WO2022176961A1 - Compound and metal complex - Google Patents

Compound and metal complex Download PDF

Info

Publication number
WO2022176961A1
WO2022176961A1 PCT/JP2022/006471 JP2022006471W WO2022176961A1 WO 2022176961 A1 WO2022176961 A1 WO 2022176961A1 JP 2022006471 W JP2022006471 W JP 2022006471W WO 2022176961 A1 WO2022176961 A1 WO 2022176961A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
represented
substituent
compound
Prior art date
Application number
PCT/JP2022/006471
Other languages
French (fr)
Japanese (ja)
Inventor
憲史 小林
伸能 古志野
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2022176961A1 publication Critical patent/WO2022176961A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table

Definitions

  • the present invention relates to compounds and metal complexes.
  • Compounds capable of forming complexes with various metal ions and metal complexes having ligands derived from such compounds are useful in various applications.
  • Applications of such compounds and metal complexes include, for example, metal removing agents, metal catalysts, luminescent complexes, MRI contrast agents, radionuclide drugs, and separation of radioactive wastes (e.g., Patent Documents 1, 2, Non-Patent Documents 1 and 2).
  • An object of the present invention is to provide a compound capable of forming a complex with a plurality of metal species.
  • Another main object of the present invention is to provide a metal complex having a ligand derived from such a compound.
  • the compound is a compound represented by the following formula (1).
  • n represents an integer of 0 to 5.
  • Q 1 , Q 2 , Q 3 , and Q 4 each independently represent a hydrogen atom, a group selected from Group A, a group selected from Group B, a group represented by formula (C1), or a substituent .
  • At least one of Q 1 , Q 2 , Q 3 and Q 4 is a group selected from group A, and at least one of Q 1 , Q 2 , Q 3 and Q 4 is from group B a group selected, and at least three of Q 1 , Q 2 , Q 3 , and Q 4 are a group selected from group A, a group selected from group B, or a group represented by formula (C1) .
  • n is 2 or more, multiple Q 4 may be the same or different, and Q 2 and Q 3 are bonded to each other or via a divalent linking group to form a ring It may form a structure.
  • Group A is a group consisting of groups represented by the following formulas (A1), (A2), (A3), (A4), (A5), and (A6).
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 each independently represents a hydrogen atom, a group represented by formula (C1), or a substituent (* represents a bond).
  • Group B is a group consisting of groups represented by the following formulas (B1) and (B2).
  • Q B1 represents a group represented by formula (C1) or a divalent heterocyclic group which may have a substituent, and X 1 is a carbon atom or P(OH ), where * represents a bond.
  • Q B2 represents a divalent nitrogen atom-containing monocyclic heterocyclic group that may have a group or substituent represented by formula (C1). Note that * represents a bond.
  • n2 represents an integer of 1 to 5.
  • L 10 represents a single bond or a divalent linking group which may have a substituent.
  • R 16 represents a hydrogen atom or a substituted R 16 may be combined with any L 10 to form a ring structure
  • L 10 present in plurality may be the same or different.
  • 30 represents a single bond or a divalent linking group which may have a substituent (* represents a bond).
  • Z 1 , Z 2 , Z 3 and Z 4 each independently represent a single bond or a divalent linking group which may have a substituent. When n is 2 or more, multiple Z 4 may be the same or different.
  • R represents a divalent linking group which may have a substituent. When n is 2 or more, multiple R's may be the same or different. ]
  • the compound represented by formula (1) is preferably a compound represented by formula (1A) below, a compound represented by formula (1B) below, or a compound represented by formula (1C) below.
  • [In Formula (1A), Q 1 , Q 2 , Q 3 , Q 4 , Z 1 , Z 2 , Z 3 , Z 4 and R are as defined above.
  • [In Formula (1B), Q 1 , Q 2 , Q 3 , Z 1 , Z 2 and Z 3 are as defined above.
  • [In Formula (1C), Q 1 , Q 2 , Q 3 , Q 4 , Z 1 , Z 2 , Z 3 , Z 4 and R are as defined above.
  • n1 represents an integer of 2-5. ]
  • the compound represented by the formula (1A) is preferably a compound represented by the following formula (1Aa) or a compound represented by the following formula (1Ab).
  • Q 1 , Q 2 , Q 3 and Q 4 have the same meanings as described above.
  • R a represents an optionally substituted hydrocarbylene group, and a portion of —CH 2 — in the hydrocarbylene group may be substituted with —O—.
  • R b is a divalent linking group having a heterocyclic ring, and the linking group may have a substituent.
  • the hydrocarbylene group may have a substituent. ]
  • the group represented by formula (B1) is preferably a compound represented by the following formula (10a), formula (10b), formula (10c), or formula (11) directly to a carbon atom constituting the ring. It is a group from which one bonding hydrogen atom has been removed.
  • R 7a , R 8a , R 9a , R 7b , R 8b , R 9b , R 7c , R 8c , and R 9c each independently represent a hydrogen atom,
  • R 7a , R 8a and R 9a is a hydrogen atom.
  • At least one of R 7b , R 8b and R 9b is a hydrogen atom.
  • R 7c , R 8c and R 9c is a hydrogen atom.
  • X2 represents a nitrogen atom or CR10a .
  • Each R 10a independently represents a hydrogen atom, a group represented by formula (C1), or a substituent.
  • R 11 represents a hydrogen atom, a group represented by formula (C1), or a substituent.
  • X 3 and X 4 each independently represent CR 12 , N, NR 13 , S or O;
  • R 12 and R 13 each independently represent a hydrogen atom, a group represented by formula (C1), or a substituent. When multiple R 12 and R 13 are present, they may be the same or different.
  • each bond indicated by a double line consisting of a solid line and a broken line is arbitrarily selected from the group consisting of a single bond and a double bond. ]
  • the group represented by the formula (B2) is preferably a group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting the ring from the compound represented by the following formula (12).
  • X 5 , X 6 , X 7 and X 8 each independently represent N, NR 14 or CR 15 ; R 14 and R 15 each independently represent a hydrogen atom, a group represented by formula (C1), or a substituent. When multiple R 14 and R 15 are present, they may be the same or different.
  • X9 represents a carbon atom or a nitrogen atom.
  • Q10 represents O, OH, or a hydrogen atom.
  • each bond indicated by a double line consisting of a solid line and a broken line is arbitrarily selected from the group consisting of a single bond and a double bond.
  • the compound represented by Formula (1) is preferably a compound represented by Formula (2) below.
  • R 2 , R 3 , R 4 , R 5 , Q 2 , Q 3 , Q 4 , Z 2 , Z 3 and Z 4 are as defined above.
  • R A represents an optionally substituted divalent linking group having 2 to 8 carbon atoms.
  • -Z 2 -Q 2 , -Z 3 -Q 3 and -Z 4 -Q 4 are represented by the following formulas (15a), (15b), (15c), (15d) and (15e) represents a group selected from the group consisting of the represented groups; provided that at least one of -Z 2 -Q 2 , -Z 3 -Q 3 , and -Z 4 -Q 4 is a group represented by the following formula (15c), formula (15d), or formula (15e) is.
  • a hydrogen atom directly bonded to a carbon atom constituting the ring is a group or substituent represented by formula (C1) Note that * represents a bond.)]
  • the metal complex has a metal element and a ligand derived from the above compound.
  • a compound capable of forming a complex with multiple metal species is provided.
  • the present invention also provides metal complexes having ligands derived from such compounds.
  • substituteduents are classified into three types, unless otherwise specified.
  • the first group is a group having a structure that has affinity with an antigen (hereinafter sometimes referred to as “substituent A”).
  • the second group is a group having a site capable of cross-linking with a structure having affinity for an antigen (hereinafter sometimes referred to as “substituent B”).
  • the third group is a group that can generally be taken in the field of organic chemistry (organic ligands) (hereinafter sometimes referred to as "substituent C").
  • Antigen in Substituent A and Substituent B means an antigen that can be used in therapy or diagnosis using radiation.
  • the "antigen” is preferably an antigen derived from cancer cells.
  • Antigen-affinity structure in Substituent A and Substituent B means a structure that selectively interacts with a specific antigen.
  • the "structure having affinity with an antigen” is preferably a structure having affinity with an antigen derived from cancer cells.
  • structures that have affinity for cancer cell-derived antigens include antibodies, antibody fragments, peptide chains, enzymes, nucleic acid base-containing components (e.g., oligonucleotides, DNA vectors, RNA vectors, aptamers), and the like. be done.
  • Substituent A is a "structure with affinity for an antigen" and a “site capable of cross-linking with a structure having affinity with an antigen” in Substituent B (hereinafter sometimes simply referred to as a "cross-linkable site”). ) is preferably included in the partial structure chemically bonded to.
  • the "crosslinkable site” in the substituent B is a selective covalent bond to a "specific site” (e.g., thiol group, azide group, terminal amino group, etc.) in the structure that has affinity for the antigen. It means a structure that can be formed.
  • the structure of the "crosslinkable site” is not particularly limited as a group that can generally be taken to selectively form a covalent bond with a specific site in a structure that has affinity with an antigen. Examples of such “crosslinkable sites” include groups represented by the following formulas (A-1) to (A-12).
  • a straight line extending from the center of the ring structure represents a bond at any position of the ring structure.
  • * represents a bond, which is a binding site with L2 in formula (25) described later. These groups may have a substituent.
  • a preferred embodiment of Substituent A a partial structure in which a "structure having affinity with an antigen" and a "crosslinkable site” in Substituent B are chemically bonded (hereinafter sometimes referred to as "crosslinked structure”). ) can be formed, for example, by click chemistry.
  • An example of click chemistry includes a reaction in which an azide group and an alkynyl group represented by the following formula (20) are reacted in the presence of a catalyst to form a 1,2,3-triazole ring. Note that * represents a bond.
  • click chemistry is the reaction between an azide group and cyclooctyne, represented by the following formula (21), or the reaction between a tetrazine group and a terminal alkyne, represented by the following formula (22). be done. Note that * represents a bond.
  • a crosslinker having two or more sites selected from the group consisting of "crosslinkable sites” and “specific sites” can be used.
  • examples of such a cross-linking agent include a cross-linking agent represented by the following formula (23).
  • the cross-linking agent for example, one of the sites selected from the group consisting of "cross-linkable site” and “specific site”, the coordination derived from the metal element in the metal complex described later and the compound represented by formula (1) Bind the other part selected from the group consisting of "crosslinkable site” and "specific site” to the structure-containing site of the child to the structure-containing site of the "structure having affinity for antigen". can be used for reactions.
  • substituent A examples include groups represented by the following formula (24).
  • L 1 represents a direct bond, a hydrocarbylene group optionally having a substituent C, or a heteroarylene group optionally having a substituent C; When multiple L 1 are present, they may be the same or different.
  • L3 represents the above "crosslinked structure". When multiple L3 are present, they may be the same or different.
  • Sp represents the above-mentioned "structure having affinity with antigen”.
  • n20 represents an integer of 1 to 10
  • n21 represents 1 or 2; Note that * represents a bond.
  • L 1 is a direct bond, a hydrocarbylene group optionally having a substituent C or a heteroarylene group optionally having a substituent C, preferably a direct bond or having a substituent C is a hydrocarbylene group that may be
  • Examples of the hydrocarbylene group of the hydrocarbylene group optionally having substituent C in L 1 include an alkylene group, a cycloalkylene group and an arylene group.
  • L 1 is preferably an alkylene group or a cycloalkylene group, more preferably an alkylene group.
  • the alkylene group in the hydrocarbylene group of L 1 is a divalent group in which two hydrogen atoms directly bonded to the carbon atoms constituting the saturated aliphatic hydrocarbon are removed.
  • Alkylene groups include methylene, ethylene, propylene, isopropylene, butylene, isobutylene, tert-butylene, pentylene, and hexylene groups.
  • a portion of —CH 2 — in these alkylene groups may be substituted with —O—.
  • the number of carbon atoms in the alkylene group is not particularly limited, it is preferably 1 to 8.
  • the cycloalkylene group in the hydrocarbylene group of L 1 is a divalent group in which two hydrogen atoms directly bonded to carbon atoms constituting cycloalkane are removed.
  • the cycloalkylene group includes a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cyclooctylene group and the like.
  • the number of carbon atoms in the cycloalkylene group is not particularly limited, it is preferably six.
  • the arylene group in the hydrocarbylene group of L1 is a divalent group in which two hydrogen atoms directly bonded to carbon atoms constituting the aromatic hydrocarbon are removed.
  • Arylene groups include phenylene groups, biphenylene groups, terphenylene groups, naphthylene groups, anthracenylene groups and the like.
  • Arylene groups are preferably phenylene groups.
  • the number of carbon atoms in the arylene group is not particularly limited, it is preferably 6 to 12.
  • Heteroarylene groups optionally having a substituent C of L 1 are, for example, pyridine, pyrazine, pyrimidine, pyrrole, N-alkylpyrrole, furan, thiophene, thiazole, imidazole, oxazole, benzofuran, benzothiophene, isoquinoline, It is a divalent group in which two hydrogen atoms directly bonded to carbon atoms constituting a heterocyclic compound such as quinazoline are removed.
  • a heteroarylene group is preferably a pyridylene group.
  • R e1 , R e2 , R e3 and R e4 each represent a hydrogen atom or a hydrocarbyl group having 1 to 8 carbon atoms. When a plurality of R e1 , R e2 , R e3 and R e4 are present, they may be the same or different.
  • hydrocarbyl groups having 1 to 8 carbon atoms in R e1 , R e2 , R e3 and R e4 include alkyl groups, aryl groups and aralkyl groups having 1 to 8 carbon atoms.
  • Hydrocarbyl groups of 1 to 8 carbon atoms are preferably alkyl groups of 1 to 8 carbon atoms.
  • L3 is the above "crosslinked structure".
  • Examples of L 3 include divalent groups represented by the following formulas (A-20) to (A-25).
  • the divalent groups represented by formulas (A-20) to (A-25) may have a substituent. Note that * represents a bond.
  • n20 is an integer of 1-20, preferably an integer of 1-10, more preferably an integer of 1-6.
  • n21 is 1 or 2, and n21 is preferably 2 when a cross-linking agent such as the cross-linking agent represented by the above formula (23) is used, and preferably 1 when no cross-linking agent is used.
  • Sp is a "structure that has affinity with an antigen".
  • the "structure having an affinity for an antigen” is exemplified by the structures described above.
  • one "antigen-affinity structure” when there are a plurality of structures having a substituent A from the viewpoint of intramolecular and intermolecular aspects, one "antigen-affinity structure" has a plurality of It may be bound to the compound and/or metal complex of the present application. In this case, one "antigen-affinity structure" may be shared among a plurality of substituents A.
  • Examples of the substituent B include a group represented by the following formula (25) and a group represented by the following formula (26).
  • L 1 , L 2 and n20 are as defined above.
  • Lk represents the above "crosslinkable site”. Note that * represents a bond.
  • L 1 , L 2 , L 3 , and n20 are as defined above.
  • Lk represents the above "crosslinkable site”. Note that * represents a bond.
  • Substituent C includes, for example, a halogen atom, a hydroxy group, a carboxyl group, an amino group, a sulfonic acid group, a nitro group, a phosphonic acid group, a hydrocarbyl group, a silyl group, a heteroaryl group, an alkyloxy group, an aryloxy group, an aralkyl An oxy group and a silyloxy group are mentioned.
  • Substituent C is preferably a hydroxy group, a carboxyl group, an amino group, a sulfonic acid group, a phosphonic acid group, or an alkyloxy group from the viewpoint of being easily dissolved in an aqueous solution and used. A portion of these groups may be substituted with halogen atoms, for example, a hydrogen atom of a methyl group may be substituted with fluorine to form a trifluoromethyl group.
  • the halogen atom represented by the substituent C includes a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a halogen atom is preferably a fluorine atom.
  • the hydrogen atom on the nitrogen atom may be substituted with a hydrocarbon group.
  • the amino group includes, for example, unsubstituted amino group, dimethylamino group, diethylamino group, di-n-propylamino group, diisopropylamino group and diphenylamino group.
  • the amino group is preferably an unsubstituted amino group.
  • hydrocarbyl groups represented by substituent C include alkyl groups, aryl groups, and aralkyl groups. Hydrocarbyl groups are preferably alkyl groups.
  • alkyl group in the hydrocarbyl group represented by the substituent C examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group, norbornyl group, Nonyl group, decyl group, 3,7-dimethyloctyl group, dodecyl group, pentadecyl group, octadecyl group, docosyl group and other saturated aliphatic hydrocarbon groups can be mentioned.
  • a portion of —CH 2 — in these alkyl groups may be substituted with —O—.
  • the number of carbon atoms in the alkyl group is not particularly limited, it is preferably 1 to 8 in terms of availability and cost.
  • Examples of the aryl group in the hydrocarbyl group represented by the substituent C include aromatic hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group, naphthyl group, phenanthryl group and anthracenyl group.
  • Aryl groups are preferably phenyl groups. Although the number of carbon atoms in the aryl group is not particularly limited, it is preferably 6 to 18.
  • Examples of the aralkyl group in the hydrocarbyl group represented by the substituent C include a benzyl group, (2-methylphenyl)methyl group, (3-methylphenyl)methyl group, (4-methylphenyl)methyl group, (2, 4-dimethylphenyl)methyl group, (ethylphenyl)methyl group and naphthylmethyl group.
  • Aralkyl groups are preferably benzyl groups. Although the number of carbon atoms in the aralkyl group is not particularly limited, it is preferably 7 to 18.
  • the hydrogen atom on the silicon atom may be substituted with a hydrocarbon group.
  • substituted silyl groups include monosubstituted silyl groups substituted with one hydrocarbon group having 1 to 18 carbon atoms such as methylsilyl group, ethylsilyl group and phenylsilyl group; Silyl group, disubstituted silyl group substituted with two hydrocarbon groups having 1 to 18 carbon atoms such as diphenylsilyl group; trimethylsilyl group, triisopropylsilyl group, tri-n-butylsilyl group, tri-tert- a trisubstituted silyl group substituted with three hydrocarbon groups having 1 to 18 carbon atoms such as a butylsilyl group, a tri-isobutylsilyl group, a tert-butyl-dimethylsilyl group, a tri-n-pentylsilyl
  • heteroaryl group represented by the substituent C examples include pyridyl group, pyrazyl group, pyrimidyl group, pyrrolyl group, N-alkylpyrrolyl group, furyl group, thiophenyl group, thiazolyl group, imidazolyl group, oxazolyl group, A benzofuranyl group, a benzothiophenyl group, and an isoquinolinyl group can be mentioned.
  • a heteroaryl group is preferably a pyridyl or pyrimidinyl group.
  • alkyloxy group represented by the substituent C examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group and n-pentyloxy group. , n-octyloxy group and the like. A portion of —CH 2 — in these alkyloxy groups may be substituted with —O—.
  • Alkyloxy groups are preferably methoxy groups. Although the number of carbon atoms in the alkyloxy group is not particularly limited, it is preferably 1 to 8.
  • aryloxy group represented by the substituent C examples include phenoxy group, 2-methylphenoxy group, 3-methylphenoxy group, 4-methylphenoxy group, 2,4-dimethylphenoxy group and naphthoxy group.
  • Aryloxy groups are preferably phenoxy groups. Although the number of carbon atoms in the aryloxy group is not particularly limited, it is preferably 6 to 18.
  • Examples of the aralkyloxy group represented by the substituent C include a benzyloxy group, (2-methylphenyl)methoxy group, (3-methylphenyl)methoxy group, (4-methylphenyl)methoxy group, (2,4 -dimethylphenyl)methoxy group and naphthylmethoxy group.
  • An aralkyloxy group is preferably a benzyloxy group.
  • the number of carbon atoms in the aralkyloxy group is not particularly limited, it is preferably 7 to 18.
  • the hydrogen atom on the silicon atom may be substituted with a hydrocarbon group.
  • substituted silyloxy groups include trimethylsilyloxy, triethylsilyloxy, tri-n-butylsilyloxy, triphenylsilyloxy, triisopropylsilyloxy, and tert-butyldimethylsilyloxy groups. be done.
  • a substituted silyloxy group is preferably a trimethylsilyloxy group or a tert-butyldimethylsilyloxy group.
  • the substituent is preferably the substituent B or the substituent C, more preferably the substituent C, unless otherwise specified.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bn represents a benzyl group.
  • alkyl groups such as propyl, butyl, pentyl, hexyl and octyl groups
  • alkylene groups such as propylene, butylene, pentylene, hexylene and octylene groups. If a chain structure or branched structure is not specified, these may be a straight chain structure or a branched structure. These groups preferably have a linear structure.
  • the number of carbon atoms means the number of carbon atoms excluding the number of carbon atoms of the substituent.
  • a compound of one embodiment is a compound represented by the following formula (1).
  • n represents an integer of 0 to 5.
  • Q 1 , Q 2 , Q 3 , and Q 4 each independently represent a hydrogen atom, a group selected from Group A, a group selected from Group B, a group represented by formula (C1), or a substituent .
  • at least one of Q 1 , Q 2 , Q 3 and Q 4 is a group selected from group A
  • at least one of Q 1 , Q 2 , Q 3 and Q 4 is from group B a group selected
  • at least three of Q 1 , Q 2 , Q 3 , and Q 4 are a group selected from group A, a group selected from group B, or a group represented by formula (C1) .
  • At least three of Q 1 , Q 2 , Q 3 and Q 4 are groups selected from Group A or Group B; When n is 2 or more, multiple Q 4 may be the same or different, and Q 2 and Q 3 are bonded to each other or via a divalent linking group to form a ring It may form a structure.
  • Group A is a group consisting of groups represented by the following formulas (A1), (A2), (A3), (A4), (A5), and (A6).
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 each independently represents a hydrogen atom, a group represented by formula (C1), or a substituent (* represents a bond).
  • Group B is a group consisting of groups represented by the following formulas (B1) and (B2).
  • Q B1 represents a group represented by formula (C1) or a divalent heterocyclic group which may have a substituent, and X 1 is a carbon atom or P(OH ), where * represents a bond.
  • Q B2 represents a divalent nitrogen atom-containing monocyclic heterocyclic group that may have a group or substituent represented by formula (C1). Note that * represents a bond.
  • n2 represents an integer of 1 to 5.
  • L 10 represents a single bond or a divalent linking group which may have a substituent.
  • R 16 represents a hydrogen atom or a substituted R 16 may be combined with any L 10 to form a ring structure
  • L 10 present in plurality may be the same or different.
  • 30 represents a single bond or a divalent linking group which may have a substituent (* represents a bond).
  • Z 1 , Z 2 , Z 3 and Z 4 each independently represent a single bond or a divalent linking group which may have a substituent. When n is 2 or more, multiple Z 4 may be the same or different.
  • R represents a divalent linking group which may have a substituent. When n is 2 or more, multiple R's may be the same or different. ]
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, a group represented by formula (C1), or a substituent.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, a group represented by formula (C1), or a substituent.
  • the total number of hydrogen atoms, groups represented by formula (C1) and substituents is five each.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are substituents
  • the substituents are preferably substituents B or C.
  • the number of groups represented by formula (C1) and substituents C is preferably 0 to 2. Yes, more preferably 0 or 1.
  • the number of substituents B is preferably 0 or 1.
  • the number of hydrogen atoms is preferably 4 or 5.
  • the group selected from Group A is preferably a group selected from the group consisting of groups represented by formula (A1), formula (A2), formula (A3), formula (A4), and formula (A5), A group represented by formula (A1) is preferable.
  • Groups selected from Group A include, for example, groups represented by the following formulas (AA-1) to (AA-19).
  • the groups represented by formulas (AA-1) to (AA-19) below may have a group represented by formula (C1) or a substituent.
  • * represents a bond
  • Sp represents "a structure having affinity with an antigen”.
  • Groups selected from Group A are preferably groups represented by formula (AA-1) or formulas (AA-4) to (AA-19).
  • X1 is a carbon atom or P(OH), preferably a carbon atom.
  • Q B1 is a divalent heterocyclic group optionally having a group represented by formula (C1) or a substituent.
  • Q B1 include heterocyclic compounds such as pyridine, pyrazine, pyrimidine, pyrrole, N-alkylpyrrole, furan, thiophene, thiazole, imidazole, oxazole, benzofuran, benzothiophene, isoquinoline, and quinazoline.
  • Examples include divalent groups in which two hydrogen atoms directly bonded to the constituent carbon atoms are removed.
  • the heterocyclic compound is preferably pyridine, pyrimidine, thiazole or imidazole.
  • the group represented by formula (B1) in group B is preferably a compound represented by the following formula (10a), formula (10b), formula (10c), or formula (11), and the carbon atoms constituting the ring It is a group excluding one hydrogen atom directly bonded to an atom.
  • R 7a , R 8a , R 9a , R 7b , R 8b , R 9b , R 7c , R 8c , and R 9c each independently represent a hydrogen atom, ) represents a group or a substituent. However, at least one of R 7a , R 8a and R 9a is a hydrogen atom. At least one of R 7b , R 8b and R 9b is a hydrogen atom. At least one of R 7c , R 8c and R 9c is a hydrogen atom.
  • X2 represents a nitrogen atom or CR10a .
  • Each R 10a independently represents a hydrogen atom, a group represented by formula (C1), or a substituent.
  • R 11 represents a hydrogen atom, a group represented by formula (C1), or a substituent.
  • X 3 and X 4 each independently represent CR 12 , N, NR 13 , S or O;
  • R 12 and R 13 each independently represent a hydrogen atom, a group represented by formula (C1), or a substituent.
  • R 12 and R 13 may be the same or different.
  • each bond indicated by a double line consisting of a solid line and a broken line is arbitrarily selected from the group consisting of a single bond and a double bond.
  • X2 is a nitrogen atom or CR10a .
  • X2 is preferably CR10a .
  • R 7a , R 8a , R 9a and R 10a are each independently a hydrogen atom, a group represented by formula (C1), or a substituent.
  • the substituents are preferably substituents B or C.
  • the number of groups represented by formula (C1) is preferably 0 or 1, more preferably 0.
  • the number of substituents B in R 7a , R 8a , R 9a and R 10a is preferably 0 or 1.
  • the number of substituents C is preferably 0 or 1, more preferably 0.
  • the number of hydrogen atoms in R 7a , R 8a , R 9a and R 10a is preferably 2 to 4.
  • the group represented by formula (B1) in group B is preferably a group obtained by removing one hydrogen atom from R 9a of the compound represented by formula (10a), from the viewpoint of improving metal retention.
  • R 7b , R 8b and R 9b are each independently a hydrogen atom, a group represented by formula (C1), or a substituent.
  • the substituents are preferably substituents B or C.
  • the number of substituents B in R 7b , R 8b and R 9b is preferably 0 or 1.
  • the number of hydrogen atoms in R 7b , R 8b and R 9b is preferably 2 or 3.
  • the group represented by formula (B1) in group B is preferably a group obtained by removing one hydrogen atom from R 9b of the compound represented by formula (10b), from the viewpoint of improving metal retention.
  • R 7c , R 8c and R 9c are each independently a hydrogen atom, a group represented by formula (C1), or a substituent.
  • the substituents are preferably substituents B or C.
  • the number of substituents B is preferably 0 or 1.
  • the number of hydrogen atoms in R 7c , R 8c and R 9c is preferably 2 or 3.
  • the group represented by formula (B1) in group B is preferably a group obtained by removing one hydrogen atom from R 9c of the compound represented by formula (10c), from the viewpoint of improving metal retention.
  • X 3 and X 4 are each independently CR 12 , N, NR 13 , S, or O.
  • X3 is preferably CR12 .
  • the combination of X3 and X4 is preferably a combination in which X3 is O and X4 is CR12 , or a combination in which X3 is CR12 and X4 is NR13 .
  • a compound in which X 3 is O and X 4 is CR 12 is a compound represented by the following formula (11a), and a compound in which X 3 is CR 12 and X 4 is NR 13 is a compound represented by the following formula (11b).
  • R 11 is a hydrogen atom, a group represented by formula (C1), or a substituent.
  • the substituent is substituent B or substituent C, preferably substituent C.
  • R 12 is a hydrogen atom, a group represented by formula (C1), or a substituent.
  • the substituent is substituent B or substituent C, preferably substituent C.
  • R 13 is a hydrogen atom, a group represented by formula (C1), or a substituent.
  • the substituent includes, for example, a hydrocarbyl group, a hydroxy group, a heteroaryl group, etc. in the substituent C.
  • Substituents are preferably hydrocarbyl groups.
  • the group represented by formula (B1) in group B is preferably a group obtained by removing one hydrogen atom from R 11 of the compound represented by formula (11).
  • the group represented by formula (B1) in group B is more preferably directly bonded to a carbon atom constituting the ring from the compound represented by formula (10a), formula (10b), or formula (10c).
  • a group in which one hydrogen atom has been removed more preferably a group in which one hydrogen atom directly bonded to a ring-constituting carbon atom has been removed from the compound represented by formula (10a).
  • Examples of the group represented by formula (B1) in group B include groups represented by formulas (B1-1) to (B1-51) below.
  • a group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting a ring from a compound represented by formula (10a), formula (10b), or formula (10c) is represented by formula (B1- 1) ⁇ formula (B1-9), formula (B1-27) ⁇ formula (B1-29), formula (B1-32) ⁇ formula (B1-38), formula (B1-42) ⁇ formula (B1-44 ), and groups represented by (B1-47) to (B1-51), wherein one hydrogen atom directly bonded to a carbon atom constituting the ring is removed from the compound represented by formula (11)
  • the group is represented by formula (B1-18), formula (B1-19), formula (B1-22) to formula (B1-24), formula (B1-30), formula (B1-31), formula (B1-45 ), and a group represented by the formula (B1-46).
  • * represents a bond
  • Sp
  • the group represented by formula (B2) is preferably a group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting the ring from the compound represented by formula (12) below.
  • X 5 , X 6 , X 7 and X 8 each independently represent N, NR 14 or CR 15 ; R 14 and R 15 each independently represent a hydrogen atom, a group represented by formula (C1), or a substituent. When multiple R 14 and R 15 are present, they may be the same or different.
  • X9 represents a carbon atom or a nitrogen atom.
  • Q10 represents O, OH, or a hydrogen atom.
  • each bond indicated by a double line consisting of a solid line and a broken line is arbitrarily selected from the group consisting of a single bond and a double bond.
  • X5 , X6 , X7 , and X8 are each independently N, NR14 , or CR15 .
  • the adjacent X5 , X6 , X7 or X8 is preferably CR15 .
  • N and NR 14 are N and NR 14 .
  • the number of N and NR 14 is preferably 0 or 1, more preferably 0.
  • R 14 and R 15 each independently represent a hydrogen atom, a group represented by formula (C1), or a substituent.
  • the substituents are preferably substituents B or C.
  • the number of substituents B is preferably 0 or 1, more preferably 0.
  • the number of groups represented by formula (C1) is preferably 0 or 1, more preferably 0.
  • X9 is a carbon atom or a nitrogen atom, preferably a nitrogen atom.
  • Q10 is O, OH, or a hydrogen atom, preferably O or OH, more preferably O.
  • the group represented by formula (B2) is preferably a group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting the ring from the compound represented by formula (12) in which X 8 is CH. .
  • Examples of the group represented by formula (B2) in group B include groups represented by formulas (B2-1) to (B2-29) below. Among these, groups obtained by removing one hydrogen atom directly bonded to a carbon atom constituting a ring from the compound represented by formula (12) are represented by formulas (B2-6) to (B1-29). is a group.
  • the group represented by formula (B2) is preferably represented by formula (B2-6), formula (B2-10), formula (B2-12) to formula (B2-22), formula (B2-24) to formula ( B2-26), or a group represented by formula (B2-29), more preferably formula (B2-6), formula (B2-10), formula (B2-12) to formula (B2-18), formula (B2-24) to formula (B2-26), or a group represented by formula (B2-29), more preferably formula (B2-6), formula (B2-10), formula (B2-16), or a group represented by formula (B2-17).
  • * represents a bond.
  • n2 is an integer of 1-5, preferably an integer of 1-4, more preferably 2 or 3.
  • L 10 represents a single bond or a divalent linking group optionally having a substituent.
  • Examples of L 10 include the same groups as L 1 in the groups represented by formulas (25) and (26).
  • R 16 is a hydrogen atom or a substituent, preferably a substituent.
  • Substituents on R 16 include hydrocarbyl groups on Substituent C.
  • Hydrocarbyl groups as R 16 are preferably alkyl groups in substituent C.
  • R 16 may combine with any L 10 to form a ring structure.
  • n2 is 2 or more, multiple X 10 may independently bond to adjacent groups in any direction.
  • the group represented by formula (C1) is preferably a group represented by formula (C1a) or a group represented by formula (C1b), more preferably a group represented by formula (C1a). .
  • n2 L 10 , R 16 and L 30 are as defined above.
  • L 30 represents a single bond or a divalent linking group which may have a substituent. Examples of L 30 are the same as L 3 in the group represented by formula (26).
  • Examples of the group represented by formula (C1) include groups represented by formulas (C1-1) to (C1-10). Among these, groups in which R 16 and L 10 are not bonded to each other to form a ring structure are groups represented by formulas (C1-1) to (C1-7). Among these, the group represented by formula (C1) is preferably a group represented by formula (C1-2), formula (C1-3), or formula (C1-6). Note that * represents a bond, and L30 represents a single bond or a divalent linking group which may have a substituent.
  • Q 1 , Q 2 , Q 3 , and Q 4 each independently represent a hydrogen atom, a group selected from Group A, a group selected from Group B, a group represented by formula (C1), or a substituent .
  • at least one of Q 1 , Q 2 , Q 3 and Q 4 is a group selected from group A.
  • At least one of Q 1 , Q 2 , Q 3 and Q 4 is a group selected from group B, preferably a group represented by formula (B1) in group B.
  • At least three of Q 1 , Q 2 , Q 3 and Q 4 are groups selected from group A, groups selected from group B, or groups represented by formula (C1).
  • Q 1 is preferably a group selected from group A.
  • Q 2 and Q 3 are preferably groups selected from group B.
  • Q4 is preferably a group selected from group A or group B.
  • Q 2 and Q 3 may be bonded to each other or form a ring structure via a divalent linking group.
  • divalent linking groups include alkylene groups such as a methylene group, ethylene group, propylene group, butylene group and pentyl group, and pyridylene groups.
  • the number of groups selected from group A and group B, and n2 in the group represented by formula (C1) in the compound represented by formula (1) is preferably at least 3, more preferably 3 to 8, more preferably the group represented by formula (C1) in the compound represented by formula (1) is not present, or 4 to 7 when the group represented by formula (C1) in the compound represented by formula (1) is present.
  • the total number of groups selected from Group A is preferably 1 to 3, more preferably 1 or 2.
  • the total number of groups selected from Group B is preferably 1 to 3, more preferably 2 or 3.
  • the total number of groups represented by formula (C1) in the compound represented by formula (1) is preferably 0 to 2, more preferably 0 or 1.
  • R is a divalent linking group that may have a substituent.
  • the substituent is the substituent B or the substituent C, and the number of the substituent B is preferably 0 or 1.
  • Examples of the divalent linking group for R include an alkylene group, an arylene group, and a heteroarylene group.
  • the divalent linking group may be a group formed by combining these.
  • the divalent linking group is preferably an alkylene group.
  • the number of carbon atoms in R is not particularly limited, but preferably 1 to 18.
  • the alkylene group for R is a divalent group in which two hydrogen atoms directly bonded to carbon atoms constituting a saturated aliphatic hydrocarbon are removed.
  • Alkylene groups include methylene, ethylene, propylene, isopropylene, butylene, isobutylene, tert-butylene, pentylene, and hexylene groups. A portion of —CH 2 — in these alkylene groups may be substituted with —O—.
  • the number of carbon atoms in the alkylene group is not particularly limited, it is preferably 1 to 8.
  • the arylene group in R is a divalent group excluding two hydrogen atoms directly bonded to the carbon atoms constituting the aromatic hydrocarbon.
  • Arylene groups include phenylene groups, biphenylene groups, terphenylene groups, naphthylene groups, anthracenylene groups and the like.
  • Arylene groups are preferably phenylene groups.
  • the number of carbon atoms in the arylene group is not particularly limited, it is preferably 6 to 18.
  • Heteroarylene groups in R are for example heterocyclic groups such as pyridine, pyrazine, pyrimidine, pyrrole, N-alkylpyrrole, furan, thiophene, thiazole, imidazole, oxazole, benzofuran, benzothiophene, isoquinoline, quinazoline, benzimidazole, quinoline. It is a divalent group in which two hydrogen atoms directly bonded to carbon atoms constituting a compound are removed.
  • a heteroarylene group is preferably a pyridylene group. Although the number of carbon atoms in the heteroarylene group is not particularly limited, it is preferably 3 to 18.
  • the divalent linking group formed by combining an alkylene group, an arylene group, and a heteroarylene group includes a combination in which a phenylene group, a methylene group, and a phenylene group are linked in order, and a combination in which a methylene group, a phenylene group, and a methylene group are linked in order.
  • a combination, a combination in which a pyridylene group, a methylene group, and a pyridylene group are bonded in order, a combination in which a methylene group, a pyridylene group, and a methylene group are bonded in order, and the like can be mentioned.
  • Z 1 , Z 2 , Z 3 and Z 4 each independently represent a single bond or a divalent linking group which may have a substituent.
  • divalent linking groups include hydrocarbylene groups.
  • the hydrocarbylene group include those similar to the hydrocarbylene group for L 1 .
  • the substituents are preferably substituents B, hydrocarbyl groups, aryl groups or heteroaryl groups, more preferably substituents B or hydrocarbyl groups.
  • the compound represented by the formula (1) is preferably a compound represented by the following formula (1A) where n is 1, a compound represented by the following formula (1B) where n is 0, or n is 2 to 6, more preferably a compound represented by the following formula (1A).
  • the compound represented by formula (1A) is preferably a compound represented by formula (1Aa) below or a compound represented by formula (1Ab) below.
  • R a represents an optionally substituted hydrocarbylene group, and a portion of —CH 2 — in the hydrocarbylene group may be substituted with —O—.
  • hydrocarbylene group for R a examples are the same as the hydrocarbylene group for L 1 .
  • hydrocarbylene group for Z 1a , Z 2a , Z 3a and Z 4a are the same as the hydrocarbylene group for L 1 .
  • Examples of compounds represented by formula (1Aa) include compounds represented by formulas (1Aa-1) to (1Aa-23) below.
  • Sp represents "a structure having an affinity for an antigen”.
  • Q 1 , Q 2 , Q 3 and Q 4 are as defined above.
  • R b is a divalent linking group having a heterocyclic ring, and the linking group may have a substituent.
  • the hydrocarbylene group may have a substituent.
  • the bivalent linking group having a heterocyclic ring for R b is a bivalent linking group having a heteroarylene group.
  • the heteroarylene group the same heteroarylene groups as those for L 1 can be exemplified.
  • the divalent linking group may be a divalent linking group formed by combining different heteroarylene groups, a divalent linking group formed by combining a heteroarylene group and a hydrocarbylene group, or the like.
  • a heteroarylene group is preferably a pyridylene group.
  • the divalent linking group formed by combining a heteroarylene group and a hydrocarbylene group includes a combination in which two pyridylene groups are directly linked, a combination in which a pyridylene group, a methylene group, and a pyridylene group are linked in order, and a methylene group. , a pyridylene group and a methylene group combined in that order.
  • hydrocarbylene group for Z 1b , Z 2b , Z 3b and Z 4b are the same as the hydrocarbylene group for L 1 .
  • Examples of compounds represented by formula (1Ab) include compounds represented by formulas (1Ab-1) to (1Ab-8) below.
  • Sp represents "a structure having an affinity for an antigen”.
  • Examples of compounds represented by formula (1B) include compounds represented by formulas (1B-1) to (1B-4) below.
  • Q 1 , Q 2 , Q 3 , Q 4 , Z 1 , Z 2 , Z 3 , Z 4 and R are as defined above.
  • n1 represents an integer of 2-5.
  • Examples of the compound represented by formula (1C) include compounds represented by formulas (1C-1) to (1C-13) below.
  • a compound having a cyclic structure having a nitrogen atom in the center is a structure in which Q 2 and Q 3 are bonded to each other or via a divalent linking group to form a cyclic structure.
  • the compound represented by formula (1) is preferably a compound represented by formula (2) below.
  • R 2 , R 3 , R 4 , R 5 , Q 2 , Q 3 , Q 4 , Z 2 , Z 3 and Z 4 are as defined above.
  • R A represents an optionally substituted divalent linking group having 2 to 8 carbon atoms.
  • -Z 2 -Q 2 , -Z 3 -Q 3 and -Z 4 -Q 4 are represented by the following formulas (15a), (15b), (15c), (15d) and (15e) represents a group selected from the group consisting of the represented groups; provided that at least one of -Z 2 -Q 2 , -Z 3 -Q 3 , and -Z 4 -Q 4 is a group represented by the following formula (15c), formula (15d), or formula (15e) is.
  • a hydrogen atom directly bonded to a carbon atom constituting the ring is a group or substituent represented by formula (C1) Note that * represents a bond.)]
  • R A is an optionally substituted divalent linking group having 2 to 8 carbon atoms.
  • R A is preferably an optionally substituted divalent hydrocarbylene group having 2 to 8 carbon atoms.
  • Examples of the hydrocarbylene group for RA are the same as the hydrocarbylene group for L1 .
  • -Z 2 -Q 2 , -Z 3 -Q 3 , and -Z 4 -Q 4 are represented by formula (15a), formula (15b), formula (15c), formula (15d), and formula (15e). wherein at least one of -Z 2 -Q 2 , -Z 3 -Q 3 and -Z 4 -Q 4 is represented by formula (15c), formula (15d), or a group represented by the formula (15e).
  • -Z 2 -Q 2 and -Z 3 -Q 3 are preferably groups represented by formula (15c), formula (15d) or formula (15e), more preferably represented by formula (15c) is the base.
  • -Z 2 -Q 2 and -Z 3 -Q 3 may be the same or different.
  • -Z 4 -Q 4 is preferably a group represented by formula (15a), formula (15b) or (15c).
  • a hydrogen atom directly bonded to a carbon atom constituting the ring is represented by a group or substituent represented by formula (C1). may be substituted.
  • the substituent is preferably substituent B or substituent C.
  • the compound represented by formula (2) preferably has 0 or 1 substituent B, and since it can be used in combination with the "structure having affinity for the antigen", one substituent B It is more preferable to have
  • the compound represented by formula (1) includes compounds represented by formulas (1-1) to (1-46) below. These compounds may have a substituent.
  • Sp represents "a structure having an affinity for an antigen".
  • the compound represented by formula (1) is preferably a compound represented by formula (2), formula (1-1) to formula (1-4), formula (1-6) to formula (1 -15), compounds represented by formulas (1-26) to (1-34), formula (1-40), or formula (1-43), more preferably formula (1-1) to formula (1-3), formula (1-7), formula (1-10), formula (1-11), formula (1-27), formula (1-29), formula (1-30), formula ( 1-40), or a compound represented by the formula (1-43).
  • the compound of this embodiment may form a salt by interacting with an acid or base, or may be hydrated.
  • acids that may form salts include hydrochloric acid, bromic acid, iodic acid, phosphoric acid, acetic acid, sulfuric acid, nitric acid, perchloric acid, trifluoroacetic acid, trifluoromethanesulfonic acid, and tetrafluoroboric acid. , hexafluorophosphoric acid, tetraphenylboric acid, and the like.
  • the acid is preferably hydrochloric acid or bromic acid.
  • the salt structure with an acid includes, for example, a salt structure in which the nitrogen site in the compound of the present embodiment interacts with an acid.
  • Examples of the base that may form a salt include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide; substances; quaternary ammonium hydroxides such as tetramethylammonium hydroxide and tetrabutylammonium hydroxide; alkali metal carbonates such as lithium carbonate, sodium carbonate and potassium carbonate; lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like and alkali metal hydrogen carbonate.
  • the salt structure with a base includes, for example, a salt structure in which the proton of the carboxylic acid site in the compound of the present embodiment is replaced with another cation.
  • some protons may move within the molecule.
  • one or two protons in the carboxylic acid may move to the vicinity of the nitrogen atom in the ethylenediamine structure or the nitrogen atom in the hydroxyquinoline structure. good.
  • compounds that can be Q 1 , Q 2 , Q 3 and Q 4 can be linked to sites that can be Z 1 , Z 2 , Z 3 and Z 4 It can be produced by appropriately combining known methods.
  • a compound having an aldehyde structure and a compound having an amino group are combined in a solvent such as ethanol. and a method of reacting with a reducing agent such as sodium borohydride after mixing inside.
  • the carboxylic acid is protected with an ester structure in the pyridylcarboxylic acid ester moiety of the resulting compound.
  • An ester site can be derived into a carboxylic acid by deprotecting it by performing a generally known de-esterification reaction or the like.
  • phenol can be derived by protecting the OH site of phenol by benzylation and then debenzylating and deprotecting it.
  • the compound of the present embodiment can be produced by appropriately introducing a protecting group and then deprotecting it.
  • a compound having a carboxylic acid structure and a compound having an amino group are known to be used, as exemplified in the following formula (32). and mixing in a solvent such as DMF using a condensing agent.
  • the compound represented by the formula (1) can be obtained by combining known techniques such as the methods of forming the binding sites exemplified by the above formulas (30) to (34).
  • a compound having a carboxylic acid structure and a compound having an amino group, which are examples of starting materials in each reaction, are also produced by appropriately combining methods for synthesizing known carboxylic acid derivatives and amino compound derivatives. can do.
  • a compound partially having the structure of the substituent B is synthesized. It can be produced by appropriately combining known methods.
  • a compound having a nitro group is used as a diamine compound to synthesize an intermediate product.
  • the nitro moiety is converted to an amine in a solvent such as ethanol by a common reducing agent such as using palladium and hydrogen, and then mixed with thiophosgene in a solvent such as chloroform to obtain formula (A-1 ) can be prepared.
  • the metal element interacts with the above compound. More specifically, the heteroatom and metal element in the compound interact with each other, and interact with the nitrogen atom and/or oxygen atom in the hydroxyquinoline ring in the compound represented by formula (1). there is Interactions are usually coordinate bonds.
  • the metal complex is a heteroatom of the compound represented by formula (1) (e.g., a nitrogen atom in a nitrogen-containing heterocyclic group, a nitrogen atom in a primary to tertiary amine, -OH (including -O - ) an oxygen atom, an oxygen atom in —CO 2 H (including —CO 2 — ), and the number of coordinate bonds is preferably 4 to 12, more preferably 8 to 10.
  • the compound of the present embodiment can three-dimensionally exhibit the above interaction when a metal element is bonded. The presence or absence of formation of coordinate bonds can be confirmed by specifying the distance between the metal element and the heteroatom by structural optimization calculation using software that can simulate the 3D molecular structure that is widely used.
  • the metal element may be an uncharged or charged ion, preferably a charged ion. When the metal element is charged, it preferably has a valence of 1 to 4, more preferably 2 to 4.
  • the metal element may be a typical metal element, an alkali metal element, an alkaline earth metal element, a transition metal element, or a rare earth element, and may be a radioactive element or a non-radioactive element.
  • metal elements that are non-radioactive elements include Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, La, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, and Bi.
  • the metal element, which is a non-radioactive element is preferably a metal element that can be stably used as a divalent to tetravalent metal cation.
  • metal elements that are radioactive elements include 44 Sc, 47 Sc, 51 Cr, 59 Fe, 57 Co, 58 Co, 60 Cu, 61 Cu, 62 Cu, 64 Cu, 67 Cu, 66 Ga, 67 Ga, 68 Ga, 75 Se, 83 Sr, 86 Y, 90 Y, 89 Zr, 99 Mo, 94m Tc, 99m Tc, 97 Ru, 103 Ru, 105 Rh, 109 Pd, 111 Ag, 110 In, 111 In, 114m In , 132 La, 135 La, 153 Sm, 149 Tb, 60 Tb, 161 Tb, 166 Ho, 167 Tm, 169 Yb, 177 Lu, 186 Re, 188 Re, 199 Au, 201 Tl, 212 Pbi , 212 B Bi, 233 Ra, 225 Ac, 227 Th, 241 Am, 244 Cm.
  • the metal element, which is a radioactive element is preferably a metal element that can be used as a divalent
  • the number of metal elements present in one molecule of the metal complex may be one or more.
  • the number of metal elements present in one molecule of the metal complex is preferably 1 or 2, more preferably 1.
  • the number of metal elements present in one molecule of the metal complex may be one or two or more.
  • the number of metal elements present in one molecule of the metal complex is preferably one.
  • the metal complex may contain a counter ion for making the metal complex electrically neutral. If the metal complex is positively charged, an anion is chosen to neutralize it.
  • Anions include, for example, fluoride ion, chloride ion, bromide ion, iodide ion, sulfide ion, oxide ion, hydroxide ion, hydride ion, phosphate ion, acetate ion, sulfate ion, nitric acid ions, bicarbonate ions, trifluoroacetate ions, trifluoromethanesulfonate ions, tetrafluoroborate ions, and the like.
  • the anion is preferably hydrochloride or acetate.
  • a cation is chosen to neutralize it.
  • cations include protons, ammonium ions, tetraalkylammonium ions, tetraarylphosphonium ions, and the like.
  • a plurality of counterions may be present, and they may be the same or different.
  • the metal complex may contain neutral molecules such as the solvent used during the metal complexation reaction or purification.
  • neutral molecules include water, methanol, ethanol, n-propanol, N,N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, acetone, chloroform, acetonitrile, benzonitrile, triethylamine, pyridine. , diethyl ether, acetic acid, propionic acid, hydrochloric acid, and the like.
  • a plurality of neutral molecules may exist, and they may be the same or different.
  • the metal complex preferably has one substituent A or one substituent B.
  • metal complexes of the present embodiment include metal complexes represented by formulas (K-1) to (K-46).
  • the metal complex preferably has formulas (K-1) to (K-4), formulas (K-6) to (K-15), formulas (K-26) to (K-34), formulas (K-40), or a metal complex represented by formula (K-43), more preferably formula (K-1) to formula (K-3), formula (K-7), formula (K-10) ), formula (K-11), formula (K-27), formula (K-29), formula (K-30), formula (K-40), or a metal complex represented by formula (K-43) is.
  • M represents a metal element. Dashed lines between M and heteroatoms represent possible interactions. Note that dashed lines between M and heteroatoms are for convenience and do not necessarily mean that interactions exist on all dashed lines. Further, the metal complex represented by the above formula may have a counterion and/or a neutral molecule as described above, and the ligand derived from the above compound may have a substituent. good. In addition, Sp represents "a structure having an affinity for an antigen".
  • the method for producing a metal complex according to the present embodiment includes a step of mixing a reactant that imparts a metal element and the compound represented by formula (1).
  • the metal complex of the present embodiment is obtained by organically synthesizing the compound of the present embodiment, and then using the obtained compound as a reactant for imparting a metal element (hereinafter, sometimes referred to as a "metal imparting agent”. ) and reacted.
  • a metal imparting agent hereinafter, sometimes referred to as a "metal imparting agent”.
  • the amount of the metal-providing agent to be reacted can be appropriately adjusted according to the desired metal complex.
  • the metal imparting agent examples include acetates, fluorides, chlorides, bromides, iodides, sulfates, carbonates, nitrates, acetates, hydroxides, perchlorates, and tris of the metal elements exemplified above. fluoroacetate, trifluoromethanesulfonate, tetrafluoroborate, hexafluorophosphate, tetraphenylborate and the like.
  • the metal donating agent is preferably a chloride or acetate of a metal element.
  • the metal imparting agent may be a hydrate.
  • reaction between the compound and the metal imparting agent is preferably carried out in a solvent (that is, reaction solvent).
  • reaction solvents include water, acetic acid, propionic acid, hydrochloric acid, aqueous ammonia, methanol, ethanol, n-propanol, N,N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, acetone, and chloroform. , acetonitrile, benzonitrile, triethylamine, pyridine, diethyl ether and the like.
  • the reaction solvent may be used singly or in combination of two or more.
  • the reaction solvent may contain other components such as acids, bases and buffers for adjusting the pH of the reaction solution.
  • the reaction temperature is usually -10 to 200°C, preferably 0 to 100°C, more preferably 10 to 40°C.
  • the reaction time is generally 1 minute to 1 week, preferably 1 minute to 24 hours, more preferably 1 minute to 6 hours.
  • reaction solvent reaction solvent, reaction temperature, and reaction time
  • reaction time can be appropriately optimized according to the type of compound, the type of metal imparting agent, and the like.
  • an optimal means can be appropriately selected from known recrystallization methods, reprecipitation methods, chromatography methods, and the like.
  • the produced metal complex may precipitate, and the metal complex can be isolated and purified by separating the precipitated metal complex by filtration.
  • reaction between a compound and a metal imparting agent is usually a quantitative reaction, a metal complex with a relatively high purity can be obtained in a solution state without special isolation and purification operations.
  • a metal complex having a substituent A can be obtained by reacting a compound having a substituent A with a metal-donating agent, and a compound having a substituent B is reacted with a metal-donating agent to form a complex.
  • a metal-donating agent can also be obtained by performing a binding reaction between a “structure having affinity for an antigen” and a “crosslinkable site” exemplified in formulas (20) to (22) above.
  • the compound of the present embodiment is used as a catalyst for reactions such as decomposition of hydrogen peroxide, an electrode catalyst for carbon dioxide reduction, etc., by forming a complex with a metal element having oxidation-reduction activity such as Co, Fe, Ni, etc. be able to.
  • Some forms of the compounds of the present embodiment have high metal retention and can form complexes with metals at very low concentrations. Therefore, for example, valuable metal elements can be collected from radioactive waste or seawater. Some forms of the compound form strong coordination bonds with metal elements, and therefore can be used, for example, as surface coating materials for metal particles. Some forms of the compound of the present embodiment can be given luminescent properties by using a specific metal element, and can be used as a luminescent material. Furthermore, when some forms of the compounds of this embodiment are used as ligands, they can be used in radiopharmaceuticals because of their high retention of radiometal elements.
  • the structure of the compound was confirmed by known methods such as nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS).
  • NMR nuclear magnetic resonance
  • MS mass spectrometry
  • the compound (a-2) was prepared according to the non-patent document The Journal of the American Chemical Society, 2018, Vol. 140, p. 15487-15500.
  • Compound (a-7) is subjected to a deprotection reaction of the methyl ester moiety generally known in the field of synthetic organic chemistry to synthesize compound (a-9) in which the methyl ester moiety is a carboxylic acid. be able to.
  • Specific examples of the deprotection reaction of the methyl ester moiety include the method of mixing sodium hydroxide in a mixed solvent of water and tetrahydrofuran, the method described in Example 3 below, and the like.
  • compound (1-40) can be synthesized by subjecting compound (a-9) to an isothiocyanation reaction of an amine moiety, which is generally known in the field of synthetic organic chemistry.
  • Specific examples of the isothiocyanate conversion reaction of the amine site include the method of mixing thiophosgene in a dichloromethane solvent, the method described in Synthesis Example 4 above, and the like.
  • the pale-yellow residue was dissolved in 520 mg of heavy tetrahydrofuran, and 74.0 mg of heavy water obtained by mixing 1.00 mg (1.52 ⁇ mol) of compound (a-10) and 0.17 mg (1.68 ⁇ mol) of triethylamine was added at room temperature. Stirred for an hour. The solvent was distilled off from the reaction solution, and the residue was suspended in water and filtered. The filtrate was dried under reduced pressure to obtain compound (a-11) as a yellow solid with a yield of 67%. The formation of the resulting compound (a-11) was confirmed by mass spectrometry as described below.
  • Example 4 ⁇ La complex synthesis of compound (1-2)> A 0.1 mol/L HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) aqueous solution was prepared as a buffer (hereinafter referred to as "buffer 1"). Compound (1-2) was dissolved in buffer solution 1 at a concentration of 30 ⁇ mol/L to prepare solution 1A. In a separate container, LaCl 3 was dissolved in buffer 1 at a concentration of 3 mmol/L to prepare solution 2. Then, Solution 2 was added to Solution 1A so that the compound (1-2) and LaCl 3 were in the same molar amount to obtain Solution 3A. Ultraviolet-visible absorption spectroscopy was carried out before and after the addition of solution 2, and a peak with a maximum absorption wavelength of 264 nm appeared with the addition of LaCl 3 . This confirmed the formation of a La complex.
  • buffer 1 HEPES (4-(2-hydroxyethyl)-1-piperazinee
  • Example 5 ⁇ Zr Complex Synthesis of Compound (1-2)>
  • buffer solution 2 a 1:1 (volume ratio) mixed solution of 0.1 mol/L sodium acetate aqueous solution and dimethylsulfoxide was prepared (hereinafter referred to as “buffer solution 2”).
  • Compound (1-2) was dissolved in buffer solution 2 at a concentration of 30 ⁇ mol/L to prepare solution 4A.
  • a solution 5 was prepared by dissolving ZrCl 4 at a concentration of 3 mmol/L in a 0.1 mol/L hydrochloric acid aqueous solution in another container.
  • solution 6A was obtained by adding solution 5 to solution 4A so that compound (1-2) and ZrCl 4 were in the same molar amount.
  • Ultraviolet-visible absorption spectroscopy was performed before and after the addition of solution 5, and a shoulder peak at 274 nm appeared with the addition of ZrCl4 . This confirmed the formation of a Zr complex.
  • Example 6 ⁇ Sr Complex Synthesis of Compound (1-2)> A 0.01 mol/L HEPES aqueous solution was prepared as a buffer (hereinafter referred to as "buffer 3"). Compound (1-2) was dissolved in buffer solution 3 at a concentration of 50 ⁇ mol/L to prepare solution 7A. In a separate container, SrCl 2 was dissolved in buffer 3 at a concentration of 3 mmol/L to prepare solution 8 . Next, solution 9A was obtained by adding solution 8 to solution 7A so that compound (1-2) and SrCl 2 were in the same molar amount. Ultraviolet-visible absorption spectrum analysis was performed before and after addition of solution 8, and a peak with a maximum absorption wavelength of 307 nm appeared with the addition of SrCl2 . This confirmed the formation of an Sr complex.
  • Example 7 ⁇ In Complex Synthesis of Compound (1-2)>
  • Solution 1A was prepared.
  • InCl 3 was dissolved in a 0.1 mol/L hydrochloric acid aqueous solution at a concentration of 3 mmol/L to prepare a solution 10 .
  • solution 10 was added to solution 1A so that the compound (1-2) and InCl 3 were in the same molar amount to obtain solution 11A.
  • Ultraviolet-visible absorption spectroscopy was performed before and after the addition of solution 10, and a peak with a maximum absorption wavelength of 264 nm appeared with the addition of InCl 3 . This confirmed the formation of an In complex.
  • Example 8 ⁇ Gd Complex Synthesis of Compound (1-2)>
  • Solution 1A was prepared.
  • GdCl 3 was dissolved in buffer 1 at a concentration of 3 mmol/L to prepare solution 12 .
  • solution 12 was added to solution 1A so that the compound (1-2) and GdCl 3 were in the same molar amount to obtain solution 13A.
  • Ultraviolet-visible absorption spectroscopy was performed before and after the addition of solution 12, and a peak with a maximum absorption wavelength of 265 nm appeared with the addition of GdCl3 . This confirmed the formation of a Gd complex.
  • Reference example 3 ⁇ Metal Retention Power of Zr Complex of Compound (1-2)> To the above solution 6A was added 10 equivalents of EDTA relative to compound (1-2), and the mixture was stirred to dissolve EDTA. Ultraviolet-visible absorption spectroscopy was performed before and after the addition of EDTA. From the change in absorption intensity at 274 nm, which is a shoulder peak due to the Zr complex, it was confirmed that 90% of the Zr complex of compound (1-2) remained.
  • Reference example 4 ⁇ Metal Retention Power of Sr Complex of Compound (1-2)> 1 equivalent of EDTA was added to the above solution 9A with respect to compound (1-2), and the mixture was stirred to dissolve the EDTA. Ultraviolet-visible absorption spectroscopy was performed before and after the addition of EDTA. From the change in absorption intensity at 307 nm, which is the maximum absorption wavelength, it was confirmed that 93% of the Sr complex of compound (1-2) remained.
  • Example 9 ⁇ La complex synthesis of compound (1-1)>
  • Solution 1B was prepared using compound (1-1) instead of compound (1-2) used in Example 4 above.
  • Solution 3B was obtained in the same manner as in Example 4 except that Solution 1A was changed to Solution 1B.
  • Ultraviolet-visible absorption spectroscopy was performed before and after the addition of solution 2, and a peak with a maximum absorption wavelength at 267 nm appeared with the addition of LaCl 3 . This confirmed the formation of a La complex.
  • Example 10 ⁇ Zr Complex Synthesis of Compound (1-1)>
  • Solution 4B was prepared using compound (1-1) instead of compound (1-2) used in Example 5 above.
  • Solution 6B was obtained in the same manner as in Example 5 except that Solution 4A was changed to Solution 4B.
  • Ultraviolet-visible absorption spectrum analysis was performed before and after addition of solution 5, and a peak with a maximum absorption wavelength of 265 nm appeared with the addition of ZrCl4 . This confirmed the formation of a Zr complex.
  • Example 11 ⁇ Sr Complex Synthesis of Compound (1-1)>
  • Solution 7B was prepared using compound (1-1) instead of compound (1-2) used in Example 6 above.
  • Solution 9B was obtained in the same manner as in Example 6, except that solution 7A was changed to solution 7B.
  • Ultraviolet-visible absorption spectroscopy was performed before and after the addition of Solution 8, and a shoulder peak at 282 nm appeared with the addition of SrCl2 . This confirmed the formation of an Sr complex.
  • Reference example 7 Metal Retention Power of La Complex of Compound (1-1)> The same operation as in Reference Example 2 was performed, except that 10 equivalents of EDTA with respect to compound (1-1) was added to the above solution 3B. From the absorption intensity change at 267 nm, which is the maximum absorption wavelength, it was confirmed that 93% of the La complex of compound (1-1) remained.
  • Reference example 8 ⁇ Metal Retention Power of Zr Complex of Compound (1-1)> The same operation as in Reference Example 3 was performed, except that 10 equivalents of EDTA relative to compound (1-1) was added to the above solution 6B. From the change in absorption intensity at 265 nm, which is the maximum absorption wavelength, it was confirmed that 80% of the Zr complex of compound (1-1) remained.
  • Reference example 9 Metal Retention Power of Sr Complex of Compound (1-1)> The same operation as in Reference Example 4 was performed, except that 1 equivalent of EDTA relative to compound (1-1) was added to the above solution 9B. From the change in absorption intensity at 282 nm, which is a shoulder peak due to the Sr complex, it was confirmed that 96% of the Sr complex of compound (1-1) remained.
  • Example 12 ⁇ La Complex Synthesis of Compound (1-43)>
  • Solution 1C was prepared using compound (1-43) in place of compound (1-2) used in Example 4 above.
  • Solution 3C was obtained in the same manner as in Example 4 except that Solution 1A was changed to Solution 1C.
  • Ultraviolet-visible absorption spectroscopy was performed before and after the addition of solution 2, and a peak with a maximum absorption wavelength at 271 nm appeared with the addition of LaCl3 . This confirmed the formation of a La complex.
  • Reference example 8 ⁇ Metal Retention Power of La Complex of Compound (1-43)> The same procedure as in Reference Example 2 was performed, except that 10 equivalents of EDTA relative to compound (1-43) was added to solution 3C. From the change in absorption intensity at 271 nm, which is the maximum absorption wavelength, it was confirmed that 82% of the La complex of compound (1-43) remained.
  • Comparative example 1 ⁇ Synthesis of La complex of compound (a-2) and its metal retention> Compound (a-2) was dissolved in buffer solution 3 at a concentration of 50 ⁇ mol/L to prepare solution 1a.
  • a solution 3a was obtained in the same manner as in Example 4 except that the solution 1A was changed to the solution 1a.
  • Ultraviolet-visible absorption spectroscopy was performed before and after addition of Solution 2, and a peak with a maximum absorption wavelength of 360 nm appeared with the addition of LaCl 3 . This confirmed the formation of a La complex.
  • 1 equivalent of EDTA relative to compound (a-2) was added, and ultraviolet-visible absorption spectrum analysis was performed before and after the addition. Absorption at 360 nm, which is the maximum absorption wavelength, completely disappeared, confirming that the La complex of compound (a-2) did not remain.
  • Comparative example 2 ⁇ Study on Synthesis of Sr Complex of Compound (a-2)> Solution 7a was prepared using compound (a-2) instead of compound (1-2). The same operation as in Example 6 was performed except that solution 7A was changed to solution 7a. Ultraviolet-visible absorption spectrum analysis was performed before and after addition of solution 8, and no change was observed in the ultraviolet-visible absorption spectrum, and formation of an Sr complex was not confirmed.
  • the compound of the present invention is effective against a plurality of metal species including Zr 4+ which is a tetravalent metal species, La 3+ which is a trivalent metal species, and Sr 2+ which is a divalent metal species. It was confirmed that it is possible to form a complex.
  • Zr 4+ , La 3+ , and Sr 2+ are all metal elements whose outermost electron shells have closed-shell structures, and metal elements with such closed-shell structures are generally known to be difficult to form complexes. . Since the compound of the present invention can form a complex with a metal element having a closed-shell structure, it is presumed that it can easily form a complex with many other metal elements that do not have a closed-shell structure.
  • the metal complexes of the present invention retained the metal even when EDTA was added to the complex. Since EDTA is a strong chelating agent having four carboxylic acid sites, it was found that the metal complex of the present invention can stably retain a metal even when a substance that interacts with the metal coexists.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Optics & Photonics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Disclosed is a compound represented by formula (1). In formula (1), n represents an integer of 0-5. Q1, Q2, Q3, and Q4 represent a moiety selected from group A, a moiety selected from group B, a moiety represented by formula (C1), or the like. One or more of Q1, Q2, Q3, and Q4 is a moiety selected from group A, one or more of Q1, Q2, Q3, and Q4 is a moiety selected from group B, and three or more of Q1, Q2, Q3, and Q4 are moieties selected from group A, moieties selected from group B, or moieties represented by formula (C1). Group A is a group comprising moieties and the like represented by formula (A1). Group B is a group comprising moieties and the like represented by formula (B1). Z1, Z2, Z3, and Z4 represent a single bond or a divalent linking moiety. R represents a divalent linking moiety.

Description

化合物及び金属錯体compounds and metal complexes
 本発明は、化合物及び金属錯体に関する。 The present invention relates to compounds and metal complexes.
 種々の金属イオンと錯形成することが可能な化合物及びこのような化合物に由来する配位子を有する金属錯体は、様々な用途に使用され有用である。このような化合物及び金属錯体の用途としては、例えば、金属除去剤、金属触媒、発光錯体、MRI造影剤、放射性核種医薬品、放射性廃棄物の分離等が挙げられる(例えば、特許文献1、2、非特許文献1、2)。 Compounds capable of forming complexes with various metal ions and metal complexes having ligands derived from such compounds are useful in various applications. Applications of such compounds and metal complexes include, for example, metal removing agents, metal catalysts, luminescent complexes, MRI contrast agents, radionuclide drugs, and separation of radioactive wastes (e.g., Patent Documents 1, 2, Non-Patent Documents 1 and 2).
特許第2552714号公報Japanese Patent No. 2552714 特表平04-502574号公報Japanese Patent Publication No. 04-502574
 本発明は、複数の金属種に対して錯体を形成することが可能な化合物を提供することを目的とする。また、本発明は、このような化合物に由来する配位子を有する金属錯体を提供することを主な目的とする。 An object of the present invention is to provide a compound capable of forming a complex with a plurality of metal species. Another main object of the present invention is to provide a metal complex having a ligand derived from such a compound.
 本発明者らが上記課題を解決すべく鋭意検討したところ、8-ヒドロキシキノリン誘導体を含む部分構造と、カルボン酸、ホスホン酸、ヒドロキシル基、又はヒドロキサム酸のいずれかを含む部分構造とを有する化合物が複数の金属種に対して錯体を形成することが可能であることを見出し、本発明を完成するに至った。 As a result of intensive studies by the present inventors to solve the above problems, compounds having a partial structure containing an 8-hydroxyquinoline derivative and a partial structure containing any of carboxylic acid, phosphonic acid, hydroxyl group, or hydroxamic acid can form a complex with a plurality of metal species, leading to the completion of the present invention.
 本発明の一側面は、化合物に関する。当該化合物は、下記式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000016
[式(1)中、nは、0~5の整数を表す。
 Q、Q、Q、及びQは、それぞれ独立に、水素原子、群Aから選ばれる基、群Bから選ばれる基、式(C1)で表される基、又は置換基を表す。ただし、Q、Q、Q、及びQの少なくとも1個は、群Aから選ばれる基であり、Q、Q、Q、及びQの少なくとも1個は、群Bから選ばれる基であり、Q、Q、Q、及びQの少なくとも3個は、群Aから選ばれる基、群Bから選ばれる基、又は式(C1)で表される基である。
 nが2以上である場合、複数存在するQは、それぞれ同一であっても異なっていてもよく、Q及びQは、互いに結合して、又は、2価の連結基を介して環構造を形成していてもよい。
 群Aは、下記式(A1)、式(A2)、式(A3)、式(A4)、式(A5)、及び式(A6)で表される基からなる群である。
Figure JPOXMLDOC01-appb-C000017
(式(A1)、式(A2)、式(A3)、式(A4)、式(A5)、及び式(A6)中、R、R、R、R、R、及びRは、それぞれ独立に、水素原子、式(C1)で表される基、又は置換基を表す。なお、*は、結合手を表す。)
 群Bは、下記式(B1)及び式(B2)で表される基からなる群である。
Figure JPOXMLDOC01-appb-C000018
(式(B1)中、QB1は、式(C1)で表される基又は置換基を有していてもよい、2価の複素環基を表し、Xは、炭素原子又はP(OH)を表す。なお、*は、結合手を表す。)
Figure JPOXMLDOC01-appb-C000019
(式(B2)中、QB2は、式(C1)で表される基又は置換基を有していてもよい、2価の窒素原子を含む単環式複素環基を表す。なお、*は、結合手を表す。)
Figure JPOXMLDOC01-appb-C000020
(式(C1)中、n2は、1~5の整数を表す。L10は、単結合又は置換基を有していてもよい2価の連結基を表す。R16は、水素原子又は置換基を表す。R16は任意のL10と互いに結合して環構造を形成していてもよい。X10は、-N(OH)C(=O)-を表し、-N(OH)C(=O)-は、隣接する基と任意の方向で結合していてもよい。n2が2以上である場合、複数存在するL10は、それぞれ同一であっても異なっていてもよい。L30は、単結合又は置換基を有していてもよい2価の連結基を表す。なお、*は、結合手を表す。)
 Z、Z、Z、及びZは、それぞれ独立に、単結合又は置換基を有していてもよい2価の連結基を表す。
 nが2以上である場合、複数存在するZは、それぞれ同一であっても異なっていてもよい。
 Rは、置換基を有していてもよい2価の連結基を表す。
 nが2以上である場合、複数存在するRは、それぞれ同一であっても異なっていてもよい。]
One aspect of the invention relates to compounds. The compound is a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000016
[In formula (1), n represents an integer of 0 to 5.
Q 1 , Q 2 , Q 3 , and Q 4 each independently represent a hydrogen atom, a group selected from Group A, a group selected from Group B, a group represented by formula (C1), or a substituent . provided that at least one of Q 1 , Q 2 , Q 3 and Q 4 is a group selected from group A, and at least one of Q 1 , Q 2 , Q 3 and Q 4 is from group B a group selected, and at least three of Q 1 , Q 2 , Q 3 , and Q 4 are a group selected from group A, a group selected from group B, or a group represented by formula (C1) .
When n is 2 or more, multiple Q 4 may be the same or different, and Q 2 and Q 3 are bonded to each other or via a divalent linking group to form a ring It may form a structure.
Group A is a group consisting of groups represented by the following formulas (A1), (A2), (A3), (A4), (A5), and (A6).
Figure JPOXMLDOC01-appb-C000017
(In Formula (A1), Formula (A2), Formula (A3), Formula (A4), Formula (A5), and Formula (A6), R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 each independently represents a hydrogen atom, a group represented by formula (C1), or a substituent (* represents a bond).
Group B is a group consisting of groups represented by the following formulas (B1) and (B2).
Figure JPOXMLDOC01-appb-C000018
(In formula (B1), Q B1 represents a group represented by formula (C1) or a divalent heterocyclic group which may have a substituent, and X 1 is a carbon atom or P(OH ), where * represents a bond.)
Figure JPOXMLDOC01-appb-C000019
(In formula (B2), Q B2 represents a divalent nitrogen atom-containing monocyclic heterocyclic group that may have a group or substituent represented by formula (C1). Note that * represents a bond.)
Figure JPOXMLDOC01-appb-C000020
(In formula (C1), n2 represents an integer of 1 to 5. L 10 represents a single bond or a divalent linking group which may have a substituent. R 16 represents a hydrogen atom or a substituted R 16 may be combined with any L 10 to form a ring structure, X 10 represents -N(OH)C(=O)-, and -N(OH)C (=O)- may be bonded to adjacent groups in any direction, and when n2 is 2 or more, L 10 present in plurality may be the same or different. 30 represents a single bond or a divalent linking group which may have a substituent (* represents a bond).
Z 1 , Z 2 , Z 3 and Z 4 each independently represent a single bond or a divalent linking group which may have a substituent.
When n is 2 or more, multiple Z 4 may be the same or different.
R represents a divalent linking group which may have a substituent.
When n is 2 or more, multiple R's may be the same or different. ]
 式(1)で表される化合物は、好ましくは、下記式(1A)で表される化合物、下記式(1B)で表される化合物、又は下記式(1C)で表される化合物である。
Figure JPOXMLDOC01-appb-C000021
[式(1A)中、Q、Q、Q、Q、Z、Z、Z、Z、及びRは、前記と同義である。]
Figure JPOXMLDOC01-appb-C000022
[式(1B)中、Q、Q、Q、Z、Z、及びZは、前記と同義である。]
Figure JPOXMLDOC01-appb-C000023
[式(1C)中、Q、Q、Q、Q、Z、Z、Z、Z、及びRは、前記と同義である。
 n1は、2~5の整数を表す。]
The compound represented by formula (1) is preferably a compound represented by formula (1A) below, a compound represented by formula (1B) below, or a compound represented by formula (1C) below.
Figure JPOXMLDOC01-appb-C000021
[In Formula (1A), Q 1 , Q 2 , Q 3 , Q 4 , Z 1 , Z 2 , Z 3 , Z 4 and R are as defined above. ]
Figure JPOXMLDOC01-appb-C000022
[In Formula (1B), Q 1 , Q 2 , Q 3 , Z 1 , Z 2 and Z 3 are as defined above. ]
Figure JPOXMLDOC01-appb-C000023
[In Formula (1C), Q 1 , Q 2 , Q 3 , Q 4 , Z 1 , Z 2 , Z 3 , Z 4 and R are as defined above.
n1 represents an integer of 2-5. ]
 式(1A)で表される化合物は、好ましくは、下記式(1Aa)で表される化合物又は下記式(1Ab)で表される化合物である。
Figure JPOXMLDOC01-appb-C000024
[式(1Aa)中、Q、Q、Q、及びQは、前記と同義である。
 Rは、置換基を有していてもよいヒドロカルビレン基を表し、ヒドロカルビレン基中の-CH-の一部は、-O-に置換されていてもよい。
 Z1a、Z2a、Z3a、及びZ4aは、それぞれ独立に、単結合又は置換基を有していてもよいヒドロカルビレン基を表し、ヒドロカルビレン基中の-CH-の一部は、-O-、-C(=O)-、-NHC(=O)-、又は-C(=O)NH-に置換されていてもよい。]
Figure JPOXMLDOC01-appb-C000025
[式(1Ab)中、Q、Q、Q、及びQは、前記と同義である。
 Rは、複素環を有する2価の連結基であり、当該連結基は、置換基を有していてもよい。
 Z1b、Z2b、Z3b、及びZ4bは、それぞれ独立に、単結合又は置換基を有していてもよいヒドロカルビレン基を表し、ヒドロカルビレン基中の-CH-の一部は、-O-、-C(=O)-、-NHC(=O)-、又は-C(=O)NH-に置換されていてもよい。
 ただし、Z1b、Z2b、Z3b、及びZ4bの少なくとも1個は、ヒドロカルビレン基中の-CH-の一部が、-O-、-C(=O)-、-NHC(=O)-、又は-C(=O)NH-に置換されたヒドロカルビレン基である。当該ヒドロカルビレン基は、置換基を有していてもよい。]
The compound represented by the formula (1A) is preferably a compound represented by the following formula (1Aa) or a compound represented by the following formula (1Ab).
Figure JPOXMLDOC01-appb-C000024
[In the formula (1Aa), Q 1 , Q 2 , Q 3 and Q 4 have the same meanings as described above.
R a represents an optionally substituted hydrocarbylene group, and a portion of —CH 2 — in the hydrocarbylene group may be substituted with —O—.
Z 1a , Z 2a , Z 3a and Z 4a each independently represents a single bond or an optionally substituted hydrocarbylene group, and is part of —CH 2 — in the hydrocarbylene group is optionally substituted with -O-, -C(=O)-, -NHC(=O)-, or -C(=O)NH-. ]
Figure JPOXMLDOC01-appb-C000025
[In Formula (1Ab), Q 1 , Q 2 , Q 3 and Q 4 are as defined above.
R b is a divalent linking group having a heterocyclic ring, and the linking group may have a substituent.
Z 1b , Z 2b , Z 3b and Z 4b each independently represents a single bond or an optionally substituted hydrocarbylene group, and is part of —CH 2 — in the hydrocarbylene group is optionally substituted with -O-, -C(=O)-, -NHC(=O)-, or -C(=O)NH-.
with the proviso that at least one of Z 1b , Z 2b , Z 3b and Z 4b is such that a portion of —CH 2 — in the hydrocarbylene group is —O—, —C(=O)—, —NHC( =O)- or a hydrocarbylene group substituted with -C(=O)NH-. The hydrocarbylene group may have a substituent. ]
 式(B1)で表される基は、好ましくは、下記式(10a)、式(10b)、式(10c)、又は式(11)で表される化合物から、環を構成する炭素原子に直接結合する水素原子1個を除いた基である。
Figure JPOXMLDOC01-appb-C000026
[式(10a)~(10c)中、R7a、R8a、R9a、R7b、R8b、R9b、R7c、R8c、及びR9cは、それぞれ独立に、水素原子、式(C1)で表される基、又は置換基を表す。
 ただし、R7a、R8a、及びR9aのうち、少なくとも1個は水素原子である。R7b、R8b、及びR9bのうち、少なくとも1個は水素原子である。R7c、R8c、及びR9cのうち、少なくとも1個は水素原子である。
 Xは、窒素原子又はCR10aを表す。
 R10aは、それぞれ独立に、水素原子、式(C1)で表される基、又は置換基を表す。]
Figure JPOXMLDOC01-appb-C000027
[式(11)中、R11は、水素原子、式(C1)で表される基、又は置換基を表す。
 X及びXは、それぞれ独立に、CR12、N、NR13、S、又はOを表す。R12及びR13は、それぞれ独立に、水素原子、式(C1)で表される基、又は置換基を表す。R12及びR13が複数存在する場合、それぞれ同一であっても異なっていてもよい。
 なお、式(11)において、実線と破線との二重線で表される結合は、それぞれ単結合及び二重結合からなる群から任意に選択される。]
The group represented by formula (B1) is preferably a compound represented by the following formula (10a), formula (10b), formula (10c), or formula (11) directly to a carbon atom constituting the ring. It is a group from which one bonding hydrogen atom has been removed.
Figure JPOXMLDOC01-appb-C000026
[In formulas (10a) to (10c), R 7a , R 8a , R 9a , R 7b , R 8b , R 9b , R 7c , R 8c , and R 9c each independently represent a hydrogen atom, ) represents a group or a substituent.
However, at least one of R 7a , R 8a and R 9a is a hydrogen atom. At least one of R 7b , R 8b and R 9b is a hydrogen atom. At least one of R 7c , R 8c and R 9c is a hydrogen atom.
X2 represents a nitrogen atom or CR10a .
Each R 10a independently represents a hydrogen atom, a group represented by formula (C1), or a substituent. ]
Figure JPOXMLDOC01-appb-C000027
[In formula (11), R 11 represents a hydrogen atom, a group represented by formula (C1), or a substituent.
X 3 and X 4 each independently represent CR 12 , N, NR 13 , S or O; R 12 and R 13 each independently represent a hydrogen atom, a group represented by formula (C1), or a substituent. When multiple R 12 and R 13 are present, they may be the same or different.
In formula (11), each bond indicated by a double line consisting of a solid line and a broken line is arbitrarily selected from the group consisting of a single bond and a double bond. ]
 式(B2)で表される基は、好ましくは、下記式(12)で表される化合物から環を構成する炭素原子に直接結合する水素原子1個を除いた基である。
Figure JPOXMLDOC01-appb-C000028
[式(12)中、X、X、X、及びXは、それぞれ独立に、N、NR14、又はCR15を表す。R14及びR15は、それぞれ独立に、水素原子、式(C1)で表される基、又は置換基を表す。R14及びR15が複数存在する場合、それぞれ同一であっても異なっていてもよい。
 Xは、炭素原子又は窒素原子を表す。
 Q10は、O、OH、又は水素原子を表す。
 なお、式(12)において、実線と破線との二重線で表される結合は、それぞれ単結合及び二重結合からなる群から任意に選択される。]
The group represented by the formula (B2) is preferably a group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting the ring from the compound represented by the following formula (12).
Figure JPOXMLDOC01-appb-C000028
[In Formula (12), X 5 , X 6 , X 7 and X 8 each independently represent N, NR 14 or CR 15 ; R 14 and R 15 each independently represent a hydrogen atom, a group represented by formula (C1), or a substituent. When multiple R 14 and R 15 are present, they may be the same or different.
X9 represents a carbon atom or a nitrogen atom.
Q10 represents O, OH, or a hydrogen atom.
In formula (12), each bond indicated by a double line consisting of a solid line and a broken line is arbitrarily selected from the group consisting of a single bond and a double bond. ]
 式(1)で表される化合物は、好ましくは下記式(2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000029
[式(2)中、R、R、R、R、Q、Q、Q、Z、Z、及びZは、前記と同義である。
 Z1Aは、-CH-又は-C(=O)-を表す。
 Rは、置換基を有していてもよい2価の炭素原子数2~8個である連結基を表す。
 -Z-Q、-Z-Q、及び-Z-Qは、下記式(15a)、式(15b)、式(15c)、式(15d)、及び式(15e)で表される基からなる群より選ばれる基を表す。ただし、-Z-Q、-Z-Q、及び-Z-Qの少なくとも1個は、下記式(15c)、式(15d)、又は式(15e)で表される基である。
Figure JPOXMLDOC01-appb-C000030
(式(15a)、(15b)、(15c)、(15d)、及び(15e)中、環を構成する炭素原子に直接結合する水素原子は、式(C1)で表される基又は置換基によって置換されていてもよい。なお、*は、結合手を表す。)]
The compound represented by Formula (1) is preferably a compound represented by Formula (2) below.
Figure JPOXMLDOC01-appb-C000029
[In Formula (2), R 2 , R 3 , R 4 , R 5 , Q 2 , Q 3 , Q 4 , Z 2 , Z 3 and Z 4 are as defined above.
Z 1A represents -CH 2 - or -C(=O)-.
R A represents an optionally substituted divalent linking group having 2 to 8 carbon atoms.
-Z 2 -Q 2 , -Z 3 -Q 3 and -Z 4 -Q 4 are represented by the following formulas (15a), (15b), (15c), (15d) and (15e) represents a group selected from the group consisting of the represented groups; provided that at least one of -Z 2 -Q 2 , -Z 3 -Q 3 , and -Z 4 -Q 4 is a group represented by the following formula (15c), formula (15d), or formula (15e) is.
Figure JPOXMLDOC01-appb-C000030
(In formulas (15a), (15b), (15c), (15d), and (15e), a hydrogen atom directly bonded to a carbon atom constituting the ring is a group or substituent represented by formula (C1) Note that * represents a bond.)]
 本発明の他の一側面は、金属錯体に関する。当該金属錯体は、金属元素と、上記の化合物に由来する配位子とを有する。 Another aspect of the present invention relates to metal complexes. The metal complex has a metal element and a ligand derived from the above compound.
 本発明によれば、複数の金属種に対して錯体を形成することが可能な化合物が提供される。また、本発明によれば、このような化合物に由来する配位子を有する金属錯体が提供される。 According to the present invention, a compound capable of forming a complex with multiple metal species is provided. The present invention also provides metal complexes having ligands derived from such compounds.
 以下、本発明の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
 本明細書において、個々に特に説明がない限り、「置換基」は3種類に分類される。
 第一は、抗原と親和性のある構造体を有する基である(以下、「置換基A」という場合がある。)。
 第二は、抗原と親和性のある構造体と架橋可能な部位を有する基である(以下、「置換基B」という場合がある。)。
 第三は、有機化学(有機配位子)の分野で一般的に取り得る基である(以下、「置換基C」という場合がある。)。
In this specification, "substituents" are classified into three types, unless otherwise specified.
The first group is a group having a structure that has affinity with an antigen (hereinafter sometimes referred to as "substituent A").
The second group is a group having a site capable of cross-linking with a structure having affinity for an antigen (hereinafter sometimes referred to as "substituent B").
The third group is a group that can generally be taken in the field of organic chemistry (organic ligands) (hereinafter sometimes referred to as "substituent C").
 置換基A及び置換基Bにおける「抗原」とは、放射線を利用する治療又は診断において利用できる抗原を意味する。「抗原」は、好ましくは、がん細胞に由来する抗原である。 "Antigen" in Substituent A and Substituent B means an antigen that can be used in therapy or diagnosis using radiation. The "antigen" is preferably an antigen derived from cancer cells.
 置換基A及び置換基Bにおける「抗原と親和性のある構造体」とは、特定の抗原に対して選択的に相互作用する構造体を意味する。「抗原と親和性のある構造体」は、好ましくは、がん細胞に由来する抗原と親和性のある構造体である。がん細胞に由来する抗原と親和性のある構造体の例としては、抗体、抗体フラグメント、ペプチド鎖、酵素、核酸塩基含有成分(例えば、オリゴヌクレオチド、DNAベクター、RNAベクター、アプタマー)等が挙げられる。 "Antigen-affinity structure" in Substituent A and Substituent B means a structure that selectively interacts with a specific antigen. The "structure having affinity with an antigen" is preferably a structure having affinity with an antigen derived from cancer cells. Examples of structures that have affinity for cancer cell-derived antigens include antibodies, antibody fragments, peptide chains, enzymes, nucleic acid base-containing components (e.g., oligonucleotides, DNA vectors, RNA vectors, aptamers), and the like. be done.
 置換基Aは、「抗原と親和性のある構造体」と、置換基Bにおける「抗原と親和性のある構造体と架橋可能な部位」(以下、単に「架橋可能な部位」という場合がある。)とが化学結合した部分構造を含むことが好ましい。 Substituent A is a "structure with affinity for an antigen" and a "site capable of cross-linking with a structure having affinity with an antigen" in Substituent B (hereinafter sometimes simply referred to as a "cross-linkable site"). ) is preferably included in the partial structure chemically bonded to.
 置換基Bにおける「架橋可能な部位」とは、抗原と親和性のある構造体中における「特定部位」(例えば、チオール基、アジド基、末端アミノ基等)に対して選択的に共有結合を形成できる構造を意味する。「架橋可能な部位」の構造は、抗原と親和性のある構造体中における特定部位に対して選択的に共有結合を形成するために一般的に取り得る基として特に限定されない。このような「架橋可能な部位」としては、例えば、下記式(A-1)~(A-12)で表される基が挙げられる。 The "crosslinkable site" in the substituent B is a selective covalent bond to a "specific site" (e.g., thiol group, azide group, terminal amino group, etc.) in the structure that has affinity for the antigen. It means a structure that can be formed. The structure of the "crosslinkable site" is not particularly limited as a group that can generally be taken to selectively form a covalent bond with a specific site in a structure that has affinity with an antigen. Examples of such “crosslinkable sites” include groups represented by the following formulas (A-1) to (A-12).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 式(A-1)~(A-12)中、環構造の中央から伸びている直線は、環構造の任意の位置における結合を表す。*は、結合手を表し、後述する式(25)におけるLとの結合部位である。これらの基は、置換基を有していてもよい。 In formulas (A-1) to (A-12), a straight line extending from the center of the ring structure represents a bond at any position of the ring structure. * represents a bond, which is a binding site with L2 in formula (25) described later. These groups may have a substituent.
 置換基Aの好ましい態様である、「抗原と親和性のある構造体」と、置換基Bにおける「架橋可能な部位」とが化学結合した部分構造(以下、「架橋構造」という場合がある。)は、例えば、クリックケミストリーによって形成することができる。クリックケミストリーの例としては、下記式(20)で表される、アジド基とアルキニル基とを、触媒存在下で反応させることで、1,2,3-トリアゾール環を形成させる反応が挙げられる。なお、*は、結合手を表す。 A preferred embodiment of Substituent A, a partial structure in which a "structure having affinity with an antigen" and a "crosslinkable site" in Substituent B are chemically bonded (hereinafter sometimes referred to as "crosslinked structure"). ) can be formed, for example, by click chemistry. An example of click chemistry includes a reaction in which an azide group and an alkynyl group represented by the following formula (20) are reacted in the presence of a catalyst to form a 1,2,3-triazole ring. Note that * represents a bond.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 クリックケミストリーの別の例としては、下記式(21)で表される、アジド基とシクロオクチンとの反応、又は、下記式(22)で表される、テトラジン基と末端アルキンとの反応が挙げられる。なお、*は、結合手を表す。 Another example of click chemistry is the reaction between an azide group and cyclooctyne, represented by the following formula (21), or the reaction between a tetrazine group and a terminal alkyne, represented by the following formula (22). be done. Note that * represents a bond.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 また、「架橋構造」を形成するために、「架橋可能な部位」及び「特定部位」からなる群より選ばれる部位を2個以上有する架橋剤を用いることができる。このような架橋剤としては、例えば、下記式(23)で表される架橋剤が挙げられる。架橋剤は、例えば、「架橋可能な部位」及び「特定部位」からなる群より選ばれる部位の一方を、後述の金属錯体における金属元素及び式(1)で表される化合物に由来する配位子の構造含有部位に、「架橋可能な部位」及び「特定部位」からなる群より選ばれる部位のその他の一方を、「抗原と親和性のある構造体」の構造含有部位に、それぞれ結合させる反応に使用することができる。 In addition, in order to form a "crosslinked structure", a crosslinker having two or more sites selected from the group consisting of "crosslinkable sites" and "specific sites" can be used. Examples of such a cross-linking agent include a cross-linking agent represented by the following formula (23). The cross-linking agent, for example, one of the sites selected from the group consisting of "cross-linkable site" and "specific site", the coordination derived from the metal element in the metal complex described later and the compound represented by formula (1) Bind the other part selected from the group consisting of "crosslinkable site" and "specific site" to the structure-containing site of the child to the structure-containing site of the "structure having affinity for antigen". can be used for reactions.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 置換基Aとしては、例えば、下記式(24)で表される基が挙げられる。 Examples of the substituent A include groups represented by the following formula (24).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 式(24)中、Lは、直接結合、置換基Cを有していてもよいヒドロカルビレン基、又は置換基Cを有していてもよいヘテロアリーレン基を表す。Lが複数存在する場合、それらは同一でも異なっていてもよい。Lは、直接結合、C(=O)NRe1、C(=S)NRe2、OC(=O)NRe3、OC(=O)、C(=O)、C(=S)、NRe4、S、又はOを表す。Lが複数存在する場合、それらは同一でも異なっていてもよい。Lは、上記「架橋構造」を表す。Lが複数存在する場合、それらは同一でも異なっていてもよい。Spは、上記「抗原と親和性のある構造体」を表す。n20は、1~10の整数を表し、n21は1又は2を表す。なお、*は、結合手を表す。 In formula (24), L 1 represents a direct bond, a hydrocarbylene group optionally having a substituent C, or a heteroarylene group optionally having a substituent C; When multiple L 1 are present, they may be the same or different. L 2 is a direct bond, C(=O)NR e1 , C(=S)NR e2 , OC(=O)NR e3 , OC(=O), C(=O), C(=S), NR represents e4 , S, or O; When multiple L2 are present, they may be the same or different. L3 represents the above "crosslinked structure". When multiple L3 are present, they may be the same or different. Sp represents the above-mentioned "structure having affinity with antigen". n20 represents an integer of 1 to 10, n21 represents 1 or 2; Note that * represents a bond.
 Lは、直接結合、置換基Cを有していてもよいヒドロカルビレン基又は置換基Cを有していてもよいヘテロアリーレン基であり、好ましくは直接結合又は置換基Cを有していてもよいヒドロカルビレン基である。 L 1 is a direct bond, a hydrocarbylene group optionally having a substituent C or a heteroarylene group optionally having a substituent C, preferably a direct bond or having a substituent C is a hydrocarbylene group that may be
 Lにおける置換基Cを有していてもよいヒドロカルビレン基のヒドロカルビレン基としては、例えば、アルキレン基、シクロアルキレン基、アリーレン基が挙げられる。Lは、好ましくはアルキレン基、シクロアルキレン基であり、より好ましくはアルキレン基
である。
Examples of the hydrocarbylene group of the hydrocarbylene group optionally having substituent C in L 1 include an alkylene group, a cycloalkylene group and an arylene group. L 1 is preferably an alkylene group or a cycloalkylene group, more preferably an alkylene group.
 Lのヒドロカルビレン基におけるアルキレン基は、飽和脂肪族炭化水素を構成する炭素原子に直接結合する水素原子を2個除いた2価の基である。アルキレン基としては、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、tert-ブチレン基、ペンチレン基、へキシレン基等が挙げられる。これらのアルキレン基中の-CH-の一部は、-O-に置換されていてもよい。アルキレン基の炭素原子数は、特に限定されないが、好ましくは1~8個である。 The alkylene group in the hydrocarbylene group of L 1 is a divalent group in which two hydrogen atoms directly bonded to the carbon atoms constituting the saturated aliphatic hydrocarbon are removed. Alkylene groups include methylene, ethylene, propylene, isopropylene, butylene, isobutylene, tert-butylene, pentylene, and hexylene groups. A portion of —CH 2 — in these alkylene groups may be substituted with —O—. Although the number of carbon atoms in the alkylene group is not particularly limited, it is preferably 1 to 8.
 Lのヒドロカルビレン基におけるシクロアルキレン基は、シクロアルカンを構成する炭素原子に直接結合する水素原子を2個除いた2価の基である。シクロアルキレン基としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロオクチレン基等が挙げられる。シクロアルキレン基の炭素原子数は、特に限定されないが、好ましくは6個である。 The cycloalkylene group in the hydrocarbylene group of L 1 is a divalent group in which two hydrogen atoms directly bonded to carbon atoms constituting cycloalkane are removed. The cycloalkylene group includes a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cyclooctylene group and the like. Although the number of carbon atoms in the cycloalkylene group is not particularly limited, it is preferably six.
 Lのヒドロカルビレン基におけるアリーレン基は、芳香族炭化水素を構成する炭素原子に直接結合する水素原子を2個除いた2価の基である。アリーレン基としては、フェニレン基、ビフェニレン基、ターフェニレン基、ナフチレン基、アントラセニレン基等が挙げられる。アリーレン基は、好ましくはフェニレン基である。アリーレン基の炭素原子数は、特に限定されないが、好ましくは6~12個である。 The arylene group in the hydrocarbylene group of L1 is a divalent group in which two hydrogen atoms directly bonded to carbon atoms constituting the aromatic hydrocarbon are removed. Arylene groups include phenylene groups, biphenylene groups, terphenylene groups, naphthylene groups, anthracenylene groups and the like. Arylene groups are preferably phenylene groups. Although the number of carbon atoms in the arylene group is not particularly limited, it is preferably 6 to 12.
 Lの置換基Cを有していてもよいヘテロアリーレン基は、例えば、ピリジン、ピラジン、ピリミジン、ピロール、N-アルキルピロール、フラン、チオフェン、チアゾール、イミダゾール、オキサゾール、ベンゾフラン、ベンゾチオフェン、イソキノリン、キナゾリン等の複素環式化合物を構成する炭素原子に直接結合する水素原子を2個除いた2価の基である。ヘテロアリーレン基は、好ましくはピリジレン基である。 Heteroarylene groups optionally having a substituent C of L 1 are, for example, pyridine, pyrazine, pyrimidine, pyrrole, N-alkylpyrrole, furan, thiophene, thiazole, imidazole, oxazole, benzofuran, benzothiophene, isoquinoline, It is a divalent group in which two hydrogen atoms directly bonded to carbon atoms constituting a heterocyclic compound such as quinazoline are removed. A heteroarylene group is preferably a pyridylene group.
 Lは、直接結合、-C(=O)NRe1-、-C(=S)NRe2-、-OC(=O)NRe3-、-OC(=O)-、-C(=O)-、-C(=S)-、-NRe4-、-S-、又は-O-であり、-C(=O)NRe1-は、隣接する基と任意の方向で結合してもよい。例えば、-C(=O)NRe1-の隣接する基がL及びLである場合、-L-C(=O)NRe1-L-で結合してもよく、-L-C(=O)NRe1-L-で結合してもよい。-C(=S)NRe2-、-OC(=O)NRe3-、及び-OC(=O)-も同様である。Re1、Re2、Re3、及びRe4は、それぞれ水素原子又は炭素原子数1~8個のヒドロカルビル基を表す。Re1、Re2、Re3、及びRe4が複数存在する場合、それらは同一でも異なっていてもよい。Lは、好ましくは直接結合又は-C(=O)NH-である。 L 2 is a direct bond, -C(=O)NR e1 -, -C(=S)NR e2 -, -OC(=O)NR e3 -, -OC(=O)-, -C(=O )—, —C(=S)—, —NR e4 —, —S—, or —O—, and —C(=O)NR e1 — may be attached to the adjacent group in any direction. good. For example, if the adjacent groups of -C(=O)NR e1 - are L 1 and L 3 , then -L 1 -C(=O)NR e1 -L 3 - may be attached and -L 3 -C(=O)NR e1 -L 1 - may be used for bonding. The same applies to -C(=S)NR e2 -, -OC(=O)NR e3 -, and -OC(=O)-. R e1 , R e2 , R e3 and R e4 each represent a hydrogen atom or a hydrocarbyl group having 1 to 8 carbon atoms. When a plurality of R e1 , R e2 , R e3 and R e4 are present, they may be the same or different. L 2 is preferably a direct bond or -C(=O)NH-.
 Re1、Re2、Re3、及びRe4における炭素原子数1~8のヒドロカルビル基としては、例えば、炭素原子数が1~8個である、アルキル基、アリール基、アラルキル基が挙げられる。炭素原子数1~8個のヒドロカルビル基は、好ましくは炭素原子数1~8個のアルキル基である。 Examples of hydrocarbyl groups having 1 to 8 carbon atoms in R e1 , R e2 , R e3 and R e4 include alkyl groups, aryl groups and aralkyl groups having 1 to 8 carbon atoms. Hydrocarbyl groups of 1 to 8 carbon atoms are preferably alkyl groups of 1 to 8 carbon atoms.
 Lは、上記「架橋構造」である。Lとしては、例えば、下記式(A-20)~(A-25)で表される2価の基が挙げられる。式(A-20)~(A-25)で表される2価の基は、置換基を有していてもよい。なお、*は、結合手を表す。 L3 is the above "crosslinked structure". Examples of L 3 include divalent groups represented by the following formulas (A-20) to (A-25). The divalent groups represented by formulas (A-20) to (A-25) may have a substituent. Note that * represents a bond.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 n20は1~20の整数であり、好ましくは1~10の整数であり、より好ましくは1~6の整数である。 n20 is an integer of 1-20, preferably an integer of 1-10, more preferably an integer of 1-6.
 n21は1又は2であり、上記式(23)で表される架橋剤等の架橋剤を用いる場合、n21は好ましくは2であり、架橋剤を用いない場合、n21は好ましくは1である。 n21 is 1 or 2, and n21 is preferably 2 when a cross-linking agent such as the cross-linking agent represented by the above formula (23) is used, and preferably 1 when no cross-linking agent is used.
 Spは、「抗原と親和性のある構造体」である。「抗原と親和性のある構造体」は、上記の構造体が例示される。 Sp is a "structure that has affinity with an antigen". The "structure having an affinity for an antigen" is exemplified by the structures described above.
 本実施形態の化合物及び/又は金属錯体は、分子内・分子間を含めた視点で置換基Aを有する構造体が複数ある場合、1個の「抗原と親和性のある構造体」が複数の本願の化合物及び/又は金属錯体と結合していてもよい。この場合、複数の置換基Aにおいて1個の「抗原と親和性のある構造体」が共有されていてもよい。 In the compound and/or metal complex of the present embodiment, when there are a plurality of structures having a substituent A from the viewpoint of intramolecular and intermolecular aspects, one "antigen-affinity structure" has a plurality of It may be bound to the compound and/or metal complex of the present application. In this case, one "antigen-affinity structure" may be shared among a plurality of substituents A.
 置換基Bとしては、例えば、下記式(25)で表される基、下記式(26)で表される基が挙げられる。 Examples of the substituent B include a group represented by the following formula (25) and a group represented by the following formula (26).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 式(25)中、L、L、及びn20は、前記と同義である。Lkは、上記「架橋可能な部位」を表す。なお、*は、結合手を表す。 In formula (25), L 1 , L 2 and n20 are as defined above. Lk represents the above "crosslinkable site". Note that * represents a bond.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 式(26)中、L、L、L、及びn20は、前記と同義である。Lkは、上記「架橋可能な部位」を表す。なお、*は、結合手を表す。 In formula (26), L 1 , L 2 , L 3 , and n20 are as defined above. Lk represents the above "crosslinkable site". Note that * represents a bond.
 置換基Cとしては、例えば、ハロゲン原子、ヒドロキシ基、カルボキシル基、アミノ基、スルホン酸基、ニトロ基、ホスホン酸基、ヒドロカルビル基、シリル基、ヘテロアリール基、アルキルオキシ基、アリールオキシ基、アラルキルオキシ基、シリルオキシ基が挙げられる。置換基Cは、水溶性の液中で溶解して使用し易い観点から、好ましくはヒドロキシ基、カルボキシル基、アミノ基、スルホン酸基、ホスホン酸基、又はアルキルオキシ基である。これらの基の一部はハロゲン原子で置換されていてもよく、例えば、メチル基の水素原子がフッ素置換されてトリフルオロメチル基になっていてもよい。 Substituent C includes, for example, a halogen atom, a hydroxy group, a carboxyl group, an amino group, a sulfonic acid group, a nitro group, a phosphonic acid group, a hydrocarbyl group, a silyl group, a heteroaryl group, an alkyloxy group, an aryloxy group, an aralkyl An oxy group and a silyloxy group are mentioned. Substituent C is preferably a hydroxy group, a carboxyl group, an amino group, a sulfonic acid group, a phosphonic acid group, or an alkyloxy group from the viewpoint of being easily dissolved in an aqueous solution and used. A portion of these groups may be substituted with halogen atoms, for example, a hydrogen atom of a methyl group may be substituted with fluorine to form a trifluoromethyl group.
 置換基Cで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。ハロゲン原子は、好ましくはフッ素原子である。  The halogen atom represented by the substituent C includes a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. A halogen atom is preferably a fluorine atom.
 置換基Cで表されるアミノ基において、窒素原子上の水素原子は、炭化水素基で置換されていてもよい。アミノ基としては、例えば、無置換アミノ基、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、ジイソプロピルアミノ基、ジフェニルアミノ基が挙げられる。アミノ基は、好ましくは無置換アミノ基である。 In the amino group represented by substituent C, the hydrogen atom on the nitrogen atom may be substituted with a hydrocarbon group. The amino group includes, for example, unsubstituted amino group, dimethylamino group, diethylamino group, di-n-propylamino group, diisopropylamino group and diphenylamino group. The amino group is preferably an unsubstituted amino group.
 置換基Cで表されるヒドロカルビル基としては、例えば、アルキル基、アリール基、アラルキル基が挙げられる。ヒドロカルビル基は、好ましくはアルキル基である。 Examples of hydrocarbyl groups represented by substituent C include alkyl groups, aryl groups, and aralkyl groups. Hydrocarbyl groups are preferably alkyl groups.
 置換基Cで表されるヒドロカルビル基におけるアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、へキシル基、ノルボニル基、ノニル基、デシル基、3,7-ジメチルオクチル基、ドデシル基、ペンタデシル基、オクタデシル基、ドコシル基等の飽和脂肪族炭化水素基が挙げられる。これらのアルキル基中の-CH-の一部は、-O-に置換されていてもよい。アルキル基の炭素原子数は、特に限定されないが、入手の容易性及びコストの点から、好ましくは1~8個である。 Examples of the alkyl group in the hydrocarbyl group represented by the substituent C include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group, norbornyl group, Nonyl group, decyl group, 3,7-dimethyloctyl group, dodecyl group, pentadecyl group, octadecyl group, docosyl group and other saturated aliphatic hydrocarbon groups can be mentioned. A portion of —CH 2 — in these alkyl groups may be substituted with —O—. Although the number of carbon atoms in the alkyl group is not particularly limited, it is preferably 1 to 8 in terms of availability and cost.
 置換基Cで表されるヒドロカルビル基におけるアリール基としては、例えば、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フェナントリル基、アントラセニル基等の芳香族炭化水素基が挙げられる。アリール基は、好ましくはフェニル基である。アリール基の炭素原子数は、特に限定されないが、好ましくは6~18個である。 Examples of the aryl group in the hydrocarbyl group represented by the substituent C include aromatic hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group, naphthyl group, phenanthryl group and anthracenyl group. Aryl groups are preferably phenyl groups. Although the number of carbon atoms in the aryl group is not particularly limited, it is preferably 6 to 18.
 置換基Cで表されるヒドロカルビル基におけるアラルキル基としては、例えば、ベンジル基、(2-メチルフェニル)メチル基、(3-メチルフェニル)メチル基、(4-メチルフェニル)メチル基、(2,4-ジメチルフェニル)メチル基、(エチルフェニル)メチル基、ナフチルメチル基が挙げられる。アラルキル基は、好ましくはベンジル基である。アラルキル基の炭素原子数は、特に限定されないが、好ましくは7~18個である。 Examples of the aralkyl group in the hydrocarbyl group represented by the substituent C include a benzyl group, (2-methylphenyl)methyl group, (3-methylphenyl)methyl group, (4-methylphenyl)methyl group, (2, 4-dimethylphenyl)methyl group, (ethylphenyl)methyl group and naphthylmethyl group. Aralkyl groups are preferably benzyl groups. Although the number of carbon atoms in the aralkyl group is not particularly limited, it is preferably 7 to 18.
 置換基Cで表されるシリル基において、ケイ素原子上の水素原子は、炭化水素基で置換されていてもよい。このような置換シリル基としては、例えば、メチルシリル基、エチルシリル基、フェニルシリル基等の1個の炭素原子数1~18個の炭化水素基で置換された一置換シリル基;ジメチルシリル基、ジエチルシリル基、ジフェニルシリル基等の2個の炭素原子数1~18個の炭化水素基で置換された二置換シリル基;トリメチルシリル基、トリイソプロピルシリル基、トリ-n-ブチルシリル基、トリ-tert-ブチルシリル基、トリ-イソブチルシリル基、tert-ブチル-ジメチルシリル基、トリ-n-ペンチルシリル基等の3個の炭素原子数1~18個の炭化水素基で置換された三置換シリル基などが挙げられる。置換シリル基は、好ましくはトリメチルシリル基又はtert-ブチルジメチルシリル基である。 In the silyl group represented by substituent C, the hydrogen atom on the silicon atom may be substituted with a hydrocarbon group. Examples of such substituted silyl groups include monosubstituted silyl groups substituted with one hydrocarbon group having 1 to 18 carbon atoms such as methylsilyl group, ethylsilyl group and phenylsilyl group; Silyl group, disubstituted silyl group substituted with two hydrocarbon groups having 1 to 18 carbon atoms such as diphenylsilyl group; trimethylsilyl group, triisopropylsilyl group, tri-n-butylsilyl group, tri-tert- a trisubstituted silyl group substituted with three hydrocarbon groups having 1 to 18 carbon atoms such as a butylsilyl group, a tri-isobutylsilyl group, a tert-butyl-dimethylsilyl group, a tri-n-pentylsilyl group; mentioned. A substituted silyl group is preferably a trimethylsilyl group or a tert-butyldimethylsilyl group.
 置換基Cで表されるヘテロアリール基としては、例えば、ピリジル基、ピラジル基、ピリミジル基、ピロリル基、N-アルキルピロリル基、フリル基、チオフェンニル基、チアゾリル基、イミダゾリル基、オキサゾリル基、ベンゾフラニル基、ベンゾチオフェニル基、イソキノリニル基が挙げられる。ヘテロアリール基は、好ましくはピリジル基又はピリミジニル基である。 Examples of the heteroaryl group represented by the substituent C include pyridyl group, pyrazyl group, pyrimidyl group, pyrrolyl group, N-alkylpyrrolyl group, furyl group, thiophenyl group, thiazolyl group, imidazolyl group, oxazolyl group, A benzofuranyl group, a benzothiophenyl group, and an isoquinolinyl group can be mentioned. A heteroaryl group is preferably a pyridyl or pyrimidinyl group.
 置換基Cで表されるアルキルオキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、n-オクチルオキシ基等が挙げられる。これらのアルキルオキシ基中の-CH-の一部は、-O-に置換されていてもよい。アルキルオキシ基は、好ましくはメトキシ基である。アルキルオキシ基の炭素原子数は、特に限定されないが、好ましくは1~8個である。 Examples of the alkyloxy group represented by the substituent C include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group and n-pentyloxy group. , n-octyloxy group and the like. A portion of —CH 2 — in these alkyloxy groups may be substituted with —O—. Alkyloxy groups are preferably methoxy groups. Although the number of carbon atoms in the alkyloxy group is not particularly limited, it is preferably 1 to 8.
 置換基Cで表されるアリールオキシ基としては、例えば、フェノキシ基、2-メチルフェノキシ基、3-メチルフェノキシ基、4-メチルフェノキシ基、2,4-ジメチルフェノキシ基、ナフトキシ基が挙げられる。アリールオキシ基は、好ましくはフェノキシ基である。アリールオキシ基の炭素原子数は、特に限定されないが、好ましくは6~18個である。 Examples of the aryloxy group represented by the substituent C include phenoxy group, 2-methylphenoxy group, 3-methylphenoxy group, 4-methylphenoxy group, 2,4-dimethylphenoxy group and naphthoxy group. Aryloxy groups are preferably phenoxy groups. Although the number of carbon atoms in the aryloxy group is not particularly limited, it is preferably 6 to 18.
 置換基Cで表されるアラルキルオキシ基としては、例えば、ベンジルオキシ基、(2-メチルフェニル)メトキシ基、(3-メチルフェニル)メトキシ基、(4-メチルフェニル)メトキシ基、(2,4-ジメチルフェニル)メトキシ基、ナフチルメトキシ基が挙げられる。アラルキルオキシ基は、好ましくはベンジルオキシ基である。アラルキルオキシ基の炭素原子数は、特に限定されないが、好ましくは7~18個である。 Examples of the aralkyloxy group represented by the substituent C include a benzyloxy group, (2-methylphenyl)methoxy group, (3-methylphenyl)methoxy group, (4-methylphenyl)methoxy group, (2,4 -dimethylphenyl)methoxy group and naphthylmethoxy group. An aralkyloxy group is preferably a benzyloxy group. Although the number of carbon atoms in the aralkyloxy group is not particularly limited, it is preferably 7 to 18.
 置換基Cで表されるシリルオキシ基において、ケイ素原子上の水素原子は、炭化水素基で置換されていてもよい。このような置換シリルオキシ基としては、例えば、トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリ-n-ブチルシリルオキシ基、トリフェニルシリルオキシ基、トリイソプロピルシリルオキシ基、tert-ブチルジメチルシリルオキシ基が挙げられる。置換シリルオキシ基は、好ましくはトリメチルシリルオキシ基又はtert-ブチルジメチルシリルオキシ基である。 In the silyloxy group represented by substituent C, the hydrogen atom on the silicon atom may be substituted with a hydrocarbon group. Examples of such substituted silyloxy groups include trimethylsilyloxy, triethylsilyloxy, tri-n-butylsilyloxy, triphenylsilyloxy, triisopropylsilyloxy, and tert-butyldimethylsilyloxy groups. be done. A substituted silyloxy group is preferably a trimethylsilyloxy group or a tert-butyldimethylsilyloxy group.
 本明細書において、置換基は、個々に特に説明がない限り、好ましくは置換基B又は置換基C、より好ましくは置換基Cである。 In the present specification, the substituent is preferably the substituent B or the substituent C, more preferably the substituent C, unless otherwise specified.
 本明細書において、Meはメチル基を表し、Etはエチル基を表し、Bnはベンジル基を表す。 In this specification, Me represents a methyl group, Et represents an ethyl group, and Bn represents a benzyl group.
 本明細書において、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基等のアルキル基;プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、オクチレン基等のアルキレン基などの分岐可能な基が直鎖構造、分岐構造の指定なく記載されている場合、これらは直鎖構造であっても分岐構造であってもよい。これらの基は、好ましくは直鎖構造である。 In the present specification, alkyl groups such as propyl, butyl, pentyl, hexyl and octyl groups; alkylene groups such as propylene, butylene, pentylene, hexylene and octylene groups. If a chain structure or branched structure is not specified, these may be a straight chain structure or a branched structure. These groups preferably have a linear structure.
 本明細書において、基の説明において炭素原子数を記載している場合、当該炭素原子数は、置換基の炭素原子数を含まない炭素原子数を意味する。 In this specification, when the number of carbon atoms is stated in the description of the group, the number of carbon atoms means the number of carbon atoms excluding the number of carbon atoms of the substituent.
[化合物]
 一実施形態の化合物は、下記式(1)で表される化合物である。
[Compound]
A compound of one embodiment is a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000040
[式(1)中、nは、0~5の整数を表す。
 Q、Q、Q、及びQは、それぞれ独立に、水素原子、群Aから選ばれる基、群Bから選ばれる基、式(C1)で表される基、又は置換基を表す。ただし、Q、Q、Q、及びQの少なくとも1個は、群Aから選ばれる基であり、Q、Q、Q、及びQの少なくとも1個は、群Bから選ばれる基であり、Q、Q、Q、及びQの少なくとも3個は、群Aから選ばれる基、群Bから選ばれる基、又は式(C1)で表される基である。Q、Q、Q、及びQの少なくとも3個は、群A又は群Bから選ばれる基である。
 nが2以上である場合、複数存在するQは、それぞれ同一であっても異なっていてもよく、Q及びQは、互いに結合して、又は、2価の連結基を介して環構造を形成していてもよい。
 群Aは、下記式(A1)、式(A2)、式(A3)、式(A4)、式(A5)、及び式(A6)で表される基からなる群である。
Figure JPOXMLDOC01-appb-C000041
(式(A1)、式(A2)、式(A3)、式(A4)、式(A5)、及び式(A6)中、R、R、R、R、R、及びRは、それぞれ独立に、水素原子、式(C1)で表される基、又は置換基を表す。なお、*は、結合手を表す。)
 群Bは、下記式(B1)及び式(B2)で表される基からなる群である。
Figure JPOXMLDOC01-appb-C000042
(式(B1)中、QB1は、式(C1)で表される基又は置換基を有していてもよい、2価の複素環基を表し、Xは、炭素原子又はP(OH)を表す。なお、*は、結合手を表す。)
Figure JPOXMLDOC01-appb-C000043
(式(B2)中、QB2は、式(C1)で表される基又は置換基を有していてもよい、2価の窒素原子を含む単環式複素環基を表す。なお、*は、結合手を表す。)
Figure JPOXMLDOC01-appb-C000044
(式(C1)中、n2は、1~5の整数を表す。L10は、単結合又は置換基を有していてもよい2価の連結基を表す。R16は、水素原子又は置換基を表す。R16は任意のL10と互いに結合して環構造を形成していてもよい。X10は、-N(OH)C(=O)-を表し、-N(OH)C(=O)-は、隣接する基と任意の方向で結合していてもよい。n2が2以上である場合、複数存在するL10は、それぞれ同一であっても異なっていてもよい。L30は、単結合又は置換基を有していてもよい2価の連結基を表す。なお、*は、結合手を表す。)
 Z、Z、Z、及びZは、それぞれ独立に、単結合又は置換基を有していてもよい2価の連結基を表す。
 nが2以上である場合、複数存在するZは、それぞれ同一であっても異なっていてもよい。
 Rは、置換基を有していてもよい2価の連結基を表す。
 nが2以上である場合、複数存在するRは、それぞれ同一であっても異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000040
[In formula (1), n represents an integer of 0 to 5.
Q 1 , Q 2 , Q 3 , and Q 4 each independently represent a hydrogen atom, a group selected from Group A, a group selected from Group B, a group represented by formula (C1), or a substituent . provided that at least one of Q 1 , Q 2 , Q 3 and Q 4 is a group selected from group A, and at least one of Q 1 , Q 2 , Q 3 and Q 4 is from group B a group selected, and at least three of Q 1 , Q 2 , Q 3 , and Q 4 are a group selected from group A, a group selected from group B, or a group represented by formula (C1) . At least three of Q 1 , Q 2 , Q 3 and Q 4 are groups selected from Group A or Group B;
When n is 2 or more, multiple Q 4 may be the same or different, and Q 2 and Q 3 are bonded to each other or via a divalent linking group to form a ring It may form a structure.
Group A is a group consisting of groups represented by the following formulas (A1), (A2), (A3), (A4), (A5), and (A6).
Figure JPOXMLDOC01-appb-C000041
(In Formula (A1), Formula (A2), Formula (A3), Formula (A4), Formula (A5), and Formula (A6), R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 each independently represents a hydrogen atom, a group represented by formula (C1), or a substituent (* represents a bond).
Group B is a group consisting of groups represented by the following formulas (B1) and (B2).
Figure JPOXMLDOC01-appb-C000042
(In formula (B1), Q B1 represents a group represented by formula (C1) or a divalent heterocyclic group which may have a substituent, and X 1 is a carbon atom or P(OH ), where * represents a bond.)
Figure JPOXMLDOC01-appb-C000043
(In formula (B2), Q B2 represents a divalent nitrogen atom-containing monocyclic heterocyclic group that may have a group or substituent represented by formula (C1). Note that * represents a bond.)
Figure JPOXMLDOC01-appb-C000044
(In formula (C1), n2 represents an integer of 1 to 5. L 10 represents a single bond or a divalent linking group which may have a substituent. R 16 represents a hydrogen atom or a substituted R 16 may be combined with any L 10 to form a ring structure, X 10 represents -N(OH)C(=O)-, and -N(OH)C (=O)- may be bonded to adjacent groups in any direction, and when n2 is 2 or more, L 10 present in plurality may be the same or different. 30 represents a single bond or a divalent linking group which may have a substituent (* represents a bond).
Z 1 , Z 2 , Z 3 and Z 4 each independently represent a single bond or a divalent linking group which may have a substituent.
When n is 2 or more, multiple Z 4 may be the same or different.
R represents a divalent linking group which may have a substituent.
When n is 2 or more, multiple R's may be the same or different. ]
 群Aにおける式(A1)、式(A2)、式(A3)、式(A4)、式(A5)、又は式(A6)で表される基において、R、R、R、R、R、及びRは、それぞれ独立に、水素原子、式(C1)で表される基、又は置換基である。なお、式(A1)、式(A2)、式(A3)、式(A4)、式(A5)、又は式(A6)で表される基において、R、R、R、R、R、及びRとしての、水素原子、式(C1)で表される基、及び置換基の合計はそれぞれ5個である。R、R、R、R、R、及びRが置換基である場合、置換基は、好ましくは置換基B又は置換基Cである。R、R、R、R、R、及びRのうちの合計5個において、式(C1)で表される基及び置換基Cの数は、好ましくは0~2個であり、より好ましくは0個又は1個である。R、R、R、R、R、及びRのうちの合計5個において、置換基Bの数は、好ましくは0個又は1個である。R、R、R、R、R、及びRのうちの合計5個において、水素原子の数は、好ましくは4個又は5個である。 In groups represented by formula (A1), formula (A2), formula (A3), formula (A4), formula (A5), or formula (A6) in group A, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, a group represented by formula (C1), or a substituent. In addition, in the groups represented by formula (A1), formula (A2), formula (A3), formula (A4), formula (A5), or formula (A6), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 , the total number of hydrogen atoms, groups represented by formula (C1) and substituents is five each. When R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are substituents, the substituents are preferably substituents B or C. In a total of five of R 1 , R 2 , R 3 , R 4 , R 5 and R 6 , the number of groups represented by formula (C1) and substituents C is preferably 0 to 2. Yes, more preferably 0 or 1. In a total of 5 of R 1 , R 2 , R 3 , R 4 , R 5 and R 6 , the number of substituents B is preferably 0 or 1. Among five of R 1 , R 2 , R 3 , R 4 , R 5 and R 6 in total, the number of hydrogen atoms is preferably 4 or 5.
 群Aから選ばれる基は、好ましくは、式(A1)、式(A2)、式(A3)、式(A4)、及び式(A5)で表される基からなる群から選ばれる基、より好ましくは式(A1)で表される基である。 The group selected from Group A is preferably a group selected from the group consisting of groups represented by formula (A1), formula (A2), formula (A3), formula (A4), and formula (A5), A group represented by formula (A1) is preferable.
 群Aから選ばれる基としては、例えば、下記式(AA-1)~下記式(AA-19)で表される基が挙げられる。式(AA-1)~下記式(AA-19)で表される基は、式(C1)で表される基又は置換基を有していてもよい。なお、*は、結合手を表し、Spは、「抗原と親和性のある構造体」を表す。群Aから選ばれる基は、好ましくは、式(AA-1)、又は式(AA-4)~式(AA-19)で表される基である。 Groups selected from Group A include, for example, groups represented by the following formulas (AA-1) to (AA-19). The groups represented by formulas (AA-1) to (AA-19) below may have a group represented by formula (C1) or a substituent. Note that * represents a bond, and Sp represents "a structure having affinity with an antigen". Groups selected from Group A are preferably groups represented by formula (AA-1) or formulas (AA-4) to (AA-19).
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 群Bにおける式(B1)で表される基において、Xは、炭素原子又はP(OH)であり、好ましくは炭素原子である。 In the group represented by formula (B1) in group B, X1 is a carbon atom or P(OH), preferably a carbon atom.
 QB1は、式(C1)で表される基又は置換基を有していてもよい、2価の複素環基である。QB1としては、例えば、ピリジン、ピラジン、ピリミジン、ピロール、N-アルキルピロール、フラン、チオフェン、チアゾール、イミダゾール、オキサゾール、ベンゾフラン、ベンゾチオフェン、イソキノリン、キナゾリン等の複素環式化合物の複素環式化合物を構成する炭素原子に直接結合する水素原子を2個除いた2価の基が挙げられる。複素環式化合物は、好ましくは、ピリジン、ピリミジン、チアゾール、又はイミダゾールである。 Q B1 is a divalent heterocyclic group optionally having a group represented by formula (C1) or a substituent. Examples of Q B1 include heterocyclic compounds such as pyridine, pyrazine, pyrimidine, pyrrole, N-alkylpyrrole, furan, thiophene, thiazole, imidazole, oxazole, benzofuran, benzothiophene, isoquinoline, and quinazoline. Examples include divalent groups in which two hydrogen atoms directly bonded to the constituent carbon atoms are removed. The heterocyclic compound is preferably pyridine, pyrimidine, thiazole or imidazole.
 群Bにおける式(B1)で表される基は、好ましくは、下記式(10a)、式(10b)、式(10c)、又は式(11)で表される化合物から、環を構成する炭素原子に直接結合する水素原子1個を除いた基である。 The group represented by formula (B1) in group B is preferably a compound represented by the following formula (10a), formula (10b), formula (10c), or formula (11), and the carbon atoms constituting the ring It is a group excluding one hydrogen atom directly bonded to an atom.
Figure JPOXMLDOC01-appb-C000046
[式(10a)~(10c)中、R7a、R8a、R9a、R7b、R8b、R9b、R7c、R8c、及びR9cは、それぞれ独立に、水素原子、式(C1)で表される基、又は置換基を表す。
 ただし、R7a、R8a、及びR9aのうち、少なくとも1個は水素原子である。R7b、R8b、及びR9bのうち、少なくとも1個は水素原子である。R7c、R8c、及びR9cのうち、少なくとも1個は水素原子である。
 Xは、窒素原子又はCR10aを表す。
 R10aは、それぞれ独立に、水素原子、式(C1)で表される基、又は置換基を表す。]
Figure JPOXMLDOC01-appb-C000046
[In formulas (10a) to (10c), R 7a , R 8a , R 9a , R 7b , R 8b , R 9b , R 7c , R 8c , and R 9c each independently represent a hydrogen atom, ) represents a group or a substituent.
However, at least one of R 7a , R 8a and R 9a is a hydrogen atom. At least one of R 7b , R 8b and R 9b is a hydrogen atom. At least one of R 7c , R 8c and R 9c is a hydrogen atom.
X2 represents a nitrogen atom or CR10a .
Each R 10a independently represents a hydrogen atom, a group represented by formula (C1), or a substituent. ]
Figure JPOXMLDOC01-appb-C000047
[式(11)中、R11は、水素原子、式(C1)で表される基、又は置換基を表す。
 X及びXは、それぞれ独立に、CR12、N、NR13、S、又はOを表す。R12及びR13は、それぞれ独立に、水素原子、式(C1)で表される基、又は置換基を表す。R12及びR13が複数存在する場合、それぞれ同一であっても異なっていてもよい。
 なお、式(11)において、実線と破線との二重線で表される結合は、それぞれ単結合及び二重結合からなる群から任意に選択される。]
Figure JPOXMLDOC01-appb-C000047
[In formula (11), R 11 represents a hydrogen atom, a group represented by formula (C1), or a substituent.
X 3 and X 4 each independently represent CR 12 , N, NR 13 , S or O; R 12 and R 13 each independently represent a hydrogen atom, a group represented by formula (C1), or a substituent. When multiple R 12 and R 13 are present, they may be the same or different.
In formula (11), each bond indicated by a double line consisting of a solid line and a broken line is arbitrarily selected from the group consisting of a single bond and a double bond. ]
 式(10a)において、Xは、窒素原子又はCR10aである。Xは、好ましくはCR10aである。 In formula ( 10a ), X2 is a nitrogen atom or CR10a . X2 is preferably CR10a .
 R7a、R8a、R9a、及びR10aは、それぞれ独立に、水素原子、式(C1)で表される基、又は置換基である。R7a、R8a、R9a、及びR10aが置換基である場合、置換基は、好ましくは置換基B又は置換基Cである。R7a、R8a、R9a、及びR10aのうち、式(C1)で表される基の数は、好ましくは0個又は1個であり、より好ましくは0個である。R7a、R8a、R9a、及びR10aのうち、置換基Bの数は、好ましくは0個又は1個である。R7a、R8a、R9a、及びR10aのうち、置換基Cの数は、好ましくは0個又は1個であり、より好ましくは0個である。 R 7a , R 8a , R 9a and R 10a are each independently a hydrogen atom, a group represented by formula (C1), or a substituent. When R 7a , R 8a , R 9a and R 10a are substituents, the substituents are preferably substituents B or C. Among R 7a , R 8a , R 9a and R 10a , the number of groups represented by formula (C1) is preferably 0 or 1, more preferably 0. The number of substituents B in R 7a , R 8a , R 9a and R 10a is preferably 0 or 1. Among R 7a , R 8a , R 9a and R 10a , the number of substituents C is preferably 0 or 1, more preferably 0.
 R7a、R8a、R9a、及びR10aのうち、水素原子の数は、好ましくは2~4個である。 The number of hydrogen atoms in R 7a , R 8a , R 9a and R 10a is preferably 2 to 4.
 群Bにおける式(B1)で表される基は、金属保持力が向上する観点から、好ましくは式(10a)で表される化合物のR9aから水素原子1個を除いた基である。 The group represented by formula (B1) in group B is preferably a group obtained by removing one hydrogen atom from R 9a of the compound represented by formula (10a), from the viewpoint of improving metal retention.
 式(10b)において、R7b、R8b、及びR9bは、それぞれ独立に、水素原子、式(C1)で表される基、又は置換基である。R7b、R8b、及びR9bが置換基である場合、置換基は、好ましくは置換基B又は置換基Cである。R7b、R8b、及びR9bのうち、置換基Bの数は、好ましくは0個又は1個である。 In formula (10b), R 7b , R 8b and R 9b are each independently a hydrogen atom, a group represented by formula (C1), or a substituent. When R 7b , R 8b and R 9b are substituents, the substituents are preferably substituents B or C. The number of substituents B in R 7b , R 8b and R 9b is preferably 0 or 1.
 R7b、R8b、及びR9bのうち、水素原子の数は、好ましくは2個又は3個である。 The number of hydrogen atoms in R 7b , R 8b and R 9b is preferably 2 or 3.
 群Bにおける式(B1)で表される基は、金属保持力が向上する観点から、好ましくは式(10b)で表される化合物のR9bから水素原子1個を除いた基である。 The group represented by formula (B1) in group B is preferably a group obtained by removing one hydrogen atom from R 9b of the compound represented by formula (10b), from the viewpoint of improving metal retention.
 式(10c)において、R7c、R8c、及びR9cは、それぞれ独立に、水素原子、式(C1)で表される基、又は置換基である。R7c、R8c、及びR9cが置換基である場合、置換基は、好ましくは置換基B又は置換基Cである。R7c、R8c、及びR9cのうち、置換基Bの数は、好ましくは0個又は1個である。 In formula (10c), R 7c , R 8c and R 9c are each independently a hydrogen atom, a group represented by formula (C1), or a substituent. When R 7c , R 8c and R 9c are substituents, the substituents are preferably substituents B or C. Among R 7c , R 8c and R 9c , the number of substituents B is preferably 0 or 1.
 R7c、R8c、及びR9cのうち、水素原子の数は、好ましくは2個又は3個である。 The number of hydrogen atoms in R 7c , R 8c and R 9c is preferably 2 or 3.
 群Bにおける式(B1)で表される基は、金属保持力が向上する観点から、好ましくは式(10c)で表される化合物のR9cから水素原子1個を除いた基である。 The group represented by formula (B1) in group B is preferably a group obtained by removing one hydrogen atom from R 9c of the compound represented by formula (10c), from the viewpoint of improving metal retention.
 式(11)において、X及びXは、それぞれ独立に、CR12、N、NR13、S、又はOである。Xは、好ましくはCR12である。X及びXの組み合わせは、好ましくは、XがOでありかつXがCR12である組み合わせ、又は、XがCR12でありかつXがNR13である組み合わせである。XがOでありかつXがCR12である組み合わせの化合物は、下記式(11a)で表される化合物であり、XがCR12でありかつXがNR13である組み合わせの化合物は、下記式(11b)で表される化合物である。 In formula (11), X 3 and X 4 are each independently CR 12 , N, NR 13 , S, or O. X3 is preferably CR12 . The combination of X3 and X4 is preferably a combination in which X3 is O and X4 is CR12 , or a combination in which X3 is CR12 and X4 is NR13 . A compound in which X 3 is O and X 4 is CR 12 is a compound represented by the following formula (11a), and a compound in which X 3 is CR 12 and X 4 is NR 13 is a compound represented by the following formula (11b).
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 R11は、水素原子、式(C1)で表される基、又は置換基である。R11が置換基である場合、置換基は、置換基B又は置換基Cであり、好ましくは置換基Cである。 R 11 is a hydrogen atom, a group represented by formula (C1), or a substituent. When R 11 is a substituent, the substituent is substituent B or substituent C, preferably substituent C.
 R12は、水素原子、式(C1)で表される基、又は置換基である。R12が置換基である場合、置換基は、置換基B又は置換基Cであり、好ましくは置換基Cである。 R 12 is a hydrogen atom, a group represented by formula (C1), or a substituent. When R 12 is a substituent, the substituent is substituent B or substituent C, preferably substituent C.
 R13は、水素原子、式(C1)で表される基、又は置換基である。R13が置換基である場合、置換基としては、例えば、置換基Cにおける、ヒドロカルビル基、ヒドロキシ基、ヘテロアリール基等が挙げられる。置換基は、好ましくはヒドロカルビル基である。 R 13 is a hydrogen atom, a group represented by formula (C1), or a substituent. When R 13 is a substituent, the substituent includes, for example, a hydrocarbyl group, a hydroxy group, a heteroaryl group, etc. in the substituent C. Substituents are preferably hydrocarbyl groups.
 群Bにおける式(B1)で表される基は、好ましくは式(11)で表される化合物のR11から水素原子1個を除いた基である。 The group represented by formula (B1) in group B is preferably a group obtained by removing one hydrogen atom from R 11 of the compound represented by formula (11).
 群Bにおける式(B1)で表される基は、より好ましくは、式(10a)、式(10b)、又は式(10c)で表される化合物から、環を構成する炭素原子に直接結合する水素原子1個を除いた基、さらに好ましくは、式(10a)で表される化合物から、環を構成する炭素原子に直接結合する水素原子1個を除いた基である。 The group represented by formula (B1) in group B is more preferably directly bonded to a carbon atom constituting the ring from the compound represented by formula (10a), formula (10b), or formula (10c). A group in which one hydrogen atom has been removed, more preferably a group in which one hydrogen atom directly bonded to a ring-constituting carbon atom has been removed from the compound represented by formula (10a).
 群Bにおける式(B1)で表される基としては、例えば、下記式(B1-1)~下記式(B1-51)で表される基が挙げられる。これらの中でも、式(10a)、式(10b)、又は式(10c)で表される化合物から、環を構成する炭素原子に直接結合する水素原子1個を除いた基は、式(B1-1)~式(B1-9)、式(B1-27)~式(B1-29)、式(B1-32)~式(B1-38)、式(B1-42)~式(B1-44)、及び(B1-47)~(B1-51)で表される基であり、式(11)で表される化合物から、環を構成する炭素原子に直接結合する水素原子1個を除いた基は、式(B1-18)、式(B1-19)、式(B1-22)~式(B1-24)、式(B1-30)、式(B1-31)、式(B1-45)、及び式(B1-46)で表される基である。なお、*は、結合手を表し、Spは、「抗原と親和性のある構造体」を表す。 Examples of the group represented by formula (B1) in group B include groups represented by formulas (B1-1) to (B1-51) below. Among these, a group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting a ring from a compound represented by formula (10a), formula (10b), or formula (10c) is represented by formula (B1- 1) ~ formula (B1-9), formula (B1-27) ~ formula (B1-29), formula (B1-32) ~ formula (B1-38), formula (B1-42) ~ formula (B1-44 ), and groups represented by (B1-47) to (B1-51), wherein one hydrogen atom directly bonded to a carbon atom constituting the ring is removed from the compound represented by formula (11) The group is represented by formula (B1-18), formula (B1-19), formula (B1-22) to formula (B1-24), formula (B1-30), formula (B1-31), formula (B1-45 ), and a group represented by the formula (B1-46). Note that * represents a bond, and Sp represents "a structure having affinity with an antigen".
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 式(B2)で表される基は、好ましくは、下記式(12)で表される化合物から環を構成する炭素原子に直接結合する水素原子1個を除いた基である。 The group represented by formula (B2) is preferably a group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting the ring from the compound represented by formula (12) below.
Figure JPOXMLDOC01-appb-C000053
[式(12)中、X、X、X、及びXは、それぞれ独立に、N、NR14、又はCR15を表す。R14及びR15は、それぞれ独立に、水素原子、式(C1)で表される基、又は置換基を表す。R14及びR15が複数存在する場合、それぞれ同一であっても異なっていてもよい。
 Xは、炭素原子又は窒素原子を表す。
 Q10は、O、OH、又は水素原子を表す。
 なお、式(12)において、実線と破線との二重線で表される結合は、それぞれ単結合及び二重結合からなる群から任意に選択される。]
Figure JPOXMLDOC01-appb-C000053
[In Formula (12), X 5 , X 6 , X 7 and X 8 each independently represent N, NR 14 or CR 15 ; R 14 and R 15 each independently represent a hydrogen atom, a group represented by formula (C1), or a substituent. When multiple R 14 and R 15 are present, they may be the same or different.
X9 represents a carbon atom or a nitrogen atom.
Q10 represents O, OH, or a hydrogen atom.
In formula (12), each bond indicated by a double line consisting of a solid line and a broken line is arbitrarily selected from the group consisting of a single bond and a double bond. ]
 X、X、X、及びXは、それぞれ独立に、N、NR14、又はCR15である。X、X、X、又はXのいずれかがN又はNR14である場合、その隣接するX、X、X、又はXは、好ましくはCR15である。 X5 , X6 , X7 , and X8 are each independently N, NR14 , or CR15 . When any of X5 , X6, X7 or X8 is N or NR14 , the adjacent X5 , X6 , X7 or X8 is preferably CR15 .
 X、X、X、及びXから任意で選ばれる0~2個は、N及びNR14である。N及びNR14の数は、好ましくは0個又は1個であり、より好ましくは0個である。 0 to 2 arbitrarily selected from X 5 , X 6 , X 7 and X 8 are N and NR 14 . The number of N and NR 14 is preferably 0 or 1, more preferably 0.
 R14及びR15は、それぞれ独立に、水素原子、式(C1)で表される基、又は置換基を表す。R14及びR15が置換基である場合、置換基は、好ましくは置換基B又は置換基Cである。R14及びR15のうち、置換基Bの数は、好ましくは0個又は1個、より好ましくは0個である。R14及びR15のうち、式(C1)で表される基の数は、好ましくは0個又は1個、より好ましくは0個である。 R 14 and R 15 each independently represent a hydrogen atom, a group represented by formula (C1), or a substituent. When R 14 and R 15 are substituents, the substituents are preferably substituents B or C. Among R 14 and R 15 , the number of substituents B is preferably 0 or 1, more preferably 0. Among R 14 and R 15 , the number of groups represented by formula (C1) is preferably 0 or 1, more preferably 0.
 Xは、炭素原子又は窒素原子であり、好ましくは窒素原子である。 X9 is a carbon atom or a nitrogen atom, preferably a nitrogen atom.
 Q10は、O、OH、又は水素原子であり、好ましくはO又はOH、より好ましくはOである。 Q10 is O, OH, or a hydrogen atom, preferably O or OH, more preferably O.
 式(B2)で表される基は、好ましくは、XがCHである式(12)で表される化合物から環を構成する炭素原子に直接結合する水素原子1個を除いた基である。 The group represented by formula (B2) is preferably a group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting the ring from the compound represented by formula (12) in which X 8 is CH. .
 群Bにおける式(B2)で表される基としては、例えば、下記式(B2-1)~下記式(B2-29)で表される基が挙げられる。これらの中でも、式(12)で表される化合物から環を構成する炭素原子に直接結合する水素原子1個を除いた基は、式(B2-6)~式(B1-29)で表される基である。 Examples of the group represented by formula (B2) in group B include groups represented by formulas (B2-1) to (B2-29) below. Among these, groups obtained by removing one hydrogen atom directly bonded to a carbon atom constituting a ring from the compound represented by formula (12) are represented by formulas (B2-6) to (B1-29). is a group.
 式(B2)で表される基は、好ましくは式(B2-6)、式(B2-10)、式(B2-12)~式(B2-22)、式(B2-24)~式(B2-26)、又は式(B2-29)で表される基、より好ましくは式(B2-6)、式(B2-10)、式(B2-12)~式(B2-18)、式(B2-24)~式(B2-26)、又は式(B2-29)で表される基、さらに好ましくは式(B2-6)、式(B2-10)、式(B2-16)、又は式(B2-17)で表される基である。なお、*は、結合手を表す。 The group represented by formula (B2) is preferably represented by formula (B2-6), formula (B2-10), formula (B2-12) to formula (B2-22), formula (B2-24) to formula ( B2-26), or a group represented by formula (B2-29), more preferably formula (B2-6), formula (B2-10), formula (B2-12) to formula (B2-18), formula (B2-24) to formula (B2-26), or a group represented by formula (B2-29), more preferably formula (B2-6), formula (B2-10), formula (B2-16), or a group represented by formula (B2-17). Note that * represents a bond.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 式(C1)で表される基において、n2は1~5の整数であり、好ましくは1~4の整数であり、さらに好ましくは2又は3である。 In the group represented by formula (C1), n2 is an integer of 1-5, preferably an integer of 1-4, more preferably 2 or 3.
 L10は、単結合又は置換基を有していてもよい2価の連結基を表す。L10としては、式(25)及び式(26)で表される基におけるLと同様のものが例示できる。 L 10 represents a single bond or a divalent linking group optionally having a substituent. Examples of L 10 include the same groups as L 1 in the groups represented by formulas (25) and (26).
 R16は、水素原子又は置換基であり、好ましくは置換基である。R16における置換基としては、置換基Cにおけるヒドロカルビル基が挙げられる。R16としてのヒドロカルビル基は、好ましくは置換基Cにおけるアルキル基である。R16は、任意のL10と互いに結合して環構造を形成していてもよい。 R 16 is a hydrogen atom or a substituent, preferably a substituent. Substituents on R 16 include hydrocarbyl groups on Substituent C. Hydrocarbyl groups as R 16 are preferably alkyl groups in substituent C. R 16 may combine with any L 10 to form a ring structure.
 X10は、-N(OH)C(=O)-を表し、-N(OH)C(=O)-は、隣接する基と任意の方向で結合していてもよい。例えば、-N(OH)C(=O)-の隣接する基がL10及びR16である場合、-L10-C(=O)NRe1-R16で結合してもよく、R16-C(=O)NRe1-L10-で結合してもよい。n2が2以上である場合、複数存在するX10は、それぞれ独立して隣接する基と任意の方向で結合してもよい。式(C1)で表される基は、好ましくは、式(C1a)で表される基又は式(C1b)で表される基であり、より好ましくは式(C1a)で表される基である。 X 10 represents -N(OH)C(=O)-, and -N(OH)C(=O)- may be bonded to the adjacent group in any direction. For example, if the adjacent groups of -N(OH)C(=O)- are L 10 and R 16 , they may be attached at -L 10 -C(=O)NR e1 -R 16 and R 16 -C(=O)NR e1 -L 10 - may be used for bonding. When n2 is 2 or more, multiple X 10 may independently bond to adjacent groups in any direction. The group represented by formula (C1) is preferably a group represented by formula (C1a) or a group represented by formula (C1b), more preferably a group represented by formula (C1a). .
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 式(C1a)及び式(C1b)中、n2、L10、R16、及びL30は、前記と同義である。 In formulas (C1a) and (C1b), n2, L 10 , R 16 and L 30 are as defined above.
 L30は、単結合又は置換基を有していてもよい2価の連結基を表す。L30としては、式(26)で表される基におけるLと同様のものが例示できる。 L 30 represents a single bond or a divalent linking group which may have a substituent. Examples of L 30 are the same as L 3 in the group represented by formula (26).
 式(C1)で表される基は、例えば、式(C1-1)~式(C1-10)で表される基が挙げられる。これらの中で、R16とL10とが互いに結合して環構造を形成していない基は、式(C1-1)~式(C1-7)で表される基である。これらの中で、式(C1)で表される基は、好ましくは、式(C1-2)、式(C1-3)、又は式(C1-6)で表される基である。なお、*は、結合手を表し、L30は、単結合又は置換基を有していてもよい2価の連結基を表す。 Examples of the group represented by formula (C1) include groups represented by formulas (C1-1) to (C1-10). Among these, groups in which R 16 and L 10 are not bonded to each other to form a ring structure are groups represented by formulas (C1-1) to (C1-7). Among these, the group represented by formula (C1) is preferably a group represented by formula (C1-2), formula (C1-3), or formula (C1-6). Note that * represents a bond, and L30 represents a single bond or a divalent linking group which may have a substituent.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 Q、Q、Q、及びQは、それぞれ独立に、水素原子、群Aから選ばれる基、群Bから選ばれる基、式(C1)で表される基、又は置換基を表す。ただし、Q、Q、Q、及びQの少なくとも1個は、群Aから選ばれる基である。Q、Q、Q、及びQの少なくとも1個は、群Bから選ばれる基、好ましくは群Bにおける式(B1)で表される基である。Q、Q、Q、及びQの少なくとも3個は、群Aから選ばれる基、群Bから選ばれる基、又は式(C1)で表される基である。Qは、好ましくは群Aから選ばれる基である。Q及びQは、好ましくは群Bから選ばれる基である。Qは、好ましくは群A又は群Bから選ばれる基である。nが2以上である場合、複数存在するQは、それぞれ同一であっても異なっていてもよく、同一であることが好ましい。 Q 1 , Q 2 , Q 3 , and Q 4 each independently represent a hydrogen atom, a group selected from Group A, a group selected from Group B, a group represented by formula (C1), or a substituent . However, at least one of Q 1 , Q 2 , Q 3 and Q 4 is a group selected from group A. At least one of Q 1 , Q 2 , Q 3 and Q 4 is a group selected from group B, preferably a group represented by formula (B1) in group B. At least three of Q 1 , Q 2 , Q 3 and Q 4 are groups selected from group A, groups selected from group B, or groups represented by formula (C1). Q 1 is preferably a group selected from group A. Q 2 and Q 3 are preferably groups selected from group B. Q4 is preferably a group selected from group A or group B. When n is 2 or more, multiple Q4 's may be the same or different, and are preferably the same.
 Q及びQは、互いに結合して、又は、2価の連結基を介して環構造を形成していてもよい。2価の連結基は、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチル基等のアルキレン基、ピリジレン基などが挙げられる。 Q 2 and Q 3 may be bonded to each other or form a ring structure via a divalent linking group. Examples of divalent linking groups include alkylene groups such as a methylene group, ethylene group, propylene group, butylene group and pentyl group, and pyridylene groups.
 式(1)で表される化合物において、群Aから選ばれる基及び群Bから選ばれる基の数と、式(1)で表される化合物中の式(C1)で表される基におけるn2の数との合計数は、好ましくは少なくとも3個であり、より好ましくは3~8個であり、さらに好ましくは、式(1)で表される化合物中の式(C1)で表される基が存在しない場合で4個又は式(1)で表される化合物中の式(C1)で表される基が存在する場合で4~7個である。 In the compound represented by formula (1), the number of groups selected from group A and group B, and n2 in the group represented by formula (C1) in the compound represented by formula (1) is preferably at least 3, more preferably 3 to 8, more preferably the group represented by formula (C1) in the compound represented by formula (1) is not present, or 4 to 7 when the group represented by formula (C1) in the compound represented by formula (1) is present.
 群Aから選ばれる基の合計数は、好ましくは1~3個であり、より好ましくは1個又は2個である。 The total number of groups selected from Group A is preferably 1 to 3, more preferably 1 or 2.
 群Bから選ばれる基の合計数は、好ましくは1~3個であり、より好ましくは2個又は3個である。 The total number of groups selected from Group B is preferably 1 to 3, more preferably 2 or 3.
 式(1)で表される化合物中の式(C1)で表される基の合計数は、好ましくは0~2個であり、より好ましくは0個又は1個である。 The total number of groups represented by formula (C1) in the compound represented by formula (1) is preferably 0 to 2, more preferably 0 or 1.
 Rは、置換基を有していてもよい2価の連結基である。置換基は、置換基B又は置換基Cであり、置換基Bの数は、好ましくは0個又は1個である。 R is a divalent linking group that may have a substituent. The substituent is the substituent B or the substituent C, and the number of the substituent B is preferably 0 or 1.
 Rにおける2価の連結基としては、例えば、アルキレン基、アリーレン基、ヘテロアリーレン基が挙げられる。2価の連結基は、これらを組み合わせてなる基であってもよい。2価の連結基は、好ましくはアルキレン基である。Rにおける炭素原子数は、特に限定されないが、好ましくは1~18個である。 Examples of the divalent linking group for R include an alkylene group, an arylene group, and a heteroarylene group. The divalent linking group may be a group formed by combining these. The divalent linking group is preferably an alkylene group. The number of carbon atoms in R is not particularly limited, but preferably 1 to 18.
 Rにおけるアルキレン基は、飽和脂肪族炭化水素を構成する炭素原子に直接結合する水素原子を2個除いた2価の基である。アルキレン基としては、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、tert-ブチレン基、ペンチレン基、へキシレン基等が挙げられる。これらのアルキレン基中の-CH-の一部は、-O-に置換されていてもよい。アルキレン基の炭素原子数は、特に限定されないが、好ましくは1~8個である。 The alkylene group for R is a divalent group in which two hydrogen atoms directly bonded to carbon atoms constituting a saturated aliphatic hydrocarbon are removed. Alkylene groups include methylene, ethylene, propylene, isopropylene, butylene, isobutylene, tert-butylene, pentylene, and hexylene groups. A portion of —CH 2 — in these alkylene groups may be substituted with —O—. Although the number of carbon atoms in the alkylene group is not particularly limited, it is preferably 1 to 8.
 Rにおけるアリーレン基は、芳香族炭化水素を構成する炭素原子に直接結合する水素原子を2個除いた2価の基である。アリーレン基としては、フェニレン基、ビフェニレン基、ターフェニレン基、ナフチレン基、アントラセニレン基等が挙げられる。アリ-レン基は、好ましくはフェニレン基である。アリーレン基の炭素原子数は、特に限定されないが、好ましくは6~18個である。 The arylene group in R is a divalent group excluding two hydrogen atoms directly bonded to the carbon atoms constituting the aromatic hydrocarbon. Arylene groups include phenylene groups, biphenylene groups, terphenylene groups, naphthylene groups, anthracenylene groups and the like. Arylene groups are preferably phenylene groups. Although the number of carbon atoms in the arylene group is not particularly limited, it is preferably 6 to 18.
 Rにおけるヘテロアリーレン基は、例えば、ピリジン、ピラジン、ピリミジン、ピロール、N-アルキルピロール、フラン、チオフェン、チアゾール、イミダゾール、オキサゾール、ベンゾフラン、ベンゾチオフェン、イソキノリン、キナゾリン、ベンズイミダゾール、キノリン等の複素環式化合物を構成する炭素原子に直接結合する水素原子を2個除いた2価の基である。ヘテロアリーレン基は、好ましくはピリジレン基である。ヘテロアリーレン基の炭素原子数は、特に限定されないが、好ましくは3~18個である。 Heteroarylene groups in R are for example heterocyclic groups such as pyridine, pyrazine, pyrimidine, pyrrole, N-alkylpyrrole, furan, thiophene, thiazole, imidazole, oxazole, benzofuran, benzothiophene, isoquinoline, quinazoline, benzimidazole, quinoline. It is a divalent group in which two hydrogen atoms directly bonded to carbon atoms constituting a compound are removed. A heteroarylene group is preferably a pyridylene group. Although the number of carbon atoms in the heteroarylene group is not particularly limited, it is preferably 3 to 18.
 アルキレン基、アリーレン基、及びヘテロアリーレン基を組み合わせてなる2価の連結基としては、フェニレン基とメチレン基とフェニレン基とが順に結合した組み合わせ、メチレン基とフェニレン基とメチレン基とが順に結合した組み合わせ、ピリジレン基とメチレン基とピリジレン基とが順に結合した組み合わせ、メチレン基とピリジレン基とメチレン基とが順に結合した組み合わせ等が挙げられる。 The divalent linking group formed by combining an alkylene group, an arylene group, and a heteroarylene group includes a combination in which a phenylene group, a methylene group, and a phenylene group are linked in order, and a combination in which a methylene group, a phenylene group, and a methylene group are linked in order. A combination, a combination in which a pyridylene group, a methylene group, and a pyridylene group are bonded in order, a combination in which a methylene group, a pyridylene group, and a methylene group are bonded in order, and the like can be mentioned.
 Z、Z、Z、及びZは、それぞれ独立に、単結合又は置換基を有していてもよい2価の連結基を表す。2価の連結基としては、例えば、ヒドロカルビレン基などが挙げられる。ヒドロカルビレン基としては、Lにおけるヒドロカルビレン基と同様のものが例示できる。置換基は、置換基B又は置換基Cであり、置換基Bの数は、好ましくは0個又は1個である。ヒドロカルビレン基中の-CH-の一部は、-O-、-C(=O)-、-NHC(=O)-、又は-C(=O)NH-に置換されていてもよい。置換基は、好ましくは置換基B、ヒドロカルビル基、アリール基、又はヘテロアリール基、より好ましくは置換基B又はヒドロカルビル基である。 Z 1 , Z 2 , Z 3 and Z 4 each independently represent a single bond or a divalent linking group which may have a substituent. Examples of divalent linking groups include hydrocarbylene groups. Examples of the hydrocarbylene group include those similar to the hydrocarbylene group for L 1 . The substituent is the substituent B or the substituent C, and the number of the substituent B is preferably 0 or 1. Some of -CH 2 - in the hydrocarbylene group may be substituted with -O-, -C(=O)-, -NHC(=O)- or -C(=O)NH- good. The substituents are preferably substituents B, hydrocarbyl groups, aryl groups or heteroaryl groups, more preferably substituents B or hydrocarbyl groups.
 式(1)で表される化合物は、好ましくは、nが1である下記式(1A)で表される化合物、nが0である下記式(1B)で表される化合物、又はnが2~6である下記式(1C)で表される化合物、より好ましくは下記式(1A)で表される化合物である。 The compound represented by the formula (1) is preferably a compound represented by the following formula (1A) where n is 1, a compound represented by the following formula (1B) where n is 0, or n is 2 to 6, more preferably a compound represented by the following formula (1A).
Figure JPOXMLDOC01-appb-C000057
[式(1A)中、Q、Q、Q、Q、Z、Z、Z、Z、及びRは、前記と同義である。]
Figure JPOXMLDOC01-appb-C000057
[In Formula (1A), Q 1 , Q 2 , Q 3 , Q 4 , Z 1 , Z 2 , Z 3 , Z 4 and R are as defined above. ]
 式(1A)で表される化合物は、好ましくは、下記式(1Aa)で表される化合物又は下記式(1Ab)で表される化合物である。 The compound represented by formula (1A) is preferably a compound represented by formula (1Aa) below or a compound represented by formula (1Ab) below.
Figure JPOXMLDOC01-appb-C000058
[式(1Aa)中、Q、Q、Q、及びQは、前記と同義である。
 Rは、置換基を有していてもよいヒドロカルビレン基を表し、ヒドロカルビレン基中の-CH-の一部は、-O-に置換されていてもよい。
 Z1a、Z2a、Z3a、及びZ4aは、それぞれ独立に、単結合又は置換基を有していてもよいヒドロカルビレン基を表し、ヒドロカルビレン基中の-CH-の一部は、-O-、-C(=O)-、-NHC(=O)-、又は-C(=O)NH-に置換されていてもよい。]
Figure JPOXMLDOC01-appb-C000058
[In the formula (1Aa), Q 1 , Q 2 , Q 3 and Q 4 have the same meanings as described above.
R a represents an optionally substituted hydrocarbylene group, and a portion of —CH 2 — in the hydrocarbylene group may be substituted with —O—.
Z 1a , Z 2a , Z 3a and Z 4a each independently represents a single bond or an optionally substituted hydrocarbylene group, and is part of —CH 2 — in the hydrocarbylene group is optionally substituted with -O-, -C(=O)-, -NHC(=O)-, or -C(=O)NH-. ]
 Rにおけるヒドロカルビレン基としては、Lにおけるヒドロカルビレン基と同様のものが例示できる。 Examples of the hydrocarbylene group for R a are the same as the hydrocarbylene group for L 1 .
 Z1a、Z2a、Z3a、及びZ4aにおけるヒドロカルビレン基としては、Lにおけるヒドロカルビレン基と同様のものが例示できる。 Examples of the hydrocarbylene group for Z 1a , Z 2a , Z 3a and Z 4a are the same as the hydrocarbylene group for L 1 .
 式(1Aa)で表される化合物としては、例えば、下記式(1Aa-1)~下記式(1Aa-23)で表される化合物が挙げられる。なお、Spは、「抗原と親和性のある構造体」を表す。 Examples of compounds represented by formula (1Aa) include compounds represented by formulas (1Aa-1) to (1Aa-23) below. In addition, Sp represents "a structure having an affinity for an antigen".
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
[式(1Ab)中、Q、Q、Q、及びQは、前記と同義である。
 Rは、複素環を有する2価の連結基であり、当該連結基は、置換基を有していてもよい。
 Z1b、Z2b、Z3b、及びZ4bは、それぞれ独立に、単結合又は置換基を有していてもよいヒドロカルビレン基を表し、ヒドロカルビレン基中の-CH-の一部は、-O-、-C(=O)-、-NHC(=O)-、又は-C(=O)NH-に置換されていてもよい。
 ただし、Z1b、Z2b、Z3b、及びZ4bの少なくとも1個は、ヒドロカルビレン基中の-CH-の一部が、-O-、-C(=O)-、-NHC(=O)-、又は-C(=O)NH-に置換されたヒドロカルビレン基である。当該ヒドロカルビレン基は、置換基を有していてもよい。]
Figure JPOXMLDOC01-appb-C000061
[In Formula (1Ab), Q 1 , Q 2 , Q 3 and Q 4 are as defined above.
R b is a divalent linking group having a heterocyclic ring, and the linking group may have a substituent.
Z 1b , Z 2b , Z 3b and Z 4b each independently represents a single bond or an optionally substituted hydrocarbylene group, and is part of —CH 2 — in the hydrocarbylene group is optionally substituted with -O-, -C(=O)-, -NHC(=O)-, or -C(=O)NH-.
with the proviso that at least one of Z 1b , Z 2b , Z 3b and Z 4b is such that a portion of —CH 2 — in the hydrocarbylene group is —O—, —C(=O)—, —NHC( =O)- or a hydrocarbylene group substituted with -C(=O)NH-. The hydrocarbylene group may have a substituent. ]
 Rにおける複素環を有する2価の連結基は、ヘテロアリーレン基を有する2価の連結基である。ヘテロアリーレン基としては、Lにおけるヘテロアリーレン基と同様のものが例示できる。2価の連結基は、異なるヘテロアリーレン基同士を組み合わせてなる2価の連結基、ヘテロアリーレン基及びヒドロカルビレン基を組み合わせてなる2価の連結基等であってもよい。ヘテロアリーレン基は、好ましくはピリジレン基である。 The bivalent linking group having a heterocyclic ring for R b is a bivalent linking group having a heteroarylene group. As the heteroarylene group, the same heteroarylene groups as those for L 1 can be exemplified. The divalent linking group may be a divalent linking group formed by combining different heteroarylene groups, a divalent linking group formed by combining a heteroarylene group and a hydrocarbylene group, or the like. A heteroarylene group is preferably a pyridylene group.
 ヘテロアリーレン基及びヒドロカルビレン基を組み合わせてなる2価の連結基としては、2個のピリジレン基を直接結合で連結した組み合わせ、ピリジレン基とメチレン基とピリジレン基とが順に結合した組み合わせ、メチレン基とピリジレン基とメチレン基とが順に結合した組み合わせ等が挙げられる。 The divalent linking group formed by combining a heteroarylene group and a hydrocarbylene group includes a combination in which two pyridylene groups are directly linked, a combination in which a pyridylene group, a methylene group, and a pyridylene group are linked in order, and a methylene group. , a pyridylene group and a methylene group combined in that order.
 Z1b、Z2b、Z3b、及びZ4bにおけるヒドロカルビレン基としては、Lにおけるヒドロカルビレン基と同様のものが例示できる。 Examples of the hydrocarbylene group for Z 1b , Z 2b , Z 3b and Z 4b are the same as the hydrocarbylene group for L 1 .
 式(1Ab)で表される化合物としては、例えば、下記式(1Ab-1)~下記式(1Ab-8)で表される化合物が挙げられる。なお、Spは、「抗原と親和性のある構造体」を表す。 Examples of compounds represented by formula (1Ab) include compounds represented by formulas (1Ab-1) to (1Ab-8) below. In addition, Sp represents "a structure having an affinity for an antigen".
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
[式(1B)中、Q、Q、Q、Z、Z、及びZは、前記と同義である。]
Figure JPOXMLDOC01-appb-C000063
[In Formula (1B), Q 1 , Q 2 , Q 3 , Z 1 , Z 2 and Z 3 are as defined above. ]
 式(1B)で表される化合物としては、例えば、下記式(1B-1)~下記式(1B-4)で表される化合物が挙げられる。 Examples of compounds represented by formula (1B) include compounds represented by formulas (1B-1) to (1B-4) below.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
[式(1C)中、Q、Q、Q、Q、Z、Z、Z、Z、及びRは、前記と同義である。
 n1は、2~5の整数を表す。]
Figure JPOXMLDOC01-appb-C000065
[In Formula (1C), Q 1 , Q 2 , Q 3 , Q 4 , Z 1 , Z 2 , Z 3 , Z 4 and R are as defined above.
n1 represents an integer of 2-5. ]
 式(1C)で表される化合物としては、例えば、下記式(1C-1)~下記式(1C-13)で表される化合物が挙げられる。なお、中央が窒素原子を有する環状構造になっている化合物は、Q及びQが、互いに結合して、又は、2価の連結基を介して環構造を形成した構造である。 Examples of the compound represented by formula (1C) include compounds represented by formulas (1C-1) to (1C-13) below. A compound having a cyclic structure having a nitrogen atom in the center is a structure in which Q 2 and Q 3 are bonded to each other or via a divalent linking group to form a cyclic structure.
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 式(1C-10)で表される化合物の具体例としては、下記式(1C-10a)及び下記式(1C-10b)で表される化合物が挙げられる。 Specific examples of the compound represented by formula (1C-10) include compounds represented by the following formulas (1C-10a) and (1C-10b).
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 式(1)で表される化合物は、好ましくは下記式(2)で表される化合物である。 The compound represented by formula (1) is preferably a compound represented by formula (2) below.
Figure JPOXMLDOC01-appb-C000070
[式(2)中、R、R、R、R、Q、Q、Q、Z、Z、及びZは、前記と同義である。
 Z1Aは、-CH-又は-C(=O)-を表す。
 Rは、置換基を有していてもよい2価の炭素原子数2~8個である連結基を表す。
 -Z-Q、-Z-Q、及び-Z-Qは、下記式(15a)、式(15b)、式(15c)、式(15d)、及び式(15e)で表される基からなる群より選ばれる基を表す。ただし、-Z-Q、-Z-Q、及び-Z-Qの少なくとも1個は、下記式(15c)、式(15d)、又は式(15e)で表される基である。
Figure JPOXMLDOC01-appb-C000071
(式(15a)、(15b)、(15c)、(15d)、及び(15e)中、環を構成する炭素原子に直接結合する水素原子は、式(C1)で表される基又は置換基によって置換されていてもよい。なお、*は、結合手を表す。)]
Figure JPOXMLDOC01-appb-C000070
[In Formula (2), R 2 , R 3 , R 4 , R 5 , Q 2 , Q 3 , Q 4 , Z 2 , Z 3 and Z 4 are as defined above.
Z 1A represents -CH 2 - or -C(=O)-.
R A represents an optionally substituted divalent linking group having 2 to 8 carbon atoms.
-Z 2 -Q 2 , -Z 3 -Q 3 and -Z 4 -Q 4 are represented by the following formulas (15a), (15b), (15c), (15d) and (15e) represents a group selected from the group consisting of the represented groups; provided that at least one of -Z 2 -Q 2 , -Z 3 -Q 3 , and -Z 4 -Q 4 is a group represented by the following formula (15c), formula (15d), or formula (15e) is.
Figure JPOXMLDOC01-appb-C000071
(In formulas (15a), (15b), (15c), (15d), and (15e), a hydrogen atom directly bonded to a carbon atom constituting the ring is a group or substituent represented by formula (C1) Note that * represents a bond.)]
 Z1Aは、-CH-又は-C(=O)-であり、好ましくは-CH-である。 Z 1A is -CH 2 - or -C(=O)-, preferably -CH 2 -.
 Rは、置換基を有していてもよい2価の炭素原子数2~8個である連結基である。Rは、好ましくは置換基を有していてもよい2価の炭素原子数2~8個であるヒドロカルビレン基である。Rにおけるヒドロカルビレン基としては、Lにおけるヒドロカルビレン基と同様のものが例示できる。 R A is an optionally substituted divalent linking group having 2 to 8 carbon atoms. R A is preferably an optionally substituted divalent hydrocarbylene group having 2 to 8 carbon atoms. Examples of the hydrocarbylene group for RA are the same as the hydrocarbylene group for L1 .
 -Z-Q、-Z-Q、及び-Z-Qは、式(15a)、式(15b)、式(15c)、式(15d)、及び式(15e)で表される基からなる群より選ばれる基であり、-Z-Q、-Z-Q、及び-Z-Qの少なくとも1個は、式(15c)、式(15d)、又は式(15e)で表される基である。 -Z 2 -Q 2 , -Z 3 -Q 3 , and -Z 4 -Q 4 are represented by formula (15a), formula (15b), formula (15c), formula (15d), and formula (15e). wherein at least one of -Z 2 -Q 2 , -Z 3 -Q 3 and -Z 4 -Q 4 is represented by formula (15c), formula (15d), or a group represented by the formula (15e).
 -Z-Q及び-Z-Qは、好ましくは、式(15c)、式(15d)、又は式(15e)で表される基、より好ましくは式(15c)で表される基である。この場合、-Z-Q及び-Z-Qは、それぞれ同一であっても異なっていてもよい。 -Z 2 -Q 2 and -Z 3 -Q 3 are preferably groups represented by formula (15c), formula (15d) or formula (15e), more preferably represented by formula (15c) is the base. In this case, -Z 2 -Q 2 and -Z 3 -Q 3 may be the same or different.
 -Z-Qは、好ましくは、式(15a)、式(15b)、又は(15c)で表される基である。 -Z 4 -Q 4 is preferably a group represented by formula (15a), formula (15b) or (15c).
 式(15a)、(15b)、(15c)、(15d)、及び(15e)中、環を構成する炭素原子に直接結合する水素原子は、式(C1)で表される基又は置換基によって置換されていてもよい。置換基は、好ましくは置換基B又は置換基Cである。 In formulas (15a), (15b), (15c), (15d), and (15e), a hydrogen atom directly bonded to a carbon atom constituting the ring is represented by a group or substituent represented by formula (C1). may be substituted. The substituent is preferably substituent B or substituent C.
 式(2)で表される化合物は、置換基Bを0個又は1個有することが好ましく、「抗原と親和性のある構造体」と組み合わせて用いることができることから、置換基Bを1個有することがより好ましい。 The compound represented by formula (2) preferably has 0 or 1 substituent B, and since it can be used in combination with the "structure having affinity for the antigen", one substituent B It is more preferable to have
 式(1)で表される化合物の具体例としては、例えば、下記式(1-1)~下記式(1-46)で表される化合物が挙げられる。これら化合物は置換基を有していてもよい。なお、Spは、「抗原と親和性のある構造体」を表す。式(1)で表される化合物は、好ましくは、式(2)で表される化合物である、式(1-1)~式(1-4)、式(1-6)~式(1-15)、式(1-26)~式(1-34)、式(1-40)、又は式(1-43)で表される化合物、より好ましくは、式(1-1)~式(1-3)、式(1-7)、式(1-10)、式(1-11)、式(1-27)、式(1-29)、式(1-30)、式(1-40)、又は式(1-43)で表される化合物である。 Specific examples of the compound represented by formula (1) include compounds represented by formulas (1-1) to (1-46) below. These compounds may have a substituent. In addition, Sp represents "a structure having an affinity for an antigen". The compound represented by formula (1) is preferably a compound represented by formula (2), formula (1-1) to formula (1-4), formula (1-6) to formula (1 -15), compounds represented by formulas (1-26) to (1-34), formula (1-40), or formula (1-43), more preferably formula (1-1) to formula (1-3), formula (1-7), formula (1-10), formula (1-11), formula (1-27), formula (1-29), formula (1-30), formula ( 1-40), or a compound represented by the formula (1-43).
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
 本実施形態の化合物は、酸又は塩基との相互作用で塩を形成していてもよく、水和していてもよい。塩を形成していてもよい酸の種類としては、例えば、塩酸、臭素酸、ヨウ素酸、リン酸、酢酸、硫酸、硝酸、過塩素酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、テトラフェニルホウ酸などが挙げられる。酸は、好ましくは塩酸又は臭素酸である。酸による塩構造としては、例えば、本実施形態の化合物中の窒素部位が酸と相互作用している塩構造が挙げられる。 The compound of this embodiment may form a salt by interacting with an acid or base, or may be hydrated. Examples of acids that may form salts include hydrochloric acid, bromic acid, iodic acid, phosphoric acid, acetic acid, sulfuric acid, nitric acid, perchloric acid, trifluoroacetic acid, trifluoromethanesulfonic acid, and tetrafluoroboric acid. , hexafluorophosphoric acid, tetraphenylboric acid, and the like. The acid is preferably hydrochloric acid or bromic acid. The salt structure with an acid includes, for example, a salt structure in which the nitrogen site in the compound of the present embodiment interacts with an acid.
 塩を形成していてもよい塩基の種類としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属水酸化物;水酸化テトラメチルアンモニウム、水酸化テトラブチルアンモニウム等の4級アンモニウムの水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸水素塩などが挙げられる。塩基による塩構造としては、例えば、本実施形態の化合物中のカルボン酸部位のプロトンが別のカチオンで置き換わった塩構造が挙げられる。 Examples of the base that may form a salt include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide; substances; quaternary ammonium hydroxides such as tetramethylammonium hydroxide and tetrabutylammonium hydroxide; alkali metal carbonates such as lithium carbonate, sodium carbonate and potassium carbonate; lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like and alkali metal hydrogen carbonate. The salt structure with a base includes, for example, a salt structure in which the proton of the carboxylic acid site in the compound of the present embodiment is replaced with another cation.
 本実施形態の化合物は、一部のプロトンが分子内で移動していてもよい。例えば、式(1-2)で表される化合物は、カルボン酸のうち1個又は2個のプロトンが、エチレンジアミン構造中の窒素原子又はヒドロキシキノリン構造中の窒素原子の近傍に移動していてもよい。 In the compound of this embodiment, some protons may move within the molecule. For example, in the compound represented by formula (1-2), one or two protons in the carboxylic acid may move to the vicinity of the nitrogen atom in the ethylenediamine structure or the nitrogen atom in the hydroxyquinoline structure. good.
[化合物の製造方法]
 次に、本実施形態の化合物の製造方法について説明する。
[Method for producing compound]
Next, a method for producing the compound of the present embodiment will be described.
 式(1)で表される化合物は、Z、Z、Z、及びZとなり得る部位に、それぞれQ、Q、Q、及びQとなり得る化合物を連結することができる公知の手法を適宜組み合わせて製造することができる。 In the compound represented by formula (1), compounds that can be Q 1 , Q 2 , Q 3 and Q 4 can be linked to sites that can be Z 1 , Z 2 , Z 3 and Z 4 It can be produced by appropriately combining known methods.
 以下では、Z、Z、Z、及びZ(以下、Z、Z、Z、及びZを単に「Z」という場合がある。)となり得る部位に、それぞれQ、Q、Q、及びQとなり得る化合物を連結する方法を具体的に説明する。 In the following , Q 1 _ _ _ _ , Q 2 , Q 3 and Q 4 are specifically described.
 例えば、Zが-CH-である結合部位の形成方法としては、下記式(30)に例示するように、アルデヒド構造を有する化合物と、アミノ基を有する化合物とをエタノ-ル等の溶媒中で混合させた後、水素化ホウ素ナトリウム等の還元剤を反応させる方法等が挙げられる。 For example, as a method for forming a binding site where Z x is —CH 2 —, as exemplified in the following formula (30), a compound having an aldehyde structure and a compound having an amino group are combined in a solvent such as ethanol. and a method of reacting with a reducing agent such as sodium borohydride after mixing inside.
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
 また、Zが-CH-である結合部位の他の形成方法としては、下記式(31)に例示するように、芳香族環にCHCl又はCHBr構造の置換基を有する化合物と、アミノ基を有する化合物とを、アセトニトリル、N,N-ジメチルホルムアミド(DMF)等の溶媒中で、炭酸ナトリウム、炭酸水素ナトリウム等の塩基存在下で反応させる方法等が挙げられる。 In addition, as another method for forming a bonding site where Z x is —CH 2 —, compounds having a substituent of CH 2 Cl or CH 2 Br structure on the aromatic ring, as exemplified in the following formula (31) and a compound having an amino group in a solvent such as acetonitrile or N,N-dimethylformamide (DMF) in the presence of a base such as sodium carbonate or sodium hydrogen carbonate.
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
 式(31)において、得られる化合物のピリジルカルボン酸エステル部位は、カルボン酸がエステル構造で保護されている。エステル部位は、一般的に知られている脱エステル化反応等を行い脱保護することによって、カルボン酸に誘導することができる。 In formula (31), the carboxylic acid is protected with an ester structure in the pyridylcarboxylic acid ester moiety of the resulting compound. An ester site can be derived into a carboxylic acid by deprotecting it by performing a generally known de-esterification reaction or the like.
 式(31)においては、例えば、フェノールのOH部位をベンジル化して保護しておき、後に脱ベンジル化を行い脱保護することによって、フェノールに誘導することができる。このように、Zの結合部位を形成する場合は、適宜保護基を導入しておいて、後に脱保護を行うことによって、本実施形態の化合物を製造することができる。 In formula (31), for example, phenol can be derived by protecting the OH site of phenol by benzylation and then debenzylating and deprotecting it. Thus, when forming the binding site of Zx , the compound of the present embodiment can be produced by appropriately introducing a protecting group and then deprotecting it.
 Zが-C(=O)-で表される結合部位の形成方法としては、下記式(32)に例示するように、カルボン酸構造を有する化合物と、アミノ基を有する化合物とを、公知の縮合化剤を用いてDMF等の溶媒中で混合させる方法等が挙げられる。 As a method for forming a binding site where Z x is -C(=O)-, a compound having a carboxylic acid structure and a compound having an amino group are known to be used, as exemplified in the following formula (32). and mixing in a solvent such as DMF using a condensing agent.
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 Zが-NHC(=O)(CH)-で表される結合部位の形成方法としては、下記式(33)に例示するように、カルボン酸構造を有する化合物と、アミノ基を有する化合物とを、塩化オキサリル等の公知のカルボン酸部位活性化剤を用いてトルエン、ジクロロメタン等の溶媒中で混合させる方法が挙げられる。 As a method for forming a binding site where Z x is -NHC(=O)(CH 2 )-, compounds having a carboxylic acid structure and compounds having an amino group are exemplified in the following formula (33). are mixed in a solvent such as toluene or dichloromethane using a known carboxylic acid site activator such as oxalyl chloride.
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
 Zが-C(=O)NH(CH)-で表される結合部位の形成方法としては、下記式(34)に例示するように、カルボン酸構造を有する化合物と、アミノ基を有する化合物とを、塩化オキサリル等の公知のカルボン酸部位活性化剤を用いてトルエン、ジクロロメタン等の溶媒中で混合させる方法が挙げられる。式(33)で得られる化合物と式(34)で得られる化合物との構造の違いは、-C(=O)NH(CH)-の-C(=O)-部位及び-NH-部位の位置の違いである。 As a method for forming a bonding site where Z x is represented by -C(=O)NH(CH 2 )-, as exemplified by the following formula (34), a compound having a carboxylic acid structure and a compound having an amino group compound in a solvent such as toluene or dichloromethane using a known carboxylic acid site activator such as oxalyl chloride. The structural difference between the compound obtained by the formula (33) and the compound obtained by the formula (34) is the -C(=O)- and -NH- sites of -C(=O)NH(CH 2 )- The difference is the position of
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
 上記式(30)~式(34)に例示する結合部位の形成方法を例とした公知の手法を組み合わせることによって、式(1)で表される化合物を得ることができる。それぞれの反応における出発物質の例であるカルボン酸構造を有する化合物、及び、アミノ基を有する化合物についても、公知のカルボン酸誘導体の合成法、及び、アミノ化合物誘導体の合成法を適宜組み合わせることで製造することができる。 The compound represented by the formula (1) can be obtained by combining known techniques such as the methods of forming the binding sites exemplified by the above formulas (30) to (34). A compound having a carboxylic acid structure and a compound having an amino group, which are examples of starting materials in each reaction, are also produced by appropriately combining methods for synthesizing known carboxylic acid derivatives and amino compound derivatives. can do.
 なお、「抗原と親和性のある構造体と架橋可能な部位」を有する置換基Bを有する式(1)で表される化合物についても、部分的に置換基Bの構造を有する化合物を合成する公知の手法を適宜組み合わせることで製造することができる。 As for the compound represented by the formula (1) having the substituent B having "the site capable of cross-linking with the structure having affinity for the antigen", a compound partially having the structure of the substituent B is synthesized. It can be produced by appropriately combining known methods.
 例えば、置換基BがNSC構造(式(A-1)で表される基)を有する化合物の製造方法としては、下記式(35)に例示するように、上記式(30)及び式(31)の原料であるジアミン化合物として、ニトロ基を有する化合物を用い、中間生成物を合成する。続いて、パラジウムと水素を用いる等の一般的な還元剤によって、エタノール等の溶媒中でニトロ部位をアミンに変換した後、クロロホルム等の溶媒中でチオホスゲンと混合することによって、式(A-1)で表される基を有する式(1)で表される化合物を製造することができる。 For example, as a method for producing a compound in which the substituent B has an NSC structure (group represented by formula (A-1)), as exemplified in the following formula (35), ), a compound having a nitro group is used as a diamine compound to synthesize an intermediate product. Subsequently, the nitro moiety is converted to an amine in a solvent such as ethanol by a common reducing agent such as using palladium and hydrogen, and then mixed with thiophosgene in a solvent such as chloroform to obtain formula (A-1 ) can be prepared.
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
[金属錯体]
 次に、本実施形態の化合物に由来する配位子を有する金属錯体について説明する。
[Metal complex]
Next, a metal complex having a ligand derived from the compound of this embodiment will be described.
 本実施形態の金属錯体は、上記化合物に金属元素が相互作用している。より具体的には、上記化合物中のヘテロ原子と金属元素とが相互作用しており、式(1)で表される化合物におけるヒドロキシキノリン環中の窒素原子及び/又は酸素原子と相互作用している。相互作用は、通常、配位結合である。 In the metal complex of this embodiment, the metal element interacts with the above compound. More specifically, the heteroatom and metal element in the compound interact with each other, and interact with the nitrogen atom and/or oxygen atom in the hydroxyquinoline ring in the compound represented by formula (1). there is Interactions are usually coordinate bonds.
 金属錯体は、式(1)で表される化合物のヘテロ原子(例えば、窒素含有複素環基中の窒素原子、1~3級アミン中の窒素原子、-OH(-Oを含む)中の酸素原子、-COH(-CO を含む)中の酸素原子等)のいずれかいずれかと配位結合しており、配位結合の数は、好ましくは4~12個、より好ましくは8~10個である。本実施形態の化合物は、金属元素を結合させたときに、三次元的に上記の相互作用を示すことが可能である。なお、配位結合の形成の有無は、普及している3D分子構造をシミュレーションできるソフトウェアを用いた構造最適化計算によって、金属元素とヘテロ原子との距離を特定することにより確認することができる。 The metal complex is a heteroatom of the compound represented by formula (1) (e.g., a nitrogen atom in a nitrogen-containing heterocyclic group, a nitrogen atom in a primary to tertiary amine, -OH (including -O - ) an oxygen atom, an oxygen atom in —CO 2 H (including —CO 2 ), and the number of coordinate bonds is preferably 4 to 12, more preferably 8 to 10. The compound of the present embodiment can three-dimensionally exhibit the above interaction when a metal element is bonded. The presence or absence of formation of coordinate bonds can be confirmed by specifying the distance between the metal element and the heteroatom by structural optimization calculation using software that can simulate the 3D molecular structure that is widely used.
 金属元素は、無電荷であっても荷電しているイオンであってもよく、好ましくは荷電しているイオンである。金属元素が荷電している場合、好ましくは1~4価であり、より好ましくは2~4価である。 The metal element may be an uncharged or charged ion, preferably a charged ion. When the metal element is charged, it preferably has a valence of 1 to 4, more preferably 2 to 4.
 金属元素は、典型金属元素、アルカリ金属元素、アルカリ土類金属元素、遷移金属元素、又は希土類元素であってよく、放射性元素であっても非放射性元素であってもよい。 The metal element may be a typical metal element, an alkali metal element, an alkaline earth metal element, a transition metal element, or a rare earth element, and may be a radioactive element or a non-radioactive element.
 非放射性元素である金属元素としては、例えば、Mg、Al、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Sr、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Te、Ba、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、La、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Biが挙げられる。非放射性元素である金属元素は、好ましくは、安定的に2~4価の金属カチオン状態として使用可能な金属元素である。 Examples of metal elements that are non-radioactive elements include Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, La, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, and Bi. The metal element, which is a non-radioactive element, is preferably a metal element that can be stably used as a divalent to tetravalent metal cation.
 放射性元素である金属元素としては、例えば、44Sc、47Sc、51Cr、59Fe、57Co、58Co、60Cu、61Cu、62Cu、64Cu、67Cu、66Ga、67Ga、68Ga、75Se、83Sr、86Y、90Y、89Zr、99Mo、94mTc、99mTc、97Ru、103Ru、105Rh、109Pd、111Ag、110In、111In、114mIn、132La、135La、153Sm、149Tb、60Tb、161Tb、166Ho、167Tm、169Yb、177Lu、186Re、188Re、199Au、201Tl、212Pb、212Bi、213Bi、233Ra、225Ac、227Th、241Am、244Cmが挙げられる。放射性元素である金属元素は、好ましくは、2~4価の金属カチオン状態として使用可能な金属元素である。 Examples of metal elements that are radioactive elements include 44 Sc, 47 Sc, 51 Cr, 59 Fe, 57 Co, 58 Co, 60 Cu, 61 Cu, 62 Cu, 64 Cu, 67 Cu, 66 Ga, 67 Ga, 68 Ga, 75 Se, 83 Sr, 86 Y, 90 Y, 89 Zr, 99 Mo, 94m Tc, 99m Tc, 97 Ru, 103 Ru, 105 Rh, 109 Pd, 111 Ag, 110 In, 111 In, 114m In , 132 La, 135 La, 153 Sm, 149 Tb, 60 Tb, 161 Tb, 166 Ho, 167 Tm, 169 Yb, 177 Lu, 186 Re, 188 Re, 199 Au, 201 Tl, 212 Pbi , 212 B Bi, 233 Ra, 225 Ac, 227 Th, 241 Am, 244 Cm. The metal element, which is a radioactive element, is preferably a metal element that can be used as a divalent to tetravalent metal cation.
 金属錯体1分子中に存在する金属元素の数は、1個であっても複数であってもよい。金属錯体1分子中に存在する金属元素の数は、好ましくは1個又は2個、より好ましくは1個である。 The number of metal elements present in one molecule of the metal complex may be one or more. The number of metal elements present in one molecule of the metal complex is preferably 1 or 2, more preferably 1.
 金属錯体1分子中に存在する金属元素の種類は、1種類であっても2種類以上であってもよい。金属錯体1分子中に存在する金属元素の種類は、好ましくは1種類である。 The number of metal elements present in one molecule of the metal complex may be one or two or more. The number of metal elements present in one molecule of the metal complex is preferably one.
 金属錯体は、金属錯体を電気的に中性にするための対イオンを含んでいてもよい。金属錯体が正に帯電している場合、これを中和する陰イオンが選ばれる。陰イオンとしては、例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、硫化物イオン、酸化物イオン、水酸化物イオン、水素化物イオン、リン酸イオン、酢酸イオン、硫酸イオン、硝酸イオン、炭酸水素イオン、トリフルオロ酢酸イオン、トリフルオロメタンスルホン酸イオン、テトラフルオロホウ酸イオン等が挙げられる。陰イオンは、好ましくは塩酸イオン又は酢酸イオンである。金属錯体が負に帯電している場合、これを中和する陽イオンが選ばれる。陽イオンとしては、例えば、プロトン、アンモニウムイオン、テトラアルキルアンモニウムイオン、テトラリールホスホニウムイオン等が挙げられる。対イオンは複数存在していてもよく、それらは同一であっても異なっていてもよい。 The metal complex may contain a counter ion for making the metal complex electrically neutral. If the metal complex is positively charged, an anion is chosen to neutralize it. Anions include, for example, fluoride ion, chloride ion, bromide ion, iodide ion, sulfide ion, oxide ion, hydroxide ion, hydride ion, phosphate ion, acetate ion, sulfate ion, nitric acid ions, bicarbonate ions, trifluoroacetate ions, trifluoromethanesulfonate ions, tetrafluoroborate ions, and the like. The anion is preferably hydrochloride or acetate. If the metal complex is negatively charged, a cation is chosen to neutralize it. Examples of cations include protons, ammonium ions, tetraalkylammonium ions, tetraarylphosphonium ions, and the like. A plurality of counterions may be present, and they may be the same or different.
 金属錯体は、金属錯体化の反応時又は精製時に使用した溶媒等の中性分子を含んでいてもよい。中性分子としては、例えば、水、メタノール、エタノール、n-プロパノール、N,N-ジメチルホルミアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、アセトン、クロロホルム、アセトニトリル、ベンゾニトリル、トリエチルアミン、ピリジン、ジエチルエーテル、酢酸、プロピオン酸、塩酸等が挙げられる。なお、中性分子は、複数存在していてもよく、それらは同一であっても異なっていてもよい。 The metal complex may contain neutral molecules such as the solvent used during the metal complexation reaction or purification. Examples of neutral molecules include water, methanol, ethanol, n-propanol, N,N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, acetone, chloroform, acetonitrile, benzonitrile, triethylamine, pyridine. , diethyl ether, acetic acid, propionic acid, hydrochloric acid, and the like. A plurality of neutral molecules may exist, and they may be the same or different.
 金属錯体は、置換基A又は置換基Bを1個有していることが好ましい。 The metal complex preferably has one substituent A or one substituent B.
 本実施形態の金属錯体の具体例としては、式(K-1)~式(K-46)で表される金属錯体が挙げられる。金属錯体は、好ましくは、式(K-1)~式(K-4)、式(K-6)~式(K-15)、式(K-26)~式(K-34)、式(K-40)、又は式(K-43)で表される金属錯体、より好ましくは、式(K-1)~式(K-3)、式(K-7)、式(K-10)、式(K-11)、式(K-27)、式(K-29)、式(K-30)、式(K-40)、又は式(K-43)で表される金属錯体である。 Specific examples of the metal complexes of the present embodiment include metal complexes represented by formulas (K-1) to (K-46). The metal complex preferably has formulas (K-1) to (K-4), formulas (K-6) to (K-15), formulas (K-26) to (K-34), formulas (K-40), or a metal complex represented by formula (K-43), more preferably formula (K-1) to formula (K-3), formula (K-7), formula (K-10) ), formula (K-11), formula (K-27), formula (K-29), formula (K-30), formula (K-40), or a metal complex represented by formula (K-43) is.
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
 式中、Mは金属元素を表す。Mとヘテロ原子との破線は、相互作用する可能性があることを表す。なお、Mとヘテロ原子との破線は、便宜的なものであり、必ずしも全ての破線において相互作用が存在することを意味するものではない。また、上記式で表される金属錯体は、上記のとおり、対イオン及び/又は中性分子を有していてもよく、上記の化合物に由来する配位子は置換基を有していてもよい。なお、Spは、「抗原と親和性のある構造体」を表す。 In the formula, M represents a metal element. Dashed lines between M and heteroatoms represent possible interactions. Note that dashed lines between M and heteroatoms are for convenience and do not necessarily mean that interactions exist on all dashed lines. Further, the metal complex represented by the above formula may have a counterion and/or a neutral molecule as described above, and the ligand derived from the above compound may have a substituent. good. In addition, Sp represents "a structure having an affinity for an antigen".
[金属錯体の製造方法]
 次に、本実施形態の金属錯体の製造方法について説明する。本実施形態の金属錯体の製造方法は、金属元素を付与する反応剤と式(1)で表される化合物とを混合する工程を備えている。
[Method for producing metal complex]
Next, a method for producing the metal complex of this embodiment will be described. The method for producing a metal complex according to the present embodiment includes a step of mixing a reactant that imparts a metal element and the compound represented by formula (1).
 本実施形態の金属錯体は、例えば、本実施形態の化合物を有機化学的に合成した後、得られた化合物を、金属元素を付与する反応剤(以下、「金属付与剤」という場合がある。)と混合し、反応させることにより得られる。反応させる金属付与剤の量は、目的とする金属錯体に応じて適宜調整することができる。 For example, the metal complex of the present embodiment is obtained by organically synthesizing the compound of the present embodiment, and then using the obtained compound as a reactant for imparting a metal element (hereinafter, sometimes referred to as a "metal imparting agent". ) and reacted. The amount of the metal-providing agent to be reacted can be appropriately adjusted according to the desired metal complex.
 金属付与剤としては、例えば、上記で例示した金属元素の酢酸塩、フッ化物、塩化物、臭化物、ヨウ化物、硫酸塩、炭酸塩、硝酸塩、酢酸塩、水酸化物、過塩素酸塩、トリフルオロ酢酸塩、トリフルオロメタンスルホン酸塩、テトラフルオロホウ酸塩、ヘキサフルオロリン酸塩、テトラフェニルホウ酸塩等が挙げられる。金属付与剤は、好ましくは金属元素の塩化物又は酢酸塩である。金属付与剤は、水和物であってもよい。 Examples of the metal imparting agent include acetates, fluorides, chlorides, bromides, iodides, sulfates, carbonates, nitrates, acetates, hydroxides, perchlorates, and tris of the metal elements exemplified above. fluoroacetate, trifluoromethanesulfonate, tetrafluoroborate, hexafluorophosphate, tetraphenylborate and the like. The metal donating agent is preferably a chloride or acetate of a metal element. The metal imparting agent may be a hydrate.
 化合物と金属付与剤との反応は、溶媒(すなわち、反応溶媒)中で行うことが好ましい。 The reaction between the compound and the metal imparting agent is preferably carried out in a solvent (that is, reaction solvent).
 反応溶媒としては、例えば、水、酢酸、プロピオン酸、塩酸、アンモニア水、メタノール、エタノール、n-プロパノール、N,N-ジメチルホルミアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、アセトン、クロロホルム、アセトニトリル、ベンゾニトリル、トリエチルアミン、ピリジン、ジエチルエーテル等が挙げられる。反応溶媒は、1種単独で用いてもよく、2種以上混合して用いてもよい。反応溶媒は、例えば、反応液のpHを調整するための酸、塩基、緩衝剤等の別成分を含有していてもよい。 Examples of reaction solvents include water, acetic acid, propionic acid, hydrochloric acid, aqueous ammonia, methanol, ethanol, n-propanol, N,N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, acetone, and chloroform. , acetonitrile, benzonitrile, triethylamine, pyridine, diethyl ether and the like. The reaction solvent may be used singly or in combination of two or more. The reaction solvent may contain other components such as acids, bases and buffers for adjusting the pH of the reaction solution.
 反応温度は、通常、-10~200℃であり、好ましくは0~100℃、より好ましくは10~40℃である。反応時間は、通常、1分~1週間であり、好ましくは1分~24時間、より好ましくは1分~6時間である。 The reaction temperature is usually -10 to 200°C, preferably 0 to 100°C, more preferably 10 to 40°C. The reaction time is generally 1 minute to 1 week, preferably 1 minute to 24 hours, more preferably 1 minute to 6 hours.
 これら反応溶媒、反応温度、反応時間等の条件は、化合物の種類、金属付与剤の種類等に合わせて適宜最適化できる。 Conditions such as the reaction solvent, reaction temperature, and reaction time can be appropriately optimized according to the type of compound, the type of metal imparting agent, and the like.
 金属錯体を単離精製する場合、反応後の精製方法としては、公知の再結晶法、再沈殿法、クロマトグラフィー法等から適宜最適な手段を選択して用いることができる。条件によっては、生成した金属錯体が析出する場合があり、析出した金属錯体をろ過操作により分取しても、金属錯体を単離精製することができる。 When isolating and purifying a metal complex, as a purification method after the reaction, an optimal means can be appropriately selected from known recrystallization methods, reprecipitation methods, chromatography methods, and the like. Depending on the conditions, the produced metal complex may precipitate, and the metal complex can be isolated and purified by separating the precipitated metal complex by filtration.
 なお、通常、化合物と金属付与剤との反応は定量反応であるため、特別な単離精製のための操作は行わなくても溶液状態で比較的純度の高い金属錯体を得ることができる。 In addition, since the reaction between a compound and a metal imparting agent is usually a quantitative reaction, a metal complex with a relatively high purity can be obtained in a solution state without special isolation and purification operations.
 置換基Aを有する金属錯体は、置換基Aを有する化合物に対して金属付与剤を反応させることにより得ることができ、置換基Bを有する化合物に対して金属付与剤を反応させ錯体とした後、上記式(20)~(22)に例示する、「抗原と親和性のある構造体」と、「架橋可能な部位」との結合反応を行うことによっても得ることができる。 A metal complex having a substituent A can be obtained by reacting a compound having a substituent A with a metal-donating agent, and a compound having a substituent B is reacted with a metal-donating agent to form a complex. , can also be obtained by performing a binding reaction between a “structure having affinity for an antigen” and a “crosslinkable site” exemplified in formulas (20) to (22) above.
[化合物及び/又は金属錯体の有用性]
 次に、本実施形態の化合物及び/又は金属錯体の有用性について説明する。
[Utility of compound and/or metal complex]
Next, usefulness of the compound and/or metal complex of the present embodiment will be described.
 本実施形態の化合物は、例えば、Co、Fe、Ni等の酸化還元活性のある金属元素と錯体化させることによって、過酸化水素分解等の反応の触媒、二酸化炭素還元の電極触媒などに利用することができる。 The compound of the present embodiment is used as a catalyst for reactions such as decomposition of hydrogen peroxide, an electrode catalyst for carbon dioxide reduction, etc., by forming a complex with a metal element having oxidation-reduction activity such as Co, Fe, Ni, etc. be able to.
 本実施形態のいくつかの形態の化合物は、金属保持力が高いため、非常に低濃度の金属と錯体を形成できる。そのため、例えば、放射性廃棄物中又は海水中から有価金属元素を捕集することができる。いくつかの形態の化合物は、金属元素と強く配位結合を形成するため、例えば、金属粒子の表面被覆材として使用することができる。本実施形態のいくつかの形態の化合物は、特定の金属元素を用いることで発光特性を付与することが可能であり、発光材料として使用することができる。さらに、本実施形態のいくつかの形態の化合物を配位子として用いた場合、放射性金属元素の保持力が高いため、放射性医薬に用いることができる。 Some forms of the compounds of the present embodiment have high metal retention and can form complexes with metals at very low concentrations. Therefore, for example, valuable metal elements can be collected from radioactive waste or seawater. Some forms of the compound form strong coordination bonds with metal elements, and therefore can be used, for example, as surface coating materials for metal particles. Some forms of the compound of the present embodiment can be given luminescent properties by using a specific metal element, and can be used as a luminescent material. Furthermore, when some forms of the compounds of this embodiment are used as ligands, they can be used in radiopharmaceuticals because of their high retention of radiometal elements.
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be specifically described below based on examples, but the present invention is not limited to these.
 化合物の構造は、核磁気共鳴(NMR)分光法、質量分析法(MS)等の公知の方法で、その構造を確認した。 The structure of the compound was confirmed by known methods such as nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS).
 以下において、ゲルろ過カラムクロマトグラフィーは、日本分析工業社製LC-9104に、カラムとして日本分析工業社製社製のJAIGEL-2H-40とJAIGEL-1H-40とを連結したものを用いた。
 NMR測定にはBRUKER社製AV NEO 300MHz NMRスペクトロメーターを用いた。
 紫外可視吸収スペクトル分析は島津製作所製UV-2400PCを用いた。
In the following gel filtration column chromatography, JAIGEL-2H-40 and JAIGEL-1H-40 manufactured by Nippon Analytical Industry Co., Ltd. were connected to LC-9104 manufactured by Nippon Analytical Industry Co., Ltd. as columns.
An AV NEO 300 MHz NMR spectrometer manufactured by BRUKER was used for the NMR measurement.
UV-visible absorption spectrum analysis was performed using Shimadzu UV-2400PC.
合成例1
<化合物(a-2)の合成>
Figure JPOXMLDOC01-appb-C000090
Synthesis example 1
<Synthesis of compound (a-2)>
Figure JPOXMLDOC01-appb-C000090
 化合物(a-2)を、非特許文献のThe Journal of the American Chemical Society,2018,Vol.140,p.15487-15500に記載の方法で合成した。 The compound (a-2) was prepared according to the non-patent document The Journal of the American Chemical Society, 2018, Vol. 140, p. 15487-15500.
実施例1
<化合物(化合物(1-2))の合成>
Figure JPOXMLDOC01-appb-C000091
Example 1
<Synthesis of compound (compound (1-2))>
Figure JPOXMLDOC01-appb-C000091
 反応容器内を窒素ガス雰囲気にした後、化合物(a-2)121mg(0.323mmol)、メチル-6-ブロモメチル-2-ピリジンカルボキシレート163mg(0.710mmol)、炭酸水素ナトリウム163mg(1.94mmol)、アセトニトリル16.1mLを加え、80℃に昇温して還流させながら12時間撹拌した。これを室温(本明細書において、室温は、25℃を意味する。)まで冷却し、アセトニトリルを濃縮して粗生成物とした。この粗生成物を、クロロホルムを展開相とするゲルろ過カラムクロマトグラフィーにより精製し、濃縮、減圧乾燥させて化合物(a-3)を得た。 After making the inside of the reaction vessel a nitrogen gas atmosphere, compound (a-2) 121 mg (0.323 mmol), methyl-6-bromomethyl-2-pyridinecarboxylate 163 mg (0.710 mmol), sodium hydrogen carbonate 163 mg (1.94 mmol). ) and 16.1 mL of acetonitrile were added, and the mixture was heated to 80° C. and stirred for 12 hours while refluxing. It was cooled to room temperature (in this specification, room temperature means 25° C.) and the acetonitrile was concentrated to give a crude product. This crude product was purified by gel filtration column chromatography using chloroform as the developing phase, concentrated and dried under reduced pressure to obtain compound (a-3).
 反応容器に化合物(a-3)を79.0mg(0.117mmol)と6規定塩酸0.78mLを加え、100℃に昇温して還流させながら4時間撹拌した。反応溶液を室温まで冷却した後、析出した黄色沈殿をろ過により分取し、減圧乾燥して化合物(1-2)を収率95%で得た。得られた化合物(1-2)の同定データを以下に示す。 79.0 mg (0.117 mmol) of compound (a-3) and 0.78 mL of 6N hydrochloric acid were added to a reaction vessel, and the mixture was heated to 100°C and stirred for 4 hours while refluxing. After the reaction solution was cooled to room temperature, the deposited yellow precipitate was separated by filtration and dried under reduced pressure to obtain compound (1-2) with a yield of 95%. Identification data of the obtained compound (1-2) are shown below.
 H-NMR(300MHz,DMSO-d):δ(ppm)=4.03(s,4H),4.68(s,4H),4.89(s,4H),7.17(dd,J=7.5and1.2Hz,2H),7.40(dd,J=8.4and1.2Hz,2H),7.50(d,J=7.5Hz,2H),7.58(d,J=8.4Hz,2H),7.79(dd,J=8.7and4.5Hz,2H),7.87(d,J=4.5Hz,2H),7.88(d,J=7.5Hz,2H),8.36(d,J=8.7Hz,2H). 1 H-NMR (300 MHz, DMSO-d 6 ): δ (ppm) = 4.03 (s, 4H), 4.68 (s, 4H), 4.89 (s, 4H), 7.17 (dd , J=7.5 and 1.2 Hz, 2H), 7.40 (dd, J=8.4 and 1.2 Hz, 2H), 7.50 (d, J=7.5 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 7.79 (dd, J = 8.7 and 4.5 Hz, 2H), 7.87 (d, J = 4.5 Hz, 2H), 7.88 (d, J = 7 .5 Hz, 2 H), 8.36 (d, J=8.7 Hz, 2 H).
合成例2
<化合物(a-6)の合成>
Figure JPOXMLDOC01-appb-C000092
Synthesis example 2
<Synthesis of compound (a-6)>
Figure JPOXMLDOC01-appb-C000092
 反応容器内を窒素ガス雰囲気にした後、8-(ベンジルオキシ)キノリン-2-カルブアルデヒド294mg(1.12mmol)、エチレンジアミン336mg(5.58mmol)、メタノール11.2mLを加え、64℃で還流させながら2時間撹拌した。この反応容器を室温まで徐冷してから水素化ホウ素ナトリウム63.0mg(1.68mmol)を加えた。さらに2時間撹拌してから飽和炭酸水素ナトリウム水溶液22.3mLを加えて反応を終了させ、クロロホルムで分液抽出した。クロロホルム層を濃縮、減圧乾燥させて化合物(a-5)の粗生成物を得た。 After setting the inside of the reaction vessel to a nitrogen gas atmosphere, 294 mg (1.12 mmol) of 8-(benzyloxy)quinoline-2-carbaldehyde, 336 mg (5.58 mmol) of ethylenediamine, and 11.2 mL of methanol were added and refluxed at 64°C. and stirred for 2 hours. After slowly cooling the reaction vessel to room temperature, 63.0 mg (1.68 mmol) of sodium borohydride was added. After further stirring for 2 hours, 22.3 mL of a saturated sodium bicarbonate aqueous solution was added to terminate the reaction, and the mixture was separated and extracted with chloroform. The chloroform layer was concentrated and dried under reduced pressure to obtain a crude product of compound (a-5).
 反応容器内を窒素ガス雰囲気にした後、化合物(a-5)156mg(0.506mmol)、メチル-6-ブロモメチル-2-ピリジンカルボキシレート388mg(1.69mmol)、炭酸カリウム280mg(2.02mmol)、アセトニトリル16.9mLを加え、80℃に昇温して還流させながら12時間撹拌した。これを室温まで冷却し、アセトニトリルを濃縮して粗生成物とした。この粗生成物を、クロロホルムを展開相とするゲルろ過カラムクロマトグラフィーにより精製し、濃縮、減圧乾燥させて化合物(a-6)を2工程収率58%で得た。 After making the inside of the reaction vessel a nitrogen gas atmosphere, compound (a-5) 156 mg (0.506 mmol), methyl-6-bromomethyl-2-pyridinecarboxylate 388 mg (1.69 mmol), potassium carbonate 280 mg (2.02 mmol). , and 16.9 mL of acetonitrile was added, and the mixture was heated to 80° C. and stirred for 12 hours while refluxing. It was cooled to room temperature and the acetonitrile was concentrated to give crude product. This crude product was purified by gel filtration column chromatography using chloroform as the developing phase, concentrated and dried under reduced pressure to obtain compound (a-6) with a two-step yield of 58%.
実施例2
<化合物(化合物(1-1))の合成>
Figure JPOXMLDOC01-appb-C000093
Example 2
<Synthesis of compound (compound (1-1))>
Figure JPOXMLDOC01-appb-C000093
 反応容器に化合物(a-6)90.9mg(0.120mmol)と6規定塩酸1.99mLを加え、100℃に昇温して還流させながら24時間撹拌した。反応溶液を濃縮、減圧乾燥して化合物(1-1)を収率61%で得た。得られた化合物(1-1)の同定データを以下に示す。 90.9 mg (0.120 mmol) of compound (a-6) and 1.99 mL of 6N hydrochloric acid were added to a reaction vessel, and the mixture was heated to 100°C and stirred for 24 hours while refluxing. The reaction solution was concentrated and dried under reduced pressure to obtain compound (1-1) with a yield of 61%. Identification data of the obtained compound (1-1) are shown below.
 H-NMR(300MHz,DO):δ(ppm)=3.53(t,J=5.7Hz,2H),3.82(t,J=5.7Hz,2H),4.25(s,2H)4.46(s,2H)4.67(s,4H),7.25(dd,J=7.8and0.9Hz,1H),7.49(dt,J=7.5and1.2Hz,3H),7.61(t,J=7.8Hz,1H),7.68(dd,J=7.8and0.9Hz,1H),7.74(d,J=8.4Hz,1H),7.77-7.82(m,3H),7.83-7.88(m,2H),7.96(t,J=7.8Hz,1H),8.60(d,J=8.4Hz,1H). 1 H-NMR (300 MHz, D 2 O): δ (ppm) = 3.53 (t, J = 5.7 Hz, 2H), 3.82 (t, J = 5.7 Hz, 2H), 4.25 (s, 2H) 4.46 (s, 2H) 4.67 (s, 4H), 7.25 (dd, J = 7.8 and 0.9 Hz, 1H), 7.49 (dt, J = 7.5 and 1 .2Hz, 3H), 7.61 (t, J = 7.8Hz, 1H), 7.68 (dd, J = 7.8 and 0.9Hz, 1H), 7.74 (d, J = 8.4Hz, 1H), 7.77-7.82 (m, 3H), 7.83-7.88 (m, 2H), 7.96 (t, J = 7.8Hz, 1H), 8.60 (d, J=8.4Hz, 1H).
合成例3
<化合物(化合物(a-7))の合成>
Figure JPOXMLDOC01-appb-C000094
Synthesis example 3
<Synthesis of compound (compound (a-7))>
Figure JPOXMLDOC01-appb-C000094
 化合物(a-3)77.0mg(0.115mmol)を酢酸1.00g(16.7mmol)に溶かした後、室温で亜硝酸ナトリウム10.3mg(0.149mmol)を加え、10分間撹拌してニトロソ体反応液を得た。別容器にて水24.0mLに、炭酸水素ナトリウム1.61g(19.2mmol)及び次亜硫酸ナトリウム598mg(3.43mmol)を加えて溶かし、これに上記ニトロソ体反応液を滴下した。発泡が収まった後、茶色沈殿をろ過により回収し、ろ過物を水50mLで洗浄して茶色粉体を得た。得られた茶色粉体をクロロホルム1.5mLに溶かし、ジエチルエーテル8.0gに加えて発生した茶色沈殿をろ過により除去し、ろ液から溶媒を留去して乾燥させた後、残った橙色固体をクロロホルム120mgに溶かし、ヘプタン3.0gとジエチルエーテル3.0gの混合液へ滴下して発生した黄色沈殿をろ過により回収、減圧乾燥して、黄色粉体の化合物(a-7)を収率9.1%で得た。得られた化合物(a-7)の同定データを以下に示す。 After dissolving 77.0 mg (0.115 mmol) of compound (a-3) in 1.00 g (16.7 mmol) of acetic acid, 10.3 mg (0.149 mmol) of sodium nitrite was added at room temperature and stirred for 10 minutes. A nitroso derivative reaction solution was obtained. In a separate container, 1.61 g (19.2 mmol) of sodium hydrogencarbonate and 598 mg (3.43 mmol) of sodium hyposulfite were added and dissolved in 24.0 mL of water, and the above nitroso derivative reaction solution was added dropwise thereto. After foaming subsided, a brown precipitate was collected by filtration, and the filtrate was washed with 50 mL of water to obtain a brown powder. The resulting brown powder was dissolved in 1.5 mL of chloroform, added to 8.0 g of diethyl ether, the brown precipitate generated was removed by filtration, and the filtrate was evaporated to remove the solvent and dried. was dissolved in 120 mg of chloroform and added dropwise to a mixture of 3.0 g of heptane and 3.0 g of diethyl ether. obtained at 9.1%. Identification data of the obtained compound (a-7) are shown below.
 H-NMR(300MHz,CDCl):δ(ppm)=3.82(brs,4H),3.93(brs,8H),3.97(s,6H),6.73(d,J=8.1Hz,1H),6.98(d,J=8.1Hz,1H),7.13-7.16(m,1H),7.24-7.27(m,1H),7.38-7.47(m,3H),7.63-7.66(m,4H),7.90-8.00(m,4H). 1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 3.82 (brs, 4H), 3.93 (brs, 8H), 3.97 (s, 6H), 6.73 (d, J = 8.1Hz, 1H), 6.98 (d, J = 8.1Hz, 1H), 7.13-7.16 (m, 1H), 7.24-7.27 (m, 1H), 7 .38-7.47 (m, 3H), 7.63-7.66 (m, 4H), 7.90-8.00 (m, 4H).
合成例4
<化合物(化合物(a-8))の合成>
Figure JPOXMLDOC01-appb-C000095
Synthesis example 4
<Synthesis of compound (compound (a-8))>
Figure JPOXMLDOC01-appb-C000095
 化合物(a-7)2.40mg(3.49μmol)に、室温でチオノ炭酸ジ-2-ピリジル0.81mg(3.49μmol)を溶かした重クロロホルム0.60mLを加え、2時間撹拌した。反応液を濃縮し、黄色固体の残渣をジエチルエーテルと水で洗浄し、残った残渣を減圧乾燥して、黄色粉体の化合物(a-8)を収率86%で得た。得られた化合物(a-8)の同定データを以下に示す。 To 2.40 mg (3.49 μmol) of compound (a-7) was added 0.60 mL of heavy chloroform in which 0.81 mg (3.49 μmol) of di-2-pyridyl thionocarbonate was dissolved at room temperature, and the mixture was stirred for 2 hours. The reaction mixture was concentrated, the yellow solid residue was washed with diethyl ether and water, and the remaining residue was dried under reduced pressure to obtain a yellow powder compound (a-8) with a yield of 86%. Identification data of the obtained compound (a-8) are shown below.
 H-NMR(300MHz,THF-d):δ(ppm)=2.88(s,4H),3.84-3.85(br,6H),3.88-3.90(br,4H),3.96-3.99(br,4H),7.00-7.06(m,2H),7.23-7.89(m,11H),8.03(d,J=8.7Hz,1H),8.22(d,J=8.7Hz,1H). 1 H-NMR (300 MHz, THF-d 8 ): δ (ppm) = 2.88 (s, 4H), 3.84-3.85 (br, 6H), 3.88-3.90 (br, 4H), 3.96-3.99 (br, 4H), 7.00-7.06 (m, 2H), 7.23-7.89 (m, 11H), 8.03 (d, J = 8.7 Hz, 1 H), 8.22 (d, J=8.7 Hz, 1 H).
参考例1
<化合物(化合物(1-40))の合成方法>
Figure JPOXMLDOC01-appb-C000096
Reference example 1
<Method for Synthesizing Compound (Compound (1-40))>
Figure JPOXMLDOC01-appb-C000096
 化合物(a-7)に対して、有機合成化学分野において一般的に知られているメチルエステル部位の脱保護反応を行い、メチルエステル部位がカルボン酸となった化合物(a-9)を合成することができる。メチルエステル部位の脱保護反応の具体的な方法の例としては、水及びテトラヒドロフランの混合溶媒中で水酸化ナトリウムを混合する方法、下記実施例3に記載の方法等が挙げられる。また、化合物(a-9)に対して、有機合成化学分野において、一般的に知られているアミン部位のイソチオシアネート化反応を行うことによって、化合物(1-40)を合成することができる。アミン部位のイソチオシアネート化反応の具体的な方法の例としては、ジクロロメタン溶媒中でチオホスゲンを混合する方法、上記合成例4に記載の方法等が挙げられる。 Compound (a-7) is subjected to a deprotection reaction of the methyl ester moiety generally known in the field of synthetic organic chemistry to synthesize compound (a-9) in which the methyl ester moiety is a carboxylic acid. be able to. Specific examples of the deprotection reaction of the methyl ester moiety include the method of mixing sodium hydroxide in a mixed solvent of water and tetrahydrofuran, the method described in Example 3 below, and the like. Further, compound (1-40) can be synthesized by subjecting compound (a-9) to an isothiocyanation reaction of an amine moiety, which is generally known in the field of synthetic organic chemistry. Specific examples of the isothiocyanate conversion reaction of the amine site include the method of mixing thiophosgene in a dichloromethane solvent, the method described in Synthesis Example 4 above, and the like.
合成例5
<化合物(化合物(a-11))の合成>
Figure JPOXMLDOC01-appb-C000097
Synthesis example 5
<Synthesis of compound (compound (a-11))>
Figure JPOXMLDOC01-appb-C000097
 化合物(a-8)1.70mg(2.33μmol)を重テトラヒドロフラン520mgに溶かし、室温で、化合物(a-10)(シグマアルドリッチ社からの購入試薬)1.22mg(1.86μmol)とトリエチルアミン0.21mg(2.10μmol)を混合した重水35.7mgを加えて4日間撹拌した。反応液から溶媒を留去し、水洗を行った。淡黄色残渣を重テトラヒドロフラン520mgに溶かし、室温で、化合物(a-10)1.00mg(1.52μmol)とトリエチルアミン0.17mg(1.68μmol)を混合した重水74.0mgを加えて2.5時間撹拌した。反応液から溶媒を留去し、水に懸濁してろ過を行った。ろ過物を減圧乾燥し、黄色固体の化合物(a-11)を収率67%で得た。得られた化合物(a-11)の生成は下記の通りマススペクトル分析により確認した。 1.70 mg (2.33 μmol) of compound (a-8) was dissolved in 520 mg of heavy tetrahydrofuran, and 1.22 mg (1.86 μmol) of compound (a-10) (reagent purchased from Sigma-Aldrich) and 0 triethylamine were dissolved at room temperature. 35.7 mg of heavy water mixed with 21 mg (2.10 μmol) was added and stirred for 4 days. The solvent was distilled off from the reaction solution, and the residue was washed with water. The pale-yellow residue was dissolved in 520 mg of heavy tetrahydrofuran, and 74.0 mg of heavy water obtained by mixing 1.00 mg (1.52 μmol) of compound (a-10) and 0.17 mg (1.68 μmol) of triethylamine was added at room temperature. Stirred for an hour. The solvent was distilled off from the reaction solution, and the residue was suspended in water and filtered. The filtrate was dried under reduced pressure to obtain compound (a-11) as a yellow solid with a yield of 67%. The formation of the resulting compound (a-11) was confirmed by mass spectrometry as described below.
 HRMS(ESI)m/z(M+H) calcd for C64841314S:1290.6,found:1290.7. HRMS (ESI) m/z ( M+H) + calcd for C64H84N13O14S : 1290.6 , found: 1290.7 .
実施例3
<化合物(化合物(1-43))の合成>
Figure JPOXMLDOC01-appb-C000098
Example 3
<Synthesis of compound (compound (1-43))>
Figure JPOXMLDOC01-appb-C000098
 化合物(a-11)2.00mg(1.55μmol)を重THF250mgと重水318mgの混合液に溶かし、氷冷して0℃とした。この黄色溶液に、水酸化リチウム1水和物を0.520mg(12.4μmol)含む重水54.8mgを添加した。添加直後に溶液は橙色となった。添加後5分の時点で反応液を室温に戻した。添加後40分撹拌した時点で、塩化水素12.1μmol相当を含む重水50.2mgを追加し、pH=7~8の薄橙色均一溶液を得た。溶媒を留去後、水で洗浄し、残った残渣を減圧乾燥して淡茶色固体の化合物(1-43)を収率54%で得た。 2.00 mg (1.55 μmol) of compound (a-11) was dissolved in a mixture of 250 mg of heavy THF and 318 mg of heavy water, and ice-cooled to 0°C. To this yellow solution was added 54.8 mg of heavy water containing 0.520 mg (12.4 μmol) of lithium hydroxide monohydrate. The solution turned orange immediately after the addition. Five minutes after the addition, the reaction was allowed to warm to room temperature. When the mixture was stirred for 40 minutes after the addition, 50.2 mg of heavy water containing 12.1 μmol of hydrogen chloride was added to obtain a pale orange homogeneous solution with a pH of 7-8. After distilling off the solvent, the residue was washed with water, and the remaining residue was dried under reduced pressure to obtain compound (1-43) as a pale brown solid with a yield of 54%.
 化合物(a-11)の反応前と反応後との溶液のH-NMR(300MHz,THF-d/DO)測定結果を比較したところ、化合物(a-11)の反応前において3.82ppmで観測されていたエステル部位のメチル基(-C(=O)OCH部位のメチル基)6Hに帰属されるピークが、反応後のH-NMRでは消滅した。以上の測定結果から、化合物(1-43)が得られたと判断した。 Comparison of the 1 H-NMR (300 MHz, THF-d 8 /D 2 O) measurement results of the solution before and after the reaction of compound (a-11) revealed that 3 The peak assigned to the methyl group of the ester site (methyl group of -C(=O)OCH 3 site) 6H observed at 0.82 ppm disappeared in 1 H-NMR after the reaction. From the above measurement results, it was determined that compound (1-43) was obtained.
実施例4
<化合物(1-2)のLa錯体合成>
 緩衝液として0.1mol/LのHEPES(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid))水溶液を調製した(以下、「緩衝液1」という。)。緩衝液1に化合物(1-2)を30μmol/Lの濃度で溶解し、溶液1Aを調製した。別の容器にて、緩衝液1にLaClを3mmol/Lの濃度で溶解し、溶液2を調製した。次いで、溶液1Aに、化合物(1-2)とLaClとが同モル量になるように、溶液2を添加することによって、溶液3Aを得た。溶液2の添加前後で紫外可視吸収スペクトル分析を行ったところ、LaClの添加に伴って264nmに最大吸収波長を示すピークが出現した。このことから、La錯体の形成が確認された。
Example 4
<La complex synthesis of compound (1-2)>
A 0.1 mol/L HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) aqueous solution was prepared as a buffer (hereinafter referred to as "buffer 1"). Compound (1-2) was dissolved in buffer solution 1 at a concentration of 30 μmol/L to prepare solution 1A. In a separate container, LaCl 3 was dissolved in buffer 1 at a concentration of 3 mmol/L to prepare solution 2. Then, Solution 2 was added to Solution 1A so that the compound (1-2) and LaCl 3 were in the same molar amount to obtain Solution 3A. Ultraviolet-visible absorption spectroscopy was carried out before and after the addition of solution 2, and a peak with a maximum absorption wavelength of 264 nm appeared with the addition of LaCl 3 . This confirmed the formation of a La complex.
実施例5
<化合物(1-2)のZr錯体合成>
 緩衝液として0.1mol/Lの酢酸ナトリウム水溶液とジメチルスルホキシドの1:1(体積比)混合溶液を調製した(以下、「緩衝液2」という。)。緩衝液2に化合物(1-2)を30μmol/Lの濃度で溶解し、溶液4Aを調製した。別の容器にて、0.1mol/Lの塩酸水溶液にZrClを3mmol/Lの濃度で溶解し、溶液5を調製した。次いで、溶液4Aに、化合物(1-2)とZrClとが同モル量になるように、溶液5を添加することによって、溶液6Aを得た。溶液5の添加前後で紫外可視吸収スペクトル分析を行ったところ、ZrClの添加に伴って274nmにショルダーピークが出現した。このことから、Zr錯体の形成が確認された。
Example 5
<Zr Complex Synthesis of Compound (1-2)>
As a buffer solution, a 1:1 (volume ratio) mixed solution of 0.1 mol/L sodium acetate aqueous solution and dimethylsulfoxide was prepared (hereinafter referred to as “buffer solution 2”). Compound (1-2) was dissolved in buffer solution 2 at a concentration of 30 μmol/L to prepare solution 4A. A solution 5 was prepared by dissolving ZrCl 4 at a concentration of 3 mmol/L in a 0.1 mol/L hydrochloric acid aqueous solution in another container. Next, solution 6A was obtained by adding solution 5 to solution 4A so that compound (1-2) and ZrCl 4 were in the same molar amount. Ultraviolet-visible absorption spectroscopy was performed before and after the addition of solution 5, and a shoulder peak at 274 nm appeared with the addition of ZrCl4 . This confirmed the formation of a Zr complex.
実施例6
<化合物(1-2)のSr錯体合成>
 緩衝液として0.01mol/LのHEPES水溶液を調製した(以下、「緩衝液3」という。)。緩衝液3に化合物(1-2)を50μmol/Lの濃度で溶解し、溶液7Aを調製した。別の容器にて、緩衝液3にSrClを3mmol/Lの濃度で溶解し、溶液8を調製した。次いで、溶液7Aに、化合物(1-2)とSrClとが同モル量になるように、溶液8を添加することによって、溶液9Aを得た。溶液8の添加前後で紫外可視吸収スペクトル分析を行ったところ、SrClの添加に伴って307nmに最大吸収波長を示すピークが出現した。このことから、Sr錯体の形成が確認された。
Example 6
<Sr Complex Synthesis of Compound (1-2)>
A 0.01 mol/L HEPES aqueous solution was prepared as a buffer (hereinafter referred to as "buffer 3"). Compound (1-2) was dissolved in buffer solution 3 at a concentration of 50 μmol/L to prepare solution 7A. In a separate container, SrCl 2 was dissolved in buffer 3 at a concentration of 3 mmol/L to prepare solution 8 . Next, solution 9A was obtained by adding solution 8 to solution 7A so that compound (1-2) and SrCl 2 were in the same molar amount. Ultraviolet-visible absorption spectrum analysis was performed before and after addition of solution 8, and a peak with a maximum absorption wavelength of 307 nm appeared with the addition of SrCl2 . This confirmed the formation of an Sr complex.
実施例7
<化合物(1-2)のIn錯体合成>
 溶液1Aを準備した。別の容器にて、0.1mol/Lの塩酸水溶液にInClを3mmol/Lの濃度で溶解し、溶液10を調製した。次いで、溶液1Aに、化合物(1-2)とInClとが同モル量になるように、溶液10を添加することによって、溶液11Aを得た。溶液10の添加前後で紫外可視吸収スペクトル分析を行ったところ、InClの添加に伴って264nmに最大吸収波長を示すピークが出現した。このことから、In錯体の形成が確認された。
Example 7
<In Complex Synthesis of Compound (1-2)>
Solution 1A was prepared. In a separate container, InCl 3 was dissolved in a 0.1 mol/L hydrochloric acid aqueous solution at a concentration of 3 mmol/L to prepare a solution 10 . Next, solution 10 was added to solution 1A so that the compound (1-2) and InCl 3 were in the same molar amount to obtain solution 11A. Ultraviolet-visible absorption spectroscopy was performed before and after the addition of solution 10, and a peak with a maximum absorption wavelength of 264 nm appeared with the addition of InCl 3 . This confirmed the formation of an In complex.
実施例8
<化合物(1-2)のGd錯体合成>
 溶液1Aを準備した。別の容器にて、緩衝液1にGdClを3mmol/Lの濃度で溶解し、溶液12を調製した。次いで、溶液1Aに、化合物(1-2)とGdClとが同モル量になるように、溶液12を添加することによって、溶液13Aを得た。溶液12の添加前後で紫外可視吸収スペクトル分析を行ったところ、GdClの添加に伴って265nmに最大吸収波長を示すピークが出現した。このことから、Gd錯体の形成が確認された。
Example 8
<Gd Complex Synthesis of Compound (1-2)>
Solution 1A was prepared. In a separate container, GdCl 3 was dissolved in buffer 1 at a concentration of 3 mmol/L to prepare solution 12 . Next, solution 12 was added to solution 1A so that the compound (1-2) and GdCl 3 were in the same molar amount to obtain solution 13A. Ultraviolet-visible absorption spectroscopy was performed before and after the addition of solution 12, and a peak with a maximum absorption wavelength of 265 nm appeared with the addition of GdCl3 . This confirmed the formation of a Gd complex.
参考例2
<化合物(1-2)のLa錯体の金属保持力>
 上記溶液3Aに、化合物(1-2)に対して10当量のエチレンジアミン四酢酸(以下、EDTAと記す)を添加し、撹拌してEDTAを溶解させた。EDTA添加前後で紫外可視吸収スペクトル分析を行った。最大吸収波長である264nmの吸収強度変化から、化合物(1-2)のLa錯体が90%残存していることを確認した。
Reference example 2
<Metal Retention Power of La Complex of Compound (1-2)>
To the above solution 3A, 10 equivalents of ethylenediaminetetraacetic acid (hereinafter referred to as EDTA) relative to compound (1-2) was added and stirred to dissolve EDTA. Ultraviolet-visible absorption spectroscopy was performed before and after the addition of EDTA. From the absorption intensity change at 264 nm, which is the maximum absorption wavelength, it was confirmed that 90% of the La complex of compound (1-2) remained.
参考例3
<化合物(1-2)のZr錯体の金属保持力>
 上記溶液6Aに、化合物(1-2)に対して10当量のEDTAを添加し、撹拌してEDTAを溶解させた。EDTA添加前後で紫外可視吸収スペクトル分析を行った。Zr錯体に起因するショルダーピークである274nmの吸収強度変化から、化合物(1-2)のZr錯体が90%残存していることを確認した。
Reference example 3
<Metal Retention Power of Zr Complex of Compound (1-2)>
To the above solution 6A was added 10 equivalents of EDTA relative to compound (1-2), and the mixture was stirred to dissolve EDTA. Ultraviolet-visible absorption spectroscopy was performed before and after the addition of EDTA. From the change in absorption intensity at 274 nm, which is a shoulder peak due to the Zr complex, it was confirmed that 90% of the Zr complex of compound (1-2) remained.
参考例4
<化合物(1-2)のSr錯体の金属保持力>
 上記溶液9Aに、化合物(1-2)に対して1当量のEDTAを添加し、撹拌してEDTAを溶解させた。EDTA添加前後で紫外可視吸収スペクトル分析を行った。最大吸収波長である307nmの吸収強度変化から、化合物(1-2)のSr錯体が93%残存していることを確認した。
Reference example 4
<Metal Retention Power of Sr Complex of Compound (1-2)>
1 equivalent of EDTA was added to the above solution 9A with respect to compound (1-2), and the mixture was stirred to dissolve the EDTA. Ultraviolet-visible absorption spectroscopy was performed before and after the addition of EDTA. From the change in absorption intensity at 307 nm, which is the maximum absorption wavelength, it was confirmed that 93% of the Sr complex of compound (1-2) remained.
参考例5
<化合物(1-2)のIn錯体の金属保持力>
 上記溶液11Aに、化合物(1-2)に対して10当量のEDTAを添加し、撹拌してEDTAを溶解させた。EDTA添加前後で紫外可視吸収スペクトル分析を行った。最大吸収波長である264nmの吸収強度変化から、化合物(1-2)のIn錯体が98%残存していることを確認した。
Reference example 5
<Metal Retention Power of In Complex of Compound (1-2)>
To the above solution 11A, 10 equivalents of EDTA was added to compound (1-2) and stirred to dissolve EDTA. Ultraviolet-visible absorption spectroscopy was performed before and after the addition of EDTA. From the change in absorption intensity at 264 nm, which is the maximum absorption wavelength, it was confirmed that 98% of the In complex of compound (1-2) remained.
参考例6
<化合物(1-2)のGd錯体の金属保持力>
 上記溶液13Aに、化合物(1-2)に対して10当量のEDTAを添加し、撹拌してEDTAを溶解させた。EDTA添加前後で紫外可視吸収スペクトル分析を行った。最大吸収波長である265nmの吸収強度変化から、化合物(1-2)のGd錯体が85%残存していることを確認した。
Reference example 6
<Metal Retention Power of Gd Complex of Compound (1-2)>
To the above solution 13A, 10 equivalents of EDTA was added to compound (1-2) and stirred to dissolve EDTA. Ultraviolet-visible absorption spectroscopy was performed before and after the addition of EDTA. From the absorption intensity change at 265 nm, which is the maximum absorption wavelength, it was confirmed that 85% of the Gd complex of compound (1-2) remained.
実施例9
<化合物(1-1)のLa錯体合成>
 上記実施例4で用いた化合物(1-2)の代わりに化合物(1-1)を用いて、溶液1Bを調製した。溶液1Aを溶液1Bに変更した以外は、実施例4と同様の操作を行い、溶液3Bを得た。溶液2の添加前後で紫外可視吸収スペクトル分析を行ったところ、LaClの添加に伴って267nmに最大吸収波長を示すピークが出現した。このことから、La錯体の形成が確認された。
Example 9
<La complex synthesis of compound (1-1)>
Solution 1B was prepared using compound (1-1) instead of compound (1-2) used in Example 4 above. Solution 3B was obtained in the same manner as in Example 4 except that Solution 1A was changed to Solution 1B. Ultraviolet-visible absorption spectroscopy was performed before and after the addition of solution 2, and a peak with a maximum absorption wavelength at 267 nm appeared with the addition of LaCl 3 . This confirmed the formation of a La complex.
実施例10
<化合物(1-1)のZr錯体合成>
 上記実施例5で用いた化合物(1-2)の代わりに化合物(1-1)を用いて、溶液4Bを調製した。溶液4Aを溶液4Bに変更した以外は、実施例5と同様の操作を行い、溶液6Bを得た。溶液5の添加前後で紫外可視吸収スペクトル分析を行ったところ、ZrClの添加に伴って265nmに最大吸収波長を示すピークが出現した。このことから、Zr錯体の形成が確認された。
Example 10
<Zr Complex Synthesis of Compound (1-1)>
Solution 4B was prepared using compound (1-1) instead of compound (1-2) used in Example 5 above. Solution 6B was obtained in the same manner as in Example 5 except that Solution 4A was changed to Solution 4B. Ultraviolet-visible absorption spectrum analysis was performed before and after addition of solution 5, and a peak with a maximum absorption wavelength of 265 nm appeared with the addition of ZrCl4 . This confirmed the formation of a Zr complex.
実施例11
<化合物(1-1)のSr錯体合成>
 上記実施例6で用いた化合物(1-2)の代わりに化合物(1-1)を用いて、溶液7Bを調製した。溶液7Aを溶液7Bに変更した以外は、実施例6と同様の操作を行い、溶液9Bを得た。溶液8の添加前後で紫外可視吸収スペクトル分析を行ったところ、SrClの添加に伴って282nmにショルダーピークが出現した。このことから、Sr錯体の形成が確認された。
Example 11
<Sr Complex Synthesis of Compound (1-1)>
Solution 7B was prepared using compound (1-1) instead of compound (1-2) used in Example 6 above. Solution 9B was obtained in the same manner as in Example 6, except that solution 7A was changed to solution 7B. Ultraviolet-visible absorption spectroscopy was performed before and after the addition of Solution 8, and a shoulder peak at 282 nm appeared with the addition of SrCl2 . This confirmed the formation of an Sr complex.
参考例7
<化合物(1-1)のLa錯体の金属保持力>
 上記溶液3Bに、化合物(1-1)に対して10当量のEDTAを添加した以外は、参考例2と同様の操作を行った。最大吸収波長である267nmの吸収強度変化から、化合物(1-1)のLa錯体が93%残存していることを確認した。
Reference example 7
<Metal Retention Power of La Complex of Compound (1-1)>
The same operation as in Reference Example 2 was performed, except that 10 equivalents of EDTA with respect to compound (1-1) was added to the above solution 3B. From the absorption intensity change at 267 nm, which is the maximum absorption wavelength, it was confirmed that 93% of the La complex of compound (1-1) remained.
参考例8
<化合物(1-1)のZr錯体の金属保持力>
 上記溶液6Bに、化合物(1-1)に対して10当量のEDTAを添加した以外は、参考例3と同様の操作を行った。最大吸収波長である265nmの吸収強度変化から、化合物(1-1)のZr錯体が80%残存していることを確認した。
Reference example 8
<Metal Retention Power of Zr Complex of Compound (1-1)>
The same operation as in Reference Example 3 was performed, except that 10 equivalents of EDTA relative to compound (1-1) was added to the above solution 6B. From the change in absorption intensity at 265 nm, which is the maximum absorption wavelength, it was confirmed that 80% of the Zr complex of compound (1-1) remained.
参考例9
<化合物(1-1)のSr錯体の金属保持力>
 上記溶液9Bに、化合物(1-1)に対して1当量のEDTAを添加した以外は、参考例4と同様の操作を行った。Sr錯体に起因するショルダーピークである282nmの吸収強度変化から、化合物(1-1)のSr錯体が96%残存していることを確認した。
Reference example 9
<Metal Retention Power of Sr Complex of Compound (1-1)>
The same operation as in Reference Example 4 was performed, except that 1 equivalent of EDTA relative to compound (1-1) was added to the above solution 9B. From the change in absorption intensity at 282 nm, which is a shoulder peak due to the Sr complex, it was confirmed that 96% of the Sr complex of compound (1-1) remained.
実施例12
<化合物(1-43)のLa錯体合成>
 上記実施例4で用いた化合物(1-2)の代わりに化合物(1-43)を用いて、溶液1Cを調製した。溶液1Aを溶液1Cに変更した以外は、実施例4と同様の操作を行い、溶液3Cを得た。溶液2の添加前後で紫外可視吸収スペクトル分析を行ったところ、LaClの添加に伴って271nmに最大吸収波長を示すピークが出現した。このことから、La錯体の形成が確認された。
Example 12
<La Complex Synthesis of Compound (1-43)>
Solution 1C was prepared using compound (1-43) in place of compound (1-2) used in Example 4 above. Solution 3C was obtained in the same manner as in Example 4 except that Solution 1A was changed to Solution 1C. Ultraviolet-visible absorption spectroscopy was performed before and after the addition of solution 2, and a peak with a maximum absorption wavelength at 271 nm appeared with the addition of LaCl3 . This confirmed the formation of a La complex.
参考例8
<化合物(1-43)のLa錯体の金属保持力>
 上記溶液3Cに、化合物(1-43)に対して10当量のEDTAを添加した以外は、参考例2と同様の操作を行った。最大吸収波長である271nmの吸収強度変化から、化合物(1-43)のLa錯体が82%残存していることを確認した。
Reference example 8
<Metal Retention Power of La Complex of Compound (1-43)>
The same procedure as in Reference Example 2 was performed, except that 10 equivalents of EDTA relative to compound (1-43) was added to solution 3C. From the change in absorption intensity at 271 nm, which is the maximum absorption wavelength, it was confirmed that 82% of the La complex of compound (1-43) remained.
比較例1
<化合物(a-2)のLa錯体の合成及びその金属保持力>
 緩衝液3に化合物(a-2)を50μmol/Lの濃度で溶解し、溶液1aを調製した。溶液1Aを溶液1aに変更した以外は、実施例4と同様の操作を行い、溶液3aを得た。溶液2の添加前後で紫外可視吸収スペクトル分析を行ったところ、LaClの添加に伴って360nmに最大吸収波長を示すピークが出現した。このことから、La錯体の形成が確認された。溶液3aに、化合物(a-2)に対して1当量のEDTAを添加し、添加前後で紫外可視吸収スペクトル分析を行った。最大吸収波長である360nmの吸収は完全に消失し、化合物(a-2)のLa錯体は残存していないことを確認した。
Comparative example 1
<Synthesis of La complex of compound (a-2) and its metal retention>
Compound (a-2) was dissolved in buffer solution 3 at a concentration of 50 μmol/L to prepare solution 1a. A solution 3a was obtained in the same manner as in Example 4 except that the solution 1A was changed to the solution 1a. Ultraviolet-visible absorption spectroscopy was performed before and after addition of Solution 2, and a peak with a maximum absorption wavelength of 360 nm appeared with the addition of LaCl 3 . This confirmed the formation of a La complex. To solution 3a, 1 equivalent of EDTA relative to compound (a-2) was added, and ultraviolet-visible absorption spectrum analysis was performed before and after the addition. Absorption at 360 nm, which is the maximum absorption wavelength, completely disappeared, confirming that the La complex of compound (a-2) did not remain.
比較例2
<化合物(a-2)のSr錯体の合成検討>
 化合物(1-2)の代わりに化合物(a-2)を用いて、溶液7aを調製した。溶液7Aを溶液7aに変更した以外は、実施例6と同様の操作を行った。溶液8の添加前後で紫外可視吸収スペクトル分析を行ったところ、紫外可視吸収スペクトルに変化は観測されず、Sr錯体の形成が確認されなかった。
Comparative example 2
<Study on Synthesis of Sr Complex of Compound (a-2)>
Solution 7a was prepared using compound (a-2) instead of compound (1-2). The same operation as in Example 6 was performed except that solution 7A was changed to solution 7a. Ultraviolet-visible absorption spectrum analysis was performed before and after addition of solution 8, and no change was observed in the ultraviolet-visible absorption spectrum, and formation of an Sr complex was not confirmed.
 以上の結果により、本発明の化合物は、4価の金属種であるZr4+、3価の金属種であるLa3+、及び2価の金属種であるSr2+を含む複数の金属種に対して錯体を形成することが可能であることが確認された。Zr4+、La3+、及びSr2+は、いずれも最外電子殻が閉殻構造をとる金属元素であり、このような閉殻構造の金属元素は一般的に錯体化形成しにくいことで知られている。本発明の化合物は、閉殻構造をとる金属元素と錯形成できることから、閉殻構造ではない他の多くの金属元素に対しても同等以上に錯形成が容易であると推測される。さらに、本発明の金属錯体は、錯体に対してEDTAを添加しても金属を保持したままであった。EDTAはカルボン酸部位を4個有する強いキレート剤であるため、本発明の金属錯体は、金属と相互作用する物質が共存していても安定的に金属を保持できることが判明した。 From the above results, the compound of the present invention is effective against a plurality of metal species including Zr 4+ which is a tetravalent metal species, La 3+ which is a trivalent metal species, and Sr 2+ which is a divalent metal species. It was confirmed that it is possible to form a complex. Zr 4+ , La 3+ , and Sr 2+ are all metal elements whose outermost electron shells have closed-shell structures, and metal elements with such closed-shell structures are generally known to be difficult to form complexes. . Since the compound of the present invention can form a complex with a metal element having a closed-shell structure, it is presumed that it can easily form a complex with many other metal elements that do not have a closed-shell structure. Furthermore, the metal complexes of the present invention retained the metal even when EDTA was added to the complex. Since EDTA is a strong chelating agent having four carboxylic acid sites, it was found that the metal complex of the present invention can stably retain a metal even when a substance that interacts with the metal coexists.

Claims (9)

  1.  下記式(1)で表される、化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、nは、0~5の整数を表す。
     Q、Q、Q、及びQは、それぞれ独立に、水素原子、群Aから選ばれる基、群Bから選ばれる基、式(C1)で表される基、又は置換基を表す。ただし、Q、Q、Q、及びQの少なくとも1個は、群Aから選ばれる基であり、Q、Q、Q、及びQの少なくとも1個は、群Bから選ばれる基であり、Q、Q、Q、及びQの少なくとも3個は、群Aから選ばれる基、群Bから選ばれる基、又は式(C1)で表される基である。
     nが2以上である場合、複数存在するQは、それぞれ同一であっても異なっていてもよく、Q及びQは、互いに結合して、又は、2価の連結基を介して環構造を形成していてもよい。
     群Aは、下記式(A1)、式(A2)、式(A3)、式(A4)、式(A5)、及び式(A6)で表される基からなる群である。
    Figure JPOXMLDOC01-appb-C000002
    (式(A1)、式(A2)、式(A3)、式(A4)、式(A5)、及び式(A6)中、R、R、R、R、R、及びRは、それぞれ独立に、水素原子、式(C1)で表される基、又は置換基を表す。なお、*は、結合手を表す。)
     群Bは、下記式(B1)及び式(B2)で表される基からなる群である。
    Figure JPOXMLDOC01-appb-C000003
    (式(B1)中、QB1は、式(C1)で表される基又は置換基を有していてもよい、2価の複素環基を表し、Xは、炭素原子又はP(OH)を表す。なお、*は、結合手を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(B2)中、QB2は、式(C1)で表される基又は置換基を有していてもよい、2価の窒素原子を含む単環式複素環基を表す。なお、*は、結合手を表す。)
    Figure JPOXMLDOC01-appb-C000005
    (式(C1)中、n2は、1~5の整数を表す。L10は、単結合又は置換基を有していてもよい2価の連結基を表す。R16は、水素原子又は置換基を表す。R16は任意のL10と互いに結合して環構造を形成していてもよい。X10は、-N(OH)C(=O)-を表し、-N(OH)C(=O)-は、隣接する基と任意の方向で結合していてもよい。n2が2以上である場合、複数存在するL10は、それぞれ同一であっても異なっていてもよい。L30は、単結合又は置換基を有していてもよい2価の連結基を表す。なお、*は、結合手を表す。)
     Z、Z、Z、及びZは、それぞれ独立に、単結合又は置換基を有していてもよい2価の連結基を表す。
     nが2以上である場合、複数存在するZは、それぞれ同一であっても異なっていてもよい。
     Rは、置換基を有していてもよい2価の連結基を表す。
     nが2以上である場合、複数存在するRは、それぞれ同一であっても異なっていてもよい。]
    A compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In formula (1), n represents an integer of 0 to 5.
    Q 1 , Q 2 , Q 3 , and Q 4 each independently represent a hydrogen atom, a group selected from Group A, a group selected from Group B, a group represented by formula (C1), or a substituent . provided that at least one of Q 1 , Q 2 , Q 3 and Q 4 is a group selected from group A, and at least one of Q 1 , Q 2 , Q 3 and Q 4 is from group B a group selected, and at least three of Q 1 , Q 2 , Q 3 , and Q 4 are a group selected from group A, a group selected from group B, or a group represented by formula (C1) .
    When n is 2 or more, multiple Q 4 may be the same or different, and Q 2 and Q 3 are bonded to each other or via a divalent linking group to form a ring It may form a structure.
    Group A is a group consisting of groups represented by the following formulas (A1), (A2), (A3), (A4), (A5), and (A6).
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (A1), Formula (A2), Formula (A3), Formula (A4), Formula (A5), and Formula (A6), R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 each independently represents a hydrogen atom, a group represented by formula (C1), or a substituent (* represents a bond).
    Group B is a group consisting of groups represented by the following formulas (B1) and (B2).
    Figure JPOXMLDOC01-appb-C000003
    (In formula (B1), Q B1 represents a group represented by formula (C1) or a divalent heterocyclic group which may have a substituent, and X 1 is a carbon atom or P(OH ), where * represents a bond.)
    Figure JPOXMLDOC01-appb-C000004
    (In formula (B2), Q B2 represents a divalent nitrogen atom-containing monocyclic heterocyclic group that may have a group or substituent represented by formula (C1). Note that * represents a bond.)
    Figure JPOXMLDOC01-appb-C000005
    (In formula (C1), n2 represents an integer of 1 to 5. L 10 represents a single bond or a divalent linking group which may have a substituent. R 16 represents a hydrogen atom or a substituted R 16 may be combined with any L 10 to form a ring structure, X 10 represents -N(OH)C(=O)-, and -N(OH)C (=O)- may be bonded to adjacent groups in any direction, and when n2 is 2 or more, L 10 present in plurality may be the same or different. 30 represents a single bond or a divalent linking group which may have a substituent (* represents a bond).
    Z 1 , Z 2 , Z 3 and Z 4 each independently represent a single bond or a divalent linking group which may have a substituent.
    When n is 2 or more, multiple Z 4 may be the same or different.
    R represents a divalent linking group which may have a substituent.
    When n is 2 or more, multiple R's may be the same or different. ]
  2.  前記式(1)で表される化合物が、下記式(1A)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006
    [式(1A)中、Q、Q、Q、Q、Z、Z、Z、Z、及びRは、前記と同義である。]
    2. The compound according to claim 1, wherein the compound represented by the formula (1) is a compound represented by the following formula (1A).
    Figure JPOXMLDOC01-appb-C000006
    [In Formula (1A), Q 1 , Q 2 , Q 3 , Q 4 , Z 1 , Z 2 , Z 3 , Z 4 and R are as defined above. ]
  3.  前記式(1)で表される化合物が、下記式(1B)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000007
    [式(1B)中、Q、Q、Q、Z、Z、及びZは、前記と同義である。]
    2. The compound according to claim 1, wherein the compound represented by the formula (1) is a compound represented by the following formula (1B).
    Figure JPOXMLDOC01-appb-C000007
    [In Formula (1B), Q 1 , Q 2 , Q 3 , Z 1 , Z 2 and Z 3 are as defined above. ]
  4.  前記式(1)で表される化合物が、下記式(1C)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000008
    [式(1C)中、Q、Q、Q、Q、Z、Z、Z、Z、及びRは、前記と同義である。
     n1は、2~5の整数を表す。]
    2. The compound according to claim 1, wherein the compound represented by the formula (1) is a compound represented by the following formula (1C).
    Figure JPOXMLDOC01-appb-C000008
    [In Formula (1C), Q 1 , Q 2 , Q 3 , Q 4 , Z 1 , Z 2 , Z 3 , Z 4 and R are as defined above.
    n1 represents an integer of 2-5. ]
  5.  前記式(1A)で表される化合物が、下記式(1Aa)で表される化合物又は下記式(1Ab)で表される化合物である、請求項2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000009
    [式(1Aa)中、Q、Q、Q、及びQは、前記と同義である。
     Rは、置換基を有していてもよいヒドロカルビレン基を表し、ヒドロカルビレン基中の-CH-の一部は、-O-に置換されていてもよい。
     Z1a、Z2a、Z3a、及びZ4aは、それぞれ独立に、単結合又は置換基を有していてもよいヒドロカルビレン基を表し、ヒドロカルビレン基中の-CH-の一部は、-O-、-C(=O)-、-NHC(=O)-、又は-C(=O)NH-に置換されていてもよい。]
    Figure JPOXMLDOC01-appb-C000010
    [式(1Ab)中、Q、Q、Q、及びQは、前記と同義である。
     Rは、複素環を有する2価の連結基であり、当該連結基は、置換基を有していてもよい。
     Z1b、Z2b、Z3b、及びZ4bは、それぞれ独立に、単結合又は置換基を有していてもよいヒドロカルビレン基を表し、ヒドロカルビレン基中の-CH-の一部は、-O-、-C(=O)-、-NHC(=O)-、又は-C(=O)NH-に置換されていてもよい。
     ただし、Z1b、Z2b、Z3b、及びZ4bの少なくとも1個は、ヒドロカルビレン基中の-CH-の一部が、-O-、-C(=O)-、-NHC(=O)-、又は-C(=O)NH-に置換されたヒドロカルビレン基である。当該ヒドロカルビレン基は、置換基を有していてもよい。]
    3. The compound according to claim 2, wherein the compound represented by the formula (1A) is a compound represented by the following formula (1Aa) or a compound represented by the following formula (1Ab).
    Figure JPOXMLDOC01-appb-C000009
    [In the formula (1Aa), Q 1 , Q 2 , Q 3 and Q 4 have the same meanings as described above.
    R a represents an optionally substituted hydrocarbylene group, and a portion of —CH 2 — in the hydrocarbylene group may be substituted with —O—.
    Z 1a , Z 2a , Z 3a and Z 4a each independently represents a single bond or an optionally substituted hydrocarbylene group, and is part of —CH 2 — in the hydrocarbylene group is optionally substituted with -O-, -C(=O)-, -NHC(=O)-, or -C(=O)NH-. ]
    Figure JPOXMLDOC01-appb-C000010
    [In Formula (1Ab), Q 1 , Q 2 , Q 3 and Q 4 are as defined above.
    R b is a divalent linking group having a heterocyclic ring, and the linking group may have a substituent.
    Z 1b , Z 2b , Z 3b and Z 4b each independently represents a single bond or an optionally substituted hydrocarbylene group, and is part of —CH 2 — in the hydrocarbylene group is optionally substituted with -O-, -C(=O)-, -NHC(=O)-, or -C(=O)NH-.
    with the proviso that at least one of Z 1b , Z 2b , Z 3b and Z 4b is such that a portion of —CH 2 — in the hydrocarbylene group is —O—, —C(=O)—, —NHC( =O)- or a hydrocarbylene group substituted with -C(=O)NH-. The hydrocarbylene group may have a substituent. ]
  6.  前記式(B1)で表される基が、下記式(10a)、式(10b)、式(10c)、又は式(11)で表される化合物から、環を構成する炭素原子に直接結合する水素原子1個を除いた基である、請求項1~5のいずれか一項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000011
    [式(10a)~(10c)中、R7a、R8a、R9a、R7b、R8b、R9b、R7c、R8c、及びR9cは、それぞれ独立に、水素原子、式(C1)で表される基、又は置換基を表す。
     ただし、R7a、R8a、及びR9aのうち、少なくとも1個は水素原子である。R7b、R8b、及びR9bのうち、少なくとも1個は水素原子である。R7c、R8c、及びR9cのうち、少なくとも1個は水素原子である。
     Xは、窒素原子又はCR10aを表す。
     R10aは、それぞれ独立に、水素原子、式(C1)で表される基、又は置換基を表す。]
    Figure JPOXMLDOC01-appb-C000012
    [式(11)中、R11は、水素原子、式(C1)で表される基、又は置換基を表す。
     X及びXは、それぞれ独立に、CR12、N、NR13、S、又はOを表す。R12及びR13は、それぞれ独立に、水素原子、式(C1)で表される基、又は置換基を表す。R12及びR13が複数存在する場合、それぞれ同一であっても異なっていてもよい。
     なお、式(11)において、実線と破線との二重線で表される結合は、それぞれ単結合及び二重結合からなる群から任意に選択される。]
    The group represented by the formula (B1) is directly bonded to a carbon atom constituting the ring from the compound represented by the following formula (10a), formula (10b), formula (10c), or formula (11). The compound according to any one of claims 1 to 5, which is a group with one hydrogen atom removed.
    Figure JPOXMLDOC01-appb-C000011
    [In formulas (10a) to (10c), R 7a , R 8a , R 9a , R 7b , R 8b , R 9b , R 7c , R 8c , and R 9c each independently represent a hydrogen atom, ) represents a group or a substituent.
    However, at least one of R 7a , R 8a and R 9a is a hydrogen atom. At least one of R 7b , R 8b and R 9b is a hydrogen atom. At least one of R 7c , R 8c and R 9c is a hydrogen atom.
    X2 represents a nitrogen atom or CR10a .
    Each R 10a independently represents a hydrogen atom, a group represented by formula (C1), or a substituent. ]
    Figure JPOXMLDOC01-appb-C000012
    [In formula (11), R 11 represents a hydrogen atom, a group represented by formula (C1), or a substituent.
    X 3 and X 4 each independently represent CR 12 , N, NR 13 , S or O; R 12 and R 13 each independently represent a hydrogen atom, a group represented by formula (C1), or a substituent. When multiple R 12 and R 13 are present, they may be the same or different.
    In formula (11), each bond indicated by a double line consisting of a solid line and a broken line is arbitrarily selected from the group consisting of a single bond and a double bond. ]
  7.  前記式(B2)で表される基が、下記式(12)で表される化合物から環を構成する炭素原子に直接結合する水素原子1個を除いた基である、請求項1~6のいずれか一項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000013
    [式(12)中、X、X、X、及びXは、それぞれ独立に、N、NR14、又はCR15を表す。R14及びR15は、それぞれ独立に、水素原子、式(C1)で表される基、又は置換基を表す。R14及びR15が複数存在する場合、それぞれ同一であっても異なっていてもよい。
     Xは、炭素原子又は窒素原子を表す。
     Q10は、O、OH、又は水素原子を表す。
     なお、式(12)において、実線と破線との二重線で表される結合は、それぞれ単結合及び二重結合からなる群から任意に選択される。]
    The group of claims 1 to 6, wherein the group represented by the formula (B2) is a group from the compound represented by the following formula (12) excluding one hydrogen atom directly bonded to the carbon atoms constituting the ring. A compound according to any one of clauses.
    Figure JPOXMLDOC01-appb-C000013
    [In Formula (12), X 5 , X 6 , X 7 and X 8 each independently represent N, NR 14 or CR 15 ; R 14 and R 15 each independently represent a hydrogen atom, a group represented by formula (C1), or a substituent. When multiple R 14 and R 15 are present, they may be the same or different.
    X9 represents a carbon atom or a nitrogen atom.
    Q10 represents O, OH, or a hydrogen atom.
    In formula (12), each bond indicated by a double line consisting of a solid line and a broken line is arbitrarily selected from the group consisting of a single bond and a double bond. ]
  8.  前記式(1)で表される化合物が、下記式(2)で表される化合物である、請求項1~7のいずれか一項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000014
    [式(2)中、R、R、R、R、Q、Q、Q、Z、Z、及びZは、前記と同義である。
     Z1Aは、-CH-又は-C(=O)-を表す。
     Rは、置換基を有していてもよい2価の炭素原子数2~8個である連結基を表す。
     -Z-Q、-Z-Q、及び-Z-Qは、下記式(15a)、式(15b)、式(15c)、式(15d)、及び式(15e)で表される基からなる群より選ばれる基を表す。ただし、-Z-Q、-Z-Q、及び-Z-Qの少なくとも1個は、下記式(15c)、式(15d)、又は式(15e)で表される基である。
    Figure JPOXMLDOC01-appb-C000015
    (式(15a)、(15b)、(15c)、(15d)、及び(15e)中、環を構成する炭素原子に直接結合する水素原子は、式(C1)で表される基又は置換基によって置換されていてもよい。なお、*は、結合手を表す。)]
    The compound according to any one of claims 1 to 7, wherein the compound represented by the formula (1) is a compound represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000014
    [In Formula (2), R 2 , R 3 , R 4 , R 5 , Q 2 , Q 3 , Q 4 , Z 2 , Z 3 and Z 4 are as defined above.
    Z 1A represents -CH 2 - or -C(=O)-.
    R A represents an optionally substituted divalent linking group having 2 to 8 carbon atoms.
    -Z 2 -Q 2 , -Z 3 -Q 3 and -Z 4 -Q 4 are represented by the following formulas (15a), (15b), (15c), (15d) and (15e) represents a group selected from the group consisting of the represented groups; provided that at least one of -Z 2 -Q 2 , -Z 3 -Q 3 , and -Z 4 -Q 4 is a group represented by the following formula (15c), formula (15d), or formula (15e) is.
    Figure JPOXMLDOC01-appb-C000015
    (In formulas (15a), (15b), (15c), (15d), and (15e), a hydrogen atom directly bonded to a carbon atom constituting the ring is a group or substituent represented by formula (C1) Note that * represents a bond.)]
  9.  金属元素と、請求項1~8のいずれか一項に記載の化合物に由来する配位子とを有する、金属錯体。 A metal complex having a metal element and a ligand derived from the compound according to any one of claims 1 to 8.
PCT/JP2022/006471 2021-02-19 2022-02-17 Compound and metal complex WO2022176961A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-025564 2021-02-19
JP2021025564A JP2024045789A (en) 2021-02-19 2021-02-19 Compounds and metal complexes

Publications (1)

Publication Number Publication Date
WO2022176961A1 true WO2022176961A1 (en) 2022-08-25

Family

ID=82930705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006471 WO2022176961A1 (en) 2021-02-19 2022-02-17 Compound and metal complex

Country Status (2)

Country Link
JP (1) JP2024045789A (en)
WO (1) WO2022176961A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113349A (en) * 1987-09-24 1989-05-02 Abbott Lab Polydental chelating agent composed of 8-hydroxyquinoline unit
US5294717A (en) * 1991-10-24 1994-03-15 Spyros Theodoropulos Bifunctional chelating agents, their chelates and process of preparation
JP2013515744A (en) * 2009-12-24 2013-05-09 ルミフォア,インコーポレイテッド Radiopharmaceutical complex
WO2015153772A2 (en) * 2014-04-01 2015-10-08 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Zirconium-89 oxine complex as a cell labeling agent for positron emission tomography
WO2019232294A1 (en) * 2018-06-01 2019-12-05 Cornell University Metal-chelating compositions and their use in methods of removing or inhibiting barium scale
JP2020515596A (en) * 2017-03-30 2020-05-28 コーネル ユニバーシティー Macrocyclic complexes of alpha-emitting radionuclides and their use in targeted radiotherapy of cancer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113349A (en) * 1987-09-24 1989-05-02 Abbott Lab Polydental chelating agent composed of 8-hydroxyquinoline unit
US5294717A (en) * 1991-10-24 1994-03-15 Spyros Theodoropulos Bifunctional chelating agents, their chelates and process of preparation
JP2013515744A (en) * 2009-12-24 2013-05-09 ルミフォア,インコーポレイテッド Radiopharmaceutical complex
WO2015153772A2 (en) * 2014-04-01 2015-10-08 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Zirconium-89 oxine complex as a cell labeling agent for positron emission tomography
JP2020515596A (en) * 2017-03-30 2020-05-28 コーネル ユニバーシティー Macrocyclic complexes of alpha-emitting radionuclides and their use in targeted radiotherapy of cancer
WO2019232294A1 (en) * 2018-06-01 2019-12-05 Cornell University Metal-chelating compositions and their use in methods of removing or inhibiting barium scale

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BRONSON R. TODD, BRADSHAW JERALD S., SAVAGE PAUL B., FUANGSWASDI SAOWARUX, LEE SANG CHUL, KRAKOWIAK KRZYSZTOF E., IZATT REED M.: "Bis-8-hydroxyquinoline-Armed Diazatrithia-15-crown-5 and Diazatrithia-16-crown-5 Ligands: Possible Fluorophoric Metal Ion Sensors", THE JOURNAL OF ORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, vol. 66, no. 14, 1 July 2001 (2001-07-01), pages 4752 - 4758, XP055960208, ISSN: 0022-3263, DOI: 10.1021/jo0017584 *
EDMONDS SCOTT, VOLPE ALESSIA, SHMEEDA HILARY, PARENTE-PEREIRA ANA C., RADIA RIYA, BAGUÑA-TORRES JULIA, SZANDA ISTVAN, SEVERIN GREG: "Exploiting the Metal-Chelating Properties of the Drug Cargo for In Vivo Positron Emission Tomography Imaging of Liposomal Nanomedicines", ACS NANO, AMERICAN CHEMICAL SOCIETY, US, vol. 10, no. 11, 22 November 2016 (2016-11-22), US , pages 10294 - 10307, XP055960212, ISSN: 1936-0851, DOI: 10.1021/acsnano.6b05935 *
ERIC W. PRICE, CHRIS ORVIG: "Matching chelators to radiometals for radiopharmaceuticals", CHEMICAL SOCIETY REVIEWS, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 43, no. 1, 7 January 2014 (2014-01-07), UK , pages 260 - 290, XP055397567, ISSN: 0306-0012, DOI: 10.1039/C3CS60304K *
KHARADI, G.J.: "Thermal and Microbicidal Study of Coordination Polymers: Transition Metal with 8HQMIT Ligand", SYNTHESIS AND REACTIVITY IN INORGANIC, METAL-ORGANIC NANO-METAL CHEMISTRY, TAYLOR & FRANCIS INC., US, vol. 44, no. 7, 4 March 2014 (2014-03-04), US , pages 1001 - 1010, XP009539115, ISSN: 1553-3174, DOI: 10.1080/15533174.2013.797455 *
SANDRA HESKAMP, RENé RAAVé, OTTO BOERMAN, MARK RIJPKEMA, VICTOR GONCALVES, FRANCK DENAT: "89 Zr-Immuno-Positron Emission Tomography in Oncology: State-of-the-Art 89 Zr Radiochemistry", BIOCONJUGATE CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 28, no. 9, 20 September 2017 (2017-09-20), US , pages 2211 - 2223, XP055734862, ISSN: 1043-1802, DOI: 10.1021/acs.bioconjchem.7b00325 *
WANG XIAOZHU, JARAQUEMADA-PELÁEZ MARÍA DE GUADALUPE, CAO YANG, PAN JINHE, LIN KUO-SHYAN, PATRICK BRIAN O., ORVIG CHRIS: "H 2 hox: Dual-Channel Oxine-Derived Acyclic Chelating Ligand for 68 Ga Radiopharmaceuticals", INORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, EASTON , US, vol. 58, no. 4, 18 February 2019 (2019-02-18), Easton , US , pages 2275 - 2285, XP055960209, ISSN: 0020-1669, DOI: 10.1021/acs.inorgchem.8b01208 *
ZHANG LI, ZHANG PENG, ZHAO LANG, WU JIANFENG, GUO MEI, TANG JINKUI: "Anions Influence the Relaxation Dynamics of Mono-μ 3 -OH-Capped Triangular Dysprosium Aggregates", INORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, EASTON , US, vol. 54, no. 11, 1 June 2015 (2015-06-01), Easton , US , pages 5571 - 5578, XP055960216, ISSN: 0020-1669, DOI: 10.1021/acs.inorgchem.5b00702 *

Also Published As

Publication number Publication date
JP2024045789A (en) 2024-04-03

Similar Documents

Publication Publication Date Title
Norrild et al. Design, synthesis and structure of new potential electrochemically active boronic acid-based glucose sensors
Wang et al. Central-metal exchange, improved catalytic activity, photoluminescence properties of a new family of d 10 coordination polymers based on the 5, 5′-(1 H-2, 3, 5-triazole-1, 4-diyl) diisophthalic acid ligand
Tu et al. Bridged bis (amidinate) lanthanide aryloxides: syntheses, structures, and catalytic activity for addition of amines to carbodiimides
Das et al. Synthesis and structures of two cobalt (III) complexes with N4 donor ligands: Isolation of a unique bis-hemiaminal ether ligand as the metal complex
JP6157492B2 (en) Method for preparing sterol derivatives
Mendoza-Espinosa et al. Copper (II) complexes supported by click generated mixed NN, NO, and NS 1, 2, 3-triazole based ligands and their catalytic activity in azide–alkyne cycloaddition
Recsei et al. Synthesis of modified binol-phosphoramidites
Singh et al. Derivatization of 3-aminopropylsilatrane to introduce azomethine linkage in the axial chain: Synthesis, characterization and structural studies
Alves et al. Coordination capabilities of pyrazolyl containing ligands towards the fac-[Re (CO) 3]+ moiety
Abel et al. Arylation of adamantanamines: VII. Copper (I)-catalyzed N-heteroarylation of adamantane-containing amines with halopyridines
US6664408B2 (en) Process for preparing organically-substituted polyoxometalates
Goswami et al. A bi-nuclear Cu (II)-complex for selective epoxidation of alkenes: Crystal structure, thermal, photoluminescence and cyclic voltammetry
WO2022176961A1 (en) Compound and metal complex
Sheremetev et al. Chromophoric macrocycles from the oxidation of bis (aminofurazanylic) ethers of 1, 2‐diols
Gushchin et al. Binuclear cluster complexes of molybdenum containing 2, 2′-bipyridine and 1, 10-phenanthroline: Synthesis and structure
Camus et al. Copper (II) nitrito complexes with 2, 2′-dipyridylamine. Crystal structures of the [(acetato)(2, 2′-dipyridylamine)(nitrito-O, O′) copper (II)] and [(2, 2′-dipyridylamine)(nitrito-O, O′)(μ-nitrito-O) copper (II)] 2· 2 (acetonitrile)
WO2011009934A1 (en) Tris(1,2,3-triazol-4-yl)methane organometallic compounds as catalysts and processes using them.
JP2023022647A (en) Compound, and metal complex
JP2024060110A (en) Radioactive metal complex and method for producing same
Finger et al. New lithium borates with bistetrazolato 2− and pyrazinediolato 2− ligands–potentially interesting lithium electrolyte additives
US9902743B2 (en) Copper complex for capturing carbon dioxide
EP2053049B1 (en) Preparation of 2&#39; , 6&#39; -di-pyrazolyl-pyridine containing a reactive group R in 4&#39; position
Wittwer et al. Scrutinizing the redox chemistry of group 10 complexes supported by a redox-active bis-phenolate mesoionic carbene
CN116144034B (en) Metal triangle supermolecule with near infrared fluorescence, preparation method and application thereof
CN114643080B (en) Olefin photodimerization catalyst and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP