication field 772 is a 2-bit field as shown in FIG. 7C.
  • FIG. 7B illustrates a grant 770 for survival time transmission according to some aspects of the present disclosure.
  • the grant 770 in FIG. 7B may correspond to one of the grants 770 within the multi-user grant 700.
  • each grant 770 in the multi-user grant 700 may have a similar indication field format as shown in FIG. 7B.
  • the indication field 772 is a 1-bit field indicating whether use of the survival time transmission resource pool by a corresponding UE 115 is allowed.
  • the BS 105 may set the indication field 772 to a bit value of 1 to indicate use of the survival time transmission resource pool is allowed and to a bit value of 0 to indicate use of the survival time transmission resource pool is not allowed, or vice versa.
  • the BS 105 may control access to the survival time transmission resource pool by each individual UE 115 by setting the indication field 772.
  • FIG. 7C illustrates a grant 770 for survival time transmission according to some aspects of the present disclosure.
  • the grant 770 in FIG. 7C may correspond to one of the grants 770 within the multi-user grant 700.
  • each grant 770 in the multi-user grant 700 may have a similar indication field format as shown in FIG. 7C.
  • the indication field 772 is a 2-bit field indicating usage of the survival time transmission resource pool by a corresponding UE 115.
  • the BS 105 may divide a survival time transmission resource pool 780 into a first portion 782 and a second portion 784.
  • the survival time transmission resource pool 780 may include time-frequency resources (e.g., one or more symbols in time and one or more subcarriers in frequency) .
  • the BS 105 may configure the first portion 782 for a last survival time transmission.
  • a last survival time transmission may refer to a last transmission attempt before the end of a survival time period (e.g., the survival periods 350, 420, 502, and/or 602) .
  • the BS 105 may configure the second portion 784 for a non-last survival time transmission. Referring to the example illustrated in FIG. 3, message G transmitted at the end of the survival time 350 (or deadline 355) is a last survival time transmission, whereas messages E and F transmitted within the survival time period 350, but before the message G, are non-last survival time transmissions.
  • the BS 105 may set the indication field 772 to bit values of 00 to indicate use of the survival time transmission resource pool 780 is not allowed.
  • the BS 105 may set the indication field 772 to bit values of 01 to indicate use of the first portion 782 is allowed for a last survival time transmission, but not for a non-last survival time transmission.
  • the UE 115 may determine whether to select a resource from the first portion 782 or the second portion 784 based on whether the transmission is a last survival time transmission attempt or not.
  • the BS 105 may set the indication field 772 to bit values of 11 to indicate use of the first portion 782 is allowed for any survival time transmission (i.e., both non-last survival time transmission or last survival time transmission) .
  • a UE 115 may select a resource from the first portion 782 or the second portion 784 for a last survival time transmission or a non-last survival time transmission.
  • FIG. 8A and 8B are discussed in relation to each other to illustrate survival time transmission using a dynamically configured survival time transmission resource pool.
  • FIG. 8A is a sequence diagram illustrating a communication method 800 with survival time transmissions according to some aspects of the present disclosure.
  • the method 800 may be performed by wireless sensor networks or IIoT networks, such as the networks 100. More specifically, the method 800 is performed by a BS 105 and a plurality of UEs 115 (e.g., K number of UEs 115) .
  • the plurality of UEs 115 may be IIoT devices (e.g., wireless sensors, smart meters, machines, industrial equipment, actuators, motors, etc. ) similar to the UEs 115f-115h shown in FIG. 1.
  • the BS 105 may utilize one or more components, such as the processor 1002, the memory 1004, the survival time module 1008, the transceiver 1010, the modem 1012, and the one or more antennas 1016 shown in FIG. 10, to execute the actions of the method 800.
  • the UEs 115 may utilize one or more components, such as the processor 1102, the memory 1104, the survival time module 1108, the transceiver 1110, the modem 1112, and the one or more antennas 1116 shown in FIG. 11, to execute the actions of the method 800.
  • the method 800 includes features similar to method 500 in many respects.
  • actions 820, 822, 840, and 850 are similar to actions 520, 522, 540, and 550, respectively. Accordingly, for sake of brevity, details of those actions will not be discussed in detail here.
  • the BS 105 may dynamically configure a survival time transmission resource pool for survival time transmission and may include an indication of the survival time transmission resource pool in a multi-user grant.
  • the dynamic configuration of the survival time transmission resource pool may allow the BS 105 to adjust the size of the survival time transmission resource pool, for example, based on a number of upcoming survival time transmissions.
  • the method 800 is described with respect to a first UE 115 of the plurality of UEs 115. However, similar operations may be performed between each of the plurality of UEs 115 and the BS 105.
  • the first UE 115 transmits M number of data packets to the BS 105.
  • the data packets may include data and/or measurements obtained or sensed by the first UE 115.
  • the data packets may be associated with an application executing between the first UE 115 and the BS 105.
  • the application may have a certain survival time requirement.
  • the first UE 115 may transmit the M data packets one at a time according to an update period, and the BS 105 may transmit an ACK/NACK feedback for each packet as discussed above in relation to action 520.
  • the first data packet to the (M-1) th data packets are successfully received and decoded by the BS 105.
  • the BS 105 fails to decode the M th data packet as shown at action 822, and thus a survival time period 502 (associated with an application at the BS 105) may begin.
  • the BS 105 dynamically configures a survival time transmission resource pool for survival time transmissions by the first UE 115 and/or other UEs 115 of the plurality of UEs 115.
  • the resource pool may include a plurality of resources (e.g., time-frequency resources as shown in FIG. 2) .
  • the resource pool may include one or more symbols (e.g., the symbols 206) in time and one or more subcarriers (e.g., the subcarriers 204) in frequency.
  • the plurality of resources can include resources that are contiguous in time, resources that are distributed in time, resources that are contiguous in frequency, and/or resources that are distributed in frequency.
  • the BS 105 may adjust the size (e.g., number of resources) of the survival time transmission resource pool, for example, based on a number of UEs 115 that are operating within a survival time at the time when the BS 105 generates the multi-user grant.
  • the BS 105 transmits a multi-user grant (e.g., the multi-user grant 860 shown in FIG. 8B) including a plurality of grants.
  • a multi-user grant (e.g., the multi-user grant 860 shown in FIG. 8B) including a plurality of grants.
  • Each grant of the plurality of grants is assigned to one of the plurality of UEs 115, for example, to transmit a data packet associated with corresponding survival time.
  • the BS 105 may transmit the multi-user grant via a PDCCH based on a C-ST-RNTI or via a PDSCH as discussed above in relation to FIG. 5A.
  • FIG. 8B illustrates a multi-user grant 860 for survival time transmission according to some aspects of the present disclosure.
  • the multi-user grant 860 is substantially similar to the multi-user grant 560.
  • the multi-user grant 860 includes an aggregation of a plurality of grants 570 (shown as 570a, 570b, ...., 570c) for the plurality of UEs 115.
  • the BS 105 may indicate an ACK or a NACK in each grant 570 for a corresponding UE 115.
  • the BS 105 may set the ACK/NACK field 572 of the grant 570a (for the first UE 115) to a NACK based on the decoding failure for the M th data packet at action 822.
  • the multi-user grant 860 includes a resource pool configuration 810.
  • the resource pool configuration 810 may include resource allocation information, such as time and/or frequency location of resources allocated for the survival time transmission resource pool.
  • the resource pool configuration 810 may indicate that the survival time transmission resource pool begins at a certain RB (e.g., the RBs 210) may span a certain number of RBs.
  • the resource pool configuration 810 may also indicate that the survival time transmission resource pool within certain symbols (e.g., the symbols 206) of certain slots (e.g., the slot 202) .
  • each UE 115 may be assigned with a fixed location (e.g., bit positions or octet positions) within the multi-user grant 860 as discussed above with reference to FIG. 5B. Additionally, the location of the resource pool configuration 810 may also be fixed. Although FIG. 8B illustrates the resource pool configuration 810 positioned at the end of the multi-user grant 860, the resource pool configuration 810 can be positioned at any location (e.g., before the grant 570a) within the multi-user grant 860.
  • the first UE 115 may select a first resource (e.g., a time-frequency resource) from the survival time transmission resource pool (indicated by the resource pool configuration 810) for transmitting a next data packet during the survival time 502.
  • a first resource e.g., a time-frequency resource
  • the survival time transmission resource pool indicated by the resource pool configuration 810
  • a UE 115 may automatically utilize a resource from the survival time transmission resource pool upon receiving a NACK feedback.
  • the first UE 115 may randomly select the first resource from the survival time transmission resource pool.
  • the UE 115 may transmit a data packet (e.g., the (M+1) th data packet) using the first resource during the survival time 502.
  • the data packet may be a retransmission of the M th data packet that failed decoding at the BS 105.
  • one or more of the plurality of UEs 115 may not be operating within a survival time at the time when the multi-user grant 860 is received at action 830.
  • the grant 570b for a second UE 115 (UE-2) of the plurality of UEs 115 may indicate an ACK feedback.
  • the second UE 115 may disregard or ignore the grant 570b. In other words, the second UE 115 may refrain from using a resource from the preconfigured survival time transmission resource pool for transmission upon receiving the ACK feedback.
  • the dynamic configuration of the survival time transmission resource pool may allow for a more efficient resource utilization. For instance, the BS 105 may allocate resources for survival time transmission as needed (by adjusting the pool size) instead of having a preconfigured fixed amount of resources for the survival time transmission resource pool irrespective of whether any UE 115 may have a survival time transmission. Further, by configuring a survival time transmission resource pool for sharing among the plurality of UEs 115 and using a multi-user grant to grant usage of the survival time transmission resource pool to the UEs 115, the BS 105 may indicate configuration information for the survival time transmission resource pool once in the multi-user grant instead of having to transmit a separate grant with repeated configuration information for each UE 115.
  • the BS 105 may also control access to the survival time transmission resource pool by including a threshold (e.g., the threshold 610) in the multi-user grant 860.
  • the threshold is a data priority threshold.
  • the priority of a data packet may be defined based on an amount of time that has elapsed since the beginning a survival time period or an amount of remaining time in the survival time period as discussed above with reference to FIG. 6.
  • the BS 105 may further control access to the survival time transmission resource pool by including an indication field (e.g., the indication field 772) in each individual grant 570 within the multi-user grant 860.
  • the indication field may be a 1-bit field as discussed above with reference to FIG. 7B or a 2-bit field as discussed above with reference to FIG. 7C.
  • FIG. 9 is a sequence diagram illustrating a communication method 900 with survival time transmissions according to some aspects of the present disclosure.
  • the method 900 may be performed by wireless sensor networks or IIoT networks, such as the networks 100. More specifically, the method 900 is performed by a BS 105 and a plurality of UEs 115 (e.g., K number of UEs 115) .
  • the plurality of UEs 115 may be IIoT devices (e.g., wireless sensors, smart meters, machines, industrial equipment) similar to the UEs 115f-115h shown in FIG. 1.
  • the BS 105 may utilize one or more components, such as the processor 1002, the memory 1004, the survival time module 1008, the transceiver 1010, the modem 1012, and the one or more antennas 1016 shown in FIG. 10, to execute the actions of the method 900.
  • the UEs 115 may utilize one or more components, such as the processor 1102, the memory 1104, the survival time module 1108, the transceiver 1110, the modem 1112, and the one or more antennas 1116 shown in FIG. 11, to execute the actions of the method 900.
  • the method 900 includes features similar to method 500 in many respects.
  • actions 920, 922, and 950 are similar to actions 520, 522, and 550, respectively. Accordingly, for sake of brevity, details of those actions will not be discussed in detail here.
  • the BS 105 may preconfigure each UE 115 of the plurality of UEs 115 with a resource specifically for survival time transmission and may indicate whether each UE 115 may utilize the preconfigured resource for survival time transmission in a multi-user grant.
  • the method 900 is described with respect to a first UE 115 of the plurality of UEs 115. However, similar operations may be performed between each of the plurality of UEs 115 and the BS 105.
  • the BS transmits a configuration for a first resource to be used by the first UE 115 for survival time transmission.
  • the first resource is a time-frequency resource (spanning one or more symbols 206 in time and one or more subcarriers 204 in frequency) may be referred to as a first resource.
  • the first resource is a UE-specific resource assigned to the first UE 115.
  • the BS 105 may assign a second resource specifically to a second UE 115 of the plurality of UEs 115, where the second resource is different from the first resource.
  • the BS 105 may also assign the first resource to the second UE 115 for survival time transmission. In other words, the BS 105 can preconfigure a survival time transmission resource for sharing between two or more UEs 115.
  • the first UE 115 transmits M number of data packets to the BS 105.
  • the data packets may include data and/or measurements obtained or sensed by the first UE 115.
  • the data packets may be associated with an application executing between the first UE 115 and the BS 105.
  • the application may have a certain survival time requirement.
  • the first UE 115 may transmit the M data packets one at a time according to an update period, and the BS 105 may transmit an ACK/NACK feedback for each packet as discussed above in relation to action 520.
  • the first data packet to the (M-1) th data packets are successfully received and decoded by the BS 105.
  • the BS 105 fails to decode the M th data packet as shown at action 922, and thus a survival time period 902 (associated with an application at the BS 105) may begin.
  • the BS 105 transmits a multi-user grant including a plurality of grants.
  • Each grant of the plurality of grants is assigned to one of the plurality of UEs 115, for example, to transmit a data packet associated with corresponding survival time.
  • the BS 105 may transmit the multi-user grant via a PDCCH based on a C-ST-RNTI or via a PDSCH as discussed above in relation to FIG. 5A.
  • the multi-user grant may be similar to the multi-user grant 700 shown in FIG. 7A.
  • each grant of the plurality of grants may include an ACK/NACK field (e.g., the ACK/NACK fields 572) and an indication field (e.g., the indication field 772) .
  • the BS 105 may indicate an ACK or a NACK in each grant for a corresponding UE 115.
  • a first grant (e.g., the first grant 570a) of the plurality of grants may be assigned to the first UE 115, and the BS 105 may set the ACK/NACK field in the first grant to a NACK based on the decoding failure for the M th data packet at action 922.
  • the indication field may be a 1-bit field as discussed above with reference to FIG. 7B.
  • the BS 105 may set the indication field 772 to a bit value of 1 to indicate use of the survival time transmission resource pool is allowed and to a bit value of 0 to indicate use of the survival time transmission resource pool is not allowed, or vice versa.
  • the BS 105 may control the usage of the first resource using the indication field in respective grants. For instance, a second grant (e.g., the grant 570b) of the plurality of grants is assigned to the second UE 115.
  • the BS 105 may set the indication field in the first grant to a bit value of 1 to allow the first UE 115 to use the first resource for survival time transmission, and may set the indication field in the second grant to a bit value of 0 to disallow the second UE 115 to use the first resource for survival time transmission.
  • the first UE 115 may transmit a data packet (e.g., the (M+1) th data packet) using the first resource during the survival time 902.
  • the data packet may be a retransmission of the M th data packet that failed decoding at the BS 105.
  • FIG. 10 is a block diagram of an exemplary BS 1000 according to some aspects of the present disclosure.
  • the BS 1000 may be a BS 105 as discussed in FIGS. 1-4, 5A-5B, 6, 7A-7C, 8A-8B, 9, and 13.
  • the BS 1000 may include a processor 1002, a memory 1004, a survival time module 1008, a transceiver 1010 including a modem subsystem 1012 and a RF unit 1014, and one or more antennas 1016.
  • These elements may be coupled with one another.
  • the term “coupled” may refer to directly or indirectly coupled or connected to one or more intervening elements. For instance, these elements may be in direct or indirect communication with each other, for example via one or more buses.
  • the processor 1002 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 1002 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 1004 may include a cache memory (e.g., a cache memory of the processor 1002) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 1004 may include a non-transitory computer-readable medium.
  • the memory 1004 may store instructions 1006.
  • the instructions 1006 may include instructions that, when executed by the processor 1002, cause the processor 1002 to perform operations described herein, for example, aspects of FIGS. 1-4, 5A-5B, 6, 7A-7C, 8A-8B, 9, and 13.
  • Instructions 1006 may also be referred to as program code.
  • the program code may be for causing a wireless communication device (e.g., the BS 1000) to perform these operations, for example by causing one or more processors (such as processor 1002) to control or command the wireless communication device to do so.
  • processors such as processor 1002
  • the terms “instructions” and “code” should be interpreted broadly to include any type of computer-readable statement (s) .
  • the terms “instructions” and “code” may refer to one or more programs, routines, sub-routines, functions, procedures, etc. “Instructions” and “code” may include a single computer-readable statement or many computer-readable statements.
  • the survival time module 1008 may be implemented via hardware, software, or combinations thereof.
  • the survival time module 1008 may be implemented as a processor, circuit, and/or instructions 1006 stored in the memory 1004 and executed by the processor 1002.
  • the survival time module 1008 can be integrated within the modem subsystem 1012.
  • the survival time module 1008 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 1012.
  • the survival time module 1008 may communicate with one or more components of BS 1000 to implement various aspects of the present disclosure, for example, aspects of FIGS. 1-4, 5A-5B, 6, 7A-7C, 8A-8B, 9, and 13.
  • the survival time module 1008 is configured to transmit, to a UE (e.g., the UEs 115 and/or the UE 1100) , a first grant (e.g., the grants 570 and/or 770) for transmitting a data packet associated with a survival time and receive, from the UE based on the first grant, the data packet in a first resource associated with the survival time.
  • a first grant e.g., the grants 570 and/or 770
  • the survival time module 1008 is configured to transmit, to the UE, a multi-user grant (e.g., the multi-user grants 560, 600, 700, or 860) including a plurality of grants.
  • Each grant of the plurality of grants is associated with one of a plurality of UEs, where the plurality of UEs includes the UE and the plurality of grants includes the first grant.
  • the survival time module 1008 is configured to transmit the multi-user grant via a PDCCH based on a C-ST-RNTI.
  • the survival time module 1008 is configured to transmit a data block (e.g., a transport block) including the multi-user grant via a PDSCH.
  • the multi-user grant may also include a data priority threshold as discussed above with reference to FIG. 6.
  • each of the plurality of grants may also include an indicator field as discussed above with reference to FIGS. 7A-7C.
  • the survival time module 1008 is further configured to transmit, to the UE, an RRC configuration including a configuration for a survival time transmission resource pool including a plurality of resources, where the plurality of resources includes the first resource, for example, as discussed above with reference to FIGS. 5A-5B.
  • the first grant includes an indication of a survival time transmission resource pool including a plurality of resources, where the plurality of resources includes the first resource, for example, as discussed above with reference to FIGS. 8A-8B.
  • the survival time module 1008 is further configured to transmit, to the UE, an indication of the first resource assigned to the UE, for example, as discussed above with reference to FIG. 9.
  • the transceiver 1010 may include the modem subsystem 1012 and the RF unit 1014.
  • the transceiver 1010 can be configured to communicate bi-directionally with other devices, such as the UEs 115 and/or another core network element.
  • the modem subsystem 1012 may be configured to modulate and/or encode data according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc.
  • the RF unit 1014 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc.
  • modulated/encoded data e.g., RRC configuration, PDCCH signals, PDSCH signals, survival time transmission resource pool configuration, survival time transmission resource configuration, multi-user grant, ACK/NACK, etc.
  • modulated/encoded data e.g., RRC configuration, PDCCH signals, PDSCH signals, survival time transmission resource pool configuration, survival time transmission resource configuration, multi-user grant, ACK/NACK, etc.
  • the RF unit 1014 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 1010, the modem subsystem 1012 and/or the RF unit 1014 may be separate devices that are coupled together at the BS 1000 to enable the BS 1000 to communicate with other devices.
  • the RF unit 1014 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 1016 for transmission to one or more other devices.
  • the antennas 1016 may further receive data messages transmitted from other devices and provide the received data messages for processing and/or demodulation at the transceiver 1010.
  • the transceiver 1010 may provide the demodulated and decoded data (e.g., sensor data, measurements, etc. ) to the survival time module 1008 for processing.
  • the antennas 1016 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
  • the BS 1000 can include multiple transceivers 1010 implementing different RATs (e.g., NR and LTE) .
  • the BS 1000 can include a single transceiver 1010 implementing multiple RATs (e.g., NR and LTE) .
  • the transceiver 1010 can include various components, where different combinations of components can implement different RATs.
  • the transceiver 1010 is configured to communicate with components of the BS 1000 to transmit, to a UE, a first grant for transmitting a data packet associated with a survival time and receive, from the UE based on the first grant, the data packet using a first resource associated with the survival time.
  • FIG. 11 is a block diagram of an exemplary UE 1100 according to some aspects of the present disclosure.
  • the UE 1100 may be a UE 115 as discussed above in FIGS. 1-4, 5A-5B, 6, 7A-7C, 8A-8B, 9, and 13.
  • the UE 1100 may include a processor 1102, a memory 1104, a survival time module 1108, a transceiver 1110 including a modem subsystem 1112 and a radio frequency (RF) unit 1114, and one or more antennas 1116.
  • RF radio frequency
  • the processor 1102 may include a central processing unit (CPU) , a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a controller, a field programmable gate array (FPGA) device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 1102 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 1104 may include a cache memory (e.g., a cache memory of the processor 1102) , random access memory (RAM) , magnetoresistive RAM (MRAM) , read-only memory (ROM) , programmable read-only memory (PROM) , erasable programmable read only memory (EPROM) , electrically erasable programmable read only memory (EEPROM) , flash memory, solid state memory device, hard disk drives, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 1104 includes a non-transitory computer-readable medium.
  • the memory 1104 may store, or have recorded thereon, instructions 1106.
  • the instructions 1106 may include instructions that, when executed by the processor 1102, cause the processor 1102 to perform the operations described herein with reference to a UE 115 or an anchor in connection with aspects of the present disclosure, for example, aspects of FIGS. 1-4, 5A-5B, 6, 7A-7C, 8A-8B, 9, and 13. Instructions 1106 may also be referred to as code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 10.
  • the survival time module 1108 may be implemented via hardware, software, or combinations thereof.
  • the survival time module 1108 may be implemented as a processor, circuit, and/or instructions 1106 stored in the memory 1104 and executed by the processor 1102.
  • the survival time module 1108 can be integrated within the modem subsystem 1112.
  • the survival time module 1108 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 1112.
  • the survival time module 1108 may communicate with one or more components of UE 1100 to implement various aspects of the present disclosure, for example, aspects of FIGS. 1-4, 5A-5B, 6, 7A-7C, 8A-8B, 9, and 13.
  • the survival time module 1108 is configured to receive, from a BS (e.g., the BS 105 or the BS 1000) , a first grant (e.g., the grants 570 and/or 770) for transmitting a data packet associated with a survival time and transmit, to the BS based on the first grant, the data packet using a first resource associated with the survival time.
  • a first grant e.g., the grants 570 and/or 770
  • the survival time module 1108 is configured to receive, from the BS, a multi-user grant (e.g., the multi-user grants 560, 600, 700, or 860) including a plurality of grants.
  • Each grant of the plurality of grants is associated with one of a plurality of UEs, where the plurality of UEs includes the UE 1100 and the plurality of grants includes the first grant.
  • the survival time module 1108 is configured to receive the multi-user grant via a PDCCH based on a C-ST-RNTI.
  • the survival time module 1108 is configured to receive a data block (e.g., a transport block) including the multi-user grant via a PDSCH.
  • the multi-user grant may also include a data priority threshold as discussed above with reference to FIG. 6.
  • each of the plurality of grants may also include an indicator field as discussed above with reference to FIGS. 7A-7C.
  • the survival time module 1108 is further configured to receive, from the BS, an RRC configuration including a configuration for a survival time transmission resource pool including a plurality of resources, where the plurality of resources includes the first resource, for example, as discussed above with reference to FIGS. 5A-5B.
  • the first grant includes an indication of a survival time transmission resource pool including a plurality of resources, where the plurality of resources includes the first resource, for example, as discussed above with reference to FIGS. 8A-8B.
  • the survival time module 1108 is further configured to receive, from the BS, an indication of the first resource assigned to the UE 1100, for example, as discussed above with reference to FIG. 9.
  • the transceiver 1110 may include the modem subsystem 1112 and the RF unit 1114.
  • the transceiver 1110 can be configured to communicate bi-directionally with other devices, such as the BSs 105 and 1000.
  • the modem subsystem 1112 may be configured to modulate and/or encode the data from the memory 1104 and/or the survival time module 1108 according to a modulation and coding scheme (MCS) , e.g., a low-density parity check (LDPC) coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc.
  • MCS modulation and coding scheme
  • LDPC low-density parity check
  • the RF unit 1114 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc.
  • modulated/encoded data e.g., sensor data, measurements, etc.
  • modulated/encoded data e.g., sensor data, measurements, etc.
  • the RF unit 1114 may be further configured to perform analog beamforming in conjunction with the digital beamforming.
  • the modem subsystem 1112 and the RF unit 1114 may be separate devices that are coupled together at the UE 115 to enable the UE 115 to communicate with other devices.
  • the RF unit 1114 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 1116 for transmission to one or more other devices.
  • the antennas 1116 may further receive data messages transmitted from other devices.
  • the antennas 1116 may provide the received data messages for processing and/or demodulation at the transceiver 1110.
  • the transceiver 1110 may provide the demodulated and decoded data (e.g., RRC configuration, PDCCH signals, PDSCH signals, survival time transmission resource pool configuration, survival time transmission resource configuration, multi-user grant, ACK/NACK, etc. ) to the survival time module 1108 for processing.
  • the antennas 1116 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
  • the BS 1100 can include multiple transceivers 1110 implementing different RATs (e.g., NR and LTE) .
  • the BS 1100 can include a single transceiver 1110 implementing multiple RATs (e.g., NR and LTE) .
  • the transceiver 1110 can include various components, where different combinations of components can implement different RATs.
  • transceiver 1110 is configured to communicate with components of the UE 1100 to receive, from a BS, a first grant for transmitting a data packet associated with a survival time and transmit, to the BS based on the first grant, the data packet using a first resource associated with the survival time.
  • FIG. 12 is a flow diagram illustrating a wireless communication method 1200 according to some aspects of the present disclosure. Aspects of the method 1200 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the blocks.
  • a wireless communication device such as the UE 115 or the UE 1100, may utilize one or more components, such as the processor 1102, the memory 1104, the survival time module 1108, the transceiver 1110, the modem 1112, the RF unit 1114, and the one or more antennas 1116, to execute the blocks of method 1200.
  • the method 1200 may employ similar mechanisms as described in FIGS.
  • the method 1200 includes a number of enumerated blocks, but aspects of the method 1200 may include additional blocks before, after, and in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
  • a UE receives, from a BS (e.g., the BS 105 or the BS 1000) , a first grant (e.g., the grants 570 and/or 770) for transmitting a data packet associated with a survival time.
  • a first grant e.g., the grants 570 and/or 770
  • the survival time may refer to the time duration for which data sent between communicating applications (transmitting and receiving) can be lost without affecting normal operations.
  • the UE may receive, from the BS, a multi-user grant (e.g., the multi-user grants 560, 600, 700, or 860) including a plurality of grants.
  • a multi-user grant e.g., the multi-user grants 560, 600, 700, or 860
  • Each grant of the plurality of grants is associated with one of a plurality of UEs, where the plurality of UEs includes the UE and the plurality of grants includes the first grant.
  • the UE may receive the multi-user grant via a PDCCH based on a C-ST-RNTI.
  • the UE may receive a data block (e.g., a transport block) including the multi-user grant via a PDSCH.
  • means for performing the operations of block 1210 can, but not necessarily, include, the processor 1102, the memory 1104, the survival time module 1108, the transceiver 1110, the modem 1112, the RF unit 1114, and the one or more antennas 1116 with reference to FIG. 11.
  • the UE transmits, to the BS based on the first grant, the data packet using a first resource associated with the survival time.
  • means for performing the operations of block 1220 can, but not necessarily, include, the processor 1102, the memory 1104, the survival time module 1108, the transceiver 1110, the modem 1112, the RF unit 1114, and the one or more antennas 1116 with reference to FIG. 11.
  • the UE further receives, from the BS, an indication of a survival time transmission resource pool including a plurality of resources, where the plurality of resources includes the first resource, for example, as discussed above with reference to FIGS. 5A-5B.
  • the first grant received at block 1210 includes an indication of a survival time transmission resource pool including a plurality of resources, where the plurality of resources includes the first resource, for example, as discussed above with reference to FIGS. 8A-8B.
  • the UE further receives, from the BS, an indication of the first resource assigned to the UE, for example, as discussed above with reference to FIG. 9.
  • the first grant received at block 1210 includes an NACK
  • the UE may transmit the data packet at block 1220 further in response to the NACK.
  • the first grant received at block 1210 includes a threshold.
  • the threshold is a data priority threshold.
  • the priority of the data packet may be defined based on an amount of time (or a percentage of the survival time) that has elapsed since the beginning of the survival time or an amount of remaining time in the survival time, for example, as discussed above with reference to FIG. 6.
  • the UE may transmit the data packet at block 1220 based on a first period (e.g., the period 604, 606, or 608) associated with the survival time satisfying the threshold.
  • the first period may correspond to a period that has elapsed since the beginning of the survival time.
  • the first grant received at block 1210 includes an indicator of whether use of the first resource for a survival time transmission is allowed.
  • the indicator may include a bit value of 1 to indicate use of the first resource for a survival time transmission is allowed and may include a bit value of 0 to indicate use of the first resource for a survival time transmission is not allowed, or vice versa.
  • a resource pool includes a first portion associated with a last survival time transmission and a second portion associated with a non-last survival time transmission
  • the first grant received at block 1210 includes an indicator of whether use of the first portion of the resource pool is allowed for a non-last survival time transmission attempt.
  • the UE further selects the first resource from the first portion or the second portion based on the indicator and whether the data packet (to be transmitted at block 1220) is associated with the non-last survival time transmission attempt. For instance, if the indicator indicates that use of the first portion of the resource pool is allowed for a non-last survival time transmission attempt, the UE may select the first resource from the first portion or the second portion irrespective of whether the data packet is associated with a last survival time transmission.
  • the UE may select the first resource from the first portion. If the indicator indicates that use of the first portion of the resource pool is not allowed for a non-last survival time transmission attempt and the data packet is associated with a last survival time transmission attempt, then the UE may select the first resource from the second portion.
  • FIG. 13 is a flow diagram illustrating a wireless communication method 1300 according to some aspects of the present disclosure. Aspects of the method 1300 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the blocks.
  • a wireless communication device such as a BS 105 or BS 1000, may utilize one or more components, such as the processor 1002, the memory 1004, the survival time module 1008, the transceiver 1010, the modem 1012, the RF unit 1014, and the one or more antennas 1016 shown in FIG. 10, to execute the blocks of method 1300.
  • the method 1300 may employ similar mechanisms as described in FIGS.
  • the method 1300 includes a number of enumerated blocks, but aspects of the method 1300 may include additional blocks before, after, and in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
  • a BS (e.g., the BSs 105 and/or 1000) transmits, to a UE (e.g., the UEs 115 and/or 1100) , a first grant for transmitting a data packet associated with a survival time.
  • the data packet may be associated with an application executing at the BS and a corresponding application executing at the UE, and the survival time may refer to the time duration for which data sent between communicating applications (transmitting and receiving) can be lost without affecting normal operations.
  • the BS may transmit, to the UE, a multi-user grant (e.g., the multi-user grants 560, 600, 700, or 860) including a plurality of grants.
  • a multi-user grant e.g., the multi-user grants 560, 600, 700, or 860
  • Each grant of the plurality of grants is associated with one of a plurality of UEs, where the plurality of UEs includes the UE and the plurality of grants includes the first grant.
  • the BS may transmit the multi-user grant via a PDCCH based on a C-ST-RNTI.
  • the BS may transmit a data block (e.g., a transport block) including the multi-user grant via a PDSCH.
  • means for performing the operations of block 1310 can, but not necessarily, include, the processor 1002, the memory 1004, the survival time module 1008, the transceiver 1010, the modem 1012, the RF unit 1014, and the one or more antennas 1016 with reference to FIG. 10.
  • the BS receives, from the UE based on the first grant, the data packet in a first resource associated with the survival time.
  • means for performing the operations of block 1320 can, but not necessarily, include, the processor 1002, the memory 1004, the survival time module 1008, the transceiver 1010, the modem 1012, the RF unit 1014, and the one or more antennas 1016 with reference to FIG. 10.
  • the BS further transmits, to the UE, an indication of a survival time transmission resource pool including a plurality of resources, where the plurality of resources includes the first resource, for example, as discussed above with reference to FIGS. 5A-5B.
  • the first grant transmitted at block 1310 includes an indication of a survival time transmission resource pool including a plurality of resources, where the plurality of resources includes the first resource, for example, as discussed above with reference to FIGS. 8A-8B.
  • the BS further transmits, to the UE, an indication of the first resource assigned to the UE, for example, as discussed above with reference to FIG. 9.
  • the first grant transmitted at block 1310 includes an NACK
  • the BS may receive the data packet at block 1320 further in response to the NACK.
  • the first grant transmitted at block 1310 includes a threshold.
  • the threshold is a data priority threshold.
  • the priority of the data packet may be defined based on an amount of time (or a percentage of the survival time) that has elapsed since the beginning of the survival time or an amount of remaining time in the survival time, for example, as discussed above with reference to FIG. 6.
  • the BS may receive the data packet at block 1320 based on a first period associated with the survival time satisfying the threshold. For instance, the first period may correspond to a period that has elapsed since the beginning of the survival time.
  • the first grant transmitted at block 1310 includes an indicator of whether use of the first resource for a survival time transmission is allowed.
  • the indicator may include a bit value of 1 to indicate use of the first resource for a survival time transmission is allowed and may include a bit value of 0 to indicate use of the first resource for a survival time transmission is not allowed, or vice versa.
  • a resource pool includes a first portion associated with a last survival time transmission and a second portion associated with a non-last survival time transmission
  • the first grant transmitted at block 1310 includes an indicator of whether use of the first portion of the resource pool is allowed for a non-last survival time transmission attempt.
  • the BS may receive the data packet at block 1320 based on the indicator
  • a method of wireless communication performed by a user equipment (UE) comprising:
  • BS base station
  • a multi-user grant including a plurality of grants, wherein each grant of the plurality of grants is associated with one of a plurality of UEs, wherein the plurality of UEs includes the UE, and wherein the plurality of grants includes the first grant.
  • the multi-user grant receiving, from the BS in a physical downlink control channel (PDCCH) based on a cell survival time-radio network temporary identifier (C-ST-RNTI) , the multi-user grant.
  • PDCCH physical downlink control channel
  • C-ST-RNTI cell survival time-radio network temporary identifier
  • PDSCH physical downlink shared channel
  • the first grant including an indication of a survival time transmission resource pool including a plurality of resources, wherein the plurality of resources includes the first resource.
  • the receiving the first grant comprises:
  • the BS receiving, from the BS, the first grant including a negative-acknowledgement (NACK) , and
  • NACK negative-acknowledgement
  • the transmitting the data packet using the first resource is further in response to the NACK.
  • the receiving the first grant comprises:
  • the transmitting the data packet using the first resource is further based on a first period associated with the survival time satisfying the threshold.
  • the BS receiving, from the BS, the first grant including an indicator of whether use of the first resource for a survival time transmission is allowed.
  • a resource pool includes a first portion associated with a last survival time transmission and a second portion associated with a non-last survival time transmission
  • the receiving the first grant comprises:
  • the BS receiving, from the BS, the first grant including an indicator of whether use of the first portion of the resource pool is allowed for a non-last survival time transmission attempt.
  • a method of wireless communication performed by a base stations (BS) comprising:
  • UE user equipment
  • a multi-user grant including a plurality of grants, wherein each grant of the plurality of grants is associated with one of the plurality of UEs, and wherein the plurality of grants includes the first grant.
  • a physical downlink control channel (PDCCH) based on a cell survival time-radio network temporary identifier (C-ST-RNTI) , the multi-user grant.
  • PDCCH physical downlink control channel
  • C-ST-RNTI cell survival time-radio network temporary identifier
  • a data block including the multi-user grant transmitting, in a physical downlink shared channel (PDSCH) , a data block including the multi-user grant.
  • PDSCH physical downlink shared channel
  • the first grant including an indication of a survival time transmission resource pool including a plurality of resources, wherein the plurality of resources includes the first resource.
  • the transmitting the first grant comprises:
  • the UE transmitting, to the UE, the first grant including a negative-acknowledgement (NACK) , and
  • the receiving the data packet in the first resource is further in response to the NACK.
  • the transmitting the first grant comprises:
  • the receiving the data packet in the first resource is further based on a first period associated with the survival time satisfying the threshold.
  • the transmitting to the UE, the first grant including an indicator of whether using the first resource for a survival time transmission is allowed.
  • a resource pool includes a first portion associated with a last survival time transmission and a second portion associated with a non-last survival time transmission
  • the transmitting the first grant comprises:
  • the transmitting to the UE, the first grant including an indicator of whether use of the first portion of the resource pool is allowed for a non-last survival time transmission attempt.
  • Information and signals may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • “or” as used in a list of items indicates an inclusive list such that, for example, a list of [at least one of A, B, or C] means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .

Abstract

Wireless communications systems and methods related to uplink transmission with a survival time requirement. In one aspect, a user equipment (UE) receives, from a base station (BS), a first grant for transmitting a data packet associated with a survival time. The UE transmits, to the BS based on the first grant, the data packet using a first resource associated with the survival time. In one aspect, a BS transmits, to a UE, a first grant for transmitting a data packet associated with a survival time. The BS receives, from the UE based on the first grant, the data packet in a first resource associated with the survival time.

Description

[Rectified under Rule 91, 02.02.2021] MULTI-USER GRANT FOR UPLINK TRANSMISSION WITH SURVIVAL TIME REQUIREMENT
Luanxia Yang, Changlong Xu, Jing Sun, Xiaoxia Zhang, Rajat Prakash, Hao Xu
TECHNICAL FIELD
This application relates to wireless communication systems, and more particularly to performing uplink transmission with a survival time requirement.
INTRODUCTION
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . A wireless multiple-access communications system may include a number of base stations (BSs) , each simultaneously supporting communications for multiple communication devices, which may be otherwise known as user equipment (UE) .
To meet the growing demands for expanded mobile broadband connectivity, wireless communication technologies are advancing from the long term evolution (LTE) technology to a next generation new radio (NR) technology, which may be referred to as 5 th Generation (5G) . For example, NR is designed to provide a lower latency, a higher bandwidth or a higher throughput, and a higher reliability than LTE. NR is designed to operate over a wide array of spectrum bands, for example, from low-frequency bands below about 1 gigahertz (GHz) and mid-frequency bands from about 1 GHz to about 6 GHz, to high-frequency bands such as millimeter wave (mmWave) bands. NR is also designed to operate across different spectrum types, from licensed spectrum to unlicensed and shared spectrum. Spectrum sharing enables operators to opportunistically aggregate spectrums to dynamically support high-bandwidth services. Spectrum sharing can extend the benefit of NR technologies to operating entities that may not have access to a licensed spectrum.
NR has enabled and/or expanded wireless network deployment uses cases and scenarios, such as industrial wireless sensor networks or industrial Internet of Things (IIoT) . Accordingly, communication improvements for industrial wireless sensor networks or IIoT networks may also yield benefits.
BRIEF SUMMARY OF SOME EXAMPLES
The following summarizes some aspects of the present disclosure to provide a basic understanding of the discussed technology. This summary is not an extensive overview of all contemplated features of the disclosure and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in summary form as a prelude to the more detailed description that is presented later.
In one aspect of the disclosure, a method of wireless communication performed by a user equipment (UE) . The method includes receiving, from a base station (BS) , a first grant for transmitting a data packet associated with a survival time; and transmitting, to the BS based on the first grant, the data packet using a first resource associated with the survival time.
In an additional aspect of the disclosure, a method of wireless communication performed by a base stations (BS) . The method includes transmitting, to a user equipment (UE) , a first grant for transmitting a data packet associated with a survival time; and receiving, from the UE based on the first grant, the data packet in a first resource associated with the survival time.
In an additional aspect of the disclosure, a user equipment (UE) includes a processor and a transceiver coupled to the processor, wherein the transceiver is configured to receive, from a base station (BS) , a first grant for transmitting a data packet associated with a survival time; and transmit, to the BS based on the first grant, the data packet using a first resource associated with the survival time.
In an additional aspect of the disclosure, a base station (BS) includes processor and a transceiver coupled to the processor, wherein the transceiver is configured to transmit, to a user equipment (UE) , a first grant for transmitting a data packet associated with a survival time; and receive, from the UE based on the first grant, the data packet in a first resource associated with the survival time.
Other aspects and features of the present invention will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific, exemplary aspects of the present invention in conjunction with the accompanying figures. While features of the present invention may be discussed relative to certain aspects and figures below, all aspects of the present invention can include one or more of the advantageous features discussed herein. In other words, while one or more aspects may be discussed as having certain advantageous features, one or more of such features may also be used in accordance with the various aspects of the invention discussed herein. In similar fashion, while exemplary aspects may be discussed below as device, system, or  method aspects it should be understood that such exemplary aspects can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a wireless communication network according to some aspects of the present disclosure.
FIG. 2 is a timing diagram illustrating a radio frame structure according to some aspects of the present disclosure
FIG. 3 illustrates a communication scenario involving a survival time period according to some aspects of the present disclosure.
FIG. 4 illustrates a communication scenario involving a survival time period according to some aspects of the present disclosure.
FIG. 5A is a sequence diagram illustrating a communication method with survival time transmissions according to some aspects of the present disclosure.
FIG. 5B illustrates a multi-user grant for survival time transmission according to some aspects of the present disclosure.
FIG. 6 illustrates a multi-user grant for survival time transmission according to some aspects of the present disclosure.
FIG. 7A illustrates a multi-user grant for survival time transmission according to some aspects of the present disclosure.
FIG. 7B illustrates a grant for survival time transmission according to some aspects of the present disclosure.
FIG. 7C illustrates a grant for survival time transmission according to some aspects of the present disclosure.
FIG. 8A is a sequence diagram illustrating a communication method with survival time transmissions according to some aspects of the present disclosure.
FIG. 8B illustrates a multi-user grant for survival time transmission according to some aspects of the present disclosure.
FIG. 9 is a sequence diagram illustrating a communication method with survival time transmissions according to some aspects of the present disclosure.
FIG. 10 illustrates a block diagram of a base station (BS) according to some aspects of the present disclosure.
FIG. 11 illustrates a block diagram of a user equipment (UE) according to some aspects of the present disclosure.
FIG. 12 is a flow diagram of a wireless communication method according to some aspects of the present disclosure.
FIG. 13 is a flow diagram of a wireless communication method according to some aspects of the present disclosure.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some aspects, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
This disclosure relates generally to wireless communications systems, also referred to as wireless communications networks. In various aspects, the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, Global System for Mobile Communications (GSM) networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks. As described herein, the terms “networks” and “systems” may be used interchangeably.
An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA, and GSM are part of universal mobile telecommunication system (UMTS) . In particular, long term evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP) , and cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These various radio technologies and standards are known or are being developed. For example, the 3rd Generation Partnership Project (3GPP) is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the UMTS mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure is  concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
In particular, 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. In order to achieve these goals, further enhancements to LTE and LTE-Aare considered in addition to development of the new radio technology for 5G NR networks. The 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with a ULtra-high density (e.g., ~1M nodes/km 2) , ultra-low complexity (e.g., ~10s of bits/sec) , ultra-low energy (e.g., ~10+years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ~99.9999%reliability) , ultra-low latency (e.g., ~ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ~ 10 Tbps/km 2) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
The 5G NR may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI) ; having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR, with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments. For example, in various outdoor and macro coverage deployments of less than 3GHz FDD/TDD implementations, subcarrier spacing may occur with 15 kHz, for example over 5, 10, 20 MHz, and the like bandwidth (BW) . For other various outdoor and small cell coverage deployments of TDD greater than 3 GHz, subcarrier spacing may occur with 30 kHz over 80/100 MHz BW. For other various indoor wideband implementations, using a TDD over the unlicensed portion of the 5 GHz band, the subcarrier spacing may occur with 60 kHz over a 160 MHz BW. Finally, for various deployments transmitting with mmWave components at a TDD of 28 GHz, subcarrier spacing may occur with 120 kHz over a 500 MHz BW.
The scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency. The efficient  multiplexing of long and short TTIs to allow transmissions to start on symbol boundaries. 5G NR also contemplates a self-contained integrated subframe design with UL/downlink scheduling information, data, and acknowledgement in the same subframe. The self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive UL/downlink that may be flexibly configured on a per-cell basis to dynamically switch between UL and downlink to meet the current traffic needs.
Various other aspects and features of the disclosure are further described below. It should be apparent that the teachings herein may be embodied in a wide variety of forms and that any specific structure, function, or both being disclosed herein is merely representative and not limiting. Based on the teachings herein one of an ordinary level of skill in the art should appreciate that an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein. For example, a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer. Furthermore, an aspect may comprise at least one element of a claim.
An industrial Internet of Things (IIoT) network may include a massive number of IIoT devices or UEs (e.g., machines, industrial equipment, motors, actuators, smart meters, smart sensors, and/or the like) positioned densely within an area, such as an industrial plant or factory. In some deployments, there can be one IIoT device or UE or per square meter. Each IIoT device may each collect data and/or measurements and upload the data and/or to measurements a network server (e.g., a BS) . While the IIoT uplink traffic may typically include data packets with a small packet size (e.g., a few bytes to tens of bytes) and with relatively long transmission intervals (i.e., at a low data rate) , uplink traffic in an IIoT or industrial wireless sensor network can be intensive (heavy loading) due to the massive number of IIoT devices or UEs densely positioned within an area.
In some aspects, IIoT data communication may have a moderate reliability and latency requirement. In other words, IIoT data communication may be of a non-ultra-reliable low-latency communication (URLLC) traffic type. In some aspects, hybrid automatic repeat request (HARQ) techniques can be applied to IIoT data communication to improve communication reliability. In HARQ, a transmitting device (source device) may transmit a data packet to a receiving receive (target device) , and the target device may feedback a reception status of the data packet to the  source device. For instance, if the target device receives and decodes the data packet successfully, the target device may transmit a HARQ acknowledgement (ACK) to the source device. If, however, the target device fails to receive and decode the data packet successfully, the target device may transmit a HARQ negative-acknowledgements (NACK) to the source device. Upon receiving a HARQ NACK from the target device, the resource device may retransmit the data packet to the target device. In general, HARQ may be applied to DL communication in which a BS is a transmitting or source device and a served UE is a receiving or target device. HARQ may also be applied to UL communication in which a UE is a transmitting or source device and a serving BS is a receiving or target device.
In some aspects, an IIoT application may have a certain survival time requirement. For example, the connection between a UE (an IIoT device) and a BS may be in an up state (during a period referred to as “up time” ) while messages transmitted from the UE to the BS are successfully received and decoded by the BS. After a period of time without a message being successfully transmitted and received (e.g., because of a series of failed transmissions and retransmissions) , the connection between the UE and BS (or between an application on each device) may enter a period of survival time (while the applications remain in an up state) . The survival time indicates a period of time after which the connection between the devices (or applications on the devices) may be deemed to have failed or become unavailable if a message is not successfully communicated between the devices. More specifically, survival time may refer to the time duration for which data sent between communicating applications (transmitting and receiving) can be lost without affecting normal operations. If a message is successfully communicated during the survival time, the period of survival time ends. If no messages are successfully received and decoded before the survival time expires, the connection may be considered down (during a period referred to as “down time” ) , and the UE may adjust transmission parameters or reestablish communication with the BS. For example, the UE may increase its transmit power, lower the modulation and coding scheme (MCS) used to transmit data to the BS, or perform a link failure recovery procedure.
With the massive number of IIoT devices or UEs in an IIoT network, the signaling overhead and delay associated with transmitting NACKs from a BS to the UEs and transmitting scheduling grants for retransmission from the BS to the UEs can be large. The large signaling overhead and delay associated with NACKs and retransmission scheduling can cause challenges in meeting the survival time requirement.
The present disclosure describes mechanisms for scheduling IIoT devices or UEs with survival time considerations. For example, a BS may transmit a multi-user grant to a plurality of UEs (e.g., a specific group of UEs) for survival time transmissions. A survival time transmission  may refer to a transmission during a survival time period. The multi-user grant is an aggregation of a plurality of grants, where each of the plurality of grants is designated to one of the plurality of UEs. For instance, a first grant of the plurality of grants is for a first UE of the plurality of UEs to transmit a data packet associated with a survival time. The data packet may be associated with an application (e.g., an IIoT application, such as a sensor application, an automation application) executing at the UE, and the application may be communicating with an application executing at the BS.The UE may be operating within the survival time and the data packet is to be transmitted during a period of the survival time. Upon the first UE receiving the first grant, the first UE may transmit the data packet using a first resource associated with the survival time.
In some aspects, the BS may transmit the multi-user grant in the form of downlink control information (DCI) via a physical downlink control channel (PDCCH) . The DCI may include a cyclic redundancy check (CRC) masked by a survival time specific radio network temporary identifier (RNTI) . Accordingly, the plurality of UEs may monitor for the multi-user grant according to the survival time specific RNTI. In other aspects, the BS may transmit the multi-user grant along with user data via a PDSCH. For instance, the BS may transmit a data block (atransport block) including the multi-user grant via the PDSCH. In some aspects, the BS may assign each UE of the plurality of UEs a fixed location (e.g., bit position or octet position) within the multi-user grant where a grant for the UE may be located.
In some aspects, the BS may preconfigure the plurality of UEs with a survival time transmission resource pool, for example, via radio resource control (RRC) signaling. The survival time transmission resource pool may include a plurality of resources. The plurality of resources are time-frequency resources, which may occupy one or more symbols in time and one or more subcarriers in frequency. The BS may include an ACK/NACK feedback in each grant of the plurality of grants. The ACK/NACK feedback may be associated with a previous data packet received by the BS from a respective UE. The first UE may select the first resource from the preconfigured survival time transmission resource pool upon receiving a NACK feedback from the first grant.
In some aspects, the BS may dynamically configure a survival time transmission resource pool for the plurality of UEs and include an indication or a configuration of the survival time transmission resource pool in the multi-user grant. Similarly, the BS may include an ACK/NACK feedback in each grant of the plurality of grants, and the first UE may select the first resource from the indicated survival time transmission resource pool upon receiving a NACK feedback from the first grant.
In some aspects, when the BS preconfigure or dynamically configure the survival time transmission resource pool to be shared by the plurality of UEs for survival time transmissions, the BS may control the plurality of UEs in accessing the survival time transmission resource pool so that collision may be reduced. In some aspects, the BS may include an indication of a threshold in the multi-user grant. The threshold is a data priority threshold associated with a survival time. The priority of a data packet may be defined based on an amount of time (or a percentage of the survival time) that has elapsed since the beginning of a survival time period or an amount of remaining time in the survival time period. For instance, the priority of a data packet to be transmitted during a survival time period may increase as the transmission time of the data packet gets closer to the end of the survival time period. Accordingly, the first UE may transmit the data packet using the first resource based on a first time period associated with the survival time satisfying the threshold. The first time period may correspond to a period that has elapsed since the beginning of the survival time.
Additionally or alternatively, the BS may include an indication in each grant of the plurality of grants to further control access to the survival time transmission resource pool by each individual UE. For instance, the indication may indicate whether use of the survival time transmission resource pool is allowed for the UE. Additionally or alternatively, the BS may partition the survival time transmission resource pool into a first portion and a second portion. The BS may assign the first portion for last survival time transmissions. A last survival time transmission may refer to a last transmission attempt in a survival time period before the survival time period ends. The BS may assign the second portion for non-last survival time transmissions. The BS may also include an access indication in each grant of the plurality of grants to further control access to the first portion and/or the second portion by each individual UE. For instance, the access indication may indicate whether use of the first portion for a non-last survival time transmission is allowed. In this way, the BS may allow a certain UE to use the first portion for a last survival time transmission, but not for a non-last survival time transmission, and may allow a certain UE to use the first portion for any survival time transmission irrespective of whether a survival time transmission is a last survival time transmission or not.
In some aspects, the BS may preconfigure each UE of the plurality of UEs with a resource specifically for survival time transmission. For instance, the BS may preconfigure the first UE with the first resource to be specifically used for survival time transmission. The BS may include an ACK/NACK feedback in each grant of the plurality of grants, and the first UE may use the first resource to transmit the data packet associated with the survival time upon receiving a NACK feedback from the first grant. In some aspects, the BS may configure two or more UEs with the  same resource for survival time transmission. For instance, the BS may also configure a second UE of the plurality of UEs with the same first resource as the first UE. To control access to the first resource (e.g., to avoid collision) , the BS may include an indication of whether use of the survival time transmission resource pool is allowed in each respective grant for the first UE and the second UE.
In some aspects, one or more other UEs of the plurality of UEs may not be operating within a survival time at the time when the multi-user grant is received. For instance, a second grant of the plurality of grants associated with a second UE of the plurality of UEs may indicate an ACK feedback. Upon receiving an ACK feedback, the second UE may disregard or ignore the second grant and refrain from using a resource from a survival time transmission resource pool (preconfigured or dynamically configured) or a preconfigured survival time transmission resource for a transmission.
Aspects of the present disclosure can provide several benefits. For example, the pre-configuration of the survival time transmission resource pool and the use of a multi-user grant to grant UEs access to the survival time transmission resource pool can reduce loading at the BS and/or signaling overhead. The dynamic configuration of a survival time transmission resource pool provides the BS with flexibility in adjusting the size (number of resources) of the survival time transmission resource pool, and thus may allow for an improved resource utilization efficiency. The use of preconfigured survival time transmission specific resources for each UE can avoid or reduce collision. The inclusion of a data priority threshold in multi-user grant can also avoid or reduce collision in the survival time transmission resource pool. The inclusion of an indication of whether use of the survival time transmission resource pool or survival time transmission resource is allowed in each grant for each individual UE can provide the BS with further control over each individual UE in accessing the survival time transmission resource pool or the survival time transmission resource. The partitioning of a survival time transmission resource pool into a first portion for last survival time transmission and a second, separate portion for non-last survival time transmission can further reduce collision and may increase the likelihood of the BS receiving and decoding the last survival time transmission successfully.
FIG. 1 illustrates a wireless communication network 100 according to some aspects of the present disclosure. The network 100 may be a 5G network. The network 100 includes a number of base stations (BSs) 105 (individually labeled as 105a, 105b, 105c, 105d, 105e, and 105f) and other network entities. A BS 105 may be a station that communicates with UEs 115 (individually labeled as 115a, 115b, 115c, 115d, 115e, 115f, 115g, 115h, and 115k) and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like. Each BS 105  may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to this particular geographic coverage area of a BS 105 and/or a BS subsystem serving the coverage area, depending on the context in which the term is used.
BS 105 may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell. A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . A BS for a macro cell may be referred to as a macro BS. A BS for a small cell may be referred to as a small cell BS, a pico BS, a femto BS or a home BS. In the example shown in FIG. 1, the  BSs  105d and 105e may be regular macro BSs, while the BSs 105a-105c may be macro BSs enabled with one of three dimension (3D) , full dimension (FD) , or massive MIMO. The BSs 105a-105c may take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity. The BS 105f may be a small cell BS which may be a home node or portable access point. A BS 105 may support one or multiple (e.g., two, three, four, and the like) cells.
The network 100 may support synchronous or asynchronous operation. For synchronous operation, the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time. For asynchronous operation, the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
The UEs 115 are dispersed throughout the wireless network 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like. A UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like. In one aspect, a UE 115 may be a device that includes a Universal Integrated Circuit Card (UICC) . In another aspect, a UE may be a device that does not include a UICC. In some aspects, the UEs 115 that do not include UICCs may also be referred to as IoT devices or internet of everything (IoE) devices. The UEs 115a-115d are examples of mobile smart phone-type devices accessing network 100. A UE 115 may also be a machine specifically configured for connected communication, including machine  type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like. The UEs 115e-115h are examples of various machines configured for communication that access the network 100. The UEs 115i-115k are examples of vehicles equipped with wireless communication devices configured for communication that access the network 100. A UE 115 may be able to communicate with any type of the BSs, whether macro BS, small cell, or the like. In FIG. 1, a lightning bolt (e.g., communication links) indicates wireless transmissions between a UE 115 and a serving BS 105, which is a BS designated to serve the UE 115 on the downlink (DL) and/or uplink (UL) , desired transmission between BSs 105, backhaul transmissions between BSs, or sidelink transmissions between UEs 115.
In operation, the BSs 105a-105c may serve the  UEs  115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity. The macro BS 105d may perform backhaul communications with the BSs 105a-105c, as well as small cell, the BS 105f. The macro BS 105d may also transmits multicast services which are subscribed to and received by the  UEs  115c and 115d. Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
The BSs 105 may also communicate with a core network. The core network may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. At least some of the BSs 105 (e.g., which may be an example of a gNB or an access node controller (ANC) ) may interface with the core network through backhaul links (e.g., NG-C, NG-U, etc. ) and may perform radio configuration and scheduling for communication with the UEs 115. In various examples, the BSs 105 may communicate, either directly or indirectly (e.g., through core network) , with each other over backhaul links (e.g., X1, X2, etc. ) , which may be wired or wireless communication links.
The network 100 may also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such as the UE 115e, which may be a drone. Redundant communication links with the UE 115e may include links from the  macro BSs  105d and 105e, as well as links from the small cell BS 105f. Other machine type devices, such as the UE 115f (e.g., a thermometer) , the UE 115g (e.g., smart meter) , and UE 115h (e.g., wearable device) may communicate through the network 100 either directly with BSs, such as the small cell BS 105f, and the macro BS 105e, or in multi-action-size configurations by communicating with another user device which relays its information to the network, such as the UE 115f communicating temperature measurement information to the smart meter, the UE 115g, which is then reported to the network through the small cell BS 105f. The network 100 may also provide additional network  efficiency through dynamic, low-latency TDD/FDD communications, such asV2V, V2X, C-V2X communications between a  UE  115i, 115j, or 115k and other UEs 115, and/or vehicle-to-infrastructure (V2I) communications between a  UE  115i, 115j, or 115k and a BS 105.
In some implementations, the network 100 utilizes OFDM-based waveforms for communications. An OFDM-based system may partition the system BW into multiple (K) orthogonal subcarriers, which are also commonly referred to as subcarriers, tones, bins, or the like. Each subcarrier may be modulated with data. In some aspects, the subcarrier spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system BW. The system BW may also be partitioned into subbands. In other aspects, the subcarrier spacing and/or the duration of TTIs may be scalable.
In some aspects, the BSs 105 can assign or schedule transmission resources (e.g., in the form of time-frequency resource blocks (RB) ) for downlink (DL) and uplink (UL) transmissions in the network 100. DL refers to the transmission direction from a BS 105 to a UE 115, whereas UL refers to the transmission direction from a UE 115 to a BS 105. The communication can be in the form of radio frames. A radio frame may be divided into a plurality of subframes or slots, for example, about 10. Each slot may be further divided into mini-slots. In a FDD mode, simultaneous UL and DL transmissions may occur in different frequency bands. For example, each subframe includes a UL subframe in a UL frequency band and a DL subframe in a DL frequency band. In a TDD mode, UL and DL transmissions occur at different time periods using the same frequency band. For example, a subset of the subframes (e.g., DL subframes) in a radio frame may be used for DL transmissions and another subset of the subframes (e.g., UL subframes) in the radio frame may be used for UL transmissions.
The DL subframes and the UL subframes can be further divided into several regions. For example, each DL or UL subframe may have pre-defined regions for transmissions of reference signals, control information, and data. Reference signals are predetermined signals that facilitate the communications between the BSs 105 and the UEs 115. For example, a reference signal can have a particular pilot pattern or structure, where pilot tones may span across an operational BW or frequency band, each positioned at a pre-defined time and a pre-defined frequency. For example, a BS 105 may transmit cell specific reference signals (CRSs) and/or channel state information –reference signals (CSI-RSs) to enable a UE 115 to estimate a DL channel. Similarly, a UE 115 may transmit sounding reference signals (SRSs) to enable a BS 105 to estimate a UL channel. Control information may include resource assignments and protocol controls. Data may include protocol data and/or operational data. In some aspects, the BSs 105 and the UEs 115 may communicate using self-contained subframes. A self-contained subframe may include a portion for DL  communication and a portion for UL communication. A self-contained subframe can be DL-centric or UL-centric. A DL-centric subframe may include a longer duration for DL communication than for UL communication. A UL-centric subframe may include a longer duration for UL communication than for UL communication.
In some aspects, the network 100 may be an NR network deployed over a licensed spectrum. The BSs 105 can transmit synchronization signals (e.g., including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) ) in the network 100 to facilitate synchronization. The BSs 105 can broadcast system information associated with the network 100 (e.g., including a master information block (MIB) , remaining system information (RMSI) , and other system information (OSI) ) to facilitate initial network access. In some aspects, the BSs 105 may broadcast the PSS, the SSS, and/or the MIB in the form of synchronization signal block (SSBs) over a physical broadcast channel (PBCH) and may broadcast the RMSI and/or the OSI over a physical downlink shared channel (PDSCH) .
In some aspects, a UE 115 attempting to access the network 100 may perform an initial cell search by detecting a PSS from a BS 105. The PSS may enable synchronization of period timing and may indicate a physical layer identity value. The UE 115 may then receive a SSS. The SSS may enable radio frame synchronization, and may provide a cell identity value, which may be combined with the physical layer identity value to identify the cell. The PSS and the SSS may be located in a central portion of a carrier or any suitable frequencies within the carrier.
After receiving the PSS and SSS, the UE 115 may receive a MIB. The MIB may include system information for initial network access and scheduling information for RMSI and/or OSI. After decoding the MIB, the UE 115 may receive RMSI and/or OSI. The RMSI and/or OSI may include radio resource control (RRC) information related to random access channel (RACH) procedures, paging, control resource set (CORESET) for physical downlink control channel (PDCCH) monitoring, physical UL control channel (PUCCH) , physical UL shared channel (PUSCH) , power control, and SRS.
After obtaining the MIB, the RMSI and/or the OSI, the UE 115 can perform a random access procedure to establish a connection with the BS 105. In some examples, the random access procedure may be a four-step random access procedure. For example, the UE 115 may transmit a random access preamble and the BS 105 may respond with a random access response. The random access response (RAR) may include a detected random access preamble identifier (ID) corresponding to the random access preamble, timing advance (TA) information, a UL grant, a temporary cell-radio network temporary identifier (C-RNTI) , and/or a backoff indicator. Upon receiving the random access response, the UE 115 may transmit a connection request to the BS 105  and the BS 105 may respond with a connection response. The connection response may indicate a contention resolution. In some examples, the random access preamble, the RAR, the connection request, and the connection response can be referred to as message 1 (MSG1) , message 2 (MSG2) , message 3 (MSG3) , and message 4 (MSG4) , respectively. In some examples, the random access procedure may be a two-step random access procedure, where the UE 115 may transmit a random access preamble and a connection request in a single transmission and the BS 105 may respond by transmitting a random access response and a connection response in a single transmission.
After establishing a connection, the UE 115 and the BS 105 can enter a normal operation stage, where operational data may be exchanged. For example, the BS 105 may schedule the UE 115 for UL and/or DL communications. The BS 105 may transmit UL and/or DL scheduling grants to the UE 115 via a PDCCH. The scheduling grants may be transmitted in the form of DL control information (DCI) . The BS 105 may transmit a DL communication signal (e.g., carrying data) to the UE 115 via a PDSCH according to a DL scheduling grant. The UE 115 may transmit a UL communication signal to the BS 105 via a PUSCH and/or PUCCH according to a UL scheduling grant. The connection may be referred to as an RRC connection. When the UE 115 is actively exchanging data with the BS 105, the UE 115 is in an RRC connected state.
In an example, after establishing a connection with the BS 105, the UE 115 may initiate an initial network attachment procedure with the network 100. The BS 105 may coordinate with various network entities or fifth generation core (5GC) entities, such as an access and mobility function (AMF) , a serving gateway (SGW) , and/or a packet data network gateway (PGW) , to complete the network attachment procedure. For example, the BS 105 may coordinate with the network entities in the 5GC to identify the UE, authenticate the UE, and/or authorize the UE for sending and/or receiving data in the network 100. In addition, the AMF may assign the UE with a group of tracking areas (TAs) . Once the network attach procedure succeeds, a context is established for the UE 115 in the AMF. After a successful attach to the network, the UE 115 can move around the current TA. For tracking area update (TAU) , the BS 105 may request the UE 115 to update the network 100 with the UE 115’s location periodically. Alternatively, the UE 115 may only report the UE 115’s location to the network 100 when entering a new TA. The TAU allows the network 100 to quickly locate the UE 115 and page the UE 115 upon receiving an incoming data packet or call for the UE 115.
In some aspects, the BS 105 may communicate with a UE 115 using HARQ techniques to improve communication reliability, for example, to provide a URLLC service. The BS 105 may schedule a UE 115 for a PDSCH communication by transmitting a DL grant in a PDCCH. The BS 105 may transmit a DL data packet to the UE 115 according to the schedule in the PDSCH. The DL  data packet may be transmitted in the form of a transport block (TB) . If the UE 115 receives the DL data packet successfully, the UE 115 may transmit a HARQ ACK to the BS 105. Conversely, if the UE 115 fails to receive the DL transmission successfully, the UE 115 may transmit a HARQ NACK to the BS 105. Upon receiving a HARQ NACK from the UE 115, the BS 105 may retransmit the DL data packet to the UE 115. The retransmission may include the same coded version of DL data as the initial transmission. Alternatively, the retransmission may include a different coded version of the DL data than the initial transmission. The UE 115 may apply soft combining to combine the encoded data received from the initial transmission and the retransmission for decoding. The BS 105 and the UE 115 may also apply HARQ for UL communications using substantially similar mechanisms as the DL HARQ.
In some aspects, the network 100 may operate over a system BW or a component carrier (CC) BW. The network 100 may partition the system BW into multiple BWPs (e.g., portions) . A BS 105 may dynamically assign a UE 115 to operate over a certain BWP (e.g., a certain portion of the system BW) . The assigned BWP may be referred to as the active BWP. The UE 115 may monitor the active BWP for signaling information from the BS 105. The BS 105 may schedule the UE 115 for UL or DL communications in the active BWP. In some aspects, a BS 105 may assign a pair of BWPs within the CC to a UE 115 for UL and DL communications. For example, the BWP pair may include one BWP for UL communications and one BWP for DL communications.
FIG. 2 is a timing diagram illustrating a radio frame structure 200 according to some aspects of the present disclosure. The radio frame structure 200 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications. In particular, the BS may communicate with the UE using time-frequency resources configured as shown in the radio frame structure 200. In FIG. 2, the x-axes represent time in some arbitrary units and the y-axes represent frequency in some arbitrary units. The radio frame structure 200 includes a radio frame 201. The duration of the radio frame 201 may vary depending on the aspects. In an example, the radio frame 201 may have a duration of about ten milliseconds. The radio frame 201 includes M number of slots 202, where M may be any suitable positive integer. In an example, M may be about 10.
Each slot 202 includes a number of subcarriers 204 in frequency and a number of symbols 206 in time. The number of subcarriers 204 and/or the number of symbols 206 in a slot 202 may vary depending on the aspects, for example, based on the channel bandwidth, the subcarrier spacing (SCS) , and/or the CP mode. One subcarrier 204 in frequency and one symbol 206 in time forms one resource element (RE) 212 for transmission. A resource block (RB) 210 is formed from a number of consecutive subcarriers 204 in frequency and a number of consecutive symbols 206 in time.
In some aspects, a BS (e.g., BS 105 in FIG. 1) may schedule a UE (e.g., UE 115 in FIG. 1) for UL and/or DL communications at a time-granularity of slots 202 or mini-slots 208. Each slot 202 may be time-partitioned into K number of mini-slots 208. Each mini-slot 208 may include one or more symbols 206. The mini-slots 208 in a slot 202 may have variable lengths. For example, when a slot 202 includes N number of symbols 206, a mini-slot 208 may have a length between one symbol 206 and (N-1) symbols 206. In some aspects, a mini-slot 208 may have a length of about two symbols 206, about four symbols 206, or about seven symbols 206. In some examples, the BS may schedule UE at a frequency-granularity of a resource block (RB) 210 (e.g., including about 12 subcarriers 204 in 1 symbol, 2 symbols, …, 14 symbols) .
FIG. 3 illustrates a communication scenario 300 involving a survival time period according to some aspects of the present disclosure. The scenario 300 may correspond to a communication scenario in the network 100. Survival time may refer to a time period during which an application consuming a communication service may continue without an anticipated (correctly decoded) message as defined in 3GPP. In scenario 300, a UE 115 is transmitting a series of messages (e.g., including sensor data and/or measurements) to a BS 105. Messages A, B, C, and D are successfully transmitted by the UE 115 and received and decoded by the BS 105 at  actions  302, 304, 306, and 308 respectively. The messages A-D may be associated with an application over a communication service or connection between the UE 115 and the BS 105. During the transmission of messages A, B, C, and D, the connection between UE 115 and BS 105 can be characterized as being in an up time period 340. BS 105 may expect a subsequent transmission from UE 115 by deadline 345, after which the connection may enter a survival time period 350 if no transmission is received. More specifically, the application may enter the survival time period 350 if no correctly decoded message is received after the deadline 345. As illustrated, UE 115 may transmit messages E, F, and G at  actions  310, 312, and 314, respectively, all of which the BS 105 may fail to receive or decode correctly (e.g., because of a degraded connection caused by interference or other causes) , causing the connection (or application) to enter the survival time period 350 at deadline 345. The application may remain in an up state during the survival time period 350. In other words, the survival time period 350 is within the up time period 340 at the application as shown. If no messages are received during the survival time period 350 (prior to deadline 355) , the connection may enter a down time period 360. Following the expiration of the survival time period 350 at deadline 355, the UE 115 and BS 105 may take recovery actions to restore the connection. For example, the UE 115 may increase its transmit power, lower the modulation and coding scheme (MCS) used to transmit data to the BS 105, or perform a link failure recovery procedure. UE 115 may continue to transmit messages during the time period 360, which may continue to fail, such as  message H at action 316. Once a message is successfully received by the BS 105, such as message J at action 318, the connection may transition to a period of up time 370. So long as messages are received by the BS 105 at the expected time, the connection may remain in the up time period 370. For example, BS 105 successfully receives messages K, L, and M at  actions  320, 322, and 324, respectively.
In some aspects, the survival time period 350 may be defined in terms of a number of lost messages. For instance, in the scenario 300, a survival time may allow for 4 consecutive lost messages (e.g., the messages E, F, G, H) .
FIG. 4 illustrates a communication scenario 400 involving a survival time period 420 according to some aspects of the present disclosure. The scenario 400 may correspond to a communication scenario in the network 100. Scenario 400 illustrates a survival time definition that may be better suited to more timing stringent use cases such as motion control involving close-loop control of machines or periodic communication. Periodic communication may refer to transmission of data or messages that occur periodically. For instance, a sensor related application may update sensor data or measurement based on periodic sensor monitoring of a characteristic parameter. The update time or update period may be referred to as a transfer interval between successive transmission of data (e.g., sensor data) . In some instances, a periodic communication is started once and may continue to transmit data or messages at an expected rate unless a stop command is issued. The expected rate of a periodic communication may be dependent on the message size and the transfer interval. As an example, for a message size of 40 bytes and a transfer interval of 1 ms, the user experienced data rate is 40 byte/1 ms = 320 kb/s.
In scenario 400, the survival time period 420 is based on a transfer interval (the time between successive transmissions) rather than an expected message delivery time (or number or expected message delivery) as in scenario 300. The UE 115 may transmit message A at action 401, which is successfully received by the BS 105. The message A may be associated with an application or transmission that is periodic (i.e., with an expected duration between every two transmissions) . During the transmission of message A, the connection between UE 115 and BS 105 is in an up time period 402. The UE 115 then transmits message B at action 410, which is not successfully received by the BS 105. The time between the transmission of message A and the transmission of message B is the transfer interval 405. The connection between UE 115 and BS 105 enters survival time period 420 immediately after the failed transmission of message B. This is due to the BS 105 expecting a next message according to the transfer interval. In other words, the connection (application) may be considered to be in a down state or a down time if the next message (B) does not arrive at the expected time. As an example, the periodic communication is  expected to transmit one message at every 1 ms, and thus the time between two successive messages may be 1 ms long and the survival time period 420 may also be 1 ms long. If the survival time period 420 expires prior to a message being transmitted successfully by the UE 115 to the BS 105, the connection may enter a period of down time as in scenario 300 (not illustrated) and perform the same or similar recovery operations to those in scenario 300. If, however, a message is successfully transmitted before the expiration of the survival time period 420 (e.g., message C at action 425) , the connection may transition out of the survival time period 420 without entering a down time period so long as messages (not illustrated) continue to be successfully transmitted at the expected transfer interval.
Although FIG. 3 and FIG. 4 are described in the context where the UE 115 is a source device (that originates data) and the BS 105 is a target device (that receives data) , it should be understood that in other examples the BS 105 can be a source device while the UE 115 may be target device and similar survival time scenarios as the scenario 300 and/or 400 may occur between the BS 105 and the UE 115 in a DL direction.
In some aspects, the network 100 may be an IIoT network and may include a massive number of UEs 115 that are IIoT devices. For example, the UEs 115 may include machines, industrial equipment, motors, actuators, smart meters, smart sensors, and/or the like. Each UE 115 may upload sensor data and/or measurements to a network server, which may correspond to a BS 105. The BS 105 and the UEs 115 may apply HARQ techniques to communicate the sensor data and/or measurements. In some aspects, IIoT applications may have a certain survival time requirement as discussed above with reference to FIGS. 3 and 4.
According to aspects of the present disclosure, a BS 105 may provide a UE 115 with a grant specifically for a survival time transmission (atransmission within a survival time period such as the period 350 and/or the period 420) . The BS 105 may aggregate multiple survival time transmission grants for a group of UEs 115 into a multi-user grant and may transmit the multi-user grant to the group of UEs 115. Each survival time transmission grant may be assigned to one of the UEs 115 and may include an ACK or an NACK for a previous data packet received by the BS 105 from the respective UE 115. When a UE 115 receives a survival time transmission grant including a NACK feedback, the UE 115 may transmit a data packet associated with a survival time using a first resource associated with the survival time. In some aspects, the UE 115 may select the first resource from a survival time transmission resource pool preconfigured by BS 105 as discussed below with reference to FIGS. 5A-5B. In some aspects, the UE 115 may select the first resource from a survival time transmission resource pool dynamically configured by the BS 105 and indicated in the multi-user grant as discussed below with reference to FIGS. 8A-8B. In some  aspects, the BS 105 may preconfigure the UE 115 with the first resource for survival time transmission as discussed below with reference to FIG. 9. In some aspects, the BS 105 may include various options in the multi-user grant to control the usages of preconfigured or dynamically configured survival time transmission resources as discussed below with reference to FIGS. 6 and 7A-7C.
FIG. 5A and 5B are discussed in relation to each other to illustrate survival time transmission using a preconfigured survival time transmission resource pool. FIG. 5A is a sequence diagram illustrating a communication method 500 with survival time transmissions according to some aspects of the present disclosure. The method 500 may be performed by wireless sensor networks or IIoT networks, such as the networks 100. More specifically, the method 500 is performed by a BS 105 and a plurality of UEs 115 (e.g., K number of UEs 115) . In some aspects, the plurality of UEs 115 may be IIoT devices (e.g., wireless sensors, smart meters, machines, industrial equipment, actuators, motors, etc. ) similar to the UEs 115f-115h shown in FIG. 1. In some aspects, the BS 105 may utilize one or more components, such as the processor 1002, the memory 1004, the survival time module 1008, the transceiver 1010, the modem 1012, and the one or more antennas 1016 shown in FIG. 10, to execute the actions of the method 500. The UEs 115 may utilize one or more components, such as the processor 1102, the memory 1104, the survival time module 1108, the transceiver 1110, the modem 1112, and the one or more antennas 1116 shown in FIG. 11, to execute the actions of the method 500.
In the method 500, each UE 115 of the plurality of UEs 115 may establish a connection (e.g., an RRC connection) with the BS 105, for example, by performing an initial network access procedure as discussed above with reference to FIG. 1. Each UE 115 may be executing a certain application communicating with a corresponding application at the BS 105, and may transmit data packets (e.g., including sensor data and/or measurements) associated with the application to the BS 105. In some aspects, the BS 105 may be a network server that collects and/or analyze the data. The BS 105 may also generate commands to control the UEs 115. For simplicity of discussion and illustration, the method 500 is described with respect to a first UE 115 of the plurality of UEs 115. However, similar operations may be performed between each of the plurality of UEs 115 and the BS 105.
At a high level, a BS 105 may preconfigure a survival time transmission resource pool for the plurality of UEs 115 to transmit data packets during a respective survival time period. Subsequently, the BS 105 may transmit a multi-user grant to the plurality of UEs 115 to grant usage of resources from the survival time transmission resource pool based on various conditions as discussed below.
For instance, at action 510, the BS 105 transmits a configuration for a survival time transmission resource pool. The resource pool may include a plurality of resources (e.g., time-frequency resources as shown in FIG. 2) . The resource pool may include one or more symbols (e.g., the symbols 206) in time and one or more subcarriers (e.g., the subcarriers 204) in frequency. The plurality of resources can include resources that are contiguous in time, resources that are distributed in time, resources that are contiguous in frequency, and/or resources that are distributed in frequency. The BS 105 may allocate the resource pool specifically for survival time transmission so that a UE 115 operating within a survival time period may quickly use a resource from the resource pool to transmit a data packet. In this way, it is more likely that the UE 115 may meet the survival time requirement and avoid entering a down-time (e.g., down time 360) which may cause interruption to the ongoing communication or the associated application. In some aspects, the BS 105 may transmit the configuration for the survival time transmission resource pool via an RRC configuration.
At action 520, the first UE 115 transmits M number of data packets to the BS 105. The data packets may include data and/or measurements obtained or sensed by the first UE 115. The data packets may be associated with an application executing between the first UE 115 and the BS 105. The application may have a certain survival time requirement, which may be in terms of a number of failed transmission attempts or a duration with lost or failed data reception before the application will enter a down-time (e.g., the down-time 360) . In some aspects, the first UE 115 may transmit one data packet at a time and the data packets may be spaced apart in time, for example, according to a certain data upload or update schedule. In some aspects, the first UE 115 may apply HARQ techniques to the transmission of the M data packets, and the BS 105 may feedback to the UE 115 an ACK or a NACK for each data packet. The BS 105 may decode each of the M data packets as it arrived. As an example, the first data packet to the (M-1)  th data packets are successfully decoded by the BS 105. However, the BS 105 fails to receive the M th data packet as shown at action 522, and thus a survival time period 502 (associated with an application at the BS 105) may begin.
At action 530, upon entering the survival time period 502, the BS 105 transmits a multi-user grant (e.g., the multi-user grant 560 shown in FIG. 5B) including a plurality of grants. Each grant of the plurality of grants is assigned to one of the plurality of UEs 115, for example, to transmit a data packet associated with corresponding survival time. Each grant may indicate an ACK feedback or a NACK feedback for a packet received from a corresponding UE 115.
In some aspects, the BS 105 may transmit the multi-user grant 560 in the form of downlink control information (DCI) in a PDCCH. The DCI may include a cyclic redundancy check (CRC) portion that is masked by a survival time transmission specific RNTI. In some instances, the  survival time transmission specific RNTI may be referred to as a cell-survival time-RNTI (C-ST-RNTI) . The BS 105 may configure the plurality of UEs 115 (aspecific group of UEs) with the C-ST-RNTI. Accordingly, the UEs 115 may perform PDCCH monitoring based on the C-ST-RNTI. For instance, each UE 115 may blindly decode for PDCCH candidates in a PDCCH monitoring occasion (e.g., time-frequency resources configured for PDCCH transmission) . When a UE 115 successfully decoded a PDCCH candidate with a CRC masked by the C-ST-RNTI, the UE 115 may determine that the PDCCH candidate carries a multi-user grant 560.
In some other aspects, the BS 105 may transmit the multi-user grant 560 as a part of a PDSCH transmission. For instance, the BS 105 may transmit a transport block including the multi-user grant 560 in a PDSCH. In other words, the multi-user grant 560 is piggybacked (transmitted along) with PDSCH data in the transport block.
FIG. 5B illustrates a multi-user grant 560 for survival time transmission according to some aspects of the present disclosure. The multi-user grant 560 is an aggregation of a plurality of grants 570 (shown as 570a, 570b, …, 570c) . In some aspects, each UE 115 may be assigned with a fixed location (e.g., bit positions or octet positions) within the multi-user grant 560. For instance, a first block in the multi-user grant 560 is a grant 570a assigned to the first UE 115 denoted as UE-1, a next second block in the multi-user grant 560 is a grant 570b assigned to a second UE 115 (of the plurality of UEs 115) denoted as UE-2, and so on, and a last block in the multi-user grant 560 is a grant 570c assigned to a K th UE 115 (of the plurality of UEs 115) denoted as UE-K. In some aspects, the BS 105 may configure the UE 115 with bit positions and/or octet positions within the multi-user grant 560 via an RRC configuration. For instance, the BS 105 may indicate the first block position (e.g., bit 0 to bit L-1) to the first UE 115, indicate the second block position (e.g., bit L to bit 2L-1) to the second UE 115, and so on.
As shown in FIG. 5B, each grant 570 includes an ACK/NACK field 572 (shown as A/N) . The ACK/NACK field 572 may indicate an ACK/NACK feedback for a previous packet transmitted by a corresponding UE 115 to the BS 105. Referring to the example given above where the BS 105 fails to decode the M th data packet from the first UE 115 at action 522, the BS 105 may therefore set the ACK/NACK field 572 in the grant 570a to a NACK feedback.
Returning to FIG. 5A, at action 540, upon the first UE 115 receiving a NACK in the first grant 570a, the first UE 115 may select a first resource (e.g., a time-frequency resource) from the survival time transmission resource pool for transmitting a next data packet during the survival time 502. In other words, a UE 115 may automatically utilize a resource from the preconfigured survival time transmission resource pool upon receiving a NACK feedback. As described above, the preconfigured survival time transmission resource pool may be shared by the plurality of UEs 115.  Thus, in some instances, the first UE 115 may randomly select the first resource from the survival time transmission resource pool.
At action 550, after selecting the first resource, the UE 115 may transmit a data packet (e.g., the (M+1)  th data packet) using the first resource during the survival time 502. In some instances, the data packet may be a retransmission of the M th data packet that failed decoding at the BS 105.
In some aspects, one or more of the plurality of UEs 115 may not be operating within a survival time at the time when the multi-user grant 560 is received at action 530. For instance, the grant 570b for a second UE 115 (UE-2) of the plurality of UEs 115 may indicate an ACK feedback. Upon receiving an ACK feedback in the grant 570b of the multi-user grant 560, the second UE 115 may disregard or ignore the grant 570b. In other words, the second UE 115 may refrain from using a resource from the preconfigured survival time transmission resource pool for transmission upon receiving the ACK feedback.
The utilization of a preconfigured the survival time transmission resource pool along with the multi-user grant can reduce loading at BS 105. For example, the loading can be large if the BS 105 dynamically allocates or configures a survival time transmission resource for each UE 115 operating within a survival time. Further, the signaling overhead and delay can be large if the BS 105 transmits a separate survival time transmission grant along with the resource allocation for each UE 115. Accordingly, the method 500 is efficient for survival time transmission in terms of loading at the BS 105 and/or signaling overhead/delay and may also decrease the likelihood of the BS 105 or the UEs 115 entering a down-time.
FIG. 6 illustrates a multi-user grant 600 for survival time transmission according to some aspects of the present disclosure. In some aspects, the BS 105 may utilize the multi-user grant 600 instead of the multi-user grant 560 at action 530 of the method 500. The multi-user grant 600 is substantially similar to the multi-user grant 560. For instance, the multi-user grant 600 includes an aggregation of a plurality of grants 570 (shown as 570a, 570b, …., 570c) for the plurality of UEs 115. Additionally, the multi-user grant 600 includes a threshold 610. In some aspects, the location of the threshold 610 may also be fixed within the multi-user grant 600. Although FIG. 6 illustrates the threshold 610 positioned at the end of the multi-user grant 600, the threshold 610 can be positioned at any location within the multi-user grant 600.
The BS 105 may dynamically configure the threshold 610 to control access to the survival time transmission resource pool (e.g., to reduce collision) . The threshold 610 is a data priority threshold. The priority of a data packet may be defined based on an amount of time (or a percentage of the survival time) that has elapsed since the beginning (starting time) of a survival time period or an amount of remaining time in the survival time period.
As shown by the reference numeral 601, a survival time period 602 starts at time T0 and ends at time T4. The survival time period 602 may correspond to the  survival time  350, 420, and/or 502. For instance, a data packet transmitted during the survival time period 602 and before time T1 may be assigned a first priority, a data packet transmitted after time T1 and before T2 may be assigned a second priority, a data packet transmitted after time T2 and before time T3 may be assigned a third priority, and a data packet transmitted after time T3 and before T4 may be assigned a fourth priority. The first priority, the second priority, the third priority, and the fourth priority may be in an increasing priority order. In other words, the priority of a data packet may become higher as the transmission time for the data packet becomes closer to the survival time deadline (the end of the survival time period 602 at time T4) . As an example, if a UE 115 transmits a data packet at time T1 after a period 604 has elapsed since the start of the survival time period 602, the data packet may have the first priority. If a UE 115 transmits a data packet at time T2 after a period 606 has elapsed since the start of the survival time period 602, the data packet may have the second priority higher than the first priority. If a UE 115 transmits a data packet at time T3 after a period 608 has elapsed since the start survival time period 602, the data packet may have the third priority. In general, the BS 105 may define a fewer number of data priorities (e.g., 2) or a greater number of data priorities (e.g., 4, 5 or more) associated with survival time transmissions.
In an example, the BS 105 may set a data priority for the threshold 610 to the second priority to indicate that a UE 115 may select a resource from the survival time transmission resource pool to transmit a data packet if the data packet is of the second priority or higher (e.g., the second priority or the third priority) . Accordingly, a UE 115 may further determine whether to select a resource from the survival time transmission resource pool for transmitting a data packet based on a period that has elapsed since the start of a survival time period. In this way, the BS 105 may give priority to a UE 115 closer to a survival time deadline to utilize resources from the survival time transmission resource pool, and thus the number of UEs 115 competing for a resource in the survival time transmission resource pool may reduce.
In some aspects, the BS 105 may configure the UEs 115 with a mapping between data priorities and time periods within a survival time. Different UEs and/or different applications may have different survival time durations, for example, depending on quality of service (QoS) requirements, and the BS 105 may define a mapping between data priorities and time periods within a survival time, for example, in terms of a percentage of time elapsed since the start of a survival time.
FIG. 7A illustrates a multi-user grant 700 for survival time transmission according to some aspects of the present disclosure. In some aspects, the BS 105 may utilize the multi-user grant 700  instead of the multi-user grant 560 at action 530 of the method 500. The multi-user grant 700 is substantially similar to the multi-user grant 560. For instance, the multi-user grant 700 includes an aggregation of a plurality of grants 770 (shown as 770a, 770b, …., 770c) for the plurality of UEs 115, where each grant 770 includes an ACK/NACK field 572. Additionally, the BS 105 may further include an indication field 772 (shown as Ind) in each grant 770. The BS 105 may dynamically configure the indication field 772 to control access to the survival time transmission resource pool on an individual UE basis. In other words, the BS 105 may control each UE 115 in accessing the survival time transmission resource pool. In one aspects, each indication field 772 is a 1-bit field as shown in FIG. 7B. In another aspects, each indication field 772 is a 2-bit field as shown in FIG. 7C.
FIG. 7B illustrates a grant 770 for survival time transmission according to some aspects of the present disclosure. The grant 770 in FIG. 7B may correspond to one of the grants 770 within the multi-user grant 700. In general, each grant 770 in the multi-user grant 700 may have a similar indication field format as shown in FIG. 7B. In FIG. 7B, the indication field 772 is a 1-bit field indicating whether use of the survival time transmission resource pool by a corresponding UE 115 is allowed. For instance, the BS 105 may set the indication field 772 to a bit value of 1 to indicate use of the survival time transmission resource pool is allowed and to a bit value of 0 to indicate use of the survival time transmission resource pool is not allowed, or vice versa. In some aspects, the BS 105 may control access to the survival time transmission resource pool by each individual UE 115 by setting the indication field 772.
FIG. 7C illustrates a grant 770 for survival time transmission according to some aspects of the present disclosure. The grant 770 in FIG. 7C may correspond to one of the grants 770 within the multi-user grant 700. In general, each grant 770 in the multi-user grant 700 may have a similar indication field format as shown in FIG. 7C. In FIG. 7C, the indication field 772 is a 2-bit field indicating usage of the survival time transmission resource pool by a corresponding UE 115. For instance, the BS 105 may divide a survival time transmission resource pool 780 into a first portion 782 and a second portion 784. The survival time transmission resource pool 780 may include time-frequency resources (e.g., one or more symbols in time and one or more subcarriers in frequency) . The BS 105 may configure the first portion 782 for a last survival time transmission. A last survival time transmission may refer to a last transmission attempt before the end of a survival time period (e.g., the  survival periods  350, 420, 502, and/or 602) . The BS 105 may configure the second portion 784 for a non-last survival time transmission. Referring to the example illustrated in FIG. 3, message G transmitted at the end of the survival time 350 (or deadline 355) is a last survival time  transmission, whereas messages E and F transmitted within the survival time period 350, but before the message G, are non-last survival time transmissions.
In some aspects, the BS 105 may set the indication field 772 to bit values of 00 to indicate use of the survival time transmission resource pool 780 is not allowed. The BS 105 may set the indication field 772 to bit values of 01 to indicate use of the first portion 782 is allowed for a last survival time transmission, but not for a non-last survival time transmission. In other words, if a UE 115 has a data packet for transmission during a survival time period, the UE 115 may determine whether to select a resource from the first portion 782 or the second portion 784 based on whether the transmission is a last survival time transmission attempt or not.
In some aspects, the BS 105 may set the indication field 772 to bit values of 11 to indicate use of the first portion 782 is allowed for any survival time transmission (i.e., both non-last survival time transmission or last survival time transmission) . In other words, a UE 115 may select a resource from the first portion 782 or the second portion 784 for a last survival time transmission or a non-last survival time transmission.
FIG. 8A and 8B are discussed in relation to each other to illustrate survival time transmission using a dynamically configured survival time transmission resource pool. FIG. 8A is a sequence diagram illustrating a communication method 800 with survival time transmissions according to some aspects of the present disclosure. The method 800 may be performed by wireless sensor networks or IIoT networks, such as the networks 100. More specifically, the method 800 is performed by a BS 105 and a plurality of UEs 115 (e.g., K number of UEs 115) . In some aspects, the plurality of UEs 115 may be IIoT devices (e.g., wireless sensors, smart meters, machines, industrial equipment, actuators, motors, etc. ) similar to the UEs 115f-115h shown in FIG. 1. In some aspects, the BS 105 may utilize one or more components, such as the processor 1002, the memory 1004, the survival time module 1008, the transceiver 1010, the modem 1012, and the one or more antennas 1016 shown in FIG. 10, to execute the actions of the method 800. The UEs 115 may utilize one or more components, such as the processor 1102, the memory 1104, the survival time module 1108, the transceiver 1110, the modem 1112, and the one or more antennas 1116 shown in FIG. 11, to execute the actions of the method 800.
Generally speaking, the method 800 includes features similar to method 500 in many respects. For example,  actions  820, 822, 840, and 850 are similar to  actions  520, 522, 540, and 550, respectively. Accordingly, for sake of brevity, details of those actions will not be discussed in detail here.
In the method 800, the BS 105 may dynamically configure a survival time transmission resource pool for survival time transmission and may include an indication of the survival time  transmission resource pool in a multi-user grant. The dynamic configuration of the survival time transmission resource pool may allow the BS 105 to adjust the size of the survival time transmission resource pool, for example, based on a number of upcoming survival time transmissions. For simplicity of discussion and illustration, the method 800 is described with respect to a first UE 115 of the plurality of UEs 115. However, similar operations may be performed between each of the plurality of UEs 115 and the BS 105.
At action 820, the first UE 115 transmits M number of data packets to the BS 105. The data packets may include data and/or measurements obtained or sensed by the first UE 115. The data packets may be associated with an application executing between the first UE 115 and the BS 105. The application may have a certain survival time requirement. The first UE 115 may transmit the M data packets one at a time according to an update period, and the BS 105 may transmit an ACK/NACK feedback for each packet as discussed above in relation to action 520. As an example, the first data packet to the (M-1)  th data packets are successfully received and decoded by the BS 105. However, the BS 105 fails to decode the M th data packet as shown at action 822, and thus a survival time period 502 (associated with an application at the BS 105) may begin.
At action 824, upon detecting the decoding failure, the BS 105 dynamically configures a survival time transmission resource pool for survival time transmissions by the first UE 115 and/or other UEs 115 of the plurality of UEs 115. The resource pool may include a plurality of resources (e.g., time-frequency resources as shown in FIG. 2) . The resource pool may include one or more symbols (e.g., the symbols 206) in time and one or more subcarriers (e.g., the subcarriers 204) in frequency. The plurality of resources can include resources that are contiguous in time, resources that are distributed in time, resources that are contiguous in frequency, and/or resources that are distributed in frequency. The BS 105 may adjust the size (e.g., number of resources) of the survival time transmission resource pool, for example, based on a number of UEs 115 that are operating within a survival time at the time when the BS 105 generates the multi-user grant.
At action 830, upon entering the survival time period 802, the BS 105 transmits a multi-user grant (e.g., the multi-user grant 860 shown in FIG. 8B) including a plurality of grants. Each grant of the plurality of grants is assigned to one of the plurality of UEs 115, for example, to transmit a data packet associated with corresponding survival time. The BS 105 may transmit the multi-user grant via a PDCCH based on a C-ST-RNTI or via a PDSCH as discussed above in relation to FIG. 5A.
FIG. 8B illustrates a multi-user grant 860 for survival time transmission according to some aspects of the present disclosure. The multi-user grant 860 is substantially similar to the multi-user grant 560. For instance, the multi-user grant 860 includes an aggregation of a plurality of grants 570 (shown as 570a, 570b, …., 570c) for the plurality of UEs 115. The BS 105 may indicate an ACK or  a NACK in each grant 570 for a corresponding UE 115. For instance, the BS 105 may set the ACK/NACK field 572 of the grant 570a (for the first UE 115) to a NACK based on the decoding failure for the M th data packet at action 822. Additionally, the multi-user grant 860 includes a resource pool configuration 810. The resource pool configuration 810 may include resource allocation information, such as time and/or frequency location of resources allocated for the survival time transmission resource pool. As an example, the resource pool configuration 810 may indicate that the survival time transmission resource pool begins at a certain RB (e.g., the RBs 210) may span a certain number of RBs. The resource pool configuration 810 may also indicate that the survival time transmission resource pool within certain symbols (e.g., the symbols 206) of certain slots (e.g., the slot 202) .
In some aspects, each UE 115 may be assigned with a fixed location (e.g., bit positions or octet positions) within the multi-user grant 860 as discussed above with reference to FIG. 5B. Additionally, the location of the resource pool configuration 810 may also be fixed. Although FIG. 8B illustrates the resource pool configuration 810 positioned at the end of the multi-user grant 860, the resource pool configuration 810 can be positioned at any location (e.g., before the grant 570a) within the multi-user grant 860.
Returning to FIG. 8A, at action 840, upon the first UE 115 receiving a NACK in the first grant 570a, the first UE 115 may select a first resource (e.g., a time-frequency resource) from the survival time transmission resource pool (indicated by the resource pool configuration 810) for transmitting a next data packet during the survival time 502. In other words, a UE 115 may automatically utilize a resource from the survival time transmission resource pool upon receiving a NACK feedback. In some instances, the first UE 115 may randomly select the first resource from the survival time transmission resource pool.
At action 850, after selecting the first resource, the UE 115 may transmit a data packet (e.g., the (M+1)  th data packet) using the first resource during the survival time 502. In some instances, the data packet may be a retransmission of the M th data packet that failed decoding at the BS 105.
In some aspects, one or more of the plurality of UEs 115 may not be operating within a survival time at the time when the multi-user grant 860 is received at action 830. For instance, the grant 570b for a second UE 115 (UE-2) of the plurality of UEs 115 may indicate an ACK feedback. Upon receiving an ACK feedback in the grant 570b of the multi-user grant 860, the second UE 115 may disregard or ignore the grant 570b. In other words, the second UE 115 may refrain from using a resource from the preconfigured survival time transmission resource pool for transmission upon receiving the ACK feedback.
The dynamic configuration of the survival time transmission resource pool may allow for a more efficient resource utilization. For instance, the BS 105 may allocate resources for survival time transmission as needed (by adjusting the pool size) instead of having a preconfigured fixed amount of resources for the survival time transmission resource pool irrespective of whether any UE 115 may have a survival time transmission. Further, by configuring a survival time transmission resource pool for sharing among the plurality of UEs 115 and using a multi-user grant to grant usage of the survival time transmission resource pool to the UEs 115, the BS 105 may indicate configuration information for the survival time transmission resource pool once in the multi-user grant instead of having to transmit a separate grant with repeated configuration information for each UE 115.
In some aspects, the BS 105 may also control access to the survival time transmission resource pool by including a threshold (e.g., the threshold 610) in the multi-user grant 860. The threshold is a data priority threshold. The priority of a data packet may be defined based on an amount of time that has elapsed since the beginning a survival time period or an amount of remaining time in the survival time period as discussed above with reference to FIG. 6.
In some aspects, the BS 105 may further control access to the survival time transmission resource pool by including an indication field (e.g., the indication field 772) in each individual grant 570 within the multi-user grant 860. The indication field may be a 1-bit field as discussed above with reference to FIG. 7B or a 2-bit field as discussed above with reference to FIG. 7C.
FIG. 9 is a sequence diagram illustrating a communication method 900 with survival time transmissions according to some aspects of the present disclosure. The method 900 may be performed by wireless sensor networks or IIoT networks, such as the networks 100. More specifically, the method 900 is performed by a BS 105 and a plurality of UEs 115 (e.g., K number of UEs 115) . In some aspects, the plurality of UEs 115 may be IIoT devices (e.g., wireless sensors, smart meters, machines, industrial equipment) similar to the UEs 115f-115h shown in FIG. 1. In some aspects, the BS 105 may utilize one or more components, such as the processor 1002, the memory 1004, the survival time module 1008, the transceiver 1010, the modem 1012, and the one or more antennas 1016 shown in FIG. 10, to execute the actions of the method 900. The UEs 115 may utilize one or more components, such as the processor 1102, the memory 1104, the survival time module 1108, the transceiver 1110, the modem 1112, and the one or more antennas 1116 shown in FIG. 11, to execute the actions of the method 900.
Generally speaking, the method 900 includes features similar to method 500 in many respects. For example,  actions  920, 922, and 950 are similar to  actions  520, 522, and 550,  respectively. Accordingly, for sake of brevity, details of those actions will not be discussed in detail here.
In the method 900, the BS 105 may preconfigure each UE 115 of the plurality of UEs 115 with a resource specifically for survival time transmission and may indicate whether each UE 115 may utilize the preconfigured resource for survival time transmission in a multi-user grant. For simplicity of discussion and illustration, the method 900 is described with respect to a first UE 115 of the plurality of UEs 115. However, similar operations may be performed between each of the plurality of UEs 115 and the BS 105.
At action 910, the BS transmits a configuration for a first resource to be used by the first UE 115 for survival time transmission. The first resource is a time-frequency resource (spanning one or more symbols 206 in time and one or more subcarriers 204 in frequency) may be referred to as a first resource. In some aspects, the first resource is a UE-specific resource assigned to the first UE 115. For instance, the BS 105 may assign a second resource specifically to a second UE 115 of the plurality of UEs 115, where the second resource is different from the first resource. In other aspects, the BS 105 may also assign the first resource to the second UE 115 for survival time transmission. In other words, the BS 105 can preconfigure a survival time transmission resource for sharing between two or more UEs 115.
At action 920, the first UE 115 transmits M number of data packets to the BS 105. The data packets may include data and/or measurements obtained or sensed by the first UE 115. The data packets may be associated with an application executing between the first UE 115 and the BS 105. The application may have a certain survival time requirement. The first UE 115 may transmit the M data packets one at a time according to an update period, and the BS 105 may transmit an ACK/NACK feedback for each packet as discussed above in relation to action 520. As an example, the first data packet to the (M-1)  th data packets are successfully received and decoded by the BS 105. However, the BS 105 fails to decode the M th data packet as shown at action 922, and thus a survival time period 902 (associated with an application at the BS 105) may begin.
At action 930, upon entering the survival time period 502, the BS 105 transmits a multi-user grant including a plurality of grants. Each grant of the plurality of grants is assigned to one of the plurality of UEs 115, for example, to transmit a data packet associated with corresponding survival time. The BS 105 may transmit the multi-user grant via a PDCCH based on a C-ST-RNTI or via a PDSCH as discussed above in relation to FIG. 5A. The multi-user grant may be similar to the multi-user grant 700 shown in FIG. 7A. For instance, each grant of the plurality of grants may include an ACK/NACK field (e.g., the ACK/NACK fields 572) and an indication field (e.g., the indication field 772) . The BS 105 may indicate an ACK or a NACK in each grant for a corresponding UE 115.  For instance, a first grant (e.g., the first grant 570a) of the plurality of grants may be assigned to the first UE 115, and the BS 105 may set the ACK/NACK field in the first grant to a NACK based on the decoding failure for the M th data packet at action 922.
The indication field may be a 1-bit field as discussed above with reference to FIG. 7B. The BS 105 may set the indication field 772 to a bit value of 1 to indicate use of the survival time transmission resource pool is allowed and to a bit value of 0 to indicate use of the survival time transmission resource pool is not allowed, or vice versa.
In some aspects, when the BS 105 assigns the first resource to the first UE 115 and the second UE 115 for survival time transmission, the BS 105 may control the usage of the first resource using the indication field in respective grants. For instance, a second grant (e.g., the grant 570b) of the plurality of grants is assigned to the second UE 115. The BS 105 may set the indication field in the first grant to a bit value of 1 to allow the first UE 115 to use the first resource for survival time transmission, and may set the indication field in the second grant to a bit value of 0 to disallow the second UE 115 to use the first resource for survival time transmission.
At action 950, upon the first UE 115 receiving the first grant indicating a NACK feedback and an indication that utilizing the first resource is allowed for the first UE 115, the first UE 115 may transmit a data packet (e.g., the (M+1)  th data packet) using the first resource during the survival time 902. In some instances, the data packet may be a retransmission of the M th data packet that failed decoding at the BS 105.
FIG. 10 is a block diagram of an exemplary BS 1000 according to some aspects of the present disclosure. The BS 1000 may be a BS 105 as discussed in FIGS. 1-4, 5A-5B, 6, 7A-7C, 8A-8B, 9, and 13. As shown, the BS 1000 may include a processor 1002, a memory 1004, a survival time module 1008, a transceiver 1010 including a modem subsystem 1012 and a RF unit 1014, and one or more antennas 1016. These elements may be coupled with one another. The term “coupled” may refer to directly or indirectly coupled or connected to one or more intervening elements. For instance, these elements may be in direct or indirect communication with each other, for example via one or more buses.
The processor 1002 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 1002 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 1004 may include a cache memory (e.g., a cache memory of the processor 1002) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory. In some aspects, the memory 1004 may include a non-transitory computer-readable medium. The memory 1004 may store instructions 1006. The instructions 1006 may include instructions that, when executed by the processor 1002, cause the processor 1002 to perform operations described herein, for example, aspects of FIGS. 1-4, 5A-5B, 6, 7A-7C, 8A-8B, 9, and 13. Instructions 1006 may also be referred to as program code. The program code may be for causing a wireless communication device (e.g., the BS 1000) to perform these operations, for example by causing one or more processors (such as processor 1002) to control or command the wireless communication device to do so. The terms “instructions” and “code” should be interpreted broadly to include any type of computer-readable statement (s) . For example, the terms “instructions” and “code” may refer to one or more programs, routines, sub-routines, functions, procedures, etc. “Instructions” and “code” may include a single computer-readable statement or many computer-readable statements.
The survival time module 1008 may be implemented via hardware, software, or combinations thereof. For example, the survival time module 1008 may be implemented as a processor, circuit, and/or instructions 1006 stored in the memory 1004 and executed by the processor 1002. In some examples, the survival time module 1008 can be integrated within the modem subsystem 1012. For example, the survival time module 1008 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 1012. The survival time module 1008 may communicate with one or more components of BS 1000 to implement various aspects of the present disclosure, for example, aspects of FIGS. 1-4, 5A-5B, 6, 7A-7C, 8A-8B, 9, and 13.
For instance, the survival time module 1008 is configured to transmit, to a UE (e.g., the UEs 115 and/or the UE 1100) , a first grant (e.g., the grants 570 and/or 770) for transmitting a data packet associated with a survival time and receive, from the UE based on the first grant, the data packet in a first resource associated with the survival time. In some aspects, as part of transmitting the first grant, the survival time module 1008 is configured to transmit, to the UE, a multi-user grant (e.g., the  multi-user grants  560, 600, 700, or 860) including a plurality of grants. Each grant of the plurality of grants is associated with one of a plurality of UEs, where the plurality of UEs includes the UE and the plurality of grants includes the first grant. In some aspects, the survival time module 1008 is configured to transmit the multi-user grant via a PDCCH based on a C-ST-RNTI. In other  aspects, the survival time module 1008 is configured to transmit a data block (e.g., a transport block) including the multi-user grant via a PDSCH. In some aspects, the multi-user grant may also include a data priority threshold as discussed above with reference to FIG. 6. In some aspects, each of the plurality of grants may also include an indicator field as discussed above with reference to FIGS. 7A-7C.
In some aspects, the survival time module 1008 is further configured to transmit, to the UE, an RRC configuration including a configuration for a survival time transmission resource pool including a plurality of resources, where the plurality of resources includes the first resource, for example, as discussed above with reference to FIGS. 5A-5B. In other aspects, the first grant includes an indication of a survival time transmission resource pool including a plurality of resources, where the plurality of resources includes the first resource, for example, as discussed above with reference to FIGS. 8A-8B. In yet other aspects, the survival time module 1008 is further configured to transmit, to the UE, an indication of the first resource assigned to the UE, for example, as discussed above with reference to FIG. 9.
As shown, the transceiver 1010 may include the modem subsystem 1012 and the RF unit 1014. The transceiver 1010 can be configured to communicate bi-directionally with other devices, such as the UEs 115 and/or another core network element. The modem subsystem 1012 may be configured to modulate and/or encode data according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc. The RF unit 1014 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data (e.g., RRC configuration, PDCCH signals, PDSCH signals, survival time transmission resource pool configuration, survival time transmission resource configuration, multi-user grant, ACK/NACK, etc. ) from the modem subsystem 1012 (on outbound transmissions) or of transmissions originating from another source such as a UE 115 and/or UE 1100. The RF unit 1014 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 1010, the modem subsystem 1012 and/or the RF unit 1014 may be separate devices that are coupled together at the BS 1000 to enable the BS 1000 to communicate with other devices.
The RF unit 1014 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 1016 for transmission to one or more other devices. The antennas 1016 may further receive data messages transmitted from other devices and provide the received data messages for processing and/or demodulation at the transceiver 1010. The transceiver 1010 may provide the demodulated and decoded data (e.g., sensor data, measurements, etc. ) to the survival time module  1008 for processing. The antennas 1016 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
In an aspect, the BS 1000 can include multiple transceivers 1010 implementing different RATs (e.g., NR and LTE) . In an aspect, the BS 1000 can include a single transceiver 1010 implementing multiple RATs (e.g., NR and LTE) . In an aspect, the transceiver 1010 can include various components, where different combinations of components can implement different RATs.
In an aspect, the transceiver 1010 is configured to communicate with components of the BS 1000 to transmit, to a UE, a first grant for transmitting a data packet associated with a survival time and receive, from the UE based on the first grant, the data packet using a first resource associated with the survival time.
FIG. 11 is a block diagram of an exemplary UE 1100 according to some aspects of the present disclosure. The UE 1100 may be a UE 115 as discussed above in FIGS. 1-4, 5A-5B, 6, 7A-7C, 8A-8B, 9, and 13. As shown, the UE 1100 may include a processor 1102, a memory 1104, a survival time module 1108, a transceiver 1110 including a modem subsystem 1112 and a radio frequency (RF) unit 1114, and one or more antennas 1116. These elements may be coupled with one another. The term “coupled” may refer to directly or indirectly coupled or connected to one or more intervening elements. For instance, these elements may be in direct or indirect communication with each other, for example via one or more buses.
The processor 1102 may include a central processing unit (CPU) , a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a controller, a field programmable gate array (FPGA) device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 1102 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 1104 may include a cache memory (e.g., a cache memory of the processor 1102) , random access memory (RAM) , magnetoresistive RAM (MRAM) , read-only memory (ROM) , programmable read-only memory (PROM) , erasable programmable read only memory (EPROM) , electrically erasable programmable read only memory (EEPROM) , flash memory, solid state memory device, hard disk drives, other forms of volatile and non-volatile memory, or a combination of different types of memory. In an aspect, the memory 1104 includes a non-transitory computer-readable medium. The memory 1104 may store, or have recorded thereon, instructions 1106. The instructions 1106 may include instructions that, when executed by the processor 1102, cause the processor 1102 to perform the operations described herein with reference to a UE 115 or  an anchor in connection with aspects of the present disclosure, for example, aspects of FIGS. 1-4, 5A-5B, 6, 7A-7C, 8A-8B, 9, and 13. Instructions 1106 may also be referred to as code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 10.
The survival time module 1108 may be implemented via hardware, software, or combinations thereof. For example, the survival time module 1108 may be implemented as a processor, circuit, and/or instructions 1106 stored in the memory 1104 and executed by the processor 1102. In some aspects, the survival time module 1108 can be integrated within the modem subsystem 1112. For example, the survival time module 1108 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 1112. The survival time module 1108 may communicate with one or more components of UE 1100 to implement various aspects of the present disclosure, for example, aspects of FIGS. 1-4, 5A-5B, 6, 7A-7C, 8A-8B, 9, and 13.
For instance, the survival time module 1108 is configured to receive, from a BS (e.g., the BS 105 or the BS 1000) , a first grant (e.g., the grants 570 and/or 770) for transmitting a data packet associated with a survival time and transmit, to the BS based on the first grant, the data packet using a first resource associated with the survival time. In some aspects, as part of receiving the first grant, the survival time module 1108 is configured to receive, from the BS, a multi-user grant (e.g., the  multi-user grants  560, 600, 700, or 860) including a plurality of grants. Each grant of the plurality of grants is associated with one of a plurality of UEs, where the plurality of UEs includes the UE 1100 and the plurality of grants includes the first grant. In some aspects, the survival time module 1108 is configured to receive the multi-user grant via a PDCCH based on a C-ST-RNTI. In other aspects, the survival time module 1108 is configured to receive a data block (e.g., a transport block) including the multi-user grant via a PDSCH. In some aspects, the multi-user grant may also include a data priority threshold as discussed above with reference to FIG. 6. In some aspects, each of the plurality of grants may also include an indicator field as discussed above with reference to FIGS. 7A-7C.
In some aspects, the survival time module 1108 is further configured to receive, from the BS, an RRC configuration including a configuration for a survival time transmission resource pool including a plurality of resources, where the plurality of resources includes the first resource, for example, as discussed above with reference to FIGS. 5A-5B. In other aspects, the first grant includes an indication of a survival time transmission resource pool including a plurality of resources, where the plurality of resources includes the first resource, for example, as discussed  above with reference to FIGS. 8A-8B. In yet other aspects, the survival time module 1108 is further configured to receive, from the BS, an indication of the first resource assigned to the UE 1100, for example, as discussed above with reference to FIG. 9.
As shown, the transceiver 1110 may include the modem subsystem 1112 and the RF unit 1114. The transceiver 1110 can be configured to communicate bi-directionally with other devices, such as the  BSs  105 and 1000. The modem subsystem 1112 may be configured to modulate and/or encode the data from the memory 1104 and/or the survival time module 1108 according to a modulation and coding scheme (MCS) , e.g., a low-density parity check (LDPC) coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc. The RF unit 1114 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data (e.g., sensor data, measurements, etc. ) from the modem subsystem 1112 (on outbound transmissions) or of transmissions originating from another source such as a UE 115, a BS 105, or an anchor. The RF unit 1114 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 1110, the modem subsystem 1112 and the RF unit 1114 may be separate devices that are coupled together at the UE 115 to enable the UE 115 to communicate with other devices.
The RF unit 1114 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 1116 for transmission to one or more other devices. The antennas 1116 may further receive data messages transmitted from other devices. The antennas 1116 may provide the received data messages for processing and/or demodulation at the transceiver 1110. The transceiver 1110 may provide the demodulated and decoded data (e.g., RRC configuration, PDCCH signals, PDSCH signals, survival time transmission resource pool configuration, survival time transmission resource configuration, multi-user grant, ACK/NACK, etc. ) to the survival time module 1108 for processing. The antennas 1116 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
In an aspect, the BS 1100 can include multiple transceivers 1110 implementing different RATs (e.g., NR and LTE) . In an aspect, the BS 1100 can include a single transceiver 1110 implementing multiple RATs (e.g., NR and LTE) . In an aspect, the transceiver 1110 can include various components, where different combinations of components can implement different RATs.
In an example, transceiver 1110 is configured to communicate with components of the UE 1100 to receive, from a BS, a first grant for transmitting a data packet associated with a survival  time and transmit, to the BS based on the first grant, the data packet using a first resource associated with the survival time.
FIG. 12 is a flow diagram illustrating a wireless communication method 1200 according to some aspects of the present disclosure. Aspects of the method 1200 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the blocks. For example, a wireless communication device, such as the UE 115 or the UE 1100, may utilize one or more components, such as the processor 1102, the memory 1104, the survival time module 1108, the transceiver 1110, the modem 1112, the RF unit 1114, and the one or more antennas 1116, to execute the blocks of method 1200. The method 1200 may employ similar mechanisms as described in FIGS. 1-4, 5A-5B, 6, 7A-7C, 8A-8B, and 9. As illustrated, the method 1200 includes a number of enumerated blocks, but aspects of the method 1200 may include additional blocks before, after, and in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
At block 1210, a UE (e.g., the UEs 115 and/or the UE 1100) receives, from a BS (e.g., the BS 105 or the BS 1000) , a first grant (e.g., the grants 570 and/or 770) for transmitting a data packet associated with a survival time. For instance, the data packet may be associated with an application executing at the UE and a corresponding application executing at the BS, and the survival time may refer to the time duration for which data sent between communicating applications (transmitting and receiving) can be lost without affecting normal operations. In some aspects, as part of receiving the first grant, the UE may receive, from the BS, a multi-user grant (e.g., the  multi-user grants  560, 600, 700, or 860) including a plurality of grants. Each grant of the plurality of grants is associated with one of a plurality of UEs, where the plurality of UEs includes the UE and the plurality of grants includes the first grant. In some aspects, the UE may receive the multi-user grant via a PDCCH based on a C-ST-RNTI. In other aspects, the UE may receive a data block (e.g., a transport block) including the multi-user grant via a PDSCH. In some aspects, means for performing the operations of block 1210 can, but not necessarily, include, the processor 1102, the memory 1104, the survival time module 1108, the transceiver 1110, the modem 1112, the RF unit 1114, and the one or more antennas 1116 with reference to FIG. 11.
At block 1220, the UE transmits, to the BS based on the first grant, the data packet using a first resource associated with the survival time. In some aspects, means for performing the operations of block 1220 can, but not necessarily, include, the processor 1102, the memory 1104, the survival time module 1108, the transceiver 1110, the modem 1112, the RF unit 1114, and the one or more antennas 1116 with reference to FIG. 11.
In some aspects, the UE further receives, from the BS, an indication of a survival time transmission resource pool including a plurality of resources, where the plurality of resources includes the first resource, for example, as discussed above with reference to FIGS. 5A-5B. In other aspects, the first grant received at block 1210 includes an indication of a survival time transmission resource pool including a plurality of resources, where the plurality of resources includes the first resource, for example, as discussed above with reference to FIGS. 8A-8B. In yet other aspects, the UE further receives, from the BS, an indication of the first resource assigned to the UE, for example, as discussed above with reference to FIG. 9.
In some aspects, the first grant received at block 1210 includes an NACK, and the UE may transmit the data packet at block 1220 further in response to the NACK.
In some aspects, the first grant received at block 1210 includes a threshold. The threshold is a data priority threshold. The priority of the data packet may be defined based on an amount of time (or a percentage of the survival time) that has elapsed since the beginning of the survival time or an amount of remaining time in the survival time, for example, as discussed above with reference to FIG. 6. The UE may transmit the data packet at block 1220 based on a first period (e.g., the  period  604, 606, or 608) associated with the survival time satisfying the threshold. For instance, the first period may correspond to a period that has elapsed since the beginning of the survival time.
In some aspects, the first grant received at block 1210 includes an indicator of whether use of the first resource for a survival time transmission is allowed. For instance, the indicator may include a bit value of 1 to indicate use of the first resource for a survival time transmission is allowed and may include a bit value of 0 to indicate use of the first resource for a survival time transmission is not allowed, or vice versa.
In some aspects, a resource pool includes a first portion associated with a last survival time transmission and a second portion associated with a non-last survival time transmission, and the first grant received at block 1210 includes an indicator of whether use of the first portion of the resource pool is allowed for a non-last survival time transmission attempt. In some aspects, the UE further selects the first resource from the first portion or the second portion based on the indicator and whether the data packet (to be transmitted at block 1220) is associated with the non-last survival time transmission attempt. For instance, if the indicator indicates that use of the first portion of the resource pool is allowed for a non-last survival time transmission attempt, the UE may select the first resource from the first portion or the second portion irrespective of whether the data packet is associated with a last survival time transmission. If the indicator indicates that use of the first portion of the resource pool is not allowed for a non-last survival time transmission attempt and the data packet is associated with a last survival time transmission attempt, then the UE may  select the first resource from the first portion. If the indicator indicates that use of the first portion of the resource pool is not allowed for a non-last survival time transmission attempt and the data packet is not associated with a last survival time transmission attempt, then the UE may select the first resource from the second portion.
FIG. 13 is a flow diagram illustrating a wireless communication method 1300 according to some aspects of the present disclosure. Aspects of the method 1300 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the blocks. For example, a wireless communication device, such as a BS 105 or BS 1000, may utilize one or more components, such as the processor 1002, the memory 1004, the survival time module 1008, the transceiver 1010, the modem 1012, the RF unit 1014, and the one or more antennas 1016 shown in FIG. 10, to execute the blocks of method 1300. The method 1300 may employ similar mechanisms as described in FIGS. 1-4, 5A-5B, 6, 7A-7C, 8A-8B, and 9. As illustrated, the method 1300 includes a number of enumerated blocks, but aspects of the method 1300 may include additional blocks before, after, and in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
At block 1310, a BS (e.g., the BSs 105 and/or 1000) transmits, to a UE (e.g., the UEs 115 and/or 1100) , a first grant for transmitting a data packet associated with a survival time. For instance, the data packet may be associated with an application executing at the BS and a corresponding application executing at the UE, and the survival time may refer to the time duration for which data sent between communicating applications (transmitting and receiving) can be lost without affecting normal operations. In some aspects, as part of transmitting the first grant, the BS may transmit, to the UE, a multi-user grant (e.g., the  multi-user grants  560, 600, 700, or 860) including a plurality of grants. Each grant of the plurality of grants is associated with one of a plurality of UEs, where the plurality of UEs includes the UE and the plurality of grants includes the first grant. In some aspects, the BS may transmit the multi-user grant via a PDCCH based on a C-ST-RNTI. In other aspects, the BS may transmit a data block (e.g., a transport block) including the multi-user grant via a PDSCH. In some aspects, means for performing the operations of block 1310 can, but not necessarily, include, the processor 1002, the memory 1004, the survival time module 1008, the transceiver 1010, the modem 1012, the RF unit 1014, and the one or more antennas 1016 with reference to FIG. 10.
At block 1320, the BS receives, from the UE based on the first grant, the data packet in a first resource associated with the survival time. In some aspects, means for performing the operations of block 1320 can, but not necessarily, include, the processor 1002, the memory 1004,  the survival time module 1008, the transceiver 1010, the modem 1012, the RF unit 1014, and the one or more antennas 1016 with reference to FIG. 10.
In some aspects, the BS further transmits, to the UE, an indication of a survival time transmission resource pool including a plurality of resources, where the plurality of resources includes the first resource, for example, as discussed above with reference to FIGS. 5A-5B. In other aspects, the first grant transmitted at block 1310 includes an indication of a survival time transmission resource pool including a plurality of resources, where the plurality of resources includes the first resource, for example, as discussed above with reference to FIGS. 8A-8B. In yet other aspects, the BS further transmits, to the UE, an indication of the first resource assigned to the UE, for example, as discussed above with reference to FIG. 9.
In some aspects, the first grant transmitted at block 1310 includes an NACK, and the BS may receive the data packet at block 1320 further in response to the NACK.
In some aspects, the first grant transmitted at block 1310 includes a threshold. The threshold is a data priority threshold. The priority of the data packet may be defined based on an amount of time (or a percentage of the survival time) that has elapsed since the beginning of the survival time or an amount of remaining time in the survival time, for example, as discussed above with reference to FIG. 6. The BS may receive the data packet at block 1320 based on a first period associated with the survival time satisfying the threshold. For instance, the first period may correspond to a period that has elapsed since the beginning of the survival time.
In some aspects, the first grant transmitted at block 1310 includes an indicator of whether use of the first resource for a survival time transmission is allowed. For instance, the indicator may include a bit value of 1 to indicate use of the first resource for a survival time transmission is allowed and may include a bit value of 0 to indicate use of the first resource for a survival time transmission is not allowed, or vice versa.
In some aspects, a resource pool includes a first portion associated with a last survival time transmission and a second portion associated with a non-last survival time transmission, and the first grant transmitted at block 1310 includes an indicator of whether use of the first portion of the resource pool is allowed for a non-last survival time transmission attempt. In some aspects, the BS may receive the data packet at block 1320 based on the indicator
Further aspects of the present disclosure include the following:
1. A method of wireless communication performed by a user equipment (UE) , the method comprising:
receiving, from a base station (BS) , a first grant for transmitting a data packet associated with a survival time; and
transmitting, to the BS based on the first grant, the data packet using a first resource associated with the survival time.
2. The method of aspect 1, wherein the receiving the first grant comprises:
receiving, from the BS, a multi-user grant including a plurality of grants, wherein each grant of the plurality of grants is associated with one of a plurality of UEs, wherein the plurality of UEs includes the UE, and wherein the plurality of grants includes the first grant.
3. The method of aspect 2, wherein the receiving the multi-user grant comprises:
receiving, from the BS in a physical downlink control channel (PDCCH) based on a cell survival time-radio network temporary identifier (C-ST-RNTI) , the multi-user grant.
4. The method of aspect 2, wherein the receiving the multi-user grant comprises:
receiving, from the BS in a physical downlink shared channel (PDSCH) , a data block including the multi-user grant.
5. The method of any of aspects 1-4, further comprising:
receiving, from the BS, an indication of a survival time transmission resource pool including a plurality of resources, wherein the plurality of resources includes the first resource.
6. The method of any of aspects 1-4, wherein the receiving the first grant comprises:
receiving, from the BS, the first grant including an indication of a survival time transmission resource pool including a plurality of resources, wherein the plurality of resources includes the first resource.
7. The method of any of aspects 1-4, further comprising:
receiving, from the BS, an indication of the first resource assigned to the UE.
8. The method of any of aspects 1-7, wherein:
the receiving the first grant comprises:
receiving, from the BS, the first grant including a negative-acknowledgement (NACK) , and
the transmitting the data packet using the first resource is further in response to the NACK.
9. The method of any of aspects 1-8, wherein:
the receiving the first grant comprises:
receiving, from the BS, the first grant including a threshold, and
the transmitting the data packet using the first resource is further based on a first period associated with the survival time satisfying the threshold.
10. The method of any of aspects 1-9, wherein the receiving the first grant comprises:
receiving, from the BS, the first grant including an indicator of whether use of the first resource for a survival time transmission is allowed.
11. The method of any of aspects 1-6 or 8-10, wherein:
a resource pool includes a first portion associated with a last survival time transmission and a second portion associated with a non-last survival time transmission,
the receiving the first grant comprises:
receiving, from the BS, the first grant including an indicator of whether use of the first portion of the resource pool is allowed for a non-last survival time transmission attempt.
12. A method of wireless communication performed by a base stations (BS) , the method comprising:
transmitting, to a user equipment (UE) , a first grant for transmitting a data packet associated with a survival time; and
receiving, from the UE based on the first grant, the data packet in a first resource associated with the survival time.
13. The method of aspect 12, wherein the transmitting the first grant comprises:
transmitting, to a plurality of UEs including the UE, a multi-user grant including a plurality of grants, wherein each grant of the plurality of grants is associated with one of the plurality of UEs, and wherein the plurality of grants includes the first grant.
14. The method of aspect 14, wherein the transmitting the multi-user grant comprises:
transmitting, in a physical downlink control channel (PDCCH) based on a cell survival time-radio network temporary identifier (C-ST-RNTI) , the multi-user grant.
15. The method of aspect 14, wherein the transmitting the multi-user grant comprises:
transmitting, in a physical downlink shared channel (PDSCH) , a data block including the multi-user grant.
16. The method of any of aspects 12-15, further comprising:
transmitting, to the UE, an indication of a survival time transmission resource pool including a plurality of resources, wherein the plurality of resources includes the first resource.
17. The method of any of aspects 12-15, wherein the transmitting the first grant comprises:
transmitting, to the UE, the first grant including an indication of a survival time transmission resource pool including a plurality of resources, wherein the plurality of resources includes the first resource.
18. The method of aspect 12, further comprising:
transmitting, to the UE, an indication of the first resource assigned to the UE.
19. The method any of aspects 12-18, wherein:
the transmitting the first grant comprises:
transmitting, to the UE, the first grant including a negative-acknowledgement (NACK) , and
the receiving the data packet in the first resource is further in response to the NACK.
20. The method of any of aspects 12-19, wherein:
the transmitting the first grant comprises:
transmitting, to the UE, the first grant including a threshold, and
the receiving the data packet in the first resource is further based on a first period associated with the survival time satisfying the threshold.
21. The method of any of aspects 12-20, wherein the transmitting the first grant comprises:
transmitting, to the UE, the first grant including an indicator of whether using the first resource for a survival time transmission is allowed.
22. The method of any of aspects 12-17 or 19-21, wherein:
a resource pool includes a first portion associated with a last survival time transmission and a second portion associated with a non-last survival time transmission,
the transmitting the first grant comprises:
transmitting, to the UE, the first grant including an indicator of whether use of the first portion of the resource pool is allowed for a non-last survival time transmission attempt.
Information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations. Also, as used herein, including in the claims, “or” as used in a list of items (for example, a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of [at least one of A, B, or C] means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .
As those of some skill in this art will by now appreciate and depending on the particular application at hand, many modifications, substitutions and variations can be made in and to the  materials, apparatus, configurations and methods of use of the devices of the present disclosure without departing from the spirit and scope thereof. In light of this, the scope of the present disclosure should not be limited to that of the particular aspects illustrated and described herein, as they are merely by way of some examples thereof, but rather, should be fully commensurate with that of the claims appended hereafter and their functional equivalents.

Claims (30)

  1. A method of wireless communication performed by a user equipment (UE) , the method comprising:
    receiving, from a base station (BS) , a first grant for transmitting a data packet associated with a survival time; and
    transmitting, to the BS based on the first grant, the data packet using a first resource associated with the survival time.
  2. The method of claim 1, wherein the receiving the first grant comprises:
    receiving, from the BS, a multi-user grant including a plurality of grants, wherein each grant of the plurality of grants is associated with one of a plurality of UEs, wherein the plurality of UEs includes the UE, and wherein the plurality of grants includes the first grant.
  3. The method of claim 2, wherein the receiving the multi-user grant comprises:
    receiving, from the BS in a physical downlink control channel (PDCCH) based on a cell survival time-radio network temporary identifier (C-ST-RNTI) , the multi-user grant.
  4. The method of claim 2, wherein the receiving the multi-user grant comprises:
    receiving, from the BS in a physical downlink shared channel (PDSCH) , a data block including the multi-user grant.
  5. The method of claim 1, further comprising:
    receiving, from the BS, an indication of a survival time transmission resource pool including a plurality of resources, wherein the plurality of resources includes the first resource.
  6. The method of claim 1, wherein the receiving the first grant comprises:
    receiving, from the BS, the first grant including an indication of a survival time transmission resource pool including a plurality of resources, wherein the plurality of resources includes the first resource.
  7. The method of claim 1, further comprising:
    receiving, from the BS, an indication of the first resource assigned to the UE.
  8. The method of claim 1, wherein:
    the receiving the first grant comprises:
    receiving, from the BS, the first grant including a negative-acknowledgement (NACK) , and
    the transmitting the data packet using the first resource is further in response to the NACK.
  9. The method of claim 1, wherein:
    the receiving the first grant comprises:
    receiving, from the BS, the first grant including a threshold, and
    the transmitting the data packet using the first resource is further based on a first period associated with the survival time satisfying the threshold.
  10. The method of claim 1, wherein the receiving the first grant comprises:
    receiving, from the BS, the first grant including an indicator of whether use of the first resource for a survival time transmission is allowed.
  11. The method of claim 1, wherein:
    a resource pool includes a first portion associated with a last survival time transmission and a second portion associated with a non-last survival time transmission,
    the receiving the first grant comprises:
    receiving, from the BS, the first grant including an indicator of whether use of the first portion of the resource pool is allowed for a non-last survival time transmission attempt.
  12. A method of wireless communication performed by a base stations (BS) , the method comprising:
    transmitting, to a user equipment (UE) , a first grant for transmitting a data packet associated with a survival time; and
    receiving, from the UE based on the first grant, the data packet in a first resource associated with the survival time.
  13. The method of claim 12, wherein the transmitting the first grant comprises:
    transmitting, to a plurality of UEs including the UE, a multi-user grant including a plurality of grants, wherein each grant of the plurality of grants is associated with one of the plurality of UEs, and wherein the plurality of grants includes the first grant.
  14. The method of claim 13, wherein the transmitting the multi-user grant comprises:
    transmitting, in a physical downlink control channel (PDCCH) based on a cell survival time-radio network temporary identifier (C-ST-RNTI) , the multi-user grant.
  15. The method of claim 13, wherein the transmitting the multi-user grant comprises:
    transmitting, in a physical downlink shared channel (PDSCH) , a data block including the multi-user grant.
  16. The method of claim 12, further comprising:
    transmitting, to the UE, an indication of a survival time transmission resource pool including a plurality of resources, wherein the plurality of resources includes the first resource.
  17. The method of claim 12, wherein the transmitting the first grant comprises:
    transmitting, to the UE, the first grant including an indication of a survival time transmission resource pool including a plurality of resources, wherein the plurality of resources includes the first resource.
  18. The method of claim 12, further comprising:
    transmitting, to the UE, an indication of the first resource assigned to the UE.
  19. The method of claim 12, wherein:
    the transmitting the first grant comprises:
    transmitting, to the UE, the first grant including a negative-acknowledgement (NACK) , and
    the receiving the data packet in the first resource is further in response to the NACK.
  20. The method of claim 12, wherein:
    the transmitting the first grant comprises:
    transmitting, to the UE, the first grant including a threshold, and
    the receiving the data packet in the first resource is further based on a first period associated with the survival time satisfying the threshold.
  21. The method of claim 12, wherein the transmitting the first grant comprises:
    transmitting, to the UE, the first grant including an indicator of whether using the first resource for a survival time transmission is allowed.
  22. The method of claim 12, wherein:
    a resource pool includes a first portion associated with a last survival time transmission and a second portion associated with a non-last survival time transmission,
    the transmitting the first grant comprises:
    transmitting, to the UE, the first grant including an indicator of whether use of the first portion of the resource pool is allowed for a non-last survival time transmission attempt.
  23. A user equipment (UE) comprising:
    a processor; and
    a transceiver coupled to the processor, wherein the transceiver is configured to:
    receive, from a base station (BS) , a first grant for transmitting a data packet associated with a survival time; and
    transmit, to the BS based on the first grant, the data packet using a first resource associated with the survival time.
  24. The UE of claim 23, wherein the transceiver configured to receive the first grant is configured to:
    receive, from the BS, a multi-user grant including a plurality of grants, wherein each grant of the plurality of grants is associated with one of a plurality of UEs, wherein the plurality of UEs includes the UE, and wherein the plurality of grants includes the first grant.
  25. The UE of claim 23, wherein the transceiver is further configured to:
    receiving, from the BS, an indication of:
    a survival time transmission resource pool including a plurality of resources, wherein the plurality of resources includes the first resource; or
    the first resource assigned to the UE.
  26. The UE of claim 23, wherein the transceiver configured to receive the first grant is configured to:
    receive, from the BS, the first grant including an indication of a survival time transmission resource pool including a plurality of resources, wherein the plurality of resources includes the first resource.
  27. A base station (BS) comprising:
    a processor; and
    a transceiver coupled to the processor, wherein the transceiver is configured to:
    transmit, to a user equipment (UE) , a first grant for transmitting a data packet associated with a survival time; and
    receive, from the UE based on the first grant, the data packet in a first resource associated with the survival time.
  28. The BS of claim 27, wherein the transceiver configured to transmit the first grant is configured to:
    transmit, to a plurality of UEs including the UE, a multi-user grant including a plurality of grants, wherein each grant of the plurality of grants is associated with one of the plurality of UEs, and wherein the plurality of grants includes the first grant.
  29. The BS of claim 27, wherein the transceiver is further configured to:
    transmit, to the UE, an indication of:
    a survival time transmission resource pool including a plurality of the first resource, wherein the plurality of resources includes the first resource; or
    the first resource assigned to the UE.
  30. The BS of claim 27, wherein the transceiver configured to transmit the first grant is further configured to:
    transmit, to the UE, the first grant including an indication of a survival time transmission resource pool including a plurality of resources, wherein the plurality of resources includes the first resource.
PCT/CN2021/073907 2021-01-27 2021-01-27 Multi-user grant for uplink transmission with survival time requirement WO2022160111A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/073907 WO2022160111A1 (en) 2021-01-27 2021-01-27 Multi-user grant for uplink transmission with survival time requirement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/073907 WO2022160111A1 (en) 2021-01-27 2021-01-27 Multi-user grant for uplink transmission with survival time requirement

Publications (1)

Publication Number Publication Date
WO2022160111A1 true WO2022160111A1 (en) 2022-08-04

Family

ID=82652980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073907 WO2022160111A1 (en) 2021-01-27 2021-01-27 Multi-user grant for uplink transmission with survival time requirement

Country Status (1)

Country Link
WO (1) WO2022160111A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123399A (en) * 2010-01-08 2011-07-13 华为技术有限公司 Scheduling request method and device
CN103037511A (en) * 2011-09-30 2013-04-10 中国移动通信集团公司 Indicating method, system and device for enhancing downlink control channel resources
US10659116B1 (en) * 2019-09-03 2020-05-19 Cisco Technology, Inc. Enabling UL-MU-MIMO with UL-OFDMA
CN112236969A (en) * 2018-06-05 2021-01-15 高通股份有限公司 Opportunistic retransmission scheme based on dynamic reallocation of downlink resources

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123399A (en) * 2010-01-08 2011-07-13 华为技术有限公司 Scheduling request method and device
CN103037511A (en) * 2011-09-30 2013-04-10 中国移动通信集团公司 Indicating method, system and device for enhancing downlink control channel resources
CN112236969A (en) * 2018-06-05 2021-01-15 高通股份有限公司 Opportunistic retransmission scheme based on dynamic reallocation of downlink resources
US10659116B1 (en) * 2019-09-03 2020-05-19 Cisco Technology, Inc. Enabling UL-MU-MIMO with UL-OFDMA

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LENOVO, MOTOROLA MOBILITY: "Enhancements for URLLC in unlicensed controlled environments", 3GPP DRAFT; R2-2009598, vol. RAN WG2, 22 October 2020 (2020-10-22), pages 1 - 8, XP051941320 *

Similar Documents

Publication Publication Date Title
US11272526B2 (en) Efficient operation with unlicensed downlink (DL) and licensed uplink (UL) by transmission of selective DL messages using licensed UL
WO2021087034A1 (en) Reversed sidelink communication initiated by receiving user equipment
US20220103232A1 (en) Transmission reception point (trp)-specific beam failure detection (bfd) reference signal (rs) determination
EP4070598A1 (en) Resource reservation for multiple sidelinks
US11792793B2 (en) Reduced downlink control information (DCI) feedback for semi-persistent scheduling (SPS)
US20220104036A1 (en) Beam group specific medium access control-control element (mac-ce) based beam failure recovery (bfr) requests
US20230164711A1 (en) Bandwidth part assignment in wireless communication systems
WO2022067864A1 (en) Dynamic indication of uplink transmission parameters via configured grant-uci (cg-uci)
US11395334B2 (en) Multiple grant scheduling for hybrid automatic repeat request (HARQ) and random access
US20220231811A1 (en) Multiplexing synchronization signal blocks, control resource set, and system information blocks
US11825293B2 (en) Relations between beam group beam failure recovery and cell level beam failure recovery
WO2021212311A1 (en) Enhanced cg-ul transmission over pusch
WO2021226758A1 (en) Dithering jittered periodic traffic for single uplink configured grant
WO2022160111A1 (en) Multi-user grant for uplink transmission with survival time requirement
WO2022165741A1 (en) Multiple-link routing for time-sensitive communications
WO2022178829A1 (en) Indication of a beam direction associated with a beam application time
WO2022178739A1 (en) Scheduling request (sr) handling for relay-based communications
WO2023019458A1 (en) Beam management for multiple transport block transmission with repetitions
US11863331B2 (en) Determining priorities for a plurality of transport blocks for transmission
WO2022027414A1 (en) Acknowledgement or negative acknowledgement for configured grant uplink communications
US20220369301A1 (en) Common beam direction indication for single-target and multi-target communications
WO2023155042A1 (en) Reference cell and reference timing determination for multiple transmission-reception (multi-trp) communications
WO2023164834A1 (en) Random access channel occasion configurations for random access preamble repetitions
WO2022077449A1 (en) Long physical uplink control channel (pucch) format for multi-slot transmissions
WO2022047687A1 (en) Pdcch based user equipment (ue) channel occupancy time (cot) triggter in frame based equipment (fbe) mode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921731

Country of ref document: EP

Kind code of ref document: A1