WO2022177367A1 - Composition for multiplex detection of target nucleic acid, based on isothermal amplification and fluorescent ring pattern, and detection method using same - Google Patents

Composition for multiplex detection of target nucleic acid, based on isothermal amplification and fluorescent ring pattern, and detection method using same Download PDF

Info

Publication number
WO2022177367A1
WO2022177367A1 PCT/KR2022/002456 KR2022002456W WO2022177367A1 WO 2022177367 A1 WO2022177367 A1 WO 2022177367A1 KR 2022002456 W KR2022002456 W KR 2022002456W WO 2022177367 A1 WO2022177367 A1 WO 2022177367A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
target nucleic
detection
composition
present
Prior art date
Application number
PCT/KR2022/002456
Other languages
French (fr)
Korean (ko)
Inventor
정현정
이하늘
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220016990A external-priority patent/KR20220118316A/en
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2022177367A1 publication Critical patent/WO2022177367A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage

Definitions

  • the present invention relates to a platform technology for detecting a target nucleic acid based on isothermal amplification and a fluorescence ring pattern, and more particularly, a composition for detecting a target nucleic acid comprising a probe for rolling-ring amplification and a fluorescent material bound to the end of a capture DNA; It relates to a kit for detection, a sensor, and a detection method comprising the composition.
  • Infectious diseases account for 25% of global mortality and pose a serious threat.
  • the novel coronavirus pandemic has infected more than 300 million people worldwide, and the death toll has exceeded 5.5 million.
  • the risk of infectious diseases is increasing.
  • the RT-PCR molecular diagnostic method which is used as the gold standard method for diagnosing novel coronavirus, requires expert skill, is labor-intensive, requires expensive equipment from amplification to detection, and is difficult to apply to on-site diagnosis due to its high cost. There are limits.
  • an antibody test method that can be used simply in the field, but the accuracy is significantly lower than that of molecular diagnosis, and there are limitations in that the diagnosis can be made after a certain amount of time has passed after the onset of symptoms.
  • In vitro diagnostic methods that can be used simply in the field have been developed, but most of them are known as methods of detecting two or more of the Orf1ab gene (RdRp gene), S gene, E gene, and N gene of the corona virus by RT-PCR, a molecular diagnostic technology.
  • RdRp gene Orf1ab gene
  • S gene S gene
  • E gene E gene
  • RT-PCR a molecular diagnostic technology.
  • in vitro diagnostic technology using isothermal amplification methods Cas12, 13-based methods, etc. have been developed and used.
  • LAMP loop-mediated isothermal amplification -Mediated amplification
  • isothermal genetic testing has a great advantage in that it is simpler and can specifically identify a target at a low cost compared to the existing RT-PCR platform.
  • isothermal amplification methods such as rolling circle amplification (RCA), loop mediated isothermal amplification (LAMP) and nucleic acid sequence-based amplification (NASBA) have been used to reduce colorimetric and fluorescence It is integrated with various sensing platforms based on
  • the particles in the solution spread radially from the center of the droplet to the edge by capillary action to form a ring pattern. If the moving particle is larger than the size of the pore, it is blocked by the pore, and movement is restricted, and is located close to the center of the circle.
  • the present inventors amplified the target genetic material into a long single-stranded DNA repeating a predetermined sequence using RCA, one of the isothermal amplification methods, and at the same time hybridized the capture DNA-fluorescent material having a complementary sequence to the product. Then, an analysis method was established to determine the presence or absence of a target nucleic acid by observing the shape of a fluorescent ring pattern formed by droplets containing aggregates on paper.
  • the present invention was devised to overcome the limitations of conventional molecular detection and diagnosis methods for target nucleic acids, and the present inventors have developed an analysis method combining the RCA-based isothermal amplification reaction and the difference in driving force according to the size of the material, And it was confirmed that the simple and excellent detection effect without the influence of environmental factors was confirmed, thereby completing the present invention.
  • an object of the present invention is to provide a composition for detecting a target nucleic acid and a target nucleic acid detection sensor or kit comprising the composition.
  • Another object of the present invention is to provide a method for detecting a target nucleic acid using the composition for detection.
  • the present invention provides a probe comprising a nucleic acid sequence complementary to a target nucleic acid; a primer for rolling circle amplification (RCA); And it provides a composition for detecting a target nucleic acid comprising a fluorescent material bound to the end of the capture DNA.
  • the composition may further include a ligase (ligase) and a DNA polymerase.
  • ligase ligase
  • DNA polymerase a DNA polymerase
  • the probe may include a nick.
  • the capture DNA may be complementary to a rolling-circle amplification product.
  • the fluorescent material is fluorescein (FAM), Texas Red (TexasRed), rhodamine, Alexa, cyanine (Cy), BODIPY (BODIPY) ), acetoxymethyl ester (Acetoxymethyl ester), coumarin (coumarin), and may be at least one selected from the group consisting of quantum dots (quantum dot).
  • FAM fluorescein
  • Texas Red TexasRed
  • rhodamine Alexa
  • Cy cyanine
  • BODIPY BODIPY
  • acetoxymethyl ester Acetoxymethyl ester
  • coumarin coumarin
  • quantum dots quantum dots
  • the fluorescent material may have an emission wavelength of 300 to 800 nm.
  • the target may be a bacterium, a virus or a fungus.
  • the bacteria may be methicillin-resistant Staphylococcus aureus (MRSA).
  • MRSA methicillin-resistant Staphylococcus aureus
  • the virus may be SARS-CoV-2.
  • the detection of the target nucleic acid may be made by observing the shape of the fluorescent ring pattern.
  • the target nucleic acid may be plural.
  • the present invention provides a kit for detecting a target nucleic acid comprising the composition for detection.
  • the present invention provides a target nucleic acid detection sensor comprising the composition for detection.
  • the present invention comprises the steps of adding and reacting a biological sample derived from a subject to the composition for detection; Comprising the step of observing the shape of the fluorescent ring pattern after dropping the reaction solution on the filter paper,
  • the reaction solution provides a method for detecting a target nucleic acid, characterized in that the isothermal amplification reaction and the binding reaction of the capture DNA-fluorescent material and the target nucleic acid occur simultaneously.
  • the biological sample may be selected from the group consisting of tissues, organs, cells, whole blood, blood, saliva, sputum, cerebrospinal fluid, and urine.
  • reaction may be carried out for 1 minute or more.
  • the reaction may be carried out at a temperature of 20 to 50 °C.
  • the size of the pores of the filter paper may be 0.01 to 100 ⁇ m.
  • the detection method according to the present invention integrates the isothermal amplification based on the rolling ring amplification and the difference in driving force according to the size of the material.
  • a fluorescent material By using a fluorescent material, multiple detection of one or more target genes is possible using fluorescent materials in various wavelength bands, and by observing the shape of the fluorescent ring pattern, the amplification product-captured DNA aggregate is dropped on filter paper, The presence or absence of the target nucleic acid can be checked immediately without drying time, so there is no need to consider the effect of the drying environment. Therefore, since the detection method of the present invention can be conveniently used for on-site diagnosis at a low cost, it can be used as a rapid genetic test platform to ultimately diagnose infectious diseases and improve patient's disease management through early pathogen detection and efficient monitoring.
  • FIG. 1 shows a schematic diagram of the isothermal amplification gene multiplex detection method of the present invention based on the formation of a fluorescent ring pattern.
  • FIG. 3 shows the fluorescence ring pattern and image analysis results of amplification products-captured DNA aggregates obtained under various conditions. Specifically, FIG. 3a is an image result obtained by varying the fluorescence excitation wavelength, and FIG. The obtained image and the result of quantitative analysis thereof are shown, and FIG. 3C is the image obtained by varying the amplification culture temperature and the result of quantitative analysis thereof.
  • FIG. 4 shows the detection result by the detection method according to the present invention according to the concentration of the target nucleic acid.
  • FIG. 4a is an image result of a fluorescence ring pattern by isothermal amplification and capture DNA-fluorescent material
  • FIG. 4b is the above figure. It is the result of quantitative analysis of the image of 4a.
  • FIG. 5 shows the selectivity results of a fluorescent ring pattern-based detection method by adding a target gene material.
  • FIG. 5a is a target gene (RBD) alone or a non-target gene (RdRp and/or mecA) in a mixed treatment condition Isothermal amplification and capture DNA-image results of the fluorescence ring pattern by the fluorescent material
  • Figure 5b is a result of quantitative analysis of the image of Figure 5a.
  • Figure 6 is for a fluorescence ring pattern-based multiple detection method. Specifically, Figure 6a shows a schematic diagram for this, and Figure 6b is an image of a fluorescence ring pattern that appears when two target genes (RBD, RdRp) are present alone or together. is shown.
  • RdRp target genes
  • FIG. 7 shows the detection results when the composition of the capture DNA-fluorescent material and the Cellulose Nitrate filter paper is applied to the normal filter paper and the capture DNA-quantum dot, respectively, in the detection method according to the present invention.
  • FIG. 7a is isothermal on the general filter paper.
  • the present invention relates to a genetic testing platform technology capable of rapid and simple multiple detection of pathogens with excellent sensitivity and specificity. Specifically, the present invention provides a method for detecting a target nucleic acid through a rolling ring amplification reaction and a binding reaction between a target nucleic acid sequence and a capture DNA-fluorescent material in the amplification product, and whether a fluorescent ring pattern is formed in the resulting reaction solution. it's about how
  • the present invention provides a probe comprising a nucleic acid sequence complementary to a target nucleic acid
  • RCA rolling circle amplification
  • composition for detecting a target nucleic acid comprising a fluorescent material bound to the end of the capture DNA.
  • composition for detection may further include a ligase and a DNA polymerase.
  • target nucleic acid refers to all kinds of nucleic acids to be detected, and gene sequences derived from different species, subspecies, or variants or genes within the same species. may contain mutations.
  • the nucleic acid may be any type of DNA including genomic DNA, mitochondrial DNA, viral DNA, and any type of RNA including mRNA, ribosomal RNA, non-coding RNA, tRNA, viral RNA, and the like, but is not limited thereto. .
  • the target may be preferably a bacterium, a virus, or a fungus, and more preferably, the bacterium may be a methicillin-resistant Staphylococcus aureus (MRSA). And, the virus may be SARS-CoV-2, but is not limited thereto.
  • MRSA methicillin-resistant Staphylococcus aureus
  • probe refers to a nucleic acid capable of specifically binding to mRNA having a length of several bases to several hundreds of bases produced through enzymatic chemical separation and purification or synthesis. Probes can be labeled with radioactive isotopes or enzymes to check the presence or absence of mRNA, and can be designed and modified by a known method.
  • the probe can specifically bind to the target nucleic acid including a nucleic acid sequence complementary to the target nucleic acid to be detected, and includes a nick at the site complementary to the target nucleic acid .
  • the target nucleic acid is complementary to the probe, the 5' end and the 3' end of the nick, which is an open part of the probe, are adjacent to each other, and are linked by a ligase to form a ring.
  • the term "complementary” refers to the ability for correct pairing between two nucleotides. That is, two nucleic acids are considered complementary to each other at that position if a nucleotide at a given position in a nucleic acid can form a hydrogen bond with a nucleotide in another nucleic acid.
  • the degree of complementarity between nucleic acid strands can significantly affect the efficiency and strength of hybridization between nucleic acid strands.
  • the ligase may preferably be a T4 ligase, but is not limited thereto, and as long as it has a function of linking the nick portion of the probe like the T4 ligase, a person skilled in the art may appropriately select and use it. .
  • primer refers to an oligonucleotide synthesized for use in diagnosis, DNA sequencing, etc. as a short gene sequence serving as a starting point of DNA synthesis.
  • the primers can be synthesized and used with a length of typically 15 to 30 base pairs, but may vary depending on the purpose of use, and may be modified by methylation, capping, etc. by a known method.
  • the primer when the target nucleic acid binds to the probe, the primer is connected to the probe to form a circular template, and the DNA polymerase can induce rolling ring amplification using the primer as a starting point.
  • rolling circle amplification refers to a nucleic acid amplification reaction for amplifying a circular nucleic acid template through a rolling circle mechanism.
  • the rolling circle amplification reaction is initiated by hybridization of primers to a circular, often single-stranded, nucleic acid template.
  • the nucleic acid polymerase repeats the sequence of the nucleic acid template by extending the primers hybridized to the original nucleic acid template by proceeding around the original nucleic acid template.
  • Rolling circle amplification typically produces concatemers comprising tandem repeat units of a circular nucleic acid template sequence.
  • the rolling ring amplification can be linear RCA (LRCA), which exhibits linear amplification kinetics (eg, RCA with a single specific primer), or can be exponential RCA (ERCA), which exhibits exponential amplification kinetics.
  • Rolling circle amplification may also be performed using multiple primers to generate hyperbranched concatemers (multiple primed rolling circle amplification or MPRCA).
  • MPRCA multiple primed rolling circle amplification
  • one primer may be complementary to the original nucleic acid template, as in linear RCA, while the other primer may be complementary to the tandem repeat unit nucleic acid sequence of the RCA product.
  • the rolling ring amplification can be carried out under isothermal conditions using a DNA polymerase suitable therefor.
  • the product produced through rolling-circle amplification may be a long single-stranded DNA comprising one or more target nucleic acid sequences and a repeating sequence with spatial and structural margins.
  • the DNA polymerase may be a phi29 DNA polymerase suitable for rolling ring amplification, but is not limited thereto, and if it has a function of performing rolling ring amplification using the nucleic acid sequence of the probe as a template A person skilled in the art can use it by selecting it appropriately.
  • the fluorescent material is bound to the end of one capture DNA, and the capture DNA can complementarily bind to a target nucleic acid sequence in the long single-stranded DNA generated as a result of the rolling circle amplification.
  • One or more of the fluorescent materials may be used simultaneously as long as they have different wavelength bands, and preferably, fluorescein (FAM), Texas Red (TexasRed), rhodamine, Alexa, cyanine; Cy), body P (BODIPY), acetoxymethyl ester (Acetoxymethyl ester), coumarin (coumarin) and may be at least one selected from the group consisting of quantum dots (quantum dot), but is not limited thereto, the capture DNA nucleic acid strand Any known fluorescence emitting material that can be attached to the fluorescence can be used.
  • FAM fluorescein
  • Texas Red TexasRed
  • rhodamine Alexa, cyanine
  • Cy body P
  • BODIPY body P
  • acetoxymethyl ester Acetoxymethyl ester
  • coumarin coumarin
  • Any known fluorescence emitting material that can be attached to the fluorescence can be used.
  • the fluorescent material is 300 to 800 nm, 300 to 700 nm, 300 to 650 nm, 400 to 800 nm, 400 to 700 nm, 400 to 650 nm, 450 to 800 nm, 450 to 700 nm or 450 It may have an emission wavelength of to 650 nm.
  • the fluorescent ring pattern may not be distinguished.
  • the detection method according to the present invention can detect one or more target nucleic acids simply and with high accuracy by observing the shape of the fluorescent ring pattern formed by the droplet (see Example 1).
  • the stronger the fluorescence signal at the center of the droplet is as it has smaller and more uniform pores. It was confirmed that it appeared (see Example 2).
  • the ring more clearly at 254 nm wavelength
  • the pattern was suppressed to obtain a dense fluorescence signal in the center of the droplet, and it was observed that the fluorescence ring pattern was changed even with an amplification incubation time of 5 minutes or more, and it was confirmed that the amplification culture temperature of 37 ° C is most suitable ( see Example 3).
  • the aggregate formed by the isothermal amplification reaction and the binding reaction of the target nucleic acid of the amplification product and the capture DNA-fluorescent material under each treatment condition with different concentrations of the target gene nucleic acid is coated on Cellulose Nitrate filter paper.
  • the formation of a fluorescence ring pattern was suppressed, and it was confirmed that the fluorescence signal located in the center of the circle became stronger as the concentration of the target gene nucleic acid increased (see Example 4).
  • one to three SARS-CoV-2 derived RBD and RdRp genes and one to three mecA genes derived from methicillin-resistant Staphylococcus aureus in order to confirm that the target genetic material is selectively detected even when the target genetic material is not present alone
  • RBD gene as a target nucleic acid and analysis using a capture DNA-fluorescent material
  • the target nucleic acid may be plural.
  • the detection composition comprises probes comprising a nucleic acid sequence complementary to each target nucleic acid, primers for each probe, and each target nucleic acid.
  • Capture DNA complementary to the rolling-ring amplification product of - may include fluorescent materials, and the fluorescent material may be bound to a different fluorescent material for each type of capture DNA.
  • a normal filter paper rather than a Cellulose Nitrate filter paper is used, and as an example of a capture DNA-fluorescent material, a capture prepared using quantum dots known to generate much stronger fluorescence than a general fluorescent material in a narrow wavelength band
  • a capture prepared using quantum dots known to generate much stronger fluorescence than a general fluorescent material in a narrow wavelength band As a result of performing the analysis method of the present invention using DNA-quantum dots, it was confirmed that the fluorescence ring pattern was suppressed by confirming a strong fluorescence signal at the center of the circle when the target nucleic acid was present (see Example 7).
  • the method for detecting a target nucleic acid according to the present invention is a platform technology capable of sensitively and rapidly detecting and diagnosing a target nucleic acid from various samples.
  • the present invention provides a target nucleic acid detection sensor comprising the composition for detection.
  • a target nucleic acid detection sensor comprising the composition for detection.
  • Any sensor technology capable of detecting a target nucleic acid using the composition for detection may be used, and is not particularly limited to the type or characteristic of the sensor technology.
  • the sensor system according to the present invention may be provided in the form of a kit.
  • the kit is a target nucleic acid amplification reaction such as a buffer, a DNA polymerase cofactor, and deoxyribonucleotide-5-triphosphate (dNTP) together with the detection composition (e.g. , polymerase chain reaction) may include all reagents necessary for carrying out the reaction.
  • the optimal amount of reagents to be used in a particular reaction of the kit can be readily determined by one of ordinary skill in the art having the disclosure herein.
  • the present invention comprises the steps of adding and reacting a biological sample derived from a subject to the composition for detection;
  • the reaction solution provides a method for detecting a target nucleic acid, characterized in that the isothermal amplification reaction and the binding reaction of the capture DNA-fluorescent material and the target nucleic acid occur simultaneously.
  • fluorescent ring pattern refers to a ring pattern formed when a solution containing a fluorescent material moves radially by capillary action on paper and the fluorescent material is positioned at the edge of a circle do.
  • the nick portion of the probe is linked by a ligase enzyme by complementary binding between the target nucleic acid and the probe specific for the target nucleic acid of the present invention to form a circular template.
  • rolling circle amplification occurs, leading to repetitive and long single-stranded DNA amplification.
  • Amplification of repetitive sequences is induced indefinitely as long as sufficient dNTPs are supplied, and the amplification product consisting of a sequence complementary to the probe is pushed away by the newly formed product and is separated from the probe as a template, resulting in a fluorescent material bound to it. It forms a single strand of long repeating sequence capable of forming complementary bonds with the capture DNA.
  • Aggregation is induced by the complementary binding of the target nucleic acid sequence and the capture DNA repeatedly present in the long single-stranded DNA.
  • the reaction solution containing the aggregate is dropped on filter paper, the pattern of droplets formed by the fluorescent material bound to the capture DNA can be immediately confirmed by fluorescence, and preferably observed under a UV lamp.
  • the biological sample may be selected from the group consisting of extracorporeally isolated tissues, organs, cells, whole blood, blood, saliva, sputum, cerebrospinal fluid, and urine, and the tissue is, for example, connective, skin, muscle or nerve.
  • Tissues may be included, wherein said organs are, for example, eye, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gallbladder, stomach, small intestine, testis, ovary, uterus, Rectal, nervous system, glandular and internal blood vessels may be included, but the scope of the sample is not limited thereto.
  • the reaction may be carried out for 1 minute or more, specifically for 3 minutes or more, and more specifically for 5 minutes or more.
  • the reaction is performed for less than 1 minute, the reaction does not occur sufficiently so that the fluorescence ring pattern may not be clearly distinguished or observed, and when the reaction is performed for more than 1 minute, the fluorescence ring pattern is clearly distinguished or observed can be
  • the reaction is 20 to 50 °C, 20 to 45 °C, 20 to 40 °C, 25 to 50 °C, 25 to 45 °C, 25 to 40 °C, 30 to 50 °C, 30 to 45 °C or It may be carried out at a temperature of 30 to 40 °C.
  • the reaction When the reaction is performed at a temperature of less than 20° C. or more than 50° C., the reaction may not occur properly, and the fluorescence ring pattern may not be clearly distinguished or observed.
  • the filter paper may preferably be Cellulose Nitrate, but it is not limited thereto because it is possible even when a general filter paper is used.
  • the size of the pores of the filter paper is ok as long as the isothermal amplification product-capture DNA-fluorescent material can move slower than the capture DNA-fluorescent material due to steric hindrance, but it is small enough that the capture DNA-fluorescent material cannot pass through. It shouldn't be the size.
  • the size of the pores of the filter paper is 0.01 to 100 ⁇ m, 0.01 to 50 ⁇ m, 0.01 to 10 ⁇ m, 0.05 to 100 ⁇ m, 0.05 to 50 ⁇ m, 0.05 to 10 ⁇ m, 0.1 to 100 ⁇ m, 0.1 to 50 ⁇ m or 0.1 to 10 ⁇ m.
  • Example 1 Detection of a target nucleic acid through observation of a fluorescent ring pattern shape (FIG. 1)
  • gene-based diagnosis can analyze a small amount of target with high specificity through nucleic acid amplification technology, and the isothermal amplification method is more suitable for a point-of-care diagnostic platform because it can be performed through simple and miniaturized equipment.
  • the present inventors amplify the target genetic material into a long single-stranded DNA repeating a predetermined sequence using one of the isothermal amplification methods, rolling circle amplification (RCA), and at the same time, a sequence complementary to the product
  • RCA rolling circle amplification
  • nick portion of the nucleic acid probe (Padlock probe) including a sequence complementary to the nucleic acid of the target gene is close by binding to the target gene, it is ligated by the T4 ligase enzyme.
  • a circular DNA template is created.
  • the phi29 polymerase Based on this template, starting from the RCA primer under isothermal conditions (37°C), the phi29 polymerase generates a long single-stranded DNA containing multiple copies of the target sequence through unidirectional replication.
  • the amplification product, long single-stranded DNA has a structure in which a specific target sequence is repeated, and at the same time amplified, it is complementarily combined with the capture DNA-fluorescent material to form an amplification product-capture DNA aggregate.
  • -Fluorescent labeling process through binding to fluorescent material is sufficiently completed within 30 minutes.
  • the required volume of the solution containing the aggregates used to observe the fluorescent ring pattern for diagnosis is a small volume of 1-5 ⁇ l, and when this drop is dropped on Cellulose Nitrate filter paper, the solution is transferred from the center of the circle to the edge by capillary action. spread out in a circle If the particles in the solution are larger than the pore size of the filter, they are concentrated in the center of the droplet due to the limitation of the driving force.
  • the amplification product-capture DNA aggregate material having a size of several microns is located in the center of the droplet because it cannot move because it is blocked by the pores, and the capture DNA-fluorescent material moves to the edge of the droplet to form a ring pattern.
  • the shape of the fluorescence ring pattern can be immediately confirmed by the drop dropped on the paper without a separate drying time, so there is an advantage that there is no need to consider the effect of the drying environment.
  • the present inventors predicted that the change in the fluorescence ring pattern would be greater as the pores of uniform and small size became relatively difficult to move, and to confirm this, alpha-cellulose (AC) having pores of 11 ⁇ m or 2.5 ⁇ m And after performing the experiment in the same manner as in Example 1 on Cellulose Nitrate (CN) filter paper having pores of 0.45 ⁇ m or 0.2 ⁇ m in size, the shape of the fluorescence ring pattern was observed and the image was analyzed.
  • AC alpha-cellulose
  • CN Cellulose Nitrate
  • the present inventors tried to determine under what conditions the detection method based on the fluorescence ring pattern is most optimally performed. To this end, the change in the fluorescence ring pattern was observed by varying the excitation wavelength of the fluorescence, the amplification incubation time, and the temperature.
  • the present inventors tried to determine whether the efficiency of the fluorescent ring suppression pattern of the aggregate varies depending on the concentration of the target, based on the results of the above examples.
  • the target nucleic acid was treated with various concentrations (0, 0.1, 0.3, 0.5, 0.8, 1, 5 and 10 pmol) and the shape of the fluorescence ring pattern was observed after performing the experiment in the same manner as in Example 1, and Images were analyzed.
  • a gene encoding a receptor binding domain (RBD) in the spike protein of SARS-CoV-2, an RNA-dependent RNA polymerase (RdRP) gene of SARS-CoV-2, and The mecA gene of methicillin-resistant Staphylococcus aureus (MRSA) was treated with the RBD gene alone, two genes, or three genes, and the RBD gene was used as a target nucleic acid for analysis using a capture DNA-fluorescent material.
  • the present inventors believe that, since the detection method of the present invention uses a method of measuring a pattern of a fluorescence signal, multiplex analysis targeting multiple genes is possible by using a capture DNA-fluorescent material using a fluorescent material in various wavelength bands. expected.
  • a specific target material is amplified and labeled by one nucleic acid probe (Padlock probe) and a capture DNA-fluorescent material set corresponding thereto, so that different target gene materials (RBD, RdRP and mecA) Multiple analysis was performed using a nucleic acid probe having a different sequence to bind to a gene) and a capture DNA-fluorescent material of emission (520 nm and 610 nm) of a different wavelength band.
  • Example 7 Detection of a target nucleic acid through observation of a fluorescence ring pattern under conditions using quantum dots or AC filter paper
  • the present inventors determined the shape of the fluorescent ring pattern when using AC filter paper instead of Cellulose Nitrate (CN) filter paper in the method for detecting a target nucleic acid according to the present invention, and when using quantum dots instead of general fluorescent material as capture-DNA fluorescent material
  • CN Cellulose Nitrate
  • the RCA isothermal amplification reaction was performed in the same manner as in Example 1 by treating the target nucleic acid at various concentrations (0, 0.01, 0.05, 0.1, 0.5, 1, 3, 5, 10, 50 and 100 pmol).
  • a drop of the aggregate was dropped on general filter paper and the shape of the fluorescent ring pattern was observed.

Abstract

The present invention relates to a platform technology for target nucleic acid detection, based on isothermal amplification and a fluorescent ring pattern, and, more particularly, to: a composition for target nucleic acid detection, comprising a probe for rolling circle amplification and a fluorescent substance bound to the end of capture DNA; and a detection kit, a sensor and a detection method comprising same. A detection method according to the present invention integrates rolling-circle-amplification-based isothermal amplification and a difference in driving power according to substance size, and enables only a target nucleic acid to be specifically detected with high sensitivity even for a very small amount of a target nucleic acid in a picomole unit, uses capture DNA-fluorescent substances to use fluorescent substances of various wavelengths, and thus enable the multiplex detection of one or more target genes, and enables immediate identification of the presence of the target nucleic acid by observing the shape of formed fluorescence ring patterns without extra equipment and drying time after dropping an amplification product-capture DNA aggregate onto filter paper, and thus the effects of a dry environment do not need to be taken into consideration. Therefore, the detection method of the present invention can be easily used in onsite diagnosis at low cost, so as to be ultimately usable as a rapid gene test platform in the diagnosis of infectious diseases and improvement of patient disease control through early pathogen detection and efficient monitoring.

Description

등온증폭 및 형광 링 패턴에 기반한 표적 핵산의 다중 검출용 조성물 및 이를 이용한 검출방법Composition for multiple detection of target nucleic acid based on isothermal amplification and fluorescence ring pattern and detection method using same
본 발명은 등온증폭 및 형광 링 패턴에 기반한 표적 핵산 검출용 플랫폼 기술에 관한 것으로, 보다 구체적으로는 회전환 증폭을 위한 프로브 및 캡처 DNA의 말단에 결합된 형광 물질을 포함하는 표적 핵산 검출용 조성물, 상기 조성물을 포함하는 검출용 키트, 센서 및 검출방법에 관한 것이다.The present invention relates to a platform technology for detecting a target nucleic acid based on isothermal amplification and a fluorescence ring pattern, and more particularly, a composition for detecting a target nucleic acid comprising a probe for rolling-ring amplification and a fluorescent material bound to the end of a capture DNA; It relates to a kit for detection, a sensor, and a detection method comprising the composition.
감염성 질환 (infectious diseases)은 전 세계 사망률의 25%를 차지하며 심각한 위협이 되고 있다. 2022년 1월 현재까지 신종 코로나바이러스 팬데믹 현상으로 전 세계 3억 명 이상이 감염되고, 사망자는 550만 명을 넘었으며, 최근 오미크론 변이까지 다양한 변이 바이러스의 출현으로 감염 전파 속도가 더욱 확산되는 등 감염병의 위험이 더욱 커지고 있는 상황이다. Infectious diseases account for 25% of global mortality and pose a serious threat. As of January 2022, the novel coronavirus pandemic has infected more than 300 million people worldwide, and the death toll has exceeded 5.5 million. The risk of infectious diseases is increasing.
신종 코로나바이러스 진단의 gold standard 방법으로 사용되고 있는 RT-PCR 분자진단법은 전문가의 숙련된 기술이 필요하며, 노동집약적이고, 증폭에서 감지까지 고가의 장비가 필요하며 비용이 커서 현장진단에 적용하기 어렵다는 본질적인 한계가 있다. 또한 현장에서 간단히 사용 가능한 항체 검사법이 있으나, 이는 정확도가 분자진단에 비해 현저히 떨어지고, 증상 발현 후, 어느 정도 시간이 지난 뒤 진단이 가능하다는 한계점이 존재한다.The RT-PCR molecular diagnostic method, which is used as the gold standard method for diagnosing novel coronavirus, requires expert skill, is labor-intensive, requires expensive equipment from amplification to detection, and is difficult to apply to on-site diagnosis due to its high cost. There are limits. In addition, there is an antibody test method that can be used simply in the field, but the accuracy is significantly lower than that of molecular diagnosis, and there are limitations in that the diagnosis can be made after a certain amount of time has passed after the onset of symptoms.
현장에서 간단히 사용 가능한 체외 진단법도 개발되어 있으나, 대부분이 분자진단 기술인 RT-PCR로 코로나 바이러스의 Orf1ab gene (RdRp gene), S gene, E gene, N gene중 2가지 이상을 검출하는 방법으로 알려져 있다. 반면에, RT-PCR이 가지고 있는 한계를 극복하기 위해서 등온증폭 방법, Cas12, 13 기반 방법 등을 이용하는 체외 진단 기술을 개발하여 사용하고 있으며, 최근에는 등온증폭 방법 중 하나인 고리 매개 등온증폭 (Loop-mediated amplification, LAMP)을 기반으로 하는 신종 코로나바이러스의 자가진단 올인원 키트 'Lucira COVID-19 All-In-One Test Kit'가 최초로 FDA 긴급 승인을 받은 바 있다.In vitro diagnostic methods that can be used simply in the field have been developed, but most of them are known as methods of detecting two or more of the Orf1ab gene (RdRp gene), S gene, E gene, and N gene of the corona virus by RT-PCR, a molecular diagnostic technology. . On the other hand, in order to overcome the limitations of RT-PCR, in vitro diagnostic technology using isothermal amplification methods, Cas12, 13-based methods, etc. have been developed and used. Recently, one of the isothermal amplification methods, loop-mediated isothermal amplification -Mediated amplification (LAMP)-based self-diagnosis all-in-one kit 'Lucira COVID-19 All-In-One Test Kit' has received emergency FDA approval for the first time.
이처럼 현재까지 뚜렷한 치료제가 개발되지 않았고, 시간이 지날수록 항체 생성륭이 감소하고, 변이바이러스에 대응하기 어려운 백신의 한계점 때문에 신종 코로나바이러스에 대항하기 위해 신속한 진단으로 감염원을 파악하여 전염 경로를 차단하는 방안이 가장 효율적이므로, 신속하고 정확하게 표적 유전자 물질을 검출하는 분자진단 기술이 필요하다. 또한, 신종 코로나 바이러스의 경우 무증상 감염자의 비율이 높고, 무증상임에도 바이러스 전파 능력이 뛰어나 최대한 사람들 간의 접촉을 줄이기 위하여 자가진단을 할 수 있도록 간단하고, 저렴한 진단 키트의 개발이 무엇보다 중요하다.As such, no clear treatment has been developed so far, the production of antibodies decreases over time, and the limitations of vaccines that are difficult to respond to mutated viruses. Since this method is the most efficient, a molecular diagnostic technology that detects a target genetic material quickly and accurately is required. In addition, in the case of the novel coronavirus, the rate of asymptomatic infection is high, and even though it is asymptomatic, it has excellent virus transmission ability, so it is of utmost importance to develop a simple and inexpensive diagnostic kit that allows self-diagnosis to reduce contact between people as much as possible.
한편, 등온 유전자 검사는 기존 RT-PCR 플랫폼에 비해 더욱 간단하며 적은 비용으로 표적을 특이적으로 식별할 수 있는 큰 이점을 갖는다. 이전에는 회전환 증폭 (rolling circle amplification; RCA), 고리 매개 등온증폭 (loop mediated isothermal amplification; LAMP) 및 핵산 서열 기반 증폭 (nucleic acid sequence-based amplification; NASBA)과 같은 등온증폭 방법이 비색계 및 형광을 기반으로 하는 다양한 감지 플랫폼과 통합되었다.On the other hand, isothermal genetic testing has a great advantage in that it is simpler and can specifically identify a target at a low cost compared to the existing RT-PCR platform. Previously, isothermal amplification methods such as rolling circle amplification (RCA), loop mediated isothermal amplification (LAMP) and nucleic acid sequence-based amplification (NASBA) have been used to reduce colorimetric and fluorescence It is integrated with various sensing platforms based on
기공이 존재하는 종이 상에 용액을 떨어뜨리면 모세관 현상에 의해 용액 내 입자가 액적의 중앙에서 가장자리로, 방사형으로 퍼져 링 패턴을 형성한다. 이동하는 입자가 기공의 크기보다 큰 경우, 기공에 가로막혀 이동이 제한되어 원의 중앙에 가깝게 위치한다. 종이의 기공 크기를 더 작고 균일하게 조성하고, 입자의 크기를 조절함으로써 액적 내 입자 물질이 형성하는 링 패턴을 억제할 수 있다.When a solution is dropped on a paper with pores, the particles in the solution spread radially from the center of the droplet to the edge by capillary action to form a ring pattern. If the moving particle is larger than the size of the pore, it is blocked by the pore, and movement is restricted, and is located close to the center of the circle. By making the pore size of the paper smaller and uniform and controlling the size of the particles, it is possible to suppress the ring pattern formed by the particle material in the droplet.
이에, 본 발명자들은 등온증폭 방법 중 하나인 RCA를 이용하여 표적 유전자 물질을 일정 서열을 반복하는 긴 단일 가닥의 DNA로 증폭시키는 것과 동시에, 그 산물에 상보적 서열을 갖는 캡처 DNA-형광 물질을 혼성화하고, 응집물이 포함된 액적이 종이상에서 형성하는 형광 링 패턴의 모양을 관찰하여 표적 핵산의 유무를 판단하는 분석법을 확립하였다.Accordingly, the present inventors amplified the target genetic material into a long single-stranded DNA repeating a predetermined sequence using RCA, one of the isothermal amplification methods, and at the same time hybridized the capture DNA-fluorescent material having a complementary sequence to the product. Then, an analysis method was established to determine the presence or absence of a target nucleic acid by observing the shape of a fluorescent ring pattern formed by droplets containing aggregates on paper.
본 발명은 종래 표적 핵산에 대한 분자적 검출 및 진단 방법의 한계점을 극복하기 위해 안출된 것으로서, 본 발명자들은 RCA 기반 등온증폭 반응과 물질의 크기에 따른 구동력 차이를 접목시킨 분석 방법을 개발하였고, 신속하고 간단하면서도 환경적 요인의 영향 없이 우수한 검출효과를 나타냄을 확인하였는바, 이로써 본 발명을 완성하였다.The present invention was devised to overcome the limitations of conventional molecular detection and diagnosis methods for target nucleic acids, and the present inventors have developed an analysis method combining the RCA-based isothermal amplification reaction and the difference in driving force according to the size of the material, And it was confirmed that the simple and excellent detection effect without the influence of environmental factors was confirmed, thereby completing the present invention.
이에, 본 발명은 표적 핵산의 검출용 조성물 및 상기 조성물을 포함하는 표적 핵산 검출 센서 또는 키트를 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a composition for detecting a target nucleic acid and a target nucleic acid detection sensor or kit comprising the composition.
또한, 본 발명은 상기 검출용 조성물을 이용한 표적 핵산의 검출방법을 제공하는 것을 다른 목적으로 한다.Another object of the present invention is to provide a method for detecting a target nucleic acid using the composition for detection.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 표적 핵산과 상보적인 핵산서열을 포함하는 프로브 (probe); 회전환 증폭(rolling circle amplification; RCA)을 위한 프라이머 (primer); 및 캡처 DNA의 말단에 결합된 형광 물질을 포함하는, 표적 핵산 검출용 조성물을 제공한다.In order to achieve the object of the present invention as described above, the present invention provides a probe comprising a nucleic acid sequence complementary to a target nucleic acid; a primer for rolling circle amplification (RCA); And it provides a composition for detecting a target nucleic acid comprising a fluorescent material bound to the end of the capture DNA.
본 발명의 일 구현예로, 상기 조성물은 리가아제 (ligase) 및 DNA 중합효소를 더 포함할 수 있다. In one embodiment of the present invention, the composition may further include a ligase (ligase) and a DNA polymerase.
본 발명의 다른 구현예로, 상기 프로브는 닉(nick)을 포함하는 것일 수 있다.In another embodiment of the present invention, the probe may include a nick.
본 발명의 또 다른 구현예로, 상기 캡처 DNA는 회전환 증폭 산물과 상보적으로 결합하는 것일 수 있다.In another embodiment of the present invention, the capture DNA may be complementary to a rolling-circle amplification product.
본 발명의 또 다른 구현예로, 상기 형광 물질은 플루오레신(fluorescein; FAM), 텍사스레드(TexasRed), 로다민(rhodamine), 알렉사(alexa), 시아닌(cyanine; Cy), 보디피(BODIPY), 아세톡시메틸 에스터(Acetoxymethyl ester), 쿠마린(coumarin) 및 양자점(quantum dot)으로 이루어진 군에서 선택되는 하나 이상인 것일 수 있다.In another embodiment of the present invention, the fluorescent material is fluorescein (FAM), Texas Red (TexasRed), rhodamine, Alexa, cyanine (Cy), BODIPY (BODIPY) ), acetoxymethyl ester (Acetoxymethyl ester), coumarin (coumarin), and may be at least one selected from the group consisting of quantum dots (quantum dot).
본 발명의 또 다른 구현예로, 상기 형광 물질은 300 내지 800 nm의 방출(emission) 파장을 갖는 것일 수 있다.In another embodiment of the present invention, the fluorescent material may have an emission wavelength of 300 to 800 nm.
본 발명의 또 다른 구현예로, 상기 표적은 박테리아, 바이러스 또는 진균일 수 있다.In another embodiment of the present invention, the target may be a bacterium, a virus or a fungus.
본 발명의 또 다른 구현예로, 상기 박테리아는 메티실린 내성 포도상구균 (methicillin-resistant Staphylococcus aureus; MRSA)일 수 있다.In another embodiment of the present invention, the bacteria may be methicillin-resistant Staphylococcus aureus (MRSA).
본 발명의 또 다른 구현예로, 상기 바이러스는 SARS-CoV-2일 수 있다.In another embodiment of the present invention, the virus may be SARS-CoV-2.
본 발명의 또 다른 구현예로, 상기 표적 핵산의 검출은 형광 링 패턴의 모양을 관찰함으로써 이루어지는 것일 수 있다.In another embodiment of the present invention, the detection of the target nucleic acid may be made by observing the shape of the fluorescent ring pattern.
본 발명의 또 다른 구현예로, 상기 표적 핵산은 복수 개인 것일 수 있다.In another embodiment of the present invention, the target nucleic acid may be plural.
또한, 본 발명은 상기 검출용 조성물을 포함하는, 표적 핵산 검출용 키트를 제공한다.In addition, the present invention provides a kit for detecting a target nucleic acid comprising the composition for detection.
또한, 본 발명은 상기 검출용 조성물을 포함하는, 표적 핵산 검출 센서를 제공한다.In addition, the present invention provides a target nucleic acid detection sensor comprising the composition for detection.
또한, 본 발명은 피검자 유래 생물학적 시료를 상기 검출용 조성물에 첨가하고 반응시키는 단계; 상기 반응 용액을 필터 종이 위에 떨어뜨린 후 형광 링 패턴의 모양을 관찰하는 단계를 포함하되,In addition, the present invention comprises the steps of adding and reacting a biological sample derived from a subject to the composition for detection; Comprising the step of observing the shape of the fluorescent ring pattern after dropping the reaction solution on the filter paper,
상기 반응 용액은 등온증폭 반응 및 캡처 DNA-형광 물질과 표적 핵산의 결합반응이 동시에 일어난 것을 특징으로 하는, 표적 핵산의 검출방법을 제공한다.The reaction solution provides a method for detecting a target nucleic acid, characterized in that the isothermal amplification reaction and the binding reaction of the capture DNA-fluorescent material and the target nucleic acid occur simultaneously.
본 발명의 일구현예로, 상기 생물학적 시료는 조직, 기관, 세포, 전혈, 혈액, 타액, 객담, 뇌척수액 및 뇨로 구성된 군에서 선택되는 것일 수 있다.In one embodiment of the present invention, the biological sample may be selected from the group consisting of tissues, organs, cells, whole blood, blood, saliva, sputum, cerebrospinal fluid, and urine.
본 발명의 다른 구현예로, 상기 반응은 1분 이상 수행되는 것일 수 있다.In another embodiment of the present invention, the reaction may be carried out for 1 minute or more.
본 발명의 또 다른 구현예로, 상기 반응은 20 내지 50℃의 온도에서 수행되는 것일 수 있다.In another embodiment of the present invention, the reaction may be carried out at a temperature of 20 to 50 ℃.
본 발명의 또 다른 구현예로, 상기 필터 종이의 기공의 크기는 0.01 내지 100 μm인 것일 수 있다.In another embodiment of the present invention, the size of the pores of the filter paper may be 0.01 to 100 μm.
본 발명에 따른 검출방법은 회전환 증폭 기반 등온증폭과 물질의 크기에 따른 구동력 차이를 통합한 것으로, picomole 단위의 미량의 표적 핵산에 대해서도 고감도로 표적 핵산만을 특이적으로 검출할 수 있고, 캡처 DNA-형광 물질을 이용함으로써 다양한 파장대의 형광물질을 사용하여 하나 이상의 표적 유전자에 대한 다중검출이 가능하며, 형광 링 패턴의 모양을 관찰함으로써 증폭산물-캡처 DNA 응집물을 필터 종이 위에 떨어뜨리고 별도의 장비 및 건조 시간 없이 바로 표적 핵산의 존재 유무를 확인할 수 있어 건조 환경의 영향을 고려할 필요가 없다. 이에, 본 발명의 검출방법은 저렴한 비용으로 간편하게 현장 진단에 이용 가능하므로, 신속한 유전자 검사 플랫폼으로써 조기 병원체 검출 및 효율적인 모니터링을 통해 궁극적으로 감염병 진단 및 환자의 질병 관리를 개선하는데 활용될 수 있다.The detection method according to the present invention integrates the isothermal amplification based on the rolling ring amplification and the difference in driving force according to the size of the material. - By using a fluorescent material, multiple detection of one or more target genes is possible using fluorescent materials in various wavelength bands, and by observing the shape of the fluorescent ring pattern, the amplification product-captured DNA aggregate is dropped on filter paper, The presence or absence of the target nucleic acid can be checked immediately without drying time, so there is no need to consider the effect of the drying environment. Therefore, since the detection method of the present invention can be conveniently used for on-site diagnosis at a low cost, it can be used as a rapid genetic test platform to ultimately diagnose infectious diseases and improve patient's disease management through early pathogen detection and efficient monitoring.
도 1은 형광 링 패턴 형성에 기반한 본 발명의 등온증폭 유전자 다중 검출법에 대한 모식도를 나타낸 것이다.1 shows a schematic diagram of the isothermal amplification gene multiplex detection method of the present invention based on the formation of a fluorescent ring pattern.
도 2는 다양한 기공 크기의 종이 필터에서 관찰한 증폭 산물-캡쳐 DNA응집물이 형성하는 형광 링 패턴 양상과 이미지 분석 결과를 나타낸 것이다.2 shows the fluorescence ring pattern pattern and image analysis results formed by the amplification product-captured DNA aggregate observed in paper filters of various pore sizes.
도 3은 다양한 조건에서 얻은 증폭 산물-캡쳐 DNA응집물의 형광 링 패턴 및 이미지 분석 결과를 나타낸 것으로서, 구체적으로 도 3a는 형광 여기 파장을 다르게 하여 얻은 이미지 결과이고, 도 3b는 증폭 배양 시간을 다르게 하여 얻은 이미지와 이를 정량적으로 분석한 결과이며, 도 3c는 증폭 배양 온도를 다르게 하여 얻은 이미지와 이를 정량적으로 분석한 결과이다.3 shows the fluorescence ring pattern and image analysis results of amplification products-captured DNA aggregates obtained under various conditions. Specifically, FIG. 3a is an image result obtained by varying the fluorescence excitation wavelength, and FIG. The obtained image and the result of quantitative analysis thereof are shown, and FIG. 3C is the image obtained by varying the amplification culture temperature and the result of quantitative analysis thereof.
도 4는 표적 핵산의 농도에 따라 본 발명에 따른 검출법에 의한 검출 결과를 나타낸 것으로서, 구체적으로 도 4a는 등온증폭 및 캡처 DNA-형광 물질에 의한 형광 링 패턴의 이미지 결과이고, 도 4b는 상기 도 4a의 이미지를 정량적으로 분석한 결과이다. 4 shows the detection result by the detection method according to the present invention according to the concentration of the target nucleic acid. Specifically, FIG. 4a is an image result of a fluorescence ring pattern by isothermal amplification and capture DNA-fluorescent material, and FIG. 4b is the above figure. It is the result of quantitative analysis of the image of 4a.
도 5는 표적 유전자 물질 첨가에 의한 형광 링 패턴 기반 검출법의 선택성 결과를 나타낸 것으로서, 구체적으로 도 5a는 표적 유전자(RBD)가 단독 또는 비표적 유전자(RdRp 및/또는 mecA)와 혼합 처리된 조건에서 등온증폭 및 캡처 DNA-형광 물질에 의한 형광 링 패턴의 이미지 결과이고, 도 5b는 상기 도 5a의 이미지를 정량적으로 분석한 결과이다. 5 shows the selectivity results of a fluorescent ring pattern-based detection method by adding a target gene material. Specifically, FIG. 5a is a target gene (RBD) alone or a non-target gene (RdRp and/or mecA) in a mixed treatment condition Isothermal amplification and capture DNA-image results of the fluorescence ring pattern by the fluorescent material, Figure 5b is a result of quantitative analysis of the image of Figure 5a.
도 6은 형광 링 패턴 기반의 다중 검출법에 대한 것으로서, 구체적으로 도 6a는 이에 대한 모식도를 나타낸 것이고, 도 6b는 2가지 표적 유전자(RBD, RdRp)가 단독 혹은 함께 존재할 때 나타나는 형광 링 패턴의 이미지를 나타낸 것이다.Figure 6 is for a fluorescence ring pattern-based multiple detection method. Specifically, Figure 6a shows a schematic diagram for this, and Figure 6b is an image of a fluorescence ring pattern that appears when two target genes (RBD, RdRp) are present alone or together. is shown.
도 7은 본 발명에 따른 검출법에서 캡처 DNA-형광 물질 및 Cellulose Nitrate 필터 종이 구성을 각각 일반 필터 종이 및 캡처 DNA-양자점으로 적용한 경우의 검출 결과를 나타낸 것으로서, 구체적으로 도 7a는 일반 필터 종이 위에서 등온증폭 및 캡처 DNA-형광 물질의 응집물이 가지는 형광 링 패턴의 이미지와 이를 정랑적으로 분석한 결과이고, 도 7b는 일반 필터 종이 위에서 등온증폭 및 캡처 DNA-양자점이 가지는 형광 링 패턴의 이미지와 이를 정랑적으로 분석한 결과이다.7 shows the detection results when the composition of the capture DNA-fluorescent material and the Cellulose Nitrate filter paper is applied to the normal filter paper and the capture DNA-quantum dot, respectively, in the detection method according to the present invention. Specifically, FIG. 7a is isothermal on the general filter paper. The image of the fluorescence ring pattern of the aggregate of the amplified and captured DNA-fluorescent material and the result of an orthogonal analysis thereof. It is the result of an objective analysis.
본 발명은 우수한 민감도와 특이성으로 신속하고 간편하게 병원체의 다중검출이 가능한 유전자 검사 플랫폼 기술에 관한 것이다. 구체적으로, 본 발명은 회전환 증폭 반응, 및 증폭 산물 내 표적 핵산 서열과 캡처 DNA-형광 물질의 결합반응이 동시에 일어나며, 이를 통해 생성된 반응 용액의 형광 링 패턴 형성 여부를 통해 표적 핵산을 검출하는 방법에 관한 것이다.The present invention relates to a genetic testing platform technology capable of rapid and simple multiple detection of pathogens with excellent sensitivity and specificity. Specifically, the present invention provides a method for detecting a target nucleic acid through a rolling ring amplification reaction and a binding reaction between a target nucleic acid sequence and a capture DNA-fluorescent material in the amplification product, and whether a fluorescent ring pattern is formed in the resulting reaction solution. it's about how
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 표적 핵산과 상보적인 핵산서열을 포함하는 프로브 (probe);The present invention provides a probe comprising a nucleic acid sequence complementary to a target nucleic acid;
회전환 증폭(rolling circle amplification; RCA)을 위한 프라이머 (primer); 및a primer for rolling circle amplification (RCA); and
캡처 DNA의 말단에 결합된 형광 물질을 포함하는, 표적 핵산 검출용 조성물을 제공한다.Provided is a composition for detecting a target nucleic acid comprising a fluorescent material bound to the end of the capture DNA.
또한, 상기 검출용 조성물은 리가아제 (ligase) 및 DNA 중합효소를 더 포함할 수 있다.In addition, the composition for detection may further include a ligase and a DNA polymerase.
본 발명에서 사용되는 용어, "표적 핵산"은 검출하고자 하는 모든 종류의 핵산을 의미하며, 서로 다른 종 (species), 아종 (subspecies), 또는 변종 (variant) 유래의 유전자 염기서열 또는 동일한 종 내 유전자 돌연변이를 포함할 수 있다. 상기 핵산은 genomic DNA, mitochondrial DNA, viral DNA를 포함하는 모든 종류의 DNA, 및 mRNA, ribosomal RNA, non-coding RNA, tRNA, viral RNA 등을 포함하는 모든 종류의 RNA일 수 있으며, 이에 제한되지 않는다.As used herein, the term “target nucleic acid” refers to all kinds of nucleic acids to be detected, and gene sequences derived from different species, subspecies, or variants or genes within the same species. may contain mutations. The nucleic acid may be any type of DNA including genomic DNA, mitochondrial DNA, viral DNA, and any type of RNA including mRNA, ribosomal RNA, non-coding RNA, tRNA, viral RNA, and the like, but is not limited thereto. .
본 발명에 있어서, 상기 표적은 바람직하게 박테리아 (Bacteria), 바이러스 (Virus) 또는 진균 (Fungus)일 수 있으며, 더욱 바람직하게 상기 박테리아는 메티실린 내성 포도상구균 (methicillin-resistant Staphylococcus aureus; MRSA)일 수 있고, 상기 바이러스는 SARS-CoV-2일 수 있으나, 이것으로 제한되는 것은 아니다.In the present invention, the target may be preferably a bacterium, a virus, or a fungus, and more preferably, the bacterium may be a methicillin-resistant Staphylococcus aureus (MRSA). And, the virus may be SARS-CoV-2, but is not limited thereto.
본 발명에서 사용되는 용어, "프로브 (Probe)"란 효소 화학적인 분리정제 또는 합성과정을 거쳐 제작된 수 염기 내지 수백 염기 길이의 mRNA와 특이적으로 결합할 수 있는 핵산을 의미한다. 프로브는 방사성 동위원소나 효소 등을 표지하여 mRNA의 존재 유무를 확인할 수 있으며, 공지된 방법으로 디자인하고 변형시켜 사용할 수 있다.As used herein, the term “probe” refers to a nucleic acid capable of specifically binding to mRNA having a length of several bases to several hundreds of bases produced through enzymatic chemical separation and purification or synthesis. Probes can be labeled with radioactive isotopes or enzymes to check the presence or absence of mRNA, and can be designed and modified by a known method.
본 발명에 있어서, 상기 프로브는 검출하고자 하는 표적 핵산과 상보적인 핵산서열을 포함하여 상기 표적 핵산에 특이적으로 결합할 수 있으며, 표적 핵산과 상보적으로 결합하는 부위에 닉 (nick)을 포함한다. 표적 핵산이 프로브와 상보적으로 결합하면 상기 프로브의 열려있는 부분인 닉의 5' 말단과 3' 말단이 인접하게 되고, 연결 효소 (ligase)에 의해 연결되어 환형을 이루게 된다.In the present invention, the probe can specifically bind to the target nucleic acid including a nucleic acid sequence complementary to the target nucleic acid to be detected, and includes a nick at the site complementary to the target nucleic acid . When the target nucleic acid is complementary to the probe, the 5' end and the 3' end of the nick, which is an open part of the probe, are adjacent to each other, and are linked by a ligase to form a ring.
본 발명에서 사용되는 용어, "상보적인"은 2개의 뉴클레오티드 사이의 정확한 쌍형성에 대한 능력을 지칭한다. 즉, 핵산의 주어진 위치에서 뉴클레오티드가 다른 핵산의 뉴클레오티드와 수소 결합을 형성할 수 있다면, 2개의 핵산은 그 위치에서 서로 상보적인 것으로 여겨진다. 핵산 가닥 사이의 상보성의 정도는 핵산 가닥 사이의 혼성화의 효율 및 강도에 상당한 영향을 미칠 수 있다.As used herein, the term "complementary" refers to the ability for correct pairing between two nucleotides. That is, two nucleic acids are considered complementary to each other at that position if a nucleotide at a given position in a nucleic acid can form a hydrogen bond with a nucleotide in another nucleic acid. The degree of complementarity between nucleic acid strands can significantly affect the efficiency and strength of hybridization between nucleic acid strands.
본 발명에 있어서, 상기 리가아제는 바람직하게 T4 리가아제일 수 있으나, 이것으로 제한되는 것은 아니며 상기 T4 리가아제와 같이 상기 프로브의 닉 부분을 연결하는 기능을 갖는 것이라면 당업자가 적절히 선택하여 이용할 수 있다.In the present invention, the ligase may preferably be a T4 ligase, but is not limited thereto, and as long as it has a function of linking the nick portion of the probe like the T4 ligase, a person skilled in the art may appropriately select and use it. .
본 발명에서 사용되는 용어, "프라이머 (primer)"란 DNA 합성의 기시점이 되는 짧은 유전자 서열로서, 진단, DNA 시퀀싱 등에 이용할 목적으로 합성된 올리고뉴클레오타이드를 의미한다. 상기 프라이머들은 통상적으로 15 내지 30 염기쌍의 길이로 합성하여 사용할 수 있으나, 사용 목적에 따라 달라질 수 있으며, 공지된 방법으로 메틸화, 캡화 등으로 변형시킬 수 있다.As used herein, the term “primer” refers to an oligonucleotide synthesized for use in diagnosis, DNA sequencing, etc. as a short gene sequence serving as a starting point of DNA synthesis. The primers can be synthesized and used with a length of typically 15 to 30 base pairs, but may vary depending on the purpose of use, and may be modified by methylation, capping, etc. by a known method.
본 발명에 있어서, 상기 프라이머는 표적 핵산이 프로브에 결합하면 프로브가 연결되어 환형의 주형을 형성하게 되고 DNA 중합효소가 상기 프라이머를 기시점으로 하여 회전환 증폭이 유도될 수 있다.In the present invention, when the target nucleic acid binds to the probe, the primer is connected to the probe to form a circular template, and the DNA polymerase can induce rolling ring amplification using the primer as a starting point.
본 발명에서 사용되는 용어, "회전환 증폭 (rolling circle amplification; RCA)"이란 롤링 서클 메커니즘을 통한 원형 핵산 주형을 증폭하는 핵산 증폭 반응을 의미한다. 회전환 증폭 반응은 원형의, 흔히 단일 가닥인 핵산 주형에 대한 프라이머의 혼성화에 의해 개시된다. 다음으로, 핵산 중합효소는 원형 핵산 주형 주위로 계속하여 진행함으로써 원형 핵산 주형에 혼성화된 프라이머를 확장하여 핵산 주형의 서열을 반복하여 복제한다. 회전환 증폭은 원형 핵산 주형 서열의 탠덤 (tandem) 반복 유닛을 포함하는 콘카테머를 통상적으로 생성한다. 회전환 증폭은 선형 증폭 동역학을 나타내는 선형 RCA (LRCA)(예컨대, 단일 특이적 프라이머를 사용한 RCA)일 수 있거나, 또는 지수형 증폭 동역학을 나타내는 지수형 RCA (ERCA)일 수 있다. 회전환 증폭은 또한, 과분지된 콘카테머를 생성하도록 복수의 프라이머를 사용하여 수행될 수도 있다(복수회 프라이밍된 롤링 서클 증폭 또는 MPRCA). 예컨대, 이중 프라이밍된 RCA에서, 하나의 프라이머는 선형 RCA에서와 같이 원형 핵산 주형에 상보적일 수 있는 반면, 다른 프라이머는 RCA 생성물의 탠덤 반복 유닛 핵산 서열에 상보적일 수 있다. 회전환 증폭은 이에 적합한 DNA 중합효소를 사용하여 등온 조건 하에서 수행될 수 있다. 본 발명에 있어서, 회전환 증폭을 통해 생성된 산물은 하나 이상의 표적 핵산 서열 및 공간적 구조적 여유가 있는 반복 서열을 포함하는 긴 단일 가닥의 DNA일 수 있다.As used herein, the term "rolling circle amplification (RCA)" refers to a nucleic acid amplification reaction for amplifying a circular nucleic acid template through a rolling circle mechanism. The rolling circle amplification reaction is initiated by hybridization of primers to a circular, often single-stranded, nucleic acid template. Next, the nucleic acid polymerase repeats the sequence of the nucleic acid template by extending the primers hybridized to the original nucleic acid template by proceeding around the original nucleic acid template. Rolling circle amplification typically produces concatemers comprising tandem repeat units of a circular nucleic acid template sequence. The rolling ring amplification can be linear RCA (LRCA), which exhibits linear amplification kinetics (eg, RCA with a single specific primer), or can be exponential RCA (ERCA), which exhibits exponential amplification kinetics. Rolling circle amplification may also be performed using multiple primers to generate hyperbranched concatemers (multiple primed rolling circle amplification or MPRCA). For example, in double primed RCA, one primer may be complementary to the original nucleic acid template, as in linear RCA, while the other primer may be complementary to the tandem repeat unit nucleic acid sequence of the RCA product. The rolling ring amplification can be carried out under isothermal conditions using a DNA polymerase suitable therefor. In the present invention, the product produced through rolling-circle amplification may be a long single-stranded DNA comprising one or more target nucleic acid sequences and a repeating sequence with spatial and structural margins.
본 발명에 있어서, 상기 DNA 중합효소는 회전환 증폭에 적합한 phi29 DNA 중합효소일 수 있으나, 이것으로 제한되는 것은 아니며 상기 프로브의 핵산서열을 주형으로 하여 회전환 증폭을 수행할 수 있는 기능을 갖는 것이라면 당업자가 적절히 선택하여 이용할 수 있다.In the present invention, the DNA polymerase may be a phi29 DNA polymerase suitable for rolling ring amplification, but is not limited thereto, and if it has a function of performing rolling ring amplification using the nucleic acid sequence of the probe as a template A person skilled in the art can use it by selecting it appropriately.
본 발명에 있어서, 상기 형광 물질은 하나의 캡처 DNA의 말단에 결합되어 있는 것으로, 상기 캡처 DNA는 상기 회전환 증폭 결과 생성되는 긴 단일 가닥의 DNA 내 표적 핵산 서열과 상보적으로 결합할 수 있다.In the present invention, the fluorescent material is bound to the end of one capture DNA, and the capture DNA can complementarily bind to a target nucleic acid sequence in the long single-stranded DNA generated as a result of the rolling circle amplification.
상기 형광 물질은 서로 다른 파장대의 것이라면 하나 이상의 것을 동시에 이용할 수 있으며, 바람직하게는 플루오레신 (fluorescein; FAM), 텍사스레드 (TexasRed), 로다민 (rhodamine), 알렉사 (alexa), 시아닌 (cyanine; Cy), 보디피 (BODIPY), 아세톡시메틸 에스터 (Acetoxymethyl ester), 쿠마린 (coumarin) 및 양자점 (quantum dot)으로 이루어진 군에서 선택되는 하나 이상인 것일 수 있으나, 이에 한정되는 것은 아니며, 캡처 DNA 핵산 가닥에 부착이 가능한 공지의 형광을 발생하는 물질이라면 모두 사용 가능하다.One or more of the fluorescent materials may be used simultaneously as long as they have different wavelength bands, and preferably, fluorescein (FAM), Texas Red (TexasRed), rhodamine, Alexa, cyanine; Cy), body P (BODIPY), acetoxymethyl ester (Acetoxymethyl ester), coumarin (coumarin) and may be at least one selected from the group consisting of quantum dots (quantum dot), but is not limited thereto, the capture DNA nucleic acid strand Any known fluorescence emitting material that can be attached to the fluorescence can be used.
본 발명에 있어서, 상기 형광 물질은 300 내지 800 nm, 300 내지 700 nm, 300 내지 650 nm, 400 내지 800 nm, 400 내지 700 nm, 400 내지 650 nm, 450 내지 800 nm, 450 내지 700 nm 또는 450 내지 650 nm의 방출(emission) 파장을 갖는 것일 수 있다.In the present invention, the fluorescent material is 300 to 800 nm, 300 to 700 nm, 300 to 650 nm, 400 to 800 nm, 400 to 700 nm, 400 to 650 nm, 450 to 800 nm, 450 to 700 nm or 450 It may have an emission wavelength of to 650 nm.
상기 형광 물질이 300 nm 미만 또는 800 nm 초과의 방출 파장을 갖는 경우, 형광 링 패턴이 구분되지 않을 수 있다.When the fluorescent material has an emission wavelength of less than 300 nm or greater than 800 nm, the fluorescent ring pattern may not be distinguished.
본 발명에서는 구체적인 실시예에서 본 발명에 따른 검출법은 액적이 형성하는 형광 링 패턴의 모양을 관찰함으로써 하나 이상의 표적 핵산을 간편하고도 높은 정확도로 검출 가능함을 확인하였다(실시예 1 참조).In the present invention, in a specific example, it was confirmed that the detection method according to the present invention can detect one or more target nucleic acids simply and with high accuracy by observing the shape of the fluorescent ring pattern formed by the droplet (see Example 1).
본 발명의 일 실시예에서는, 다양한 기공 크기를 가지는 종이 필터 상에 등온 증폭 산물과 캡쳐 DNA-형광 물질의 응집물을 떨어뜨린 결과, 더 작고 균일한 기공을 가질수록 액적의 중앙에서 더 강한 형광 신호가 나타나는 것을 확인하였다 (실시예 2 참조).In one embodiment of the present invention, as a result of dropping an aggregate of an isothermal amplification product and a capture DNA-fluorescent material on a paper filter having various pore sizes, the stronger the fluorescence signal at the center of the droplet is as it has smaller and more uniform pores. It was confirmed that it appeared (see Example 2).
본 발명의 다른 실시예에서는, 검출법의 형광 여기(excitation) 파장, 증폭 배양 시간 및 온도 조건을 다르게 하여 증폭 산물-캡쳐 DNA 형광 물질이 형성하는 액적의 패턴을 확인한 결과, 254 nm 파장에서 더 뚜렷하게 링 패턴이 억제되어 액적의 중앙에 밀집한 형광 신호를 얻을 수 있었으며, 5분 이상의 증폭 배양 시간으로도 형광 링 패턴이 변화함을 관찰할 수 있었고, 증폭 배양 온도는 37℃가 가장 적합함을 확인하였다 (실시예 3 참조). In another embodiment of the present invention, as a result of confirming the pattern of droplets formed by the amplification product-captured DNA fluorescent material by varying the fluorescence excitation wavelength, amplification incubation time, and temperature conditions of the detection method, the ring more clearly at 254 nm wavelength The pattern was suppressed to obtain a dense fluorescence signal in the center of the droplet, and it was observed that the fluorescence ring pattern was changed even with an amplification incubation time of 5 minutes or more, and it was confirmed that the amplification culture temperature of 37 ° C is most suitable ( see Example 3).
본 발명의 또 다른 실시예에서는, 표적 유전자 핵산의 농도를 달리하여 각각 처리한 조건에서 등온증폭 반응 및 증폭 산물의 표적 핵산과 캡처 DNA-형광 물질의 결합 반응에 의해 형성된 응집물을 Cellulose Nitrate 필터 종이 위에 떨어뜨린 결과, 형광 링 패턴의 형성이 억제되었으며 표적 유전자 핵산의 농도가 높아질수록 원의 중앙에 위치하는 형광의 신호가 강해지는 것을 확인하였다 (실시예 4 참조).In another embodiment of the present invention, the aggregate formed by the isothermal amplification reaction and the binding reaction of the target nucleic acid of the amplification product and the capture DNA-fluorescent material under each treatment condition with different concentrations of the target gene nucleic acid is coated on Cellulose Nitrate filter paper. As a result of dropping, the formation of a fluorescence ring pattern was suppressed, and it was confirmed that the fluorescence signal located in the center of the circle became stronger as the concentration of the target gene nucleic acid increased (see Example 4).
본 발명의 또 다른 실시예에서는, 표적 유전자 물질이 단독으로 존재하지 않아도 선택적으로 검출이 가능한지 확인하기 위해 SARS-CoV-2 유래 RBD 및 RdRp 유전자, 메티실린 내성 포도상구균 유래 mecA 유전자를 한 개 내지 3개 조합으로 처리하고 RBD 유전자를 표적 핵산으로 하여 이에 대한 캡처 DNA-형광 물질을 이용해 분석을 진행한 결과, RBD 유전자가 처리된 조건에서만 원의 중앙에 밀집한 형광 신호를 관찰할 수 있었으며, 처리되지 않은 조건에서는 원의 가장자리에서 형광 신호를 보여 형광 링 패턴을 형성한 것으로 나타나 표적 핵산 첨가에 의한 형광 링 패턴 억제 현상의 선택성을 확인하였다 (실시예 5 참조).In another embodiment of the present invention, one to three SARS-CoV-2 derived RBD and RdRp genes and one to three mecA genes derived from methicillin-resistant Staphylococcus aureus in order to confirm that the target genetic material is selectively detected even when the target genetic material is not present alone As a result of treatment with a dog combination and the RBD gene as a target nucleic acid and analysis using a capture DNA-fluorescent material, it was possible to observe a dense fluorescence signal in the center of the circle only in the condition in which the RBD gene was treated. Under the condition, a fluorescence signal was shown at the edge of the circle to form a fluorescence ring pattern, confirming the selectivity of the fluorescence ring pattern inhibition by the addition of the target nucleic acid (see Example 5).
본 발명에 있어서, 상기 표적 핵산은 복수 개일 수 있다. 구체적으로, 표적 핵산이 복수 개, 즉, 2개 이상인 경우, 상기 검출용 조성물은 각각의 표적 핵산에 상보적인 핵산 서열을 포함하는 프로브들, 상기 각각의 프로브에 대한 프라이머들, 상기 각각의 표적 핵산의 회전환 증폭 산물과 상보적으로 결합하는 캡처 DNA - 형광물질들을 포함할 수 있고, 상기 형광물질은 각 캡처 DNA 종류 별로 상이한 형광물질이 결합되어 있을 수 있다.In the present invention, the target nucleic acid may be plural. Specifically, when there are a plurality of target nucleic acids, that is, two or more, the detection composition comprises probes comprising a nucleic acid sequence complementary to each target nucleic acid, primers for each probe, and each target nucleic acid. Capture DNA complementary to the rolling-ring amplification product of - may include fluorescent materials, and the fluorescent material may be bound to a different fluorescent material for each type of capture DNA.
본 발명의 또 다른 실시예에서는, 하나 이상의 표적 물질을 동시에 검출하는 다중 분석이 가능한지 확인하기 위해 SARS-CoV-2 유래 RBD 및 RdRp 유전자를 표적으로 하여 본 발명의 분석법을 진행한 결과, 하나의 표적 핵산이 있는 경우는 그에 대응하는 하나의 형광 신호만 액적의 중앙에 나타나고, 2가지 이상의 표적이 존재하는 경우에는 형광 신호가 혼합되어 중앙에 나타남을 확인하였다 (실시예 6 참조). In another embodiment of the present invention, as a result of performing the analysis method of the present invention by targeting the RBD and RdRp genes derived from SARS-CoV-2 in order to confirm whether multiple analysis of simultaneously detecting one or more target substances is possible, one target It was confirmed that when there is a nucleic acid, only one fluorescence signal corresponding thereto appears in the center of the droplet, and when two or more targets exist, the fluorescence signals are mixed and appear in the center (see Example 6).
본 발명의 또 다른 실시예에서는, Cellulose Nitrate 필터 종이가 아닌 일반 필터 종이를 이용하고, 캡처 DNA-형광 물질의 예로 일반 형광 물질보다 훨씬 강한 형광을 좁은 파장대에서 발생한다고 알려진 양자점을 이용하여 제조한 캡처 DNA-양자점을 이용하여 본 발명의 분석법을 실시한 결과, 표적 핵산이 존재하면 원의 중앙에서 강한 형광 신호를 확인하여 형광 링 패턴이 억제됨을 확인할 수 있었다 (실시예 7 참조).In another embodiment of the present invention, a normal filter paper rather than a Cellulose Nitrate filter paper is used, and as an example of a capture DNA-fluorescent material, a capture prepared using quantum dots known to generate much stronger fluorescence than a general fluorescent material in a narrow wavelength band As a result of performing the analysis method of the present invention using DNA-quantum dots, it was confirmed that the fluorescence ring pattern was suppressed by confirming a strong fluorescence signal at the center of the circle when the target nucleic acid was present (see Example 7).
상기 결과들은 본 발명에 따른 표적 핵산의 검출방법이 다양한 시료로부터 표적 핵산을 민감하고 신속하게 검출 및 진단할 수 있는 플랫폼 기술임을 입증하는 것이다.The above results prove that the method for detecting a target nucleic acid according to the present invention is a platform technology capable of sensitively and rapidly detecting and diagnosing a target nucleic acid from various samples.
이에, 본 발명의 다른 양태로서, 본 발명은 상기 검출용 조성물을 포함하는, 표적 핵산 검출센서를 제공한다. 상기 검출용 조성물을 이용하여 표적 핵산을 검출할 수 있는 센서 기술이라면 모든 기술을 이용할 수 있으며, 특별히 센서 기술의 종류나 특성에 한정되지 않는다.Accordingly, as another aspect of the present invention, the present invention provides a target nucleic acid detection sensor comprising the composition for detection. Any sensor technology capable of detecting a target nucleic acid using the composition for detection may be used, and is not particularly limited to the type or characteristic of the sensor technology.
본 발명에 따른 센서 시스템은 키트(Kit)의 형태로 제공될 수 있다. 본 발명에 있어서, 상기 키트는 상기 검출용 조성물과 함께 버퍼 (buffer), DNA 중합효소 보조인자 (DNA polymerase cofactor) 및 데옥시리보뉴클레오티드-5-트리포스페이트 (dNTP)와 같은 표적 핵산 증폭 반응 (예컨대, 중합효소연쇄반응)을 실시하는데 필요한 시약을 모두 포함할 수 있다. 또한, 상기 키트의 특정 반응에서 사용되는 시약의 최적량은, 본 명세서에 개시사항을 습득한 당업자에 의해서 용이하게 결정될 수 있다.The sensor system according to the present invention may be provided in the form of a kit. In the present invention, the kit is a target nucleic acid amplification reaction such as a buffer, a DNA polymerase cofactor, and deoxyribonucleotide-5-triphosphate (dNTP) together with the detection composition (e.g. , polymerase chain reaction) may include all reagents necessary for carrying out the reaction. In addition, the optimal amount of reagents to be used in a particular reaction of the kit can be readily determined by one of ordinary skill in the art having the disclosure herein.
본 발명의 또 다른 양태로서, 본 발명은 피검자 유래 생물학적 시료를 상기 검출용 조성물에 첨가하고 반응시키는 단계; As another aspect of the present invention, the present invention comprises the steps of adding and reacting a biological sample derived from a subject to the composition for detection;
상기 반응 용액을 필터 종이 위에 떨어뜨린 후 형성되는 형광 링 패턴의 모양을 관찰하는 단계를 포함하되,Comprising the step of observing the shape of the fluorescent ring pattern formed after dropping the reaction solution on filter paper,
상기 반응 용액은 등온증폭 반응 및 캡처 DNA-형광 물질과 표적 핵산의 결합반응이 동시에 일어난 것을 특징으로 하는, 표적 핵산의 검출방법을 제공한다.The reaction solution provides a method for detecting a target nucleic acid, characterized in that the isothermal amplification reaction and the binding reaction of the capture DNA-fluorescent material and the target nucleic acid occur simultaneously.
본 발명에서 사용되는 용어, "형광 링 패턴 (fluorescent ring pattern)"이란 형광 물질이 포함된 용액이 종이 상에서 모세관 현상에 의해 방사형으로 이동하여 원의 가장자리에서 형광 물질이 위치함으로써 형성되는 링 패턴을 의미한다. As used herein, the term "fluorescent ring pattern" refers to a ring pattern formed when a solution containing a fluorescent material moves radially by capillary action on paper and the fluorescent material is positioned at the edge of a circle do.
상기 생물학적 시료 내에 표적 핵산이 존재하는 경우, 표적 핵산과 본 발명의 표적 핵산에 특이적인 프로브의 상보적 결합에 의해 프로브의 닉 부분이 리가아제 효소에 의해 연결되어 환형의 주형이 형성되고, 이를 주형으로 회전환 증폭이 일어나 반복적이고 긴 단일 가닥의 DNA 증폭이 유도된다. dNTP가 충분히 공급되는 한 무한적으로 반복적 서열의 증폭을 유도되며, 상기 프로브와 상보적인 서열로 이루어진 증폭 산물은 새로이 형성되는 산물에 의해 밀려 주형이 되는 프로브에서 떨어져나가 결과적으로 형광물질이 결합되어 있는 캡처 DNA와 상보적 결합을 형성할 수 있는 긴 반복 서열의 단일가닥을 형성한다. 이러한 긴 단일가닥 DNA 내 반복적으로 존재하는 표적 핵산서열과 캡처 DNA의 상보적 결합에 의해 응집이 유도된다. 상기 응집물이 포함된 반응 용액을 필터 종이 위에 떨어뜨리면 캡처 DNA에 결합되어 있는 형광물질에 의해 형성되는 액적의 패턴을 형광으로 바로 확인할 수 있으며, 바람직하게 UV 램프 하에서 관찰할 수 있다.When a target nucleic acid is present in the biological sample, the nick portion of the probe is linked by a ligase enzyme by complementary binding between the target nucleic acid and the probe specific for the target nucleic acid of the present invention to form a circular template. rolling circle amplification occurs, leading to repetitive and long single-stranded DNA amplification. Amplification of repetitive sequences is induced indefinitely as long as sufficient dNTPs are supplied, and the amplification product consisting of a sequence complementary to the probe is pushed away by the newly formed product and is separated from the probe as a template, resulting in a fluorescent material bound to it. It forms a single strand of long repeating sequence capable of forming complementary bonds with the capture DNA. Aggregation is induced by the complementary binding of the target nucleic acid sequence and the capture DNA repeatedly present in the long single-stranded DNA. When the reaction solution containing the aggregate is dropped on filter paper, the pattern of droplets formed by the fluorescent material bound to the capture DNA can be immediately confirmed by fluorescence, and preferably observed under a UV lamp.
본 발명에 있어서, 상기 생물학적 시료는 체외로 분리된 조직, 기관, 세포, 전혈, 혈액, 타액, 객담, 뇌척수액 및 뇨로 구성된 군에서 선택되는 것일 수 있으며, 상기 조직은 예컨대 결합, 피부, 근육 또는 신경 조직이 포함될 수 있고, 상기 기관은 예컨대 눈, 뇌, 폐, 간, 비장, 골수, 흉선, 심장, 림프, 혈액, 뼈, 연골, 췌장, 신장, 담낭, 위, 소장, 고환, 난소, 자궁, 직장, 신경계, 선 및 내부 혈관이 포함될 수 있으나, 상기 시료의 범위가 이것으로 한정되는 것은 아니다.In the present invention, the biological sample may be selected from the group consisting of extracorporeally isolated tissues, organs, cells, whole blood, blood, saliva, sputum, cerebrospinal fluid, and urine, and the tissue is, for example, connective, skin, muscle or nerve. Tissues may be included, wherein said organs are, for example, eye, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gallbladder, stomach, small intestine, testis, ovary, uterus, Rectal, nervous system, glandular and internal blood vessels may be included, but the scope of the sample is not limited thereto.
본 발명에 있어서, 상기 반응은 1분 이상, 구체적으로는 3분 이상, 보다 구체적으로는 5분 이상 수행되는 것일 수 있다. 상기 반응이 1분 미만으로 수행될 경우, 반응이 충분히 일어나지 않아 형광 링 패턴이 명확하게 구분 또는 관찰되지 않을 수 있고, 상기 반응이 1분 이상으로 수행될 경우, 형광 링 패턴이 명확하게 구분 또는 관찰될 수 있다. In the present invention, the reaction may be carried out for 1 minute or more, specifically for 3 minutes or more, and more specifically for 5 minutes or more. When the reaction is performed for less than 1 minute, the reaction does not occur sufficiently so that the fluorescence ring pattern may not be clearly distinguished or observed, and when the reaction is performed for more than 1 minute, the fluorescence ring pattern is clearly distinguished or observed can be
또한, 본 발명에 있어서, 상기 반응은 20 내지 50℃, 20 내지 45℃, 20 내지 40℃, 25 내지 50℃, 25 내지 45℃, 25 내지 40℃, 30 내지 50℃, 30 내지 45℃ 또는 30 내지 40℃의 온도에서 수행되는 것일 수 있다.In addition, in the present invention, the reaction is 20 to 50 ℃, 20 to 45 ℃, 20 to 40 ℃, 25 to 50 ℃, 25 to 45 ℃, 25 to 40 ℃, 30 to 50 ℃, 30 to 45 ℃ or It may be carried out at a temperature of 30 to 40 ℃.
상기 반응이 20℃ 미만 또는 50℃ 초과의 온도에서 수행될 경우, 반응이 제대로 일어나지 않아, 형광 링 패턴이 명확하게 구분 또는 관찰되지 않을 수 있다.When the reaction is performed at a temperature of less than 20° C. or more than 50° C., the reaction may not occur properly, and the fluorescence ring pattern may not be clearly distinguished or observed.
본 발명에 있어서, 상기 필터 종이는 바람직하게는 Cellulose Nitrate일 수 있으나, 일반 필터 종이를 이용한 경우에도 가능하므로 이에 제한되지 않는다.In the present invention, the filter paper may preferably be Cellulose Nitrate, but it is not limited thereto because it is possible even when a general filter paper is used.
또한, 상기 필터 종이의 기공의 크기는 등온증폭 산물-캡쳐 DNA-형광 물질이 입체적 장애로 인하여, 캡쳐 DNA-형광 물질보다 느리게 이동할 수 있다면 무방하나, 캡쳐 DNA-형광 물질이 통과할 수 없을 정도로 작은 크기는 아니어야 한다. 예를 들어, 상기 필터 종이의 기공의 크기는 0.01 내지 100 μm, 0.01 내지 50 μm, 0.01 내지 10 μm, 0.05 내지 100 μm, 0.05 내지 50 μm, 0.05 내지 10 μm, 0.1 내지 100 μm, 0.1 내지 50 μm 또는 0.1 내지 10 μm일 수 있다.In addition, the size of the pores of the filter paper is ok as long as the isothermal amplification product-capture DNA-fluorescent material can move slower than the capture DNA-fluorescent material due to steric hindrance, but it is small enough that the capture DNA-fluorescent material cannot pass through. It shouldn't be the size. For example, the size of the pores of the filter paper is 0.01 to 100 μm, 0.01 to 50 μm, 0.01 to 10 μm, 0.05 to 100 μm, 0.05 to 50 μm, 0.05 to 10 μm, 0.1 to 100 μm, 0.1 to 50 μm or 0.1 to 10 μm.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are presented to help the understanding of the present invention. However, the following examples are only provided for easier understanding of the present invention, and the contents of the present invention are not limited by the following examples.
[실시예][Example]
실시예 1. 형광 링 패턴 형태의 관찰을 통한 표적 핵산의 검출(도 1)Example 1. Detection of a target nucleic acid through observation of a fluorescent ring pattern shape (FIG. 1)
유전자 물질을 신속하고, 간단하게 검출하는 방법을 개발하는 것은 질병의 진단 및 후속 치료에 있어서 매우 중요하다. 이 중 유전자에 기반한 진단은 핵산 증폭 기술을 통해 소량의 표적을 높은 특이도로 분석할 수 있으며, 등온증폭 방법은 간단하고, 소형화된 장비를 통해 수행 가능하므로 현장 진단 플랫폼에 더욱 적합하다.Developing a method to detect genetic material quickly and simply is very important for the diagnosis and subsequent treatment of diseases. Among these, gene-based diagnosis can analyze a small amount of target with high specificity through nucleic acid amplification technology, and the isothermal amplification method is more suitable for a point-of-care diagnostic platform because it can be performed through simple and miniaturized equipment.
이에, 본 발명자들은 등온증폭 방법 중 하나인 회전환 증폭(rolling circle amplification; RCA)을 이용하여 표적 유전자 물질을 일정 서열을 반복하는 긴 단일 가닥의 DNA로 증폭시키는 것과 동시에, 그 산물에 상보적인 서열을 지닌 캡처 DNA-형광 물질을 혼성화 시키고, 혼성화를 통해 생성된 증폭 산물-캡처 DNA 응집물이 포함된 액적이 종이 상에서 어떠한 형광링 패턴을 나타내는지 관찰하여 표적의 유무를 판단하는 간단한 진단법을 개발하였다.Accordingly, the present inventors amplify the target genetic material into a long single-stranded DNA repeating a predetermined sequence using one of the isothermal amplification methods, rolling circle amplification (RCA), and at the same time, a sequence complementary to the product A simple diagnostic method was developed to determine the presence or absence of a target by hybridizing a capture DNA-fluorescent material with
보다 구체적으로, 표적 유전자의 핵산에 대한 상보적인 서열을 포함하는 핵산 프로브 (Padlock probe)의 nick 부분이 표적 유전자와의 결합에 의해 가까워지면, T4 리가아제(ligase) 효소에 의해 결찰 (ligation)되면서 원형의 DNA 주형(template)이 생성된다. 이러한 주형을 기반으로 등온 조건 하에서(37℃) RCA 프라이머를 기시점으로 phi29 중합효소는 단방향 복제를 통해 표적 서열의 다중 카피를 포함하는 긴 단일 가닥의 DNA를 생성하게 된다. 전술한 바와 같이 증폭 산물인 긴 단일 가닥 DNA는 일정한 표적 서열이 반복되는 구조로서, 증폭과 동시에 캡처 DNA-형광 물질과 상보적으로 결합하여 증폭 산물-캡처 DNA 응집물이 형성되며, 이러한 증폭 및 캡처 DNA-형광 물질과의 결합을 통한 형광 표지 과정은 30분 이내에 충분히 이루어진다.More specifically, when the nick portion of the nucleic acid probe (Padlock probe) including a sequence complementary to the nucleic acid of the target gene is close by binding to the target gene, it is ligated by the T4 ligase enzyme. A circular DNA template is created. Based on this template, starting from the RCA primer under isothermal conditions (37°C), the phi29 polymerase generates a long single-stranded DNA containing multiple copies of the target sequence through unidirectional replication. As described above, the amplification product, long single-stranded DNA, has a structure in which a specific target sequence is repeated, and at the same time amplified, it is complementarily combined with the capture DNA-fluorescent material to form an amplification product-capture DNA aggregate. -Fluorescent labeling process through binding to fluorescent material is sufficiently completed within 30 minutes.
진단을 위한 형광 링 패턴 관찰에 사용되는 상기 응집물이 함유된 용액의 필요한 용량은 1-5μl의 작은 용량으로, 이 방울을 Cellulose Nitrate 필터 종이에 떨어뜨리면 용액은 모세관 현상에 의해 원의 중앙에서 가장자리로 둥글게 퍼져나간다. 용액 내 입자가 필터의 기공 크기보다 큰 경우, 구동력에 제한을 받아 액적의 중앙에 밀집하게 된다. 수 마이크론 크기의 증폭 산물-캡쳐 DNA 응집 물질은 기공에 가로막혀 이동을 할 수 없으므로 액적의 중앙에 위치하고, 캡쳐 DNA-형광 물질은 액적의 가장자리로 이동하여 링 패턴을 형성한다. 본 발명에 따르면, 종이에 떨어뜨린 방울은 별도의 건조 시간 없이 바로 형광 링 패턴의 모양을 확인할 수 있어, 건조 환경의 영향을 고려할 필요가 없는 장점이 있다.The required volume of the solution containing the aggregates used to observe the fluorescent ring pattern for diagnosis is a small volume of 1-5 μl, and when this drop is dropped on Cellulose Nitrate filter paper, the solution is transferred from the center of the circle to the edge by capillary action. spread out in a circle If the particles in the solution are larger than the pore size of the filter, they are concentrated in the center of the droplet due to the limitation of the driving force. The amplification product-capture DNA aggregate material having a size of several microns is located in the center of the droplet because it cannot move because it is blocked by the pores, and the capture DNA-fluorescent material moves to the edge of the droplet to form a ring pattern. According to the present invention, the shape of the fluorescence ring pattern can be immediately confirmed by the drop dropped on the paper without a separate drying time, so there is an advantage that there is no need to consider the effect of the drying environment.
실시예 2. 필터 종이의 기공 크기에 따른 형광 링 패턴의 확인Example 2. Identification of fluorescence ring pattern according to pore size of filter paper
본 발명자들은 균일하고 작은 크기의 기공일수록 입자의 이동이 상대적으로 어려워지므로 형광 링 패턴의 변화가 클 것이라고 예상하였고, 이를 확인하기 위해, 11 μm 또는 2.5 μm 크기의 기공을 갖는 alpha-cellulose(AC) 및 0.45 μm 또는 0.2 μm 크기의 기공을 갖는 Cellulose Nitrate(CN) 필터 종이에서 실시예 1과 동일한 방법으로 실험을 진행한 후 형광 링 패턴의 모양을 관찰하고 이미지를 분석하였다.The present inventors predicted that the change in the fluorescence ring pattern would be greater as the pores of uniform and small size became relatively difficult to move, and to confirm this, alpha-cellulose (AC) having pores of 11 μm or 2.5 μm And after performing the experiment in the same manner as in Example 1 on Cellulose Nitrate (CN) filter paper having pores of 0.45 μm or 0.2 μm in size, the shape of the fluorescence ring pattern was observed and the image was analyzed.
그 결과, 도 2에서 볼 수 있듯이, 예상한 바와 같이 균일하고 작은 크기의 기공일수록 증폭 산물-캡쳐 DNA응집물이 더 중앙으로 모여 강한 형광 신호가 나타남을 확인하였다. As a result, as shown in FIG. 2 , it was confirmed that, as expected, the more uniform and smaller the pores, the more the amplification product-captured DNA aggregates gathered in the center to show a strong fluorescence signal.
실시예 3. 형광 링 패턴 기반 검출법의 최적화 조건 확인Example 3. Confirmation of Optimization Conditions for Fluorescence Ring Pattern-based Detection Method
본 발명자들은 형광 링 패턴 기반의 검출법이 어떤 조건 하에 가장 최적으로 이루어지는 지 확인하고자 하였다. 이를 위해, 형광의 여기(excitation) 파장, 증폭 배양 시간 및 온도를 다양하게 하여 형광 링 패턴의 변화를 관찰하였다. The present inventors tried to determine under what conditions the detection method based on the fluorescence ring pattern is most optimally performed. To this end, the change in the fluorescence ring pattern was observed by varying the excitation wavelength of the fluorescence, the amplification incubation time, and the temperature.
형광의 여기 파장을 변화시켜 형광 링 패턴을 확인한 결과, 도 3a에서 볼 수 있듯이, 254 nm에서 액적의 중앙에 밀집한 증폭 산물-캡쳐 DNA응집물이 나타내는 형광 신호를 더 명확하게 얻을 수 있었다. 254 nm 파장에서 365 nm에서보다 더 강한 형광 신호를 방출하므로 신호 대 잡음비 (signal-to-noise ratio)가 증가하기 때문에 형광 링 패턴 이미지가 더 뚜렷하게 나타남을 확인하였다.As a result of confirming the fluorescence ring pattern by changing the excitation wavelength of the fluorescence, as shown in FIG. 3a , the fluorescence signal exhibited by the amplification product-captured DNA aggregate concentrated in the center of the droplet at 254 nm was more clearly obtained. It was confirmed that the fluorescence ring pattern image appeared more clearly because the signal-to-noise ratio increased because the 254 nm wavelength emitted a stronger fluorescence signal than the 365 nm wavelength.
또한, 증폭 배양 시간을 5분, 10분, 20분 및 30분으로 변화시키면서 형광 링 패턴을 확인하였을 때, 도 3b에서 볼 수 있는 바와 같이 배양 시간이 5분 이상만 지나도 형광 링 패턴이 억제되는 것을 볼 수 있었다. 5분 동안 증폭 과정을 가진 용액의 액적은 원 전체에 형광 신호를 갖는 반면, 표적이 없는 경우는 원의 가장자리에서만 신호를 나타냈다. 배양 시간이 길수록 액적의 중앙 영역에서 더 밀집된 신호를 관찰할 수 있었고, 20분 이상 배양된 용액은 중앙 부분이 외부보다 더 높은 신호를 보였다.In addition, when the fluorescence ring pattern was confirmed while changing the amplification incubation time to 5 minutes, 10 minutes, 20 minutes and 30 minutes, the fluorescence ring pattern was suppressed even after the incubation time was 5 minutes or more, as shown in FIG. 3b. could see The droplet of the solution with amplification process for 5 min had a fluorescence signal throughout the circle, whereas no target showed a signal only at the edge of the circle. The longer the incubation time, the more dense the signal was observed in the central region of the droplet, and the solution incubated for more than 20 minutes showed a higher signal in the central region than the outside.
마지막으로, 적합한 증폭 배양 온도를 확인하기 위해 다양한 온도 조건(25℃, 28℃, 32℃, 34℃ 및 37℃)에서 증폭 과정을 진행한 결과, 도 3c에서 볼 수 있듯이, 34℃ 및 37℃ 조건에서 가장 효율적으로 형광 링 패턴이 억제됨을 확인하였다.Finally, as a result of performing the amplification process under various temperature conditions (25°C, 28°C, 32°C, 34°C and 37°C) to confirm a suitable amplification culture temperature, as shown in FIG. 3C, 34°C and 37°C It was confirmed that the fluorescence ring pattern was most efficiently suppressed under the conditions.
실시예 4. 표적 유전자 핵산 농도에 따른 형광 링 패턴 관찰 및 이미지 분석Example 4. Fluorescence ring pattern observation and image analysis according to target gene nucleic acid concentration
본 발명자들은 상기 실시예들의 결과에 기반하여, 응집물의 형광 링 억제 패턴이 표적의 농도에 따라 그 효율이 달라지는지 여부를 확인하고자 하였다. 이를 위해, 표적 핵산을 다양한 농도(0, 0.1, 0.3, 0.5, 0.8, 1, 5 및 10 pmol)로 처리하고 상기 실시예 1과 동일한 방법으로 실험을 진행한 후 형광 링 패턴의 모양을 관찰하고 이미지를 분석하였다.The present inventors tried to determine whether the efficiency of the fluorescent ring suppression pattern of the aggregate varies depending on the concentration of the target, based on the results of the above examples. To this end, the target nucleic acid was treated with various concentrations (0, 0.1, 0.3, 0.5, 0.8, 1, 5 and 10 pmol) and the shape of the fluorescence ring pattern was observed after performing the experiment in the same manner as in Example 1, and Images were analyzed.
그 결과, 도 4a 및 도 4b의 형광 링 패턴 이미지에서 볼 수 있는 바와 같이 표적 핵산의 농도가 높을수록 원의 중앙에 위치하는 형광 신호가 강해지는 것을 관찰하였다.As a result, as can be seen from the fluorescent ring pattern images of FIGS. 4A and 4B , it was observed that the higher the concentration of the target nucleic acid, the stronger the fluorescence signal located at the center of the circle.
실시예 5. 표적 유전자의 선택적 검출 확인Example 5. Confirmation of selective detection of target gene
다음으로, 본 발명자들은 표적 유전자 물질이 단독으로 존재하지 않아도 선택적으로 검출이 가능한지 알아보고자 하였다. 이를 위해, 각각 SARS-CoV-2의 스파이크 단백질 내 수용체 결합 도메인(Receptor binding domain; RBD)을 암호화하는 유전자, SARS-CoV-2의 RNA 의존성 RNA 중합효소(RNA-dependent RNA polymerase; RdRP) 유전자 및 메티실린 내성 포도상구균 (MRSA)의 mecA 유전자에 대하여 RBD 유전자 단독 또는 2개 유전자 또는 3개 유전자를 처리하였고, RBD 유전자를 표적 핵산으로 하여 이에 대한 캡처 DNA-형광 물질을 이용해 분석을 진행하였다.Next, the present inventors tried to find out whether the target genetic material can be selectively detected even if it does not exist alone. To this end, a gene encoding a receptor binding domain (RBD) in the spike protein of SARS-CoV-2, an RNA-dependent RNA polymerase (RdRP) gene of SARS-CoV-2, and The mecA gene of methicillin-resistant Staphylococcus aureus (MRSA) was treated with the RBD gene alone, two genes, or three genes, and the RBD gene was used as a target nucleic acid for analysis using a capture DNA-fluorescent material.
그 결과, 도 5a 및 도 5b에 나타낸 바와 같이 표적 유전자 물질인 RBD가 처리된 조건에서는 모두 형광 신호가 액적의 중앙에 밀집하는 것을 확인하였으며, 이를 통해 표적 유전자 물질이 단독으로 존재하지 않아도 충분한 선택성을 가지고 형광 링 패턴이 억제되는 현상이 나타남을 확인하였다.As a result, as shown in FIGS. 5A and 5B , it was confirmed that the fluorescence signal was concentrated in the center of the droplet under the conditions in which RBD, the target gene material, was treated. It was confirmed that the phenomenon that the fluorescence ring pattern was suppressed with
실시예 6. 다중 표적 유전자의 검출 확인Example 6. Confirmation of detection of multiple target genes
또한, 본 발명자들은 본 발명의 검출법이 형광 신호의 패턴을 측정하는 방법을 이용하기 때문에, 다양한 파장대의 형광 물질을 이용하여 캡처 DNA-형광 물질을 사용하면 여러 유전자를 표적으로 하는 다중분석이 가능할 것으로 예상하였다.In addition, the present inventors believe that, since the detection method of the present invention uses a method of measuring a pattern of a fluorescence signal, multiplex analysis targeting multiple genes is possible by using a capture DNA-fluorescent material using a fluorescent material in various wavelength bands. expected.
이를 확인하고자, 도 6a에 나타낸 바와 같이, 특정 표적 물질은 그에 대응하는 하나의 핵산 프로브 (Padlock probe) 및 캡쳐 DNA-형광 물질 세트에 의해 증폭, 표지되므로 각기 다른 표적 유전자 물질(RBD, RdRP 및 mecA 유전자)과 결합하는 서열이 다른 핵산 프로브 및 다른 파장대의 emission (520 nm 및 610 nm)의 캡쳐 DNA-형광 물질을 사용하여 다중분석을 진행하였다.To confirm this, as shown in Fig. 6a, a specific target material is amplified and labeled by one nucleic acid probe (Padlock probe) and a capture DNA-fluorescent material set corresponding thereto, so that different target gene materials (RBD, RdRP and mecA) Multiple analysis was performed using a nucleic acid probe having a different sequence to bind to a gene) and a capture DNA-fluorescent material of emission (520 nm and 610 nm) of a different wavelength band.
그 결과, 도 6b에서 볼 수 있는 바와 같이 하나의 표적 핵산이 있는 경우는 하나의 형광 신호만 액적의 중앙에 나타났고, 2가지 이상의 표적이 존재하는 경우에는 형광 신호가 혼합되어 중앙에 나타남을 확인하였다. 본 기술은 2가지 이상의 표적 유전자 물질을 탐지하여 위양성 또는 위음성 결과의 가능성을 줄일 수 있음을 알 수 있었다.As a result, as can be seen in FIG. 6b, when there is one target nucleic acid, only one fluorescence signal appears in the center of the droplet, and when two or more targets exist, the fluorescence signals are mixed and appear in the center. did. It was found that the present technology can reduce the possibility of false-positive or false-negative results by detecting two or more target genetic materials.
실시예 7. 양자점 또는 AC 필터 종이를 이용한 조건에서 형광 링 패턴 관찰을 통한 표적 핵산 검출Example 7. Detection of a target nucleic acid through observation of a fluorescence ring pattern under conditions using quantum dots or AC filter paper
본 발명자들은 본 발명에 따른 표적 핵산의 검출 방법에서 Cellulose Nitrate(CN) 필터 종이 대신 AC 필터 종이를 이용하는 경우, 및 캡처-DNA 형광 물질로써 일반 형광 물질이 아닌 양자점을 이용하는 경우 형광 링 패턴의 모양을 관찰하여 표적 핵산의 검출 여부를 확인할 수 있는지 알아보고자 하였다. 이를 위해, 표적 핵산을 다양한 농도(0, 0.01, 0.05, 0.1, 0.5, 1, 3, 5, 10, 50 및 100 pmol)로 처리하여 상기 실시예 1에서와 동일한 방법으로 RCA 등온증폭 반응을 진행하고, 캡처 DNA-형광 물질 혹은 캡처 DNA-양자점을 이용하여 혼성화를 진행한 후 응집물 한 방울을 일반 필터 종이에 떨어뜨린 후 형광 링 패턴의 모양을 관찰하였다.The present inventors determined the shape of the fluorescent ring pattern when using AC filter paper instead of Cellulose Nitrate (CN) filter paper in the method for detecting a target nucleic acid according to the present invention, and when using quantum dots instead of general fluorescent material as capture-DNA fluorescent material We tried to find out whether it was possible to check whether the target nucleic acid was detected by observation. To this end, the RCA isothermal amplification reaction was performed in the same manner as in Example 1 by treating the target nucleic acid at various concentrations (0, 0.01, 0.05, 0.1, 0.5, 1, 3, 5, 10, 50 and 100 pmol). After hybridization was carried out using a capture DNA-fluorescent material or a capture DNA-quantum dot, a drop of the aggregate was dropped on general filter paper and the shape of the fluorescent ring pattern was observed.
그 결과, 도 7a에 나타낸 바와 같이 CN 필터 종이 대신 더 저렴한 일반 필터 종이를 사용하여도 표적 핵산이 존재하면 원의 중앙에 밀집하는 형광 신호를 확인할 수 있었으며, 도 7b에서 볼 수 있는 바와 같이 캡처 DNA-양자점을 이용한 경우에도 표적 핵산의 농도가 높아질수록 원의 중앙에 위치하는 형광 링 패턴이 억제되는 동일한 현상을 관찰할 수 있었다.As a result, as shown in FIG. 7a , even if a cheaper general filter paper was used instead of CN filter paper, if the target nucleic acid was present, it was possible to confirm the fluorescence signal concentrated in the center of the circle, as shown in FIG. 7b , the capture DNA - Even when quantum dots were used, the same phenomenon was observed in that the fluorescent ring pattern located in the center of the circle was suppressed as the concentration of the target nucleic acid increased.
상기 진술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The description of the present invention stated above is for illustration, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. There will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

Claims (18)

  1. 표적 핵산과 상보적인 핵산서열을 포함하는 프로브 (probe);a probe comprising a nucleic acid sequence complementary to a target nucleic acid;
    회전환 증폭(rolling circle amplification; RCA)을 위한 프라이머 (primer); 및a primer for rolling circle amplification (RCA); and
    캡처 DNA의 말단에 결합된 형광 물질을 포함하는, 표적 핵산 검출용 조성물.A composition for detecting a target nucleic acid comprising a fluorescent material bound to the end of the capture DNA.
  2. 제1항에 있어서, According to claim 1,
    상기 조성물은 리가아제 (ligase) 및 DNA 중합효소를 더 포함하는 것을 특징으로 하는, 검출용 조성물.The composition is characterized in that it further comprises a ligase (ligase) and a DNA polymerase, the composition for detection.
  3. 제1항에 있어서, According to claim 1,
    상기 프로브는 닉 (nick)을 포함하는 것을 특징으로 하는, 검출용 조성물.The probe is characterized in that it comprises a nick (nick), the composition for detection.
  4. 제1항에 있어서, According to claim 1,
    상기 캡처 DNA는 회전환 증폭 산물과 상보적으로 결합하는 것을 특징으로 하는, 검출용 조성물.The capture DNA is characterized in that complementary binding to the rolling-circle amplification product, the composition for detection.
  5. 제1항에 있어서, According to claim 1,
    상기 형광 물질은 플루오레신(fluorescein; FAM), 텍사스레드(TexasRed), 로다민(rhodamine), 알렉사(alexa), 시아닌(cyanine; Cy), 보디피(BODIPY), 아세톡시메틸 에스터(Acetoxymethyl ester), 쿠마린(coumarin) 및 양자점(quantum dot)으로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는, 검출용 조성물.The fluorescent material is fluorescein (FAM), Texas Red (TexasRed), rhodamine (rhodamine), Alexa (alexa), cyanine (cyanine; Cy), body P (BODIPY), acetoxymethyl ester (Acetoxymethyl ester) ), coumarin (coumarin) and quantum dots (quantum dot), characterized in that at least one selected from the group consisting of, the composition for detection.
  6. 제1항에 있어서,According to claim 1,
    상기 형광 물질은 300 내지 800 nm의 방출(emission) 파장을 갖는 것을 특징으로 하는, 검출용 조성물.The fluorescent material is characterized in that it has an emission wavelength of 300 to 800 nm, the composition for detection.
  7. 제1항에 있어서,According to claim 1,
    상기 표적은 박테리아, 바이러스 또는 진균인 것을 특징으로 하는, 검출용 조성물. The target is a composition for detection, characterized in that the bacteria, virus or fungus.
  8. 제7항에 있어서, 8. The method of claim 7,
    상기 박테리아는 메티실린 내성 포도상구균 (methicillin-resistant Staphylococcus aureus; MRSA)인 것을 특징으로 하는, 검출용 조성물.The bacterium is methicillin-resistant Staphylococcus aureus (MRSA), characterized in that, the composition for detection.
  9. 제7항에 있어서, 8. The method of claim 7,
    상기 바이러스는 SARS-CoV-2인 것을 특징으로 하는, 검출용 조성물.The virus is characterized in that SARS-CoV-2, the composition for detection.
  10. 제1항에 있어서, According to claim 1,
    상기 표적 핵산의 검출은 형광 링 패턴의 모양을 관찰함으로써 이루어지는 것을 특징으로 하는, 검출용 조성물.Detection of the target nucleic acid, characterized in that made by observing the shape of the fluorescent ring pattern, the composition for detection.
  11. 제1항에 있어서,The method of claim 1,
    상기 표적 핵산은 복수 개인 것을 특징으로 하는, 검출용 조성물.The target nucleic acid is a plurality of, characterized in that the detection composition.
  12. 제1항 내지 제11항 중 어느 한 항의 조성물을 포함하는, 표적 핵산 검출용 키트.A kit for detecting a target nucleic acid, comprising the composition of any one of claims 1 to 11.
  13. 제1항 내지 제11항 중 어느 한 항의 조성물을 포함하는, 표적 핵산 검출 센서.A target nucleic acid detection sensor comprising the composition of any one of claims 1 to 11.
  14. 피검자 유래 생물학적 시료를 제1항의 조성물에 첨가하고 반응시키는 단계; 및adding and reacting the subject-derived biological sample to the composition of claim 1; and
    상기 반응 용액을 필터 종이 위에 떨어뜨린 후 형광 링 패턴의 모양을 관찰하는 단계를 포함하되,Comprising the step of observing the shape of the fluorescent ring pattern after dropping the reaction solution on the filter paper,
    상기 반응 용액은 등온증폭 반응 및 캡처 DNA-형광 물질과 표적 핵산의 결합반응이 동시에 일어나는 것을 특징으로 하는, 표적 핵산의 검출방법.The reaction solution is characterized in that the isothermal amplification reaction and the binding reaction of the capture DNA-fluorescent material and the target nucleic acid occur simultaneously.
  15. 제14항에 있어서, 15. The method of claim 14,
    상기 생물학적 시료는 조직, 기관, 세포, 전혈, 혈액, 타액, 객담, 뇌척수액 및 뇨로 구성된 군에서 선택되는 것을 특징으로 하는, 표적 핵산의 검출방법.Wherein the biological sample is selected from the group consisting of tissue, organ, cell, whole blood, blood, saliva, sputum, cerebrospinal fluid and urine, a method for detecting a target nucleic acid.
  16. 제14항에 있어서,15. The method of claim 14,
    상기 반응은 1분 이상 수행되는 것을 특징으로 하는, 표적 핵산의 검출 방법.The method of detecting a target nucleic acid, characterized in that the reaction is carried out for 1 minute or more.
  17. 제14항에 있어서,15. The method of claim 14,
    상기 반응은 20 내지 50℃의 온도에서 수행되는 것을 특징으로 하는, 표적 핵산의 검출방법.The method of detecting a target nucleic acid, characterized in that the reaction is carried out at a temperature of 20 to 50 ℃.
  18. 제14항에 있어서, 15. The method of claim 14,
    상기 필터 종이의 기공의 크기는 0.01 내지 100 μm인 것을 특징으로 하는, 표적 핵산의 검출방법.The method of detecting a target nucleic acid, characterized in that the size of the pores of the filter paper is 0.01 to 100 μm.
PCT/KR2022/002456 2021-02-18 2022-02-18 Composition for multiplex detection of target nucleic acid, based on isothermal amplification and fluorescent ring pattern, and detection method using same WO2022177367A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0021859 2021-02-18
KR20210021859 2021-02-18
KR10-2022-0016990 2022-02-09
KR1020220016990A KR20220118316A (en) 2021-02-18 2022-02-09 Composition for multiplexed detection of target nucleic acid based on isothermal amplification and fluorescent ring patterns, and detection method using them

Publications (1)

Publication Number Publication Date
WO2022177367A1 true WO2022177367A1 (en) 2022-08-25

Family

ID=82931018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002456 WO2022177367A1 (en) 2021-02-18 2022-02-18 Composition for multiplex detection of target nucleic acid, based on isothermal amplification and fluorescent ring pattern, and detection method using same

Country Status (1)

Country Link
WO (1) WO2022177367A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170138829A (en) * 2016-06-08 2017-12-18 건국대학교 산학협력단 Method for fluorometric detection of microRNA using rolling circle amplication
CN108949924A (en) * 2018-06-27 2018-12-07 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 The fluorescence detection reagent kit and fluorescence detection method of deletion mutant
KR20190137718A (en) * 2018-06-01 2019-12-11 고려대학교 산학협력단 Method for Detecting Target Nucleic Acid Using Rolling Circle Amplification and Composition for Detecting Target Nucleic Acid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170138829A (en) * 2016-06-08 2017-12-18 건국대학교 산학협력단 Method for fluorometric detection of microRNA using rolling circle amplication
KR20190137718A (en) * 2018-06-01 2019-12-11 고려대학교 산학협력단 Method for Detecting Target Nucleic Acid Using Rolling Circle Amplification and Composition for Detecting Target Nucleic Acid
CN108949924A (en) * 2018-06-27 2018-12-07 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 The fluorescence detection reagent kit and fluorescence detection method of deletion mutant

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KANG YOO KYUNG, IM SAN HAE, RYU JEA SUNG, LEE JAEHYUN, CHUNG HYUN JUNG: "Simple visualized readout of suppressed coffee ring patterns for rapid and isothermal genetic testing of antibacterial resistance", BIOSENSORS AND BIOELECTRONICS, ELSEVIER SCIENCE LTD, UK, AMSTERDAM , NL, vol. 168, 1 November 2020 (2020-11-01), Amsterdam , NL , pages 1 - 11, XP055960525, ISSN: 0956-5663, DOI: 10.1016/j.bios.2020.112566 *
ZHANG DAGAN, GAO BINGBING, ZHAO CHAO, LIU HONG: "Visualized Quantitation of Trace Nucleic Acids Based on the Coffee-Ring Effect on Colloid-Crystal Substrates", LANGMUIR, vol. 35, no. 1, 8 January 2019 (2019-01-08), US , pages 248 - 253, XP055960532, ISSN: 0743-7463, DOI: 10.1021/acs.langmuir.8b03609 *

Similar Documents

Publication Publication Date Title
US10689716B1 (en) Materials and methods for detecting coronavirus
CA2692633C (en) Method for the simultaneous detection of multiple nucleic acid sequences in a sample
US7329493B2 (en) One-tube nested PCR for detecting Mycobacterium tuberculosis
US8232058B2 (en) Multiplex detection of respiratory pathogens
EP3286329B1 (en) Method for the simultaneous detection of multiple nucleic acid sequences in a sample
KR102098772B1 (en) Adenovirus screening method associated gastrointestinal Infections and acute respiratory infections by PNA based real-timc PCR
Castro et al. Ultrasensitive, direct detection of a specific DNA sequence of Bacillus anthracis in solution
JP2006201062A (en) Nucleic acid detection or determination method
CN112575125A (en) Primer group, probe microsphere group, kit and method for detecting respiratory tract pathogenic microorganisms
KR20220024253A (en) High sensitive multiplex loop-mediated isothermal amplification primer set for detection of novel coronavirus-19
WO2022177367A1 (en) Composition for multiplex detection of target nucleic acid, based on isothermal amplification and fluorescent ring pattern, and detection method using same
WO2018048205A1 (en) Method for molecular diagnosis based on rolling circle amplification
US20210340635A1 (en) Materials and methods for detecting coronavirus
US9512470B2 (en) Method for the simultaneous detection of multiple nucleic acid sequences in a sample
WO2020027479A1 (en) Paper-based, nucleic acid-detecting kit and method for analysis of pcr amplicon
CA2726571A1 (en) Method for detecting human metapneumovirus and other respiratory viral agents in a test sample
Chittoor-Vinod Molecular biology of PCR testing for COVID-19 diagnostics
EP3885455A1 (en) Method and kit for the detection of sars-cov-2 virus in a sample based on reverse transcription loop-mediated isothermal amplification (rt-lamp)
KR20220118316A (en) Composition for multiplexed detection of target nucleic acid based on isothermal amplification and fluorescent ring patterns, and detection method using them
JP2023518217A (en) Loop primer and loop de loop method for detecting target nucleic acid
WO2022003188A2 (en) Rapid detection kit for human pathogenic coronaviruses : betacoronavirus group b/c and sars-cov-2
KR102076341B1 (en) Composition for detecting severe fever with thrombocytopenia syndrome virus using LAMP and uses thereof
WO2022177066A1 (en) Genetic scissors-based rapid detection of influenza virus type
WO2024058300A1 (en) Vhsv detection composition using gene scissors and loop-mediated isothermal amplification, kit, and vhsv detection method using same
US20100041019A1 (en) Methods of Screening for Respiratory Synctial Virus and Human Metapneumovirus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756565

Country of ref document: EP

Kind code of ref document: A1