WO2022177297A1 - Rubber composition comprising carbon nanotubes - Google Patents

Rubber composition comprising carbon nanotubes Download PDF

Info

Publication number
WO2022177297A1
WO2022177297A1 PCT/KR2022/002300 KR2022002300W WO2022177297A1 WO 2022177297 A1 WO2022177297 A1 WO 2022177297A1 KR 2022002300 W KR2022002300 W KR 2022002300W WO 2022177297 A1 WO2022177297 A1 WO 2022177297A1
Authority
WO
WIPO (PCT)
Prior art keywords
walled carbon
carbon nanotube
rubber composition
carbon nanotubes
rubber
Prior art date
Application number
PCT/KR2022/002300
Other languages
French (fr)
Korean (ko)
Inventor
최남선
오동훈
임영우
Original Assignee
금호석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호석유화학 주식회사 filed Critical 금호석유화학 주식회사
Priority to CN202280015324.5A priority Critical patent/CN116867851A/en
Publication of WO2022177297A1 publication Critical patent/WO2022177297A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition, and more particularly, to a rubber composition comprising carbon nanotubes.
  • Tires can generally be classified into silica tires and carbon black tires according to the type of filler used in the rubber composition for manufacturing the same.
  • the carbon black tire has an advantage in that the bonding area with the rubber matrix is large because carbon black has a high-order structure intrinsically agglomerated or connected to each other, and thus the bonding strength with the rubber matrix is easily increased.
  • a method of further improving the bonding strength with the rubber matrix through modification such as introducing a functional group to the surface of carbon black has also been proposed.
  • a coupling agent having a specific structure for example, an alkoxysilane-based coupling agent, is used in order to improve bonding strength with the rubber matrix, and a method of bonding them to each other is used.
  • Conductive fillers such as carbon nanotubes, carbon black, graphite, carbon fiber, metal powder, metal-coated inorganic powder, or metal fiber were used to impart conductivity to rubber. Since there is a problem in that conductivity cannot be implemented, it is necessary to improve the dispersibility of the conductive filler in the rubber composition.
  • the present invention is to solve the problems of the prior art, and an object of the present invention is to provide a rubber composition with improved carbon nanotube dispersibility in a rubber matrix.
  • One aspect of the present invention is a rubber matrix; and a multi-walled carbon nanotube aggregate, wherein the multi-walled carbon nanotube aggregate is composed of multi-walled carbon nanotubes having an average number of walls of 12 or less, providing a rubber composition.
  • the average diameter of the multi-walled carbon nanotubes may be 5 to 50 nm.
  • the Raman spectral intensity ratio ( IG /I D ) of the multi-walled carbon nanotube may be 0.5 to 1.5.
  • the apparent density of the multi-walled carbon nanotubes may be 0.005 ⁇ 0.120 g / mL.
  • the multi-walled carbon nanotube aggregate may have an average bundle diameter of 0.5 to 20 ⁇ m, and an average bundle length of 10 to 200 ⁇ m.
  • the ratio of the number of multi-walled carbon nanotubes having 11 to 12 walls may be 20% or more.
  • the content of the multi-walled carbon nanotube aggregate may be 1 to 30 parts by weight based on 100 parts by weight of the rubber matrix.
  • the rubber matrix may include a linear polymer.
  • the linear polymer may have an intrinsic viscosity of 6.5 or more based on a weight average molecular weight of 2,000,000 g/mol.
  • the rubber matrix may include a conjugated diene-based polymer.
  • the conjugated diene-based polymer is 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 2-phenyl- derived from at least one selected from the group consisting of 1,3-butadiene, 3-methyl-1,3-pentadiene, 2-chloro-1,3-butadiene, 3-butyl-1,3-octadiene and octadiene It may contain structural units.
  • carbon nanotubes can be uniformly dispersed in the rubber matrix.
  • FIG. 1 shows the characteristics of a first carbon nanotube used in an embodiment of the present invention
  • TEM 4 shows a transmission electron microscope (TEM) image for confirming the carbon nanotube dispersion degree of the rubber composition prepared according to an embodiment of the present invention.
  • masterbatch refers to pre-dispersing a high concentration of additives in the manufacture of a rubber composite or compound. , thereby improving the physical properties of the final product.
  • a rubber composition according to an aspect of the present invention a rubber matrix; and a multi-walled carbon nanotube aggregate, wherein the multi-walled carbon nanotube aggregate may be composed of a multi-walled carbon nanotube having an average number of walls of 12 or less.
  • the rubber composition may be a kind of masterbatch, and by diluting the rubber composition (let-down), it may be used for various purposes such as conductive rubber, rubber for tires, and the like.
  • the average number of walls of the multi-walled carbon nanotubes is 12 or less, the number of individuals per unit weight is large compared to the aggregate having more than 12, so that the effect of improving the physical properties of the rubber composition may be excellent.
  • the mechanism of action is not known, physical properties such as electrical conductivity of the rubber composition may change rapidly when the average number of walls of the multi-walled carbon nanotubes is about 12.
  • Methods for synthesizing the carbon nanotubes include arc-discharge, pyrolysis, laser vaporization, plasma chemical vapor deposition, and thermal chemical vapor deposition. ), but all carbon nanotubes manufactured without limitation in the synthesis method may be used.
  • Carbon nanotubes are single-walled carbon nanotube, double-walled carbon nanotube, multi-walled carbon nanotube, and truncated cone-shaped graphene depending on the number of walls. Although there are cup-stacked carbon nanofibers in which a plurality of (truncated graphene) are stacked, and the like, the multi-walled carbon nanotubes may be excellent in manufacturing ease and economy.
  • characteristics such as the number of walls of carbon nanotubes may be measured by a general method in the art.
  • the number of walls of the carbon nanotube sample may be measured with an electron microscope, or an average or number ratio may be derived from this by a statistical method.
  • the multi-walled carbon nanotube may have an average diameter of 5 to 50 nm, for example, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 11 nm, 12 nm, 13 nm, 14 nm, 15 nm, 16 nm, 17 nm, 18 nm, 19 nm, 20 nm, 21 nm, 22 nm, 23 nm, 24 nm, 25 nm, 26 nm, 27 nm, 28 nm, 29 nm, 30 nm, 31 nm, 32 nm, 33 nm, 34 nm, 35 nm, 36 nm, 37 nm, 38 nm, 39 nm, 40 nm, 41 nm, 42 nm, 43 nm, 44 nm, 45 nm, 46 nm, 47 nm , 48 nm, 49 nm, or 50 n
  • the term “bundle” refers to a bundle or rope form in which a plurality of carbon nanotubes are arranged side by side or entangled with each other. When present, it is also referred to as "non-clinical”.
  • Raman spectroscopy for analyzing the surface state of the carbon nanotube may be usefully used.
  • Raman spectroscopy is a method of obtaining the molecular frequency from the Raman effect, a phenomenon in which scattered light having a difference as much as the molecular frequency is generated when excitation light of a monochromatic color such as laser light is applied. It means spectroscopy, and can be measured by quantifying the crystallinity of carbon nanotubes through Raman spectroscopy.
  • a peak present in a wavenumber region of 1,580 ⁇ 50 cm ⁇ 1 in the Raman spectrum of the carbon nanotube is referred to as a G band, which is a peak representing sp 2 bonding of the carbon nanotube, indicating a carbon crystal without structural defects.
  • the peak present in the wavenumber 1,360 ⁇ 50 cm -1 region is referred to as a D band, which is a peak indicating sp 3 bonding of carbon nanotubes, indicating carbon containing structural defects.
  • the peak values of the G band and the D band are referred to as I G and I D , respectively, and the crystallinity of the carbon nanotube can be numerically measured through the Raman spectral intensity ratio ( IG /I D ), which is the ratio between the two. have. That is, since the higher the value of the Raman spectral intensity ratio, the smaller the structural defects of the carbon nanotube are. .
  • the Raman spectral intensity ratio (I G /I D ) of the multi-walled carbon nanotube is 0.5 to 1.5, for example, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 or these It may be a range between two values, but is not limited thereto.
  • I G /I D value of the carbon nanotube is less than 0.5, a large amount of amorphous carbon is contained and the crystallinity of the carbon nanotube is poor, and thus the effect of improving physical properties may be weak when mixed with the rubber matrix.
  • carbon nanotubes have fewer impurities such as catalysts as the carbon content is higher, excellent properties can be realized, so that the carbon purity of the carbon nanotubes is 90% or more, for example, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.9%, or a range between two of these values, but is not limited thereto. If the carbon purity of the carbon nanotube is less than 90%, a structural defect of the carbon nanotube may be induced and crystallinity may be deteriorated, and the carbon nanotube may be easily cut and destroyed by an external stimulus.
  • the multi-walled carbon nanotube may have an apparent density of 0.005 to 0.120 g/mL, for example, 0.005 g/mL, 0.01 g/mL, 0.02 g/mL, 0.03 g/mL, 0.04 g/mL, 0.05 g/mL, 0.06 g/mL, 0.07 g/mL, 0.08 g/mL, 0.09 g/mL, 0.10 g/mL, 0.11 g/mL, 0.12 g/mL, or between the two of these values;
  • the present invention is not limited thereto.
  • the apparent density of the multi-walled carbon nanotubes is out of the above range, the effect of improving physical properties may be weak when mixed with the rubber matrix.
  • the multi-walled carbon nanotube aggregate may form a continuous three-dimensional network structure by being interconnected within the rubber matrix, thereby exhibiting excellent conductivity.
  • the three-dimensional network structure is formed more firmly, grip properties, mechanical properties, dynamic properties, and durability may be improved.
  • the network structure may be firmly formed by adjusting the average bundle diameter and average bundle length of the multi-walled carbon nanotube aggregate within a predetermined range.
  • the multi-walled carbon nanotube aggregate has an average bundle diameter of 0.5 to 20 ⁇ m, for example, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m , 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m, 20 ⁇ m, or a range between two of these, and the average bundle length is 10-200 ⁇ m, such as 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m , 160 ⁇ m, 170 ⁇ m, 180 ⁇ m, 190 ⁇ m,
  • the dispersibility is lowered, so that the electrical conductivity, grip characteristics, and mechanical properties of the tire manufactured from the rubber composition for each part , dynamic properties and durability may become non-uniform, and if the average bundle diameter exceeds 20 ⁇ m or the average bundle length is less than 10 ⁇ m, the network structure becomes unstable and electrical conductivity, grip properties, mechanical properties, dynamic properties, and durability may decrease. have.
  • the ratio of the number of multi-walled carbon nanotubes having 11 to 12 walls is 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, or two reference numerical values of these can range between
  • the ratio of the number of carbon nanotubes having 11 to 12 walls is 20% or more, the effect due to the average number of walls of the aforementioned multi-walled carbon nanotubes may be more excellent.
  • the mechanism of action is not known, if the distribution of the number of walls of the multi-walled carbon nanotube is narrow, the physical properties of the rubber composition and the final product manufactured therefrom may be more uniform.
  • the content of the multi-walled carbon nanotube aggregate is 1 to 30 parts by weight, for example, 1 part by weight, 2 parts by weight, 3 parts by weight, 4 parts by weight, 5 parts by weight, 6 parts by weight based on 100 parts by weight of the rubber matrix.
  • the content of the multi-walled carbon nanotube aggregate is less than 1 part by weight, the effect that can be realized by adding it may be insufficient, and if it is more than 30 parts by weight, the dispersibility of the multi-walled carbon nanotube aggregate may be reduced.
  • the rubber composition includes a multi-walled carbon nanotube aggregate composed of multi-walled carbon nanotubes having an average number of walls of 12 or less, and has excellent dispersion, as a result, 10 3 ⁇ / ⁇ or less, 10 2 ⁇ / ⁇ or less to 10 Surface resistance of 1.5 ⁇ / ⁇ or less can be realized.
  • the surface resistance is a representative physical property indicating the degree of dispersion of the multi-wall carbon nanotubes in the rubber composition. When the value is small, the multi-wall carbon nanotubes are evenly distributed in the rubber matrix to form a solid network structure, thereby forming a final product. electrical conductivity, grip properties, mechanical properties, dynamic properties, and durability can be excellent.
  • the rubber matrix may include a linear polymer, and the linear polymer may have an intrinsic viscosity of 6.5 or more, 7.0 or more, 7.5 or more, or 8.0 or more based on a weight average molecular weight of 2,000,000 g/mol, but is not limited thereto. it is not
  • a polymer with high linearity can penetrate into the multi-walled carbon nanotube aggregate to significantly improve the dispersibility of the multi-walled carbon nanotube aggregate.
  • the intrinsic viscosity of butadiene rubber is 6.5 or more, It is possible to prevent aggregation of multi-walled carbon nanotubes.
  • a Mark-Houwink plot of the polymer can be plotted using a viscosity detector, and branching representing the linearity of the polymer can be calculated from this.
  • branching representing the linearity of the polymer can be calculated from this.
  • the higher the intrinsic viscosity value at the same weight average molecular weight the higher the linearity of the polymer.
  • the rubber matrix may include a conjugated diene-based polymer, wherein the conjugated diene-based polymer includes 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3 - consisting of hexadiene, 2-phenyl-1,3-butadiene, 3-methyl-1,3-pentadiene, 2-chloro-1,3-butadiene, 3-butyl-1,3-octadiene and octadiene It may include a structural unit derived from at least one selected from the group, but is not limited thereto.
  • NdBR butadiene rubber
  • NiBR-CNT masterbatch was prepared in the same manner as in Example 1, except that butadiene rubber (NiBR) prepared with a nickel-based catalyst was used instead of a butadiene rubber (NdBR) prepared with a neodymium-based catalyst.
  • NiBR butadiene rubber
  • NdBR butadiene rubber
  • a CoBR-CNT masterbatch was prepared in the same manner as in Example 1, except that butadiene rubber (CoBR) prepared with a cobalt catalyst was used instead of butadiene rubber (NdBR) prepared with a neodymium-based catalyst.
  • CoBR butadiene rubber
  • NdBR butadiene rubber
  • NdBR-CNT masterbatch was prepared in the same manner as in Example 1, except that the second carbon nanotube was used instead of the first carbon nanotube.
  • the first carbon nanotubes had an average bundle diameter of 3 ⁇ m or less, and thus had excellent dispersibility.
  • the content of the carbon nanotube having 11 to 12 walls was 20% or more.
  • the second carbon nanotubes had an average bundle diameter of more than 3 ⁇ m, and the content of carbon nanotubes having 11 to 12 walls was less than 20%.
  • the butadiene rubber (NdBR) prepared with a neodymium-based catalyst has an intrinsic viscosity of 8.3 at a molecular weight of 2,000,000 g/mol
  • the butadiene rubber (NiBR) prepared with a nickel-based catalyst has an intrinsic viscosity at a molecular weight of 2,000,000 g/mol is 6.3
  • the butadiene rubber (CoBR) prepared with a cobalt-based catalyst has an intrinsic viscosity of 5.5 at a molecular weight of 2,000,000 g/mol.
  • the first carbon nanotube having an average bundle diameter of 3 ⁇ m or less and the content of carbon nanotubes having 11 to 12 walls is 20% or more and a neodymium-based catalyst having high linearity.
  • Example has a small average bundle diameter of 3 ⁇ m or less, and easier penetration of the polymer main chain including the first carbon nanotube having a uniform number of walls, and has a large number of individuals by weight Each physical property expressed in electrical conductivity is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

One embodiment of the present invention provides a rubber composition comprising: a rubber matrix; and a multi-walled carbon nanotube aggregate, wherein the multi-walled carbon nanotube aggregate is composed of multi-walled carbon nanotubes having an average number of walls of 12 or less.

Description

탄소나노튜브를 포함하는 고무 조성물Rubber composition comprising carbon nanotubes
본 발명은 고무 조성물에 관한 것으로, 더욱 상세하게는 탄소나노튜브를 포함하는 고무 조성물에 관한 것이다.The present invention relates to a rubber composition, and more particularly, to a rubber composition comprising carbon nanotubes.
타이어는 일반적으로 이를 제조하기 위한 고무 조성물에 사용된 필러의 종류에 따라 실리카 타이어 및 카본블랙 타이어로 구분될 수 있다.Tires can generally be classified into silica tires and carbon black tires according to the type of filler used in the rubber composition for manufacturing the same.
카본블랙 타이어는 카본블랙이 본질적으로 상호 응집 또는 연결된 고차 구조를 가지므로 고무 매트릭스와의 결합 면적이 넓고, 그에 따라 고무 매트릭스와의 결합력을 높이기 용이한 장점이 있다. 또한, 카본블랙의 표면에 관능기를 도입하는 등의 개질을 통해 고무 매트릭스와의 결합력을 더 향상시키는 방법도 제안된 바 있다.The carbon black tire has an advantage in that the bonding area with the rubber matrix is large because carbon black has a high-order structure intrinsically agglomerated or connected to each other, and thus the bonding strength with the rubber matrix is easily increased. In addition, a method of further improving the bonding strength with the rubber matrix through modification such as introducing a functional group to the surface of carbon black has also been proposed.
한편, 실리카 필러의 경우 고무 매트릭스와의 결합력을 향상시키기 위해 특정 구조의 커플링제, 예를 들어, 알콕시실란계 커플링제를 사용하여 이들을 상호 결합시키는 방법이 사용되고 있다.On the other hand, in the case of the silica filler, a coupling agent having a specific structure, for example, an alkoxysilane-based coupling agent, is used in order to improve bonding strength with the rubber matrix, and a method of bonding them to each other is used.
최근, 카본블랙에 비해 가볍고, 발열 특성이 우수한 탄소나노튜브를 사용한 타이어 고무 조성물이 제안되었다. 일반적으로, 고무에 탄소나노튜브를 필러로 사용하여 타이어를 제조한 다음 점탄성 물성을 측정하면, 고무와 탄소나노튜브의 계면에서 열이 발생하여(heat build-up) 타이어의 연비 특성이 저하되는 문제가 있다. 이는 탄소나노튜브에 카본블랙과 같은 고차구조가 없고, 그 표면에 산소, 질소와 같은 관능기가 없기 때문에 물리적, 화학적, 물리화학적 측면에서 고무 매트릭스와 강한 결합을 형성하기 어렵기 때문이다. 그에 따라 탄소나노튜브와 고무 매트릭스의 계면에서의 마찰 및 발열이 증가하여 타이어에 적용 시 제동, 연비 및 마모 특성이 저하되는 것으로 알려져 있다.Recently, a tire rubber composition using carbon nanotubes, which is lighter than carbon black and has excellent heat generation characteristics, has been proposed. In general, when a tire is manufactured using carbon nanotubes as a filler in rubber and then viscoelastic properties are measured, heat is generated at the interface between the rubber and carbon nanotubes (heat build-up), which deteriorates the fuel efficiency of the tire. there is This is because it is difficult to form a strong bond with the rubber matrix in terms of physical, chemical and physicochemical aspects because carbon nanotubes do not have a higher-order structure such as carbon black and there are no functional groups such as oxygen and nitrogen on the surface. Accordingly, it is known that friction and heat generation at the interface between the carbon nanotubes and the rubber matrix increase, which deteriorates braking, fuel efficiency and wear characteristics when applied to tires.
따라서 탄소나노튜브를 타이어 컴파운드에 적용하여 물성을 향상시키기 위해서는 고무 조성물 중의 탄소나노튜브 분산성을 개선하는 것이 우선적으로 해결해야할 과제로 남아있다.Therefore, in order to improve physical properties by applying carbon nanotubes to a tire compound, improving the dispersibility of carbon nanotubes in a rubber composition remains a priority to be solved.
또한, 고무가 사용되는 제품의 종류 및 특성에 따라, 특수한 성질을 부여하여 고부가가치의 소재로 사용하려는 시도가 지속적으로 이루어지고 있다. 특히, 웨어러블 생체 기기는 유연성을 갖는 전도체를 필요로 하므로, 고무에 전기전도성을 부여하는 기술에 대한 수요가 증가하고 있다.In addition, attempts are continuously being made to use rubber as a high value-added material by giving special properties according to the type and characteristics of the product in which it is used. In particular, since wearable biological devices require a conductor having flexibility, the demand for a technology for imparting electrical conductivity to rubber is increasing.
고무에 전도성을 부여하기 위해 탄소나노튜브, 카본블랙, 흑연, 탄소섬유, 금속 분말, 금속 코팅 무기 분말 또는 금속 섬유 등의 전도성 필러가 사용되었으나, 전도성 필러가 고무 매트릭스 내부에서 상호 응집하여 필요한 수준의 전도성을 구현하지 못하는 문제점이 있어 고무 조성물 중 전도성 필러의 분산성을 개선하는 것이 필요하다.Conductive fillers such as carbon nanotubes, carbon black, graphite, carbon fiber, metal powder, metal-coated inorganic powder, or metal fiber were used to impart conductivity to rubber. Since there is a problem in that conductivity cannot be implemented, it is necessary to improve the dispersibility of the conductive filler in the rubber composition.
이러한 분산성 개선을 위한 방법으로 탄소나노튜브의 표면을 개질하여 고무 매트릭스와의 상용성을 향상시키거나, 배합 시 계면활성제, 분산제와 같은 특정 화학 성분을 첨가하는 방법이 시도되었으나 이러한 방법은 추가의 공정 또는 설비를 필요로 하고, 추가된 성분에 의해 최종 제품의 특성이 변화하는 문제점이 있다.As a method for improving the dispersibility, a method of improving the compatibility with a rubber matrix by modifying the surface of the carbon nanotube or adding specific chemical components such as a surfactant and a dispersant during mixing has been attempted, but this method is not It requires a process or equipment, and there is a problem in that the properties of the final product are changed by the added ingredients.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 고무 매트릭스 내부의 탄소나노튜브 분산성이 개선된 고무 조성물을 제공하는 것이다.The present invention is to solve the problems of the prior art, and an object of the present invention is to provide a rubber composition with improved carbon nanotube dispersibility in a rubber matrix.
본 발명의 일 측면은 고무 매트릭스; 및 다중벽 탄소나노튜브 집합체;를 포함하고, 상기 다중벽 탄소나노튜브 집합체는 평균 벽 개수가 12개 이하인 다중벽 탄소나노튜브로 구성된, 고무 조성물을 제공한다.One aspect of the present invention is a rubber matrix; and a multi-walled carbon nanotube aggregate, wherein the multi-walled carbon nanotube aggregate is composed of multi-walled carbon nanotubes having an average number of walls of 12 or less, providing a rubber composition.
일 실시예에 있어서, 상기 다중벽 탄소나노튜브의 평균 직경이 5~50 ㎚일 수 있다.In an embodiment, the average diameter of the multi-walled carbon nanotubes may be 5 to 50 nm.
일 실시예에 있어서, 상기 다중벽 탄소나노튜브의 라만 분광 강도비(IG/ID)가 0.5~1.5일 수 있다.In an embodiment, the Raman spectral intensity ratio ( IG /I D ) of the multi-walled carbon nanotube may be 0.5 to 1.5.
일 실시예에 있어서, 상기 다중벽 탄소나노튜브의 겉보기 밀도가 0.005~0.120g/mL일 수 있다.In one embodiment, the apparent density of the multi-walled carbon nanotubes may be 0.005 ~ 0.120 g / mL.
일 실시예에 있어서, 상기 다중벽 탄소나노튜브 집합체는 평균 다발 직경(bundle diameter)이 0.5~20 ㎛이고, 평균 다발 길이(bundle length)가 10~200 ㎛일 수 있다.In an embodiment, the multi-walled carbon nanotube aggregate may have an average bundle diameter of 0.5 to 20 μm, and an average bundle length of 10 to 200 μm.
일 실시예에 있어서, 상기 다중벽 탄소나노튜브 집합체는 벽 개수가 11~12개인 다중벽 탄소나노튜브의 개수 비율이 20% 이상일 수 있다.In one embodiment, in the multi-walled carbon nanotube aggregate, the ratio of the number of multi-walled carbon nanotubes having 11 to 12 walls may be 20% or more.
일 실시예에 있어서, 상기 다중벽 탄소나노튜브 집합체의 함량은 상기 고무 매트릭스 100 중량부에 대해 1~30중량부일 수 있다.In one embodiment, the content of the multi-walled carbon nanotube aggregate may be 1 to 30 parts by weight based on 100 parts by weight of the rubber matrix.
일 실시예에 있어서, 상기 고무 매트릭스는 선형 고분자를 포함할 수 있다.In one embodiment, the rubber matrix may include a linear polymer.
일 실시예에 있어서, 상기 선형 고분자는 중량평균분자량 2,000,000 g/mol을 기준으로 고유 점도가 6.5 이상일 수 있다.In one embodiment, the linear polymer may have an intrinsic viscosity of 6.5 or more based on a weight average molecular weight of 2,000,000 g/mol.
일 실시예에 있어서, 상기 고무 매트릭스는 공액 디엔계 고분자를 포함할 수 있다.In one embodiment, the rubber matrix may include a conjugated diene-based polymer.
일 실시예에 있어서, 상기 공액 디엔계 고분자는 1,3-부타디엔, 이소프렌, 2,3-디메틸-1,3-부타디엔, 1,3-펜타디엔, 1,3-헥사디엔, 2-페닐-1,3-부타디엔, 3-메틸-1,3-펜타디엔, 2-클로로-1,3-부타디엔, 3-부틸-1,3-옥타디엔 및 옥타디엔으로 이루어진 군에서 선택된 적어도 하나로부터 유래한 구조단위를 포함할 수 있다.In one embodiment, the conjugated diene-based polymer is 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 2-phenyl- derived from at least one selected from the group consisting of 1,3-butadiene, 3-methyl-1,3-pentadiene, 2-chloro-1,3-butadiene, 3-butyl-1,3-octadiene and octadiene It may contain structural units.
본 발명의 일 측면에 따르면, 고무 매트릭스 중에 탄소나노튜브를 균일하게 분산시킬 수 있다.According to one aspect of the present invention, carbon nanotubes can be uniformly dispersed in the rubber matrix.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.It should be understood that the effects of the present invention are not limited to the above-described effects, and include all effects that can be inferred from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 본 발명의 일 실시예에 사용된 제1 탄소나노튜브의 특성을 나타낸 것이고;1 shows the characteristics of a first carbon nanotube used in an embodiment of the present invention;
도 2는 본 발명의 일 실시예에 사용된 제2 탄소나노튜브의 특성을 나타낸 것이고;2 shows the characteristics of a second carbon nanotube used in an embodiment of the present invention;
도 3은 본 발명의 일 실시예에 사용된 부타디엔 고무의 특성을 나타낸 것이고;3 shows the properties of butadiene rubber used in an embodiment of the present invention;
도 4는 본 발명의 일 실시예에 따라 제조된 고무 조성물의 탄소나노튜브 분산도를 확인하기 위한 투과전자현미경(Transmission Electron Microscope; TEM) 이미지를 나타낸 것이다.4 shows a transmission electron microscope (TEM) image for confirming the carbon nanotube dispersion degree of the rubber composition prepared according to an embodiment of the present invention.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, the present invention will be described with reference to the accompanying drawings. However, the present invention may be embodied in several different forms, and thus is not limited to the embodiments described herein. And in order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is "connected" with another part, this includes not only the case of being "directly connected" but also the case of being "indirectly connected" with another member interposed therebetween. . In addition, when a part "includes" a certain component, this means that other components may be further provided without excluding other components unless otherwise stated.
본 명세서에서 수치적 값의 범위가 기재되었을 때, 이의 구체적인 범위가 달리 기술되지 않는 한 그 값은 유효 숫자에 대한 화학에서의 표준규칙에 따라 제공된 유효 숫자의 정밀도를 갖는다. 예를 들어, 10은 5.0 내지 14.9의 범위를 포함하며, 숫자 10.0은 9.50 내지 10.49의 범위를 포함한다.When a range of numerical values is recited herein, the values have the precision of the significant figures provided in accordance with the standard rules in chemistry for significant figures, unless the specific range is otherwise stated. For example, 10 includes the range of 5.0 to 14.9 and the number 10.0 includes the range of 9.50 to 10.49.
이하, 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 명세서에서 사용된 용어 "마스터배치(masterbatch)"는, 고무 복합재 내지는 배합물의 제조 시 고농도의 첨가제를 사전에 분산시킨 것으로 이러한 마스터배치 방법을 이용하면 고무 매트릭스 내 첨가제의 분산성을 향상시킬 수 있고, 이에 따라 최종 제품의 물성이 개선될 수 있다.As used herein, the term "masterbatch" refers to pre-dispersing a high concentration of additives in the manufacture of a rubber composite or compound. , thereby improving the physical properties of the final product.
고무 조성물rubber composition
본 발명의 일 측면에 따른 고무 조성물은, 고무 매트릭스; 및 다중벽 탄소나노튜브 집합체;를 포함하고, 상기 다중벽 탄소나노튜브 집합체는 평균 벽 개수가 12개 이하인 다중벽 탄소나노튜브로 구성될 수 있다.A rubber composition according to an aspect of the present invention, a rubber matrix; and a multi-walled carbon nanotube aggregate, wherein the multi-walled carbon nanotube aggregate may be composed of a multi-walled carbon nanotube having an average number of walls of 12 or less.
상기 고무 조성물은 일종의 마스터배치일 수 있고, 상기 고무 조성물을 희석(let-down)하여 전도성 고무, 타이어용 고무 등 다양한 용도로 사용할 수 있다.The rubber composition may be a kind of masterbatch, and by diluting the rubber composition (let-down), it may be used for various purposes such as conductive rubber, rubber for tires, and the like.
상기 다중벽 탄소나노튜브의 평균 벽 개수가 12개 이하이면 12개 초과인 집합체 대비 단위중량 당 개체 수가 많아 고무 조성물의 물성 향상 효과가 우수할 수 있다. 그 작용기작이 알려진 것은 아니나, 상기 다중벽 탄소나노튜브의 평균 벽 개수가 12개 내외에서 고무 조성물의 전기전도성과 같은 물성이 급변할 수 있다.When the average number of walls of the multi-walled carbon nanotubes is 12 or less, the number of individuals per unit weight is large compared to the aggregate having more than 12, so that the effect of improving the physical properties of the rubber composition may be excellent. Although the mechanism of action is not known, physical properties such as electrical conductivity of the rubber composition may change rapidly when the average number of walls of the multi-walled carbon nanotubes is about 12.
상기 탄소나노튜브를 합성하는 방법은 전기방전법(Arc-discharge), 열분해법(Pyrolysis), 레이저 증착법(Laser vaporization), 플라즈마 화학기상증착법(Plasma chemical vapor deposition), 열화학 기상증착법(Thermal chemical vapor deposition) 등이 있으나, 합성 방법에 제한 없이 제조된 모든 탄소나노튜브를 사용할 수 있다.Methods for synthesizing the carbon nanotubes include arc-discharge, pyrolysis, laser vaporization, plasma chemical vapor deposition, and thermal chemical vapor deposition. ), but all carbon nanotubes manufactured without limitation in the synthesis method may be used.
탄소나노튜브는 벽의 개수에 따라 단일벽 탄소나노튜브(Single wall carbon nanotube), 이중벽 탄소나노튜브(Double wall carbon nanotube), 다중벽 탄소나노튜브(Multi wall carbon nanotube), 절두된 원뿔형의 그래핀(truncated graphene)이 다수 적층된 중공관 형태의 탄소나노섬유(cup-stacked carbon nanofiber) 등이 있으나, 상기 다중벽 탄소나노튜브가 제조의 용이성 및 경제성이 우수할 수 있다.Carbon nanotubes are single-walled carbon nanotube, double-walled carbon nanotube, multi-walled carbon nanotube, and truncated cone-shaped graphene depending on the number of walls. Although there are cup-stacked carbon nanofibers in which a plurality of (truncated graphene) are stacked, and the like, the multi-walled carbon nanotubes may be excellent in manufacturing ease and economy.
본 명세서에서 탄소나노튜브의 벽 개수 등의 특성은 당 업계에서 일반적인 방법으로 측정될 수 있다. 예를 들어, 전자현미경으로 탄소나노튜브 시료의 벽 개수를 측정하거나, 이를 통계학적인 방법으로 평균 내지 개수 비율을 도출할 수 있다. 다만 이러한 측정방법에 한정되는 것은 아니다.In the present specification, characteristics such as the number of walls of carbon nanotubes may be measured by a general method in the art. For example, the number of walls of the carbon nanotube sample may be measured with an electron microscope, or an average or number ratio may be derived from this by a statistical method. However, it is not limited to these measurement methods.
상기 다중벽 탄소나노튜브의 평균 직경이 5~50 ㎚일 수 있고, 예를 들어, 5 ㎚, 6 ㎚, 7 ㎚, 8 ㎚, 9 ㎚, 10 ㎚, 11 ㎚, 12 ㎚, 13 ㎚, 14 ㎚, 15 ㎚, 16 ㎚, 17 ㎚, 18 ㎚, 19 ㎚, 20 ㎚, 21 ㎚, 22 ㎚, 23 ㎚, 24 ㎚, 25 ㎚, 26 ㎚, 27 ㎚, 28 ㎚, 29 ㎚, 30 ㎚, 31 ㎚, 32 ㎚, 33 ㎚, 34 ㎚, 35 ㎚, 36 ㎚, 37 ㎚, 38 ㎚, 39 ㎚, 40 ㎚, 41 ㎚, 42 ㎚, 43 ㎚, 44 ㎚, 45 ㎚, 46 ㎚, 47 ㎚, 48 ㎚, 49 ㎚ 또는 50 ㎚일 수 있으나, 이에 한정되는 것은 아니다.The multi-walled carbon nanotube may have an average diameter of 5 to 50 nm, for example, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 11 nm, 12 nm, 13 nm, 14 nm, 15 nm, 16 nm, 17 nm, 18 nm, 19 nm, 20 nm, 21 nm, 22 nm, 23 nm, 24 nm, 25 nm, 26 nm, 27 nm, 28 nm, 29 nm, 30 nm, 31 nm, 32 nm, 33 nm, 34 nm, 35 nm, 36 nm, 37 nm, 38 nm, 39 nm, 40 nm, 41 nm, 42 nm, 43 nm, 44 nm, 45 nm, 46 nm, 47 nm , 48 nm, 49 nm, or 50 nm, but is not limited thereto.
상기 다중벽 탄소나노튜브의 평균 직경이 상기 범위를 벗어나면 이들의 응집되어 형성된 다중벽 탄소나노튜브 집합체의 평균 다발 직경이 필요한 범위로 조절되기 어려울 수 있다.When the average diameter of the multi-walled carbon nanotubes is out of the above range, it may be difficult to adjust the average bundle diameter of the multi-walled carbon nanotube aggregate formed by aggregation thereof to a required range.
본 명세서에서 사용된 용어 "다발(bundle)"은, 복수의 탄소나노튜브가 나란하게 배열되거나 상호 엉킨 상태의 다발 또는 로프 형태를 지칭하는 것으로, 이와 달리 복수의 탄소나노튜브가 일정한 형상을 이루지 않고 존재하는 경우 "비다발형"이라 지칭하기도 한다.As used herein, the term “bundle” refers to a bundle or rope form in which a plurality of carbon nanotubes are arranged side by side or entangled with each other. When present, it is also referred to as "non-clinical".
상기 탄소나노튜브의 구조를 분석하기 위한 방법 중, 탄소나노튜브의 표면 상태를 분석하는 라만분광법(Raman Spectroscopy)이 유용하게 사용될 수 있다. 본 명세서에 사용된 용어, "라만분광법"은 레이저 광과 같은 단색의 여기 광을 쬐었을 때, 분자의 진동수만큼의 차이가 있는 산란광이 생기는 현상인 라만효과(Raman effect)에서 분자의 진동수를 구하는 분광법을 의미하는 것으로, 이러한 라만분광법을 통해 탄소나노튜브의 결정성을 수치화하여 측정할 수 있다.Among the methods for analyzing the structure of the carbon nanotube, Raman spectroscopy for analyzing the surface state of the carbon nanotube may be usefully used. As used herein, the term "Raman spectroscopy" is a method of obtaining the molecular frequency from the Raman effect, a phenomenon in which scattered light having a difference as much as the molecular frequency is generated when excitation light of a monochromatic color such as laser light is applied. It means spectroscopy, and can be measured by quantifying the crystallinity of carbon nanotubes through Raman spectroscopy.
상기 탄소나노튜브의 라만 스펙트럼 중 파수 1,580±50 cm-1 영역에 존재하는 피크를 G 밴드라고 하며, 이는 탄소나노튜브의 sp2 결합을 나타내는 피크로서, 구조적 결함이 없는 탄소 결정을 나타내는 것이다. 또한, 파수 1,360±50 cm-1 영역에 존재하는 피크를 D 밴드라고 하며, 이는 탄소나노튜브의 sp3 결합을 나타내는 피크로서, 구조적 결함을 함유하는 탄소를 나타내는 것이다.A peak present in a wavenumber region of 1,580±50 cm −1 in the Raman spectrum of the carbon nanotube is referred to as a G band, which is a peak representing sp 2 bonding of the carbon nanotube, indicating a carbon crystal without structural defects. In addition, the peak present in the wavenumber 1,360±50 cm -1 region is referred to as a D band, which is a peak indicating sp 3 bonding of carbon nanotubes, indicating carbon containing structural defects.
나아가, 상기 G 밴드 및 D 밴드의 피크 값을 각각 IG 및 ID라고 하며, 양자 간 비율인 라만분광 강도비(IG/ID)를 통해 탄소나노튜브의 결정성을 수치화하여 측정할 수 있다. 즉, 라만분광 강도비가 높은 값을 나타낼수록 탄소나노튜브의 구조적 결함이 적은 것을 의미하므로, 상기 라만분광 강도비가 높은 값을 나타내는 탄소나노튜브를 사용하는 경우, 보다 우수한 전기전도 특성 등을 구현할 수 있다.Furthermore, the peak values of the G band and the D band are referred to as I G and I D , respectively, and the crystallinity of the carbon nanotube can be numerically measured through the Raman spectral intensity ratio ( IG /I D ), which is the ratio between the two. have. That is, since the higher the value of the Raman spectral intensity ratio, the smaller the structural defects of the carbon nanotube are. .
상기 다중벽 탄소나노튜브의 라만 분광 강도비(IG/ID)는 0.5~1.5, 예를 들어, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 또는 이들 중 두 값의 사이 범위일 수 있으나, 이에 한정되는 것은 아니다. 상기 탄소나노튜브의 IG/ID 값이 0.5 미만이면 비정질 탄소가 다량 함유되어 탄소나노튜브의 결정성이 불량하고, 이에 따라 고무 매트릭스와 혼합 시 물성 향상 효과가 미약할 수 있다.The Raman spectral intensity ratio (I G /I D ) of the multi-walled carbon nanotube is 0.5 to 1.5, for example, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 or these It may be a range between two values, but is not limited thereto. When the I G /I D value of the carbon nanotube is less than 0.5, a large amount of amorphous carbon is contained and the crystallinity of the carbon nanotube is poor, and thus the effect of improving physical properties may be weak when mixed with the rubber matrix.
탄소나노튜브는 탄소 함량이 높을수록 촉매와 같은 불순물이 적어 우수한 특성을 구현할 수 있으므로, 상기 탄소나노튜브의 탄소 순도가 90% 이상, 예를 들어, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.9% 또는 이들 중 두 값의 사이 범위일 수 있으나, 이에 한정되는 것은 아니다. 상기 탄소나노튜브의 탄소 순도가 90% 미만이면 탄소나노튜브의 구조적 결함이 유발되어 결정성이 저하될 수 있고, 탄소나노튜브가 외부 자극에 의해 쉽게 절단, 파괴될 수 있다.Since carbon nanotubes have fewer impurities such as catalysts as the carbon content is higher, excellent properties can be realized, so that the carbon purity of the carbon nanotubes is 90% or more, for example, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.9%, or a range between two of these values, but is not limited thereto. If the carbon purity of the carbon nanotube is less than 90%, a structural defect of the carbon nanotube may be induced and crystallinity may be deteriorated, and the carbon nanotube may be easily cut and destroyed by an external stimulus.
상기 다중벽 탄소나노튜브의 겉보기 밀도가 0.005~0.120 g/mL일 수 있고, 예를 들어, 0.005 g/mL, 0.01 g/mL, 0.02 g/mL, 0.03 g/mL, 0.04 g/mL, 0.05 g/mL, 0.06 g/mL, 0.07 g/mL, 0.08 g/mL, 0.09 g/mL, 0.10 g/mL, 0.11 g/mL, 0.12 g/mL 또는 이들 중 두 값의 사이 범위일 수 있으나, 이에 한정되는 것은 아니다. 상기 다중벽 탄소나노튜브의 겉보기 밀도가 상기 범위를 벗어나면 고무 매트릭스와 혼합 시 물성 향상 효과가 미약할 수 있다.The multi-walled carbon nanotube may have an apparent density of 0.005 to 0.120 g/mL, for example, 0.005 g/mL, 0.01 g/mL, 0.02 g/mL, 0.03 g/mL, 0.04 g/mL, 0.05 g/mL, 0.06 g/mL, 0.07 g/mL, 0.08 g/mL, 0.09 g/mL, 0.10 g/mL, 0.11 g/mL, 0.12 g/mL, or between the two of these values; The present invention is not limited thereto. When the apparent density of the multi-walled carbon nanotubes is out of the above range, the effect of improving physical properties may be weak when mixed with the rubber matrix.
상기 다중벽 탄소나노튜브 집합체는 상기 고무 매트릭스 내부에서 상호 연결됨으로써 연속적인 3차원 네트워크 구조를 형성할 수 있고, 이에 따라 우수한 전도성을 나타낼 수 있다. 또한, 이러한 3차원 네트워크 구조가 견고하게 형성될수록 그립 특성, 기계적 물성, 동적 특성, 내구성이 향상될 수 있다. 특히, 상기 다중벽 탄소나노튜브 집합체의 평균 다발 직경과 평균 다발 길이를 일정 범위로 조절함으로써 상기 네트워크 구조를 견고하게 형성할 수 있다.The multi-walled carbon nanotube aggregate may form a continuous three-dimensional network structure by being interconnected within the rubber matrix, thereby exhibiting excellent conductivity. In addition, as the three-dimensional network structure is formed more firmly, grip properties, mechanical properties, dynamic properties, and durability may be improved. In particular, the network structure may be firmly formed by adjusting the average bundle diameter and average bundle length of the multi-walled carbon nanotube aggregate within a predetermined range.
상기 다중벽 탄소나노튜브 집합체는 평균 다발 직경이 0.5~20 ㎛, 예를 들어, 0.5 ㎛, 1 ㎛, 2 ㎛, 3 ㎛, 4 ㎛, 5 ㎛, 6 ㎛, 7 ㎛, 8 ㎛, 9 ㎛, 10 ㎛, 11 ㎛, 12 ㎛, 13 ㎛, 14 ㎛, 15 ㎛, 16 ㎛, 17 ㎛, 18 ㎛, 19 ㎛, 20 ㎛ 또는 이들 중 두 값의 사이 범위이고, 평균 다발 길이가 10~200 ㎛, 예를 들어, 10 ㎛, 20 ㎛, 30 ㎛, 40 ㎛, 50 ㎛, 60 ㎛, 70 ㎛, 80 ㎛, 90 ㎛, 100 ㎛, 110 ㎛, 120 ㎛, 130 ㎛, 140 ㎛, 150 ㎛, 160 ㎛, 170 ㎛, 180 ㎛, 190 ㎛, 200 ㎛ 또는 이들 중 두 값의 사이 범위일 수 있으나, 상기 다발형 탄소나노튜브 집합체의 평균 다발 직경 및 평균 다발 길이는 상기 고무 매트릭스의 성분에 따라 달라질 수 있으므로 상기 값에 한정되는 것은 아니다.The multi-walled carbon nanotube aggregate has an average bundle diameter of 0.5 to 20 μm, for example, 0.5 μm, 1 μm, 2 μm, 3 μm, 4 μm, 5 μm, 6 μm, 7 μm, 8 μm, 9 μm , 10 μm, 11 μm, 12 μm, 13 μm, 14 μm, 15 μm, 16 μm, 17 μm, 18 μm, 19 μm, 20 μm, or a range between two of these, and the average bundle length is 10-200 μm, such as 10 μm, 20 μm, 30 μm, 40 μm, 50 μm, 60 μm, 70 μm, 80 μm, 90 μm, 100 μm, 110 μm, 120 μm, 130 μm, 140 μm, 150 μm , 160 μm, 170 μm, 180 μm, 190 μm, 200 μm, or a range between two of these values, but the average bundle diameter and average bundle length of the bundled carbon nanotube aggregate depend on the components of the rubber matrix. Since it may vary, it is not limited to the above values.
이 때, 상기 다발형 탄소나노튜브 집합체의 평균 다발 직경이 0.5㎛ 미만이거나 평균 다발 길이가 200㎛ 초과이면 분산성이 저하되어 상기 고무 조성물로부터 제조된 타이어의 부위별 전기전도성, 그립 특성, 기계적 물성, 동적 특성, 내구성이 불균일해질 수 있고, 평균 다발 직경이 20㎛ 초과이거나 평균 다발 길이가 10㎛ 미만이면 네트워크 구조가 불안정해지면서 전기전도성, 그립 특성, 기계적 물성, 동적 특성, 내구성이 저하될 수 있다.At this time, when the average bundle diameter of the bundled carbon nanotube aggregate is less than 0.5 μm or the average bundle length exceeds 200 μm, the dispersibility is lowered, so that the electrical conductivity, grip characteristics, and mechanical properties of the tire manufactured from the rubber composition for each part , dynamic properties and durability may become non-uniform, and if the average bundle diameter exceeds 20 μm or the average bundle length is less than 10 μm, the network structure becomes unstable and electrical conductivity, grip properties, mechanical properties, dynamic properties, and durability may decrease. have.
상기 다중벽 탄소나노튜브 집합체는 벽 개수가 11~12개인 다중벽 탄소나노튜브의 개수 비율이 20% 이상, 25% 이상, 30% 이상, 35% 이상, 40% 이상 또는 이들 중 두 기준 수치 값의 사이 범위일 수 있다. 벽 개수가 11~12개인 탄소나노튜브의 개수 비율이 20% 이상이면 전술한 다중벽 탄소나노튜브의 평균 벽 개수에 기인한 효과가 더 우수할 수 있다. 또한 그 작용기작이 알려진 것은 아니나, 상기 다중벽 탄소나노튜브의 벽 개수 분포가 좁으면 상기 고무 조성물과 그로부터 제조된 최종 제품의 물성이 보다 균일해질 수 있다.In the multi-walled carbon nanotube aggregate, the ratio of the number of multi-walled carbon nanotubes having 11 to 12 walls is 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, or two reference numerical values of these can range between When the ratio of the number of carbon nanotubes having 11 to 12 walls is 20% or more, the effect due to the average number of walls of the aforementioned multi-walled carbon nanotubes may be more excellent. In addition, although the mechanism of action is not known, if the distribution of the number of walls of the multi-walled carbon nanotube is narrow, the physical properties of the rubber composition and the final product manufactured therefrom may be more uniform.
상기 다중벽 탄소나노튜브 집합체의 함량은 상기 고무 매트릭스 100 중량부에 대해 1~30중량부, 예를 들어, 1중량부, 2중량부, 3중량부, 4중량부, 5중량부, 6중량부, 7중량부, 8중량부, 9중량부, 10중량부, 11중량부, 12중량부, 13중량부, 14중량부, 15중량부, 16중량부, 17중량부, 18중량부, 19중량부, 20중량부, 21중량부, 22중량부, 23중량부, 24중량부, 25중량부, 26중량부, 27중량부, 28중량부, 29중량부, 30중량부 또는 이들 중 두 값의 사이 범위일 수 있으나, 이에 한정되는 것은 아니다.The content of the multi-walled carbon nanotube aggregate is 1 to 30 parts by weight, for example, 1 part by weight, 2 parts by weight, 3 parts by weight, 4 parts by weight, 5 parts by weight, 6 parts by weight based on 100 parts by weight of the rubber matrix. parts, 7 parts by weight, 8 parts by weight, 9 parts by weight, 10 parts by weight, 11 parts by weight, 12 parts by weight, 13 parts by weight, 14 parts by weight, 15 parts by weight, 16 parts by weight, 17 parts by weight, 18 parts by weight; 19 parts by weight, 20 parts by weight, 21 parts by weight, 22 parts by weight, 23 parts by weight, 24 parts by weight, 25 parts by weight, 26 parts by weight, 27 parts by weight, 28 parts by weight, 29 parts by weight, 30 parts by weight or any of these It may be a range between the two values, but is not limited thereto.
상기 다중벽 탄소나노튜브 집합체의 함량이 1중량부 미만이면 이를 첨가하여 구현할 수 있는 효과가 불충분할 수 있고, 30중량부 초과이면 상기 다중벽 탄소나노튜브 집합체의 분산성이 저하될 수 있다.If the content of the multi-walled carbon nanotube aggregate is less than 1 part by weight, the effect that can be realized by adding it may be insufficient, and if it is more than 30 parts by weight, the dispersibility of the multi-walled carbon nanotube aggregate may be reduced.
상기 고무 조성물은 평균 벽 개수가 12개 이하인 다중벽 탄소나노튜브로 구성된 다중벽 탄소나노튜브 집합체를 포함하여 분산도가 우수하고, 그 결과 103 Ω/□ 이하, 102 Ω/□ 이하 내지 101.5 Ω/□ 이하의 표면저항을 구현할 수 있다. 상기 표면저항은 상기 고무 조성물 내 상기 다중벽 탄소나노튜브의 분산도를 나타내는 대표 물성으로, 그 값이 작으면 상기 고무 매트릭스 내부에 다중벽 탄소나노튜브가 고르게 분포하여 견고한 네트워크 구조를 형성함으로써 최종 제품의 전기전도성, 그립 특성, 기계적 물성, 동적 특성, 내구성이 우수할 수 있다.The rubber composition includes a multi-walled carbon nanotube aggregate composed of multi-walled carbon nanotubes having an average number of walls of 12 or less, and has excellent dispersion, as a result, 10 3 Ω/□ or less, 10 2 Ω/□ or less to 10 Surface resistance of 1.5 Ω/□ or less can be realized. The surface resistance is a representative physical property indicating the degree of dispersion of the multi-wall carbon nanotubes in the rubber composition. When the value is small, the multi-wall carbon nanotubes are evenly distributed in the rubber matrix to form a solid network structure, thereby forming a final product. electrical conductivity, grip properties, mechanical properties, dynamic properties, and durability can be excellent.
종래 탄소나노튜브를 고무 매트릭스 중에 고르게 분산시키기 위해 탄소나노튜브의 표면에 고무 매트릭스와의 상용성을 높일 수 있는 작용기를 도입하거나 배합 시 계면활성제, 분산제와 같은 특정 화학 성분을 첨가하는 방법이 동원되기도 하였으나, 이러한 방법은 탄소나노튜브의 합성 이후에 이루어지거나 그와 독립적으로 이루어지는 것이므로 추가의 공정 또는 설비를 필요로 하는 점에서 경제성의 측면에서 불리한 문제가 있다.Conventionally, in order to evenly disperse carbon nanotubes in a rubber matrix, a method of introducing a functional group capable of enhancing compatibility with a rubber matrix on the surface of carbon nanotubes or adding specific chemical components such as surfactants and dispersants during compounding is used. However, since this method is made after the synthesis of carbon nanotubes or is made independently of it, there is a disadvantageous problem in terms of economical efficiency in that an additional process or equipment is required.
상기 고무 매트릭스는 선형 고분자를 포함할 수 있고, 상기 선형 고분자는 중량평균분자량 2,000,000 g/mol을 기준으로 고유 점도(intrinsic viscosity)가 6.5 이상, 7.0 이상, 7.5 이상 또는 8.0 이상일 수 있으나, 이에 한정되는 것은 아니다.The rubber matrix may include a linear polymer, and the linear polymer may have an intrinsic viscosity of 6.5 or more, 7.0 or more, 7.5 or more, or 8.0 or more based on a weight average molecular weight of 2,000,000 g/mol, but is not limited thereto. it is not
선형성이 높은 고분자는 상기 다중벽 탄소나노튜브 집합체 내부에 침투하여 상기 다중벽 탄소나노튜브 집합체의 분산성을 현저히 개선할 수 있으며, 예를 들어, 부타디엔 고무의 고유 점도가 6.5 이상이면 고무 매트릭스 내부의 다중벽 탄소나노튜브의 응집을 방지할 수 있다.A polymer with high linearity can penetrate into the multi-walled carbon nanotube aggregate to significantly improve the dispersibility of the multi-walled carbon nanotube aggregate. For example, when the intrinsic viscosity of butadiene rubber is 6.5 or more, It is possible to prevent aggregation of multi-walled carbon nanotubes.
점도 검출기를 사용하여 고분자의 마크-휴윙크 플롯(Mark-Houwink Plot)을 도시할 수 있고, 이로부터 고분자의 선형성을 표현하는 분지도(branching)를 계산할 수 있다. 일반적으로 동일한 중량평균분자량에서의 고유 점도 값이 클수록 고분자의 선형성이 높은 것을 의미한다.A Mark-Houwink plot of the polymer can be plotted using a viscosity detector, and branching representing the linearity of the polymer can be calculated from this. In general, the higher the intrinsic viscosity value at the same weight average molecular weight, the higher the linearity of the polymer.
상기 고무 매트릭스는 공액 디엔계 고분자를 포함할 수 있고, 상기 공액 디엔계 고분자는 1,3-부타디엔, 이소프렌, 2,3-디메틸-1,3-부타디엔, 1,3-펜타디엔, 1,3-헥사디엔, 2-페닐-1,3-부타디엔, 3-메틸-1,3-펜타디엔, 2-클로로-1,3-부타디엔, 3-부틸-1,3-옥타디엔 및 옥타디엔으로 이루어진 군에서 선택된 적어도 하나로부터 유래한 구조단위를 포함할 수 있으나 이에 한정되는 것은 아니다.The rubber matrix may include a conjugated diene-based polymer, wherein the conjugated diene-based polymer includes 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3 - consisting of hexadiene, 2-phenyl-1,3-butadiene, 3-methyl-1,3-pentadiene, 2-chloro-1,3-butadiene, 3-butyl-1,3-octadiene and octadiene It may include a structural unit derived from at least one selected from the group, but is not limited thereto.
이하, 본 발명의 실시예에 관하여 더욱 상세히 설명하기로 한다. 다만, 이하의 실험 결과는 상기 실시예 중 대표적인 실험 결과만을 기재한 것이며, 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 아래에서 명시적으로 제시하지 않은 본 발명의 여러 구현예의 각각의 효과는 해당 부분에서 구체적으로 기재하도록 한다.Hereinafter, embodiments of the present invention will be described in more detail. However, the following experimental results describe only representative experimental results among the above examples, and the scope and content of the present invention cannot be construed as being reduced or limited by the examples. Each effect of the various embodiments of the present invention not explicitly presented below will be specifically described in the corresponding section.
실시예Example
반바리(Banbury) 믹서에 네오디뮴계 촉매로 제조된 부타디엔 고무(NdBR) 100중량부를 투입하고 50℃에서 40rpm의 회전 속도로 1분 간 혼합한 후, 제1 탄소나노튜브 10중량부를 투입하여 45rpm의 회전 속도로 3분, 60rpm의 회전 속도로 3분 간 추가 혼합하였다. 혼합된 배합물을 1mm 간극의 오픈 롤에 투입하여 내림 작업 및 삼각 접기를 각각 3회 실시한 후, 시트 형태로 성형함으로써 NdBR-CNT 마스터배치를 제조하였다.100 parts by weight of butadiene rubber (NdBR) prepared as a neodymium-based catalyst was added to a Banbury mixer and mixed at 50° C. at a rotation speed of 40 rpm for 1 minute, and then 10 parts by weight of the first carbon nanotube was added to 45 rpm The mixture was further mixed for 3 minutes at a rotation speed and 3 minutes at a rotation speed of 60 rpm. The NdBR-CNT masterbatch was prepared by putting the mixed compound into an open roll with a gap of 1 mm, performing lowering operation and triangular folding three times, respectively, and then molding it in a sheet form.
비교예 1Comparative Example 1
네오디뮴계 촉매로 제조된 부타디엔 고무(NdBR) 대신 니켈계 촉매로 제조된 부타디엔 고무(NiBR)를 사용한 것을 제외하면 실시예 1과 동일한 방법으로 NiBR-CNT 마스터배치를 제조하였다.A NiBR-CNT masterbatch was prepared in the same manner as in Example 1, except that butadiene rubber (NiBR) prepared with a nickel-based catalyst was used instead of a butadiene rubber (NdBR) prepared with a neodymium-based catalyst.
비교예 2Comparative Example 2
네오디뮴계 촉매로 제조된 부타디엔 고무(NdBR) 대신 코발트계 촉매로 제조된 부타디엔 고무(CoBR)를 사용한 것을 제외하면 실시예 1과 동일한 방법으로 CoBR-CNT 마스터배치를 제조하였다.A CoBR-CNT masterbatch was prepared in the same manner as in Example 1, except that butadiene rubber (CoBR) prepared with a cobalt catalyst was used instead of butadiene rubber (NdBR) prepared with a neodymium-based catalyst.
비교예 3Comparative Example 3
제1 탄소나노튜브 대신 제2 탄소나노튜브를 사용한 것을 제외하면 실시예 1과 동일한 방법으로 NdBR-CNT 마스터배치를 제조하였다.An NdBR-CNT masterbatch was prepared in the same manner as in Example 1, except that the second carbon nanotube was used instead of the first carbon nanotube.
실험예 1Experimental Example 1
상기 실시예 및 상기 비교예에서 사용된 탄소나노튜브의 특성을 분석하여 아래 표 1, 도 1 및 2에 나타내었다.The characteristics of the carbon nanotubes used in the Examples and Comparative Examples were analyzed and shown in Table 1 and FIGS. 1 and 2 below.
구분division 평균 직경
(㎚)
average diameter
(nm)
평균 벽 개수
(개)
average number of walls
(dog)
평균 다발 직경
(㎛)
average bundle diameter
(μm)
평균 다발 길이
(㎛)
average bundle length
(μm)
제1 탄소나노튜브first carbon nanotube 12.1312.13 1111 2.822.82 48.0748.07
제2 탄소나노튜브second carbon nanotube 12.2012.20 1313 3.143.14 42.0042.00
상기 표 1과 도 1 및 2를 참고하면, 제1 탄소나노튜브는 평균 다발 직경이 3 ㎛ 이하로 작아 분산성이 우수하였다. 또한, 제1 탄소나노튜브는 벽 개수가 11~12개인 탄소나노튜브의 함량이 20% 이상이었다.Referring to Table 1 and FIGS. 1 and 2, the first carbon nanotubes had an average bundle diameter of 3 μm or less, and thus had excellent dispersibility. In addition, in the first carbon nanotube, the content of the carbon nanotube having 11 to 12 walls was 20% or more.
반면, 제2 탄소나노튜브는 평균 다발 직경이 3 ㎛ 초과이고, 벽 개수가 11~12개인 탄소나노튜브 함량이 20% 미만이었다.On the other hand, the second carbon nanotubes had an average bundle diameter of more than 3 μm, and the content of carbon nanotubes having 11 to 12 walls was less than 20%.
실험예 2Experimental Example 2
상기 실시예 및 상기 비교예에서 사용된 고무의 특징을 마크-휴윙크 플롯으로 확인하여 도 3에 나타내었다.The characteristics of the rubber used in the Examples and Comparative Examples were confirmed by a Mark-Huwink plot and shown in FIG. 3 .
도 3을 참고하면, 네오디뮴계 촉매로 제조된 부타디엔 고무(NdBR)는 분자량 2,000,000 g/mol에서 고유 점도가 8.3이고, 니켈계 촉매로 제조된 부타디엔 고무(NiBR)는 분자량 2,000,000 g/mol에서 고유 점도가 6.3이며, 코발트계 촉매로 제조된 부타디엔 고무(CoBR)는 분자량 2,000,000 g/mol에서 고유 점도가 5.5임을 확인할 수 있다.Referring to FIG. 3 , the butadiene rubber (NdBR) prepared with a neodymium-based catalyst has an intrinsic viscosity of 8.3 at a molecular weight of 2,000,000 g/mol, and the butadiene rubber (NiBR) prepared with a nickel-based catalyst has an intrinsic viscosity at a molecular weight of 2,000,000 g/mol is 6.3, and it can be seen that the butadiene rubber (CoBR) prepared with a cobalt-based catalyst has an intrinsic viscosity of 5.5 at a molecular weight of 2,000,000 g/mol.
따라서, 이들 간의 분지도는 CoBR > NiBR > NdBR의 식을 만족하여 네오디뮴계 촉매로 제조된 부타디엔 고무의 선형도가 가장 높은 것으로 확인되었다.Therefore, the degree of branching between them satisfies the formula of CoBR > NiBR > NdBR, and it was confirmed that the linearity of butadiene rubber prepared with a neodymium-based catalyst was the highest.
실험예 3Experimental Example 3
상기 실시예 및 상기 비교예에서 제조된 고무-탄소나노튜브 마스터배치의 물성 및 특성을 측정하여 아래 표 2 및 도 4에 나타내었다.The physical properties and properties of the rubber-carbon nanotube masterbatch prepared in Examples and Comparative Examples were measured and shown in Table 2 and FIG. 4 below.
구분division 무니 점도
(ML1+4@100℃)
Mooney viscosity
(ML 1+4 @100℃)
표면저항
(Ω/□)
surface resistance
(Ω/□)
분산도 분석
(TEM)
Analysis of variance
(TEM)
실시예Example 86~9086~90 10~3010-30 양호Good
비교예 1Comparative Example 1 82.482.4 1011 10 11 응집agglomeration
비교예 2Comparative Example 2 81.581.5 1013 10 13 응집agglomeration
비교예 3Comparative Example 3 84.284.2 104.0 10 4.0 일부 응집some agglomeration
상기 표 2 및 도 4를 참고하면, 평균 다발 직경이 3 ㎛ 이하이고 벽 개수가 11~12개인 탄소나노튜브의 함량이 20% 이상인 제1 탄소나노튜브와 선형도가 높은 네오디뮴계 촉매로 제조된 부타디엔 고무(NdBR)를 포함하는 실시예가 무니 점도 및 표면저항 값이 가장 우수하였다.Referring to Table 2 and FIG. 4, the first carbon nanotube having an average bundle diameter of 3 μm or less and the content of carbon nanotubes having 11 to 12 walls is 20% or more and a neodymium-based catalyst having high linearity. Examples including butadiene rubber (NdBR) had the best Mooney viscosity and surface resistance values.
이러한 결과는 선형성이 높은 네오디뮴계 촉매로 제조된 부타디엔 고무(NdBR)의 주쇄가 탄소나노튜브 다발 내부로 용이하게 침투하여 분산이 우수하나, 선형성이 낮은 니켈계 촉매로 제조된 부타디엔 고무(NiBR) 또는 코발트계 촉매로 제조된 부타디엔 고무(CoBR)의 주쇄는 탄소나노튜브 다발 내부로 침투하기 어려워 분산도가 매우 불량한 것일 수 있다. 이에 따라 비교예 1 및 2는 탄소나노튜브의 응집이 발생하여 표면저항 값이 불량함을 확인할 수 있다.These results show that the main chain of butadiene rubber (NdBR) prepared with a neodymium-based catalyst with high linearity easily penetrates into the carbon nanotube bundle and has excellent dispersion, but butadiene rubber (NiBR) prepared with a nickel-based catalyst with low linearity or The main chain of butadiene rubber (CoBR) prepared with a cobalt-based catalyst may have a very poor degree of dispersion because it is difficult to penetrate into the carbon nanotube bundle. Accordingly, it can be confirmed that in Comparative Examples 1 and 2, aggregation of the carbon nanotubes occurred and the surface resistance value was poor.
실시예와 비교예 3을 대비하면, 실시예는 평균 다발 직경이 3 ㎛ 이하로 작고, 벽 개수가 균일한 제1 탄소나노튜브를 포함하여 고분자 주쇄의 침투가 보다 용이하고, 중량 대비 개체수가 많아 전기전도성으로 표현되는 각 물성이 우수하다.Comparing Example and Comparative Example 3, the Example has a small average bundle diameter of 3 μm or less, and easier penetration of the polymer main chain including the first carbon nanotube having a uniform number of walls, and has a large number of individuals by weight Each physical property expressed in electrical conductivity is excellent.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is for illustration, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and likewise components described as distributed may also be implemented in a combined form.
본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention.

Claims (11)

  1. 고무 매트릭스; 및rubber matrix; and
    다중벽 탄소나노튜브 집합체;를 포함하고,Multi-walled carbon nanotube aggregate; including,
    상기 다중벽 탄소나노튜브 집합체는 평균 벽 개수가 12개 이하인 다중벽 탄소나노튜브로 구성된, 고무 조성물.The multi-walled carbon nanotube aggregate is composed of multi-walled carbon nanotubes having an average number of walls of 12 or less, a rubber composition.
  2. 제1항에 있어서,According to claim 1,
    상기 다중벽 탄소나노튜브의 평균 직경이 5~50 ㎚인, 고무 조성물.The average diameter of the multi-walled carbon nanotubes is 5 to 50 nm, the rubber composition.
  3. 제1항에 있어서,The method of claim 1,
    상기 다중벽 탄소나노튜브의 라만 분광 강도비(IG/ID)가 0.5~1.5인, 고무 조성물.The multi-walled carbon nanotube has a Raman spectral intensity ratio (I G /I D ) of 0.5 to 1.5, a rubber composition.
  4. 제1항에 있어서,According to claim 1,
    상기 다중벽 탄소나노튜브의 겉보기 밀도가 0.005~0.120g/mL인, 고무 조성물.An apparent density of the multi-walled carbon nanotubes is 0.005 to 0.120 g/mL, a rubber composition.
  5. 제1항에 있어서,According to claim 1,
    상기 다중벽 탄소나노튜브 집합체는 평균 다발 직경이 0.5~20 ㎛이고, 평균 다발 길이가 10~200 ㎛인, 고무 조성물.The multi-walled carbon nanotube aggregate has an average bundle diameter of 0.5 to 20 μm, and an average bundle length of 10 to 200 μm, a rubber composition.
  6. 제1항에 있어서,According to claim 1,
    상기 다중벽 탄소나노튜브 집합체는 벽 개수가 11~12개인 다중벽 탄소나노튜브의 개수 비율이 20% 이상인, 고무 조성물.In the multi-walled carbon nanotube aggregate, the number ratio of the multi-walled carbon nanotubes having 11 to 12 walls is 20% or more, a rubber composition.
  7. 제1항에 있어서,According to claim 1,
    상기 다중벽 탄소나노튜브 집합체의 함량은 상기 고무 매트릭스 100 중량부에 대해 1~30중량부인, 고무 조성물.The content of the multi-walled carbon nanotube aggregate is 1 to 30 parts by weight based on 100 parts by weight of the rubber matrix, a rubber composition.
  8. 제1항에 있어서,According to claim 1,
    상기 고무 매트릭스는 선형 고분자를 포함하는, 고무 조성물.The rubber matrix comprises a linear polymer, a rubber composition.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 선형 고분자는 중량평균분자량 2,000,000 g/mol을 기준으로 고유 점도가 6.5 이상인, 고무 조성물.The linear polymer has an intrinsic viscosity of 6.5 or more based on a weight average molecular weight of 2,000,000 g/mol, a rubber composition.
  10. 제1항에 있어서,According to claim 1,
    상기 고무 매트릭스는 공액 디엔계 고분자를 포함하는, 고무 조성물.The rubber matrix comprises a conjugated diene-based polymer, a rubber composition.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 공액 디엔계 고분자는 1,3-부타디엔, 이소프렌, 2,3-디메틸-1,3-부타디엔, 1,3-펜타디엔, 1,3-헥사디엔, 2-페닐-1,3-부타디엔, 3-메틸-1,3-펜타디엔, 2-클로로-1,3-부타디엔, 3-부틸-1,3-옥타디엔 및 옥타디엔으로 이루어진 군에서 선택된 적어도 하나로부터 유래한 구조단위를 포함하는, 고무 조성물.The conjugated diene-based polymer is 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 2-phenyl-1,3-butadiene, comprising a structural unit derived from at least one selected from the group consisting of 3-methyl-1,3-pentadiene, 2-chloro-1,3-butadiene, 3-butyl-1,3-octadiene and octadiene, rubber composition.
PCT/KR2022/002300 2021-02-16 2022-02-16 Rubber composition comprising carbon nanotubes WO2022177297A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280015324.5A CN116867851A (en) 2021-02-16 2022-02-16 Rubber composition comprising carbon nanotubes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210020291A KR102255801B1 (en) 2021-02-16 2021-02-16 A rubber composition comprising carbon nanotubes
KR10-2021-0020291 2021-02-16

Publications (1)

Publication Number Publication Date
WO2022177297A1 true WO2022177297A1 (en) 2022-08-25

Family

ID=76137414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002300 WO2022177297A1 (en) 2021-02-16 2022-02-16 Rubber composition comprising carbon nanotubes

Country Status (3)

Country Link
KR (1) KR102255801B1 (en)
CN (1) CN116867851A (en)
WO (1) WO2022177297A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102255801B1 (en) * 2021-02-16 2021-05-26 금호석유화학 주식회사 A rubber composition comprising carbon nanotubes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101016369B1 (en) * 2008-09-11 2011-02-21 금호타이어 주식회사 Tire tread rubber composition
KR20140069584A (en) * 2012-11-29 2014-06-10 한국타이어 주식회사 Rubber composition for tire tread and tire manufactured by using the same
KR101830492B1 (en) * 2016-01-26 2018-02-20 한화토탈 주식회사 Modified conjugated diene-based polymer and a tire rubber composition using the same
KR102150277B1 (en) * 2018-11-12 2020-09-02 금호석유화학 주식회사 A rubber composition for racing tire
KR102255801B1 (en) * 2021-02-16 2021-05-26 금호석유화학 주식회사 A rubber composition comprising carbon nanotubes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150045169A (en) * 2013-10-18 2015-04-28 한화케미칼 주식회사 Rubber composition for tire containing carbon nanotube
KR20160026399A (en) * 2014-09-01 2016-03-09 금호타이어 주식회사 rubber composition of tire tread for high speed racing car
KR101834894B1 (en) * 2016-03-21 2018-03-08 금호석유화학 주식회사 Rubber composite for electromagnetic interference shielding and method for manufacturing the same
KR20170109425A (en) * 2016-03-21 2017-09-29 금호석유화학 주식회사 Method for manufacturing electrically conductive rubber composite
KR101744125B1 (en) * 2016-10-19 2017-06-07 금호타이어 주식회사 Tire tread rubber composition and Tire manufactured by using the same
KR102085940B1 (en) * 2017-03-03 2020-03-06 금호석유화학 주식회사 A catalyst for mass production of multi-walled carbon nanotubes
CN111032768B (en) * 2017-08-16 2022-08-16 锦湖石油化学株式会社 Rubber composition for tire comprising carbon nanotube and method for preparing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101016369B1 (en) * 2008-09-11 2011-02-21 금호타이어 주식회사 Tire tread rubber composition
KR20140069584A (en) * 2012-11-29 2014-06-10 한국타이어 주식회사 Rubber composition for tire tread and tire manufactured by using the same
KR101830492B1 (en) * 2016-01-26 2018-02-20 한화토탈 주식회사 Modified conjugated diene-based polymer and a tire rubber composition using the same
KR102150277B1 (en) * 2018-11-12 2020-09-02 금호석유화학 주식회사 A rubber composition for racing tire
KR102255801B1 (en) * 2021-02-16 2021-05-26 금호석유화학 주식회사 A rubber composition comprising carbon nanotubes

Also Published As

Publication number Publication date
KR102255801B1 (en) 2021-05-26
CN116867851A (en) 2023-10-10

Similar Documents

Publication Publication Date Title
KR101058478B1 (en) Conductive polyolefins with good mechanical properties
CN1321232C (en) Fine carbon fiber mixture and composition thereof
WO2022177297A1 (en) Rubber composition comprising carbon nanotubes
EP4286465A2 (en) Carbon nanostructure preblends and their applications
CN1802712A (en) Conductive thermoplastic composites and methods of making
Li et al. Dispersions of carbon nanotubes/polyhedral oligomeric silsesquioxanes hybrids in polymer: the mechanical, electrical and EMI shielding properties
US20110091724A1 (en) Composite of vapor grown carbon fiber and inorganic fine particle and use thereof
WO2014148705A1 (en) Method for producing carbon nanotube composite
WO2010067955A2 (en) Method for preparing rubber/nanoclay masterbatches, and method for preparing high strength, high impact-resistant polypropylene/nanoclay/rubber composites using same
WO2018143602A1 (en) Method for producing carbon nanotube fiber and carbon nanotube fiber produced thereby
WO2020101309A1 (en) Racing tire rubber composition and method for manufacturing same
KR20170109425A (en) Method for manufacturing electrically conductive rubber composite
WO2019035659A1 (en) Rubber composition for tires including carbon nanotubes, and method for producing same
US20090131575A1 (en) Colored polymer composition
WO2020009367A1 (en) Method for manufacturing stiffness-enhanced product using carbon nanotubes and stiffness-enhanced product manufactured thereby
WO2020111805A1 (en) Stretchable paste composition
CN101747597A (en) Conductive batch and conductive single fiber
CN112552579B (en) Organic double-coated black phosphorus nanosheet synergistic halogen-free flame-retardant polyethylene composition and preparation method thereof
WO2016104908A1 (en) Oxidized carbon nanoparticles, method for producing same, organic/inorganic composite comprising same, and method for producing organic/inorganic composite
KR101834894B1 (en) Rubber composite for electromagnetic interference shielding and method for manufacturing the same
Sundaray et al. Preparation and characterization of polystyrene-multiwalled carbon nanotube composite fibers by electrospinning
KR20150045169A (en) Rubber composition for tire containing carbon nanotube
WO2023063505A1 (en) Catalyst for producing carbon nanotubes and carbon nanotube aggregate produced using same
WO2013100693A1 (en) Silicon carbide powder production method
WO2023063506A1 (en) Catalyst for producing carbon nanotube and method for producing carbon nanotube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756495

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280015324.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756495

Country of ref document: EP

Kind code of ref document: A1