WO2022176980A1 - Cell production method - Google Patents

Cell production method Download PDF

Info

Publication number
WO2022176980A1
WO2022176980A1 PCT/JP2022/006663 JP2022006663W WO2022176980A1 WO 2022176980 A1 WO2022176980 A1 WO 2022176980A1 JP 2022006663 W JP2022006663 W JP 2022006663W WO 2022176980 A1 WO2022176980 A1 WO 2022176980A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
container
cell
culture
square
Prior art date
Application number
PCT/JP2022/006663
Other languages
French (fr)
Japanese (ja)
Inventor
一成 南
和磨 庄司
Original Assignee
株式会社マイオリッジ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マイオリッジ filed Critical 株式会社マイオリッジ
Publication of WO2022176980A1 publication Critical patent/WO2022176980A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to, for example, cell production methods, culture vessels, culture apparatuses, enzyme treatment methods, and the like.
  • FIG. 1 of Patent Document 1 describes a cell culture apparatus equipped with stirring blades for stirring a culture solution.
  • FIG. 1 of Patent Document 2 describes a double circular dish having an annular flow path, and Example 1 describes that cells were cultured by spinning using the dish.
  • Patent Document 1 uses stirring blades for culture, cell damage is likely to occur due to physical collision between the cells and the stirring blades.
  • Patent Document 2 since the container has a ring shape, there is a dead space in the center. Therefore, the culture capacity was limited.
  • the purpose of the present invention is, for example, to provide an excellent method for producing cells.
  • a cell production method comprising the step of horizontally rotating a container containing cells and a culture medium, the container having a square bottom shape. According to this production method, excellent cell culture can be performed.
  • a cell culture device comprising a medium containing section and a rotating section for horizontally rotating the medium containing section, wherein the medium containing section has a square bottom shape.
  • a cell culture device is provided. Excellent cell culture can be performed using this device.
  • a horizontal rotating cell culture vessel comprising a bottom surface, a top surface and a side surface, the bottom surface having a square shape and the top surface having 1 to 4 openings.
  • a rotating cell culture vessel is provided. Excellent cell culture can be performed using this vessel.
  • a method for enzymatic treatment of cells which includes the step of horizontally rotating a container containing cells and an enzyme solution, and the bottom shape of the container is square. According to this treatment method, an excellent enzymatic treatment can be performed.
  • an apparatus for treating cells with enzymes which includes a medium container and a rotation unit that horizontally rotates the medium container, and the medium container has a square bottom surface.
  • a cellular enzymatic treatment device is provided. Excellent enzymatic treatments can be performed with this device.
  • a horizontal rotating cell enzymatic treatment vessel comprising a bottom surface, a top surface and a side surface, the bottom surface having a square shape and the top surface having 1 to 4 openings, A horizontal rotating cell enzymatic treatment vessel is provided. Excellent cell culture can be performed using this vessel.
  • FIG. 1 is a bar graph showing the proliferation rate of iPS cells per unit area in each vessel and swirling conditions shown in Examples.
  • FIG. 2 is a bar graph showing the total iPS cell yield in each container and swirling conditions shown in Examples.
  • FIG. 3 is a bar graph showing the results of comparison of cardiomyocyte differentiation potential of iPS cells cultured with 50 rpm rotation shown in Examples.
  • FIG. 4 is a photograph of beads with adhered mesenchymal stem cells shown in Examples.
  • FIG. 5 is a diagram showing the distribution of beads to which mesenchymal stem cells are adhered when a 15-cm-diameter circular container shown in Examples is subjected to swirling culture.
  • FIG. 1 is a bar graph showing the proliferation rate of iPS cells per unit area in each vessel and swirling conditions shown in Examples.
  • FIG. 2 is a bar graph showing the total iPS cell yield in each container and swirling conditions shown in Examples.
  • FIG. 3 is a bar graph showing the results of comparison of cardio
  • FIG. 6 is a diagram showing the distribution of beads to which mesenchymal stem cells are adhered when a square container with a side of 22 cm is subjected to swirling culture as shown in the example.
  • FIG. 7 is a photograph of floating iPS cell clusters produced by swirl culture in a circular container with a diameter of 15 cm shown in the example.
  • FIG. 8 is a photograph of floating iPS cell clusters produced by swirling the 22 cm square container shown in the example.
  • FIG. 9 is a bar graph showing the proliferation rate of mesenchymal stem cells per unit area in each vessel shown in Examples and under 50 rpm turning conditions.
  • FIG. 10 is a bar graph showing the total mesenchymal stem cell yield in each vessel shown in Examples and under the condition of 50 rpm.
  • FIG. 7 is a photograph of floating iPS cell clusters produced by swirl culture in a circular container with a diameter of 15 cm shown in the example.
  • FIG. 8 is a photograph of floating iPS cell clusters produced by swirl
  • FIG. 11 is a bar graph showing the survival rate of mesenchymal stem cells in each container condition when performing the swirling enzyme treatment shown in Examples.
  • FIG. 12 is a bar graph showing the number of mesenchymal stem cells per volume of enzyme solution under each container condition when the swirling enzyme treatment shown in the Examples is performed.
  • FIG. 13 is a diagram of the first container of one embodiment.
  • FIG. 14 is a front view etc. of the first container of one embodiment.
  • FIG. 15 is a front view etc. of the first container of the embodiment with the screw cap removed.
  • FIG. 16 is a diagram of four stacked first containers of one embodiment.
  • FIG. 17 is a front view of a state in which four first containers of one embodiment are stacked.
  • FIG. 18 is an image photograph of a state in which four first containers of one embodiment are stacked.
  • FIG. 19 is an illustration of a second container according to one embodiment.
  • FIG. 20 is a diagram of two stacked second containers of one embodiment.
  • One embodiment of the present invention is a novel cell production method.
  • This production method includes, for example, a cell production method including a step of horizontally rotating a container containing cells and a culture medium, and the container having a square bottom shape.
  • a cell production method including a step of horizontally rotating a container containing cells and a culture medium, and the container having a square bottom shape.
  • this production method for example, from the viewpoint of at least one of an improvement in cell growth rate, an improvement in the number of cells after culture, an improvement in cell dispersion, uniformity in cell shape, uniformity in cell size, or reduction in shear stress, Excellent cell culture can be achieved.
  • the cell culture method using the square dish of the example is superior to the cell culture method using the round dish in at least one of these effects.
  • iPS cells and MSCs are vulnerable to shear stress, so it is preferable to rotate at a low speed during culture. I have too many problems.
  • the cells can be kept in a state in which it is difficult for the cells to gather at the center (that is, they are dispersed) even when the cells are rotated at a low speed, which causes less shear stress on the cells.
  • it was also found that, in the case of low-speed rotation, it is preferable to lower the liquid level of the culture medium, and furthermore, it is preferable to set the height of the container low from the viewpoint of large-scale culture.
  • the method for producing cells includes, for example, supplying a medium to a container, adjusting a cell suspension containing cells and a medium, supplying a cell suspension to a container, It may include a step of sealing, a step of placing the container on a rotating device, a step of rotating the container, a step of rotating and rocking culturing the cells, a step of suspension culturing the cells, or a step of collecting the cells from the container.
  • the method for producing cells includes, for example, a step of replacing the medium in the container with an enzyme (e.g., proteolytic enzyme) solution, a step of enzymatically treating the cells, a step of dispersing the cells, a step of A step of converting clumps to single cells or rotating a container containing a cell suspension containing enzymatically treated or dispersed cells may be included.
  • Collecting the cells from the container may comprise, for example, pipetting up the medium or the cells.
  • the rotating device may, for example, be a horizontal swivel device.
  • the method for producing cells includes the step of horizontally rotating a container having a square bottom shape, so that the medium may rebound in waves during cell culture.
  • the wave bounce is then caused by the movement of the medium between the two opposing sides, causing the waves to bounce back and forth between the two sides.
  • a container having a circular bottom shape such rebounding of waves does not occur.
  • Such wave bouncing may be used as an indicator of an environment in which cells tend to disperse during culture.
  • cells may be, for example, floating cells, cell clusters (spheroids), or single cells.
  • the production method described above is particularly useful for culturing spheroids that easily fuse because cells can easily maintain a dispersed state.
  • the production method described above is particularly useful in culturing iPS cells and MSCs because of its low shear stress.
  • the cells may also be mammalian cells. Mammals include, for example, humans, monkeys, rodents (mice, hamsters, etc.), and the like.
  • Cells include, for example, stem cells or somatic cells. Stem cells include, for example, cells that have the ability to self-renew and differentiate into other cell types.
  • Stem cells include pluripotent stem cells, multipotent stem cells, and unipotent stem cells.
  • Pluripotent stem cells include, for example, iPS cells or ES cells.
  • the pluripotent stem cells may express any undifferentiated marker at the same level or higher than, for example, human induced pluripotent stem cell line 253G1 (HPS0002).
  • Multipotent stem cells include, for example, mesenchymal stem cells, adipose stem cells, hematopoietic stem cells, neural stem cells, and the like.
  • Unipotent stem cells include, for example, muscle stem cells, melanocyte stem cells, and the like.
  • Somatic cells include, for example, cells derived from skin, heart, liver, lung, stomach, intestine, kidney, uterus, brain, blood, or mesenchymal tissue.
  • Cells also include, for example, T cells and CHO cells.
  • Cells may be attached to a carrier or material (eg, plastic material (eg, plastic beads)).
  • the medium in one embodiment of the present invention may be a liquid medium.
  • the medium may be, for example, a medium for stem cells (eg, Essential 8 Medium), a medium for mammalian cells (eg, GIBCO Advanced medium (Thermo Fisher)), or the like.
  • examples of media include serum media (e.g., 10% FBS), balanced salt solutions (e.g., PBS, etc.), basal media (MEM, etc.), complex media (e.g., RPMI 1640, etc.), serum-free media, etc. may
  • the vessel comprises a cell culture vessel.
  • the container type may be, for example, a dish type, petri dish type, or flask type.
  • a container may have a bottom surface, sides, and a top surface.
  • the shape of the bottom, side, or top of the container may be square.
  • a square shape can be distinguished from a circular shape in that it has four sides.
  • the dish with product number MS-12450 (Sumitomo Bakelite) (22.4 cm on each side (inner dimensions), 500 cm 2 in area, 2.4 cm in height (inner dimensions), 0.4 cm liquid level for 200 ml of culture medium) has a square bottom. It is a type of mold-shaped container.
  • Square-shaped shapes include, for example, square-shaped or rectangular-shaped shapes.
  • Square-type shapes include shapes where the four sides are substantially the same length. Rectangular-type shapes include shapes that have two sets of two sides of substantially the same length (but not square-type shapes).
  • the shape of the bottom surface is particularly preferably a square shape from the viewpoint of improving the cell proliferation rate, improving the number of cells after culture, or improving cell dispersion.
  • the number of bottom and top surfaces may be one each, and the number of side surfaces may be four.
  • the bottom surface may be the lowest surface that is in constant contact with the medium during culture.
  • the side surface may form a surface rising upward with respect to the bottom surface. Alternatively, the side surface may be positioned substantially perpendicular to the bottom surface.
  • a part of the side surface may be in contact with the medium during culture, and the remaining part of the surface may not be in contact with the medium.
  • the side surfaces may contact the bottom surface at the bottom end and the top surface at the top end.
  • the sides may have two sets of sides in parallel relationship.
  • the top surface may lie parallel to the bottom surface.
  • the top surface may be the uppermost surface that is not in constant contact with the medium during culture.
  • the top surface may be positioned substantially perpendicular to the side surface.
  • the container may have a closed space inside.
  • the bottom, sides, and top may comprise flat surfaces.
  • the face may consist of flat walls.
  • the quadrangular shape may have two sets of parallel sides.
  • any side may be called vertical, and a side that is in contact with the vertical (or a side that is not parallel to the vertical) may be called horizontal.
  • the square shape is a rectangular shape, the shortest side may be referred to as length and the longest side as width.
  • the ratio of the vertical and horizontal lengths of the square shape is, from the viewpoint of improving the cell growth rate, improving the number of cells after culture, or improving cell dispersion, when the vertical is 1, the horizontal is 1 ⁇ 1.05 is preferred, and 1 to 1.01 is particularly preferred.
  • the ratio of the length to the width of a rectangular shape is 1, 1.01, 1.02, 1.03, 1.04, 1.05, 1.1, 1.2, 1.3, 1.4, or 1.5 when the length is 1. or within any two of those values.
  • the length of one side of the square shape is particularly preferably 20 to 40 cm from the viewpoint of improving the cell growth rate, improving the number of cells after culturing, or improving cell dispersion.
  • the length of one side of the square shape is, for example, 1, 2, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, or 100 cm. and may be within any two of those values.
  • one side of the square shape of the bottom is large, for example, 20 cm or more. Edges include straight lines.
  • the length of the quadrangular shape may be positioned substantially perpendicular to the width. Adjacent sides of the four sides of the quadrangular shape may be positioned substantially perpendicular to each other.
  • substantially right angles include substantially right angles.
  • the angle at which the sides to the bottom of the container, the sides to the top, and the sides to the length of the bottom shape lie, or approximately right angles, are, for example, 90 degrees plus or minus 15, 10, 5, 3, 2, 1, 0.5, or 0 degrees.
  • the shape of the quadrangle may be one that can be recognized as a quadrangle as a whole. may be connected.
  • the total length of the four sides of the square shape may be 40, 50, 75, 100, 150, 200, 300, or 500 times the total length of the joints, any value thereof greater than or equal to or within any two of those values.
  • the total length of the straight portions of the square shape may be 40, 50, 75, 100, 150, 200, 300, or 500 times the total length of the non-linear portions, or greater than any of those values, or It may be within any two of those values.
  • the rotation may be horizontal rotation.
  • Rotation includes turning.
  • a horizontal plane may include a plane perpendicular to the direction in which the earth's gravitational force acts.
  • Horizontal rotation when used for culturing includes a mode of rotating on a plane that is substantially vertical or nearly vertical to the direction in which gravity acts.
  • the substantially vertical or substantially vertical plane may include a slight inclination due to the design of the rotating device or due to slight inclination of the table on which the rotating device is placed. This tilt may be, for example, 3, 2, 1, 0.5, 0.2, or 0.1 degrees above or below the vertical plane.
  • the position of the rotational axis of rotation of the rotator may not coincide with the rotational axis of rotation of the container.
  • the location of the axis of rotation or center of rotation of the container may be within the container.
  • the rotational speed is preferably low, such as 60 rpm or less, from the viewpoint of improving the cell growth rate, improving the number of cells after culture, or improving cell dispersion.
  • 60 rpm or less is preferably 30 to 60 rpm, particularly preferably 40 to 55 pm.
  • Rotational speeds are, for example, or 200 rpm, or greater than any of those values, or within any two of those values.
  • the rotation frequency is preferably 0.5 to 1.0 Hz, particularly preferably 0.666 to 0.917 Hz, from the viewpoint of improving the cell growth rate, improving the number of cells after culture, or improving cell dispersion. .
  • the frequency may be, for example, 0.02, 0.15, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.3, 1.5, 1.6, 1.67, 2, 2.33, 2.67, 3, or 3.33 Hz; It may be greater than or equal to either of those values, or within a range of any two of those values.
  • the turning diameter (rotational amplitude) of rotation is preferably 1 to 5 cm, preferably 2 to 3 cm, from the viewpoint of improving the cell growth rate, improving the number of cells after culture, or improving cell dispersion. is particularly preferred.
  • the radius of gyration may be, for example, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 10, 20, 30, 40, or 50 cm. May be within any two values.
  • the liquid level of the medium in the container is low in order to prevent deterioration of the oxygen environment due to sinking of the cells.
  • the liquid level of the medium is low, the ratio of the contact area between the medium and oxygen to the medium volume is large, and deterioration of oxygen supply can be prevented.
  • the height of the liquid surface of the medium in the container is preferably 3 cm or less, more preferably 1.5 cm or less, and particularly preferably 1.2 cm or less.
  • the liquid level is, for example, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.3, 1.5, 2, 3, 4, 5, 10, or 20 cm, less than or within any two of those values.
  • the ratio of the liquid level of the culture medium in the container to the height of the container is preferably 0.5 or less, particularly preferably 0.4 or less. This ratio may be, for example, 0.05, 0.1, 0.2, 0.3, 0.4, or 0.5, less than or within any two of these values.
  • the ratio of the height of the liquid surface of the medium in the container to the length of one side (e.g., vertical or horizontal) of the bottom shape of the container is preferably 0.2 or less, and 0.06.
  • This ratio may be, for example, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.1, 0.15, 0.2, 0.25, or 0.3, less than or equal to any of those values, or less than or equal to any two of those values. may be within the range.
  • the height of the container When setting the liquid level of the medium in the container low, the height of the container can also be set low accordingly. In addition, by setting the height of the container low, the stability when stacking a plurality of containers is improved. In addition, by setting the height of the container low, a larger number of containers can be installed in the culture facility (for example, an incubator), enabling mass culture. From the viewpoint of stability when the containers are stacked, the height of the containers is preferably equal to or less than the length of one side of the bottom shape. In addition, from the viewpoint of providing a medium for mass culture, improving the cell growth rate, improving the number of cells after culture, or improving cell dispersion, etc.
  • the thickness ratio is preferably 0.07 to 0.35, particularly preferably 0.08 to 0.3.
  • This ratio may be, for example, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.12, 0.15, 0.18, 0.2, 0.25, 0.26, 0.3, 0.35, 0.4, 0.5, 0.6 or 1 in height, It may be less than or equal to either of those values, or within a range of any two of those values.
  • one side of the bottom shape includes a long side (longest side) or a short side (shortest side), preferably the short side.
  • the container height may be, for example, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9, 10, 20, 30, 50, 80, or 100 cm. , may be within the range of any two of them.
  • the height of the container may, for example, be expressed as the shortest distance between the bottom and top of the sides.
  • the lowermost portion may be the position where the side surfaces and the bottom surface are in contact
  • the top portion may be the position where the side surface and the upper surface are in contact.
  • the height may be represented by the shortest distance between the bottom surface and the top surface.
  • the height may be represented by the length from the top to the bottom of the container when viewed from the side. Height may be expressed as the shortest distance between the bottom surface and the bottom edge of the cap if there is a cap on the top surface.
  • the volume of the medium in the container is, for example, 4, 5, 8, 10, 20, 50, 60, 100, 200, 300, 400, 600, 800, 1000, 1500, or 2000 mL. or more than any of these values, or within the range of any two of these values.
  • the volume of the medium in the container is, for example, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1, 1.5, 2, 4, 6, 8, or 10 mL per 1 cm 2 of bottom area. It may be less than any of these values, or within any two of those values.
  • the fill factor of the medium in the container may be, for example, 20, 30, 40, 50, 60, 70, 80, 90, or 95%, any value below, or The liquid volume may be within the range of any two of these values.
  • the fill factor can be expressed as the ratio of medium volume to container volume.
  • the cell culture may be performed, for example, for 1, 5, 10, 20, 24, 48, 72, 96, 120, or 150 hours, any of these values or less, or any of them. A range of two values may be implemented.
  • Cell culture may be performed, for example, in a cell culture incubator (eg, 37° C., 5% CO 2 ). Alternatively, culture conditions used in conventional cell culture can be appropriately selected.
  • the cell concentration in the medium is, for example, 5 x 107 , 10 x 107 , 30 x 107 , 50 x 107 , 80 x 107 , 100 x 107 , or 150 x 10 It may be 7 /L, or it may be any value or more, or the liquid amount may be within the range of any two of these values.
  • the culture time may be, for example, 0.25, 0.5, 1, 5, 12, 24, 48, 72, 96, 168, or 240 hours, or May be within any two values.
  • the container may have an opening.
  • the opening may be in the top, side, or bottom of the container.
  • a biological sample (such as cells) or a culture medium can be injected from the space outside the container into the space inside the container through the opening.
  • the opening may have a cylindrical structure or a circular structure in horizontal cross-section.
  • the opening may have a port or a cap.
  • the port may have a structure (for example, a cylindrical structure) that communicates the space inside the container with the space outside the container.
  • the cap may have a structure that blocks the space inside the container from the space outside the container by covering the port.
  • the cap can seal the inside of the container by sealing the opening.
  • the cap may have, for example, a cylindrical structure with one of the upper end surface and the lower end surface closed.
  • the cap may be, for example, a screw cap.
  • the openings may be located, for example, at the four corners of the outer quadrangular shape on the top or sides.
  • the openings may, for example, be located on the diagonals of the outer quadrangular shape on the top or sides. If the opening has a cylindrical structure or a structure with a circular horizontal cross-section, the central axis of the circle may, for example, be located on the diagonal of the outer square shape of the top surface or side surface. .
  • the number of openings is preferably four. In this case, as shown in FIG. 16, which will be described later, it is possible to stably stack a plurality of containers, or the center of gravity is less likely to be biased when rotating and rocking.
  • the number of openings is preferably one or two.
  • the containers can be stacked as they are, and a large culture area can be secured.
  • the number of openings may be, for example, 1, 2, 3, 4, 5, 6, 7, or 8, or any number between any two of these values.
  • the height of the opening may be, for example, 1, 2, 2.5, 3, 3.5, 4, 5, or 10 cm, or within any two of these values. The height of the opening may be measured with the surface side in contact with the opening as the lower end.
  • the opening is a cylindrical structure
  • its diameter may be, for example, 1, 2, 2.5, 3, 3.5, 4, 5, or 10 cm and within any two of these values. good too.
  • the ratio of the diameter of the opening to the length of one side (e.g., vertical or horizontal) of the bottom shape is 0.05, 0.1, 0.11, 0.115, 0.12, 0.125, when one side of the bottom shape is 1. It may be 0.13, 0.135, 0.14, 0.145, or 0.15, less than or within any two of those values.
  • the shape, length, or ratio of the bottom, side, or top surface of the container described above or below is the shape and length of the inside of the container (the side that contacts the space in the container, or the side that accommodates the culture medium in the container). or may be applied to ratios. For example, a statement that the bottom surface of the container has a square shape includes that the inner bottom surface of the container has a square shape.
  • the area of the bottom of the container may be, for example, 1, 4, 9, 25, 50, 100, 500, 1000, 2500, 5000, or 10000 cm 2 , any two of which It can be any number within a range of values.
  • the bottom and side surfaces of the container may be positioned at substantially right angles.
  • the bottom and side surfaces may be directly connected to form an angle, or may be connected via a connection (eg, linear or arc-shaped).
  • the connecting part is the part between the straight part of the bottom surface and the straight part of the side surface when the container is viewed from the side, which is not on the extension of the straight part of the bottom but on the extension of the straight part of the bottom.
  • a lateral side includes any lateral side or four lateral sides.
  • the curve radius R is preferably small from the viewpoint of improving cell dispersion, for example, preferably 0.5 cm or less, and particularly preferably 0.3 cm or less.
  • the curve radius may be, for example, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, or 0.9 cm, below any of those values, or within any two of those values. There may be.
  • the curve radius may be the curve radius of the curved portion connecting the bottom surface and the side surface when the container is viewed from the side surface.
  • the curve radius is, for example, the curve radius at the position where the curve radius is the smallest within the curve portion.
  • the top and side surfaces may be directly connected to form an angle, or may be connected via a connection (eg, straight or arc-shaped).
  • the side and another side may be directly connected to form an angle, or may be connected via a connection (eg, straight or arc-shaped).
  • the constituent material of the container includes, for example, synthetic resin, natural resin, or glass.
  • Synthetic resins include, for example, polystyrene resins, polypropylene resins, polyethylene resins, and the like.
  • the inner surface of the container may be composed of a cell non-adhesive resin or coated with a cell anti-adhesion agent.
  • the container may be manufactured by molding techniques, 3D printing, or the like.
  • Fig. 13 shows the first container as an example of a container.
  • the container has a square bottom 1 and top 2 shape. Side 3 has a rectangular shape.
  • the top surface 2 is provided with four openings 4. Since the opening 4 is provided on the upper surface 2, the medium is less likely to spill, and the operability of medium replacement and cell collection is excellent.
  • the opening 4 has a port 6 inside, and a screw cap 5 is installed so as to cover it.
  • the openings 4 are located at the four corners of the upper surface 2.
  • the container has an internal space surrounded by a bottom surface 1, a top surface 2 and a side surface 3 and capable of containing a culture medium.
  • the length L1 of one side of the bottom surface 1 is particularly preferably 23 to 28 cm.
  • the height L2 of the container is particularly preferably 2.5-3 cm.
  • the height L3 of the opening 4 is particularly preferably 2.5-3 cm.
  • a diameter L4 of the opening 4 is particularly preferably 3 cm.
  • FIG. 14 and 15 show the front view (14A), rear view (14B), top view (14C), bottom view (14D), right side view (14E), left side view (14F), and cross section A-A of the first container.
  • Figure (14G) perspective view (14H), front view with screw cap removed (15A), rear view with screw cap removed (15B), plan view with screw cap removed (15C), Bottom view with the screw cap removed (15D), right side view with the screw cap removed (15E), left side view with the screw cap removed (15F), cross section A-A with the screw cap removed
  • a view (15H), a perspective view (15I) with the screw cap removed, and a reference perspective view (15J) showing a transparent state with the screw cap removed are shown.
  • the first container can be used by stacking multiple sheets.
  • FIG. 16 shows a state in which four first containers are stacked. Each container is stacked on top of each other at an angle of 45 degrees. By stacking the containers while shifting them at an angle of 45 degrees, the bulkiness corresponding to the height of the opening 4 when stacking the containers can be eliminated, and space can be saved. For example, if two containers with sides 3 of 2.5 cm and openings 4 of 2.5 cm (that is, the total height of sides 3 and openings 4 is 5 cm) are placed on top of each other without shifting by 45 degrees, the two containers will have a width of 10 cm. The height is 7.5 cm when shifted by 45 degrees. In this case, it is possible to save space by 2.5 cm.
  • the length L5 of the stacked containers may be calculated by L1 ⁇ 2, the length of one side of the bottom surface 1 of the container. Furthermore, the four corners of the upper container can be fitted between the openings 4 of the lower container, and the stacked containers can be prevented from slipping and collapsing due to rocking during culturing.
  • FIG. 17 shows a front view of a state in which four first containers are stacked.
  • FIG. 18 shows an image photograph of a state in which two first containers are stacked.
  • Fig. 19 shows the second container as an example of the container.
  • the container has a square bottom 101 and top 102 shape.
  • Side 103 has a rectangular shape.
  • the side has one opening 104 .
  • the opening 104 has a port inside and a screw cap 105 is installed to cover it.
  • the opening 104 is located on the side surface 103 and at one corner on the top surface 102 side. This makes decanting easier.
  • the inside of the container has an internal space surrounded by a bottom surface 101, a top surface 102 and a side surface 103 and capable of containing a culture medium.
  • the second container can be set up sideways when changing the medium on the clean bench, making it easy to work with multiple plates at the same time.
  • a side length L101 of the bottom surface 101 is particularly preferably 23 to 40 cm.
  • the height L102 of the container is particularly preferably 5-6 cm.
  • the height L103 of the opening 104 is particularly preferably 2.5-3 cm.
  • a diameter L104 of the opening 104 is particularly preferably 3 cm.
  • a distance L105 from the lower end of the opening 104 to the bottom surface 101 on the side surface 103 of the container is particularly preferably 2.5 to 3 cm. Alternatively, the distance L105 may be determined by subtracting the length 104 of the diameter of the opening 104 from the container height L102.
  • the second container can be used by stacking multiple sheets.
  • FIG. 20 shows a state in which four second containers are stacked. Since the second container has the opening 104 provided on the side surface 103, when the containers are stacked, the containers can be stacked as they are, and a large culture area can be secured.
  • the number of containers may be, for example, 2, 3, 4, 5, 6, 8, 10, 20, 30, 40, or 50. or within the range of two values. Large scale cultures can be performed by stacking many vessels.
  • An embodiment of the present invention is a culture vessel comprising a bottom surface, a top surface and side surfaces, the bottom surface being square shaped and the top surface comprising an opening.
  • the top surface may be square-shaped and the openings may be located at the corners (eg, one to four corners) of the top surface.
  • the opening may form a protrusion.
  • Another embodiment is a culture vessel comprising a bottom surface, a top surface and a side surface, the bottom surface being rectangular in shape and the side surface comprising an opening on the top side.
  • the top surface may be square shaped.
  • the openings may be located at corners (eg, one or two corners) on the top side of the side surface.
  • the opening may form a convexity on the surface.
  • a culture vessel which is a floating culture vessel comprising a medium containing portion, a lid, and a bottom surface of the medium containing portion having a square shape.
  • the medium containing portion may have a bottom surface and side surfaces.
  • the medium containing portion may have four sides.
  • the lid may have a square shape.
  • Another embodiment is a multi-vessel having a configuration in which multiple culture vessels are stacked. The multi-vessel is excellent in operability and suitable for large-scale culture because operations such as medium injection and medium exchange can be performed for each vessel.
  • the number of containers may be, for example, 2, 3, 4, 5, 6, 8, 10, 20, 30, 40, or 50, any value greater than or equal to any two values. may be within the range.
  • the culture vessels may be overlapped with the central axis of each vessel at the same position, while the entire vessel is shifted at an angle of 45 degrees with respect to each other.
  • the central axis may be a line extending in a direction perpendicular to the horizontal plane from the point where the diagonal lines of the quadrangular bottom surface intersect as the center.
  • the state in which the angle is 45 degrees to each other is obtained by stacking multiple containers without shifting the angle, turning the even-numbered container from the bottom 45 degrees around the central axis, and then placing the odd-numbered container from the bottom. and the bottom surface of even-numbered containers from the bottom are brought into contact with each other.
  • Another embodiment is a multiple container with a second container above the first container.
  • Another embodiment is a multiple vessel in which a plurality of culture vessels are stacked, and the top surface of the bottom culture vessel is in contact with the bottom surface of another culture vessel.
  • the culture vessel is preferably a vessel used for horizontally rotating cell culture (horizontal rotating cell culture vessel).
  • the apparatus may be a cell culture apparatus including a medium containing section and a rotation section for horizontally rotating the medium containing section, and the medium containing section having a square bottom shape.
  • the medium containing section may contain the medium and the cells.
  • the culture medium containing part may have a bottom surface, a side surface, and an upper surface, and may have a closed space inside.
  • the medium container may have an opening.
  • the opening may have a structure (for example, a cylindrical structure) that communicates the space inside the culture medium container with the space outside the container.
  • a biological sample (such as cells) or a culture medium can be injected from the space outside the container into the space inside the container through the opening.
  • the culture medium container may be a culture vessel.
  • the rotating portion may be configured to rotate the medium containing portion.
  • the rotating part may have a platform on which the medium containing part can be placed.
  • the platform may be positioned parallel to the horizontal plane.
  • the platform and the culture vessel may contact each other in a direction perpendicular to the horizontal plane.
  • the pedestal may be swiveled with the container on it.
  • One or a plurality of culture medium storage units may be installed on the platform.
  • the plurality may be, for example, 2, 4, 6, 8, 10, 20, 30, 40, 50, or 100, any value greater than or equal to any two of these values. There may be.
  • a plurality of medium storage units on the platform may be arranged without stacking or may be stacked.
  • speed of rotation of the rotating portion, the radius of gyration, etc. any of the numerical values and configurations listed in the above-described embodiments can be adopted.
  • One embodiment of the present invention is a cell culture device comprising a container and a rotating device.
  • the container may have a square bottom shape.
  • the rotating device may be a horizontal rotating device or a pivoting device.
  • the rotator may have a platform on which the container is placed.
  • An embodiment of the present invention is a cell culture vessel that contains a suspension culture medium (eg, liquid medium) and has a square bottom shape.
  • a cell culture vessel which has a square bottom shape, accommodates floating cells, and the floating cells oscillate as the vessel horizontally rotates and oscillates. is.
  • Another embodiment is a method for culturing cells, including the step of horizontally rotating a container containing cells and a culture medium, wherein the bottom shape of the container is square.
  • Another embodiment is the use of a vessel with a square bottom shape in cell culture (eg, horizontal rotary culture).
  • Another embodiment is a method for producing cells, comprising rotating a container containing cells and a medium, wherein the bottom shape of the container is square.
  • Another embodiment is a method of producing cells, comprising horizontally rotating a container containing cells and medium.
  • Another embodiment is a method for producing a cell suspension, comprising the step of horizontally rotating a container containing cells and a culture medium, wherein the bottom shape of the container is square.
  • the cell culture method in which a rectangular container is horizontally rotated has the characteristic that the cells do not gather in the center and are difficult to adhere. Therefore, for example, a method of producing a cell sheet while culturing cells in a vessel may be excluded from this culture method.
  • An embodiment of the present invention is a container having a bottom, a side and a top, comprising four sides (first to fourth sides), the first side and the third side being in parallel relationship, The container, wherein the second side and the fourth side are in parallel relationship.
  • the first side and the second side may be in contact, and the first side and the fourth side may be in contact.
  • the second side and the third side may be in contact, and the third side and the fourth side may be in contact.
  • the four sides may be in contact with the bottom surface at the bottom and the top surface at the top.
  • One embodiment of the present invention is a method for dispersing cells, which includes the step of horizontally rotating a container containing cells and a culture medium, and the bottom surface of the container has a square shape. Dispersion of cells facilitates the distribution of nutrients to the cells. In addition, shear stress is reduced and cell viability is improved.
  • One embodiment of the present invention is a method for enzymatic treatment of cells, which includes the step of horizontally rotating a container containing cells and an enzyme solution, and the bottom shape of the container is square. According to this method, an excellent enzymatic treatment can be achieved from at least one viewpoint of improving the viable cell rate after treatment, improving the number of cells after treatment, or reducing shear stress during treatment.
  • the enzyme solution may be, for example, a solution containing a proteolytic enzyme.
  • This solution includes, for example, a solution that disperses cell clumps or adherent cells into single cells.
  • This solution includes, for example, TrypLE Select (Gibco 12563-011), trypsin solution, accutase solution, collagenase solution.
  • the cells contained together with the enzyme solution may be, for example, cell aggregates or cells adhered to plastic material.
  • This method includes, for example, a step of suspension culture of cells, a step of contacting the cells with an enzyme solution, a step of preparing a suspension containing the cells and the enzyme solution, or a step of replacing the medium in the container with the enzyme solution. It's okay.
  • the content of enzyme in the suspension may be an effective amount for cell dispersion.
  • the enzymatic treatment includes, for example, dispersing treatment of cells.
  • the embodiment of the enzyme treatment method described above can employ any of the numerical values, configurations (eg, cells, etc.), and steps listed in the embodiment of the cell production method described above.
  • cells include stem cells (eg, iPS cells or mesenchymal stem cells).
  • One embodiment of the present invention is an apparatus for treating cells with enzymes, which includes a medium container and a rotating part that horizontally rotates the medium container, and the medium container has a square bottom shape.
  • An enzyme treatment device is provided. Using this device, excellent enzymatic treatment can be achieved from at least one viewpoint of improving post-treatment viability, improving post-treatment cell number, or reducing shear stress during treatment.
  • This embodiment of the cell enzyme treatment device can adopt any of the numerical values and configurations listed in the above-described embodiments of the cell culture device or the embodiment of the enzyme treatment method.
  • One embodiment of the present invention is a horizontal rotary cell enzyme treatment vessel comprising a bottom, a top and a side, the bottom being square-shaped and the top comprising 1-4 openings.
  • a cellular enzyme treatment vessel is provided. This vessel is used for enzymatic treatment of cells with the vessel rotated horizontally. By using this container, an excellent enzymatic treatment can be achieved in terms of at least one of improving the post-treatment viable cell rate, improving the post-treatment cell count, and reducing shear stress during treatment.
  • This embodiment of the horizontally rotating cell enzymatic treatment container can employ any of the numerical values and configurations listed in the above embodiments of the container or the enzymatic treatment method.
  • iPS cells (253G1 strain) were adherently cultured in a 10 cm dish coated with iMatrix-511 (Nippi) in Essential 8 medium (Thermo Fisher), and then cultured in 0.5 mM EDTA solution. iPS cells detached after being treated with for 10 minutes were used in the experiment.
  • the exfoliated iPS cells were suspended in Essential 8 medium to a cell concentration of 7x10e4/ml and placed in a 6 cm diameter (20 cm 2 area) circular dish (Falcon), a 10 cm diameter (50 cm 2 area) circular dish (Falcon), A circular dish (Falcon) with a diameter of 15 cm (area of 150 cm 2 ) and a square dish (Sumitomo Bakelite, product number MS-12450) with a side of 22 cm (area of 500 cm 2 ) were each filled with a liquid volume of 0.4 ml/cm 2 . 8 ml, 20 ml, 60 ml, and 200 ml of cell suspension were added, and static culture or rotary culture was performed in an incubator at 37° C.
  • Spinning culture was performed using an incubator internal shaker (Optima, OS-762RC) at 30, 50, and 60 rpm (circling diameter: 25 mm). After culturing for a total of 4 days, the floating iPS cell clusters were dispersed with a trypsin solution and counted. ) was calculated.
  • plastic beads and mesenchymal stem cells (UE6E7T-3 cells JCRB1136).
  • Plastic beads (125-212 ⁇ m diameter, Corning 3772, similar size and density to iPS spheroids) were added to the medium at a volume of 1 gram/50 ml and mesenchymal stem cells at a volume of 2 ⁇ 10e6 cells/50 ml.
  • 60 ml of the medium containing beads and mesenchymal stem cells was added to a circular dish (15 cm in diameter) and 200 ml to a square dish (1 side of 22 cm), and cultured in a 37° C. incubator for 2 days. After the beads and mesenchymal stem cells adhered, the image was taken while rotating culture at 30 rpm with a shaker (Optima, OS-762RC).
  • the same plastic beads and mesenchymal stem cells containing 10% FBS were added to compare the shape of the container during enzyme treatment.
  • Culture was performed in DMEM medium. 200 ml of a medium containing 1.7 g of beads and 3 ⁇ 10e6 cells of mesenchymal stem cells was added to a square dish (22 cm per side), and cultured for 7 days with a shaker rotating at 50 rpm to proliferate the cells.
  • each dish containing the mesenchymal stem cell clusters was spin-cultured at 80 rpm for 30 minutes to disperse the mesenchymal stem cell clusters into single cells, which were then counted. was calculated.
  • the enzyme solution may be trypsin or accutase solution.

Abstract

Provided is an excellent cell production method. Use is made of a cell production method comprising a step for horizontally rotating a container in which cells and a medium are housed, wherein the bottom of the container is in a square shape. Alternatively, use may be made of a cell culture device comprising a medium housing part and a rotating part for horizontally rotating the medium housing part, wherein the bottom of the medium housing part is in a square shape.

Description

細胞の生産方法Cell production method
 本発明は、例えば、細胞の生産方法、培養容器、培養装置、酵素処理方法等に関する。 The present invention relates to, for example, cell production methods, culture vessels, culture apparatuses, enzyme treatment methods, and the like.
 細胞の浮遊培養に関する技術が報告されている。例えば、特許文献1の図1には、培養液を攪拌するための撹拌翼を備える細胞培養装置が記載されている。また、特許文献2の図1には、環状の流路を備える二重円型ディッシュが記載されており、実施例1にはそのディッシュを用いて細胞を旋回培養したことが記載されている。 Technology related to cell suspension culture has been reported. For example, FIG. 1 of Patent Document 1 describes a cell culture apparatus equipped with stirring blades for stirring a culture solution. In addition, FIG. 1 of Patent Document 2 describes a double circular dish having an annular flow path, and Example 1 describes that cells were cultured by spinning using the dish.
国際公開第2013/187359号WO2013/187359 特開2017-148001号公報Japanese Patent Application Laid-Open No. 2017-148001
 特許文献1は、培養に攪拌翼を使用するため、細胞と攪拌翼の物理的衝突による細胞ダメージが発生しやすい。特許文献2は、容器が環状の形態をしているため、中心部にデッドスペースが生じている。そのため、培養容量が制限されていた。 Because Patent Document 1 uses stirring blades for culture, cell damage is likely to occur due to physical collision between the cells and the stirring blades. In Patent Document 2, since the container has a ring shape, there is a dead space in the center. Therefore, the culture capacity was limited.
 本発明は、例えば、細胞の優れた生産方法を提供すること等を目的とする。 The purpose of the present invention is, for example, to provide an excellent method for producing cells.
 本発明の一態様によれば、細胞及び培地を収容する容器を水平回転させる工程を含み、その容器の底面形状は四角型の形状である、細胞の生産方法が提供される。この生産方法によれば、優れた細胞培養を実施できる。 According to one aspect of the present invention, there is provided a cell production method comprising the step of horizontally rotating a container containing cells and a culture medium, the container having a square bottom shape. According to this production method, excellent cell culture can be performed.
 また本発明の一態様によれば、細胞培養装置であって、培地収容部と、培地収容部を水平回転させる回転部を含み、その培地収容部は、底面形状が四角型の形状である、細胞培養装置が提供される。この装置を用いれば、優れた細胞培養を実施できる。 Further, according to one aspect of the present invention, there is provided a cell culture device comprising a medium containing section and a rotating section for horizontally rotating the medium containing section, wherein the medium containing section has a square bottom shape. A cell culture device is provided. Excellent cell culture can be performed using this device.
 また本発明の一態様によれば、水平回転細胞培養容器であって、底面、上面、及び側面を備え、底面は正方形型の形状であり、上面は1~4個の開口部を備える、水平回転細胞培養容器が提供される。この容器を用いれば、優れた細胞培養を実施できる。 Also according to one aspect of the present invention, there is provided a horizontal rotating cell culture vessel comprising a bottom surface, a top surface and a side surface, the bottom surface having a square shape and the top surface having 1 to 4 openings. A rotating cell culture vessel is provided. Excellent cell culture can be performed using this vessel.
 また本発明の一態様によれば、細胞及び酵素液を収容する容器を水平回転させる工程を含み、容器の底面形状は四角型の形状である、細胞の酵素処理方法が提供される。この処理方法によれば、優れた酵素処理を実施できる。 Further, according to one aspect of the present invention, there is provided a method for enzymatic treatment of cells, which includes the step of horizontally rotating a container containing cells and an enzyme solution, and the bottom shape of the container is square. According to this treatment method, an excellent enzymatic treatment can be performed.
 また本発明の一態様によれば、細胞酵素処理装置であって、培地収容部と、培地収容部を水平回転させる回転部を含み、その培地収容部は、底面形状が四角型の形状である、細胞酵素処理装置が提供される。この装置を用いれば、優れた酵素処理を実施できる。 Further, according to one aspect of the present invention, there is provided an apparatus for treating cells with enzymes, which includes a medium container and a rotation unit that horizontally rotates the medium container, and the medium container has a square bottom surface. , a cellular enzymatic treatment device is provided. Excellent enzymatic treatments can be performed with this device.
 また本発明の一態様によれば、水平回転細胞酵素処理容器であって、底面、上面、及び側面を備え、底面は正方形型の形状であり、上面は1~4個の開口部を備える、水平回転細胞酵素処理容器が提供される。この容器を用いれば、優れた細胞培養を実施できる。 Also according to one aspect of the present invention, there is provided a horizontal rotating cell enzymatic treatment vessel comprising a bottom surface, a top surface and a side surface, the bottom surface having a square shape and the top surface having 1 to 4 openings, A horizontal rotating cell enzymatic treatment vessel is provided. Excellent cell culture can be performed using this vessel.
図1は、実施例に示した各容器及び旋回条件における、単位面積あたりのiPS細胞の増殖倍率を表した棒グラフである。FIG. 1 is a bar graph showing the proliferation rate of iPS cells per unit area in each vessel and swirling conditions shown in Examples. 図2は、実施例に示した各容器及び旋回条件における、トータルのiPS細胞収量を表した棒グラフである。FIG. 2 is a bar graph showing the total iPS cell yield in each container and swirling conditions shown in Examples. 図3は、実施例に示した50rpm旋回培養したiPS細胞の心筋分化能の比較結果を表した棒グラフである。FIG. 3 is a bar graph showing the results of comparison of cardiomyocyte differentiation potential of iPS cells cultured with 50 rpm rotation shown in Examples. 図4は、実施例に示した間葉系幹細胞を接着させたビーズの写真である。FIG. 4 is a photograph of beads with adhered mesenchymal stem cells shown in Examples. 図5は、実施例に示した直径15cm円型容器を旋回培養したときの間葉系幹細胞を接着させたビーズ分布を表した図である。FIG. 5 is a diagram showing the distribution of beads to which mesenchymal stem cells are adhered when a 15-cm-diameter circular container shown in Examples is subjected to swirling culture. 図6は、実施例に示した1辺22cm正方形型容器を旋回培養したときの間葉系幹細胞を接着させたビーズ分布を表した図である。FIG. 6 is a diagram showing the distribution of beads to which mesenchymal stem cells are adhered when a square container with a side of 22 cm is subjected to swirling culture as shown in the example. 図7は、実施例に示した直径15cm円型容器を旋回培養して生じた浮遊iPS細胞塊の写真である。FIG. 7 is a photograph of floating iPS cell clusters produced by swirl culture in a circular container with a diameter of 15 cm shown in the example. 図8は、実施例に示した1辺22cm正方形型容器を旋回培養して生じた浮遊iPS細胞塊の写真である。FIG. 8 is a photograph of floating iPS cell clusters produced by swirling the 22 cm square container shown in the example. 図9は、実施例に示した各容器及び50rpm旋回条件における、単位面積あたりの間葉系幹細胞の増殖倍率を表した棒グラフである。FIG. 9 is a bar graph showing the proliferation rate of mesenchymal stem cells per unit area in each vessel shown in Examples and under 50 rpm turning conditions. 図10は、実施例に示した各容器及び50rpm条件における、トータルの間葉系幹細胞収量を表した棒グラフである。FIG. 10 is a bar graph showing the total mesenchymal stem cell yield in each vessel shown in Examples and under the condition of 50 rpm. 図11は、実施例に示した旋回酵素処理を行う際の、各容器条件における間葉系幹細胞の生細胞率を表した棒グラフである。FIG. 11 is a bar graph showing the survival rate of mesenchymal stem cells in each container condition when performing the swirling enzyme treatment shown in Examples. 図12は、実施例に示した旋回酵素処理を行う際の、各容器条件における間葉系幹細胞の酵素液量当たりの細胞数を表した棒グラフである。FIG. 12 is a bar graph showing the number of mesenchymal stem cells per volume of enzyme solution under each container condition when the swirling enzyme treatment shown in the Examples is performed. 図13は、一実施形態の第一の容器を示した図である。FIG. 13 is a diagram of the first container of one embodiment. 図14は、一実施形態の第一の容器の正面図等である。FIG. 14 is a front view etc. of the first container of one embodiment. 図15は、一実施形態の第一の容器のスクリューキャップを外した状態の正面図等である。FIG. 15 is a front view etc. of the first container of the embodiment with the screw cap removed. 図16は、一実施形態の第一の容器を4つ重ねた状態の図である。FIG. 16 is a diagram of four stacked first containers of one embodiment. 図17は、一実施形態の第一の容器を4つ重ねた状態の正面図である。FIG. 17 is a front view of a state in which four first containers of one embodiment are stacked. 図18は、一実施形態の第一の容器を4つ重ねた状態のイメージ写真である。FIG. 18 is an image photograph of a state in which four first containers of one embodiment are stacked. 図19は、一実施形態の第二の容器を示した図である。FIG. 19 is an illustration of a second container according to one embodiment. 図20は、一実施形態の第二の容器を2つ重ねた状態の図である。FIG. 20 is a diagram of two stacked second containers of one embodiment.
 以下、本発明の実施の形態について詳細に説明する。なお、同様な内容については繰り返しの煩雑を避けるために、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail. Note that descriptions of similar contents are omitted as appropriate in order to avoid complication of repetition.
 本発明の一実施形態は、新規の細胞の生産方法である。この生産方法は、例えば、細胞及び培地を収容する容器を水平回転させる工程を含み、容器の底面形状は四角型の形状である、細胞の生産方法を含む。この生産方法によれば、例えば、細胞増殖率の向上、培養後細胞数の向上、細胞分散の向上、細胞形状の均一性、細胞サイズの均一性、又はシェアストレス低下の少なくとも1つの観点から、優れた細胞培養を実現し得る。後述の実施例では、実施例の四角型の形状のディッシュを使用した細胞培養方法が、丸い形状のディッシュを使用した細胞培養方法に比べて、これらの少なくとも1つの効果が優れていることが実証されている。特に、iPS細胞やMSC(間葉系幹細胞)等はシェアストレスに弱いため、培養時の回転は低速にすることが好ましいが、底面形状が円型の容器で低速回転にすると細胞が中央に集まりすぎる問題がある。一方で、底面形状が四角型の容器を用いることによって、細胞へのシェアストレスが少ない低速回転にしても、細胞が中央に集まり難い(即ち、分散した)状態を保てることが明らかになった。また、低速回転の場合、培地の液面を低くすることが好ましく、さらには、容器の高さを低く設定することが大量培養などの観点から好ましいことが明らかになった。 One embodiment of the present invention is a novel cell production method. This production method includes, for example, a cell production method including a step of horizontally rotating a container containing cells and a culture medium, and the container having a square bottom shape. According to this production method, for example, from the viewpoint of at least one of an improvement in cell growth rate, an improvement in the number of cells after culture, an improvement in cell dispersion, uniformity in cell shape, uniformity in cell size, or reduction in shear stress, Excellent cell culture can be achieved. In the examples described later, it is demonstrated that the cell culture method using the square dish of the example is superior to the cell culture method using the round dish in at least one of these effects. It is In particular, iPS cells and MSCs (mesenchymal stem cells) are vulnerable to shear stress, so it is preferable to rotate at a low speed during culture. I have too many problems. On the other hand, it was clarified that by using a container with a square bottom shape, the cells can be kept in a state in which it is difficult for the cells to gather at the center (that is, they are dispersed) even when the cells are rotated at a low speed, which causes less shear stress on the cells. It was also found that, in the case of low-speed rotation, it is preferable to lower the liquid level of the culture medium, and furthermore, it is preferable to set the height of the container low from the viewpoint of large-scale culture.
 本発明の一実施形態において細胞の生産方法は、例えば、容器に培地を供給する工程、細胞及び培地を含む細胞懸濁液を調整する工程、容器に細胞懸濁液を供給する工程、容器を密閉する工程、容器を回転装置に設置する工程、容器を回転させる工程、細胞を回転揺動培養する工程、細胞を浮遊培養する工程、又は細胞を容器から回収する工程を含んでいてもよい。また本発明の一実施形態において細胞の生産方法は、例えば、容器内の培地を酵素(例えば、蛋白質分解酵素)液で置換する工程、細胞を酵素処理する工程、細胞を分散処理する工程、細胞塊を単一細胞へ変換させる工程、又は酵素処理もしくは分散処理済みの細胞を含む細胞懸濁液を含む容器を回転させる工程を含んでいてもよい。細胞を容器から回収する工程は、例えば、培地又は細胞をピペットで吸い上げる工程を含んでいてもよい。回転装置は、例えば、水平旋回装置であってもよい。 In one embodiment of the present invention, the method for producing cells includes, for example, supplying a medium to a container, adjusting a cell suspension containing cells and a medium, supplying a cell suspension to a container, It may include a step of sealing, a step of placing the container on a rotating device, a step of rotating the container, a step of rotating and rocking culturing the cells, a step of suspension culturing the cells, or a step of collecting the cells from the container. In one embodiment of the present invention, the method for producing cells includes, for example, a step of replacing the medium in the container with an enzyme (e.g., proteolytic enzyme) solution, a step of enzymatically treating the cells, a step of dispersing the cells, a step of A step of converting clumps to single cells or rotating a container containing a cell suspension containing enzymatically treated or dispersed cells may be included. Collecting the cells from the container may comprise, for example, pipetting up the medium or the cells. The rotating device may, for example, be a horizontal swivel device.
 本発明の一実施形態において細胞の生産方法は、底面形状が四角型の容器を水平回転させる工程を含むことにより、細胞培養中に培地に波の跳ね返りが見られてもよい。このとき、波の跳ね返りは、向かい合う2つの側面間の培地の動きによって生じ、2つの側面間で波が行き来を繰り返す。一方で、底面形状が円型の容器の場合は、このような波の跳ね返りが生じない。このような波の跳ね返りを、培養中に細胞が分散しやすい環境にあることの指標としてもよい。 In one embodiment of the present invention, the method for producing cells includes the step of horizontally rotating a container having a square bottom shape, so that the medium may rebound in waves during cell culture. The wave bounce is then caused by the movement of the medium between the two opposing sides, causing the waves to bounce back and forth between the two sides. On the other hand, in the case of a container having a circular bottom shape, such rebounding of waves does not occur. Such wave bouncing may be used as an indicator of an environment in which cells tend to disperse during culture.
 本発明の一実施形態において細胞は、例えば、浮遊細胞、又は細胞塊(スフェロイド)、単一細胞であってもよい。上記の生産方法は細胞が分散した状態を保ちやすいため、融合しやすいスフェロイドの培養において特に有用である。また上記の生産方法は、シェアストレスが少ないため、特に、iPS細胞やMSCの培養において特に有用である。また細胞は、哺乳動物の細胞であってもよい。哺乳動物は、例えば、ヒト、サル、ネズミ目の動物(マウス、ハムスター等)等を含む。細胞は、例えば、幹細胞又は体細胞を含む。幹細胞は、例えば、自己複製能と、別の種類の細胞に分化する能力とを有する細胞を含む。幹細胞は、多能性幹細胞、複能性幹細胞、単能性幹細胞を含む。多能性幹細胞は、例えば、iPS細胞又はES細胞等を含む。多能性幹細胞は、例えば、ヒト人工多能性幹細胞である253G1株(HPS0002)に比べて、いずれかの未分化マーカーを同程度かそれ以上発現していてもよい。複能性幹細胞は、例えば、間葉系幹細胞、脂肪幹細胞、造血系幹細胞、神経系幹細胞等を含む。単能性幹細胞は、例えば、筋幹細胞、色素幹細胞等を含む。体細胞は、例えば、皮膚、心臓、肝臓、肺、胃、腸、腎臓、子宮、脳、血液、又は間葉系組織由来の細胞を含む。また細胞は、例えば、T細胞、CHO細胞を含む。細胞は、担体又は素材(例えば、プラスチック素材(例えば、プラスチックビーズ))と接着していてもよい。 In one embodiment of the present invention, cells may be, for example, floating cells, cell clusters (spheroids), or single cells. The production method described above is particularly useful for culturing spheroids that easily fuse because cells can easily maintain a dispersed state. In addition, the production method described above is particularly useful in culturing iPS cells and MSCs because of its low shear stress. The cells may also be mammalian cells. Mammals include, for example, humans, monkeys, rodents (mice, hamsters, etc.), and the like. Cells include, for example, stem cells or somatic cells. Stem cells include, for example, cells that have the ability to self-renew and differentiate into other cell types. Stem cells include pluripotent stem cells, multipotent stem cells, and unipotent stem cells. Pluripotent stem cells include, for example, iPS cells or ES cells. The pluripotent stem cells may express any undifferentiated marker at the same level or higher than, for example, human induced pluripotent stem cell line 253G1 (HPS0002). Multipotent stem cells include, for example, mesenchymal stem cells, adipose stem cells, hematopoietic stem cells, neural stem cells, and the like. Unipotent stem cells include, for example, muscle stem cells, melanocyte stem cells, and the like. Somatic cells include, for example, cells derived from skin, heart, liver, lung, stomach, intestine, kidney, uterus, brain, blood, or mesenchymal tissue. Cells also include, for example, T cells and CHO cells. Cells may be attached to a carrier or material (eg, plastic material (eg, plastic beads)).
 本発明の一実施形態において培地は、液体培地であってもよい。培地には、例えば、幹細胞用の培地(例えば、Essential 8 Medium等)、哺乳類細胞用の培地(例えば、GIBCO Advanced培地(サーモフィッシャー))等を使用してもよい。培地には、例えば、血清培地(例えば10%FBS等)、平衡塩溶液(例えば、PBS等)、基礎培地(MEM等)、複合培地(例えば、RPMI 1640等)、無血清培地等を使用してもよい。 The medium in one embodiment of the present invention may be a liquid medium. The medium may be, for example, a medium for stem cells (eg, Essential 8 Medium), a medium for mammalian cells (eg, GIBCO Advanced medium (Thermo Fisher)), or the like. Examples of media include serum media (e.g., 10% FBS), balanced salt solutions (e.g., PBS, etc.), basal media (MEM, etc.), complex media (e.g., RPMI 1640, etc.), serum-free media, etc. may
 本発明の一実施形態において容器は、細胞培養用の容器を含む。容器の型は、例えば、ディッシュ型、シャーレ型、又はフラスコ型であってもよい。容器は、底面、側面、及び上面を有していてもよい。容器の底面、側面、又は上面の形状は、四角型の形状であってもよい。四角型の形状は、4つの辺を有している点で、円型の形状と区別できる。例えば、品番MS-12450(住友ベークライト)のディッシュ(1辺22.4cm(内寸)、面積500cm2、高さ2.4cm(内寸)、培地200mlの液面高さ0.4cm)は、底面が四角型の形状の容器の1種である。四角型の形状は、例えば、正方形型又は長方形型の形状を含む。正方形型の形状は、4つの辺の長さが実質的に同じ場合の形状を含む。長方形型の形状は、実質的に同じ長さの2つの辺を2組有する場合の形状(但し、正方形型の形状を除く)を含む。底面形状は、細胞増殖率の向上、培養後細胞数の向上、又は細胞分散の向上等の観点からは、正方形型の形状であることが特に好ましい。底面及び上面の数は各1つ、側面の数は4つであってもよい。底面は、培養時に培地と常時接している最も下の面であってもよい。側面は、側面は、底面に対して上方に起立する面を形成していてもよい。もしくは、側面は、底面に対して略直角に位置していてもよい。側面は、培養時に面の一部が培地に接しており、面の残りの部分は培地に接していなくてもよい。側面は、下端で底面と接触し、上端で上面と接していてもよい。側面は、平行関係にある2組の側面を有していてもよい。上面は底面に対して平行に位置していてもよい。上面は、培養時に培地と常時接していない最も上の面であってもよい。上面は、側面に対して略直角に位置していてもよい。容器は、内部に閉鎖系の空間を有してもよい。底面、側面、及び上面は平らな面で構成されていてもよい。面は平らな壁で構成されていてもよい。 In one embodiment of the invention the vessel comprises a cell culture vessel. The container type may be, for example, a dish type, petri dish type, or flask type. A container may have a bottom surface, sides, and a top surface. The shape of the bottom, side, or top of the container may be square. A square shape can be distinguished from a circular shape in that it has four sides. For example, the dish with product number MS-12450 (Sumitomo Bakelite) (22.4 cm on each side (inner dimensions), 500 cm 2 in area, 2.4 cm in height (inner dimensions), 0.4 cm liquid level for 200 ml of culture medium) has a square bottom. It is a type of mold-shaped container. Square-shaped shapes include, for example, square-shaped or rectangular-shaped shapes. Square-type shapes include shapes where the four sides are substantially the same length. Rectangular-type shapes include shapes that have two sets of two sides of substantially the same length (but not square-type shapes). The shape of the bottom surface is particularly preferably a square shape from the viewpoint of improving the cell proliferation rate, improving the number of cells after culture, or improving cell dispersion. The number of bottom and top surfaces may be one each, and the number of side surfaces may be four. The bottom surface may be the lowest surface that is in constant contact with the medium during culture. The side surface may form a surface rising upward with respect to the bottom surface. Alternatively, the side surface may be positioned substantially perpendicular to the bottom surface. A part of the side surface may be in contact with the medium during culture, and the remaining part of the surface may not be in contact with the medium. The side surfaces may contact the bottom surface at the bottom end and the top surface at the top end. The sides may have two sets of sides in parallel relationship. The top surface may lie parallel to the bottom surface. The top surface may be the uppermost surface that is not in constant contact with the medium during culture. The top surface may be positioned substantially perpendicular to the side surface. The container may have a closed space inside. The bottom, sides, and top may comprise flat surfaces. The face may consist of flat walls.
 本発明の一実施形態において四角型の形状は、2組の平行する辺を有していてもよい。四角型の形状が正方形型の形状の場合、任意の辺を縦、縦に接する辺(又は縦と非平行な辺)を横と称してもよい。四角型の形状が長方形型の形状の場合、最も短い辺を縦、最も長い辺を横と称してもよい。四角型の形状の縦と横の長さの比は、細胞増殖率の向上、培養後細胞数の向上、又は細胞分散の向上等の観点からは、縦を1とした場合、横は1~1.05が好ましく、1~1.01が特に好ましい。四角型の形状の縦と横の長さの比は、縦を1とした場合、例えば、横は1、1.01、1.02、1.03、1.04、1.05、1.1、1.2、1.3、1.4、又1.5であってもよく、それらいずれか2つの値の範囲内であってもよい。四角型の形状の一辺の長さは、細胞増殖率の向上、培養後細胞数の向上、又は細胞分散の向上等の観点からは、20~40cmが特に好ましい。四角型の形状の一辺の長さは、例えば、1、2、3、5、10、15、20、25、30、35、40、45、50、60、70、80、90、又は100cmであってもよく、それらいずれか2つの値の範囲内であってもよい。特に大量培養に有利な観点からは、底面の四角形の形状の1辺は、大きい方が好ましく、例えば、20cm以上が好ましい。辺は、直線からなるものを含む。四角型の形状の縦は、横に対して略直角に位置していてもよい。四角型の形状の4辺は、隣接する辺同士が略直角に位置していてもよい。本発明の一実施形態において略直角は、実質的に直角を含む。容器の底面に対する側面、上面に対する側面、及び底面形状の縦に対する横が位置する角度、又は略直角は、例えば、90度プラスマイナス15、10、5、3、2、1、0.5、又は0度であってもよい。特に底面に対して側面が位置する角度がこの範囲のとき、水平回転培養中に培地の跳ね返りが発生しやすく、その結果、より細胞分散が生じる。四角型の形状は、全体として四角型と認識できるものであればよく、例えば、4つの辺は直接繋がって角を形成してもよく、又は接合部(例えば、直線状又は弧形状)を介して繋がってもよい。四角型の形状の4つの辺の長さの合計は、接合部の長さの合計の40、50、75、100、150、200、300、又は500倍であってもよく、それらいずれか値以上、又はそれらいずれか2つの値の範囲内であってもよい。四角型の形状の直線部分の長さの合計は、非直線部分の合計の40、50、75、100、150、200、300、又は500倍であってもよく、それらいずれか値以上、又はそれらいずれか2つの値の範囲内であってもよい。 In one embodiment of the present invention, the quadrangular shape may have two sets of parallel sides. When the shape of a quadrangle is a square shape, any side may be called vertical, and a side that is in contact with the vertical (or a side that is not parallel to the vertical) may be called horizontal. If the square shape is a rectangular shape, the shortest side may be referred to as length and the longest side as width. The ratio of the vertical and horizontal lengths of the square shape is, from the viewpoint of improving the cell growth rate, improving the number of cells after culture, or improving cell dispersion, when the vertical is 1, the horizontal is 1 ~ 1.05 is preferred, and 1 to 1.01 is particularly preferred. The ratio of the length to the width of a rectangular shape is 1, 1.01, 1.02, 1.03, 1.04, 1.05, 1.1, 1.2, 1.3, 1.4, or 1.5 when the length is 1. or within any two of those values. The length of one side of the square shape is particularly preferably 20 to 40 cm from the viewpoint of improving the cell growth rate, improving the number of cells after culturing, or improving cell dispersion. The length of one side of the square shape is, for example, 1, 2, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, or 100 cm. and may be within any two of those values. From the standpoint of being particularly advantageous for large-scale culture, it is preferable that one side of the square shape of the bottom is large, for example, 20 cm or more. Edges include straight lines. The length of the quadrangular shape may be positioned substantially perpendicular to the width. Adjacent sides of the four sides of the quadrangular shape may be positioned substantially perpendicular to each other. In one embodiment of the invention substantially right angles include substantially right angles. The angle at which the sides to the bottom of the container, the sides to the top, and the sides to the length of the bottom shape lie, or approximately right angles, are, for example, 90 degrees plus or minus 15, 10, 5, 3, 2, 1, 0.5, or 0 degrees. may be Particularly when the angle of the side surface relative to the bottom surface is within this range, the medium tends to rebound during horizontal rotation culture, resulting in more cell dispersion. The shape of the quadrangle may be one that can be recognized as a quadrangle as a whole. may be connected. The total length of the four sides of the square shape may be 40, 50, 75, 100, 150, 200, 300, or 500 times the total length of the joints, any value thereof greater than or equal to or within any two of those values. The total length of the straight portions of the square shape may be 40, 50, 75, 100, 150, 200, 300, or 500 times the total length of the non-linear portions, or greater than any of those values, or It may be within any two of those values.
 本発明の一実施形態において回転は、水平回転であってもよい。回転は、旋回を含む。本発明の一実施形態において水平面は、地球の重力が働く方向に垂直な面を含んでもよい。培養に用いる場合の水平回転は、重力が働く方向に実質的に垂直な又は略垂直な面上で回転する様態を含む。実質的に垂直な又は略垂直な面は、回転装置の設計上又は回転装置を載せる台の微細な傾きに伴って生じる僅かな傾きを含んでいてもよい。この傾きは、例えば、垂直な面に対して3、2、1、0.5、0.2、又は0.1度上又は下であってもよい。回転装置の回転の回転軸の位置は、容器の回転の回転軸と一致しなくてもよい。容器の回転の回転軸又は回転中心の位置は、容器内にあってもよい。 In one embodiment of the present invention, the rotation may be horizontal rotation. Rotation includes turning. In one embodiment of the invention, a horizontal plane may include a plane perpendicular to the direction in which the earth's gravitational force acts. Horizontal rotation when used for culturing includes a mode of rotating on a plane that is substantially vertical or nearly vertical to the direction in which gravity acts. The substantially vertical or substantially vertical plane may include a slight inclination due to the design of the rotating device or due to slight inclination of the table on which the rotating device is placed. This tilt may be, for example, 3, 2, 1, 0.5, 0.2, or 0.1 degrees above or below the vertical plane. The position of the rotational axis of rotation of the rotator may not coincide with the rotational axis of rotation of the container. The location of the axis of rotation or center of rotation of the container may be within the container.
 上記の通り、本発明の一実施形態の生産方法によれば、培養時の回転を低速で行うことが可能である。この回転速度は、細胞増殖率の向上、培養後細胞数の向上、又は細胞分散の向上等の観点からは、60rpm以下のような低速が好ましい。60rpm以下は、30~60rpmが好ましく、40~55pmが特に好ましい。回転速度は、例えば、1、10、20、30、35、40、45、50、55、56、57、58、59、60、70、80、90、100、120、140、160、180、又は200rpmであってもよく、それらいずれか値以上、又はそれらいずれか2つの値の範囲内であってもよい。本発明の一実施形態において回転の周波数は、細胞増殖率の向上、培養後細胞数の向上、又は細胞分散の向上等の観点からは、0.5~1.0Hzが好ましく、0.666~0.917Hzが特に好ましい。周波数は、例えば、0.02、0.15、0.3、0.5、0.6、0.7、0.8、0.9、1、1.1、1.3、1.5、1.6、1.67、2、2.33、2.67、3、又は3.33Hzであってもよく、それらいずれか値以上、又はそれらいずれか2つの値の範囲内であってもよい。本発明の一実施形態において回転の旋回径(回転振幅)は、細胞増殖率の向上、培養後細胞数の向上、又は細胞分散の向上等の観点からは、1~5cmが好ましく、2~3cmが特に好ましい。旋回径は、例えば、0.5、1、1.5、2、2.5、3、3.5、4、4.5、5、10、20、30、40、又は50cmであってもよく、それらいずれか値以上、又はそれらいずれか2つの値の範囲内であってもよい。 As described above, according to the production method of one embodiment of the present invention, it is possible to rotate at a low speed during culture. The rotational speed is preferably low, such as 60 rpm or less, from the viewpoint of improving the cell growth rate, improving the number of cells after culture, or improving cell dispersion. 60 rpm or less is preferably 30 to 60 rpm, particularly preferably 40 to 55 pm. Rotational speeds are, for example, or 200 rpm, or greater than any of those values, or within any two of those values. In one embodiment of the present invention, the rotation frequency is preferably 0.5 to 1.0 Hz, particularly preferably 0.666 to 0.917 Hz, from the viewpoint of improving the cell growth rate, improving the number of cells after culture, or improving cell dispersion. . the frequency may be, for example, 0.02, 0.15, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.3, 1.5, 1.6, 1.67, 2, 2.33, 2.67, 3, or 3.33 Hz; It may be greater than or equal to either of those values, or within a range of any two of those values. In one embodiment of the present invention, the turning diameter (rotational amplitude) of rotation is preferably 1 to 5 cm, preferably 2 to 3 cm, from the viewpoint of improving the cell growth rate, improving the number of cells after culture, or improving cell dispersion. is particularly preferred. The radius of gyration may be, for example, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 10, 20, 30, 40, or 50 cm. May be within any two values.
 低速で回転培養する場合、細胞が沈むことによる酸素環境の悪化を防ぐために、容器中の培地の液面の高さは低い方が好ましい。培地の液面の高さが低いと、培地体積に対する、培地と酸素との接触面積の比率が大きくなり、酸素供給の悪化を防げる。この観点から、容器中の培地の液面の高さは、3cm以下が好ましく、1.5cm以下がより好ましく、1.2cm以下が特に好ましい。液面の高さは、容器の大きさ等に応じて、例えば、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.3、1.5、2、3、4、5、10、又は20cmであってもよく、それらいずれか値以下、又はそれらいずれか2つの値の範囲内であってもよい。また、上記の観点から、容器の高さを1とした場合の、容器中の培地の液面の高さの比率は、0.5以下が好ましく、0.4以下が特に好ましい。この比率は、例えば、0.05、0.1、0.2、0.3、0.4、又は0.5であってもよく、それらいずれか値以下、又はそれらいずれか2つの値の範囲内であってもよい。また、上記の観点から、容器の底面形状の一辺(例えば、縦又は横)の長さを1とした場合の、容器中の培地の液面の高さの比率は、0.2以下が好ましく、0.06以下が特に好ましい。この比率は、例えば、0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.1、0.15、0.2、0.25、又は0.3であってもよく、それらいずれか値以下、又はそれらいずれか2つの値の範囲内であってもよい。 When rotating culture at low speed, it is preferable that the liquid level of the medium in the container is low in order to prevent deterioration of the oxygen environment due to sinking of the cells. When the liquid level of the medium is low, the ratio of the contact area between the medium and oxygen to the medium volume is large, and deterioration of oxygen supply can be prevented. From this point of view, the height of the liquid surface of the medium in the container is preferably 3 cm or less, more preferably 1.5 cm or less, and particularly preferably 1.2 cm or less. Depending on the size of the container, etc., the liquid level is, for example, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.3, 1.5, 2, 3, 4, 5, 10, or 20 cm, less than or within any two of those values. In view of the above, the ratio of the liquid level of the culture medium in the container to the height of the container is preferably 0.5 or less, particularly preferably 0.4 or less. This ratio may be, for example, 0.05, 0.1, 0.2, 0.3, 0.4, or 0.5, less than or within any two of these values. In addition, from the above viewpoint, the ratio of the height of the liquid surface of the medium in the container to the length of one side (e.g., vertical or horizontal) of the bottom shape of the container is preferably 0.2 or less, and 0.06. The following are particularly preferred. This ratio may be, for example, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.1, 0.15, 0.2, 0.25, or 0.3, less than or equal to any of those values, or less than or equal to any two of those values. may be within the range.
 容器中の培地の液面の高さを低く設定する場合、それに併せて、容器の高さも低く設定できる。また、容器の高さを低く設定することによって、複数枚の容器を重ねたときの安定性が向上する。また、容器の高さを低く設定することによって、培養設備(例えば、インキュベーター)内において、より多くの容器を設置でき、大量培養が可能となる。容器を重ねたときの安定性の観点からは、容器の高さは、底面形状の一辺の長さ以下であることが好ましい。また、大量培養のための培地の提供、細胞増殖率の向上、培養後細胞数の向上、又は細胞分散の向上等の観点からは、底面形状の一辺の長さを1とした場合の、高さの比率は0.07~0.35が好ましく、0.08~0.3が特に好ましい。この比率は、例えば、高さは0.05、0.06、0.07、0.08、0.09、0.1、0.12、0.15、0.18、0.2、0.25、0.26、0.3、0.35、0.4、0.5、0.6又は1であってもよく、それらいずれか値以下、又はそれらいずれか2つの値の範囲内であってもよい。ここで、底面形状の一辺は、長辺(最も長い辺)又は短辺(最も短い辺)を含むが、好ましくは短辺である。容器の高さは、例えば、1、1.5、2、2.5、3、3.5、4、5、6、7、8、9、10、20、30、50、80、又は100 cmであってもよく、それらいずれか2つの値の範囲内であってもよい。容器の高さは、例えば、側面の最下部と最上部の間の最短距離で表されてもよい。最下部は、側面と底面が接触する位置であってもよく、最上部は、側面と上面が接触する位置であってもよい。もしくは、高さは、底面と上面の間の最短距離で表されてもよい。もしくは、高さは、容器を側面側から見たときの、容器の最上部から最下部までの長さで表されてもよい。高さは、上面にキャップがある場合は、底面とキャップの最下端の間の最短距離で表されてもよい。 When setting the liquid level of the medium in the container low, the height of the container can also be set low accordingly. In addition, by setting the height of the container low, the stability when stacking a plurality of containers is improved. In addition, by setting the height of the container low, a larger number of containers can be installed in the culture facility (for example, an incubator), enabling mass culture. From the viewpoint of stability when the containers are stacked, the height of the containers is preferably equal to or less than the length of one side of the bottom shape. In addition, from the viewpoint of providing a medium for mass culture, improving the cell growth rate, improving the number of cells after culture, or improving cell dispersion, etc. The thickness ratio is preferably 0.07 to 0.35, particularly preferably 0.08 to 0.3. This ratio may be, for example, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.12, 0.15, 0.18, 0.2, 0.25, 0.26, 0.3, 0.35, 0.4, 0.5, 0.6 or 1 in height, It may be less than or equal to either of those values, or within a range of any two of those values. Here, one side of the bottom shape includes a long side (longest side) or a short side (shortest side), preferably the short side. The container height may be, for example, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9, 10, 20, 30, 50, 80, or 100 cm. , may be within the range of any two of them. The height of the container may, for example, be expressed as the shortest distance between the bottom and top of the sides. The lowermost portion may be the position where the side surfaces and the bottom surface are in contact, and the top portion may be the position where the side surface and the upper surface are in contact. Alternatively, the height may be represented by the shortest distance between the bottom surface and the top surface. Alternatively, the height may be represented by the length from the top to the bottom of the container when viewed from the side. Height may be expressed as the shortest distance between the bottom surface and the bottom edge of the cap if there is a cap on the top surface.
 本発明の一実施形態において容器中の培地の液量は、例えば、4、5、8、10、20、50、60、100、200、300、400、600、800、1000、1500、又は2000mLであってもよく、それらいずれか値以上、又はそれらいずれか2つの値の範囲内の液量であってもよい。本発明の一実施形態において容器中の培地の液量は、例えば、底面積1cm2あたり0.1、0.2、0.3、0.4、0.5、0.6、1、1.5、2、4、6、8、又は10mLであってもよく、それらいずれか値以下、又はそれらいずれか2つの値の範囲内の液量であってもよい。本発明の一実施形態において容器中の培地の充填率は、例えば、20、30、40、50、60、70、80、90、又は95%であってもよく、それらいずれか値以下、又はそれらいずれか2つの値の範囲内の液量であってもよい。充填率は、容器の容積に対する培地の体積の割合で表すことができる。本発明の一実施形態において細胞培養は、例えば、1、5、10、20、24、48、72、96、120、又は150時間実施してもよく、それらいずれか値以下、又はそれらいずれか2つの値の範囲内実施してもよい。細胞培養は、例えば、細胞培養インキュベーター内(例えば、37℃、5%CO2)で実施してもよい。もしくは、従来の細胞培養に使用されている培養条件を適宜選択できる。本発明の一実施形態において培地中の細胞濃度は、例えば、5×107、10×107、30×107、50×107、80×107、100×107、又は150×107個/Lであってもよく、それらいずれか値以上、又はそれらいずれか2つの値の範囲内の液量であってもよい。本発明の一実施形態において培養時間は、例えば、0.25、0.5、1、5、12、24、48、72、96、168、又は240時間であってもよく、それらいずれか値以上、又はそれらいずれか2つの値の範囲内であってもよい。 In one embodiment of the present invention, the volume of the medium in the container is, for example, 4, 5, 8, 10, 20, 50, 60, 100, 200, 300, 400, 600, 800, 1000, 1500, or 2000 mL. or more than any of these values, or within the range of any two of these values. In one embodiment of the present invention, the volume of the medium in the container is, for example, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1, 1.5, 2, 4, 6, 8, or 10 mL per 1 cm 2 of bottom area. It may be less than any of these values, or within any two of those values. In one embodiment of the invention, the fill factor of the medium in the container may be, for example, 20, 30, 40, 50, 60, 70, 80, 90, or 95%, any value below, or The liquid volume may be within the range of any two of these values. The fill factor can be expressed as the ratio of medium volume to container volume. In one embodiment of the invention, the cell culture may be performed, for example, for 1, 5, 10, 20, 24, 48, 72, 96, 120, or 150 hours, any of these values or less, or any of them. A range of two values may be implemented. Cell culture may be performed, for example, in a cell culture incubator (eg, 37° C., 5% CO 2 ). Alternatively, culture conditions used in conventional cell culture can be appropriately selected. In one embodiment of the invention the cell concentration in the medium is, for example, 5 x 107 , 10 x 107 , 30 x 107 , 50 x 107 , 80 x 107 , 100 x 107 , or 150 x 10 It may be 7 /L, or it may be any value or more, or the liquid amount may be within the range of any two of these values. In one embodiment of the present invention, the culture time may be, for example, 0.25, 0.5, 1, 5, 12, 24, 48, 72, 96, 168, or 240 hours, or May be within any two values.
 本発明の一実施形態において容器は、開口部を備えていてもよい。開口部は、容器の上面、側面、又は底面にあってもよい。開口部を通じて、生体試料(細胞等)又は培地を、容器外の空間から容器内の空間へ注入することができる。開口部は、円筒型の構造又は水平断面が円型の構造を有していてもよい。開口部は、ポート又はキャップを備えていてもよい。ポートは、容器内の空間と、容器外の空間を連通する構造(例えば、円筒型の構造)を有していてもよい。キャップは、ポートを覆うことによって、容器内の空間と、容器外の空間を遮断する構造を有していてもよい。キャップは、開口部を封止することで、容器内部を密封することができる。キャップは、例えば、円筒型の構造であって、上端面又は下端面の一方が閉じた構造をしていてもよい。キャップは、例えば、スクリューキャップであってもよい。開口部は、例えば、上面又は側面の外側の四角型の形状の四隅に位置していてもよい。開口部は、例えば、上面又は側面の外側の四角型の形状の対角線上に位置してもよい。開口部が円筒型の構造又は水平断面が円型の構造を有している場合、その円の中心軸は、例えば、上面又は側面の外側の四角型の形状の対角線上に位置してもよい。開口部を上面に設置する場合、その数は、特に4個が好ましい。この場合、後述の図16に示すように複数の容器を安定して重ねることが可能になる、又は回転揺動するときに重心の偏りが出にくい。開口部を側面に設置する場合、その数は、特に1個又は2個が好ましい。この場合、後述の図20に示すように容器をそのまま重ねることが可能であり、且つ培養面積を多く確保できる。開口部の数は、例えば、1、2、3、4、5、6、7、又は8個であってもよく、それらいずれか2つの値の範囲内の数であってもよい。開口部を複数設置することで、一方の開口部から培地を入れ、他方の開口部から培地を抜くことが可能になる。開口部の高さは、例えば、1、2、2.5、3、3.5、4、5、又は10cmであってもよく、それらいずれか2つの値の範囲内であってもよい。開口部の高さは、開口部が接触している面側を下端として測定してもよい。開口部が円筒型の構造の場合、その直径は、例えば、1、2、2.5、3、3.5、4、5、又は10cmであってもよく、それらいずれか2つの値の範囲内であってもよい。開口部の直径と、底面形状の一辺(例えば、縦又は横)の長さの比は、底面形状の一辺を1とした場合、例えば、直径は0.05、0.1、0.11、0.115、0.12、0.125、0.13、0.135、0.14、0.145、又は0.15であってもよく、それらいずれか値以下、又はそれらいずれか2つの値の範囲内であってもよい。以上又は以下に記載の容器の底面、側面、又は上面の形状、長さ又は比率は、容器の内側(容器内の空間に接する側、又は容器内の培地を収容する側)の形状、長さ又は比率に適用してもよい。例えば、容器の底面が四角型の形状であるという記載は、容器の内側底面が四角型の形状をしていることを含む。 In one embodiment of the present invention, the container may have an opening. The opening may be in the top, side, or bottom of the container. A biological sample (such as cells) or a culture medium can be injected from the space outside the container into the space inside the container through the opening. The opening may have a cylindrical structure or a circular structure in horizontal cross-section. The opening may have a port or a cap. The port may have a structure (for example, a cylindrical structure) that communicates the space inside the container with the space outside the container. The cap may have a structure that blocks the space inside the container from the space outside the container by covering the port. The cap can seal the inside of the container by sealing the opening. The cap may have, for example, a cylindrical structure with one of the upper end surface and the lower end surface closed. The cap may be, for example, a screw cap. The openings may be located, for example, at the four corners of the outer quadrangular shape on the top or sides. The openings may, for example, be located on the diagonals of the outer quadrangular shape on the top or sides. If the opening has a cylindrical structure or a structure with a circular horizontal cross-section, the central axis of the circle may, for example, be located on the diagonal of the outer square shape of the top surface or side surface. . When openings are provided on the upper surface, the number of openings is preferably four. In this case, as shown in FIG. 16, which will be described later, it is possible to stably stack a plurality of containers, or the center of gravity is less likely to be biased when rotating and rocking. When openings are provided on the sides, the number of openings is preferably one or two. In this case, as shown in FIG. 20, which will be described later, the containers can be stacked as they are, and a large culture area can be secured. The number of openings may be, for example, 1, 2, 3, 4, 5, 6, 7, or 8, or any number between any two of these values. By providing a plurality of openings, it becomes possible to put the culture medium through one opening and remove the culture medium from the other opening. The height of the opening may be, for example, 1, 2, 2.5, 3, 3.5, 4, 5, or 10 cm, or within any two of these values. The height of the opening may be measured with the surface side in contact with the opening as the lower end. If the opening is a cylindrical structure, its diameter may be, for example, 1, 2, 2.5, 3, 3.5, 4, 5, or 10 cm and within any two of these values. good too. The ratio of the diameter of the opening to the length of one side (e.g., vertical or horizontal) of the bottom shape is 0.05, 0.1, 0.11, 0.115, 0.12, 0.125, when one side of the bottom shape is 1. It may be 0.13, 0.135, 0.14, 0.145, or 0.15, less than or within any two of those values. The shape, length, or ratio of the bottom, side, or top surface of the container described above or below is the shape and length of the inside of the container (the side that contacts the space in the container, or the side that accommodates the culture medium in the container). or may be applied to ratios. For example, a statement that the bottom surface of the container has a square shape includes that the inner bottom surface of the container has a square shape.
 本発明の一実施形態において容器の底面の面積は、例えば、1、4、9、25、50、100、500、1000、2500、5000、又は10000cm2であってもよく、それらいずれか2つの値の範囲内の数であってもよい。本発明の一実施形態において容器の底面と側面は、略直角に位置していてもよい。底面と側面は、直接繋がって角を形成してもよく、又は接続部(例えば、直線状又は弧形状)を介して繋がってもよい。接続部は、容器を側面側からみたときに、底面の直線部及び側面の直線部の間にある部分であって、底面の直線部の延長線上に存在せず、底面の直線部の延長線上にも存在しない部分を含む。接続部は、容器を側面側からみたときに2つ視認できる。容器を側面側からみたときの底面の直線部の長さは、2つの接続部の長さの合計の20、30、40、50、75、100、150、200、300、又は500倍であってもよく、それらいずれか値以上、又はそれらいずれか2つの値の範囲内であってもよい。側面側は、いずれかの側面側、又は4つの側面側を含む。接続部が弧形状の場合、曲線半径Rは、細胞分散の向上の観点からは小さいことが好ましく、例えば、0.5cm以下が好ましく、0.3cm以下が特に好ましい。曲線半径は、例えば、0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、又は0.9cmであってもよく、それらいずれか値以下、又はそれらいずれか2つの値の範囲内であってもよい。曲線半径は、容器を側面側から見たときに、底面と側面が繋がる曲線部の曲線半径であってもよい。曲線半径は、例えば、曲線部内で曲線半径が最も小さい位置における曲線半径である。上面と側面は、直接繋がって角を形成してもよく、又は接続部(例えば、直線状又は弧形状)を介して繋がってもよい。側面と別の側面は、直接繋がって角を形成してもよく、又は接続部(例えば、直線状又は弧形状)を介して繋がってもよい。 In one embodiment of the invention, the area of the bottom of the container may be, for example, 1, 4, 9, 25, 50, 100, 500, 1000, 2500, 5000, or 10000 cm 2 , any two of which It can be any number within a range of values. In one embodiment of the present invention, the bottom and side surfaces of the container may be positioned at substantially right angles. The bottom and side surfaces may be directly connected to form an angle, or may be connected via a connection (eg, linear or arc-shaped). The connecting part is the part between the straight part of the bottom surface and the straight part of the side surface when the container is viewed from the side, which is not on the extension of the straight part of the bottom but on the extension of the straight part of the bottom. contains parts that do not exist in Two connections are visible when the container is viewed from the side. The length of the straight part of the bottom when viewing the container from the side shall be 20, 30, 40, 50, 75, 100, 150, 200, 300, or 500 times the total length of the two joints. may be greater than or equal to any of those values, or within any two of those values. A lateral side includes any lateral side or four lateral sides. When the connecting portion is arc-shaped, the curve radius R is preferably small from the viewpoint of improving cell dispersion, for example, preferably 0.5 cm or less, and particularly preferably 0.3 cm or less. The curve radius may be, for example, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, or 0.9 cm, below any of those values, or within any two of those values. There may be. The curve radius may be the curve radius of the curved portion connecting the bottom surface and the side surface when the container is viewed from the side surface. The curve radius is, for example, the curve radius at the position where the curve radius is the smallest within the curve portion. The top and side surfaces may be directly connected to form an angle, or may be connected via a connection (eg, straight or arc-shaped). The side and another side may be directly connected to form an angle, or may be connected via a connection (eg, straight or arc-shaped).
 本発明の一実施形態において容器の構成材料は、例えば、合成樹脂、天然樹脂、又はガラス等を含む。合成樹脂は、例えば、ポリスチレン樹脂、ポリプロピレン樹脂、ポリエチレン樹脂等を含む。透明の材質を使用することで、培養状況を外部から観察できる。容器の材質は、従来の培養容器に使用されている材質を適宜使用できる。本発明の一実施形態において容器の内面は、細胞非接着性樹脂で構成されている、又は細胞の接着防止剤でコーティングされていてもよい。本発明の一実施形態において容器は、金型成形技術、3Dプリントなどによって製造してもよい。 In one embodiment of the present invention, the constituent material of the container includes, for example, synthetic resin, natural resin, or glass. Synthetic resins include, for example, polystyrene resins, polypropylene resins, polyethylene resins, and the like. By using a transparent material, the culture conditions can be observed from the outside. Materials used for conventional culture vessels can be used as appropriate for the material of the vessel. In one embodiment of the present invention, the inner surface of the container may be composed of a cell non-adhesive resin or coated with a cell anti-adhesion agent. In one embodiment of the invention, the container may be manufactured by molding techniques, 3D printing, or the like.
 容器の一例として、第一の容器を図13に示す。この容器は、底面1及び上面2が正方形型の形状をしている。側面3は、長方形型の形状をしている。上面2には、4つの開口部4が付いている。開口部4が上面2に設置されているため、培地がこぼれにくく、培地交換や細胞回収の操作性に優れる。開口部4は、内部にポート6が存在し、それを覆うようにスクリューキャップ5が設置されている。開口部4は、上面2の四隅に位置する。容器の内部には、底面1、上面2及び側面3に囲まれ、培地を収容可能な内部空間を有する。底面1の一辺の長さL1は、23~28cmが特に好ましい。容器の高さL2は、2.5~3cmが特に好ましい。開口部4の高さL3は、2.5~3cmが特に好ましい。開口部4の直径L4は、3cmが特に好ましい。 Fig. 13 shows the first container as an example of a container. The container has a square bottom 1 and top 2 shape. Side 3 has a rectangular shape. The top surface 2 is provided with four openings 4. Since the opening 4 is provided on the upper surface 2, the medium is less likely to spill, and the operability of medium replacement and cell collection is excellent. The opening 4 has a port 6 inside, and a screw cap 5 is installed so as to cover it. The openings 4 are located at the four corners of the upper surface 2. As shown in FIG. The container has an internal space surrounded by a bottom surface 1, a top surface 2 and a side surface 3 and capable of containing a culture medium. The length L1 of one side of the bottom surface 1 is particularly preferably 23 to 28 cm. The height L2 of the container is particularly preferably 2.5-3 cm. The height L3 of the opening 4 is particularly preferably 2.5-3 cm. A diameter L4 of the opening 4 is particularly preferably 3 cm.
 図14及び15に第一の容器の正面図(14A)、背面図(14B)、平面図(14C)、底面図(14D)、右側面図(14E)、左側面図(14F)、A-A断面図(14G)、斜視図(14H)、スクリューキャップを外した状態の正面図(15A)、スクリューキャップを外した状態の背面図(15B)、スクリューキャップを外した状態の平面図(15C)、スクリューキャップを外した状態の底面図(15D)、スクリューキャップを外した状態の右側面図(15E)、スクリューキャップを外した状態の左側面図(15F)、スクリューキャップを外した状態のA-A断面図(15H)、スクリューキャップを外した状態の斜視図(15I)、及びスクリューキャップを外した状態の透明状態を示す参考斜視図(15J)を示す。 14 and 15 show the front view (14A), rear view (14B), top view (14C), bottom view (14D), right side view (14E), left side view (14F), and cross section A-A of the first container. Figure (14G), perspective view (14H), front view with screw cap removed (15A), rear view with screw cap removed (15B), plan view with screw cap removed (15C), Bottom view with the screw cap removed (15D), right side view with the screw cap removed (15E), left side view with the screw cap removed (15F), cross section A-A with the screw cap removed A view (15H), a perspective view (15I) with the screw cap removed, and a reference perspective view (15J) showing a transparent state with the screw cap removed are shown.
 第一の容器は、複数枚を重ねて使用できる。一例として、第一の容器を4つ重ねた状態を図16に示す。各容器は互いに45度の角度でずれた状態で重なっている。容器を互いに45度の角度でずらして重ねることで、容器を重ねる際の開口部4の高さの分の嵩張りを無くして省スペース化することができる。例えば、側面3が2.5cm、開口部4が2.5cm(即ち、側面3及び開口部4を合わせた高さが5cm)の容器2枚を45度ずらさずに重ね合わせると、2枚で10cmの高さになるが、45度ずらすと、7.5センチになる。この場合、2.5cm分の省スペース化が可能となる。さらに、容器10枚を重ね合わせた場合、そのままでは5x10=50cmの高さになるが、45度ずらして重ね合わせると、2.5x10+2.5=27.5cmになる。この場合、22.5cmの省スペース化が可能となる。従って、多くの容器を積み重ねることで、省スペース化の効果がより大きくなる。重ねる容器の数が増えても、重ねた容器の長さL5は変化しないため、重ねた容器の奥行き及び幅に依存する占有面積を最小限に抑えつつ、省スペース化を実現できる。重ねた容器の長さL5は、容器の底面1の一辺の長さL1×√2で求めてもよい。さらに、上側の容器の四隅を下側の容器の開口部4の間にはめ込むことができ、重ねた容器が培養時の揺動によってずれて崩れるのを防止することができる。即ち、開口部4がストッパーとして機能することで、培養時の容器の安定性が向上する。容器を重ねる場合、容器の数は、例えば、2、3、4、5、6、8、10、20、30、40、又は50枚であってもよく、それらいずれか値以上、又はそれらいずれか2つの値の範囲内であってもよい。多くの容器を積み重ねることによって、大規模の培養を行うことができる。図17に第一の容器を4つ重ねた状態の正面図を示す。図18に第一の容器を2つ重ねた状態のイメージ写真を示す。 The first container can be used by stacking multiple sheets. As an example, FIG. 16 shows a state in which four first containers are stacked. Each container is stacked on top of each other at an angle of 45 degrees. By stacking the containers while shifting them at an angle of 45 degrees, the bulkiness corresponding to the height of the opening 4 when stacking the containers can be eliminated, and space can be saved. For example, if two containers with sides 3 of 2.5 cm and openings 4 of 2.5 cm (that is, the total height of sides 3 and openings 4 is 5 cm) are placed on top of each other without shifting by 45 degrees, the two containers will have a width of 10 cm. The height is 7.5 cm when shifted by 45 degrees. In this case, it is possible to save space by 2.5 cm. Furthermore, when 10 containers are piled up, the height is 5x10=50cm as it is. In this case, 22.5 cm of space can be saved. Therefore, by stacking a large number of containers, the space saving effect is further increased. Since the length L5 of the stacked containers does not change even if the number of stacked containers increases, space can be saved while minimizing the occupied area that depends on the depth and width of the stacked containers. The length L5 of the stacked containers may be calculated by L1×√2, the length of one side of the bottom surface 1 of the container. Furthermore, the four corners of the upper container can be fitted between the openings 4 of the lower container, and the stacked containers can be prevented from slipping and collapsing due to rocking during culturing. That is, since the opening 4 functions as a stopper, the stability of the container during culture is improved. When stacking containers, the number of containers may be, for example, 2, 3, 4, 5, 6, 8, 10, 20, 30, 40, or 50. or within the range of two values. Large scale cultures can be performed by stacking many vessels. FIG. 17 shows a front view of a state in which four first containers are stacked. FIG. 18 shows an image photograph of a state in which two first containers are stacked.
 容器の一例として、第二の容器を図19に示す。この容器は、底面101及び上面102が正方形型の形状をしている。側面103は、長方形型の形状をしている。側面には、1つの開口部104が付いている。開口部104は、内部にポートが存在し、それを覆うようにスクリューキャップ105が設置されている。開口部104は、側面103上であって、上面102側の一つの隅に位置する。これにより、デカントがしやすくなる。容器の内部には、底面101、上面102及び側面103に囲まれ、培地を収容可能な内部空間を有する。第二の容器はクリーンベンチの培地交換時に横向きに立てられるため、同時複数枚の作業がしやすい。底面101の一辺の長さL101は、23~40cmが特に好ましい。容器の高さL102は、5~6cmが特に好ましい。開口部104の高さL103は、2.5~3cmが特に好ましい。開口部104の直径L104は、3cmが特に好ましい。容器の側面103における、開口部104の下端から底面101までの距離L105は、2.5~3cmが特に好ましい。もしくは、距離L105は、容器の高さL102から開口部104の直径の長さ104を引くことで求めてもよい。 Fig. 19 shows the second container as an example of the container. The container has a square bottom 101 and top 102 shape. Side 103 has a rectangular shape. The side has one opening 104 . The opening 104 has a port inside and a screw cap 105 is installed to cover it. The opening 104 is located on the side surface 103 and at one corner on the top surface 102 side. This makes decanting easier. The inside of the container has an internal space surrounded by a bottom surface 101, a top surface 102 and a side surface 103 and capable of containing a culture medium. The second container can be set up sideways when changing the medium on the clean bench, making it easy to work with multiple plates at the same time. A side length L101 of the bottom surface 101 is particularly preferably 23 to 40 cm. The height L102 of the container is particularly preferably 5-6 cm. The height L103 of the opening 104 is particularly preferably 2.5-3 cm. A diameter L104 of the opening 104 is particularly preferably 3 cm. A distance L105 from the lower end of the opening 104 to the bottom surface 101 on the side surface 103 of the container is particularly preferably 2.5 to 3 cm. Alternatively, the distance L105 may be determined by subtracting the length 104 of the diameter of the opening 104 from the container height L102.
 第二の容器は、複数枚を重ねて使用できる。一例として、第二の容器を4つ重ねた状態を図20に示す。第二の容器は、開口部104が側面103に設置されているため、容器を重ねる場合に、容器をそのまま重ねることが可能となり、培養面積を多く確保できる。容器を重ねる場合、容器の数は、例えば、2、3、4、5、6、8、10、20、30、40、又は50枚であってもよく、それらいずれか値以上、又はそれらいずれか2つの値の範囲内であってもよい。多くの容器を積み重ねることによって、大規模の培養を行うことができる。 The second container can be used by stacking multiple sheets. As an example, FIG. 20 shows a state in which four second containers are stacked. Since the second container has the opening 104 provided on the side surface 103, when the containers are stacked, the containers can be stacked as they are, and a large culture area can be secured. When stacking containers, the number of containers may be, for example, 2, 3, 4, 5, 6, 8, 10, 20, 30, 40, or 50. or within the range of two values. Large scale cultures can be performed by stacking many vessels.
 本発明の一実施形態は、培養容器であって、底面、上面、及び側面を備え、底面は、正方形型の形状であり、上面は開口部を備える、培養容器である。上面は、正方形型の形状であり、開口部は、上面の隅(例えば、一~四隅)に位置してもよい。開口部は、凸部を形成してもよい。他の実施形態は、培養容器であって、底面、上面、及び側面を備え、底面は、四角型の形状であり、側面は、上面側に開口部を備える、培養容器である。上面は、正方形型の形状であってもよい。開口部は、側面の上面側の隅(例えば、一~二隅)に位置してもよい。開口部は、面上で凸部を形成してもよい。他の実施形態は、培養容器であって、培地収容部、蓋部を備え、培地収容部の底面は、四角型の形状である、浮遊培養容器である。培地収容部は、底面及び側面を備えてもよい。培地収容部の側面は4つであってもよい。蓋部は、四角型の形状であってもよい。他の実施形態は、複数個の培養容器が積み重なった形態を有する、多重容器である。多重容器は、容器毎に培地注入、培地交換等の作業を行えるため操作性に優れ、且つ大量培養に適している。容器の数は、例えば、2、3、4、5、6、8、10、20、30、40、又は50個であってもよく、それらいずれか値以上、又はそれらいずれか2つの値の範囲内であってもよい。各培養容器は、容器毎の中心軸は同じ位置に存在する一方で、容器全体は互いに45度の角度でずれた状態で重なってもよい。ここで、中心軸は、底面の四角型の形状における対角線が交わる点を中心とし、その中心から水平面に垂直な方向へ伸ばした線であってもよい。互いに45度の角度でずれた状態は、複数の容器を角度をずらさずに重ねた状態から、一番下から偶数番目の容器を中心軸を軸にして45度回し、一番下から奇数番目の容器の上面と、一番下から偶数番目の容器の底面を接触させたときに形成される状態を意味してもよい。他の実施形態は、第一の容器の上に、第二の容器が位置する、多重容器である。他の実施形態は、複数個の培養容器が積み重なった多重容器であって、最下段の培養容器の上面と、他の培養容器の底面が接触している、多重容器である。本発明の一実施形態において、培養容器は、細胞の水平回転培養に使用する容器(水平回転細胞培養容器)であることが好ましい。以上の培養容器及び多重容器の実施形態は、上述の容器の実施形態に列挙した数値及び構成をいずれも採用できる。 An embodiment of the present invention is a culture vessel comprising a bottom surface, a top surface and side surfaces, the bottom surface being square shaped and the top surface comprising an opening. The top surface may be square-shaped and the openings may be located at the corners (eg, one to four corners) of the top surface. The opening may form a protrusion. Another embodiment is a culture vessel comprising a bottom surface, a top surface and a side surface, the bottom surface being rectangular in shape and the side surface comprising an opening on the top side. The top surface may be square shaped. The openings may be located at corners (eg, one or two corners) on the top side of the side surface. The opening may form a convexity on the surface. Another embodiment is a culture vessel, which is a floating culture vessel comprising a medium containing portion, a lid, and a bottom surface of the medium containing portion having a square shape. The medium containing portion may have a bottom surface and side surfaces. The medium containing portion may have four sides. The lid may have a square shape. Another embodiment is a multi-vessel having a configuration in which multiple culture vessels are stacked. The multi-vessel is excellent in operability and suitable for large-scale culture because operations such as medium injection and medium exchange can be performed for each vessel. The number of containers may be, for example, 2, 3, 4, 5, 6, 8, 10, 20, 30, 40, or 50, any value greater than or equal to any two values. may be within the range. The culture vessels may be overlapped with the central axis of each vessel at the same position, while the entire vessel is shifted at an angle of 45 degrees with respect to each other. Here, the central axis may be a line extending in a direction perpendicular to the horizontal plane from the point where the diagonal lines of the quadrangular bottom surface intersect as the center. The state in which the angle is 45 degrees to each other is obtained by stacking multiple containers without shifting the angle, turning the even-numbered container from the bottom 45 degrees around the central axis, and then placing the odd-numbered container from the bottom. and the bottom surface of even-numbered containers from the bottom are brought into contact with each other. Another embodiment is a multiple container with a second container above the first container. Another embodiment is a multiple vessel in which a plurality of culture vessels are stacked, and the top surface of the bottom culture vessel is in contact with the bottom surface of another culture vessel. In one embodiment of the present invention, the culture vessel is preferably a vessel used for horizontally rotating cell culture (horizontal rotating cell culture vessel). The embodiments of the culture vessel and multiple vessels described above can employ any of the numerical values and configurations listed in the embodiments of the vessels described above.
 本発明の一実施形態は、培地収容部と、回転部を備える、細胞培養装置である。この装置は、培地収容部と、培地収容部を水平回転させる回転部を含み、培地収容部は、底面形状が四角型の形状である、細胞培養装置であってもよい。培地収容部は、培地及び細胞を収容していてもよい。培地収容部は、底面、側面、及び上面を有していてもよく、内部に閉鎖系の空間を有してもよい。培地収容部は、開口部を備えていてもよい。開口部は、培地収容部内の空間と、容器外の空間を連通する構造(例えば、筒状構造)を有していてもよい。開口部を通じて、生体試料(細胞等)又は培地を、容器外の空間から容器内の空間へ注入することができる。培地収容部は、培養容器であってもよい。以上の培地収容部及び開口部のサイズ、形状等は、上述の容器の実施形態に列挙した数値及び構成をいずれも採用できる(このとき、培地収容部は容器に読み替えてもよい)。回転部は、培地収容部を回転するように構成されていてもよい。回転部は、培地収容部を載せることが可能な台部を有していてもよい。台部は、水平面に対して平行に位置していてもよい。水平面に対して垂直な方向で、台部と培養容器が接触してもよい。台部は、容器を載せた状態で旋回してもよい。培地収容部は、台部の上に1個又は複数個設置されてもよい。複数個は、例えば、2、4、6、8、10、20、30、40、50、又は100個であってもよく、それらいずれか値以上、又はそれらいずれか2つの値の範囲内であってもよい。台部上の複数個の培地収容部は、積み重ならずに配置されてもよく、積み重なって配置されてもよい。回転部の回転の速度、旋回径等は、上述の実施形態に列挙した数値及び構成をいずれも採用できる。 One embodiment of the present invention is a cell culture device that includes a medium storage section and a rotating section. The apparatus may be a cell culture apparatus including a medium containing section and a rotation section for horizontally rotating the medium containing section, and the medium containing section having a square bottom shape. The medium containing section may contain the medium and the cells. The culture medium containing part may have a bottom surface, a side surface, and an upper surface, and may have a closed space inside. The medium container may have an opening. The opening may have a structure (for example, a cylindrical structure) that communicates the space inside the culture medium container with the space outside the container. A biological sample (such as cells) or a culture medium can be injected from the space outside the container into the space inside the container through the opening. The culture medium container may be a culture vessel. For the size, shape, etc. of the medium containing portion and the opening, any of the numerical values and configurations listed in the embodiment of the container described above can be adopted (in this case, the medium containing portion may be read as a container). The rotating portion may be configured to rotate the medium containing portion. The rotating part may have a platform on which the medium containing part can be placed. The platform may be positioned parallel to the horizontal plane. The platform and the culture vessel may contact each other in a direction perpendicular to the horizontal plane. The pedestal may be swiveled with the container on it. One or a plurality of culture medium storage units may be installed on the platform. The plurality may be, for example, 2, 4, 6, 8, 10, 20, 30, 40, 50, or 100, any value greater than or equal to any two of these values. There may be. A plurality of medium storage units on the platform may be arranged without stacking or may be stacked. As for the speed of rotation of the rotating portion, the radius of gyration, etc., any of the numerical values and configurations listed in the above-described embodiments can be adopted.
 本発明の一実施形態は、容器と回転装置を備える、細胞培養装置である。容器は、底面形状が四角型の形状であってもよい。回転装置は、水平回転装置又は旋回装置であってもよい。回転装置は、容器を載せるための台部を備えていてもよい。 One embodiment of the present invention is a cell culture device comprising a container and a rotating device. The container may have a square bottom shape. The rotating device may be a horizontal rotating device or a pivoting device. The rotator may have a platform on which the container is placed.
 本発明の一実施形態は、細胞培養容器であって、浮遊培養用培地(例えば、液体培地)を収容し、底面形状が四角型の形状である、細胞培養容器である。他の実施形態は、細胞培養容器であって、底面形状が四角型の形状であり、浮遊細胞を収容し、浮遊細胞は容器の水平回転揺動に伴って揺動している、細胞培養容器である。他の実施形態は、細胞及び培地を収容する容器を水平回転させる工程を含み、容器の底面形状は四角型の形状である、細胞の培養方法である。他の実施形態は、底面形状が四角型の形状である容器の、細胞培養(例えば、水平回転培養)における使用である。他の実施形態は、細胞及び培地を収容する容器を回転させる工程を含み、容器の底面形状は四角型の形状である、細胞の生産方法である。他の実施形態は、細胞及び培地を収容する容器を水平回転させる工程を含む、細胞の生産方法である。他の実施形態は、細胞及び培地を収容する容器を水平回転させる工程を含み、容器の底面形状は四角型の形状である、細胞懸濁液の生産方法である。四角型の形状の容器を水平回転することによる細胞培養方法は、中央に細胞が集まらず接着しにくい特性がある。そのため、例えば、容器中で細胞培養しながら細胞シートを作製する方法はこの培養方法から除外されてもよい。 An embodiment of the present invention is a cell culture vessel that contains a suspension culture medium (eg, liquid medium) and has a square bottom shape. Another embodiment is a cell culture vessel, which has a square bottom shape, accommodates floating cells, and the floating cells oscillate as the vessel horizontally rotates and oscillates. is. Another embodiment is a method for culturing cells, including the step of horizontally rotating a container containing cells and a culture medium, wherein the bottom shape of the container is square. Another embodiment is the use of a vessel with a square bottom shape in cell culture (eg, horizontal rotary culture). Another embodiment is a method for producing cells, comprising rotating a container containing cells and a medium, wherein the bottom shape of the container is square. Another embodiment is a method of producing cells, comprising horizontally rotating a container containing cells and medium. Another embodiment is a method for producing a cell suspension, comprising the step of horizontally rotating a container containing cells and a culture medium, wherein the bottom shape of the container is square. The cell culture method in which a rectangular container is horizontally rotated has the characteristic that the cells do not gather in the center and are difficult to adhere. Therefore, for example, a method of producing a cell sheet while culturing cells in a vessel may be excluded from this culture method.
 本発明の一実施形態は、底面、側面、上面を有する容器であって、4つの側面(第一~第四の側面)を備え、第一の側面及び第三の側面は平行関係にあり、第二の側面及び第四の側面は平行関係にある、容器。第一の側面及び第二の側面は接していてもよく、第一の側面及び第四の側面は接していてもよい。第二の側面及び第三の側面は接していてもよく、第三の側面及び第四の側面は接していてもよい。4つの側面は、下端で底面と接し、上端で上面と接していてもよい。 An embodiment of the present invention is a container having a bottom, a side and a top, comprising four sides (first to fourth sides), the first side and the third side being in parallel relationship, The container, wherein the second side and the fourth side are in parallel relationship. The first side and the second side may be in contact, and the first side and the fourth side may be in contact. The second side and the third side may be in contact, and the third side and the fourth side may be in contact. The four sides may be in contact with the bottom surface at the bottom and the top surface at the top.
 本発明の一実施形態は、細胞及び培地を収容する容器を水平回転させる工程を含み、容器の底面形状は四角型の形状である、細胞の分散方法である。細胞が分散すると、細胞に栄養が行き渡りやすくなる。また、シェアストレスが小さくなり、細胞生存率が向上する。 One embodiment of the present invention is a method for dispersing cells, which includes the step of horizontally rotating a container containing cells and a culture medium, and the bottom surface of the container has a square shape. Dispersion of cells facilitates the distribution of nutrients to the cells. In addition, shear stress is reduced and cell viability is improved.
 本発明の一実施形態は、細胞及び酵素液を収容する容器を水平回転させる工程を含み、容器の底面形状は四角型の形状である、細胞の酵素処理方法である。この方法によれば、処理後生細胞率の向上、処理後細胞数の向上、又は処理中シェアストレスの低下の少なくとも1つの観点から、優れた酵素処理を実現し得る。上記酵素液は、例えば、蛋白質分解酵素を含む溶液であってもよい。この溶液は、例えば、細胞塊又は接着細胞を単一細胞に分散させる溶液を含む。この溶液は、例えば、TrypLE Select(ギブコ12563-011)、トリプシン溶液、アキュターゼ溶液、コラゲナーゼ溶液を含む。酵素液とともに収容される細胞は、例えば、細胞塊、又はプラスチック素材と接着した細胞であってもよい。この方法は、例えば、細胞を浮遊培養する工程、細胞と酵素液を接触させる工程、細胞と酵素液を含む懸濁液を調製する工程、又は容器内の培地を酵素液で置換する工程を含んでもよい。懸濁液中の酵素の含有量は、細胞分散における有効量であってもよい。上記の酵素処理は、例えば、細胞の分散処理を含む。以上の酵素処理方法の実施形態は、上述の細胞の生産方法の実施形態に列挙した数値、構成(例えば、細胞等)、及び工程をいずれも採用できる。例えば、細胞は、幹細胞(例えば、iPS細胞又は間葉系幹細胞)を含む。 One embodiment of the present invention is a method for enzymatic treatment of cells, which includes the step of horizontally rotating a container containing cells and an enzyme solution, and the bottom shape of the container is square. According to this method, an excellent enzymatic treatment can be achieved from at least one viewpoint of improving the viable cell rate after treatment, improving the number of cells after treatment, or reducing shear stress during treatment. The enzyme solution may be, for example, a solution containing a proteolytic enzyme. This solution includes, for example, a solution that disperses cell clumps or adherent cells into single cells. This solution includes, for example, TrypLE Select (Gibco 12563-011), trypsin solution, accutase solution, collagenase solution. The cells contained together with the enzyme solution may be, for example, cell aggregates or cells adhered to plastic material. This method includes, for example, a step of suspension culture of cells, a step of contacting the cells with an enzyme solution, a step of preparing a suspension containing the cells and the enzyme solution, or a step of replacing the medium in the container with the enzyme solution. It's okay. The content of enzyme in the suspension may be an effective amount for cell dispersion. The enzymatic treatment includes, for example, dispersing treatment of cells. The embodiment of the enzyme treatment method described above can employ any of the numerical values, configurations (eg, cells, etc.), and steps listed in the embodiment of the cell production method described above. For example, cells include stem cells (eg, iPS cells or mesenchymal stem cells).
 本発明の一実施形態は、細胞酵素処理装置であって、培地収容部と、培地収容部を水平回転させる回転部を含み、その培地収容部は、底面形状が四角型の形状である、細胞酵素処理装置が提供される。この装置を用いれば、処理後生細胞率の向上、処理後細胞数の向上、又は処理中シェアストレスの低下の少なくとも1つの観点から、優れた酵素処理を実現し得る。この細胞酵素処理装置の実施形態は、上述の細胞培養装置の実施形態、又は酵素処理方法の実施形態に列挙した数値及び構成をいずれも採用できる。 One embodiment of the present invention is an apparatus for treating cells with enzymes, which includes a medium container and a rotating part that horizontally rotates the medium container, and the medium container has a square bottom shape. An enzyme treatment device is provided. Using this device, excellent enzymatic treatment can be achieved from at least one viewpoint of improving post-treatment viability, improving post-treatment cell number, or reducing shear stress during treatment. This embodiment of the cell enzyme treatment device can adopt any of the numerical values and configurations listed in the above-described embodiments of the cell culture device or the embodiment of the enzyme treatment method.
 本発明の一実施形態は、水平回転細胞酵素処理容器であって、底面、上面、及び側面を備え、底面は正方形型の形状であり、上面は1~4個の開口部を備える、水平回転細胞酵素処理容器が提供される。この容器は、容器を水平回転させた状態で細胞を酵素処理するために使用される。この容器を用いれば、処理後生細胞率の向上、処理後細胞数の向上、又は処理中シェアストレスの低下の少なくとも1つの観点から、優れた酵素処理を実現し得る。この水平回転細胞酵素処理容器の実施形態は、上述の容器の実施形態、又は酵素処理方法の実施形態に列挙した数値及び構成をいずれも採用できる。 One embodiment of the present invention is a horizontal rotary cell enzyme treatment vessel comprising a bottom, a top and a side, the bottom being square-shaped and the top comprising 1-4 openings. A cellular enzyme treatment vessel is provided. This vessel is used for enzymatic treatment of cells with the vessel rotated horizontally. By using this container, an excellent enzymatic treatment can be achieved in terms of at least one of improving the post-treatment viable cell rate, improving the post-treatment cell count, and reducing shear stress during treatment. This embodiment of the horizontally rotating cell enzymatic treatment container can employ any of the numerical values and configurations listed in the above embodiments of the container or the enzymatic treatment method.
 本明細書において「又は」は、文章中に列挙されている事項の「少なくとも1つ以上」を採用できるときに使用される。「もしくは」も同様である。本明細書において「2つの値の範囲内」と明記した場合、その範囲には2つの値自体も含む。本明細書において「A~B」は、A及びBを含む。 In this specification, "or" is used when "at least one or more" of the items listed in the sentence can be adopted. The same applies to "or". When "within a range of two values" is stated herein, the range includes the two values themselves. As used herein, "AB" includes A and B.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。即ち、本発明の実施形態は、上述の列挙された数値や化合物等に限定されない。また、上記実施形態に記載の構成を組み合わせて採用することもできる。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than those described above can also be adopted. That is, embodiments of the present invention are not limited to the numerical values, compounds, etc. listed above. Moreover, it is also possible to employ a combination of the configurations described in the above embodiments.
 以下、実施例によりさらに説明するが、本発明はこれらに限定されるものではない。 Although further explanation will be given below with reference to examples, the present invention is not limited to these.
 実験手順
 iPS細胞(253G1株)について、iMatrix-511(ニッピ)でコーティングした10cmディッシュを用いて、Essential 8培地(サーモフィッシャー)中で接着培養して増殖継代を行った後、0.5mM EDTA溶液で10分間処理し、剥離したiPS細胞を実験に用いた。剥離したiPS細胞を7x10e4/mlの細胞濃度になるようにEssential 8培地に懸濁し、直径6cm(面積20cm2)円型ディッシュ(ファルコン)、直径10cm(面積50cm2)円型ディッシュ(ファルコン)、直径15cm(面積150cm2)円型ディッシュ(ファルコン)、1辺22cm(面積500cm2)正方形型ディッシュ(住友ベークライト、品番MS-12450)に、0.4ml/cm2の液量になるように、それぞれ8ml、20ml、60ml、200mlの細胞懸濁液を添加して、37℃、5%CO2のインキュベーター内で静置培養あるいは旋回培養を行った。旋回培養については、インキュベーター内用シェイカー(オプティマ、OS-762RC)を用いて、30、50、60rpmで旋回培養(旋回径25mm)を行った。計4日間培養した後、浮遊しているiPS細胞塊をトリプシン溶液で分散させてセルカウントを行い、総細胞数(各ディッシュあたり)と細胞増殖率(4日後の細胞数/播種時の細胞数)を計算した。
Experimental procedure iPS cells (253G1 strain) were adherently cultured in a 10 cm dish coated with iMatrix-511 (Nippi) in Essential 8 medium (Thermo Fisher), and then cultured in 0.5 mM EDTA solution. iPS cells detached after being treated with for 10 minutes were used in the experiment. The exfoliated iPS cells were suspended in Essential 8 medium to a cell concentration of 7x10e4/ml and placed in a 6 cm diameter (20 cm 2 area) circular dish (Falcon), a 10 cm diameter (50 cm 2 area) circular dish (Falcon), A circular dish (Falcon) with a diameter of 15 cm (area of 150 cm 2 ) and a square dish (Sumitomo Bakelite, product number MS-12450) with a side of 22 cm (area of 500 cm 2 ) were each filled with a liquid volume of 0.4 ml/cm 2 . 8 ml, 20 ml, 60 ml, and 200 ml of cell suspension were added, and static culture or rotary culture was performed in an incubator at 37° C. and 5% CO 2 . Spinning culture was performed using an incubator internal shaker (Optima, OS-762RC) at 30, 50, and 60 rpm (circling diameter: 25 mm). After culturing for a total of 4 days, the floating iPS cell clusters were dispersed with a trypsin solution and counted. ) was calculated.
 旋回培養したiPS細胞の心筋分化能を調べるために、上記と同様の直径10cm円型ディッシュ、直径15cm円型ディッシュ、1辺22cm正方形型ディッシュにおいて、上記と同じ播種細胞数と旋回培養(50rpm)で4日間培養した後、浮遊しているiPS細胞塊について心筋分化誘導を行った。まず2uMのCHIR99021(富士フイルム和光純薬034-23103)と1uMのProstratin(富士フイルム和光純薬161-28561)の2種類の化合物をマイオリッジ心筋分化培地(コージンバイオ)に添加して3日間培養することで中胚葉誘導を行い、その後、4uM KY03-I(富士フイルム和光純薬036-24724)、2uM XAV939(富士フイルム和光純薬243-00953)、8uM AG1478(富士フイルム和光純薬017-20151)、0.3uM A419259(富士フイルム和光純薬038-24804)の4種類の化合物を同培地に添加して4日間培養し、その後、化合物無しの同培地で14日間培養することで心筋細胞の分化誘導を行った。分化誘導後の細胞について、心筋細胞マーカーであるcardiac troponin Tの抗体(サンタクルツsc-20025)で染色した後、フローサイトメーター(BD AccuriTM C6 Plus)で解析し、分化後の細胞集団における心筋細胞の割合(cTnT陽性細胞率)を測定し、心筋分化能を評価した。 In order to examine the myocardial differentiation potential of spin-cultured iPS cells, the same numbers of seeded cells and spin culture (50 rpm) were performed in the same circular dish with a diameter of 10 cm, a circular dish with a diameter of 15 cm, and a square dish with a side of 22 cm. After culturing for 4 days, floating iPS cell clusters were subjected to myocardial differentiation induction. First, two compounds, 2uM CHIR99021 (Fujifilm Wako Pure Chemicals 034-23103) and 1uM Prostratin (Fujifilm Wako Pure Chemicals 161-28561), are added to Myoridge cardiomyocyte differentiation medium (Kohjin Bio) and cultured for 3 days. After that, 4uM KY03-I (FUJIFILM Wako Pure Chemicals 036-24724), 2uM XAV939 (FUJIFILM Wako Purechemicals 243-00953), 8uM AG1478 (FUJIFILM Wako Purechemicals 017-20151) , 0.3uM A419259 (Fujifilm Wako Pure Chemical Industries, Ltd. 038-24804), four types of compounds were added to the same medium and cultured for 4 days, followed by 14 days of culture in the same medium without compounds to induce cardiomyocyte differentiation. did Cells after induction of differentiation were stained with a cardiac troponin T antibody (Santa Cruz sc-20025), a cardiomyocyte marker, and then analyzed with a flow cytometer (BD Accuri C6 Plus) to identify cardiomyocytes in the differentiated cell population. (cTnT-positive cell ratio) was measured to evaluate the myocardial differentiation potential.
 培養中の細胞の動きを調べるために、プラスチックビーズと間葉系幹細胞(UE6E7T-3細胞 JCRB1136)を使用して培養状況を再現した。プラスチックのビーズ(直径125~212μm、コーニング3772、iPSスフェロイドと同様のサイズと密度)を1グラム/50mlの量で、間葉系幹細胞を2x10e6細胞/50mlの量で、培地に添加した。ビーズ及び間葉系幹細胞入り培地を円型ディッシュ(直径15cm)に60ml、正方形型ディッシュ(1辺22cm)に200ml添加して、2日間37℃インキュベーターで培養した。ビーズと間葉系幹細胞が接着した後に、シェイカー(オプティマ、OS-762RC)で30rpmで旋回培養しながら撮影した。  In order to investigate the movement of cells during culture, the culture conditions were reproduced using plastic beads and mesenchymal stem cells (UE6E7T-3 cells JCRB1136). Plastic beads (125-212 μm diameter, Corning 3772, similar size and density to iPS spheroids) were added to the medium at a volume of 1 gram/50 ml and mesenchymal stem cells at a volume of 2×10e6 cells/50 ml. 60 ml of the medium containing beads and mesenchymal stem cells was added to a circular dish (15 cm in diameter) and 200 ml to a square dish (1 side of 22 cm), and cultured in a 37° C. incubator for 2 days. After the beads and mesenchymal stem cells adhered, the image was taken while rotating culture at 30 rpm with a shaker (Optima, OS-762RC).
 さらに、旋回培養した間葉系幹細胞の増殖を調べるために、上記と同じプラスチックビーズと間葉系幹細胞を10%FBSを含むDMEM培地中において培養を行った。ビーズ1.7グラムと間葉系幹細胞3x10e6細胞を含む培地を円型ディッシュ(直径15cm)と正方形型ディッシュ(1辺22cm)にそれぞれ60mlと200ml添加して、シェイカーで50rpm旋回培養しながら7日間培養した。その後、それぞれのディッシュの培地をタンパク質分解酵素を含む酵素液であるTrypLE Select(ギブコ12563-011)100mlで置換し、正方形型ディッシュ(1辺22cm)に移して80rpmで30分間旋回培養処理することで間葉系幹細胞塊を単一細胞に分散させてセルカウントを行い、総細胞数(各ディッシュあたり)と細胞増殖率(7日後の細胞数/播種時の細胞数)を計算した。 Furthermore, in order to investigate the proliferation of mesenchymal stem cells cultured in a circle, the same plastic beads and mesenchymal stem cells as above were cultured in DMEM medium containing 10% FBS. 60 ml and 200 ml of a medium containing 1.7 g of beads and 3×10e6 mesenchymal stem cells were added to a circular dish (15 cm in diameter) and 200 ml of a square dish (1 side of 22 cm), and cultured for 7 days while rotating the dish in a shaker at 50 rpm. . After that, replace the medium in each dish with 100 ml of TrypLE Select (Gibco 12563-011), an enzyme solution containing a protease, transfer to a square dish (22 cm on each side), and rotate for 30 minutes at 80 rpm. The mesenchymal stem cell aggregates were dispersed into single cells in , and the cells were counted, and the total cell number (per dish) and cell growth rate (cell number after 7 days/cell number at seeding) were calculated.
 プラスチックビーズに接着した間葉系幹細胞塊を単一細胞に分散させるための、酵素処理時における容器の形状を比較するために、まず上記と同じプラスチックビーズと間葉系幹細胞を10%FBSを含むDMEM培地中において培養を行った。ビーズ1.7グラムと間葉系幹細胞3x10e6細胞を含む培地を正方形型ディッシュ(1辺22cm)に200ml添加して、シェイカーで50rpm旋回培養しながら7日間培養し細胞を増殖させた。その後、ディッシュに含まれるプラスチックビーズに接着した間葉系幹細胞塊を培地ごと全量回収し、上清培地を全て除去して、130mlのTrypLE Select(ギブコ12563-011)で置換した。このビーズに接着した間葉系幹細胞塊を懸濁したTrypLE Select懸濁液を攪拌しながら、底面積あたりの液量が0.2ml/cm2になるように、円型ディッシュ(直径15cm)に30ml、正方形型ディッシュ(1辺22cm)に100ml移した。その後、それぞれの間葉系幹細胞塊を含むディッシュを80rpmで30分間旋回培養し、間葉系幹細胞塊を単一細胞に分散させてセルカウントを行い、生細胞率と酵素液1ml当たりの細胞数を計算した。酵素液はトリプシンやアキュターゼ溶液でもよい。 In order to disperse the mesenchymal stem cell clumps adhered to the plastic beads into single cells, first, the same plastic beads and mesenchymal stem cells containing 10% FBS were added to compare the shape of the container during enzyme treatment. Culture was performed in DMEM medium. 200 ml of a medium containing 1.7 g of beads and 3×10e6 cells of mesenchymal stem cells was added to a square dish (22 cm per side), and cultured for 7 days with a shaker rotating at 50 rpm to proliferate the cells. Thereafter, the whole amount of the mesenchymal stem cell clusters adhering to the plastic beads contained in the dish was collected together with the medium, and the supernatant medium was completely removed and replaced with 130 ml of TrypLE Select (Gibco 12563-011). Add 30 ml of the TrypLE Select suspension containing mesenchymal stem cell clusters adhering to the beads to a circular dish (15 cm in diameter) while stirring so that the liquid volume per base area is 0.2 ml/cm 2 . , 100 ml was transferred to a square dish (1 side 22 cm). After that, each dish containing the mesenchymal stem cell clusters was spin-cultured at 80 rpm for 30 minutes to disperse the mesenchymal stem cell clusters into single cells, which were then counted. was calculated. The enzyme solution may be trypsin or accutase solution.
 結果
 各ディッシュについて、静置培養を行った場合、全てのiPS細胞がディッシュに接着し、浮遊しているiPS細胞は得られなかった(図1、2)。30、50、60rpmで旋回培養を行ったところ、各ディッシュで浮遊しているiPS細胞塊が得られた。全ての条件で円型のディッシュに比べ正方形型ディッシュの方が細胞増殖率が高く(最大40倍)、トータルの細胞数も多い(最大3x10e8/ディッシュ)傾向が見られた(図1、2)。さらに、円型ディッシュと正方形型ディッシュで50rpm旋回培養したiPS細胞の心筋分化能を評価したところ、正方形型ディッシュの方が心筋細胞マーカーであるトロポニンTの陽性細胞の割合が高い、つまり心筋細胞の純度が高いことがわかった(図3)。
Results When static culture was performed on each dish, all iPS cells adhered to the dish and no floating iPS cells were obtained (Figs. 1 and 2). Spinning culture was performed at 30, 50, and 60 rpm, and iPS cell clusters floating in each dish were obtained. Under all conditions, square dishes tended to have a higher cell proliferation rate (up to 40 times) and a higher total cell count (up to 3x10e8/dish) than circular dishes (Figs. 1 and 2). . Furthermore, when we evaluated the cardiomyocyte differentiation potential of iPS cells cultured in a circular dish and a square dish at 50 rpm, we found that the square dish had a higher percentage of cells positive for the cardiomyocyte marker troponin T. The purity was found to be high (Fig. 3).
 旋回培養時の細胞の動きを観察するため、まずビーズに間葉系幹細胞を接着させて2日間培養したところ、細胞が接着したビーズが得られた(図4)。円型ディッシュの旋回培養では、特に直径が大きくなると間葉系幹細胞と接着したビーズがディッシュ中央の1点に凝集した(図5)。このことから、円型ディッシュの旋回培養では、細胞がディッシュ中央の1点に凝集しやすいことがわかった。また、円型ディッシュの旋回培養では、細胞塊が融合することによって形状や大きさが不均一になり死細胞が増えていた(図7)。一方で、正方形型ディッシュの旋回培養では、間葉系幹細胞と接着したビーズがディッシュ中央に凝集せずに分散した状態を維持していた(図6)。このことから、正方形型ディッシュの旋回培養では、細胞がディッシュ中央に凝集せずに分散した状態を維持しやすいことがわかった。また、正方形型ディッシュの旋回培養では、均一な形状と大きさの細胞塊が得られており(図8)、細胞収量も増加する傾向が見られた。正方形型ディッシュでは、細胞のシェアストレスが小さいと考えられる。さらに、ビーズと接着した間葉系幹細胞塊を50rpm旋回培養で7日間培養したところ、円型ディッシュよりも正方形型ディッシュの方が細胞の増殖率と収量が高い傾向が見られた(図9、10)。また、この間葉系幹細胞塊を酵素処理によって単一細胞に分散する際に、円型ディッシュで旋回培養しながら酵素処理するよりも、正方形型ディッシュで旋回培養しながら酵素処理する方が、生細胞率が高く、細胞の収率も良い傾向が見られた(図11、12)。細胞培養と同様に、酵素処理においても正方形型ディッシュでは細胞のシェアストレスが小さいためと考えられる。即ち、これらの結果の少なくとも1つの観点から、正方形型ディッシュを用いた培養方法は、円型ディッシュを用いた培養方法に比べて優れていた。  In order to observe the movement of cells during swirl culture, mesenchymal stem cells were first adhered to beads and cultured for 2 days, resulting in beads with adhered cells (Fig. 4). In the swirling culture in a circular dish, beads attached to mesenchymal stem cells aggregated at one point in the center of the dish, especially when the diameter increased (Fig. 5). From this, it was found that the cells tended to aggregate at one point in the center of the dish in the swirling culture of the circular dish. In addition, in the swirling culture in a circular dish, the cell clusters fused together, resulting in non-uniform shapes and sizes, resulting in an increase in the number of dead cells (Fig. 7). On the other hand, in the swirl culture in the square dish, the beads attached to the mesenchymal stem cells remained dispersed in the center of the dish without clumping together (Fig. 6). From this, it was found that in the swirling culture of the square dish, the cells tend to maintain a dispersed state without aggregating in the center of the dish. In addition, the swirling culture in a square dish yielded cell aggregates of uniform shape and size (Fig. 8), and the cell yield tended to increase. It is thought that the shear stress of the cells is small in the square dish. Furthermore, when the beads-adhered mesenchymal stem cell clusters were cultured for 7 days in a 50 rpm rotation culture, the cell growth rate and yield tended to be higher in the square dish than in the circular dish (Fig. 9, Fig. 9). Ten). In addition, when dispersing this mesenchymal stem cell mass into single cells by enzymatic treatment, viable cells are more likely to be treated with enzyme treatment while swirling culture in a square dish than enzymatic treatment while swirling culture in a circular dish. A high rate and a good cell yield tended to be observed (Figs. 11 and 12). As in cell culture, it is thought that cell shear stress is less in square dishes in enzymatic treatment as well. That is, from the viewpoint of at least one of these results, the culture method using the square dish was superior to the culture method using the circular dish.
 従来、培養容器を水平回転させる場合、丸い形状の容器を使用するという先入観があり、四角型の形状のディッシュを水平回転させて浮遊培養することは、従来の常識にはなかった試みであった。しかし、結果として、驚くべきことに、四角型の形状のディッシュを用いることにより、優れた浮遊培養が実現できることが明らかになった。 Conventionally, when rotating culture vessels horizontally, there was a preconceived notion that round-shaped vessels should be used. . As a result, however, it was surprisingly found that the use of a square-shaped dish enables the realization of excellent suspension culture.
 また、細胞塊を酵素処理によって単一細胞に分散する場合においても、四角型の形状のディッシュを用いて水平回転させて酵素処理することにより、生細胞率が高い優れた単一細胞分散処理が実現できることが明らかになった。 In addition, even when dispersing cell clusters into single cells by enzymatic treatment, by performing enzymatic treatment while rotating horizontally using a square-shaped dish, excellent single cell dispersing treatment with a high viable cell rate can be achieved. It turned out that it can be done.
 以上、実施例を説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The examples have been described above. It should be understood by those skilled in the art that this embodiment is merely an example, and that various modifications are possible and that such modifications are within the scope of the present invention.
1 101 底面、2 102 上面、3 103 側面、4 104 開口部、5 105 スクリューキャップ、6 ポート 1 101 bottom, 2 102 top, 3 103 side, 4 104 opening, 5 105 screw cap, 6 port

Claims (16)

  1.  細胞及び培地を収容する容器を水平回転させる工程を含み、前記容器の底面形状は四角型の形状である、細胞の生産方法。 A method for producing cells, comprising the step of horizontally rotating a container containing cells and a culture medium, wherein the bottom shape of the container is square.
  2.  前記細胞は、浮遊細胞である、請求項1に記載の生産方法。 The production method according to claim 1, wherein the cells are floating cells.
  3.  前記細胞は、細胞塊、又はプラスチック素材と接着した細胞である、請求項1又は2に記載の生産方法。  The production method according to claim 1 or 2, wherein the cells are cell aggregates or cells adhered to a plastic material.
  4.  前記細胞は、幹細胞である、請求項1~3いずれかに記載の生産方法。 The production method according to any one of claims 1 to 3, wherein the cells are stem cells.
  5.  前記幹細胞は、iPS細胞又は間葉系幹細胞である、請求項4に記載の生産方法。 The production method according to claim 4, wherein the stem cells are iPS cells or mesenchymal stem cells.
  6.  前記細胞を浮遊培養する工程を含む、請求項1~5のいずれかに記載の生産方法。 The production method according to any one of claims 1 to 5, comprising a step of culturing the cells in suspension.
  7.  細胞培養装置であって、
     培地収容部と、前記培地収容部を水平回転させる回転部を含み、
     前記培地収容部は、底面形状が四角型の形状である、
     細胞培養装置。
    A cell culture device,
    A medium containing portion and a rotating portion that horizontally rotates the medium containing portion,
    The culture medium containing portion has a square bottom shape,
    Cell culture device.
  8.  水平回転細胞培養容器であって、底面、上面、及び側面を備え、前記底面は正方形型の形状であり、前記上面は1~4個の開口部を備える、水平回転細胞培養容器。 A horizontally rotating cell culture vessel comprising a bottom surface, a top surface, and side surfaces, the bottom surface having a square shape, and the top surface having 1 to 4 openings.
  9.  細胞及び酵素液を収容する容器を水平回転させる工程を含み、前記容器の底面形状は四角型の形状である、細胞の酵素処理方法。 A method for enzymatic treatment of cells, comprising the step of horizontally rotating a container containing cells and an enzyme solution, wherein the bottom shape of the container is square.
  10.  前記細胞は、細胞塊又はプラスチック素材と接着した細胞である、請求項9に記載の酵素処理方法。 The enzyme treatment method according to claim 9, wherein the cells are cell aggregates or cells adhered to a plastic material.
  11.  前記酵素液は、細胞塊又は接着細胞を単一細胞に分散処理するための蛋白質分解酵素を含む溶液である、請求項9又は10に記載の酵素処理方法。 The enzymatic treatment method according to claim 9 or 10, wherein the enzyme solution is a solution containing a proteolytic enzyme for dispersing cell clusters or adherent cells into single cells.
  12.  前記細胞は、幹細胞である、請求項9~11いずれかに記載の酵素処理方法。 The enzyme treatment method according to any one of claims 9 to 11, wherein the cells are stem cells.
  13.  前記幹細胞は、iPS細胞又は間葉系幹細胞である、請求項12に記載の酵素処理方法。 The enzyme treatment method according to claim 12, wherein the stem cells are iPS cells or mesenchymal stem cells.
  14.  前記細胞を浮遊培養する工程を含む、請求項9~13のいずれかに記載の酵素処理方法。 The enzyme treatment method according to any one of claims 9 to 13, comprising a step of culturing the cells in suspension.
  15.  細胞酵素処理装置であって、
     培地収容部と、前記培地収容部を水平回転させる回転部を含み、
     前記培地収容部は、底面形状が四角型の形状である、
     細胞酵素処理装置。
    A cell enzymatic treatment device,
    A medium containing portion and a rotating portion that horizontally rotates the medium containing portion,
    The culture medium containing portion has a square bottom shape,
    Cell enzyme processing device.
  16.  水平回転細胞酵素処理容器であって、底面、上面、及び側面を備え、前記底面は正方形型の形状であり、前記上面は1~4個の開口部を備える、水平回転細胞酵素処理容器。 A horizontally rotating cell enzymatic treatment vessel comprising a bottom surface, a top surface and side surfaces, the bottom surface having a square shape and the top surface having 1 to 4 openings.
PCT/JP2022/006663 2021-02-19 2022-02-18 Cell production method WO2022176980A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-025619 2021-02-19
JP2021025619A JP2024060111A (en) 2021-02-19 2021-02-19 Cell Production Method

Publications (1)

Publication Number Publication Date
WO2022176980A1 true WO2022176980A1 (en) 2022-08-25

Family

ID=82930716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006663 WO2022176980A1 (en) 2021-02-19 2022-02-18 Cell production method

Country Status (2)

Country Link
JP (1) JP2024060111A (en)
WO (1) WO2022176980A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212049A (en) * 2007-03-02 2008-09-18 Fujimori Kogyo Co Ltd Culture bag and culture apparatus
JP2015509701A (en) * 2011-12-02 2015-04-02 アーメイゲン・テクノロジーズ・インコーポレイテッドArmagen Technologies, Inc. Methods and compositions for increasing arylsulfatase A activity in the CNS
WO2017094451A1 (en) * 2015-12-04 2017-06-08 公立大学法人大阪府立大学 Cell culture vessel and sample cell for observation use
US20180147552A1 (en) * 2016-11-28 2018-05-31 Sarfaraz K. Niazi Zero gravity process device
JP2019198850A (en) * 2018-05-18 2019-11-21 藤森工業株式会社 Agitation container and agitation method
JP2021027821A (en) * 2019-08-09 2021-02-25 宇部興産株式会社 Cell culture apparatus and cell culture method using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212049A (en) * 2007-03-02 2008-09-18 Fujimori Kogyo Co Ltd Culture bag and culture apparatus
JP2015509701A (en) * 2011-12-02 2015-04-02 アーメイゲン・テクノロジーズ・インコーポレイテッドArmagen Technologies, Inc. Methods and compositions for increasing arylsulfatase A activity in the CNS
WO2017094451A1 (en) * 2015-12-04 2017-06-08 公立大学法人大阪府立大学 Cell culture vessel and sample cell for observation use
US20180147552A1 (en) * 2016-11-28 2018-05-31 Sarfaraz K. Niazi Zero gravity process device
JP2019198850A (en) * 2018-05-18 2019-11-21 藤森工業株式会社 Agitation container and agitation method
JP2021027821A (en) * 2019-08-09 2021-02-25 宇部興産株式会社 Cell culture apparatus and cell culture method using the same

Also Published As

Publication number Publication date
JP2024060111A (en) 2024-05-02

Similar Documents

Publication Publication Date Title
JP6892486B2 (en) Culture method
JP2022127556A (en) Cell production method
Ouyang et al. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation
MX2015002819A (en) Devices and methods for culture of cells.
WO2010047133A1 (en) Cell storage method and cell transport method
Powers et al. Development and optimization of AAV hFIX particles by transient transfection in an iCELLis® fixed-bed bioreactor
WO2019014627A1 (en) Handling features for microcavity cell culture vessel
WO2019014621A1 (en) Cell culture vessel
JP5558560B2 (en) Bioreactor system
JP7068285B2 (en) Cell culture vessel
US9957478B2 (en) Cell carrier, associated methods for making cell carrier and culturing cells using the same
Nogueira et al. Single-use bioreactors for human pluripotent and adult stem cells: towards regenerative medicine applications
WO2022176980A1 (en) Cell production method
JP6814380B2 (en) Method for producing cell spheroids
US20160046898A1 (en) Cell growth macrocarriers for bioreactors
WO2019055448A1 (en) Suspension culture devices and systems and related methods
Iwai et al. Induction of cell self‐organization on weakly positively charged surfaces prepared by the deposition of polyion complex nanoparticles of thermoresponsive, zwitterionic copolymers
JP6081276B2 (en) Cell culture carrier
US11584906B2 (en) Cell culture vessel for 3D culture and methods of culturing 3D cells
US20100028992A1 (en) Cell culture device
CN206375920U (en) A kind of culture dish for being used to cultivate cell
CN213977735U (en) Cartilage diaphragm autocrine factor retention culture dish
CN214654882U (en) Simple detachable double-chamber culture dish
US20200347334A1 (en) Macrocarriers for cell growth in bioreactors
CN209778891U (en) Novel mesenchymal stem cell culture container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756297

Country of ref document: EP

Kind code of ref document: A1