WO2022177236A1 - Pharmaceutical composition for preventing or treating muscular atrophy or cachexia, comprising gintonin - Google Patents

Pharmaceutical composition for preventing or treating muscular atrophy or cachexia, comprising gintonin Download PDF

Info

Publication number
WO2022177236A1
WO2022177236A1 PCT/KR2022/002120 KR2022002120W WO2022177236A1 WO 2022177236 A1 WO2022177236 A1 WO 2022177236A1 KR 2022002120 W KR2022002120 W KR 2022002120W WO 2022177236 A1 WO2022177236 A1 WO 2022177236A1
Authority
WO
WIPO (PCT)
Prior art keywords
muscle
atrophy
cachexia
gintonin
induced
Prior art date
Application number
PCT/KR2022/002120
Other languages
French (fr)
Korean (ko)
Inventor
권혁영
나승열
토니 위자야요셉
세티아완타니아
Original Assignee
순천향대학교 산학협력단
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천향대학교 산학협력단, 건국대학교 산학협력단 filed Critical 순천향대학교 산학협력단
Publication of WO2022177236A1 publication Critical patent/WO2022177236A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/25Araliaceae (Ginseng family), e.g. ivy, aralia, schefflera or tetrapanax
    • A61K36/258Panax (ginseng)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/14Peptides containing saccharide radicals; Derivatives thereof, e.g. bleomycin, phleomycin, muramylpeptides or vancomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/168Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/316Foods, ingredients or supplements having a functional effect on health having an effect on regeneration or building of ligaments or muscles
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/21Plant extracts
    • A23V2250/2124Ginseng
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/54Proteins
    • A23V2250/548Vegetable protein

Definitions

  • the present invention relates to a ginseng-derived gintonin-containing extract, a fraction thereof, or a pharmaceutical composition for preventing or treating muscular atrophy or cachexia comprising gintonin as an active ingredient.
  • Skeletal muscle mass accounts for about 40-50% of human body weight and accounts for the largest amount of tissue in the human body and is a major protein store. Maintaining sustained muscle mass is important for slowing the risk of metabolic syndrome and age-related muscular dystrophy. A balance of myofibrillar protein synthesis and breakdown is inevitably important for maintaining muscle mass.
  • Several signal transduction pathways, such as AKT/mTOR and the ubiquitin-proteasome system (UPS) are known to be involved in muscle hypertrophy and atrophy. Hypertrophic symptoms are associated with an increase in muscle mass, due to an increase in pre-existing skeletal muscle fibers by increased protein synthesis without an apparent change in the number of muscle fibers. Conversely, atrophy is due to changes in protein synthesis and increased degradation of muscle proteins. Muscle atrophy such as sarcopenia and cachexia, which causes weakness and atrophy of the body, is associated with many diseases such as aging, cancer, diabetes and metabolic syndrome.
  • Sarcopenia is a syndrome occurring mainly in the elderly with multifactorial causes such as sedentary lifestyle, motor unit number and satellite cell number/function, mitochondrial dysfunction, altered protein homeostasis and inflammation.
  • Cachexia is defined as a syndrome related to inflammation from the altered metabolic processes caused by the disease.
  • sarcopenia is associated with low muscle mass and weak muscle function associated with strength or physical performance.
  • increased fat mass and pro-inflammatory cytokines synergized with each other to accelerate the loss of muscle mass and function in sarcopenia patients.
  • the patient presented with additional symptoms such as decreased strength, fatigue, anorexia, insulin resistance, increased muscle proteolysis and inflammation.
  • muscle atrophy occurs in most cancer patients and is known as cancer-related cachexia. Since such muscular atrophy reduces the quality of life and longevity of patients, it is essential to find a therapeutic strategy to delay or prevent skeletal muscular atrophy.
  • Cachexia is a symptom of skeletal muscle loss known as cancer-induced cachexia that occurs in the majority of patients with advanced cancer, particularly lung cancer, and is also observed in several diseases such as acquired immunodeficiency syndrome (AIDS), chronic obstructive pulmonary disease (COPD), diabetes and hormone deficiency.
  • AIDS acquired immunodeficiency syndrome
  • COPD chronic obstructive pulmonary disease
  • skeletal muscle loss in cancer patients is the most obvious symptom as it progresses rapidly. 60% of cancer patients develop cancer cachexia, resulting in significant weight loss, resulting in poor quality of life and poor prognosis and outcome. Cancer cachexia is also thought to contribute to an increase in mortality in 20-30% of cancer patients.
  • Cachexia is driven by a variety of conditions, such as altered energy balance, increased production of pro-cachexia cytokines and factors, and decreased adipose tissue.
  • the best known cachexia-inducing factors are myostatin, activin, growth differentiation factor 15 (GDF15), tumor necrosis factor-like weak inducer of apoptosis (TWEAK), and interferon ⁇ (IFN ⁇ ), tumor necrosis factor ⁇ (TNF ⁇ ) , interleukin 1 ⁇ and ⁇ (IL-1 ⁇ and IL-1 ⁇ ), and interleukin (IL)-6.
  • GDF15 growth differentiation factor 15
  • TWEAK tumor necrosis factor-like weak inducer of apoptosis
  • IFN ⁇ interferon ⁇
  • TNF ⁇ tumor necrosis factor ⁇
  • IL-1 ⁇ and IL-1 ⁇ interleukin-6.
  • UPS ubiquitin-proteasome system
  • ALS autophagy-lysosome system
  • AKT serine/threonine-protein kinase
  • IGF1 insulin-like growth factor 1
  • NF- ⁇ B nuclear factor kappa B
  • NF- ⁇ B nuclear factor kappa B
  • ROS reactive oxygen species
  • Glucocorticoids are endocrine hormones involved in the response to stressful conditions and are known to have anti-inflammatory and immunosuppressive properties. Therefore, dexamethasone (DEX), a synthetic glucocorticoid, is widely used as an immunosuppressant and anti-inflammatory agent. Interestingly, DEX has also recently been shown to be an effective treatment for COVID-19. Despite this widely used therapeutic agent, it has been reported that GCs, including DEX, induce muscle atrophy. This symptom results from inhibition of protein synthesis as well as upregulation of protein degradation.
  • DEX dexamethasone
  • Proteolysis is known to be induced through activation of two ubiquitin E3 ligases, the muscular atrophy F-box (atrogin-1) and the muscle ring finger (MuRF1), as well as proteasome degradation.
  • the mammalian target of the mTOR (mammalian target of rapamycin) pathway is a major pathway in protein synthesis and is thought to be inhibited by GCs causing muscle atrophy. This causes DEX-induced atrogin-1 and MuRF1 to degrade MyoD (myogenic differentiation antigen) causing muscle atrophy. Therefore, it is important to demonstrate a strategy to mitigate protein degradation caused by DEX and increase protein synthesis.
  • Ginseng the root of ginseng (Panax ginseng Meyer), has been used as a traditional herbal medicine in many Eastern countries, particularly Korea, Japan and China. 'Panax' means 'all treatments' and represents the traditional belief that ginseng has the ability to heal all parts of the human body. Ginseng root and root extract have been traditionally used in Korea as a drug to energize the body and mind, increase muscle and physical strength, prevent aging, and increase energy (Korean Patent No. 10-1584722).
  • the inventors of the present invention screened a ginseng-derived component and found that gintonin (GT), a ginseng-derived lysophosphatidic acid receptor (LPAR) ligand, increases myotube cell diameter and fusion of both mouse C2C12 and human HSkM cells, and , The present invention was completed by confirming that dexamethasone (DEX)-induced muscle atrophy and cachexia were prevented and treated in vivo.
  • GT gintonin
  • LPAR ginseng-derived lysophosphatidic acid receptor
  • the present invention provides a ginseng-derived gintonin-containing extract, a fraction thereof, or a pharmaceutical composition and functional health food for the prevention or treatment of muscular atrophy or cachexia comprising gintonin as an active ingredient, and prevention or treatment of muscular atrophy or cachexia using the same to provide a way
  • the present invention provides a ginseng-derived gintonin-containing extract, a fraction thereof, or a pharmaceutical composition for preventing or treating muscular atrophy or cachexia comprising gintonin as an active ingredient.
  • the present invention provides a functional health food for preventing or improving muscular atrophy or cachexia comprising an extract containing ginseng-derived gintonin, a fraction thereof, or gintonin as an active ingredient.
  • the present invention provides a method for preventing or treating muscular atrophy or cachexia, comprising administering to a subject the pharmaceutical composition for the prevention or treatment of muscular atrophy or cachexia according to the present invention.
  • the present invention is a natural ingredient derived from ginseng-derived gintonin-containing extract, its fraction, or gintonin, which is biocompatible and has no side effects, applied to the prevention or treatment of muscular atrophy or cachexia, and acts as a lysophosphatidic acid receptor (LPAR) ligand Therefore, it can be used as a promising candidate to treat skeletal muscular atrophy and cachexia under physiological and pathological conditions.
  • LPAR lysophosphatidic acid receptor
  • 1a to 1c show the results of staining with myosin light chain (MHC) after treating various ginseng-derived components in differentiated C2C12 myotube cells. It shows that ginseng-derived components induce hypertrophy and fusion of C2C12 myotube cells: (a) Representative images; (b) Mean myotube cell diameter (data presented as mean ⁇ SEM of three independent experiments (*, P ⁇ 0.05; **, P ⁇ 0.01; ***, P ⁇ 0.001)). (c) Number of nuclei per myotube cell (data presented as mean ⁇ SEM of three independent experiments (*, P ⁇ 0.05; **, P ⁇ 0.01; ***, P ⁇ 0.001)).
  • 2A to 2E show GT-induced hypertrophy and fusion of C2C12 myotube cells.
  • GEF GT-enriched fraction
  • FIG. 6A-6C show that GT protects against atrophy of primary normal human skeletal myoblasts (HSkM).
  • HkM myotube cells were treated with GT without or with DEX for 2 days and then stained with MHC.
  • a representative image of myotube cell culture was taken with a phase contrast microscope set at ⁇ 100 magnification.
  • (c) Shows the number of nuclei per myotube cell. Data are presented as the mean ⁇ SEM of two independent experiments (*, P ⁇ 0.05; **, P ⁇ 0.01; ***, P ⁇ 0.001).
  • FIG. 8a is a graph showing the results of the MTT assay confirming the cell viability of C2C12 myotube cells treated with GT. Data are presented as mean ⁇ SEM. ns, not significant.
  • Figure 8b shows a representative image of GT-treated C2C12 myotube cells stained with anti-MHC Ab.
  • 8c is a graph showing the average diameter of C2C12 myotube cells treated with GT.
  • 8D is a graph showing the results of quantifying the number of nuclei per myotube cell. Data are presented as the mean ⁇ SEM of more than 280 myotubes from 10 randomly selected fields (*P ⁇ 0.05; ***P ⁇ 0.0001).
  • 8e shows representative images of C2C12 myotube cells treated with GT and TNF ⁇ and IFN ⁇ stained with anti-MHC Ab.
  • 8f is a graph showing the average diameter of C2C12 myotube cells treated with GT, TNF ⁇ and IFN ⁇ .
  • 8g is a graph showing the results of quantifying the number of nuclei per C2C12 myotube cells treated with GT, TNF ⁇ and IFN ⁇ . Data are presented as mean ⁇ SEM of more than 450 myotubes from 10 randomly selected fields (*P ⁇ 0.05; ***P ⁇ 0.0001).
  • Figure 9a shows the results of RT-PCR quantification of LPARs expression in C2C12 myotube cells treated with GT (*P ⁇ 0.05).
  • 9B shows representative images of C2C12 myotube cells treated with GT, TNF ⁇ and IFN ⁇ , or Ki16425 stained with anti-MHC Ab.
  • 9c is a graph showing the average diameter of C2C12 myotube cells treated with GT, TNF ⁇ and IFN ⁇ , or Ki16425.
  • 9D is a graph showing the number of nuclei per C2C12 myotube cells treated with GT, TNF ⁇ and IFN ⁇ , or Ki16425 (*P ⁇ 0.05; ***P ⁇ 0.0001).
  • FIGE shows the results of RT-PCR measuring the mRNA level of G ⁇ i2 in C2C12 cells transfected with control (non-target) (siCtrl) or G ⁇ i2 siRNA (***P ⁇ 0.0001).
  • Figure 9f is a representative image treated with GT (100 ng/mL) after the transfected cells were differentiated into myotube cells.
  • 9G shows the average diameter of more than 600 myotube cells from 10 random fields (***P ⁇ 0.001; ns, not significant).
  • Figure 10a shows the results of the FACS profile measuring the ROS level of C2C12 myoblasts treated with TNF ⁇ , GT, or N-acetyl cysteine (NAC, negative control).
  • Figure 10b is a graph showing the ROS level of C2C12 myoblasts treated with TNF ⁇ , GT, or N-acetyl cysteine (NAC, negative control) (*P ⁇ 0.05; ***P ⁇ 0.0001).
  • Figure 10c is a FACS profile showing the mitochondrial membrane potential ( ⁇ m) of C2C12 myoblasts treated with TNF ⁇ or GT.
  • Figure 10d shows the mitochondrial membrane potential ( ⁇ m) of C2C12 myoblasts treated with TNF ⁇ or GT (*P ⁇ 0.05).
  • FIG. 10e shows the results of analyzing the effect of GT on the scavenging of hydroxyl radicals (*P ⁇ 0.05; ***P ⁇ 0.0001).
  • FIG. 10f shows IL-6 levels in C2C12 myotube cells treated with TI (TNF ⁇ at 20 ng/mL and IFN ⁇ at 100 u/mL) or GT (100 ng/mL).
  • 10g shows the Nox-2 level of C2C12 myotube cells treated with TI (TNF ⁇ at 20 ng/mL and IFN ⁇ at 100 u/mL) or GT (100 ng/mL) (*, P ⁇ 0.05).
  • 11A shows the schedule of the LLC1-induced cancer cachexia mouse experiment.
  • 11B shows the tumor volume of LLC1-induced cancer cachexia mice.
  • 11C shows the body weight of LLC1-induced cancer cachexia mice.
  • 11D shows images of skeletal muscles (GA, SOL, TA, and EDL) of LLC1-induced cancer cachexia mice.
  • 11E shows the weight of skeletal muscle of LLC1-induced cancer cachexia mice.
  • 11F shows organ weights of LLC1-induced cancer cachexia mice (*P ⁇ 0.05; ***P ⁇ 0.0001).
  • 11f is a result of evaluating the grip strength of LLC1-induced cancer cachexia mice.
  • 11H shows the results of hanging experiments in LLC1-induced cancer cachexia mice (*P ⁇ 0.05; ***P ⁇ 0.0001).
  • 11I is an HE-stained cannon image of GA muscle.
  • 11J is a graph showing the cross-section (CSA) mean of GA muscle fibers.
  • 11K shows the results of plotting the cross section (CSA) of GA muscle fibers according to frequency (*P ⁇ 0.05; ***P ⁇ 0.0001).
  • 11L is a Western blot showing the protein levels of muscle atrophy-related genes in GA tissue lysates.
  • Figure 12a shows an image of HSkM myoblasts differentiated into myotubes, treated with GT in the presence or absence of TNF ⁇ , and stained with anti-MHC Ab (100x magnification).
  • 12B shows the average diameter of myotube cells.
  • 12C shows the number of nuclei per myotube cell (*P ⁇ 0.05; ***P ⁇ 0.0001).
  • 13 shows a molecular pathway model of GT for cancer cachexia.
  • the present invention relates to a ginseng-derived gintonin-containing extract, a fraction thereof, or a pharmaceutical composition for the prevention or treatment of muscle atrophy or cachexia and a health functional food comprising gintonin as an active ingredient.
  • the ginseng-derived gintonin-containing extract is obtained by extracting ginseng with an appropriate solvent, and any suitable solvent for the extraction may be any pharmaceutically acceptable organic solvent, and water or an organic solvent may be used.
  • any suitable solvent for the extraction may be any pharmaceutically acceptable organic solvent, and water or an organic solvent may be used.
  • an extraction solvent purified water, methanol, ethanol, propanol, isopropanol, butanol, etc., containing 1-4 carbon atoms anhydrous or hydrous lower alcohol, propylene glycol, etc.
  • butylene glycol, glycerin, acetone, ethyl acetate, butyl acetate, chloroform, diethyl ether, dichloromethane, hexane, ether, benzene, methylene chloride, and various solvents such as cyclohexane can be used alone or in combination, For example, it may be an alcohol extract or an ethanol extract, but is not limited thereto.
  • any one of methods such as hot water extraction, cold extraction, reflux cooling extraction, solvent extraction, steam distillation, ultrasonic extraction, elution, and compression may be selected and used.
  • the desired extract may be further subjected to a conventional fractionation process, and may be purified using a conventional purification method.
  • the method for preparing the gintonin-containing extract of the present invention and any known method may be used.
  • the fraction of the gintonin-containing extract derived from ginseng can be fractionated using a polar solvent such as water, methanol, ethanol, or a non-polar solvent such as hexane and ethyl acetate, for example, a butanol fraction may, but is not limited thereto.
  • a polar solvent such as water, methanol, ethanol, or a non-polar solvent such as hexane and ethyl acetate, for example, a butanol fraction may, but is not limited thereto.
  • the gintonin-containing extract, fraction thereof, or gintonin activates lysophosphatidic acid receptor (LPAR), for example, LPAR1 and LPAR3 to induce hypertrophy and fusion in both myotube cells, but this not limited 13 shows a molecular pathway model of gintonin, which binds to the LPA receptor and activates G ⁇ i2. G ⁇ i2 activation inhibits TNF ⁇ -induced atrophy, thereby suppressing atrophy and inflammation-related genes. In addition, gintonin reduces oxidative stress by scavenging ROS and inhibits mitochondrial membrane potential loss.
  • LPAR lysophosphatidic acid receptor
  • the muscle atrophy is insoluble muscle atrophy (disuse atrophy of muscles), absence of mechanical stimulation and denervation of skeletal muscle, cachexia, drug induced muscle atrophy, malnutrition muscle It may be selected from the group consisting of atrophy (Malnutrition induced muscle atrophy), muscular dystrophy (muscular dystrophy) and sarcopenia, but is not limited thereto.
  • the drug-induced muscular atrophy may be induced by glucocorticoids or dexamethasone, but is not limited thereto.
  • treatment means, unless otherwise stated, a disease or condition to which the term applies, or one or more symptoms of the disease or disorder to reverse, alleviate, inhibit the progression, or prevent. and, as used herein, the term treatment refers to the act of treating when “treating” is defined as above.
  • treatment or “therapeutic therapy” of muscular atrophy or cachexia in a mammal may include one or more of the following:
  • the ginseng-derived gintonin-containing extract, a fraction thereof, or the composition of the present invention comprising gintonin as an active ingredient may be used as a pharmaceutical composition or a food composition.
  • the pharmaceutical composition of the present invention may be prepared using a pharmaceutically suitable and physiologically acceptable adjuvant in addition to the active ingredient, and the adjuvant includes an excipient, a disintegrant, a sweetener, a binder, a coating agent, an expanding agent, a lubricant, A lubricant or flavoring agent may be used.
  • the adjuvant includes an excipient, a disintegrant, a sweetener, a binder, a coating agent, an expanding agent, a lubricant, A lubricant or flavoring agent may be used.
  • the pharmaceutical composition may be preferably formulated as a pharmaceutical composition by including one or more pharmaceutically acceptable carriers in addition to the active ingredients described above for administration.
  • Formulations of the pharmaceutical composition may be granules, powders, tablets, coated tablets, capsules, suppositories, solutions, syrups, juices, suspensions, emulsions, drops or injectable solutions.
  • the active ingredient may be combined with an orally, non-toxic, pharmaceutically acceptable inert carrier such as ethanol, glycerol, water, and the like.
  • suitable binders, lubricants, disintegrants and color-developers may also be included in the mixture.
  • Suitable binders include, but are not limited to, starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tracacanth or sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, and the like.
  • Disintegrants include, but are not limited to, starch, methyl cellulose, agar, bentonite, xanthan gum, and the like.
  • acceptable pharmaceutical carriers are sterile and biocompatible, and include saline, sterile water, Ringer's solution, buffered saline, albumin injection, dextrose solution, maltodextrin solution, glycerol, ethanol and One or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers, and bacteriostats may be added as needed.
  • diluents, dispersants, surfactants, binders and lubricants may be additionally added to form an injectable formulation such as an aqueous solution, suspension, emulsion, etc., pills, capsules, granules or tablets.
  • it can be preferably formulated according to each disease or component using the method disclosed in Remington's Pharmaceutical Science, Mack Publishing Company, Easton PA by an appropriate method in the art.
  • the ginseng-derived gintonin-containing extract of the present invention, a fraction thereof, or gintonin may be included in an amount of 0.001 to 20% by weight based on the total weight of the composition.
  • composition of the present invention may also be a food composition, and the food composition of the present invention may contain various flavoring agents or natural ingredients, such as a conventional food composition, in addition to containing an active ingredient, ginseng-derived gintonin-containing extract, a fraction thereof, or gintonin. Carbohydrates and the like may be contained as additional ingredients.
  • Examples of the above-mentioned natural carbohydrates include monosaccharides such as glucose, fructose and the like; disaccharides such as maltose, sucrose and the like; and polysaccharides such as conventional sugars such as dextrin and cyclodextrin, and sugar alcohols such as xylitol, sorbitol, and erythritol.
  • the above-mentioned flavoring agents can advantageously use natural flavoring agents (Taumatine), stevia extract (eg rebaudioside A, glycyrrhizin, etc.) and synthetic flavoring agents (saccharin, aspartame, etc.).
  • the food composition of the present invention may be formulated in the same manner as the pharmaceutical composition and used as a functional food or added to various foods.
  • Foods to which the composition of the present invention can be added include, for example, beverages, meat, chocolate, foods, confectionery, pizza, ramen, other noodles, gums, candy, ice cream, alcoholic beverages, vitamin complexes and health supplements. There is this.
  • the food composition contains various nutrients, vitamins, minerals (electrolytes), synthetic flavoring agents and natural flavoring agents, coloring agents, and thickening agents (cheese, chocolate, etc.) ), pectic acid and its salts, alginic acid and its salts, organic acids, protective colloidal thickeners, pH adjusters, stabilizers, preservatives, glycerin, alcohols, carbonation agents used in carbonated beverages, and the like.
  • the food composition of the present invention may contain natural fruit juice and pulp for the production of fruit juice beverages and vegetable beverages.
  • the present invention also provides a health functional food for preventing or improving muscle atrophy or cachexia comprising an extract containing ginseng-derived gintonin, a fraction thereof, or gintonin as an active ingredient.
  • the health functional food of the present invention may be manufactured and processed in the form of tablets, capsules, powders, granules, liquids, pills, etc. for the purpose of improving muscle atrophy or cachexia.
  • the term "health functional food” refers to a food manufactured and processed using raw materials or ingredients useful for the human body in accordance with Act No. 6727 of the Health Functional Food Act, and provides nutrients for the structure and function of the human body. It refers to ingestion for the purpose of obtaining useful effects for health purposes, such as controlling or physiological effects.
  • the health functional food of the present invention may contain normal food additives, and unless otherwise specified, whether it is suitable as a food additive is related to the item according to the general rules and general test method of food additives approved by the Food and Drug Administration. It is judged according to the standards and standards.
  • Food Additives Code include, for example, chemical compounds such as ketones, glycine, calcium citrate, nicotinic acid, and cinnamic acid; natural additives such as persimmon pigment, licorice extract, crystalline cellulose, high pigment, and guar gum; and mixed preparations such as sodium L-glutamate preparations, noodles-added alkalis, preservatives, and tar dye preparations.
  • chemical compounds such as ketones, glycine, calcium citrate, nicotinic acid, and cinnamic acid
  • natural additives such as persimmon pigment, licorice extract, crystalline cellulose, high pigment, and guar gum
  • mixed preparations such as sodium L-glutamate preparations, noodles-added alkalis, preservatives, and tar dye preparations.
  • the health functional food in tablet form is granulated by a conventional method by mixing the active ingredient of the present invention, ginseng-derived gintonin-containing extract, a fraction thereof, or a mixture of gintonin with excipients, binders, disintegrants and other additives. Then, a lubricant or the like may be added for compression molding, or the mixture may be directly compression molded.
  • the health functional food in the form of tablets may contain a corrosive agent or the like, if necessary.
  • hard capsules can be prepared by filling conventional hard capsules with an extract containing ginseng-derived gintonin, which is the active ingredient of the present invention, a fraction thereof, or a mixture of gintonin with additives such as excipients
  • Soft capsules can be prepared by filling a capsule base such as gelatin with an extract containing ginseng-derived gintonin or a mixture of gintonin with additives such as excipients.
  • the soft capsules may contain a plasticizer such as glycerin or sorbitol, a colorant, a preservative, and the like, if necessary.
  • the health functional food in the form of a ring can be prepared by molding the active ingredient of the present invention, ginseng-derived gintonin-containing extract, a fraction thereof, or a mixture of gintonin and excipients, binders, and disintegrants by a known method. , if necessary, it can be coated with sucrose or other skinning agent, or the surface can be coated with a material such as starch or talc.
  • the health functional food in the form of granules can be prepared in a granular form by a known method by mixing the active ingredient, ginseng-derived gintonin-containing extract, a fraction thereof, or a mixture of gintonin and excipients, binders, and disintegrants of the present invention. , a flavoring agent, a flavoring agent, etc. may be contained as needed.
  • the health functional food may be beverages, meat, chocolate, foods, confectionery, pizza, ramen, other noodles, gums, candy, ice cream, alcoholic beverages, vitamin complexes and health supplements.
  • the present invention provides a method for preventing or treating muscular atrophy or cachexia, comprising administering to an individual a ginseng-derived gintonin-containing extract, a fraction thereof, or a pharmaceutical composition containing gintonin as an active ingredient.
  • the subject may be a mammal, for example, a human, but is not limited thereto.
  • the term “therapeutically effective amount” refers to an amount of an active ingredient or pharmaceutical composition that induces a biological or medical response in a tissue system, animal or human as conceived by a researcher, veterinarian, physician or other clinician, which an amount that induces amelioration of the symptoms of the disease or disorder being treated. It is apparent to those skilled in the art that the therapeutically effective dosage and frequency of administration for the active ingredient of the present invention will vary depending on the desired effect.
  • the optimal dosage to be administered can be easily determined by those skilled in the art, and the type of disease, the severity of the disease, the content of active ingredients and other components contained in the composition, the type of formulation, and the age, weight, and general health of the patient It can be adjusted according to various factors including condition, sex and diet, administration time, administration route and secretion rate of the composition, treatment period, and concurrently used drugs.
  • the serrated jasmine extract of the present invention in the case of adults, it is preferable to administer the serrated jasmine extract of the present invention once to several times a day, at a dose of 0.01 mg/kg to 100 mg/kg.
  • the ginseng-derived gintonin-containing extract of the present invention can be administered orally, rectal, intravenously, intraarterially, intraperitoneally, intramuscularly, intrasternally, transdermally, Administration may be in a conventional manner via topical, intraocular or intradermal routes.
  • GT gintonin
  • GEF gintonin
  • the mouse myoblast line, C2C12 was obtained from the American Type Culture Collection (Manassas, VA, USA) at 5% CO 2 , 37° C. at 10% fetal bovine serum [FBS, Corning Life Sciences] and 1% penicillin-streptomycin [Corning Life Sciences] supplemented growth medium (GM, Dulbecco's modified Eagle's medium [DMEM, Corning Life Sciences, Oneonta NY, USA]).
  • FBS fetal bovine serum
  • DMEM Dulbecco's modified Eagle's medium
  • Confluent C2C12 cells were myoblasts in differentiation medium (DM, DMEM containing 2 % heat-inactivated horse serum [Sigma] and 1 % penicillin-streptomycin) for up to 4 days. Culture for differentiation.Differentiation medium was replaced with fresh differentiation medium every 2 days.For Dex-induced atrophy study, differentiated C2C12 cells were treated with 25 uM Dex (Sigma) and then incubated in DM for 2 days.
  • DM differentiation medium
  • DMEM DMEM containing 2 % heat-inactivated horse serum [Sigma] and 1 % penicillin-streptomycin
  • HSV Human skeletal myoblasts
  • Anti-atrogin-1 (sc-166806, Santa Cruz Biotechnology, CA, USA), anti-p-protein kinase B (AKT) (#9271, Cell Signaling Technology, MA, USA), anti-AKT (#9272) as an antibody , Cell Signaling Technology, MA, USA) and anti-actin (ab1801, Abcam, MA, USA) were used.
  • MTT assay was performed to confirm cell proliferation after GT treatment. Assays were performed using Cell Proliferation Kit I (Roche, Netherlands). Cells (1 ⁇ 10 4 ) were seeded in 96-well plates and incubated for 4 days to differentiate them. Then, myotube cells were treated with various concentrations of GT without or with DEX for 24 hours. After incubation, 10 ⁇ l MTT solution was added to the cells for 4 hours, followed by the addition of 100 ⁇ l solubilizing solution overnight. Absorbance was measured at 575 nm using a microplate reader.
  • mice C57BL/6 wild-type mice (12-16 weeks old, 26 ⁇ 1.5 g, male) were purchased from Orient (Korea). All animals were maintained in a sterile environment with free access to food and water and a 12 hour light/dark cycle. The procedures for handling and experimenting with mice were approved by the Animal Ethics Committee of Soonchunhyang University. All mice used were in normal health and had not previously been used in any experiments. Mice were divided into 4 groups: control, DEX alone, and combined GT and DEX treatment at 25 and 50 mg/kg body weight. Mice were intraperitoneally injected with DEX (5 mg/kg body weight/day) or PBS as a control once a day for 7 days.
  • GEF 25 and 50 mg/kg body weight/day
  • PBS as an excipient control was orally administered to mice once a day for 7 days.
  • the tibialis anterior, gastrocnemius, EDL, and soleus muscle were obtained and their weight was measured. The ratio of each skeletal muscle to body weight was calculated.
  • Immunofluorescence staining and cryosection of cultured cells were performed with a slight modification of the conventional method.
  • Cryosections (10 ⁇ m thick) of TA muscle were stained with hematoxylin (Sigma-Aldrich) for 10 minutes and eosin (Sigma-Aldrich) for 3 minutes, dehydrated with ethanol, and washed with Xylene solution (Daejung). Images were taken using a Nikon digital SLR camera (DS-i2) equipped with a Nikon Eclipse Ti-U inverted microscope. Samples were fixed with 4% formaldehyde in 1x PBS for 15 minutes, washed and blocked with 1x PBS with 5% normal Donkey serum for 1 hour.
  • Ginseng-derived ingredients induce hypertrophy and fusion of C2C12 myotube cells
  • ginseng induces muscle strength and reduces muscle damage and inflammatory responses in mice.
  • ginsenosides such as ginsenoside Rg1 have a protective effect on muscles. Therefore, we hypothesized that ginseng-derived ingredients are effective for muscle atrophy.
  • ginseng-derived components arginine-fructose-glucose (AFG), GT, non-saponin extracts, and whole saponin extracts at 100 ng/ml; ginsenosides Rb1, Rb2, Rc at 100 nM) , Rd, Re, Rf, Rg1, Rg2, Rg3R, and Rg3 isomers such as Rg3R, and Rg3S
  • AAG arginine-fructose-glucose
  • GT non-saponin extracts
  • whole saponin extracts at 100 ng/ml
  • ginsenosides Rb1, Rb2, Rc at 100 nM ginsenosides
  • Rd Re, Rf, Rg1, Rg2, Rg3R, and Rg3 isomers such as Rg3R, and Rg3S
  • ginseng-derived components were treated for 2 days.
  • ginsenosides such as ginsenosides Rd, Rg2, Rg3R, and Rg3S, induced cell hypertrophy and fusion ( FIG. 1 ). This is consistent with previous studies that ginsenosides Rb1 and Rg3 induce muscle hypertrophy and myoblast differentiation. Interestingly, among the tested ginseng components, GT (100 ng/ml) showed the highest level of C2C12 myotube cell hypertrophy and fusion ( FIG. 1 ).
  • MHC-positive myotube cells with more than 10 nuclei were counted at 10 different locations and the average diameter was calculated.
  • GT treatment increased myotube cell diameter by about 2.5 times compared to the control ( FIGS. 2c and 2d ).
  • the fusion index was calculated by counting the number of nuclei per MHC-positive myocyte (single nuclei, 2 to 5 nuclei, and 6 or more nuclei per myotube cell).
  • GT significantly increased the frequency of myotubes containing multiple nuclei (2-5 nuclei and more than 6 nuclei) compared to the control, whereas the frequency of mononuclear myocytes was significantly decreased upon GT treatment (Fig. 2e), which indicates that GT suggests the formation of larger myotube cells that induce muscle cell fusion.
  • GT As GT increases muscle cell size and fusion index, it was investigated whether GT protects muscle cells from drug- or stress-induced muscle atrophy. To this end, the protective effect of GT against muscle cell atrophy was confirmed by treating differentiated C2C12 cells with DEX alone or with DEX and GT.
  • GT treatment consistently increased muscle cell size even in the presence of DEX (Figs. 3a, 3b).
  • co-treatment with gintonin (100 ng/ml) and DEX increased myotube cell diameter by 2.7-fold compared to treatment with DEX alone ( FIGS. 3a and 3b ).
  • the frequency of multinucleated myotubes was significantly increased in the co-treatment of GT and DEX compared to DEX alone ( FIG. 3c ).
  • mice were injected with DEX (5 mg/kg of body weight) 7 times daily, followed by oral gavage of GEF (25 and 50 mg/kg) daily for 7 days. did. First, the body weight of the control, DEX or GEF+DEX co-treated mice, the weight of various organs and the hindlimb muscle size were checked.
  • DEX gintonin-rich fraction
  • Body weights and weights of organs including liver and spleen did not differ significantly between controls, DEX and GEF and DEX co-treatment ( FIG. 5A ).
  • cardiac weight was slightly increased by DEX but decreased significantly by co-administration of GEF and DEX ( FIG. 5A ).
  • SOL spleen
  • EDL extensor longus
  • GAS gastrocnemius
  • TA tibialis anterior
  • HkM Primary Normal Human Skeletal Myoblasts
  • the activity of GT is dependent on the LPA receptor, as demonstrated by the LPAR antagonist Ki16425 abrogating the effect of GT on C2C12 myotubes.
  • LPA receptors are highly expressed in many cell types and are responsible for proliferation, survival, cytoskeletal changes, and calcium influx.
  • the LPA receptor is a G protein-coupled receptor (GPCR) that can bind to heterotrimeric G proteins (Gi, Gq, G12/13 alpha subunits) and exhibit multiple cellular responses by LPA stimulation.
  • GPCR G protein-coupled receptor
  • the biological activity of LPA is mostly mediated through the activation of six receptors, LPA1 to LPA6.
  • the present invention suggests that GT can prevent muscle atrophy through activation of LPARs, particularly LPAR1 and LPAR3.
  • DEX a glucocorticoid drug
  • a glucocorticoid drug is used to modulate physiological processes and is commonly applied to treat various diseases such as anti-inflammatory.
  • one of the side effects of DEX is that it causes muscle atrophy when taken for a long time. This phenomenon was caused by an increased FOXO3a pathway due to increased activity of the ubiquitin-proteasome pathway. Activation of FOXO3 alone is sufficient to trigger proteolysis through the ubiquitin-proteasome system (UPS).
  • UPS ubiquitin-proteasome system
  • overproduction of IGF1 or AKT in mice is sufficient to reduce muscle weight loss by induction of muscle systemic hypertrophy and higher muscle strength.
  • novel anticancer agents recently used or in clinical trials can inhibit PI3K-AKT-mTOR signaling and thus inhibit muscle growth and promote atrophy.
  • novel approaches to stimulate these kinases may be important in preventing muscle wasting, particularly during recovery and recovery.
  • the present invention confirmed grip strength and CSA of muscle fibers in a mouse model of muscular atrophy and demonstrated that oral administration of GEF prevented or alleviated DEX-induced muscular atrophy.
  • AKT and Atrogin-1 are thought to be important pathways for GT to exhibit its protective activity against DEX-induced muscular atrophy.
  • GEF administration exhibited a potentially significant effect on cognition, thus demonstrating that it is safe and tolerated in the cognitively impaired elderly. Since GEF has been reported to be relatively safe in small clinical trials, it is suggested that GEF be tested clinically to improve muscle wasting.
  • gintonin a novel ginseng component, induces hypertrophy and fusion in both mouse and human myotube cells.
  • gintonin prevented or alleviated DEX-induced muscle wasting in a mouse model. Therefore, the present invention suggests that gintonin may be a promising candidate for treating skeletal muscular atrophy under physiological and pathological conditions.
  • GT and GEF were prepared according to previously published methods. Briefly, to prepare GT from ginseng root, 8 kg of 4-year-old ginseng was ground into small pieces (>3 mm) and refluxed 8 times at 80°C for 8 hours with 80% ethanol (EtOH). The MeOH extract (1.3 kg) was concentrated in vacuo and partitioned between n-butanol (n-BuOH) and water. The n-BuOH fraction of ginseng (fr., 300 g) was dissolved in PBS (pH 7.2) and loaded onto a column filled with DEAE sepharose CL-6B (GE Healthcare) and equilibrated with PBS (pH 7.2).
  • Unbound material was eluted with the same buffer and bound material was eluted with a linear gradient of 0 to 1 M NaCl in PBS (pH 7.2).
  • the eluted fraction was further diluted with 1000-fold excess distilled water (DW) using a Spectra/Por dialysis membrane (molecular weight cut off 6,000-8,000; Spectrum Laboratories Inc., Collinso Dominguez, CA, USA) at 4°C for 8 hours. to remove small molecule components and other components such as ginsenosides in a yield of 0.2% (Pyo, 2011 #134).
  • the mouse myoblast line, C2C12 was obtained from the American Type Culture Collection (Manassas, VA, USA) at 5% CO 2 , 37° C. at 10% fetal bovine serum [FBS, Corning Life Sciences] and 1% penicillin-streptomycin [Corning Life Sciences] supplemented growth medium (GM, Dulbecco's modified Eagle's medium [DMEM, Corning Life Sciences, Oneonta NY, USA]).
  • FBS fetal bovine serum
  • DMEM Dulbecco's modified Eagle's medium
  • Confluent C2C12 cells were myoblasts in differentiation medium (DM, DMEM containing 2 % heat-inactivated horse serum [Sigma] and 1 % penicillin-streptomycin) for up to 4 days. Culture for differentiation.Differentiation medium was replaced with fresh differentiation medium every 2 days.For Dex-induced atrophy study, differentiated C2C12 cells were treated with 25 uM Dex (Sigma) and then incubated in DM for 2 days.
  • DM differentiation medium
  • DMEM DMEM containing 2 % heat-inactivated horse serum [Sigma] and 1 % penicillin-streptomycin
  • HSV Human skeletal myoblasts
  • tissue lysate was homogenized and lysed using a normal cell lysis buffer, followed by centrifugation at 13,000 rpm at 4°C for 20 minutes.
  • the protein concentration of the supernatant was confirmed by Bio-Rad Protein Assay (Bio-Rad Laboratories, Inc., USA).
  • An equal amount of each protein extract (30 ⁇ g) was dissolved using 10% polyacrylamide gel and 0.45 ⁇ m hybridization nitrocellulose filter (HATF) membrane (Millipore) using Trans-blot turbo (Bio-Rad Laboratories, Inc., USA). , USA).
  • Anti-atrogin-1 (sc-166806, Santa Cruz Biotechnology, CA, USA), anti-MuRF-1 (ab172479, Abcam, MA, USA), anti-GDF8/myostatin (sc-398333, Santa Cruz Biotechnology) as antibodies , CA, USA), and anti-GAPDH (#9272, Cell Signaling Technology, MA, USA) were used.
  • MTT assay was performed to confirm cell proliferation after GT treatment. Assays were performed using Cell Proliferation Kit I (Roche, Netherlands). Cells (1 ⁇ 10 4 ) were seeded in 96-well plates and differentiated by incubation for 24 hours. Then, myoblasts were treated with various concentrations of GT for 96 hours. After incubation, 10 ⁇ l MTT solution was added to the cells for 4 hours, followed by the addition of 100 ⁇ l solubilizing solution overnight. After absorbance was measured at 575 nm using a microplate reader, background noise measured at 650 nm was removed using a microplate reader Multiskan GO spectrophotometer (Thermo Fisher Scientific, USA).
  • C2C12 myoblasts were pre-incubated with GT (100 ng/mL) in the presence or absence of TNF ⁇ (20 ng/mL) for 4 hours. Then, the cells were incubated with CellRox Deep Red reagent (Life Technologies, USA) for 30 min at 37 °C under dark charge. Analysis was carried out on a FACS Canto or FACS Aria III (BD Biosciences, USA) and data were analyzed with FlowJo software (Tree Star Inc., USA).
  • ROS clearance assays were performed as previously published. Briefly, an iron(II)-dependent thiobarbital acid (TBA) reactive substance was used to evaluate hydroxyl radical-mediated damage to deoxyribose.
  • the reaction system contained 20 ⁇ l iron ammonium sulfate (10 mM), 50 ⁇ l H2O2 (10 mM), 25 ⁇ l EDTA (10 mM), 25 ⁇ l 2-deoxyribose, and GT in 150 ⁇ l PBS, pH 7.4. did. After the mixture was incubated at 37° C. for 4 hours, 250 ⁇ l of 2.8% trichloroacetic acid (TCA) was added to the mixture along with 250 ⁇ l of 1% TBA.
  • TBA trichloroacetic acid
  • Mitochondrial membrane potential was confirmed using MitoProbeTM DiIC1(5) Assay Kit (Molecular Probe, USA).
  • C2C12 myoblasts were pre-incubated with GT (100 ng/mL) in the presence or absence of TNF ⁇ (20 ng/mL) for 24 hours. Then, the cells were stained with 5 ⁇ l of 10 ⁇ M DiIC1(5) at 37° C. for 15 minutes and washed once with PBS buffer. Cells were pelleted by centrifugation at 1000 rpm for 5 minutes and resuspended in 500 ⁇ l of PBS. Fluorescence was analyzed using a FACS Canto and data were analyzed with FlowJo software (Tree Star Inc., USA). The excitation and emission peaks of DiIC1(5) were 638 nm and 658 nm, respectively.
  • C2C12 myoblasts were transfected with 5 pM of G ⁇ i2 siRNA (Bioneer, pre-designed siRNA14678-1) and control non-target siRNA (Bioneer, SN-1003) using Lipofectamine RNAiMAX (Invitrogen). After the cells were 80% confluent, differentiation was initiated by replacing them with DMEM supplemented with 2% horse serum. Cells were differentiated for 4 days and then treated with GT (100 ng/ml) and vehicle (DMSO) for 2 days. Then, the diameter of the myotube cells was measured.
  • GT 100 ng/ml
  • DMSO vehicle
  • mice C57BL/6 wild-type mice (10-weeks-old, 25 ⁇ 1.0 g, male) were purchased from Orient (Korea). All animals were maintained in a sterile environment with free access to food and water and a 12 hour light/dark cycle. The procedures for handling and experimenting with mice were approved by the Animal Ethics Committee of Soonchunhyang University. All mice used were in normal health and had not previously been used in any experiments.
  • LLC1 cells (2x10 6 cells) were injected subcutaneously in the right flank. When tumors were detected on day 6, mice were randomly divided into three groups: healthy control group, PBS treated LLC1, and GEF treated LLC1.
  • mice were orally administered GEF (50 mg/kg body weight) or PBS as an excipient control daily until day 21.
  • GEF 50 mg/kg body weight
  • PBS PBS
  • Muscle behavior was assessed in two independent experiments.
  • the grip force test was recorded using a grip force meter in mice (Model 47200, Ugo-Basile, Varese, Italy).
  • the mice were held by a metal bar by gently grabbing their tails. As soon as the mouse grasped the metal bar, it was grabbed by the mouse's tail and pulled back vertically until the metal bar was released. Experiments were performed 5 times at an interval of 2 minutes for each mouse. The three maximum values on each experimental day were divided by body weight and normalized.
  • the hanging experiment was conducted using Kondziela's inverted screen test.
  • Immunofluorescence staining and cryosection of cultured cells were performed with a slight modification of the conventional method.
  • Cryosections (10 ⁇ m thick) of TA muscle were stained with hematoxylin (Sigma-Aldrich) for 10 minutes and eosin (Sigma-Aldrich) for 3 minutes, dehydrated with ethanol, and washed with Xylene solution (Daejung). Images were taken using a Nikon digital SLR camera (DS-i2) equipped with a Nikon Eclipse Ti-U inverted microscope. Samples were fixed with 4% formaldehyde in 1x PBS for 15 minutes, washed and blocked with 1x PBS with 5% normal Donkey serum for 1 hour.
  • MyHC Sacometric myosin heavy chain
  • MF20 0.3 ⁇ g/mL
  • Developmental Studies Hybridoma Bank was used.
  • Primary antibodies were incubated overnight at 4°C.
  • Cell nuclei were stained with 4',6-diamidino-2-phenylindole (DAPI; Invitrogen, Waltham, MA, USA).
  • DAPI 4',6-diamidino-2-phenylindole
  • Cell images were taken using a Nikon digital SLR camera (DS-i2) equipped with a Nikon eclipse Ti-U inverted microscope. Counting and measurement were performed using ImageJ software.
  • the myotube cell diameter was determined as the average diameter of at least 250 myotube cells from 10 random fields selected in each condition.
  • Ginseng-derived ingredients induce hypertrophy and fusion of C2C12 myotube cells
  • ginseng-derived ingredients have an effect on muscle atrophy and to substantiate this hypothesis, various ginseng-derived ingredients (arginine-fructose-glucose (AFG), GT, non-saponin extract, and 100 ng/ml total Saponin extract; 100 nM ginsenoside Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3R, and Rg3 isomers such as Rg3R, and Rg3S) were screened to confirm the protective effect on C2C12 myotube cells. . After differentiation of C2C12 myoblasts into myotubes, ginseng-derived components were treated for 2 days.
  • ginsenosides such as ginsenosides Rd, Rg2, Rg3R, and Rg3S, induced cell hypertrophy and fusion ( FIGS. 7A-7C ).
  • GT induces hypertrophy and fusion of C2C12 myotube cells
  • GT showed a better hypertrophic effect of myotube cells compared to other ginsenosides, it was confirmed whether GT had the effect of preventing muscle wasting.
  • GT treatment showed no cytotoxicity to C2C12 myotube cells with or without DEX ( FIG. 8a ).
  • C2C12 myotube cells were treated with GT in the range of 10 ng/mL to 10,000 ng/mL and stained with myosin heavy chain (MHC), a marker of myogenic differentiation.
  • MHC myosin heavy chain
  • GT treatment increased myotube cell diameter by about 2.5 times compared to the control ( FIGS. 8b and 8c ).
  • GT significantly increased the frequency of myotube cells containing multiple nuclei (2-5 nuclei and 6 or more nuclei) compared to the control ( FIGS. 8b and 8d ).
  • the frequency of mononuclear myocytes was significantly decreased upon GT treatment ( FIGS. 8b and 8d ), suggesting the formation of larger myotubes in which GT induces muscle cell fusion.
  • GT protects C2C12 myotubes from TNF ⁇ /IFN ⁇ -induced myoblast atrophy.
  • FIGS. 10a , 10b the accumulated ROS levels by TNF ⁇ were significantly reduced by GT or the known ROS scavenger, N-acetylcysteine (NAC) ( FIGS. 10a , 10b ). Since it is known that high levels of ROS reduce mitochondrial membrane potential ( ⁇ m), it was confirmed using the MitoProbe DilC 1 (5) assay kit whether GT can rescue mitochondrial membrane potential. TNF ⁇ was observed to induce ⁇ m disruption in C2C12 myoblasts; However, this phenomenon was restored by the addition of GT (Figs. 10c, 10d). Therefore, to identify the mechanism by which GT reduces ROS levels, two independent methods were used: a radical scavenging assay and inflammation-related gene regulation by GT.
  • NAC N-acetylcysteine
  • GT-enriched fraction prevents Lewis lung carcinoma (LLC1)-induced cancer cachexia in vivo
  • LLC1-induced cachexia mouse model was used.
  • GEF mass-produced from ginseng using ethanol and water was used.
  • LLC1 cells were injected subcutaneously into the flank of C57BL6 mice. Then, from the 6th day after cancer transplantation, GEF was orally administered daily for 15 days. Grip strength was measured every 2 days during the treatment period ( FIG. 11A ).
  • the LLC1-induced cachexia model was well established to show a significant loss of muscle mass and an apparent reduction in tumor-free body weight compared to wild-type control mice (Figs. 11b-11e).
  • FIGS. 11C-11H PBS-treated mice (LLC1+PBS) showed a tumor-free weight loss of 9.51% compared to healthy mice control, whereas tumor-free body weights of GEF-treated mice (LLC+GEF) recovered significantly ( FIG. 11C ).
  • the weights of the splenic muscle (SOL), extensor longus (EDL), gastrocnemius (GAS), and tibialis anterior (TA) were decreased in PBS-treated mice compared to healthy control mice, but their weights were restored in GEF-treated mice (Fig. 11d, 11e).
  • Organ weights such as heart, lung, and spleen were not affected by GEF treatment ( FIG. 11F ).
  • the reduced grip strength during the treatment period (days 9-21) was partially restored by GEF treatment compared to healthy control mice ( FIG. 11G ).
  • the low levels in the hanging experiments induced by LLC1 were restored to similar levels in healthy mice by GEF treatment ( FIG. 11H ).
  • hematoxylin and eosin (H&E) staining was performed.
  • the mean of the cross-sectional area (CSA) of the GEF-treated group was 1.8 times higher than that of the PBS-treated group ( FIGS. 11i and 11j ).
  • the PBS-treated group had a smaller distribution of CSA, but the GEF-treated group showed a larger CSA, which is similar to that observed in healthy mice.
  • the levels of several muscle atrophy-related signaling pathways such as myostatin, MuRF-1 and atrozin-1 in GA muscle were confirmed by Western blot.
  • HkM Primary Normal Human Skeletal Myoblasts
  • HSkM As GT protects muscle cell atrophy in mouse systems both in vitro and in vivo, to confirm that GT also has a clear protective effect in human cells, we used HSkM to analyze the effect of GT on human muscle cell atrophy. did. HSkM cells were differentiated for 7 days in low glucose DMEM with 2% horse serum and treated with GT for 3 days in the presence or absence of TNF ⁇ . Then, the diameter and fusion index of myotube cells were confirmed ( FIGS. 12a and 12b ). GT-treated HSkM myotubes showed significantly larger diameters than control myotubes ( FIGS. 12a and 12b ). In addition, the frequency of cells with 5 or more nuclei was much higher in the GT-treated group compared to the control group (Fig. 12cC).
  • GT a component derived from ginseng
  • GT prevented TNF ⁇ /IFN ⁇ -induced muscle atrophy in both mouse C2C12 and human HSkM myotubes in vitro.
  • GT maintained tumor-free body weight and grip strength, and increased muscle mass including GA, SOL, TA, and EDL.
  • GT did not show a clear anti-tumor effect at the doses used, suggesting that the anti-cachexia effect of GT is associated with skeletal muscle anti-atrophy but does not reduce tumor size.
  • the activity of GT is dependent on the LPAR/G ⁇ i2 signaling pathway, as evidenced by the abolition of the effect of GT in C2C12 myotubes, both LPAR antagonists Ki16425 and siG ⁇ i2. Consistently, the anti-atrophic effect of G ⁇ i2 has been reported, indicating that G ⁇ i2 acts as a parallelogram to murf-1 and atrogine1-mediated atrophy, thereby inhibiting the TNF ⁇ -induced atrophic effect. Therefore, in the present invention, it was proposed to prevent muscle atrophy through activation of the GT LPAR/G ⁇ i2 signaling pathway.
  • GT exhibits antioxidant effects by direct elimination of ROS and reduction of inflammation-related genes such as IL6 and NOX2.
  • inflammation-related genes such as IL6 and NOX2.
  • GT has been shown to reduce the inflammatory response in many types of tissue, including muscle and nervous system.
  • the inventors of the present invention confirmed that GEF administration was stable and tolerated by the elderly with cognitive impairment, and showed a possible effective effect on participants' ingestion in a small clinical trial. Therefore, the present invention suggested that GEF is a good therapeutic candidate for preventing or alleviating cancer cachexia-related signaling and inflammatory response, and can be clinically tested to improve muscle wasting.
  • the present invention found that GT, a novel ginseng component, induces hypertrophy and fusion in mouse and human myotube cells. GT can also protect and alleviate LLC1-induced muscle wasting through LPAR and G ⁇ i2 in a mouse model ( FIG. 13 ). Therefore, the present invention proposes that GT may be a promising therapeutic candidate for treating skeletal muscle atrophy in both physiological and pathological conditions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Botany (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Neurology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

The present invention relates to a pharmaceutical composition for preventing or treating muscular atrophy or cachexia, comprising an extract containing ginseng-derived gintonin, a fraction thereof, or gintonin, as an active ingredient.

Description

진토닌을 포함하는 근위축 또는 악액질의 예방 또는 치료용 약학적 조성물Pharmaceutical composition for preventing or treating muscular atrophy or cachexia containing gintonin
본 발명은 인삼 유래 진토닌 함유 추출물, 이의 분획물 또는 진토닌을 유효성분으로 포함하는 근위축 또는 악액질의 예방 또는 치료용 약학적 조성물에 관한 것이다.The present invention relates to a ginseng-derived gintonin-containing extract, a fraction thereof, or a pharmaceutical composition for preventing or treating muscular atrophy or cachexia comprising gintonin as an active ingredient.
골격근량은 인간 체중의 약 40-50%로 인체에서 가장 많은 조직량을 차지하며 주요 단백질 저장소이다. 근육량을 지속적으로 유지하는 것은 대사 증후군 및 노화 관련 근디스트로피의 위험을 늦추는데 중요하다. 근원섬유 단백질 합성 및 분해의 균형은 근육량을 유지하는데 필연적으로 중요하다. AKT/mTOR 및 UPS (ubiquitin-proteasome system)와 같은 여러 시그널 변환 경로는 근육 비대 및 위축과 관련된 것으로 알려져 있다. 비대 증상은 근육량의 증가와 관련된 것으로, 근섬유 수의 명백한 변화 없이 증가된 단백질 합성에 의한 이미-존재하는 골격근 섬유의 증가에 의한 것이다. 반대로, 위축은 단백질 합성의 변화 및 근육 단백질의 증가된 분해에 의한 것이다. 인체의 약화 및 위축을 야기하는 근육감소증 및 악액질과 같은 근위축은 노화, 암, 당뇨병 및 대사증후군과 같은 많은 질환과 관련되어 있다. Skeletal muscle mass accounts for about 40-50% of human body weight and accounts for the largest amount of tissue in the human body and is a major protein store. Maintaining sustained muscle mass is important for slowing the risk of metabolic syndrome and age-related muscular dystrophy. A balance of myofibrillar protein synthesis and breakdown is inevitably important for maintaining muscle mass. Several signal transduction pathways, such as AKT/mTOR and the ubiquitin-proteasome system (UPS), are known to be involved in muscle hypertrophy and atrophy. Hypertrophic symptoms are associated with an increase in muscle mass, due to an increase in pre-existing skeletal muscle fibers by increased protein synthesis without an apparent change in the number of muscle fibers. Conversely, atrophy is due to changes in protein synthesis and increased degradation of muscle proteins. Muscle atrophy such as sarcopenia and cachexia, which causes weakness and atrophy of the body, is associated with many diseases such as aging, cancer, diabetes and metabolic syndrome.
근육감소증은 주로 앉아서 지내는 생활 방식, 운동단위 수 및 위성세포 수/기능, 미토콘드리아 기능장애, 변경된 단백질 항상성 및 염증과 같은 다인성 원인을 갖는 노령층에서 발생하는 증후군이다. 반면에, 악액질은 병에 의해 발생하는 변화된 대사 과정으로부터 염증에 관련된 증후군으로 규정된다. 대부분의 임상 증상에서 근육감소증은 강도 또는 물리적 성능과 연관된 낮은 근육량 및 약한 근육 기능에 관련된다. 노화 과정에서, 증가된 지방량 및 전-염증성 사이토카인은 서로 시너지효과를 내어 근육감소증 환자에서 근육량 및 기능의 손실을 가속화하였다. 악액질 상태에서, 환자에게 감소된 강도, 피로, 식욕부진, 인슐린 저항성, 증가된 근육 단백질 분해 및 염증과 같은 추가 증상들이 나타났다. 특히 암에서, 근위축은 대부분의 암 환자에서 발생하며 암-관련 악액질로 알려져 있다. 이러한 근위축은 삶의 질 및 환자의 수명을 감소시키므로, 골격 근위축을 늦추거나 예방하기 위한 치료 전략을 찾는 것이 필수적으로 요구되고 있다.Sarcopenia is a syndrome occurring mainly in the elderly with multifactorial causes such as sedentary lifestyle, motor unit number and satellite cell number/function, mitochondrial dysfunction, altered protein homeostasis and inflammation. Cachexia, on the other hand, is defined as a syndrome related to inflammation from the altered metabolic processes caused by the disease. In most clinical manifestations, sarcopenia is associated with low muscle mass and weak muscle function associated with strength or physical performance. During aging, increased fat mass and pro-inflammatory cytokines synergized with each other to accelerate the loss of muscle mass and function in sarcopenia patients. In the cachexia condition, the patient presented with additional symptoms such as decreased strength, fatigue, anorexia, insulin resistance, increased muscle proteolysis and inflammation. Particularly in cancer, muscle atrophy occurs in most cancer patients and is known as cancer-related cachexia. Since such muscular atrophy reduces the quality of life and longevity of patients, it is essential to find a therapeutic strategy to delay or prevent skeletal muscular atrophy.
악액질은 진행된 암, 특히 폐암 환자의 대부분에서 나타나는 암-유도 악액질로 알려진 골격근 소실 증상으로서, AIDS (acquired immunodeficiency syndrome), COPD (chronic obstructive pulmonary disease), 당뇨병 및 호르몬 결핍과 같은 여러 질환에서도 관찰된다. 암 악액질에서, 암 환자의 골격근 손실은 급격히 진행되므로 가장 확실한 증상이다. 암 환자의 60%가 암 악액질이 발생하여 체중이 현저히 감소하여 삶의 질이 저하되고 예후 및 결과가 안좋아진다. 또한, 암 악액질은 암 환자의 20 - 30%의 사망률의 증가에 기여하는 것으로 생각된다. Cachexia is a symptom of skeletal muscle loss known as cancer-induced cachexia that occurs in the majority of patients with advanced cancer, particularly lung cancer, and is also observed in several diseases such as acquired immunodeficiency syndrome (AIDS), chronic obstructive pulmonary disease (COPD), diabetes and hormone deficiency. In cancer cachexia, skeletal muscle loss in cancer patients is the most obvious symptom as it progresses rapidly. 60% of cancer patients develop cancer cachexia, resulting in significant weight loss, resulting in poor quality of life and poor prognosis and outcome. Cancer cachexia is also thought to contribute to an increase in mortality in 20-30% of cancer patients.
악액질은 변경된 에너지 밸런스, 프로-악액질 사이토카인 및 인자의 증가된 생성, 및 지방질 조직 감소와 같은 다양한 조건에 의해 진행한다. 가장 잘 알려진 악액질-유도 인자는 마이오스타틴, 액티빈, GDF15(growth differentiation factor 15), TWEAK (tumor necrosis factor-like weak inducer of apoptosis), 및 interferon γ (IFNγ), tumor necrosis factor α (TNFα), interleukin 1α 및 β (IL-1α 및 IL-1β), 및 interleukin (IL)-6와 같은 염증성 사이토카인이다. 이러한 인자들은 ubiquitin-proteasome system (UPS) 및 autophagy-lysosome system (ALS)의 활성화를 통한 단백질 분해를 유도하여 이화 작용을 야기한다. 생리학적 조건 중에, serine/threonine-protein kinase (AKT)가 FoxO3를 인산화시켜 세포질 국소화를 야기한다. 악액질 조건에서, AKT 활성은 염증성 사이토카인의 영향력 또는 insulin-like growth factor 1 (IGF1)의 감소 수준에 의해 억제된다. 감소된 AKT 활성은 FoxO3a 단백질의 탈인산화 후 핵내 이동을 야기하여 Murf-1 및 Atrogin-1의 전사를 가능하게 한다. 염증성 사이토카인을 조절하는 일반적인 수렴 단계는 리포다당류, 활성산소종 (ROS), 및 여러 사이토카인과 같은 다양한 자극원에 대한 세포 반응을 매개하는 흔한 전사 인자인 nuclear factor kappa B (NF-κB)와 관련되어 있다. TNF-α가 NF-κB를 통해 염증성 사이토카인을 상향조절하여 이화작용 사이토카인을 생산하는 일반 경로의 업스트림 요소로서 작용함이 입증되었다.Cachexia is driven by a variety of conditions, such as altered energy balance, increased production of pro-cachexia cytokines and factors, and decreased adipose tissue. The best known cachexia-inducing factors are myostatin, activin, growth differentiation factor 15 (GDF15), tumor necrosis factor-like weak inducer of apoptosis (TWEAK), and interferon γ (IFNγ), tumor necrosis factor α (TNFα) , interleukin 1α and β (IL-1α and IL-1β), and interleukin (IL)-6. These factors induce catabolism by inducing proteolysis through activation of the ubiquitin-proteasome system (UPS) and autophagy-lysosome system (ALS). During physiological conditions, serine/threonine-protein kinase (AKT) phosphorylates FoxO3, causing cytoplasmic localization. In cachexia conditions, AKT activity is inhibited by the influence of inflammatory cytokines or reduced levels of insulin-like growth factor 1 (IGF1). Reduced AKT activity causes transnuclear migration after dephosphorylation of FoxO3a protein, enabling transcription of Murf-1 and Atrogin-1. A general convergent step in regulating inflammatory cytokines is nuclear factor kappa B (NF-κB) and nuclear factor kappa B (NF-κB), a common transcription factor that mediates cellular responses to various stimuli, such as lipopolysaccharides, reactive oxygen species (ROS), and several cytokines. are related It has been demonstrated that TNF-α up-regulates inflammatory cytokines through NF-κB, acting as an upstream component of the general pathway to produce catabolic cytokines.
글루코코르티코이드 (GC)는 스트레스 조건에 대한 반응에 관련된 내분비 호르몬으로, 항-염증 및 면역억제 성질을 갖는 것으로 알려져 있다. 그러므로, 합성 글루코코르티코이드인 덱사메타손 (DEX)는 면역억제제 및 항-염증제로 널리 사용되고 있다. 흥미롭게도, DEX는 최근 COVID-19의 효과적인 치료제로도 알려졌다. 이렇게 널리 사용되는 치료제로서의 용도에도 불구하고, DEX를 비롯한 GC는 근위축을 유도한다고 보고되었다. 이 증상은 단백질 분해의 상향조절뿐만 아니라 단백질 합성의 저해로부터 야기된 것이다. 단백질 분해는 두 개의 유비퀴틴 E3 리가아제인 근위축 F-box (atrogin-1) 및 근육 링 핑거 (MuRF1)뿐만 아니라 프로테아좀 분해의 활성화를 통해 유도되는 것으로 알려져 있다. mTOR(mammalian target of rapamycin) 경로의 포유류 타겟은 단백질 합성에서 주요 경로이며 근위축을 야기하는 GC에 의해 저해되는 것으로 여겨진다. 이는 DEX-유도 atrogin-1 및 MuRF1이 근위축을 야기하는 MyoD (myogenic differentiation antigen)을 분해한다. 따라서, DEX에 의해 야기되는 단백질 분해를 완화하고 단백질 합성을 증가시키는 전략을 입증하는 것이 중요하다. Glucocorticoids (GC) are endocrine hormones involved in the response to stressful conditions and are known to have anti-inflammatory and immunosuppressive properties. Therefore, dexamethasone (DEX), a synthetic glucocorticoid, is widely used as an immunosuppressant and anti-inflammatory agent. Interestingly, DEX has also recently been shown to be an effective treatment for COVID-19. Despite this widely used therapeutic agent, it has been reported that GCs, including DEX, induce muscle atrophy. This symptom results from inhibition of protein synthesis as well as upregulation of protein degradation. Proteolysis is known to be induced through activation of two ubiquitin E3 ligases, the muscular atrophy F-box (atrogin-1) and the muscle ring finger (MuRF1), as well as proteasome degradation. The mammalian target of the mTOR (mammalian target of rapamycin) pathway is a major pathway in protein synthesis and is thought to be inhibited by GCs causing muscle atrophy. This causes DEX-induced atrogin-1 and MuRF1 to degrade MyoD (myogenic differentiation antigen) causing muscle atrophy. Therefore, it is important to demonstrate a strategy to mitigate protein degradation caused by DEX and increase protein synthesis.
인삼(Panax ginseng Meyer)의 뿌리인 인삼은 동양의 많은 나라, 특히 한국, 일본 및 중국에서 전통적인 약초로 사용되었다. ‘Panax’는 ‘모든 치료’라는 의미를 가지는 것으로 인삼이 인체의 모든 부분을 치료할 수 있는 효능이 있다는 전통적인 믿음을 나타내는 것이다. 인삼 뿌리 및 뿌리 추출물은 신체 및 정신에 활력을 주고 근육 및 물리적 강도를 증가시키고 노화를 예방하고 정력을 증가시키는 약제로서 한국에서 전통적으로 사용되어 왔다(한국등록특허 제10-1584722호).Ginseng, the root of ginseng (Panax ginseng Meyer), has been used as a traditional herbal medicine in many Eastern countries, particularly Korea, Japan and China. 'Panax' means 'all treatments' and represents the traditional belief that ginseng has the ability to heal all parts of the human body. Ginseng root and root extract have been traditionally used in Korea as a drug to energize the body and mind, increase muscle and physical strength, prevent aging, and increase energy (Korean Patent No. 10-1584722).
이에, 본 발명의 발명자는 인삼-유래 성분을 스크리닝하고 인삼-유래 리소포스파티드산 수용체 (LPAR) 리간드인 진토닌 (GT)이 마우스 C2C12 및 인간 HSkM 세포 둘 다의 근관세포 지름 및 융합을 증가시키고, 인 비보에서 덱사메타손 (DEX)-유도 근위축 및 악액질을 예방 및 치료함을 확인하여 본 발명을 완성하였다. Accordingly, the inventors of the present invention screened a ginseng-derived component and found that gintonin (GT), a ginseng-derived lysophosphatidic acid receptor (LPAR) ligand, increases myotube cell diameter and fusion of both mouse C2C12 and human HSkM cells, and , The present invention was completed by confirming that dexamethasone (DEX)-induced muscle atrophy and cachexia were prevented and treated in vivo.
이에 따라 본 발명은 인삼 유래 진토닌 함유 추출물, 이의 분획물 또는 진토닌을 유효성분으로 포함하는 근위축 또는 악액질의 예방 또는 치료용 약학적 조성물 및 기능성 건강식품과 이를 이용한 근위축 또는 악액질의 예방 또는 치료 방법을 제공하는 것이다.Accordingly, the present invention provides a ginseng-derived gintonin-containing extract, a fraction thereof, or a pharmaceutical composition and functional health food for the prevention or treatment of muscular atrophy or cachexia comprising gintonin as an active ingredient, and prevention or treatment of muscular atrophy or cachexia using the same to provide a way
상기와 같은 본 발명의 목적을 달성하기 위해서, 본 발명은 인삼 유래 진토닌 함유 추출물, 이의 분획물 또는 진토닌을 유효성분으로 포함하는 근위축 또는 악액질의 예방 또는 치료용 약학적 조성물을 제공한다.In order to achieve the object of the present invention as described above, the present invention provides a ginseng-derived gintonin-containing extract, a fraction thereof, or a pharmaceutical composition for preventing or treating muscular atrophy or cachexia comprising gintonin as an active ingredient.
또한, 본 발명은 인삼 유래 진토닌 함유 추출물, 이의 분획물 또는 진토닌을 유효성분으로 포함하는 근위축 또는 악액질의 예방 또는 개선용 기능성 건강식품을 제공한다.In addition, the present invention provides a functional health food for preventing or improving muscular atrophy or cachexia comprising an extract containing ginseng-derived gintonin, a fraction thereof, or gintonin as an active ingredient.
또한, 본 발명은 본 발명에 따른 근위축 또는 악액질의 예방 또는 치료용 약학적 조성물을 개체에게 투여하는 것을 포함하는 근위축 또는 악액질의 예방 또는 치료 방법을 제공한다.In addition, the present invention provides a method for preventing or treating muscular atrophy or cachexia, comprising administering to a subject the pharmaceutical composition for the prevention or treatment of muscular atrophy or cachexia according to the present invention.
본 발명은 천연물 유래 성분으로서 생체친화적이고 부작용이 없는 인삼 유래 진토닌 함유 추출물, 이의 분획물 또는 진토닌을 근위축 또는 악액질의 예방 또는 치료에 적용시킨 것으로, 리소포스파티드산 수용체 (LPAR) 리간드로서 작용하여 생리학적 및 병리학적 조건 하에서 골격 근위축 및 악액질을 치료할 수 있는 유망한 후보제로서 사용될 수 있다.The present invention is a natural ingredient derived from ginseng-derived gintonin-containing extract, its fraction, or gintonin, which is biocompatible and has no side effects, applied to the prevention or treatment of muscular atrophy or cachexia, and acts as a lysophosphatidic acid receptor (LPAR) ligand Therefore, it can be used as a promising candidate to treat skeletal muscular atrophy and cachexia under physiological and pathological conditions.
도 1a 내지 1c는 분화된 C2C12 근관세포에 다양한 인삼 유래 성분을 처리한 후 미오신 경쇄 (MHC)로 염색한 결과를 나타낸 것으로, 인삼-유래 성분이 C2C12 근관세포의 비대 및 융합을 유도함을 나타낸 것이다: (a) 대표 이미지; (b) 평균 근관세포 지름 (데이터는 3개의 독립 실험의 평균 ± SEM으로 나타냄 (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001)). (c) 근관세포 당 핵의 수 (데이터는 3개의 독립 실험의 평균 ± SEM으로 나타냄 (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001)).1a to 1c show the results of staining with myosin light chain (MHC) after treating various ginseng-derived components in differentiated C2C12 myotube cells. It shows that ginseng-derived components induce hypertrophy and fusion of C2C12 myotube cells: (a) Representative images; (b) Mean myotube cell diameter (data presented as mean ± SEM of three independent experiments (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001)). (c) Number of nuclei per myotube cell (data presented as mean ± SEM of three independent experiments (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001)).
도 2a 내지 2e는 C2C12 근관세포의 GT-유도 비대 및 융합을 나타낸 것이다. (a, b) DEX의 존재 및 부재시 다양한 농도의 GT가 처리된 C2C12 근관세포의 세포 생존율. (c-e) C2C12 근관세포를 여러 농도의 GT로 처리하고 MHC로 염색한 결과이다. (c) 대표 이미지를 나타낸 것이다. (d) 평균 근관세포 지름을 나타낸 것으로, 데이터는 3개의 독립 실험의 평균 ± SEM으로 나타냈다 (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). (e) 근관세포 당 핵의 수를 나타낸 것으로, 데이터는 3개의 독립 실험의 평균 ± SEM으로 나타냈다 (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001).2A to 2E show GT-induced hypertrophy and fusion of C2C12 myotube cells. (a, b) Cell viability of C2C12 myotube cells treated with various concentrations of GT in the presence and absence of DEX. (c-e) C2C12 myotube cells were treated with different concentrations of GT and stained with MHC. (c) A representative image is shown. (d) Mean myotube cell diameter, and data are presented as the mean ± SEM of three independent experiments (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). (e) Shows the number of nuclei per myotube cell, and data are presented as the mean ± SEM of three independent experiments (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001).
도 3a 내지 3b는 GT가 덱사메타손 (DEX)-유도 위축에 대해 C2C12 근관세포를 보호함을 나타낸 것이다. (a-c) C2C12 근관세포는 DEX (25 μM)와 함께 GT를 처리하고 MHC로 염색하였다: (a) 대표 이미지. (b) 평균 근관세포 지름을 나타낸 것으로, 데이터는 3개의 독립 실험의 평균 ± SEM으로 나타냈다 (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). (c) 근관세포 당 핵의 수를 나타낸 것으로, 데이터는 3개의 독립 실험의 평균 ± SEM으로 나타냈다 (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001).3a to 3b show that GT protects C2C12 myotubes against dexamethasone (DEX)-induced atrophy. (a-c) C2C12 myotube cells were treated with GT with DEX (25 μM) and stained with MHC: (a) Representative image. (b) Mean myotube cell diameter, and data are presented as the mean ± SEM of three independent experiments (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). (c) The number of nuclei per myotube cell, and the data are presented as the mean ± SEM of three independent experiments (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001).
도 4a 내지 4h는 GT는 LPAR을 통해 C2C12 근관세포의 비대를 유도함을 나타낸 것이다. (a) C2C12 근관세포에 DEX의 존재 또는 부재시에 GT를 처리한 후, LPAR의 발현을 RT-qPCR로 정량한 결과이다. 데이터는 2개의 독립 실험의 평균 ± SEM로 나타냈다 (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). (b-d) C2C12 근관세포에 GT, DEX, ki16425, 또는 LPA를 처리한 후 MHC로 염색한 결과이다: (b) 대표 이미지; (c) 평균 근관세포 지름을 나타낸 것으로, 데이터는 3개의 독립 실험의 평균 ± SEM으로 나타냈다 (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). (d) 근관세포 당 핵의 수를 나타낸 것으로, 데이터는 3개의 독립 실험의 평균 ± SEM으로 나타냈다 (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). (e-h) C2C12 근관세포에 GT, DEX, Ki16425, 또는 LPA를 처리한 후 세포 용해물을 분리하고 면역블롯한 결과이다. (e, g) 대표 이미지를 나타낸 것이다. (f, h) ImageJ software로 측정한 이미지를 나타낸 것으로, 데이터는 3개의 독립 실험의 평균 ± SEM으로 나타냈다 (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001).4A to 4H show that GT induces hypertrophy of C2C12 myotube cells through LPAR. (a) Results of quantification of LPAR expression by RT-qPCR after GT treatment in the presence or absence of DEX in C2C12 myotube cells. Data are presented as the mean ± SEM of two independent experiments (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). (b-d) C2C12 myotube cells were treated with GT, DEX, ki16425, or LPA and then stained with MHC: (b) Representative image; (c) Mean myotube cell diameter, and data are presented as mean ± SEM of three independent experiments (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). (d) The number of nuclei per myotube cell, and the data are presented as the mean ± SEM of three independent experiments (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). (e-h) C2C12 myotube cells were treated with GT, DEX, Ki16425, or LPA, and the cell lysate was isolated and immunoblotted. (e, g) A representative image is shown. (f, h) The images measured with ImageJ software are shown, and the data are presented as the mean ± SEM of three independent experiments (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001).
도 5a 내지 5e는 GT가 풍부한 분획 (GEF)이 인 비보에서 DEX-유도 근육 기능장애를 예방함을 나타낸 것이다. 마우스에게 복강내로 Dex (5 mg/kg body weight/day) 또는 부형제 대조로서 PBS를 7일간 하루에 1번 주입하였다. 그런 다음, 마우스에게 GEF (25 및 50 mg/kg body weight/day) 또는 부형제 대조로서 PBS를 7일간 하루에 1번 경구 투여하였다. 대조 (n=4), DEX (n=9), DEX+GEF 25mg/kg (n=6) 및 DEX+GEF 50 mg/kg (n=6). (a) 체중, 장기 (심장, 간, 비장) 무게, 및 절개된 골격근 (Gast, 비장근, EDL, 및 TA) 무게를 나타낸 것이다. 데이터는 평균 ± SEM로 나타냈다 (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). (b) 2~3일 간격으로 측정한 악력을 나타낸 것이다. 데이터는 평균 ± SEM로 나타냈다 (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). (c-e) TA 근육을 HE 염색한 결과이다. (c) 대표 이미지를 나타낸 것이다. (d) TA 근육 섬유의 단면적을 나타낸 것이다. 그래프는 빈도에 근거해 작성하였다. (e) TA 근육 섬유의 CSA의 평균을 나타낸 것이다. 데이터는 평균 ± SEM로 나타냈다 (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001).5A-5E show that GT-enriched fraction (GEF) prevents DEX-induced muscle dysfunction in vivo. Mice were injected intraperitoneally with Dex (5 mg/kg body weight/day) or PBS once a day for 7 days as an excipient control. Then, the mice were orally administered with GEF (25 and 50 mg/kg body weight/day) or PBS once a day for 7 days as an excipient control. Control (n=4), DEX (n=9), DEX+GEF 25 mg/kg (n=6) and DEX+GEF 50 mg/kg (n=6). (a) Body weight, organ (heart, liver, spleen) weight, and excised skeletal muscle (Gast, splenic muscle, EDL, and TA) weight are shown. Data are presented as mean ± SEM (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). (b) It shows the grip strength measured at intervals of 2-3 days. Data are presented as mean ± SEM (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). (c-e) HE staining of TA muscle. (c) A representative image is shown. (d) The cross-sectional area of the TA muscle fiber is shown. The graph was prepared based on the frequency. (e) Mean CSA of TA muscle fibers. Data are presented as mean ± SEM (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001).
도 6a 내지 6c는 GT는 일차 정상 인간 골격 근원세포 (HSkM)의 위축을 보호함을 나타낸 것이다. (a-c) HSkM 근관세포에 DEX 없이 또는 함께 GT를 2일간 처리한 후 MHC로 염색하였다. (a) 근관세포 배양의 대표 이미지를 ×100 배율로 설정된 phase contrast microscope로 촬영하여 나타낸 것이다. (b) 10군데 무작위 필드에서 총 60개 근관세포 지름의 평균 근관세포 지름을 나타낸 것이다. (c) 근관세포 당 핵의 수를 나타낸 것이다. 데이터는 2개의 독립 실험의 평균 ± SEM으로 나타냈다 (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001). 6A-6C show that GT protects against atrophy of primary normal human skeletal myoblasts (HSkM). (a-c) HSkM myotube cells were treated with GT without or with DEX for 2 days and then stained with MHC. (a) A representative image of myotube cell culture was taken with a phase contrast microscope set at ×100 magnification. (b) Mean myotube cell diameter of a total of 60 myotube cell diameters in 10 random fields. (c) Shows the number of nuclei per myotube cell. Data are presented as the mean ± SEM of two independent experiments (*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001).
도 7a 내지 7c는 분화된 C2C12 근관세포에 다양한 인삼 유래 성분을 처리한 후 항-MHC Ab로 염색한 결과를 나타낸 것으로, 인삼-유래 성분이 C2C12 근관세포의 비대 및 융합을 유도함을 나타낸 것이다: (a) 대표 이미지; (b) 평균 근관세포 지름 (데이터는 3개의 독립 실험의 평균 ± SEM으로 나타냄). (c) 근관세포 당 핵의 수 (데이터는 3개의 독립 실험의 평균 ± SEM으로 나타냄 (*, P ≤ 0.05; ***, P ≤ 0.0001)).7a to 7c show the results of staining with anti-MHC Ab after treating various ginseng-derived components in differentiated C2C12 myotube cells, showing that ginseng-derived components induce hypertrophy and fusion of C2C12 myotube cells: ( a) representative images; (b) Mean myotube cell diameter (data presented as mean±SEM of three independent experiments). (c) Number of nuclei per myotube cell (data presented as mean ± SEM of three independent experiments (*, P ≤ 0.05; ***, P ≤ 0.0001)).
도 8a는 GT를 처리한 C2C12 근관세포의 세포 생존률을 확인한 MTT 검정 결과를 나타낸 그래프이다. 데이터는 평균 ± SEM으로 나타냈다. ns, not significant. 도 8b는 GT를 처리한 C2C12 근관세포를 항-MHC Ab로 염색한 대표 이미지를 나타낸 것이다. 도 8c는 GT를 처리한 C2C12 근관세포의 평균 지름을 나타낸 그래프이다. 도 8d는 근관세포 당 핵의 수를 정량한 결과를 나타낸 그래프이다. 데이터는 10군데의 무작위 선택한 필드로부터 280개 이상의 근관세포의 평균 ± SEM로서 나타냈다 (*P ≤ 0.05; ***P ≤ 0.0001). 도 8e는 GT와 TNFα 및 IFNγ 를 처리한 C2C12 근관세포를 항-MHC Ab로 염색한 대표 이미지를 나타낸 것이다. 도 8f는 GT와 TNFα 및 IFNγ 를 처리한 C2C12 근관세포의 평균 지름을 나타낸 그래프이다. 도 8g는 GT와 TNFα 및 IFNγ 를 처리한 C2C12 근관세포 당 핵의 수를 정량한 결과를 나타낸 그래프이다. 데이터는 10군데의 무작위 선택한 필드로부터 450개 이상의 근관세포의 평균 ± SEM로서 나타냈다 (*P ≤ 0.05; ***P ≤ 0.0001).8a is a graph showing the results of the MTT assay confirming the cell viability of C2C12 myotube cells treated with GT. Data are presented as mean ± SEM. ns, not significant. Figure 8b shows a representative image of GT-treated C2C12 myotube cells stained with anti-MHC Ab. 8c is a graph showing the average diameter of C2C12 myotube cells treated with GT. 8D is a graph showing the results of quantifying the number of nuclei per myotube cell. Data are presented as the mean ± SEM of more than 280 myotubes from 10 randomly selected fields (*P ≤ 0.05; ***P ≤ 0.0001). 8e shows representative images of C2C12 myotube cells treated with GT and TNFα and IFNγ stained with anti-MHC Ab. 8f is a graph showing the average diameter of C2C12 myotube cells treated with GT, TNFα and IFNγ. 8g is a graph showing the results of quantifying the number of nuclei per C2C12 myotube cells treated with GT, TNFα and IFNγ. Data are presented as mean ± SEM of more than 450 myotubes from 10 randomly selected fields (*P ≤ 0.05; ***P ≤ 0.0001).
도 9a는 GT를 처리한 C2C12 근관세포에서의 LPARs 발현을 정량한 RT-PCR 결과를 나타낸 것이다(*P ≤ 0.05). 도 9b는 GT, TNFα 및 IFNγ , 또는 Ki16425를 처리한 C2C12 근관세포를 항-MHC Ab로 염색한 대표 이미지를 나타낸 것이다. 도 9c는 GT, TNFα 및 IFNγ , 또는 Ki16425를 처리한 C2C12 근관세포의 평균 지름을 나타낸 그래프이다. 도 9d는 GT, TNFα 및 IFNγ , 또는 Ki16425를 처리한 C2C12 근관세포 당 핵 수를 나타낸 그래프이다 (*P≤ 0.05; ***P ≤ 0.0001). 도 9e는 대조(비-표적) (siCtrl) 또는 Gαi2 siRNA로 트랜스펙션한 C2C12 세포에서 Gαi2의 mRNA 수준을 측정한 RT-PCR 결과를 나타낸 것이다 (***P ≤ 0.0001). 도 9f는 트랜스펙션된 세포를 근관세포로 분화시킨 후 GT (100 ng/mL)를 처리한 대표 이미지이다. 도 9g는 10군데의 임의 필드로부터 600개 이상의 근관세포의 평균 지름을 나타낸 것이다(***P ≤ 0.001; ns, not significant).Figure 9a shows the results of RT-PCR quantification of LPARs expression in C2C12 myotube cells treated with GT (*P ≤ 0.05). 9B shows representative images of C2C12 myotube cells treated with GT, TNFα and IFNγ , or Ki16425 stained with anti-MHC Ab. 9c is a graph showing the average diameter of C2C12 myotube cells treated with GT, TNFα and IFNγ , or Ki16425. 9D is a graph showing the number of nuclei per C2C12 myotube cells treated with GT, TNFα and IFNγ , or Ki16425 (*P≤0.05; ***P≤0.0001). 9E shows the results of RT-PCR measuring the mRNA level of Gαi2 in C2C12 cells transfected with control (non-target) (siCtrl) or Gαi2 siRNA (***P ≤ 0.0001). Figure 9f is a representative image treated with GT (100 ng/mL) after the transfected cells were differentiated into myotube cells. 9G shows the average diameter of more than 600 myotube cells from 10 random fields (***P ≤ 0.001; ns, not significant).
도 10a는 TNFα, GT, 또는 N-아세틸 시스테인 (NAC, 음성대조)를 처리한 C2C12 근원세포의 ROS 수준을 측정한 FACS 프로파일 결과를 나타낸 것이다. 도 10b는 TNFα, GT, 또는 N-아세틸 시스테인 (NAC, 음성대조)를 처리한 C2C12 근원세포의 ROS 수준을 나타낸 그래프이다 (*P ≤ 0.05; ***P ≤ 0.0001). 도 10c는 TNFα 또는 GT를 처리한 C2C12 근원세포의 미토콘드리아 막 전위 (△Ψm)을 나타낸 FACS 프로파일이다. 도 10d는 TNFα 또는 GT를 처리한 C2C12 근원세포의 미토콘드리아 막 전위 (△Ψm)를 나타낸 것이다(*P ≤ 0.05). 도 10e는 히드록실 라디칼의 소거에 대한 GT의 효과를 분석한 결과를 나타낸 것이다 (*P ≤ 0.05; ***P ≤ 0.0001). 도 10f는 TI (TNFα at 20 ng/mL 및 IFNγ at 100u/mL) 또는 GT (100 ng/mL)를 처리한 C2C12 근관세포의 IL-6 수준을 나타낸 것이다. 도 10g는 TI (TNFα at 20 ng/mL 및 IFNγ at 100u/mL) 또는 GT (100 ng/mL)를 처리한 C2C12 근관세포의 Nox-2 수준을 나타낸 것이다(*, P ≤ 0.05).Figure 10a shows the results of the FACS profile measuring the ROS level of C2C12 myoblasts treated with TNFα, GT, or N-acetyl cysteine (NAC, negative control). Figure 10b is a graph showing the ROS level of C2C12 myoblasts treated with TNFα, GT, or N-acetyl cysteine (NAC, negative control) (*P ≤ 0.05; ***P ≤ 0.0001). Figure 10c is a FACS profile showing the mitochondrial membrane potential (ΔΨm) of C2C12 myoblasts treated with TNFα or GT. Figure 10d shows the mitochondrial membrane potential (ΔΨm) of C2C12 myoblasts treated with TNFα or GT (*P ≤ 0.05). 10e shows the results of analyzing the effect of GT on the scavenging of hydroxyl radicals (*P ≤ 0.05; ***P ≤ 0.0001). FIG. 10f shows IL-6 levels in C2C12 myotube cells treated with TI (TNFα at 20 ng/mL and IFNγ at 100 u/mL) or GT (100 ng/mL). 10g shows the Nox-2 level of C2C12 myotube cells treated with TI (TNFα at 20 ng/mL and IFNγ at 100 u/mL) or GT (100 ng/mL) (*, P ≤ 0.05).
도 11a는 LLC1-유도 암 악액질 마우스 실험의 스케줄을 나타낸 것이다. 도 11b는 LLC1-유도 암 악액질 마우스의 종양 부피를 나타낸 것이다. 도 11c는 LLC1-유도 암 악액질 마우스의 체중을 나타낸 것이다. 도 11d는 LLC1-유도 암 악액질 마우스의 골격근(GA, SOL, TA, 및 EDL)의 이미지를 나타낸 것이다. 도 11e는 LLC1-유도 암 악액질 마우스의 골격근의 무게를 나타낸 것이다. 도 11f는 LLC1-유도 암 악액질 마우스의 기관 무게를 나타낸 것이다 (*P ≤ 0.05; ***P ≤ 0.0001). 도 11f는 LLC1-유도 암 악액질 마우스의 악력을 평가한 결과이다. 도 11h는 LLC1-유도 암 악액질 마우스의 매달리는 실험 결과를 나타낸 것이다 (*P ≤ 0.05; ***P ≤ 0.0001). 도 11i는 GA 근육을 HE 염색한 대포 이미지이다. 도 11j는 GA 근육 섬유의 절단면(CSA) 평균을 나타낸 그래프이다. 도 11k는 GA 근육 섬유의 절단면(CSA)을 빈도에 따라 플롯팅한 결과를 나타낸 것이 (*P ≤ 0.05; ***P ≤ 0.0001). 도 11l은 GA 조직 용해물에서 근육 위축 관련 유전자의 단백질 수준을 나타낸 웨스턴 블롯 결과이다. 도 11m은 근육 위축 관련 유전자의 단백질 수준을 나타낸 웨스턴 블롯 결과를 분석한 그래프이다(n=6; *P ≤ 0.05).11A shows the schedule of the LLC1-induced cancer cachexia mouse experiment. 11B shows the tumor volume of LLC1-induced cancer cachexia mice. 11C shows the body weight of LLC1-induced cancer cachexia mice. 11D shows images of skeletal muscles (GA, SOL, TA, and EDL) of LLC1-induced cancer cachexia mice. 11E shows the weight of skeletal muscle of LLC1-induced cancer cachexia mice. 11F shows organ weights of LLC1-induced cancer cachexia mice (*P ≤ 0.05; ***P ≤ 0.0001). 11f is a result of evaluating the grip strength of LLC1-induced cancer cachexia mice. 11H shows the results of hanging experiments in LLC1-induced cancer cachexia mice (*P ≤ 0.05; ***P ≤ 0.0001). 11I is an HE-stained cannon image of GA muscle. 11J is a graph showing the cross-section (CSA) mean of GA muscle fibers. 11K shows the results of plotting the cross section (CSA) of GA muscle fibers according to frequency (*P ≤ 0.05; ***P ≤ 0.0001). 11L is a Western blot showing the protein levels of muscle atrophy-related genes in GA tissue lysates. 11M is a graph analyzing the Western blot results showing the protein levels of muscle atrophy-related genes (n=6; *P ≤ 0.05).
도 12a는 HSkM 근원세포를 근관세포로 분화시킨 후 TNFα 의 존재 또는 부재 하에서 GT를 처리하고 항-MHC Ab로 염색한 이미지를 나타낸 것이다(100x magnification). 도 12b는 근관세포의 평균 지름을 나타낸 것이다. 도 12c는 근관세포 당 핵 수를 나타낸 것이다 (*P ≤ 0.05; ***P ≤ 0.0001). Figure 12a shows an image of HSkM myoblasts differentiated into myotubes, treated with GT in the presence or absence of TNFα, and stained with anti-MHC Ab (100x magnification). 12B shows the average diameter of myotube cells. 12C shows the number of nuclei per myotube cell (*P ≤ 0.05; ***P ≤ 0.0001).
도 13은 암 악액질에 대한 GT의 분자 경로 모델을 나타낸 것이다. 13 shows a molecular pathway model of GT for cancer cachexia.
이하 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 이하의 설명에 있어, 당업자에게 주지 저명한 기술에 대해서는 그 상세한 설명을 생략할 수 있다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 수 있다. 또한, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description, detailed descriptions of well-known techniques known to those skilled in the art may be omitted. In addition, in describing the present invention, if it is determined that a detailed description of a related well-known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description may be omitted. In addition, the terms used in this specification are terms used to properly express a preferred embodiment of the present invention, which may vary according to the intention of a user or operator or customs in the field to which the present invention belongs.
따라서 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Therefore, definitions of these terms should be made based on the content throughout this specification. Throughout the specification, when a part "includes" a certain component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.
본 발명은 인삼 유래 진토닌 함유 추출물, 이의 분획물 또는 진토닌을 유효성분으로 포함하는 근위축 또는 악액질의 예방 또는 치료용 약학적 조성물 및 건강기능식품에 관한 것이다.The present invention relates to a ginseng-derived gintonin-containing extract, a fraction thereof, or a pharmaceutical composition for the prevention or treatment of muscle atrophy or cachexia and a health functional food comprising gintonin as an active ingredient.
상기 인삼 유래 진토닌 함유 추출물은 인삼을 적절한 용매로 추출한 것으로, 상기 추출하기 위한 적절한 용매는 약학적으로 허용되는 유기용매라면 어느 것을 사용해도 무방하며, 물 또는 유기용매를 사용할 수 있다. 예를 들어, 추출 용매로서 정제수, 메탄올(methanol), 에탄올(ethanol), 프로판올(propanol), 이소프로판올(isopropanol), 부탄올(butanol) 등을 포함하는 탄소수 1-4개의 무수 또는 함수 저급 알코올, 프로필렌 글리콜, 부틸렌 글리콜, 글리세린, 아세톤, 에틸 아세테이트, 부틸 아세테이트, 클로로포름, 디에틸 에테르, 디클로로 메탄, 헥산, 에테르, 벤젠, 메틸렌 클로라이드, 및 시클로헥산 등의 각종 용매를 단독으로 혹은 혼합하여 사용할 수 있으며, 예를 들어 알코올 추출물 또는 에탄올 추출물일 수 있으나, 이에 제한되지 않는다. The ginseng-derived gintonin-containing extract is obtained by extracting ginseng with an appropriate solvent, and any suitable solvent for the extraction may be any pharmaceutically acceptable organic solvent, and water or an organic solvent may be used. For example, as an extraction solvent, purified water, methanol, ethanol, propanol, isopropanol, butanol, etc., containing 1-4 carbon atoms anhydrous or hydrous lower alcohol, propylene glycol, etc. , butylene glycol, glycerin, acetone, ethyl acetate, butyl acetate, chloroform, diethyl ether, dichloromethane, hexane, ether, benzene, methylene chloride, and various solvents such as cyclohexane can be used alone or in combination, For example, it may be an alcohol extract or an ethanol extract, but is not limited thereto.
추출 방법으로는 열수추출법, 냉침추출법, 환류냉각추출법, 용매추출법, 수증기증류법, 초음파추출법, 용출법, 압착법 등의 방법 중 어느 하나를 선택하여 사용할 수 있다. 또한, 목적하는 추출물은 추가로 통상의 분획 공정을 수행할 수도 있으며, 통상의 정제 방법을 이용하여 정제될 수도 있다. 본 발명의 진토닌 함유 추출물의 제조방법에는 제한이 없으며, 공지되어 있는 어떠한 방법도 이용될 수 있다. As the extraction method, any one of methods such as hot water extraction, cold extraction, reflux cooling extraction, solvent extraction, steam distillation, ultrasonic extraction, elution, and compression may be selected and used. In addition, the desired extract may be further subjected to a conventional fractionation process, and may be purified using a conventional purification method. There is no limitation on the method for preparing the gintonin-containing extract of the present invention, and any known method may be used.
상기 인삼 유래 진토닌 함유 추출물의 분획물은 인삼 유래 진토닌 함유 알코올 추출물을 물, 메탄올, 에탄올 등의 극성 용매 또는 헥산, 에틸아세테이트와 같은 비극성 용매를 사용하여 분획할 수 있으며, 예를 들어 부탄올 분획물일 수 있으나, 이에 제한되지 않는다.The fraction of the gintonin-containing extract derived from ginseng can be fractionated using a polar solvent such as water, methanol, ethanol, or a non-polar solvent such as hexane and ethyl acetate, for example, a butanol fraction may, but is not limited thereto.
상기 진토닌 함유 추출물, 이의 분획물 또는 진토닌은 리소포스파티드산 수용체 (lysophosphatidic acid receptor; LPAR), 예를 들어, LPAR1 및 LPAR3을 활성화시켜 근관세포 둘 다에서 비대 및 융합을 유도할 수 있으나, 이에 제한되지 않는다. 도 13은 진토닌의 분자 경로 모델을 도시한 것으로, 진토닌이 LPA 수용체에 결합하여 Gαi2를 활성화시킨다. Gαi2 활성화는 TNFα-유도 위축을 저해하여 위축 및 염증-관련 유전자를 억제한다. 또한, 진토닌이 ROS를 소거하여 산화 스트레스를 감소시키고 미토콘드리아 막 전위 손실을 억제한다. The gintonin-containing extract, fraction thereof, or gintonin activates lysophosphatidic acid receptor (LPAR), for example, LPAR1 and LPAR3 to induce hypertrophy and fusion in both myotube cells, but this not limited 13 shows a molecular pathway model of gintonin, which binds to the LPA receptor and activates Gαi2. Gαi2 activation inhibits TNFα-induced atrophy, thereby suppressing atrophy and inflammation-related genes. In addition, gintonin reduces oxidative stress by scavenging ROS and inhibits mitochondrial membrane potential loss.
본 발명에서 상기 근위축은 불용성 근위축(disuse atrophy of muscles), 기계적 자극 부재 및 골격근의 탈신경지배(denervation), 악액질(cachexia), 약물 유인성 근위축(Drug induced muscle atrophy), 영양실조성 근위축(Malnutrition induced muscle atrophy), 근이영양증(muscular dystrophy) 및 근육감소증(Sarcopenia)으로 이루어진 군으로부터 선택된 것일 수 있으나, 이에 제한되지 않는다. 상기 약물 유인성 근위축은 글루코코르티코이드 또는 덱사메타손에 의해 유도된 것일 수 있으나, 이에 제한되지 않는다.In the present invention, the muscle atrophy is insoluble muscle atrophy (disuse atrophy of muscles), absence of mechanical stimulation and denervation of skeletal muscle, cachexia, drug induced muscle atrophy, malnutrition muscle It may be selected from the group consisting of atrophy (Malnutrition induced muscle atrophy), muscular dystrophy (muscular dystrophy) and sarcopenia, but is not limited thereto. The drug-induced muscular atrophy may be induced by glucocorticoids or dexamethasone, but is not limited thereto.
본 발명에서 "치료"란, 달리 언급되지 않는 한, 상기 용어가 적용되는 질환 또는 질병, 또는 상기 질환 또는 질병의 하나 이상의 증상을 역전시키거나, 완화시키거나, 그 진행을 억제하거나, 또는 예방하는 것을 의미하며, 본원에서 사용된 상기 치료란 용어는 "치료하는"이 상기와 같이 정의될 때 치료하는 행위를 말한다. 따라서 포유동물에 있어서 근위축 또는 악액질의 "치료" 또는 "치료요법"은 하기의 하나 이상을 포함할 수 있다:In the present invention, the term "treatment" means, unless otherwise stated, a disease or condition to which the term applies, or one or more symptoms of the disease or disorder to reverse, alleviate, inhibit the progression, or prevent. and, as used herein, the term treatment refers to the act of treating when “treating” is defined as above. Thus, "treatment" or "therapeutic therapy" of muscular atrophy or cachexia in a mammal may include one or more of the following:
(1) 근위축 또는 악액질의 발달을 저지시킴,(1) arrest the development of muscle atrophy or cachexia;
(2) 근위축 또는 악액질의 확산을 예방함, (2) prevent muscle atrophy or the spread of cachexia;
(3) 근위축 또는 악액질을 경감시킴,(3) relieve muscle atrophy or cachexia;
(4) 근위축 또는 악액질의 재발을 예방함 및(4) preventing recurrence of muscle atrophy or cachexia; and
(5) 근위축 또는 악액질의 증상을 완화함(palliating)(5) alleviating symptoms of muscle atrophy or cachexia
상기 인삼 유래 진토닌 함유 추출물, 이의 분획물 또는 진토닌을 유효성분으로 포함하는 본 발명의 조성물은 약제학적 조성물이나 식품 조성물로 사용될 수 있다.The ginseng-derived gintonin-containing extract, a fraction thereof, or the composition of the present invention comprising gintonin as an active ingredient may be used as a pharmaceutical composition or a food composition.
본 발명의 약제학적 조성물은 상기 유효성분 이외에 약제학적으로 적합하고 생리학적으로 허용되는 보조제를 사용하여 제조될 수 있으며, 상기 보조제로는 부형제, 붕해제, 감미제, 결합제, 피복제, 팽창제, 윤활제, 활택제 또는 향미제 등을 사용할 수 있다.The pharmaceutical composition of the present invention may be prepared using a pharmaceutically suitable and physiologically acceptable adjuvant in addition to the active ingredient, and the adjuvant includes an excipient, a disintegrant, a sweetener, a binder, a coating agent, an expanding agent, a lubricant, A lubricant or flavoring agent may be used.
상기 약제학적 조성물은 투여를 위해서 상기 기재한 유효성분 이외에 추가로 약제학적으로 허용 가능한 담체를 1종 이상 포함하여 약제학적 조성물로 바람직하게 제제화할 수 있다.The pharmaceutical composition may be preferably formulated as a pharmaceutical composition by including one or more pharmaceutically acceptable carriers in addition to the active ingredients described above for administration.
상기 약제학적 조성물의 제제 형태는 과립제, 산제, 정제, 피복정, 캡슐제, 좌제, 액제, 시럽, 즙, 현탁제, 유제, 점적제 또는 주사 가능한 액제 등이 될 수 있다. 예를 들어, 정제 또는 캡슐제의 형태로의 제제화를 위해, 유효 성분은 에탄올, 글리세롤, 물 등과 같은 경구, 무독성의 약제학적으로 허용 가능한 불활성 담체와 결합될 수 있다. 또한, 원하거나 필요한 경우, 적합한 결합제, 윤활제, 붕해제 및 발색제 또한 혼합물로 포함될 수 있다. 적합한 결합제는 이에 제한되는 것은 아니나, 녹말, 젤라틴, 글루코스 또는 베타-락토오스와 같은 천연 당, 옥수수 감미제, 아카시아, 트래커캔스 또는 소듐올레이트와 같은 천연 및 합성 검, 소듐 스테아레이트, 마그네슘 스테아레이트, 소듐 벤조에이트, 소듐 아세테이트, 소듐 클로라이드 등을 포함한다. 붕해제는 이에 제한되는 것은 아니나, 녹말, 메틸 셀룰로스, 아가, 벤토니트, 잔탄 검 등을 포함한다. 액상 용액으로 제제화되는 조성물에 있어서 허용 가능한 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다. 더 나아가 해당분야의 적절한 방법으로 Remington's Pharmaceutical Science, Mack Publishing Company, Easton PA에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다.Formulations of the pharmaceutical composition may be granules, powders, tablets, coated tablets, capsules, suppositories, solutions, syrups, juices, suspensions, emulsions, drops or injectable solutions. For formulation in the form of, for example, tablets or capsules, the active ingredient may be combined with an orally, non-toxic, pharmaceutically acceptable inert carrier such as ethanol, glycerol, water, and the like. In addition, if desired or required, suitable binders, lubricants, disintegrants and color-developers may also be included in the mixture. Suitable binders include, but are not limited to, starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tracacanth or sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, and the like. Disintegrants include, but are not limited to, starch, methyl cellulose, agar, bentonite, xanthan gum, and the like. In the composition formulated as a liquid solution, acceptable pharmaceutical carriers are sterile and biocompatible, and include saline, sterile water, Ringer's solution, buffered saline, albumin injection, dextrose solution, maltodextrin solution, glycerol, ethanol and One or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers, and bacteriostats may be added as needed. In addition, diluents, dispersants, surfactants, binders and lubricants may be additionally added to form an injectable formulation such as an aqueous solution, suspension, emulsion, etc., pills, capsules, granules or tablets. Furthermore, it can be preferably formulated according to each disease or component using the method disclosed in Remington's Pharmaceutical Science, Mack Publishing Company, Easton PA by an appropriate method in the art.
본 발명의 인삼 유래 진토닌 함유 추출물, 이의 분획물 또는 진토닌은 조성물의 총 중량에 대하여 0.001 내지 20 중량%로 포함될 수 있다.The ginseng-derived gintonin-containing extract of the present invention, a fraction thereof, or gintonin may be included in an amount of 0.001 to 20% by weight based on the total weight of the composition.
본 발명의 조성물은 또한 식품 조성물일 수 있으며, 본 발명의 식품 조성물은 유효성분인 인삼 유래 진토닌 함유 추출물, 이의 분획물 또는 진토닌을 함유하는 것 외에 통상의 식품 조성물과 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. The composition of the present invention may also be a food composition, and the food composition of the present invention may contain various flavoring agents or natural ingredients, such as a conventional food composition, in addition to containing an active ingredient, ginseng-derived gintonin-containing extract, a fraction thereof, or gintonin. Carbohydrates and the like may be contained as additional ingredients.
상술한 천연 탄수화물의 예는 모노사카라이드, 예를 들어, 포도당, 과당 등; 디사카라이드, 예를 들어 말토스, 슈크로스 등; 및 폴리사카라이드, 예를 들어 덱스트린, 시클로덱스트린 등과 같은 통상적인 당, 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜이다. 상술한 향미제는 천연 향미제 (타우마틴), 스테비아 추출물(예를 들어 레바우디오시드 A, 글리시르히진 등) 및 합성 향미제 (사카린, 아스파르탐 등)를 유리하게 사용할 수 있다. Examples of the above-mentioned natural carbohydrates include monosaccharides such as glucose, fructose and the like; disaccharides such as maltose, sucrose and the like; and polysaccharides such as conventional sugars such as dextrin and cyclodextrin, and sugar alcohols such as xylitol, sorbitol, and erythritol. The above-mentioned flavoring agents can advantageously use natural flavoring agents (Taumatine), stevia extract (eg rebaudioside A, glycyrrhizin, etc.) and synthetic flavoring agents (saccharin, aspartame, etc.).
본 발명의 식품 조성물은 상기 약제학적 조성물과 동일한 방식으로 제제화되어 기능성 식품으로 이용하거나, 각종 식품에 첨가할 수 있다. 본 발명의 조성물을 첨가할 수 있는 식품으로는 예를 들어, 음료류, 육류, 초코렛, 식품류, 과자류, 피자, 라면, 기타 면류, 껌류, 사탕류, 아이스크림류, 알코올 음료류, 비타민 복합제 및 건강보조식품류 등이 있다.The food composition of the present invention may be formulated in the same manner as the pharmaceutical composition and used as a functional food or added to various foods. Foods to which the composition of the present invention can be added include, for example, beverages, meat, chocolate, foods, confectionery, pizza, ramen, other noodles, gums, candy, ice cream, alcoholic beverages, vitamin complexes and health supplements. There is this.
또한 상기 식품 조성물은 유효성분인 인삼 유래 진토닌 함유 추출물 또는 진토닌 외에 여러 가지 영양제, 비타민, 광물 (전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 중진제 (치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알콜, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 그밖에 본 발명의 식품 조성물은 천연 과일 쥬스 및 과일 쥬스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있다. In addition, the food composition contains various nutrients, vitamins, minerals (electrolytes), synthetic flavoring agents and natural flavoring agents, coloring agents, and thickening agents (cheese, chocolate, etc.) ), pectic acid and its salts, alginic acid and its salts, organic acids, protective colloidal thickeners, pH adjusters, stabilizers, preservatives, glycerin, alcohols, carbonation agents used in carbonated beverages, and the like. In addition, the food composition of the present invention may contain natural fruit juice and pulp for the production of fruit juice beverages and vegetable beverages.
본 발명은 또한 인삼 유래 진토닌 함유 추출물, 이의 분획물 또는 진토닌을 유효성분으로 포함하는 근위축 또는 악액질의 예방 또는 개선용 건강기능식품을 제공한다.The present invention also provides a health functional food for preventing or improving muscle atrophy or cachexia comprising an extract containing ginseng-derived gintonin, a fraction thereof, or gintonin as an active ingredient.
본 발명의 건강기능식품은 근위축 또는 악액질의 개선을 목적으로, 정제, 캅셀, 분말, 과립, 액상, 환 등의 형태로 제조 및 가공할 수 있다.The health functional food of the present invention may be manufactured and processed in the form of tablets, capsules, powders, granules, liquids, pills, etc. for the purpose of improving muscle atrophy or cachexia.
본 발명에서 "건강기능식품"이라 함은 건강기능식품에 관한 법률 제6727호에 따른 인체에 유용한 기능성을 가진 원료나 성분을 사용하여 제조 및 가공한 식품을 말하며, 인체의 구조 및 기능에 대하여 영양소를 조절하거나 생리학적 작용 등과 같은 보건 용도에 유용한 효과를 얻을 목적으로 섭취하는 것을 의미한다.In the present invention, the term "health functional food" refers to a food manufactured and processed using raw materials or ingredients useful for the human body in accordance with Act No. 6727 of the Health Functional Food Act, and provides nutrients for the structure and function of the human body. It refers to ingestion for the purpose of obtaining useful effects for health purposes, such as controlling or physiological effects.
본 발명의 건강기능식품은 통상의 식품 첨가물을 포함할 수 있으며, 식품 첨가물로서의 적합 여부는 다른 규정이 없는 한, 식품의약품안전청에 승인된 식품 첨가물 공전의 총칙 및 일반시험법 등에 따라 해당 품목에 관한 규격 및 기준에 의하여 판정한다.The health functional food of the present invention may contain normal food additives, and unless otherwise specified, whether it is suitable as a food additive is related to the item according to the general rules and general test method of food additives approved by the Food and Drug Administration. It is judged according to the standards and standards.
상기 "식품 첨가물 공전"에 수재된 품목으로는 예를 들어, 케톤류, 글리신, 구연산칼슘, 니코틴산, 계피산 등의 화학적 합성물; 감색소, 감초추출물, 결정셀룰로오스, 고량색소, 구아검 등의 천연첨가물; L-글루타민산나트륨제제, 면류첨가알칼리제, 보존료제제, 타르색소제제 등의 혼합제제류 등을 들 수 있다.The items listed in the "Food Additives Code" include, for example, chemical compounds such as ketones, glycine, calcium citrate, nicotinic acid, and cinnamic acid; natural additives such as persimmon pigment, licorice extract, crystalline cellulose, high pigment, and guar gum; and mixed preparations such as sodium L-glutamate preparations, noodles-added alkalis, preservatives, and tar dye preparations.
예를 들어, 정제 형태의 건강기능식품은 본 발명의 유효성분인 인삼 유래 진토닌 함유 추출물, 이의 분획물 또는 진토닌을 부형제, 결합제, 붕해제 및 다른 첨가제와 혼합한 혼합물을 통상의 방법으로 과립화한 다음, 활택제 등을 넣어 압축성형하거나, 상기 혼합물을 직접 압축 성형할 수 있다. 또한 상기 정제 형태의 건강기능식품은 필요에 따라 교미제 등을 함유할 수도 있다.For example, the health functional food in tablet form is granulated by a conventional method by mixing the active ingredient of the present invention, ginseng-derived gintonin-containing extract, a fraction thereof, or a mixture of gintonin with excipients, binders, disintegrants and other additives. Then, a lubricant or the like may be added for compression molding, or the mixture may be directly compression molded. In addition, the health functional food in the form of tablets may contain a corrosive agent or the like, if necessary.
캅셀 형태의 건강기능식품 중 경질 캅셀제는 통상의 경질 캅셀에 본 발명의 유효성분인 인삼 유래 진토닌 함유 추출물, 이의 분획물 또는 진토닌을 부형제 등의 첨가제와 혼합한 혼합물을 충진하여 제조할 수 있으며, 연질 캅셀제는 인삼 유래 진토닌 함유 추출물 또는 진토닌을 부형제 등의 첨가제와 혼합한 혼합물을 젤라틴과 같은 캅셀기제에 충진하여 제조할 수 있다. 상기 연질 캅셀제는 필요에 따라 글리세린 또는 소르비톨 등의 가소제, 착색제, 보존제 등을 함유할 수 있다.Among health functional foods in the form of capsules, hard capsules can be prepared by filling conventional hard capsules with an extract containing ginseng-derived gintonin, which is the active ingredient of the present invention, a fraction thereof, or a mixture of gintonin with additives such as excipients, Soft capsules can be prepared by filling a capsule base such as gelatin with an extract containing ginseng-derived gintonin or a mixture of gintonin with additives such as excipients. The soft capsules may contain a plasticizer such as glycerin or sorbitol, a colorant, a preservative, and the like, if necessary.
환 형태의 건강기능식품은 본 발명의 유효성분인 인삼 유래 진토닌 함유 추출물, 이의 분획물 또는 진토닌과 부형제, 결합제, 붕해제 등을 혼합한 혼합물을 기존에 공지된 방법으로 성형하여 조제할 수 있으며, 필요에 따라 백당이나 다른 제피제로 제피할 수 있으며, 또는 전분, 탈크와 같은 물질로 표면을 코팅할 수도 있다.The health functional food in the form of a ring can be prepared by molding the active ingredient of the present invention, ginseng-derived gintonin-containing extract, a fraction thereof, or a mixture of gintonin and excipients, binders, and disintegrants by a known method. , if necessary, it can be coated with sucrose or other skinning agent, or the surface can be coated with a material such as starch or talc.
과립 형태의 건강기능식품은 본 발명의 유효성분인 인삼 유래 진토닌 함유 추출물, 이의 분획물 또는 진토닌과 부형제, 결합제, 붕해제 등을 혼합한 혼합물을 기존에 공지된 방법으로 입상으로 제조할 수 있으며, 필요에 따라 착향제, 교미제 등을 함유할 수 있다.The health functional food in the form of granules can be prepared in a granular form by a known method by mixing the active ingredient, ginseng-derived gintonin-containing extract, a fraction thereof, or a mixture of gintonin and excipients, binders, and disintegrants of the present invention. , a flavoring agent, a flavoring agent, etc. may be contained as needed.
상기 건강기능식품은 음료류, 육류, 초코렛, 식품류, 과자류, 피자, 라면, 기타 면류, 껌류, 사탕류, 아이스크림류, 알코올 음료류, 비타민 복합제 및 건강보조식품류 등일 수 있다.The health functional food may be beverages, meat, chocolate, foods, confectionery, pizza, ramen, other noodles, gums, candy, ice cream, alcoholic beverages, vitamin complexes and health supplements.
또한 본 발명은 개체에게 인삼 유래 진토닌 함유 추출물, 이의 분획물 또는 진토닌을 유효성분으로 포함하는 약학적 조성물을 투여하는 것을 포함하는 근위축 또는 악액질의 예방 또는 치료방법을 제공한다.In addition, the present invention provides a method for preventing or treating muscular atrophy or cachexia, comprising administering to an individual a ginseng-derived gintonin-containing extract, a fraction thereof, or a pharmaceutical composition containing gintonin as an active ingredient.
상기 개체는 포유동물일 수 있으며, 예를 들어, 인간일 수 있으나, 이에 제한되지 않는다.The subject may be a mammal, for example, a human, but is not limited thereto.
여기에서 사용된 용어 "치료상 유효량"은 연구자, 수의사, 의사 또는 기타 임상에 의해 생각되는 조직계, 동물 또는 인간에서 생물학적 또는 의학적 반응을 유도하는 유효 성분 또는 약학적 조성물의 양을 의미하는 것으로, 이는 치료되는 질환 또는 장애의 증상의 완화를 유도하는 양을 포함한다. 본 발명의 유효 성분에 대한 치료상 유효 투여량 및 투여횟수는 원하는 효과에 따라 변화될 것임은 당업자에게 자명하다. 그러므로, 투여될 최적의 투여량은 당업자에 의해 쉽게 결정될 수 있으며, 질환의 종류, 질환의 중증도, 조성물에 함유된 유효성분 및 다른 성분의 함량, 제형의 종류, 및 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 분비율, 치료기간, 동시 사용되는 약물을 비롯한 다양한 인자에 따라 조절될 수 있다. 본 발명의 치료방법에 있어서, 성인의 경우, 본 발명의 톱니모자반 추출물을 1일 1회 내지 수회 투여시, 0.01㎎/kg~100㎎/kg의 용량으로 투여하는 것이 바람직하다. As used herein, the term “therapeutically effective amount” refers to an amount of an active ingredient or pharmaceutical composition that induces a biological or medical response in a tissue system, animal or human as conceived by a researcher, veterinarian, physician or other clinician, which an amount that induces amelioration of the symptoms of the disease or disorder being treated. It is apparent to those skilled in the art that the therapeutically effective dosage and frequency of administration for the active ingredient of the present invention will vary depending on the desired effect. Therefore, the optimal dosage to be administered can be easily determined by those skilled in the art, and the type of disease, the severity of the disease, the content of active ingredients and other components contained in the composition, the type of formulation, and the age, weight, and general health of the patient It can be adjusted according to various factors including condition, sex and diet, administration time, administration route and secretion rate of the composition, treatment period, and concurrently used drugs. In the treatment method of the present invention, in the case of adults, it is preferable to administer the serrated jasmine extract of the present invention once to several times a day, at a dose of 0.01 mg/kg to 100 mg/kg.
본 발명의 치료방법에서 본 발명의 인삼 유래 진토닌 함유 추출물, 이의 분획물 또는 진토닌을 유효성분으로 포함하는 조성물은 경구, 직장, 정맥내, 동맥내, 복강내, 근육내, 흉골내, 경피, 국소, 안구내 또는 피내 경로를 통해 통상적인 방식으로 투여할 수 있다. In the treatment method of the present invention, the ginseng-derived gintonin-containing extract of the present invention, a fraction thereof, or a composition containing gintonin as an active ingredient can be administered orally, rectal, intravenously, intraarterially, intraperitoneally, intramuscularly, intrasternally, transdermally, Administration may be in a conventional manner via topical, intraocular or intradermal routes.
이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 하기 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail by way of Examples. The following examples are merely for illustrating the present invention in more detail, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited to these examples.
<실시예><Example>
실시예 1Example 1
GT 및 GEF의 제조Manufacture of GT and GEF
GT(진토닌) 및 GEF는 이전에 기술된 바와 같이 제조하였다. 1 kg의 4년근 인삼을 작은 조각 (>3 mm)으로 분쇄하고 70% 에탄올(EtOH)로 80℃에서 8시간 동안 8회 환류시켰다. EtOH 추출물 농축시키고(350 g) 1-10의 비율로 차가운 증류수에 용해한 후 4℃에서 24시간 동안 콜드 챔버에서 보관하였다. 원심분리 후, 침전물을 동결건조하였다. 수득한 분획을 GEF로 명명하였다. GT (gintonin) and GEF were prepared as previously described. 1 kg of 4-year-old ginseng was ground into small pieces (>3 mm) and refluxed 8 times with 70% ethanol (EtOH) at 80°C for 8 hours. The EtOH extract was concentrated (350 g), dissolved in cold distilled water at a ratio of 1-10, and stored in a cold chamber at 4° C. for 24 hours. After centrifugation, the precipitate was lyophilized. The obtained fraction was named GEF.
세포 배양cell culture
마우스 근원세포주인 C2C12는 American Type Culture Collection (Manassas, VA, USA)로부터 수득하여 5% CO2, 37℃에서 10 % 우태아혈청[FBS, Corning Life Sciences] 및 1% 페니실린-스트렙토마이신 [Corning Life Sciences]이 보충된 성장 배지 (GM, Dulbecco’s modified Eagle’s medium [DMEM, Corning Life Sciences, Oneonta NY, USA]에서 배양하였다. 분화를 위해, 1×105 세포를 24 웰 플레이트의 각 웰에 접종하고 다른 방식으로 언급하지 않는 한 컨플루언시까지 배양하였다. 컨플루언트 C2C12 세포를 분화 배지 (DM, DMEM containing 2 % heat-inactivated horse serum [Sigma] and 1 % penicillin-streptomycin)에 4일까지 근원세포 분화를 위해 배양하였다. 분화 배지를 2일마다 새로운 분화 배지로 교체하였다. Dex-유도 위축 연구를 위해, 분화된 C2C12 세포를 25 uM Dex (Sigma)로 처리한 후, 2일 동안 DM에서 인큐베이션하였다. 인간 골격 근원세포 (HSkM)를 Thermo Fisher Scientific에서 수득하였다. 분화를 위해, 1×105 세포를 24 웰 플레이트의 각 웰에 접종하고 컨플루언시까지 배양하였다. 세포를 분해 배지 (low glucose DMEM [Gibco] containing 2 % heat-inactivated horse serum [Sigma] 및 1 % penicillin-streptomycin)에서 7일까지 분화시키고, GT를 2일간 처리한 후, 근관세포의 지름 및 융합 지수를 확인하였다. The mouse myoblast line, C2C12, was obtained from the American Type Culture Collection (Manassas, VA, USA) at 5% CO 2 , 37° C. at 10% fetal bovine serum [FBS, Corning Life Sciences] and 1% penicillin-streptomycin [Corning Life Sciences] supplemented growth medium (GM, Dulbecco's modified Eagle's medium [DMEM, Corning Life Sciences, Oneonta NY, USA]). For differentiation, 1×10 5 cells were inoculated into each well of a 24-well plate and another Cultured until confluency unless otherwise noted Confluent C2C12 cells were myoblasts in differentiation medium (DM, DMEM containing 2 % heat-inactivated horse serum [Sigma] and 1 % penicillin-streptomycin) for up to 4 days. Culture for differentiation.Differentiation medium was replaced with fresh differentiation medium every 2 days.For Dex-induced atrophy study, differentiated C2C12 cells were treated with 25 uM Dex (Sigma) and then incubated in DM for 2 days. Human skeletal myoblasts (HSkM) were obtained from Thermo Fisher Scientific.For differentiation, 1×10 5 cells were seeded in each well of a 24-well plate and cultured until confluency. After differentiation in DMEM [Gibco] containing 2% heat-inactivated horse serum [Sigma] and 1% penicillin-streptomycin) for up to 7 days, and after treatment with GT for 2 days, the diameter and fusion index of myotube cells were checked.
웨스턴 블롯 분석Western blot analysis
세포 용해물을 얼음 상의 일반 세포 용해 버퍼를 사용하여 30분간 수확하여 4℃에서 5분간 13,000 rpm에서 원심분리하였다. 상청액의 단백질 농도를 Bio-Rad Protein Assay (Bio-Rad Laboratories, Inc., USA)로 확인하였다. 동량의 각 단백질 추출물 (30 μg)을 10% 폴리아크릴아미드겔을 사용하여 용해하고 Trans-blot turbo (Bio-Rad Laboratories, Inc., USA)을 사용하여 0.45 μm hybridization nitrocellulose filter (HATF) membrane (Millipore, USA)으로 전기-이동하였다. 항체로서 anti-atrogin-1 (sc-166806, Santa Cruz Biotechnology, CA, USA), anti-p- Protein kinase B (AKT) (#9271, 세포 Signaling Technology, MA, USA), anti-AKT (#9272, 세포 Signaling Technology, MA, USA), anti-actin (ab1801, Abcam, MA, USA)을 사용하였다. Cell lysates were harvested for 30 minutes using normal cell lysis buffer on ice and centrifuged at 13,000 rpm for 5 minutes at 4°C. The protein concentration of the supernatant was confirmed by Bio-Rad Protein Assay (Bio-Rad Laboratories, Inc., USA). An equal amount of each protein extract (30 μg) was dissolved using 10% polyacrylamide gel and 0.45 μm hybridization nitrocellulose filter (HATF) membrane (Millipore) using Trans-blot turbo (Bio-Rad Laboratories, Inc., USA). , USA). Anti-atrogin-1 (sc-166806, Santa Cruz Biotechnology, CA, USA), anti-p-protein kinase B (AKT) (#9271, Cell Signaling Technology, MA, USA), anti-AKT (#9272) as an antibody , Cell Signaling Technology, MA, USA) and anti-actin (ab1801, Abcam, MA, USA) were used.
세포 증식 검정 (MTT 검정)Cell proliferation assay (MTT assay)
GT 처리 후 세포 증식을 확인하기 위해 MTT 검정을 실시하였다. 검정을 세포 Proliferation Kit I (Roche, Netherlands)를 사용하여 실시하였다. 세포(1×104)를 96-웰 플레이트에 접종하고 4일간 인큐베이션하여 분화시켰다. 그런 다음, 근관세포를 DEX 없이 또는 함께 24시간 동안 다양한 농도의 GT를 처리하였다. 인큐베이션한 후, 세포에 10 μl MTT 용액을 4시간 동안 첨가한 후, 100 μl 가용화 용액을 밤새 첨가하였다. 마이크로플레이트 리더를 사용하여 575 nm에서 흡광도를 측정하였다. MTT assay was performed to confirm cell proliferation after GT treatment. Assays were performed using Cell Proliferation Kit I (Roche, Netherlands). Cells (1×10 4 ) were seeded in 96-well plates and incubated for 4 days to differentiate them. Then, myotube cells were treated with various concentrations of GT without or with DEX for 24 hours. After incubation, 10 μl MTT solution was added to the cells for 4 hours, followed by the addition of 100 μl solubilizing solution overnight. Absorbance was measured at 575 nm using a microplate reader.
RNA 추출 및 RT-qPCRRNA extraction and RT-qPCR
RNA를 Hybrid R (Gene All)을 사용하여 분리하고, 동량의 RNA를 ReverTra Ace® qPCR Kit (Toyobo)를 사용하여 cDNA로 전환하였다. 유전자 발현 수준을 확인하기 위해, 표 1에 기재된 프라이머 서열을 사용하는 qPCR Master Mix Kit (Toyobo)로 PCR을 실시하였다. 결과는 GAPDH 수준으로 표준화하였다.RNA was isolated using Hybrid R (Gene All), and the same amount of RNA was converted to cDNA using ReverTra Ace® qPCR Kit (Toyobo). In order to confirm the gene expression level, PCR was performed with the qPCR Master Mix Kit (Toyobo) using the primer sequences shown in Table 1. Results were normalized to GAPDH levels.
동물 실험animal testing
C57BL/6 야생형 마우스 (12-16주령, 26 ± 1.5 g, 수컷)를 Orient (Korea)에서 구입하였다. 모든 동물은 먹이 및 물에 자유롭게 접근가능하고 12시간 명/암 사이클의 무균 환경에서 유지시켰다. 마우스를 다루고 실험하는 절차는 순천향대학교 동물 윤리위원회에 승인받았다. 사용된 모든 마우스의 건강 상태는 정상이었으며, 이전에 어떠한 실험에도 사용되지 않았다. 마우스를 4개 그룹으로 나누었다: 대조, DEX 단독, 및 25 및 50 mg/kg 체중으로 GT와 DEX의 병용 처리. DEX (5 mg/kg body weight/day) 또는 대조로서 PBS를 7일 동안 하루에 1번 마우스에게 복강내 주입하였다. DEX 처리 7일 후, GEF (25 및 50 mg/kg body weight/day) 또는 부형제 대조군으로 PBS을 7일 동안 하루에 1번 마우스에게 경구 투여하였다. 실험 말기에, 전경골(tibialis anterior), 비복근(gastrocnemius), EDL, 및 가자미근(비장근 muscle)을 수득하여 이의 무게를 측정하였다. 체중에 대한 각 골격근의 비율을 계산하였다.C57BL/6 wild-type mice (12-16 weeks old, 26 ± 1.5 g, male) were purchased from Orient (Korea). All animals were maintained in a sterile environment with free access to food and water and a 12 hour light/dark cycle. The procedures for handling and experimenting with mice were approved by the Animal Ethics Committee of Soonchunhyang University. All mice used were in normal health and had not previously been used in any experiments. Mice were divided into 4 groups: control, DEX alone, and combined GT and DEX treatment at 25 and 50 mg/kg body weight. Mice were intraperitoneally injected with DEX (5 mg/kg body weight/day) or PBS as a control once a day for 7 days. After 7 days of DEX treatment, GEF (25 and 50 mg/kg body weight/day) or PBS as an excipient control was orally administered to mice once a day for 7 days. At the end of the experiment, the tibialis anterior, gastrocnemius, EDL, and soleus muscle (splenic muscle) were obtained and their weight was measured. The ratio of each skeletal muscle to body weight was calculated.
헤마톡실린 및 에오신 염색 및 면역형광 염색Hematoxylin and eosin staining and immunofluorescence staining
배양된 세포의 면역형광 염색 및 크리오섹션을 종래 방법을 약간 변형하여 실시하였다. TA 근육의 크리오섹션 (10 μm 두께)을 헤마톡실린 (Sigma-Aldrich)에서 10분, 에오신 (Sigma-Aldrich)에서 3분간 염색하고 에탄올로 탈수한 후, Xylene 용액(Daejung)으로 세척하였다. Nikon Eclipse Ti-U inverted microscope가 장착된 Nikon digital SLR camera (DS-i2)을 사용하여 이미지를 촬영하였다. 샘플을 1x PBS 중의 4% 포름알데하이드로 15분간 고정한 후, 세척하고 1시간 동안 5 % 노말 동키 혈청과 함께 1x PBS로 차단하였다. 사코메트릭 미오신 중쇄(MyHC) (MF20, 0.3 μg/mL; Developmental Studies Hybridoma Bank)를 사용하였다. 일차 항체를 4℃에서 밤새 인큐베이션하였다. Cy3 (1:800 dilution; Jackson Immuno-Research Laboratories, West Grove, PA, USA)와 결합된 이차 항-마우스 IgG 항체를 사용하였다. 세포 핵을 4′,6-diamidino-2-phenylindole (DAPI; Invitrogen, Waltham, MA, USA)로 염색하였다. Nikon eclipse Ti-U inverted microscope가 장착된 Nikon digital SLR camera (DS-i2)를 사용하여 세포 이미지를 촬영하였다. 계수 및 측정을 ImageJ software를 사용하여 실시하였다.Immunofluorescence staining and cryosection of cultured cells were performed with a slight modification of the conventional method. Cryosections (10 μm thick) of TA muscle were stained with hematoxylin (Sigma-Aldrich) for 10 minutes and eosin (Sigma-Aldrich) for 3 minutes, dehydrated with ethanol, and washed with Xylene solution (Daejung). Images were taken using a Nikon digital SLR camera (DS-i2) equipped with a Nikon Eclipse Ti-U inverted microscope. Samples were fixed with 4% formaldehyde in 1x PBS for 15 minutes, washed and blocked with 1x PBS with 5% normal Donkey serum for 1 hour. Sacometric myosin heavy chain (MyHC) (MF20, 0.3 μg/mL; Developmental Studies Hybridoma Bank) was used. Primary antibodies were incubated overnight at 4°C. A secondary anti-mouse IgG antibody conjugated to Cy3 (1:800 dilution; Jackson Immuno-Research Laboratories, West Grove, PA, USA) was used. Cell nuclei were stained with 4',6-diamidino-2-phenylindole (DAPI; Invitrogen, Waltham, MA, USA). Cell images were taken using a Nikon digital SLR camera (DS-i2) equipped with a Nikon eclipse Ti-U inverted microscope. Counting and measurement were performed using ImageJ software.
통계 분석statistical analysis
모든 인 비트로 및 인 비보 실험을 3회 반복하여 실시하고 결과를 평균 ± SEM (standard error mean)로 나타냈다. 각 실험에서 샘플 크기는 도면 설명에 나타냈다. 실험 그룹은 two-tailed Student’s t-test를 사용하여 비교하였다. 그래프 및 바 다이어그램은 GraphPad Prism software를 사용하여 작성하였다. P-값을 *P ≤ 0.05, **P ≤ 0.01, 및 ***P ≤ 0.001로 나타내고, <0.05의 P-수치는 통계학적으로 유의한 것으로 간주하였다.All in vitro and in vivo experiments were repeated three times, and the results were expressed as mean±SEM (standard error mean). The sample size for each experiment is indicated in the figure description. Experimental groups were compared using the two-tailed Student's t-test. Graphs and bar diagrams were prepared using GraphPad Prism software. P-value *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001, and a P-value of <0.05 was considered statistically significant.
실시예 2 Example 2
인삼-유래 성분은 C2C12 근관세포의 비대 및 융합을 유도한다Ginseng-derived ingredients induce hypertrophy and fusion of C2C12 myotube cells
인삼은 마우스에서 근력을 유도하고 근육 손상 및 염증 반응을 감소시킨다고 보고되었다. 또한, 진세노사이드 Rg1과 같은 진세노사이드는 근육에 보호 효과를 갖는다고 보고되었다. 따라서, 인삼-유래 성분이 근위축에 효과가 있다는 가설을 세웠다. 이 가설을 입증하기 위해, 다양한 인삼-유래 성분 (arginine-fructose-glucose (AFG), GT, 비-사포닌 추출물, 및 100 ng/ml의 전체 사포닌 추출물; 100 nM의 진세노사이드 Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3R, 및 Rg3R, 및 Rg3S와 같은 Rg3 이성질체)를 스크리닝하여 C2C12 근관세포에 대한 보호 효과를 확인하였다. C2C12 근원세포를 근관세포로 분화시킨 후 2일 동안 인삼-유래 성분을 처리하였다. 세포 비대 및 융합 지수를 각각 세포 지름을 측정하고 세포 당 핵의 수를 계수하여 확인하였다. 진세노사이드 Rd, Rg2, Rg3R, 및 Rg3S와 같은 여러 진세노사이드는 세포 비대 및 융합을 유도하였다 (도 1). 이는 진세노사이드 Rb1 및 Rg3이 근육 비대 및 근원세포 분화를 유도한다는 이전 연구와 일치하는 것이다. 흥미롭게도, 시험한 인삼 성분들 중에서 GT (100 ng/ml)가 가장 높은 수준의 C2C12 근관세포의 비대 및 융합을 보였다 (도 1). It has been reported that ginseng induces muscle strength and reduces muscle damage and inflammatory responses in mice. In addition, it has been reported that ginsenosides such as ginsenoside Rg1 have a protective effect on muscles. Therefore, we hypothesized that ginseng-derived ingredients are effective for muscle atrophy. To substantiate this hypothesis, various ginseng-derived components (arginine-fructose-glucose (AFG), GT, non-saponin extracts, and whole saponin extracts at 100 ng/ml; ginsenosides Rb1, Rb2, Rc at 100 nM) , Rd, Re, Rf, Rg1, Rg2, Rg3R, and Rg3 isomers such as Rg3R, and Rg3S) were screened to confirm the protective effect on C2C12 myotube cells. After differentiation of C2C12 myoblasts into myotubes, ginseng-derived components were treated for 2 days. Cell hypertrophy and fusion index were confirmed by measuring the cell diameter and counting the number of nuclei per cell, respectively. Several ginsenosides, such as ginsenosides Rd, Rg2, Rg3R, and Rg3S, induced cell hypertrophy and fusion ( FIG. 1 ). This is consistent with previous studies that ginsenosides Rb1 and Rg3 induce muscle hypertrophy and myoblast differentiation. Interestingly, among the tested ginseng components, GT (100 ng/ml) showed the highest level of C2C12 myotube cell hypertrophy and fusion ( FIG. 1 ).
C2C12 근관세포의 GT-유도 비대 및 융합GT-induced hypertrophy and fusion of C2C12 myotube cells
다른 진세노사이드에 비해 더 우수한 근관세포의 비대 효과를 보이고 있으므로, GT가 근육 소모를 예방하는 효과가 있는지를 확인하였다. 우선, C2C12 세포 생존율에 대한 GT의 효과를 확인하였다. GT 처리는 DEX의 존재 유무에 상관없이 C2C12 근관세포에 대해 세포독성을 보이지 않았다(도 2a, 2b). 근관세포에 대한 GT의 투여량-의존성 비대 효과를 확인하기 위해, C2C12 근관세포에 10 ng/mL 내지 10,000 ng/mL 범위의 GT를 처리하고 근원 분화 마커인 미오신 중쇄 (MHC)로 염색하였다. 근관세포 지름을 측정하기 위해, 10개 이상의 핵을 갖는 MHC-양성 근관세포를 10군데의 다른 위치에서 계수하고 지름 평균을 계산하였다. GT 처리는 대조에 비해 근관세포 지름을 약 2.5배 증가시켰다 (도 2c, 2d). GT에 의해 유도되는 세포 융합을 확인하기 위해, MHC-양성 근세포 (근관세포 당 단일핵, 2 내지 5개 핵, 및 6개 이상의 핵) 당 핵의 수를 계수하여 융합 지수를 계산하였다. GT는 대조에 비해 다중 핵(2 내지 5개 핵 및 6개 이상의 핵)을 포함하는 근관세포의 빈도가 상당히 증가한 반면, 단일핵 근세포의 빈도는 GT 처리시 상당히 감소했으며(도 2e), 이는 GT가 근육 세포 융합을 유도하는 더 큰 근관세포의 형성을 시사하는 것이다.Since it showed a better hypertrophic effect of myotube cells compared to other ginsenosides, it was confirmed whether GT had an effect of preventing muscle wasting. First, the effect of GT on C2C12 cell viability was confirmed. GT treatment showed no cytotoxicity to C2C12 myotube cells with or without DEX ( FIGS. 2a and 2b ). To confirm the dose-dependent hypertrophic effect of GT on myotube cells, C2C12 myotube cells were treated with GT in the range of 10 ng/mL to 10,000 ng/mL and stained with myosin heavy chain (MHC), a marker of myogenic differentiation. To measure myotube cell diameter, MHC-positive myotube cells with more than 10 nuclei were counted at 10 different locations and the average diameter was calculated. GT treatment increased myotube cell diameter by about 2.5 times compared to the control ( FIGS. 2c and 2d ). To confirm cell fusion induced by GT, the fusion index was calculated by counting the number of nuclei per MHC-positive myocyte (single nuclei, 2 to 5 nuclei, and 6 or more nuclei per myotube cell). GT significantly increased the frequency of myotubes containing multiple nuclei (2-5 nuclei and more than 6 nuclei) compared to the control, whereas the frequency of mononuclear myocytes was significantly decreased upon GT treatment (Fig. 2e), which indicates that GT suggests the formation of larger myotube cells that induce muscle cell fusion.
GT는 DEX-유도 위축에 대해 C2C12 근관세포를 보호한다GT Protects C2C12 Myotubes Against DEX-Induced Atrophy
GT가 근육 세포 크기 및 융합 지수를 증가시키므로, GT가 약물 또는 스트레스-유도 근위축으로부터 근육 세포를 보호하는지를 확인하였다. 이를 위해, 분화된 C2C12 세포에 DEX 단독 또는 DEX와 GT를 함께 처리하여 근육 세포 위축에 대한 GT의 보호 효과를 확인하였다. GT 처리는 DEX의 존재시에도 근육 세포 크기를 일관되게 증가시켰다(도 3a, 3b). 특히, 진토닌 (100 ng/ml) 및 DEX의 공동-처리는 DEX 단독 처리에 비해 근관세포 지름을 2.7배 증가시켰다 (도 3a, 3b). 또한, 다중핵을 갖는 근관세포의 빈도는 DEX 단독에 비해 GT 및 DEX의 공동-처리에서 상당히 증가하였다(도 3c). 이러한 결과는 GT가 DEX-유도 근육 세포 위축에 대해 C2C12 근관세포를 보호함을 나타낸다. As GT increases muscle cell size and fusion index, it was investigated whether GT protects muscle cells from drug- or stress-induced muscle atrophy. To this end, the protective effect of GT against muscle cell atrophy was confirmed by treating differentiated C2C12 cells with DEX alone or with DEX and GT. GT treatment consistently increased muscle cell size even in the presence of DEX (Figs. 3a, 3b). In particular, co-treatment with gintonin (100 ng/ml) and DEX increased myotube cell diameter by 2.7-fold compared to treatment with DEX alone ( FIGS. 3a and 3b ). In addition, the frequency of multinucleated myotubes was significantly increased in the co-treatment of GT and DEX compared to DEX alone ( FIG. 3c ). These results indicate that GT protects C2C12 myotubes against DEX-induced myocyte atrophy.
GT는 리소포스파티드산 수용체 (LPAR)를 통해 C2C12 근관세포의 비대를 유도한다GT induces hypertrophy of C2C12 myotube cells via lysophosphatidic acid receptor (LPAR)
GT가 리소포스파티드산 수용체 (LPAR)를 활성화하고 LPAR을 통해 열 스트레스-유도 염증을 억제함이 보고되었다. 따라서, 근육 세포에서의 GT 의 효과가 LPAR와 연관이 있는지를 확인하였다. RT-qPCR을 사용하여 GT에 의해 영향을 받는지를 확인하였다. LPAR1LPAR3 둘 다의 발현은 GT 처리에 의해 상당히 유도되었으나, LPAR2 발현은 변하지 않았다 (도 4a). 이러한 결과를 추가 확인하기 위해, LPAR1/3 안타고니스트 Ki16425를 사용해 GT와 기능적으로 연관되었는지를 확인하였다. 분화된 C2C12 근관세포를 Ki16425로 30분간 미리 처리한 후 GT 처리하고, 근관세포의 지름 및 융합을 확인하였다. GT에 의해 유도된 지름 및 융합 지수는 GT 및 Ki16425의 이중 처리에 의해 상당히 감소하였으며 (도 4b-4d), 이는 GT가 LPAR을 통해 근육세포의 비대를 유도함을 시사하는 것이다. LPA가 근육 세포에 영향을 줄 수 있는지를 확인하였다. 예상한 바와 같이, LPA는 C2C12 근관세포의 세포 지름 및 융합 지수 둘 다를 증가시켰으나, LPA에 의한 효과는 GT만큼 좋지 않았다 (도 4b-4d). 그런 다음, 근위축에서의 중요 결정요인인 두 경로 단백질 합성 (PI3K-mTOR) 및 분해 시그널 경로 (Atrogin1)에 대한 진토닌의 효과를 웨스턴 블롯으로 확인하였다. 예상한 바와 같이, DEX는, GT 처리에 의해 상당히 감소되는, 감소된 AKT 인산화에 의한 단백질 합성 축의 수준을 감소시켰다. 또한, GT는 Atrogin-1 발현의 DEX-유도 증가를 상당히 파기시켰다(도 4e-4h). 또한, 이러한 경로에 대한 GT의 효과는 LPA 안타고니스트인 Ki16425로 파기되었다 (도 4e-4h). 이러한 결과는 GT가 LPAR을 통한 DEX-유도 근위축을 보호하는 단백질 합성 시그널링을 유도함을 나타낸다.It has been reported that GT activates the lysophosphatidic acid receptor (LPAR) and inhibits heat stress-induced inflammation through LPAR. Therefore, it was confirmed whether the effect of GT in muscle cells was related to LPAR. RT-qPCR was used to determine if it was affected by GT. Expression of both LPAR1 and LPAR3 was significantly induced by GT treatment, but LPAR2 expression was not changed (Fig. 4a). To further confirm these results, it was confirmed that the LPAR1/3 antagonist Ki16425 was functionally associated with GT. Differentiated C2C12 myotube cells were pre-treated with Ki16425 for 30 minutes, then GT-treated, and the diameter and fusion of myotube cells were confirmed. The diameter and fusion index induced by GT were significantly decreased by the dual treatment of GT and Ki16425 ( FIGS. 4b-4d ), suggesting that GT induces myocyte hypertrophy through LPAR. It was confirmed whether LPA could affect muscle cells. As expected, LPA increased both cell diameter and fusion index of C2C12 myotubes, but the effect of LPA was not as good as that of GT ( FIGS. 4b-4d ). Then, the effects of gintonin on the two pathway protein synthesis (PI3K-mTOR) and degradation signal pathway (Atrogin1), which are important determinants in muscle atrophy, were confirmed by Western blot. As expected, DEX reduced the level of the protein synthesis axis by reduced AKT phosphorylation, which was significantly reduced by GT treatment. In addition, GT significantly abrogated the DEX-induced increase in Atrogin-1 expression ( FIGS. 4E-4H ). In addition, the effect of GT on this pathway was abrogated with the LPA antagonist Ki16425 ( FIGS. 4E-4H ). These results indicate that GT induces protein synthesis signaling that protects DEX-induced muscular atrophy through LPAR.
GT가 풍부한 분획 (GEF)이 인 비보에서 DEX-유도 근육 기능이상을 보호한다GT-Rich Fraction (GEF) Protects DEX-Induced Muscle Dysfunction In Vivo
근위축에 대한 GT의 인 비보 효과를 추가 확인하기 위해, DEX-유도 근위축 마우스 모델을 사용하였다. 인 비보 연구를 위해, 에탄올 및 물을 사용해 인삼으로부터 대량 생산된 진토닌이 풍부한 분획 (GEF)을 사용하였다. 근육 소모에 대한 GEF의 효과를 확인하기 위해, 마우스에게 DEX (5 mg/kg of body weight)를 매일 7회 주입한 후, 7일 동안 매일 GEF (25 및 50 mg/kg)를 경구 위관영양 주입하였다. 우선, 대조, DEX 또는 GEF+DEX 공동-처리 마우스의 체중, 다양한 장기의 무게 및 뒷다리 근육 크기를 확인하였다. 체중 및 간 및 비장을 비롯한 장기의 무게는 대조, DEX 및 GEF 및 DEX 공동-처리 사이에 유의할만한 차이가 없었다 (도 5a). 그러나, 흥미롭게도, 심장 무게는 DEX에 의해 약간 증가하였으나 GEF 및 DEX의 공동-투여에 의해서는 상당히 감소하였다 (도 5a). 비장근 (SOL), 장지신근 (EDL), 비복근 (GAS), 및 전경골 (TA)과 같은 근육의 무게는 실험군들 사이에서 유의할만한 차이가 없었다 (도 5a). To further confirm the in vivo effect of GT on muscle atrophy, a DEX-induced muscle atrophy mouse model was used. For the in vivo study, the gintonin-rich fraction (GEF) mass-produced from ginseng using ethanol and water was used. To determine the effect of GEF on muscle wasting, mice were injected with DEX (5 mg/kg of body weight) 7 times daily, followed by oral gavage of GEF (25 and 50 mg/kg) daily for 7 days. did. First, the body weight of the control, DEX or GEF+DEX co-treated mice, the weight of various organs and the hindlimb muscle size were checked. Body weights and weights of organs including liver and spleen did not differ significantly between controls, DEX and GEF and DEX co-treatment ( FIG. 5A ). Interestingly, however, cardiac weight was slightly increased by DEX but decreased significantly by co-administration of GEF and DEX ( FIG. 5A ). There was no significant difference in the weight of muscles such as spleen (SOL), extensor longus (EDL), gastrocnemius (GAS), and tibialis anterior (TA) between the experimental groups (Fig. 5a).
GEF 처리 동안 매번 다른 날에 악력을 평가하였다. DEX에 의해 감소된 근력은 2일째부터 시작된 GEF 처리에 의해 완전히 회복되어 대조와 견줄만하였다 (도 5b). 근위축에 대한 GEF의 분자 수준의 보호 효과를 이해하기 위해, 헤마톡실린 및 에오신 (H&E) 염색을 실시하였다. DEX 처리는 PBS에 비해 TA 근육 섬유의 단면적 (CSA)을 감소시켰다 (도 5c). 악력 결과와 일관되게, GEF 처리는 DEX-처리 마우스의 CSA를 상당히 증가시켰다 (도 5c-5e). 25 및 50 mg/kg의 GEF 처리시 평균 CSA는 DEX 단독 처리에 비해 각각 약 1.7 및 2배 더 높았다 (도 5e). 이러한 결과는 GEF가 인 비보에서 DEX-유도 근위축을 예방할 수 있음을 시사하는 것이다. Grip strength was assessed on different days each time during GEF treatment. The muscle strength decreased by DEX was completely restored by GEF treatment started from day 2, which was comparable to the control ( FIG. 5b ). To understand the molecular-level protective effect of GEF on muscular atrophy, hematoxylin and eosin (H&E) staining was performed. DEX treatment reduced the cross-sectional area (CSA) of TA muscle fibers compared to PBS (Fig. 5c). Consistent with the grip strength results, GEF treatment significantly increased CSA in DEX-treated mice ( FIGS. 5C-5E ). At 25 and 50 mg/kg of GEF treatment, mean CSA was approximately 1.7 and 2 fold higher, respectively, compared to DEX alone treatment ( FIG. 5e ). These results suggest that GEF can prevent DEX-induced muscular atrophy in vivo.
GT는 일차 정상 인간 골격 근원세포 (HSkM)의 위축을 보호한다GT Protects Atrophy of Primary Normal Human Skeletal Myoblasts (HSkM)
GT가 인 비트로 및 인 비보 마우스 시스템 둘 다에서 근육 세포 위축을 보호한다는 결과에 근거하여, GT에 의한 보호 효과가 인간 세포에도 적용되는지를 확인하였다. 이를 위해, 일차 정상 인간 골격 근원세포 HSkM을 사용하여, 인간 근육 세포 위축에 대한 GT의 효과를 분석하였다. HSkM 세포를 7일 동안 2 % 말 혈청 조건을 갖는 저 글루코스 DMEM에서 분화시키고, 2일 동안 GT를 처리한 후, 근관세포의 지름 및 융합 지수를 확인하였다 (도 6a). GT-처리 HSkM 근관세포는 대조에 비해 상당히 더 큰 지름을 보였다 (도 6b). 또한, 5개 이상의 핵을 포함하는 세포 빈도는 대조에 비해 GT-처리군에서 상당히 더 높았다 (도 6c). 일관되게, 덱사메타손-유도 위축 모델에서, GT가 5개 이상의 핵을 갖는 세포 지름 및 세포 빈도 둘 다를 증가시킴을 발견하였다 (도 6). 이러한 결과는 마우스 및 인간 근육 세포 둘 다의 위축을 보호하므로 위축-관련 근육 질환에 대한 유망한 후보제가 될 수 있음을 시사한다. Based on the results that GT protects muscle cell atrophy in both in vitro and in vivo mouse systems, it was confirmed whether the protective effect of GT was also applied to human cells. To this end, we analyzed the effect of GT on human muscle cell atrophy using primary normal human skeletal myoblasts HSkM. HSkM cells were differentiated in low-glucose DMEM with 2% horse serum condition for 7 days, and after GT treatment for 2 days, the diameter and fusion index of myotube cells were confirmed (FIG. 6a). GT-treated HSkM myotubes showed significantly larger diameters compared to the control ( FIG. 6b ). In addition, the frequency of cells containing 5 or more nuclei was significantly higher in the GT-treated group compared to the control group ( FIG. 6c ). Consistently, in the dexamethasone-induced atrophy model, we found that GT increased both cell diameter and cell frequency with 5 or more nuclei ( FIG. 6 ). These results suggest that it protects atrophy of both mouse and human muscle cells and thus may be a promising candidate for atrophy-related muscle diseases.
결론conclusion
근위축은 장기간 활동하지 않았을 때뿐만 아니라 노화, 암, 당뇨 및 신장부전증과 같은 다양한 질환에서도 발견된다. 치료제를 개발하고자 하는 많은 노력에도 불구하고, 근위축 치료를 위한 효과적인 치료는 아직까지 거의 없는 상태이다. 본 발명에서는 인삼-유래 성분인 GT가 인 비트로 및 인 비보 DEX-매개 근위축을 보호하고 완화시킴을 확인하였다. GT는 DEX의 존재 및 부재시에 마우스 C2C12 및 인간 HSkM 근관세포 둘 다의 비대 및 융합을 유도하였다. 이는 GT가 GC-관련 및 GC-비관련 조건 둘 다에 의해 발생한 근위축에 적용될 수 있음을 나타내는 것이다. GT의 활성은 LPA 수용체에 의존하며, 이는 LPAR 안타고니스트인 Ki16425가 C2C12 근관세포에 대한 GT의 효과를 파기하는 것에 의해 입증되었다. LPA 수용체는 많은 세포 유형에서 고도로 발현되어 확산, 생존, 세포골격 변화, 칼슘 유입의 원인이 되는 것으로 널리 알려져 있다. LPA 수용체는 이종삼량체 G 단백질 (Gi, Gq, G12/13 alpha subunits)에 결합하고 LPA자극에 의한 다중 세포성 반응을 나타낼 수 있는 G 단백질-결합 수용체 (GPCR)이다. LPA의 생물학적 활성은 LPA1 내지 LPA6의 6개 수용체의 활성화를 통해 대부분 매개된다. 또한, GT 처리는 LPAR1 및 LPAR3 둘 다의 발현을 유도하나, LPAR2는 유도하지 않음을 발견하였다. 따라서, 본 발명은 GT가 LPAR, 특히 LPAR1 및 LPAR3의 활성화를 통해 근위축을 예방할 수 있음을 제시한다. Muscle atrophy is found not only in prolonged inactivity, but also in various diseases such as aging, cancer, diabetes and renal failure. Despite many efforts to develop therapeutic agents, there are still few effective treatments for the treatment of muscular atrophy. In the present invention, it was confirmed that GT, a ginseng-derived ingredient, protects and alleviates DEX-mediated muscle atrophy in vitro and in vivo. GT induced hypertrophy and fusion of both mouse C2C12 and human HSkM myotubes in the presence and absence of DEX. This indicates that GT can be applied to muscle atrophy caused by both GC-related and GC-unrelated conditions. The activity of GT is dependent on the LPA receptor, as demonstrated by the LPAR antagonist Ki16425 abrogating the effect of GT on C2C12 myotubes. It is widely known that LPA receptors are highly expressed in many cell types and are responsible for proliferation, survival, cytoskeletal changes, and calcium influx. The LPA receptor is a G protein-coupled receptor (GPCR) that can bind to heterotrimeric G proteins (Gi, Gq, G12/13 alpha subunits) and exhibit multiple cellular responses by LPA stimulation. The biological activity of LPA is mostly mediated through the activation of six receptors, LPA1 to LPA6. We also found that GT treatment induced expression of both LPAR1 and LPAR3, but not LPAR2. Thus, the present invention suggests that GT can prevent muscle atrophy through activation of LPARs, particularly LPAR1 and LPAR3.
심부전의 징후와 관련되는 심근세포의 크기를 증가시키고 심장 비대를 유도한다고 보고되었다. 일관되게 본 발명에서 DEX 처리군이 더 큰 심장 질량을 나타냄을 확인하였다. 흥미롭게도, DEX에 의해 증가된 심장 질량이 GEF 처리에 의해 약간 그러나 유의미하게 감소하였음을 발견하였다. 최근에는, 진세노사이드 Rg1이 DEX에 의해 증가된 심장 질량을 감소시키고 압력 과부하에 의해 유도된 심장 비대에 보호 효과를 가짐이 보고되었다. 진세노사이드 Rg1 및 GT 둘 다 DEX에 의해 유발되는 심장 비대를 감소시킬 수 있는 가능성을 갖는 것으로 생각된다. 따라서, 심부전 또는 관련 증상을 완화시킬 수 있는 GT 및 심장 비대 사이의 상관관계 및 메커니즘을 연구하는 추후 연구가 필요하다.It has been reported to increase the size of cardiomyocytes and induce cardiac hypertrophy, which is associated with signs of heart failure. It was consistently confirmed that in the present invention, the DEX-treated group exhibited greater cardiac mass. Interestingly, we found that cardiac mass increased by DEX was slightly but significantly decreased by GEF treatment. Recently, it was reported that the ginsenoside Rg1 reduces cardiac mass increased by DEX and has a protective effect on cardiac hypertrophy induced by pressure overload. Both ginsenosides Rg1 and GT are thought to have the potential to reduce DEX-induced cardiac hypertrophy. Therefore, further studies are needed to study the mechanisms and correlations between GT and cardiac hypertrophy that can alleviate heart failure or related symptoms.
글루코코르티코이드 약물인 DEX는 생리학적 과정을 조절하기 위해 사용되고 항-염증과 같은 다양한 질환을 치료하기 위해 일반적으로 적용된다. 그러나, DEX의 부작용 중 하나는 장기간 복용시 근위축을 유발한다는 것이다. 이러한 현상은 유비퀴틴-프로테아좀 경로의 증가된 활성이 원인인 증가된 FOXO3a 경로에 의해 발생하였다. FOXO3 단독의 활성화는 유비퀴틴-프로테아좀 시스템 (UPS)을 통해 단백질분해를 시발하기에 충분하다. 반대로, 근육으로의 트렌스제닉 발현을 통한 또는 전기영동에 의한 마우스의 IGF1 또는 AKT의 과생산은 근육의 전신성 비대 및 더 높은 근력의 유도에 의해 근육 무게 손실을 감소시키기 충분하다. 최근에 사용되거나 임상실험 중인 다양한 신규한 항암제는 PI3K-AKT-mTOR 시그널링을 저해하고 이에 따라 근육 성장을 저해하고 위축을 촉진할 수 있다. 따라서, 이러한 키나아제를 자극하기 위한 신규한 접근법이 특히 회복 및 복귀 동안의 근육 소모를 방지하는데 중요할 수 있다. 본 발명은 근위축 마우스 모델에서 악력 및 근육 섬유의 CSA를 확인하여 GEF의 경구 투여가 DEX-유도 근위축을 예방하거나 완화시킴을 입증하였다. 또한, pAKT의 수준이 DEX에 비해 GEF-처리 근육에서 더 높은 반면, Atrogin-1의 수준은 GEF-처리 마우스에서 상당히 감소했음을 발견하였다. 따라서, AKT 및 Atrogin-1은 GT가 DEX에 의해 유도되는 근위축에 대항하는 보호 이의 보호 활성을 보이도록 하는 중요한 경로인 것으로 생각된다. 본 발명의 발명자들은 이전 문헌에서 GEF 투여가 인지에서 가능성 있는 중요 효과를 나타내어 인지 손상된 노인에게 안전하고 용인됨을 입증하였다. GEF가 소규모 임상 실험에서 상대적으로 안전하다고 보고되었으므로, GEF가 근육 소모를 개선하기 위해 임상적으로 시험할 것을 제안하고 있다.DEX, a glucocorticoid drug, is used to modulate physiological processes and is commonly applied to treat various diseases such as anti-inflammatory. However, one of the side effects of DEX is that it causes muscle atrophy when taken for a long time. This phenomenon was caused by an increased FOXO3a pathway due to increased activity of the ubiquitin-proteasome pathway. Activation of FOXO3 alone is sufficient to trigger proteolysis through the ubiquitin-proteasome system (UPS). Conversely, overproduction of IGF1 or AKT in mice, either through transgenic expression into muscle or by electrophoresis, is sufficient to reduce muscle weight loss by induction of muscle systemic hypertrophy and higher muscle strength. Various novel anticancer agents recently used or in clinical trials can inhibit PI3K-AKT-mTOR signaling and thus inhibit muscle growth and promote atrophy. Thus, novel approaches to stimulate these kinases may be important in preventing muscle wasting, particularly during recovery and recovery. The present invention confirmed grip strength and CSA of muscle fibers in a mouse model of muscular atrophy and demonstrated that oral administration of GEF prevented or alleviated DEX-induced muscular atrophy. We also found that the level of pAKT was higher in GEF-treated muscle compared to DEX, whereas the level of Atrogin-1 was significantly reduced in GEF-treated mice. Thus, AKT and Atrogin-1 are thought to be important pathways for GT to exhibit its protective activity against DEX-induced muscular atrophy. The inventors of the present invention demonstrated in the previous literature that GEF administration exhibited a potentially significant effect on cognition, thus demonstrating that it is safe and tolerated in the cognitively impaired elderly. Since GEF has been reported to be relatively safe in small clinical trials, it is suggested that GEF be tested clinically to improve muscle wasting.
본 발명에서는 신규한 인삼 성분인 진토닌이 마우스 및 인간 근관세포 둘 다에서 비대 및 융합을 유도함을 발견하였다. 또한, 진토닌이 마우스 모델에서 DEX-유도 근육 소모를 예방하거나 완화시켰다. 따라서, 본 발명은 진토닌이 생리학적 및 병리학적 조건 하에서 골격 근위축을 치료할 수 있는 유망한 후보제가 될 수 있음을 제시한다.In the present invention, it was found that gintonin, a novel ginseng component, induces hypertrophy and fusion in both mouse and human myotube cells. In addition, gintonin prevented or alleviated DEX-induced muscle wasting in a mouse model. Therefore, the present invention suggests that gintonin may be a promising candidate for treating skeletal muscular atrophy under physiological and pathological conditions.
실시예 3Example 3
GT 및 GEF의 제조Manufacture of GT and GEF
GT 및 GEF를 이전에 공개된 방법에 따라 제조하였다. 간략하게, 인삼 뿌리로부터 GT를 제조하기 위해, 8 kg의 4년근 인삼을 작은 조각 (>3 mm)으로 분쇄하고 80% 에탄올(EtOH)로 80℃에서 8시간 동안 8회 환류시켰다. MeOH 추출물 (1.3 kg)을 진공에서 농축시키고 n-부탄올 (n-BuOH) 및 물 사이에 분할시켰다. 인삼의 n-BuOH 분획(fr., 300g)을 PBS (pH 7.2)에 용해시키고 DEAE sepharose CL-6B (GE Healthcare)로 채워지고 PBS (pH 7.2)로 평형화된 컬럼에 로딩하였다. 비결합 물질을 동일한 버퍼로 용출시키고 결합 물질은 PBS (pH 7.2) 중의 0 내지 1 M NaCl의 선형 구배로 용출시켰다. 용출된 분획을 Spectra/Por dialysis membrane (molecular weight cut off 6,000-8,000; Spectrum Laboratories Inc., Rancho Dominguez, CA, USA) 을 사용하여 1000배 과량의 증류수(DW)로 4℃에서 8시간 동안 추가 희석시켜 0.2% (Pyo, 2011 #134)의 수율로 진세노사이드와 같은 소분자 성분 및 다른 성분을 제거하였다.GT and GEF were prepared according to previously published methods. Briefly, to prepare GT from ginseng root, 8 kg of 4-year-old ginseng was ground into small pieces (>3 mm) and refluxed 8 times at 80°C for 8 hours with 80% ethanol (EtOH). The MeOH extract (1.3 kg) was concentrated in vacuo and partitioned between n-butanol (n-BuOH) and water. The n-BuOH fraction of ginseng (fr., 300 g) was dissolved in PBS (pH 7.2) and loaded onto a column filled with DEAE sepharose CL-6B (GE Healthcare) and equilibrated with PBS (pH 7.2). Unbound material was eluted with the same buffer and bound material was eluted with a linear gradient of 0 to 1 M NaCl in PBS (pH 7.2). The eluted fraction was further diluted with 1000-fold excess distilled water (DW) using a Spectra/Por dialysis membrane (molecular weight cut off 6,000-8,000; Spectrum Laboratories Inc., Rancho Dominguez, CA, USA) at 4°C for 8 hours. to remove small molecule components and other components such as ginsenosides in a yield of 0.2% (Pyo, 2011 #134).
세포 배양cell culture
마우스 근원세포주인 C2C12는 American Type Culture Collection (Manassas, VA, USA)로부터 수득하여 5% CO2,37℃에서 10 % 우태아혈청[FBS, Corning Life Sciences] 및 1% 페니실린-스트렙토마이신 [Corning Life Sciences]이 보충된 성장 배지 (GM, Dulbecco’s modified Eagle’s medium [DMEM, Corning Life Sciences, Oneonta NY, USA]에서 배양하였다. 분화를 위해, 1×105 세포를 24 웰 플레이트의 각 웰에 접종하고 다른 방식으로 언급하지 않는 한 컨플루언시까지 배양하였다. 컨플루언트 C2C12 세포를 분화 배지 (DM, DMEM containing 2 % heat-inactivated horse serum [Sigma] and 1 % penicillin-streptomycin)에 4일까지 근원세포 분화를 위해 배양하였다. 분화 배지를 2일마다 새로운 분화 배지로 교체하였다. Dex-유도 위축 연구를 위해, 분화된 C2C12 세포를 25 uM Dex (Sigma)로 처리한 후, 2일 동안 DM에서 인큐베이션하였다. 인간 골격 근원세포 (HSkM)를 Thermo Fisher Scientific에서 수득하였다. 분화를 위해, 1×105 세포를 24 웰 플레이트의 각 웰에 접종하고 컨플루언시까지 배양하였다. 세포를 분해 배지 (low glucose DMEM [Gibco] containing 2% heat-inactivated horse serum [Sigma] 및 1% penicillin-streptomycin)에서 7일까지 분화시키고, GT를 3일간 처리한 후, 근관세포의 지름 및 융합 지수를 확인하였다. 모든 사이토카인은 Peprotech(USA)에서 구입하였다.The mouse myoblast line, C2C12, was obtained from the American Type Culture Collection (Manassas, VA, USA) at 5% CO 2 , 37° C. at 10% fetal bovine serum [FBS, Corning Life Sciences] and 1% penicillin-streptomycin [Corning Life Sciences] supplemented growth medium (GM, Dulbecco's modified Eagle's medium [DMEM, Corning Life Sciences, Oneonta NY, USA]). For differentiation, 1×10 5 cells were inoculated into each well of a 24-well plate and another Cultured until confluency unless otherwise noted Confluent C2C12 cells were myoblasts in differentiation medium (DM, DMEM containing 2 % heat-inactivated horse serum [Sigma] and 1 % penicillin-streptomycin) for up to 4 days. Culture for differentiation.Differentiation medium was replaced with fresh differentiation medium every 2 days.For Dex-induced atrophy study, differentiated C2C12 cells were treated with 25 uM Dex (Sigma) and then incubated in DM for 2 days. Human skeletal myoblasts (HSkM) were obtained from Thermo Fisher Scientific.For differentiation, 1×10 5 cells were seeded in each well of a 24-well plate and cultured until confluency. After differentiation up to 7 days in DMEM [Gibco] containing 2% heat-inactivated horse serum [Sigma] and 1% penicillin-streptomycin), GT treatment for 3 days, the diameter and fusion index of myotube cells were checked. Cain was purchased from Peprotech (USA).
웨스턴 블롯 분석Western blot analysis
조직 용해물을 일반 세포 용해 버퍼를 사용하여 균질 및 용해시킨 후 4℃에서 20분간 13,000 rpm에서 원심분리하였다. 상청액의 단백질 농도를 Bio-Rad Protein Assay (Bio-Rad Laboratories, Inc., USA)로 확인하였다. 동량의 각 단백질 추출물 (30 μg)을 10% 폴리아크릴아미드겔을 사용하여 용해하고 Trans-blot turbo (Bio-Rad Laboratories, Inc., USA)을 사용하여 0.45 μm hybridization nitrocellulose filter (HATF) membrane (Millipore, USA)으로 전기-이동하였다. 항체로서 anti-atrogin-1 (sc-166806, Santa Cruz Biotechnology, CA, USA), 항-MuRF-1 (ab172479, Abcam, MA, USA), 항-GDF8/미오스타틴 (sc-398333, Santa Cruz Biotechnology, CA, USA), 및 항-GAPDH (#9272, 세포 시그널링 Technology, MA, USA)을 사용하였다.The tissue lysate was homogenized and lysed using a normal cell lysis buffer, followed by centrifugation at 13,000 rpm at 4°C for 20 minutes. The protein concentration of the supernatant was confirmed by Bio-Rad Protein Assay (Bio-Rad Laboratories, Inc., USA). An equal amount of each protein extract (30 μg) was dissolved using 10% polyacrylamide gel and 0.45 μm hybridization nitrocellulose filter (HATF) membrane (Millipore) using Trans-blot turbo (Bio-Rad Laboratories, Inc., USA). , USA). Anti-atrogin-1 (sc-166806, Santa Cruz Biotechnology, CA, USA), anti-MuRF-1 (ab172479, Abcam, MA, USA), anti-GDF8/myostatin (sc-398333, Santa Cruz Biotechnology) as antibodies , CA, USA), and anti-GAPDH (#9272, Cell Signaling Technology, MA, USA) were used.
세포 증식 검정 (MTT 검정)Cell proliferation assay (MTT assay)
GT 처리 후 세포 증식을 확인하기 위해 MTT 검정을 실시하였다. 검정을 세포 Proliferation Kit I (Roche, Netherlands)를 사용하여 실시하였다. 세포(1×104)를 96-웰 플레이트에 접종하고 24시간 동안 인큐베이션하여 분화시켰다. 그런 다음, 근원세포를 다양한 농도의 GT로 96시간 동안 처리하였다. 인큐베이션한 후, 세포에 10 μl MTT 용액을 4시간 동안 첨가한 후, 100 μl 가용화 용액을 밤새 첨가하였다. 마이크로플레이트 리더를 사용하여 575 nm에서 흡광도를 측정한 후, 마이크로플레이트 리더인 Multiskan GO spectrophotometer (Thermo Fisher Scientific, USA)를 사용하여 650 nm에서 측정된 백그라운드 노이즈를 제거하였다. MTT assay was performed to confirm cell proliferation after GT treatment. Assays were performed using Cell Proliferation Kit I (Roche, Netherlands). Cells (1×10 4 ) were seeded in 96-well plates and differentiated by incubation for 24 hours. Then, myoblasts were treated with various concentrations of GT for 96 hours. After incubation, 10 μl MTT solution was added to the cells for 4 hours, followed by the addition of 100 μl solubilizing solution overnight. After absorbance was measured at 575 nm using a microplate reader, background noise measured at 650 nm was removed using a microplate reader Multiskan GO spectrophotometer (Thermo Fisher Scientific, USA).
RNA 추출 및 RT-qPCRRNA extraction and RT-qPCR
RNA를 Hybrid R (Gene All)을 사용하여 분리하고, 동량의 RNA를 ReverTra Ace® qPCR Kit (Toyobo)를 사용하여 cDNA로 전환하였다. 유전자 발현 수준을 확인하기 위해, 표 1에 기재된 프라이머 서열을 사용하는 qPCR Master Mix Kit (Toyobo)로 PCR을 실시하였다. 결과는 GAPDH 수준으로 표준화하였다.RNA was isolated using Hybrid R (Gene All), and the same amount of RNA was converted to cDNA using ReverTra Ace® qPCR Kit (Toyobo). In order to confirm the gene expression level, PCR was performed with the qPCR Master Mix Kit (Toyobo) using the primer sequences shown in Table 1. Results were normalized to GAPDH levels.
총 ROS 생산의 측정Measurement of total ROS production
C2C12 근원세포를 TNFα (20 ng/mL)의 존재 또는 부재 하에 GT (100ng/mL)와 함께 4시간 동안 예비-인큐베이션하였다. 그런 다음, 세포를 암전 하 37°C에서 30분간 CellRox Deep Red reagent (Life Technologies, USA)와 인큐베이션하였다. Analysis was carried out on a FACS Canto 또는 FACS Aria III (BD Biosciences, USA)으로 분석을 실시하고 데이터를 FlowJo software (Tree Star Inc., USA)로 분석하였다.C2C12 myoblasts were pre-incubated with GT (100 ng/mL) in the presence or absence of TNFα (20 ng/mL) for 4 hours. Then, the cells were incubated with CellRox Deep Red reagent (Life Technologies, USA) for 30 min at 37 °C under dark charge. Analysis was carried out on a FACS Canto or FACS Aria III (BD Biosciences, USA) and data were analyzed with FlowJo software (Tree Star Inc., USA).
히드록실 라디칼 소거 검정Hydroxyl radical scavenging assay
ROS 소거 검정을 이전에 공개된 바와 같이 실시하였다. 간략하게, 철(II)-의존 티오바르비탈산 (TBA) 반응성 물질을 디옥시리보스로의 히드록실 라디칼-매개 손상을 평가하기 위해 사용하였다. 반응 시스템은 150 μl의 PBS, pH 7.4 중의 20 μl 황산암모늄철 (10 mM), 50 μl의 H2O2 (10 mM), 25 μl의 EDTA (10mM), 25 μl의 2-디옥시리보스, 및 GT를 함유하였다. 혼합물을 37℃에서 4시간 동안 인큐베이션한 후, 250μl의 2.8% 트리클로로아세트산 (TCA)을 250 μl의 1% TBA와 함께 혼합물에 첨가하였다. 그런 다음, 혼합물을 15분간 100℃에서 끓이고 냉각시킨 후 크로모겐을 Multiskan GO spectrophotometer (Thermo Fisher Scientific, USA)으로 535 nm에서 정량하였다. 모든 화학물질은 Sigma-Aldrich(USA)에서 구입하였다.ROS clearance assays were performed as previously published. Briefly, an iron(II)-dependent thiobarbital acid (TBA) reactive substance was used to evaluate hydroxyl radical-mediated damage to deoxyribose. The reaction system contained 20 μl iron ammonium sulfate (10 mM), 50 μl H2O2 (10 mM), 25 μl EDTA (10 mM), 25 μl 2-deoxyribose, and GT in 150 μl PBS, pH 7.4. did. After the mixture was incubated at 37° C. for 4 hours, 250 μl of 2.8% trichloroacetic acid (TCA) was added to the mixture along with 250 μl of 1% TBA. Then, the mixture was boiled at 100° C. for 15 minutes and cooled, and chromogen was quantified at 535 nm with a Multiskan GO spectrophotometer (Thermo Fisher Scientific, USA). All chemicals were purchased from Sigma-Aldrich (USA).
미토콘드리아 막 전위 (ΔΨm) 검정 Mitochondrial Membrane Potential (ΔΨm) Assay
미토콘드리아 막 전위를 MitoProbe™ DiIC1(5) Assay Kit (Molecular Probe, USA)를 사용하여 확인하였다. C2C12 근원세포를 TNFα (20 ng/mL)의 존재 또는 부재 하에 GT (100ng/mL)와 함께 24시간 동안 예비-인큐베이션하였다. 그런 다음, 세포를 37℃에서 5 μl의 10 μM DiIC1(5)로 15분간 염색한 후 PBS 버퍼로 1회 세척하였다. 세포를 1000 rpm에서 5분간 원심분리하여 펠렛화시키고 500 μl의 PBS에 재현탁시켰다. FACS Canto를 사용하여 형광을 분석하고 데이터를 FlowJo software (Tree Star Inc., USA)로 분석하였다. DiIC1(5)의 여기 및 방출 피크는 각각 638 nm 및 658 nm이었다.Mitochondrial membrane potential was confirmed using MitoProbe™ DiIC1(5) Assay Kit (Molecular Probe, USA). C2C12 myoblasts were pre-incubated with GT (100 ng/mL) in the presence or absence of TNFα (20 ng/mL) for 24 hours. Then, the cells were stained with 5 μl of 10 μM DiIC1(5) at 37° C. for 15 minutes and washed once with PBS buffer. Cells were pelleted by centrifugation at 1000 rpm for 5 minutes and resuspended in 500 μl of PBS. Fluorescence was analyzed using a FACS Canto and data were analyzed with FlowJo software (Tree Star Inc., USA). The excitation and emission peaks of DiIC1(5) were 638 nm and 658 nm, respectively.
Gαi2 siRNA 트랜스펙션Gαi2 siRNA transfection
C2C12 근원세포를 Lipofectamine RNAiMAX (Invitrogen)를 사용하여 5 pM의 Gαi2 siRNA (Bioneer, pre-designed siRNA14678-1) 및 대조 비-표적 siRNA (Bioneer, SN-1003)로 트랜스펙션시켰다. 세포가 80% 컨플루언시된 후에 2% 말 혈청이 보충된 DMEM로 교체하여 분화를 시작하였다. 세포를 4일 동안 분화시킨 후 GT (100 ng/ml) 및 부형제(DMSO)를 2일 동안 처리하였다. 그런 다음, 근관세포의 지름을 측정하였다.C2C12 myoblasts were transfected with 5 pM of Gαi2 siRNA (Bioneer, pre-designed siRNA14678-1) and control non-target siRNA (Bioneer, SN-1003) using Lipofectamine RNAiMAX (Invitrogen). After the cells were 80% confluent, differentiation was initiated by replacing them with DMEM supplemented with 2% horse serum. Cells were differentiated for 4 days and then treated with GT (100 ng/ml) and vehicle (DMSO) for 2 days. Then, the diameter of the myotube cells was measured.
동물 실험animal testing
C57BL/6 야생형 마우스 (10-weeks-old, 25 ± 1.0 g, male)를 Orient (Korea)에서 구입하였다. 모든 동물은 먹이 및 물에 자유롭게 접근가능하고 12시간 명/암 사이클의 무균 환경에서 유지시켰다. 마우스를 다루고 실험하는 절차는 순천향대학교 동물 윤리위원회에 승인받았다. 사용된 모든 마우스의 건강 상태는 정상이었으며, 이전에 어떠한 실험에도 사용되지 않았다. GT의 항-암 악액질 효과를 평가하기 위해, LLC1 세포 (2x106 세포)를 우측 옆구리에 피하 주입하였다. 6일째에 종양이 감지되었을 때, 마우스를 무작위로 3개 그룹으로 나누었다: 대조 건강군, PBS 처리 LLC1, 및 GEF 처리 LLC1. 마우스에게 21일째까지 매일 GEF (50 mg/kg body weight) 또는 부형제 대조로서 PBS를 경구 투여하였다. 실험 종료시에, 전경골, 비복근, EDL, 및 비장근 근육을 수거하여 중량을 측정하였다. C57BL/6 wild-type mice (10-weeks-old, 25 ± 1.0 g, male) were purchased from Orient (Korea). All animals were maintained in a sterile environment with free access to food and water and a 12 hour light/dark cycle. The procedures for handling and experimenting with mice were approved by the Animal Ethics Committee of Soonchunhyang University. All mice used were in normal health and had not previously been used in any experiments. To evaluate the anti-cancer cachexia effect of GT, LLC1 cells (2x10 6 cells) were injected subcutaneously in the right flank. When tumors were detected on day 6, mice were randomly divided into three groups: healthy control group, PBS treated LLC1, and GEF treated LLC1. Mice were orally administered GEF (50 mg/kg body weight) or PBS as an excipient control daily until day 21. At the end of the experiment, the tibialis, gastrocnemius, EDL, and splenic muscles were collected and weighed.
근육 강도 평가muscle strength assessment
근육 거동을 2개의 독립 실험으로 평가하였다. 첫째로, 악력 테스트는 마우스 (Model 47200, Ugo-Basile, Varese, Italy)에서 악력 미터를 사용하여 기록하였다. 마우스 앞발의 악력을 측정하기 위해, 마우스의 꼬리를 살짝 잡고 금속 바를 잡게 하였다. 마우스가 금속 바를 잡자마자 금속 바를 놓을 때까지 마우스의 꼬리를 잡고 수직으로 뒤로 잡아당겼다. 각 마우스 당 2분 간격으로 5회 실험을 실시하였다. 각 실험일의 3개의 최대 수치를 체중으로 나누어 표준화하였다. 매달리는 실험은 Kondziela’s inverted screen test를 사용하여 실시하였다. 각 마우스를 와이어 매쉬 스크린 (40x40 cm)의 중앙에 위치시킨 후 스크린을 천천히 회전시켜 거꾸로 뒤집고 바닥으로부터 40 cm 위에서 유지하였다. 마우스가 떨어진 시간을 측정하였으며, 최대 시간은 8분이었다. 실험은 적어도 30분 간격으로 3회 실시하였다.Muscle behavior was assessed in two independent experiments. First, the grip force test was recorded using a grip force meter in mice (Model 47200, Ugo-Basile, Varese, Italy). To measure the grip strength of the mouse's forepaws, the mice were held by a metal bar by gently grabbing their tails. As soon as the mouse grasped the metal bar, it was grabbed by the mouse's tail and pulled back vertically until the metal bar was released. Experiments were performed 5 times at an interval of 2 minutes for each mouse. The three maximum values on each experimental day were divided by body weight and normalized. The hanging experiment was conducted using Kondziela's inverted screen test. After each mouse was placed in the center of a wire mesh screen (40x40 cm), the screen was rotated slowly, turned upside down, and kept 40 cm above the floor. The time the mouse fell was measured, and the maximum time was 8 minutes. The experiment was performed three times at least 30 minutes apart.
헤마톡실린 및 에오신 염색 및 면역형광 염색Hematoxylin and eosin staining and immunofluorescence staining
배양된 세포의 면역형광 염색 및 크리오섹션을 종래 방법을 약간 변형하여 실시하였다. TA 근육의 크리오섹션 (10 μm 두께)을 헤마톡실린 (Sigma-Aldrich)에서 10분, 에오신 (Sigma-Aldrich)에서 3분간 염색하고 에탄올로 탈수한 후, Xylene 용액(Daejung)으로 세척하였다. Nikon Eclipse Ti-U inverted microscope가 장착된 Nikon digital SLR camera (DS-i2)을 사용하여 이미지를 촬영하였다. 샘플을 1x PBS 중의 4% 포름알데하이드로 15분간 고정한 후, 세척하고 1시간 동안 5 % 노말 동키 혈청과 함께 1x PBS로 차단하였다. 사코메트릭 미오신 중쇄(MyHC) (MF20, 0.3 μg/mL; Developmental Studies Hybridoma Bank)를 사용하였다. 일차 항체를 4℃에서 밤새 인큐베이션하였다. Cy3 (1:800 dilution; Jackson Immuno-Research Laboratories, West Grove, PA, USA)와 결합된 이차 항-마우스 IgG 항체를 사용하였다. 세포 핵을 4′,6-diamidino-2-phenylindole (DAPI; Invitrogen, Waltham, MA, USA)로 염색하였다. Nikon eclipse Ti-U inverted microscope가 장착된 Nikon digital SLR camera (DS-i2)를 사용하여 세포 이미지를 촬영하였다. 계수 및 측정을 ImageJ software를 사용하여 실시하였다. 근관세포 지름은 각 조건에서 선택된 10개의 무작위 필드로부터 적어도 250개 근관세포의 평균 지름으로 결정하였다.Immunofluorescence staining and cryosection of cultured cells were performed with a slight modification of the conventional method. Cryosections (10 μm thick) of TA muscle were stained with hematoxylin (Sigma-Aldrich) for 10 minutes and eosin (Sigma-Aldrich) for 3 minutes, dehydrated with ethanol, and washed with Xylene solution (Daejung). Images were taken using a Nikon digital SLR camera (DS-i2) equipped with a Nikon Eclipse Ti-U inverted microscope. Samples were fixed with 4% formaldehyde in 1x PBS for 15 minutes, washed and blocked with 1x PBS with 5% normal Donkey serum for 1 hour. Sacometric myosin heavy chain (MyHC) (MF20, 0.3 μg/mL; Developmental Studies Hybridoma Bank) was used. Primary antibodies were incubated overnight at 4°C. A secondary anti-mouse IgG antibody conjugated to Cy3 (1:800 dilution; Jackson Immuno-Research Laboratories, West Grove, PA, USA) was used. Cell nuclei were stained with 4',6-diamidino-2-phenylindole (DAPI; Invitrogen, Waltham, MA, USA). Cell images were taken using a Nikon digital SLR camera (DS-i2) equipped with a Nikon eclipse Ti-U inverted microscope. Counting and measurement were performed using ImageJ software. The myotube cell diameter was determined as the average diameter of at least 250 myotube cells from 10 random fields selected in each condition.
통계분석statistical analysis
모든 인 비트로 및 인 비보 실험을 3회 반복하여 실시하고 결과를 평균 ± SEM (standard error mean)로 나타냈다. 각 실험에서 샘플 크기는 도면 설명에 나타냈다. 실험 그룹은 two-tailed Student’s t-test 및 analysis of variance (ANOVA)를 사용하여 비교하였다. 그래프 및 바 다이어그램은 GraphPad Prism software를 사용하여 작성하였다. <0.05의 P-수치는 통계학적으로 유의한 것으로 간주하였다 (*P ≤ 0.05 ***P ≤ 0.0001).All in vitro and in vivo experiments were repeated three times, and the results were expressed as mean±SEM (standard error mean). The sample size for each experiment is indicated in the figure description. Experimental groups were compared using two-tailed Student's t-test and analysis of variance (ANOVA). Graphs and bar diagrams were prepared using GraphPad Prism software. A P-value of <0.05 was considered statistically significant (*P ≤ 0.05 and ***P ≤ 0.0001).
실시예 4Example 4
인삼-유래 성분은 C2C12 근관세포의 비대 및 융합을 유도한다Ginseng-derived ingredients induce hypertrophy and fusion of C2C12 myotube cells
인삼-유래 성분이 근위축에 효과가 있다는 가설을 세우고 이 가설을 입증하기 위해, 다양한 인삼-유래 성분 (arginine-fructose-glucose (AFG), GT, 비-사포닌 추출물, 및 100 ng/ml의 전체 사포닌 추출물; 100 nM의 진세노사이드 Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3R, 및 Rg3R, 및 Rg3S와 같은 Rg3 이성질체)를 스크리닝하여 C2C12 근관세포에 대한 보호 효과를 확인하였다. C2C12 근원세포를 근관세포로 분화시킨 후 2일 동안 인삼-유래 성분을 처리하였다. 세포 비대 및 융합 지수를 각각 세포 지름을 측정하고 세포 당 핵의 수를 계수하여 각각 확인하였다. 근관세포 지름을 확인하기 위해, 10개 이상의 핵을 갖는 MHC-양성 근관세포를 10군데의 다른 장소에서 계수하고 평균 지름을 계산하였다. 인삼 성분에 의해 유도되는 세포 융합을 정량하기 위해 MHC-양성 근세포 당 핵의 수를 계수하여 융합 지수를 계산하였다(근관세포 당 단핵, 2 내지 5개 핵, 및 6개 이상의 핵). 진세노사이드 Rd, Rg2, Rg3R, 및 Rg3S와 같은 여러 진세노사이드는 세포 비대 및 융합을 유도하였다 (도 7a 내지 7c). 이는 진세노사이드 Rb1 및 Rg3이 근육 비대 및 근원세포 분화를 유도한다는 이전 연구와 일치하는 것이다. 흥미롭게도, 시험한 인삼 성분들 중에서 GT (100 ng/ml)가 가장 높은 수준의 C2C12 근관세포의 비대 및 융합을 보였다 (도 7a 내지 7c).To hypothesize that ginseng-derived ingredients have an effect on muscle atrophy and to substantiate this hypothesis, various ginseng-derived ingredients (arginine-fructose-glucose (AFG), GT, non-saponin extract, and 100 ng/ml total Saponin extract; 100 nM ginsenoside Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3R, and Rg3 isomers such as Rg3R, and Rg3S) were screened to confirm the protective effect on C2C12 myotube cells. . After differentiation of C2C12 myoblasts into myotubes, ginseng-derived components were treated for 2 days. Cell hypertrophy and fusion index were respectively confirmed by measuring the cell diameter and counting the number of nuclei per cell. To determine the diameter of myotubes, MHC-positive myotubes with more than 10 nuclei were counted at 10 different locations and the average diameter was calculated. To quantify cell fusion induced by the ginseng component, the fusion index was calculated by counting the number of nuclei per MHC-positive myocyte (monocytes, 2 to 5 nuclei, and 6 or more nuclei per myotube cell). Several ginsenosides, such as ginsenosides Rd, Rg2, Rg3R, and Rg3S, induced cell hypertrophy and fusion ( FIGS. 7A-7C ). This is consistent with previous studies that ginsenosides Rb1 and Rg3 induce muscle hypertrophy and myoblast differentiation. Interestingly, among the tested ginseng components, GT (100 ng/ml) showed the highest level of C2C12 myotube cell hypertrophy and fusion ( FIGS. 7A to 7C ).
GT는 C2C12 근관세포의 비대 및 융합을 유도한다GT induces hypertrophy and fusion of C2C12 myotube cells
GT가 다른 진세노사이드에 비해 더 우수한 근관세포의 비대 효과를 보이고 있으므로, GT가 근육 소모를 예방하는 효과가 있는지를 확인하였다. 우선, C2C12 세포 생존율에 대한 GT의 효과를 확인하였다. GT 처리는 DEX의 존재 유무에 상관없이 C2C12 근관세포에 대해 세포독성을 보이지 않았다 (도 8a). 근관세포에 대한 GT의 투여량-의존성 비대 효과를 확인하기 위해, C2C12 근관세포에 10 ng/mL 내지 10,000 ng/mL 범위의 GT를 처리하고 근원 분화 마커인 미오신 중쇄 (MHC)로 염색하였다. 근관세포 지름을 측정하기 위해, 10개 이상의 핵을 갖는 MHC-양성 근관세포를 10군데의 다른 위치에서 계수하고 지름 평균을 계산하였다. GT 처리는 대조에 비해 근관세포 지름을 약 2.5배 증가시켰다 (도 8b, 8c). GT는 대조에 비해 다중 핵(2 내지 5개 핵 및 6개 이상의 핵)을 포함하는 근관세포의 빈도가 상당히 증가하였다 (도 8b, 8d). 반면, 단일핵 근세포의 빈도는 GT 처리시 상당히 감소했으며(도 8b, 8d), 이는 GT가 근육 세포 융합을 유도하는 더 큰 근관세포의 형성을 시사하는 것이다.Since GT showed a better hypertrophic effect of myotube cells compared to other ginsenosides, it was confirmed whether GT had the effect of preventing muscle wasting. First, the effect of GT on C2C12 cell viability was confirmed. GT treatment showed no cytotoxicity to C2C12 myotube cells with or without DEX ( FIG. 8a ). To confirm the dose-dependent hypertrophic effect of GT on myotube cells, C2C12 myotube cells were treated with GT in the range of 10 ng/mL to 10,000 ng/mL and stained with myosin heavy chain (MHC), a marker of myogenic differentiation. To measure myotube cell diameter, MHC-positive myotube cells with more than 10 nuclei were counted at 10 different locations and the average diameter was calculated. GT treatment increased myotube cell diameter by about 2.5 times compared to the control ( FIGS. 8b and 8c ). GT significantly increased the frequency of myotube cells containing multiple nuclei (2-5 nuclei and 6 or more nuclei) compared to the control ( FIGS. 8b and 8d ). On the other hand, the frequency of mononuclear myocytes was significantly decreased upon GT treatment ( FIGS. 8b and 8d ), suggesting the formation of larger myotubes in which GT induces muscle cell fusion.
GT는 TNFα/IFNγ- 유도 근세포 위축으로부터 C2C12 근관세포를 보호한다GT protects C2C12 myotubes from TNFα/IFNγ-induced myoblast atrophy.
GT가 근육 세포 크기 및 융합 지수를 증가시키므로, GT가 암 악액질 조건에서 근육 세포를 보호할 수 있는지 여부를 확인하였다. 인 비트로에서 암 악액질을 모방하기 위해 분화된 C2C12 세포를 TNFα/IFNγ (TI)로 처리하고, 세포성 위축에서의 GT의 효과를 확인하였다. TI에 의해 감소된 근관세포 지름이 투여량-의존적으로 GT 처리에 의해 상당히 증가하였다 (도 8e, 8f). 게다가, 다중 핵을 갖는 근관세포의 빈도가 TI 단독 처리군에 비해 GT + TI 처리군에서 상당히 증가하였다 (도 8g, 8g). 종합하면, 이러한 결과는 GT가 TI- 유도 근육세포 위축으로부터 C2C12 근관세포를 보호함을 나타내는 것이다. As GT increases muscle cell size and fusion index, we investigated whether GT could protect muscle cells in cancer cachexia condition. To mimic cancer cachexia in vitro, differentiated C2C12 cells were treated with TNFα/IFNγ (TI), and the effect of GT on cellular atrophy was confirmed. The myotube cell diameter reduced by TI was significantly increased by GT treatment in a dose-dependent manner ( FIGS. 8e , 8f ). Moreover, the frequency of myotube cells with multiple nuclei was significantly increased in the GT + TI treatment group compared to the TI alone treatment group ( FIGS. 8g and 8g ). Taken together, these results indicate that GT protects C2C12 myotubes from TI-induced myocyte atrophy.
GT는 리소포스파티드산 수용체 (LPAR)를 통해 세포성 위축을 방지한다GT prevents cellular atrophy through the lysophosphatidic acid receptor (LPAR)
GT가 리소포스파티드산 수용체 (LPAR)를 활성화하고 LPAR을 통해 열 스트레스-유도 염증을 억제함이 보고되었다. 따라서, 근육 세포에서의 GT 의 효과가 LPAR와 연관이 있는지를 확인하였다. 우선, GT에 의해 C2C12 세포에서 LPAR (LPAR1, LPAR2, 및 LPAR3) 발현이 영향을 받는지를 RT-qPCR로 확인하였다. GT 처리에 의해 LPAR1 및 LPAR3의 발현이 둘 다 상당히 유도되었으나, LPAR2는 유도되지 않았다 (도 9a). 또한, LPAR가 기능적으로 GT와 관련되었는지를 LPAR 안타고니스트 Ki16425를 사용하여 확인하였다. 분화된 C2C12 근관세포를 Ki16425로 30분간 전처리한 후, GT를 처리하였다. 그런 다음, 근관세포의 지름 및 융합 지수를 확인하였다. GT에 의해 유도된 지름 및 융합 지수는 GT 및 Ki16425의 이중 처리로 상당히 감소하였으며 (도 9b-9d), 이는 GT가 LPAR을 통해 근육 세포 비대를 유도함을 제시한다. LPA/LPAR의 다운스트림 시그널링 단백질인 Gai2는 PI3K-AKT를 자극하여 세포 성장을 유도하고 E3 ubiquitin ligase atrogin-1의 감소를 통해 단백질 분해를 저해하여 근육 비대를 촉진함이 입증되었다. Gαi2 siRNA를 사용하여 GT의 비대 효과가 Gαi2와 관련되었는지를 실험하였다. 그 결과, Gαi2 siRNA에 의해 억제되는 C2C12 근관세포의 비대가 GT에 의해 유도되었다(도 9e-9g). 이러한 결과들은 LPAR/ Gαi2 경로를 통해 세포 위축을 GT가 방지함을 제시한다.It has been reported that GT activates the lysophosphatidic acid receptor (LPAR) and inhibits heat stress-induced inflammation through LPAR. Therefore, it was confirmed whether the effect of GT in muscle cells was related to LPAR. First, it was confirmed by RT-qPCR whether LPAR (LPAR1, LPAR2, and LPAR3) expression in C2C12 cells was affected by GT. The expression of both LPAR1 and LPAR3 was significantly induced by GT treatment, but LPAR2 was not induced ( FIG. 9A ). In addition, it was confirmed whether LPAR was functionally related to GT using the LPAR antagonist Ki16425. Differentiated C2C12 myotube cells were pretreated with Ki16425 for 30 minutes, and then treated with GT. Then, the diameter and fusion index of myotube cells were confirmed. Diameter and fusion indices induced by GT were significantly reduced with dual treatment of GT and Ki16425 ( FIGS. 9b-9d ), suggesting that GT induces muscle cell hypertrophy through LPAR. It has been demonstrated that Gai2, a signaling protein downstream of LPA/LPAR, stimulates PI3K-AKT to induce cell growth and promotes muscle hypertrophy by inhibiting proteolysis through reduction of E3 ubiquitin ligase atrogin-1. Using Gαi2 siRNA, it was tested whether the hypertrophic effect of GT was related to Gαi2. As a result, hypertrophy of C2C12 myotube cells inhibited by Gαi2 siRNA was induced by GT ( FIGS. 9E-9G ). These results suggest that GT prevents cell atrophy through the LPAR/Gαi2 pathway.
GT는 C2C12 세포에서 산화 스트레스를 방지한다GT Prevents Oxidative Stress in C2C12 Cells
암 악액질의 일반적인 메커니즘이고 GT가 염증 반응을 감소시킴이 입증되었으므로, GT가 산화 스트레스 또는 염증을 감소시켜, C2C12 근원세포를 TNFα에 의해 야기되는 산화 손상으로부터 보호한다는 가설을 세웠다. 이 가설을 입증하기 위해, C2C12 세포에서의 총 ROS 수준을 TNFα의 존재 및 비존재 하에서 2’,7’-dichlorofluorescein diacetate (DCFDA)을 사용하여 측정하였다. 그 결과 예상한 바와 같이, TNFα는 부형제에 비해 높은 수준의 ROS를 유도하였다 (도 10a, 10b). 흥미롭게도, TNFα에 의해 누적된 ROS 수준은 GT 또는 공지된 ROS 스캐빈저인 N-acetylcysteine (NAC)에 의해 상당히 감소하였다 (도 10a, 10b). 높은 수준의 ROS는 미토콘드리아 막 전위 (ΔΨm)를 감소시킨다고 알려져 있으므로, GT가 미토콘드리아 막 전위를 구제할 수 있는지를 MitoProbe DilC1(5)검정 키트를 사용하여 확인하였다. TNFα는 C2C12 근원세포에서 ΔΨm 붕괴를 유도하는 것으로 관찰되었다; 그러나, 이러한 현상은 GT 첨가에 의해 회복되었다 (도 10c, 10d). 따라서, GT가 ROS 수준을 감소시키는 메커니즘을 확인하기 위해, 독립적인 두 가지 방법을 사용하였다: 라디칼 소거 검정 및 GT에 의한 염증-관련 유전자 조절. 우선, GT의 라디칼 소거능을 히드록실 라디칼 소거 검정으로 확인하였다. H2O2로부터 생성된 히드록실 라디칼은 GT의 첨가에 의해 투여량-의존적으로 감소하였다. 흥미롭게도, 1 ng/ml GT는 잘 알려진 스캐빈저인 아스코르브산 (125 ng/ml)에 비해 현저한 소거 효과를 보였다(도 10e). 둘째로, TNFα에 의해 유도되는 NOX2 및 IL-6과 같은 염증-관련 유전자는 ROS 생산에 관련되어 있다고 알려져 있다. TNFα는 IL-6 및 NOX-2을 발현을 유도하나, 이는 GT에 의해 상당히 감소하였다 (도 10f, 10g). 이러한 결과들은 GT가 ROS 소거능 및 염증-관련 유전자 감소를 통해 세포 위축을 방지함을 제시한다. As it has been demonstrated that GT is a common mechanism of cancer cachexia and reduces the inflammatory response, we hypothesized that GT reduces oxidative stress or inflammation, thereby protecting C2C12 myoblasts from oxidative damage caused by TNFα. To substantiate this hypothesis, total ROS levels in C2C12 cells were measured using 2',7'-dichlorofluorescein diacetate (DCFDA) in the presence and absence of TNFα. As expected, TNFα induced a higher level of ROS compared to the excipient ( FIGS. 10a and 10b ). Interestingly, the accumulated ROS levels by TNFα were significantly reduced by GT or the known ROS scavenger, N-acetylcysteine (NAC) ( FIGS. 10a , 10b ). Since it is known that high levels of ROS reduce mitochondrial membrane potential (ΔΨm), it was confirmed using the MitoProbe DilC 1 (5) assay kit whether GT can rescue mitochondrial membrane potential. TNFα was observed to induce ΔΨm disruption in C2C12 myoblasts; However, this phenomenon was restored by the addition of GT (Figs. 10c, 10d). Therefore, to identify the mechanism by which GT reduces ROS levels, two independent methods were used: a radical scavenging assay and inflammation-related gene regulation by GT. First, the radical scavenging ability of GT was confirmed by a hydroxyl radical scavenging assay. The hydroxyl radicals generated from H 2 O 2 were dose-dependently decreased by the addition of GT. Interestingly, 1 ng/ml GT showed a significant scavenging effect compared to ascorbic acid (125 ng/ml), a well-known scavenger (Fig. 10e). Second, inflammation-related genes such as NOX2 and IL-6 induced by TNFα are known to be involved in ROS production. TNFα induced the expression of IL-6 and NOX-2, which was significantly reduced by GT ( FIGS. 10f , 10g ). These results suggest that GT prevents cell atrophy through ROS scavenging and reduction of inflammation-related genes.
GEF(GT-enriched fraction)는 인 비보에서 루이스 폐 암종(LLC1)-유도 암 악액질을 방지한다GT-enriched fraction (GEF) prevents Lewis lung carcinoma (LLC1)-induced cancer cachexia in vivo
인 비보에서 암 악액질에서의 GT의 효과를 확인하기 위해, LLC1-유도 악액질 마우스 모델을 사용하였다. 인 비보 연구에는 에탄올 및 물을 이용하여 인삼으로부터 대량 생산된 GEF를 사용하였다. 근육 소모에 대한 GEF의 효과를 확인하기 위해, LLC1 세포를 C57BL6 마우스의 옆구리에 피하 주입하였다. 그런 다음, 암 이식 후 6일째부터 GEF를 15일간 매일 경구 투여하였다. 처리 기간 동안 2일마다 악력을 측정하였다(도 11a). LLC1-유도 악액질 모델은 야생형 대조 마우스에 비해 무종양 체중의 명백한 감소 및 근육량의 상당한 손실을 나타내도록 잘 설정되었다 (도 11b-11e). GEF-처리 마우스 및 PBS-처리 마우스 에서 유사한 종양 크기를 갖는 것으로 확인되어 GEF는 항-종양 효과를 보이지는 않았다(도 11b). 그러나, GEF는 무종양 체중, 근육량, 악력 및 매달리는 시간과 같은 암 악액질의 여러 특성을 명백하게 개선시켰다 (도 11c-11h). PBS-처리 마우스 (LLC1+PBS)는 건강한 마우스 대조군에 비해 9.51%의 무종양 체중 감소를 보인 반면, GEF-처리 마우스 (LLC+ GEF)의 무종양 체중은 상당히 회복되었다 (도 11c). 비장근 (SOL), 장지신근 (EDL), 비복근 (GAS), 및 전경골 (TA)의 무게는 건강한 대조 마우스에 비해 PBS-처리 마우스에서 감소하였으나, GEF 처리 마우스에서는 이들의 무게가 회복되었다 (도 11d, 11e). 심장, 폐, 및 비장과 같은 기관 무게는 GEF 처리에 영향을 받지 않았다(도 11f). 처리 기간(9일 내지 21일) 동안 감소된 악력은 건강한 대조 마우스에 비해 GEF 처리에 의해 부분적으로 회복되었다 (도 11g). 일관되게, LLC1에 의해 유도된 매달리는 실험에서의 낮은 수준은 GEF 처리에 의해 건강한 마우스와 유사한 수준으로 회복되다 (도 11h). 분자 수준에서 근육 위축에 대한 GEF의 보호 효과를 이해하기 위해서, 헤마톡실린 및 에오신 (H&E) 염색을 실시하였다. GEF 처리군의 단면적(CSA)의 평균은 PBS 처리군에 비해 1.8배 더 높았다(도 11i, 11j). PBS-처리군은 더 작은 크기의 CSA 분포를 가지나, GEF-처리군은 더 큰 크기의 CSA를 보였으며, 이는 건강한 마우스에서 관찰된 크기와 유사한 수준이다. GEF의 가능한 항-악액질 메커니즘을 추가 연구하기 위해, GA 근육에서 미오스타틴, MuRF-1 및 아트로진-1과 같은 여러 근육 위축-관련 시그널링 경로의 수준을 웨스턴 블롯으로 확인하였다. 미오스타틴, MuRF-1 및 아트로진-1의 수준은 건강한 마우스에 비해 PBS-처리 마우스에서 상당히 증가하였으나, 이는 GEF 처리에 의해 부분적으로 회복되었다(도 11l, 11m). 이러한 결과들은 GEF가 인 비보에서 LLC1-유도 근육 위축을 방지함을 제시한다. To confirm the effect of GT in cancer cachexia in vivo, an LLC1-induced cachexia mouse model was used. In the in vivo study, GEF mass-produced from ginseng using ethanol and water was used. To confirm the effect of GEF on muscle wasting, LLC1 cells were injected subcutaneously into the flank of C57BL6 mice. Then, from the 6th day after cancer transplantation, GEF was orally administered daily for 15 days. Grip strength was measured every 2 days during the treatment period ( FIG. 11A ). The LLC1-induced cachexia model was well established to show a significant loss of muscle mass and an apparent reduction in tumor-free body weight compared to wild-type control mice (Figs. 11b-11e). GEF-treated mice and PBS-treated mice were found to have similar tumor sizes, so GEF did not show an anti-tumor effect (Fig. 11b). However, GEF clearly improved several characteristics of cancer cachexia, such as tumor-free body weight, muscle mass, grip strength, and hang time ( FIGS. 11C-11H ). PBS-treated mice (LLC1+PBS) showed a tumor-free weight loss of 9.51% compared to healthy mice control, whereas tumor-free body weights of GEF-treated mice (LLC+GEF) recovered significantly ( FIG. 11C ). The weights of the splenic muscle (SOL), extensor longus (EDL), gastrocnemius (GAS), and tibialis anterior (TA) were decreased in PBS-treated mice compared to healthy control mice, but their weights were restored in GEF-treated mice (Fig. 11d, 11e). Organ weights such as heart, lung, and spleen were not affected by GEF treatment ( FIG. 11F ). The reduced grip strength during the treatment period (days 9-21) was partially restored by GEF treatment compared to healthy control mice ( FIG. 11G ). Consistently, the low levels in the hanging experiments induced by LLC1 were restored to similar levels in healthy mice by GEF treatment ( FIG. 11H ). To understand the protective effect of GEF on muscle atrophy at the molecular level, hematoxylin and eosin (H&E) staining was performed. The mean of the cross-sectional area (CSA) of the GEF-treated group was 1.8 times higher than that of the PBS-treated group ( FIGS. 11i and 11j ). The PBS-treated group had a smaller distribution of CSA, but the GEF-treated group showed a larger CSA, which is similar to that observed in healthy mice. To further study the possible anti-cachexia mechanism of GEF, the levels of several muscle atrophy-related signaling pathways such as myostatin, MuRF-1 and atrozin-1 in GA muscle were confirmed by Western blot. The levels of myostatin, MuRF-1 and atrozin-1 were significantly increased in PBS-treated mice compared to healthy mice, but this was partially restored by GEF treatment ( FIGS. 11L , 11M ). These results suggest that GEF prevents LLC1-induced muscle atrophy in vivo.
GT는 일차 정상 인간 골격 근원세포 (HSkM)의 위축을 보호한다GT Protects Atrophy of Primary Normal Human Skeletal Myoblasts (HSkM)
GT가 인 비트로 및 인 비보 둘 다에서 마우스 시스템에서의 근육 세포 위축을 보호하므로, GT가 인간 세포에서도 분명한 보호 효과를 보이는지를 확인하기 위해, HSkM을 사용하여 인간 근육 세포 위축에서 GT의 효과를 분석하였다. HSkM 세포를 2% 말 혈청과 함께 저 글루코스 DMEM 내에서 7일간 분화시키고, TNFα의 존재 또는 부재 하에서 3일간 GT를 처리하였다. 그런 다음, 근관세포의 지름 및 융합 지수를 확인하였다(도 12a, 12b). GT-처리 HSkM 근관세포는 대조 근관세포에 비해 상당히 더 큰 지름을 보였다(도 12a, 12b). 또한, 5개 이상의 핵을 갖는 세포의 빈도가 대조군에 비해 GT-처리군에서 훨씬 더 높았다 (도 12cC). 일관되게, TNFα -유도 위축 모델에서도, GT가 세포 지름 및 5개 이상의 핵을 갖는 세포의 빈도 둘 다를 증가시킴이 관찰되었다 (도 12a-12c). 이러한 결과들은 GT가 마우스 및 인간 근육 세포 둘 다에서 위축을 방지하여 암 악액질의 유망한 후보치료제가 될 수 있음을 제시한다. As GT protects muscle cell atrophy in mouse systems both in vitro and in vivo, to confirm that GT also has a clear protective effect in human cells, we used HSkM to analyze the effect of GT on human muscle cell atrophy. did. HSkM cells were differentiated for 7 days in low glucose DMEM with 2% horse serum and treated with GT for 3 days in the presence or absence of TNFα. Then, the diameter and fusion index of myotube cells were confirmed ( FIGS. 12a and 12b ). GT-treated HSkM myotubes showed significantly larger diameters than control myotubes ( FIGS. 12a and 12b ). In addition, the frequency of cells with 5 or more nuclei was much higher in the GT-treated group compared to the control group (Fig. 12cC). Consistently, even in the TNFα-induced atrophy model, it was observed that GT increased both cell diameter and the frequency of cells with 5 or more nuclei ( FIGS. 12A-12C ). These results suggest that GT may prevent atrophy in both mouse and human muscle cells, making it a promising candidate treatment for cancer cachexia.
결론conclusion
본 발명에서는, 인삼 유래 성분인 GT가 인 비트로 및 인 비보에서 골격근 항-위축 효과를 가짐을 발견하였다. GT는 인 비트로 마우스 C2C12 및 인간 HSkM 근관세포 둘 다에서 TNFα/IFNγ-유도 근육 위축을 방지하였다. 또한, 암 악액질 마우스 모델에서, GT가 무종양 체중 및 악력을 유지시키고, GA, SOL, TA, 및 EDL를 비롯한 근육량을 증가시켰다. 그러나, GT는 사용된 투여량에서는 명백한 항-종양 효과를 보이지는 았았으며, 이는 GT의 항-악액질 효과가 골격근 항-위축과 관련되지만, 종양 크기를 줄이지는 않음을 제시한다. In the present invention, it was found that GT, a component derived from ginseng, has an anti-atrophic effect on skeletal muscle both in vitro and in vivo. GT prevented TNFα/IFNγ-induced muscle atrophy in both mouse C2C12 and human HSkM myotubes in vitro. Furthermore, in a cancer cachexia mouse model, GT maintained tumor-free body weight and grip strength, and increased muscle mass including GA, SOL, TA, and EDL. However, GT did not show a clear anti-tumor effect at the doses used, suggesting that the anti-cachexia effect of GT is associated with skeletal muscle anti-atrophy but does not reduce tumor size.
GT 처리로 인해 LPAR1 및 LPAR3 둘 다의 발현이 유도되었다. GT의 활성은 LPAR/Gαi2 시그널링 경로에 의존하며, 이는 LPAR 안타고니스트인 Ki16425 및 siGαi2 둘 다 C2C12 근관세포에서의 GT의 효과를 폐지시키는 것에 의해 입증되었다. 일관되게, Gαi2의 항-위축 효과는 Gαi2가 murf-1 및 아트로진1-매개 위축으로의 평행추로서 작용하여 TNFα-유도 위축 효과를 저해함을 나타내는 것으로 보고되었었다. 따라서, 본 발명에서는 GT LPAR/ Gαi2 시그널링 경로의 활성화를 통해 근육 위축을 방지함을 제안하였다.GT treatment induced expression of both LPAR1 and LPAR3. The activity of GT is dependent on the LPAR/Gαi2 signaling pathway, as evidenced by the abolition of the effect of GT in C2C12 myotubes, both LPAR antagonists Ki16425 and siGαi2. Consistently, the anti-atrophic effect of Gαi2 has been reported, indicating that Gαi2 acts as a parallelogram to murf-1 and atrogine1-mediated atrophy, thereby inhibiting the TNFα-induced atrophic effect. Therefore, in the present invention, it was proposed to prevent muscle atrophy through activation of the GT LPAR/Gαi2 signaling pathway.
본 발명에서는 GT가 ROS의 직접 소거 및 IL6 및 NOX2와 같은 염증-관련 유전자의 감소에 의해 항산화 효과를 나타냄을 확인하였다. 따라서, GT는 근육 및 신경계를 비롯한 많은 유형의 조직에서 염증 반응을 감소시키는 것으로 보여진다. 이전에 본 발명의 발명자들은 GEF 투여가 인지 장애가 있는 노인에게 안정하고 용인되며, 소규모 임상실험에서 참가자의 인제에 가능성 있는 유효한 효과를 보임을 확인하였다. 따라서, 본 발명은 GEF가 암 악액질-관련 시그널링 및 염증 반응을 방지하거나 완화시키는 좋은 치료제 후보이고, 근육 소모를 개선시키기 위해 임상 실험할 수 있음을 제안하였다.In the present invention, it was confirmed that GT exhibits antioxidant effects by direct elimination of ROS and reduction of inflammation-related genes such as IL6 and NOX2. Thus, GT has been shown to reduce the inflammatory response in many types of tissue, including muscle and nervous system. Previously, the inventors of the present invention confirmed that GEF administration was stable and tolerated by the elderly with cognitive impairment, and showed a possible effective effect on participants' ingestion in a small clinical trial. Therefore, the present invention suggested that GEF is a good therapeutic candidate for preventing or alleviating cancer cachexia-related signaling and inflammatory response, and can be clinically tested to improve muscle wasting.
요약하면, 본 발명은 신규한 인삼 성분인 GT가 마우스 및 인간 근관세포에서 비대 및 융합을 유도함을 발견하였다. GT는 또한 마우스 모델에서 LPAR 및 Gαi2를 통해 LLC1-유도 근육 소모를 보호하고 완화시킬 수 있다(도 13). 따라서, 본 발명은 GT가 생리학 및 병리학적 조건 둘 다에서 골격근 위축을 치료할 수 있는 유망한 치료 후보제일 수 있음을 제안한다.In summary, the present invention found that GT, a novel ginseng component, induces hypertrophy and fusion in mouse and human myotube cells. GT can also protect and alleviate LLC1-induced muscle wasting through LPAR and Gαi2 in a mouse model ( FIG. 13 ). Therefore, the present invention proposes that GT may be a promising therapeutic candidate for treating skeletal muscle atrophy in both physiological and pathological conditions.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, with respect to the present invention, the preferred embodiments have been looked at. Those of ordinary skill in the art to which the present invention pertains will understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments are to be considered in an illustrative rather than a restrictive sense. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the scope equivalent thereto should be construed as being included in the present invention.

Claims (8)

  1. 인삼 유래 진토닌 함유 추출물, 이의 분획물 또는 진토닌을 유효성분으로 포함하는, 근위축 또는 악액질의 예방 또는 치료용 약학적 조성물.A pharmaceutical composition for the prevention or treatment of muscular atrophy or cachexia, comprising an extract containing ginseng-derived gintonin, a fraction thereof, or gintonin as an active ingredient.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 근위축은 불용성 근위축(disuse atrophy of muscles), 기계적 자극 부재 및 골격근의 탈신경지배(denervation), 악액질(cachexia), 약물 유인성 근위축(Drug induced muscle atrophy), 영양실조성 근위축(Malnutrition induced muscle atrophy), 근이영양증(muscular dystrophy) 및 근육감소증(Sarcopenia)으로 이루어진 군으로부터 선택된 것인, 근위축 또는 악액질의 예방 또는 치료용 약학적 조성물.The muscle atrophy is insoluble muscle atrophy (disuse atrophy of muscles), lack of mechanical stimulation and denervation of skeletal muscle, cachexia, drug induced muscle atrophy, malnutrition Induced muscle atrophy), muscular dystrophy (muscular dystrophy) and sarcopenia (Sarcopenia) will be selected from the group consisting of, the prevention or treatment of muscle atrophy or cachexia pharmaceutical composition.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 인삼 유래 진토닌 함유 추출물은 물 또는 유기용매에 의해 추출된 것인, 근위축 또는 악액질의 예방 또는 치료용 약학적 조성물.The ginseng-derived gintonin-containing extract is a pharmaceutical composition for the prevention or treatment of muscular atrophy or cachexia, which is extracted by water or an organic solvent.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 분획물은 인삼 유래 진토닌 함유 알코올 추출물을 물, 알코올, 클로로포름, 에틸아세테이트, 헥산 또는 이들의 조합을 사용하여 분획하여 수득한 것인, 근위축 또는 악액질의 예방 또는 치료용 약학적 조성물.The fraction is a ginseng-derived gintonin-containing alcohol extract obtained by fractionation using water, alcohol, chloroform, ethyl acetate, hexane or a combination thereof, a pharmaceutical composition for the prevention or treatment of muscular atrophy or cachexia.
  5. 제 2 항에 있어서,3. The method of claim 2,
    상기 약물 유인성 근위축은 글루코코르티코이드 또는 덱사메타손에 의해 유도된 것인, 근위축 또는 악액질의 예방 또는 치료용 약학적 조성물.The drug-induced muscular atrophy is induced by glucocorticoids or dexamethasone, a pharmaceutical composition for the prevention or treatment of muscular atrophy or cachexia.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 진토닌 함유 추출물, 이의 분획물 또는 진토닌은 리소포스파티드산 수용체 (lysophosphatidic acid receptor; LPAR)를 활성화시키는 것인, 근위축 또는 악액질의 예방 또는 치료용 약학적 조성물.The gintonin-containing extract, its fraction or gintonin is to activate the lysophosphatidic acid receptor (LPAR), a pharmaceutical composition for the prevention or treatment of muscular atrophy or cachexia.
  7. 인삼 유래 진토닌 함유 추출물, 이의 분획물 또는 진토닌을 유효성분으로 포함하는, 근위축 또는 악액질의 예방 또는 개선용 건강기능식품.A health functional food for preventing or improving muscular atrophy or cachexia, comprising an extract containing ginseng-derived gintonin, a fraction thereof, or gintonin as an active ingredient.
  8. 제 1 항 내지 제 6 항 중 어느 한 항의 조성물을 인간을 제외한 개체에게 투여하는 것을 포함하는 근위축 또는 악액질의 예방 또는 치료방법.A method for preventing or treating muscular atrophy or cachexia comprising administering the composition of any one of claims 1 to 6 to a subject other than a human.
PCT/KR2022/002120 2021-02-16 2022-02-11 Pharmaceutical composition for preventing or treating muscular atrophy or cachexia, comprising gintonin WO2022177236A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210020523 2021-02-16
KR10-2021-0020523 2021-02-16

Publications (1)

Publication Number Publication Date
WO2022177236A1 true WO2022177236A1 (en) 2022-08-25

Family

ID=82931485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002120 WO2022177236A1 (en) 2021-02-16 2022-02-11 Pharmaceutical composition for preventing or treating muscular atrophy or cachexia, comprising gintonin

Country Status (2)

Country Link
KR (1) KR20220117115A (en)
WO (1) WO2022177236A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117982555A (en) * 2024-04-03 2024-05-07 广东医科大学附属医院 Application of salvia miltiorrhiza-derived exosome nano vesicles in preparation of GC-resistant myopathy medicines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170034549A (en) * 2015-09-21 2017-03-29 (주)진토닌케이유 Composition containing gintonin for enhancing physical performance and endurance
KR20200034149A (en) * 2018-09-21 2020-03-31 건국대학교 산학협력단 Composition for preventing or treating brain damage comprising gintonin

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101584722B1 (en) 2011-09-19 2016-01-13 건국대학교 산학협력단 Use of a ginseng gintonin as herbal medicine-derived ligand

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170034549A (en) * 2015-09-21 2017-03-29 (주)진토닌케이유 Composition containing gintonin for enhancing physical performance and endurance
KR20200034149A (en) * 2018-09-21 2020-03-31 건국대학교 산학협력단 Composition for preventing or treating brain damage comprising gintonin

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEI SUNGWOO, SONG JI-HYEON, OH HYUN-JI, LEE KIPPEUM, JIN HEEGU, CHOI SUN-HYE, NAH SEUNG-YEOL, LEE BOO-YONG: "Gintonin-Enriched Fraction Suppresses Heat Stress-Induced Inflammation through LPA Receptor", MOLECULES, vol. 25, no. 5, pages 1019, XP055960345, DOI: 10.3390/molecules25051019 *
OH HYUN-JI, JIN HEEGU, NAH SEUNG-YEOL, LEE BOO-YONG: "Gintonin-enriched fraction improves sarcopenia by maintaining immune homeostasis in 20- to 24-month-old C57BL/6J mice", JOURNAL OF GINSENG RESEARCH, GO'RYEO INSAM HAGHOE, SEOUL,, KR, vol. 45, no. 6, 1 November 2021 (2021-11-01), KR , pages 744 - 753, XP055960365, ISSN: 1226-8453, DOI: 10.1016/j.jgr.2021.07.006 *
WIJAYA YOSEPH TONI, SETIAWAN TANIA, SARI ITA NOVITA, NAH SEUNG-YEOL, KWON HYOG YOUNG: "Amelioration of muscle wasting by gintonin in cancer cachexia", NEOPLASIA, NEOPLASIA PRESS, US, vol. 23, no. 12, 1 December 2021 (2021-12-01), US , pages 1307 - 1317, XP055960371, ISSN: 1476-5586, DOI: 10.1016/j.neo.2021.11.008 *
WIJAYA, Y. T. ET AL.: "Gintonin prevents dexamethasone-induced skeletal muscle atrophy via lysophosphatidic acid receptor.", AUTUMN GINSENG CONFERENCE 2020). 19-21 OCTOBER 2020, vol. 2020, 19 October 2020 (2020-10-19) - 21 October 2020 (2020-10-21), Korea, pages P-02 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117982555A (en) * 2024-04-03 2024-05-07 广东医科大学附属医院 Application of salvia miltiorrhiza-derived exosome nano vesicles in preparation of GC-resistant myopathy medicines

Also Published As

Publication number Publication date
KR20220117115A (en) 2022-08-23

Similar Documents

Publication Publication Date Title
KR102459500B1 (en) Muscle atrophy inhibitor containing quercetin glycoside
Fang et al. Baicalin against obesity and insulin resistance through activation of AKT/AS160/GLUT4 pathway
Na et al. Protective effect of isoliquiritigenin against ethanol-induced hepatic steatosis by regulating the SIRT1-AMPK pathway
Rafe et al. Preventive role of resveratrol against inflammatory cytokines and related diseases
Ma et al. Regulatory effects of the fruit extract of Lycium chinense and its active compound, betaine, on muscle differentiation and mitochondrial biogenesis in C2C12 cells
WO2018070854A2 (en) Composition for preventing or treating hepatitis containing monoacetyl diacylglycerol compound
RU2730853C2 (en) Compositions and methods for improved muscular metabolism
KR20190098649A (en) Pharmaceutical composition containing cannabidiol extract for preventing or treating conlon cancer
WO2021223346A1 (en) Application of yam protein extract in preparation of medication for treating erectile dysfunction
WO2022177236A1 (en) Pharmaceutical composition for preventing or treating muscular atrophy or cachexia, comprising gintonin
El-Ela et al. Promising cardioprotective effect of baicalin in doxorubicin-induced cardiotoxicity through targeting toll-like receptor 4/nuclear factor-κB and Wnt/β-catenin pathways
Feng et al. Luhong Formula and Hydroxysafflor yellow A protect cardiomyocytes by inhibiting autophagy
Zhou et al. Quercetin serves as the major component of Xiang-lian Pill to ameliorate ulcerative colitis via tipping the balance of STAT1/PPARγ and dictating the alternative activation of macrophage
WO2011008052A2 (en) Composition for the prevention or treatment of bone diseases comprising colforsin daropate
WO2020166779A1 (en) Composition for fat formation inhibition and body fat reduction, containing hydrangenol as active ingredient
WO2018080276A1 (en) Pharmaceutical composition for preventing or treating ischemia-reperfusion injury, containing bile acid
WO2019027244A2 (en) Composition for improving prevention and treatment of fatty liver containing amomum vilosum extract.
WO2012074184A1 (en) Pharmaceutical composition for preventing or treating obesity comprising sphingosine-1-phosphate or a pharmaceutically acceptable salt thereof as an active ingredient
KR20190113272A (en) Composition for treating, alleviating or preventing non-alcoholic fatty liver disease comprising rosa rugosa thunb extract
Hagihara et al. Gosha-jinki-Gan (GJG) shows anti-aging effects through suppression of TNF-α production by Chikusetsusaponin V
Zhu et al. Luteoloside ameliorates palmitic acid-induced in vitro model of non-alcoholic fatty liver disease via activating STAT3-triggered hepatocyte regeneration
KR101448116B1 (en) Composition comprising DDMP group soyasaponin for preventing or treating obesity or lipid related metabolic disease
KR20140039809A (en) Composition comprising soyasaponin aa for preventing or treating obesity or lipid related metabolic disease
WO2021075818A1 (en) Antarctic lichen umbilicaria antarctica extract having anti-inflammatory activity, and composition containing same
WO2024080420A1 (en) Composition for preventing and treating liver cancer containing ginsenoside rh2 and ginsenoside rg5 as active ingredients

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756435

Country of ref document: EP

Kind code of ref document: A1