WO2022176696A1 - Fine particle removal device and fine particle removal method - Google Patents
Fine particle removal device and fine particle removal method Download PDFInfo
- Publication number
- WO2022176696A1 WO2022176696A1 PCT/JP2022/004830 JP2022004830W WO2022176696A1 WO 2022176696 A1 WO2022176696 A1 WO 2022176696A1 JP 2022004830 W JP2022004830 W JP 2022004830W WO 2022176696 A1 WO2022176696 A1 WO 2022176696A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane
- size exclusion
- fine particle
- particle removal
- chargeable
- Prior art date
Links
- 239000010419 fine particle Substances 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims description 29
- 239000012528 membrane Substances 0.000 claims abstract description 177
- 239000007788 liquid Substances 0.000 claims abstract description 32
- 238000001914 filtration Methods 0.000 claims abstract description 15
- 230000007717 exclusion Effects 0.000 claims description 62
- 239000002245 particle Substances 0.000 claims description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 30
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 14
- 239000012498 ultrapure water Substances 0.000 claims description 14
- 230000001186 cumulative effect Effects 0.000 abstract description 4
- 125000000524 functional group Chemical group 0.000 description 26
- 229920000642 polymer Polymers 0.000 description 16
- 239000011859 microparticle Substances 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000000178 monomer Substances 0.000 description 9
- 125000002091 cationic group Chemical group 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- -1 polyethylene Polymers 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 125000003277 amino group Chemical group 0.000 description 6
- 125000000129 anionic group Chemical group 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 description 5
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 125000000542 sulfonic acid group Chemical group 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 125000002843 carboxylic acid group Chemical group 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical class OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 3
- 125000003262 carboxylic acid ester group Chemical group [H]C([H])([*:2])OC(=O)C([H])([H])[*:1] 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N phosphonic acid group Chemical group P(O)(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 3
- 125000002270 phosphoric acid ester group Chemical group 0.000 description 3
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 3
- 229920001470 polyketone Polymers 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 3
- 150000003141 primary amines Chemical class 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 125000002130 sulfonic acid ester group Chemical group 0.000 description 3
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000001471 micro-filtration Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920005597 polymer membrane Polymers 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 229920000734 polysilsesquioxane polymer Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- KCXFHTAICRTXLI-UHFFFAOYSA-N propane-1-sulfonic acid Chemical compound CCCS(O)(=O)=O KCXFHTAICRTXLI-UHFFFAOYSA-N 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 2
- 229940006186 sodium polystyrene sulfonate Drugs 0.000 description 2
- NPAWNPCNZAPTKA-UHFFFAOYSA-M sodium;propane-1-sulfonate Chemical compound [Na+].CCCS([O-])(=O)=O NPAWNPCNZAPTKA-UHFFFAOYSA-M 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 150000003512 tertiary amines Chemical group 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- TVXNKQRAZONMHJ-UHFFFAOYSA-M (4-ethenylphenyl)methyl-trimethylazanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC1=CC=C(C=C)C=C1 TVXNKQRAZONMHJ-UHFFFAOYSA-M 0.000 description 1
- OOFAEFCMEHZNGP-UHFFFAOYSA-N 1-n',1-n'-dimethylpropane-1,1-diamine Chemical compound CCC(N)N(C)C OOFAEFCMEHZNGP-UHFFFAOYSA-N 0.000 description 1
- OMMKTOYORLTRPN-UHFFFAOYSA-N 1-n'-methylpropane-1,1-diamine Chemical compound CCC(N)NC OMMKTOYORLTRPN-UHFFFAOYSA-N 0.000 description 1
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- VSSGDAWBDKMCMI-UHFFFAOYSA-N 2-methyl-2-(2-methylprop-2-enoylamino)propane-1-sulfonic acid Chemical compound CC(=C)C(=O)NC(C)(C)CS(O)(=O)=O VSSGDAWBDKMCMI-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- WWJCRUKUIQRCGP-UHFFFAOYSA-N 3-(dimethylamino)propyl 2-methylprop-2-enoate Chemical compound CN(C)CCCOC(=O)C(C)=C WWJCRUKUIQRCGP-UHFFFAOYSA-N 0.000 description 1
- UFQHFMGRRVQFNA-UHFFFAOYSA-N 3-(dimethylamino)propyl prop-2-enoate Chemical compound CN(C)CCCOC(=O)C=C UFQHFMGRRVQFNA-UHFFFAOYSA-N 0.000 description 1
- IWTYTFSSTWXZFU-UHFFFAOYSA-N 3-chloroprop-1-enylbenzene Chemical compound ClCC=CC1=CC=CC=C1 IWTYTFSSTWXZFU-UHFFFAOYSA-N 0.000 description 1
- VSDGBVUPMVTQKN-UHFFFAOYSA-N 3-methyl-3-(2-methylprop-2-enoylamino)butanoic acid Chemical compound CC(=C)C(=O)NC(C)(C)CC(O)=O VSDGBVUPMVTQKN-UHFFFAOYSA-N 0.000 description 1
- XOQMWEWYWXJOAN-UHFFFAOYSA-N 3-methyl-3-(prop-2-enoylamino)butanoic acid Chemical compound OC(=O)CC(C)(C)NC(=O)C=C XOQMWEWYWXJOAN-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- GDFCSMCGLZFNFY-UHFFFAOYSA-N Dimethylaminopropyl Methacrylamide Chemical compound CN(C)CCCNC(=O)C(C)=C GDFCSMCGLZFNFY-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229920006319 cationized starch Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical compound FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- SSJXIUAHEKJCMH-UHFFFAOYSA-N cyclohexane-1,2-diamine Chemical compound NC1CCCCC1N SSJXIUAHEKJCMH-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- ODWNMLQSQNQLNP-UHFFFAOYSA-N n',n'-bis(methylamino)propane-1,3-diamine Chemical compound CNN(NC)CCCN ODWNMLQSQNQLNP-UHFFFAOYSA-N 0.000 description 1
- DILRJUIACXKSQE-UHFFFAOYSA-N n',n'-dimethylethane-1,2-diamine Chemical compound CN(C)CCN DILRJUIACXKSQE-UHFFFAOYSA-N 0.000 description 1
- KFIGICHILYTCJF-UHFFFAOYSA-N n'-methylethane-1,2-diamine Chemical compound CNCCN KFIGICHILYTCJF-UHFFFAOYSA-N 0.000 description 1
- DAKZISABEDGGSV-UHFFFAOYSA-N n-(2-aminoethyl)acetamide Chemical compound CC(=O)NCCN DAKZISABEDGGSV-UHFFFAOYSA-N 0.000 description 1
- ADTJPOBHAXXXFS-UHFFFAOYSA-N n-[3-(dimethylamino)propyl]prop-2-enamide Chemical compound CN(C)CCCNC(=O)C=C ADTJPOBHAXXXFS-UHFFFAOYSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical group O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920000371 poly(diallyldimethylammonium chloride) polymer Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920001652 poly(etherketoneketone) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical group Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 1
- UZNHKBFIBYXPDV-UHFFFAOYSA-N trimethyl-[3-(2-methylprop-2-enoylamino)propyl]azanium;chloride Chemical compound [Cl-].CC(=C)C(=O)NCCC[N+](C)(C)C UZNHKBFIBYXPDV-UHFFFAOYSA-N 0.000 description 1
- OEIXGLMQZVLOQX-UHFFFAOYSA-N trimethyl-[3-(prop-2-enoylamino)propyl]azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CCCNC(=O)C=C OEIXGLMQZVLOQX-UHFFFAOYSA-N 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/58—Multistep processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
Definitions
- the present invention relates to a particle removing apparatus and a particle removing method for removing particles in a liquid in a pure water or ultrapure water manufacturing process, or in an electronic component manufacturing process, a semiconductor cleaning process, or the like.
- the present invention also relates to a pure water or ultrapure water production apparatus equipped with this fine particle removal device.
- the present invention is highly effective in removing fine particles with a particle diameter of 50 nm or less in liquids in systems such as subsystems and water supply lines before the point of use in ultrapure water production and supply systems, and electronic component manufacturing processes and semiconductor cleaning processes. It is useful as a technique for removing
- Size exclusion membranes such as microfiltration membranes and ultrafiltration membranes are common as filters for manufacturing semiconductors and electronic parts and filters used in the manufacturing process of semiconductors and electronic parts.
- a positively charged membrane specifically a polyketone membrane, has one selected from the group consisting of primary amino groups, secondary amino groups, tertiary amino groups and quaternary ammonium salts.
- a membrane having one or more cationic functional groups Patent Document 1.
- the negatively charged membrane one or more selected from the group consisting of a sulfonic acid group, a sulfonic acid ester group, a carboxylic acid group, a carboxylic acid ester group, a phosphoric acid group, a phosphoric acid ester group, and a hydroxyl group is added to the polyketone membrane.
- a sulfonic acid group a sulfonic acid ester group, a carboxylic acid group, a carboxylic acid ester group, a phosphoric acid group, a phosphoric acid ester group, and a hydroxyl group
- Patent Document 2 There is also a method of using a membrane having an anionic functional group of (Patent Document 2).
- the smaller the particles to be removed the smaller the pore size, which reduces the amount of treated water. Further, when the cumulative load amount of fine particles increases, the removal rate of fine particles decreases.
- the present invention provides a particle removing apparatus and a particle removing method capable of improving such drawbacks of the size exclusion membrane, maintaining the particle removing performance of the size exclusion membrane for a long period of time, and prolonging the service life of the particle removing apparatus and the particle removing method.
- An object of the present invention is to provide a pure water or ultra-pure water production device including the device.
- the inventors of the present invention have found that by providing an electrically charged filtration membrane in series prior to the size exclusion membrane, the accumulated fine particle load of the size exclusion membrane is reduced, the fine particle removal performance is maintained for a long period of time, and the service life of the size exclusion membrane is extended. I found a way to extend it.
- the gist of the present invention is as follows.
- a microparticle removal device for removing microparticles in a liquid which has a chargeable filtration membrane and a size exclusion membrane disposed downstream of the chargeable filtration membrane, and the liquid is the chargeable , and a fine particle removal device characterized in that water is passed through the size exclusion membrane in this order.
- a particle removing device characterized in that it is arranged in series and has the size exclusion membrane in the rear stage of the membrane group arranged in series.
- a pure water or ultrapure water production device comprising the fine particle removal device according to any one of [1] to [3].
- the present invention it is possible to reduce the cumulative particle load of the size exclusion membrane that removes particles, maintain the particle removal performance over a long period of time, and extend the service life of the membrane.
- fine particles are stably and efficiently removed over a long period of time from water systems in general, particularly pure water and ultrapure water production processes, or from various liquids used in electronic component production and semiconductor cleaning processes to achieve high purification. can be achieved.
- FIG. 1 is a system diagram showing an embodiment of the particulate removing apparatus of the present invention.
- FIG. 2 is a schematic diagram illustrating a fine particle trapping mechanism by a membrane having a cationic functional group or an anionic functional group.
- FIG. 3 is a system diagram showing a test apparatus used in Reference Examples and Comparative Examples.
- FIG. 4 is a system diagram showing the test equipment used in the examples.
- a film having a cationic functional group does not easily adsorb positively charged fine particles, but easily adsorbs negatively charged fine particles. Can be efficiently captured and removed.
- the film having an anionic functional group does not easily adsorb negatively charged fine particles, but easily adsorbs positively charged fine particles. Fine particles can be efficiently captured and removed.
- fine particles in a liquid are often positively or negatively charged. Therefore, by providing a chargeable membrane in front of the size exclusion membrane, these fine particles can be efficiently removed in advance. can reduce the particle loading of the size exclusion membrane and extend its service life.
- the integrated fine particle load For the size exclusion membrane, it is desirable to keep the integrated fine particle load to 10% or less when the entire membrane area is 100%, in order to maintain high fine particle removal performance. Therefore, in the present invention, by providing a chargeable membrane in front of the size exclusion membrane, the ratio of the integrated fine particle load (the ratio of the total amount of fine particles loaded to the membrane area covering the membrane area) to 10% of the entire membrane area. % or less.
- a chargeable membrane module 1 and a size exclusion membrane module 2 are provided in series.
- An additional chargeable membrane module or a size exclusion membrane module may be arranged upstream of the chargeable membrane module 1 .
- Another membrane module may be arranged between the chargeable membrane module 1 and the size exclusion membrane module 2 .
- the liquid to be treated introduced through the pipe 10 is introduced into the chargeable membrane module 1 and subjected to particle removal treatment, and then introduced through the pipe 11 into the size exclusion membrane module 2. After the fine particle removal treatment, the treated water is discharged out of the system through the pipe 12 .
- the liquid to be treated from which fine particles are removed is not particularly limited.
- the liquid to be treated include pure water, alcohol such as isopropyl alcohol, aqueous inorganic acid such as sulfuric acid aqueous solution and hydrochloric acid aqueous solution, alkaline aqueous solution such as sodium hydroxide aqueous solution and ammonia aqueous solution, thinner, carbonated water, hydrogen peroxide solution, Hydrogen fluoride solution and the like can be mentioned.
- the present invention can be applied to the treatment of liquids in all pH ranges of pH 1-14.
- Liquids in the neutral pH range include ultrapure water.
- Carbonated water, hydrochloric acid aqueous solution, hydrogen fluoride solution and the like are typical examples of acidic liquids having a pH of 7 or less.
- Representative examples of alkaline liquids having a pH of 7 or higher include ammonia water and aqueous sodium hydroxide solution.
- the liquid to be treated is not limited to this.
- the present invention is effective in removing ultrafine particles with a particle size of 50 nm or less, for example, about 3 to 30 nm, in these liquids.
- inorganic oxide fine particles such as silica, alumina, titania, and iron oxide, fluorine-based fine particles, organic resin fine particles, and the like can be mentioned.
- the fine particle concentration in the liquid to be treated is also not particularly limited, but is usually 100 ⁇ g/L or less, or 1 to 10 10 particles/mL.
- the pH of the liquid to be treated is preferably in a region where the zeta potential of fine particles in the liquid is not reversed (a region where the isoelectric point is not crossed).
- the pH is preferably always 8 or less or always 8 or more. It is preferable that the silica fine particles that are negatively charged or positively charged at pH 3 are always in the range of pH 3 or less or pH 3 or more.
- ⁇ Chargeable membrane> The chargeable membrane preferably used in the present invention will be described below.
- a positively charged film is referred to as a "positively charged film” and a negatively charged film is referred to as a "negatively charged film”.
- the form of the chargeable membrane may be hollow fiber membrane, flat membrane, fiber, or the like. Hollow fiber membranes are generally used as terminal membrane modules for removing fine particles in ultrapure water production processes. A pleated flat membrane can also be used for the filter attached to the process washer.
- the porous membrane that serves as the base material of the chargeable membrane may be a polymer membrane, an inorganic membrane, or a metal membrane.
- Polymer membranes include polyolefins such as polyethylene and polypropylene, polyethers such as polyethylene oxide and polypropylene oxide, fluororesins such as PTFE, CTFE, PFA, and polyvinylidene fluoride (PVDF), halogenated polyolefins such as polyvinyl chloride, and nylon.
- polyolefins such as polyethylene and polypropylene
- polyethers such as polyethylene oxide and polypropylene oxide
- fluororesins such as PTFE, CTFE, PFA, and polyvinylidene fluoride (PVDF)
- PVDF polyvinylidene fluoride
- halogenated polyolefins such as polyvinyl chloride, and nylon.
- polyamides such as nylon-66, urea resins, phenolic resins, melamine resins, polystyrene, cellulose, cellulose acetate, cellulose nitrate, polyetherketones, polyetherketoneketones, polyetheretherketones, polysulfones, polyarylsulfones, poly Materials such as ethersulfone, polyimide, polyetherimide, polyamideimide, polybenzimidazole, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polyacrylonitrile, polyethernitrile, polyvinyl alcohol, and copolymers thereof can be used. However, it is not limited to this.
- the polymer film is not limited to one type of material, and various materials can be selected as required. Other polymers such as polyolefins and polyethers may be mixed with the chargeable or conductive polymer.
- Materials such as alumina, zirconia, and titania can be used as inorganic films, but are not limited to these.
- Materials such as stainless steel can be used as the metal film, but it is not limited to this.
- the charged functional groups to be introduced into the porous membrane include sulfonic acid groups, phosphoric acid groups, phosphonic acid groups, phosphinic acid groups, carboxylic acid groups, hydroxyl groups, phenol groups, quaternary ammonium groups, primary to tertiary amine groups, Examples include pyridine group and amide group, but are not limited to these. These functional groups may be not only H-type and OH-type but also salt-type such as Na.
- a method for introducing the chargeable functional group is not particularly limited, and various methods can be adopted.
- sulfonic acid groups can be introduced by adding an appropriate amount of paraformaldehyde to a sulfuric acid solution and heat-crosslinking.
- a functional group can be introduced by reacting a hydroxyl group with a trialkoxysilane group, a trichlorosilane group, an epoxy group, or the like.
- a reactive monomer such as styrene
- the target functional group may be introduced through the process.
- reactive monomers include, but are not limited to, glycidyl methacrylate, styrene, chloromethylstyrene, acrolein, vinylpyridine, acrylonitrile, and the like.
- the cationization method for introducing the positively charged functional group is not particularly limited, but examples include a coating method and a combination of these methods.
- a dehydration condensation reaction etc. are mentioned as the method by a chemical reaction. Plasma treatment, corona treatment and the like can also be used.
- the coating method includes a method of impregnating with an aqueous solution containing a polymer.
- chemical modification methods for imparting cationic amino groups to polyketone membranes include chemical reaction with primary amines.
- primary amines ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, 1,2-cyclohexanediamine, N-methylethylenediamine, N-methylpropanediamine, N,N-dimethylethylenediamine, N,N-dimethylpropanediamine, N Polyfunctionalized amines such as diamines, triamines, tetraamines, polyethylenimines, including primary amines such as acetylethylenediamine, isophoronediamine, N,N-dimethylamino-1,3-propanediamine, etc., have many activities. It is preferable because points can be given.
- Substitution methods include, for example, irradiation with electron beams, ⁇ -rays, plasma, etc. After generating radicals by graft polymerization, a monomer having a reactive side chain such as glycidyl methacrylate is polymerized, and a reactive monomer having a functional group that expresses the desired function is added.
- reactive monomers examples include derivatives of acrylic acid, methacrylic acid, vinylsulfonic acid including primary amines, secondary amines, tertiary amines, quaternary ammonium salts, allylamine, p-vinylbenzyltrimethylammonium chloride, and the like. be done.
- More specific examples include 3-(dimethylamino)propyl acrylate, 3-(dimethylamino)propyl methacrylate, N-[3-(dimethylamino)propyl]acrylamide, N-[3-(dimethylamino) propyl]methacrylamide, (3-acrylamidopropyl)trimethylammonium chloride, trimethyl[3-(methacryloylamino)propyl]ammonium chloride and the like.
- polymers having a positive zeta potential examples include PSQ (polysilsesquioxane), polyethyleneimine, polydiallyldimethylammonium chloride, amino group-containing cationic poly(meth) Acrylic acid ester, amino group-containing cationic poly(meth)acrylamide, polyamineamide-epichlorohydrin, polyallylamine, polydicyandiamide, chitosan, cationized chitosan, amino group-containing cationized starch, amino group-containing cationized cellulose, amino Group-containing cationized polyvinyl alcohols and acid salts of the above polymers are included. Further, the polymer or the acid salt of the polymer may be a copolymer with another polymer.
- the anionization method for introducing the negatively chargeable functional group is not particularly limited, but the following methods may be mentioned.
- negatively chargeable functional groups include a sulfonic acid group, a sulfonic acid ester group, a carboxylic acid group, a carboxylic acid ester group, a phosphoric acid group, a phosphoric acid ester group, One or more functional groups selected from the group consisting of hydroxyl groups are included. Examples of forms having these functional groups include chemical bonding and physical bonding states.
- a chemical bond may be such as a covalent bond.
- a chemically bonding substance may be a polymer or a monomer having a small molecular weight.
- the physically bonded state includes states such as adsorption and adhesion in which intermolecular forces such as hydrogen bonding, van der Waals force, electrostatic attraction, and hydrophobic interaction are bonded without chemical bonding. be done.
- Polymers for imparting negative zeta potential include polystyrenesulfonic acid, sodium polystyrenesulfonate, polyvinylsulfonic acid, sodium polyvinylsulfonate, poly(meth)acrylic acid, sodium poly(meth)acrylate, anionic polyacrylamide , poly(2-acrylamido-2-methyl group propanesulfonic acid), poly(2-acrylamido-2-methyl group sodium propanesulfonate), carboxymethylcellulose, anionized polyvinyl alcohol, polyvinyl phosphonic acid and the like.
- the porous membrane may be attached or coated with a polymer having a negative zeta potential.
- polymers having a negative zeta potential include polystyrenesulfonic acid, polystyrenesulfonic acid, sodium polystyrenesulfonate, polyvinylsulfonic acid, sodium polyvinylsulfonate, poly(meth)acrylic acid, and sodium poly(meth)acrylate.
- anionic polyacrylamide poly(2-acrylamide-2-methyl group propanesulfonic acid), poly(2-acrylamido-2-methyl group sodium propanesulfonate), carboxymethylcellulose, anionized polyvinyl alcohol, polyvinyl phosphonic acid, etc. mentioned.
- the polymer or the acid salt of the polymer may be a copolymer with another polymer.
- examples of the replacement method include electron beams, gamma rays, A method of generating radicals by irradiation with plasma or the like and then adding a reactive monomer having a functional group that exhibits a desired function can be mentioned.
- reactive monomers include sulfonic acid groups, sulfonic acid ester groups, carboxylic acid groups, carboxylic acid ester groups, phosphoric acid groups, phosphoric acid ester groups, acrylic acid containing hydroxyl groups, methacrylic acid, vinyl sulfonic acid derivatives, and the like. are mentioned.
- More specific examples include acrylic acid, methacrylic acid, vinylsulfonic acid, styrenesulfonic acid and sodium salts thereof, 2-acrylamido-2-methylpropanesulfonic acid, 2-methacrylamido-2-methylpropanesulfonic acid , 2-acrylamido-2-methylpropanecarboxylic acid, 2-methacrylamido-2-methylpropanecarboxylic acid, and the like.
- the fine particle removal apparatus of the present invention comprises a chargeable membrane module 1 followed by a size exclusion membrane module 2 in series.
- the size exclusion membrane is a porous membrane that does not intentionally introduce the anionic or cationic functional group described above, or a porous membrane that is not intentionally modified to have chargeability, and has a predetermined particle size.
- the object is to eliminate the fine particles described above. If the membrane material itself has an electric charge, it is included in the size exclusion membrane.
- porous membrane that constitutes the size exclusion membrane the same one as in the chargeable membrane described above can be adopted.
- the particle removal apparatus of the present invention is suitably used as a subsystem for producing ultrapure water from a primary pure water system in an ultrapure water production/supply system, particularly as a particle removal apparatus at the final stage of the subsystem.
- the particulate removal apparatus of the present invention may be provided in a water supply line that delivers ultrapure water from a subsystem to a point of use.
- the particle remover of the present invention can also be used as the final particle remover at the point of use.
- the test apparatus shown in FIG. 3 prepares fine particle-containing test water by injecting fine particles from a fine particle tank 12 into a flow path 11 of a liquid to be treated by a pump P, and removes fine particles in the test water with a fine particle removal membrane module 13. It is a thing.
- the microparticle monitors 14 and 15 provided at the inlet and outlet of the microparticle removal membrane module 13 measure the concentration of microparticles in the inlet water and the outlet water, and the microparticle removal rate is calculated from these results.
- the test apparatus shown in FIG. 4 prepares fine particle-containing test water by injecting fine particles from a fine particle tank 12 into a flow path 11 of a liquid to be treated by a pump P, and using fine particle removal membrane modules 13A and 13B arranged in series. Fine particles in the test water are removed sequentially.
- the microparticle concentration is measured by microparticle monitors 14 and 15 provided at the inlet of the microparticle removal membrane module 13A and the outlet of the microparticle removal membrane module 13B, respectively, and the microparticle removal rate is calculated from these results.
- the water flow condition (water flow rate) of the liquid to be treated was set to 10 m/d.
- the following microparticle monitors were used. Particle monitor: UDI20 (manufactured by PMS)
- Positively charged membrane "Qyu speed D” manufactured by Asahi Kasei Medical DEA-diol (diethylamine- Diol) introduced film
- Negatively charged film manufactured by Pall: "ABDIUPW3EH1”
- Size exclusion membrane "APDG1HSVH3EH1K13C Ulti-pleated G2SPDR” manufactured by Nippon Pall Co., Ltd., exclusion diameter 10 nm
- silica fine particles manufactured by Sigma-Aldrich, average particle size 22 nm
- Alumina fine particles manufactured by Sigma-Aldrich, average particle size 22 nm
- the particle removal performance of the positively charged membrane and the negatively charged membrane is equal to or higher than the particle removal performance of the size exclusion membrane. can efficiently remove fine particles in the liquid.
- Example 1 Using the test apparatus shown in FIG. 4, a positively charged membrane module was arranged as the particle removal membrane module 13A, and a size exclusion membrane module was arranged as the particle removal membrane module 13B, and 1 ⁇ 10 7 particles/mL of silica particles were added to the ultrapure water. A fine particle removal test was performed on the injected test water, and changes over time in the fine particle removal rate were investigated. Table 2 shows the results.
- Example 2 A fine particle removal test was conducted in the same manner as in Example 1, except that a negatively charged membrane module was used instead of the positively charged membrane module, and alumina fine particles were injected instead of the silica fine particles. Table 2 shows the results.
- Example 1 Using the test apparatus shown in FIG. 3, a fine particle removal test was performed on the same test water as in Example 1, except that only the size exclusion membrane module was used. Table 2 shows the results.
- Example 2 Using the test apparatus of FIG. 3, a fine particle removal test was conducted on the same test water as in Example 2, except that only the size exclusion membrane module was used. Table 2 shows the results.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Provided is a fine particle removal device that removes fine particles in a liquid, the fine particle removal device comprising a filtration membrane having an electric charge property, and a size-excluding membrane arranged at a latter stage of the filtration membrane having an electric charge property. The liquid is passed through the filtration membrane having an electric charge property and the size-excluding membrane, in this order. A cumulative fine particle load amount of the size-excluding membrane is reduced, the fine particle removal performance is maintained over a long period of time, and the service life of the fine particle removal device can be extended.
Description
本発明は、純水や超純水製造プロセス、あるいは電子部品製造および半導体洗浄プロセス等における液中の微粒子を除去する微粒子除去装置及び微粒子除去方法に関する。本発明はまた、この微粒子除去装置を備える純水又は超純水製造装置に関する。
本発明は、特に、超純水製造・供給システムにおけるユースポイント前のサブシステムや給水系路、および電子部品製造プロセスおよび半導体洗浄プロセス等のシステムにおいて、液体中の粒子径50nm以下の微粒子を高度に除去する技術として有用である。 TECHNICAL FIELD The present invention relates to a particle removing apparatus and a particle removing method for removing particles in a liquid in a pure water or ultrapure water manufacturing process, or in an electronic component manufacturing process, a semiconductor cleaning process, or the like. The present invention also relates to a pure water or ultrapure water production apparatus equipped with this fine particle removal device.
In particular, the present invention is highly effective in removing fine particles with a particle diameter of 50 nm or less in liquids in systems such as subsystems and water supply lines before the point of use in ultrapure water production and supply systems, and electronic component manufacturing processes and semiconductor cleaning processes. It is useful as a technique for removing
本発明は、特に、超純水製造・供給システムにおけるユースポイント前のサブシステムや給水系路、および電子部品製造プロセスおよび半導体洗浄プロセス等のシステムにおいて、液体中の粒子径50nm以下の微粒子を高度に除去する技術として有用である。 TECHNICAL FIELD The present invention relates to a particle removing apparatus and a particle removing method for removing particles in a liquid in a pure water or ultrapure water manufacturing process, or in an electronic component manufacturing process, a semiconductor cleaning process, or the like. The present invention also relates to a pure water or ultrapure water production apparatus equipped with this fine particle removal device.
In particular, the present invention is highly effective in removing fine particles with a particle diameter of 50 nm or less in liquids in systems such as subsystems and water supply lines before the point of use in ultrapure water production and supply systems, and electronic component manufacturing processes and semiconductor cleaning processes. It is useful as a technique for removing
半導体・電子部品製造用の濾過フィルタや、半導体・電子部品製造プロセスで使用される濾過フィルタとしては、精密濾過膜や限外濾過膜等のサイズ排除膜が一般的である。
Size exclusion membranes such as microfiltration membranes and ultrafiltration membranes are common as filters for manufacturing semiconductors and electronic parts and filters used in the manufacturing process of semiconductors and electronic parts.
サイズ排除膜とは別に、正荷電を帯びた膜、具体的には、ポリケトン膜に、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム塩からなる群から選ばれる1つ以上のカチオン性の官能基を有する膜を使用する方法がある(特許文献1)。
Separately from the size exclusion membrane, a positively charged membrane, specifically a polyketone membrane, has one selected from the group consisting of primary amino groups, secondary amino groups, tertiary amino groups and quaternary ammonium salts. There is a method using a membrane having one or more cationic functional groups (Patent Document 1).
負荷電を帯びた膜として、ポリケトン膜に、スルホン酸基、スルホン酸エステル基、カルボン酸基、カルボン酸エステル基、リン酸基、リン酸エステル基、及び水酸基からなる群から選ばれる1つ以上のアニオン性の官能基を有する膜を使用する方法もある(特許文献2)。
As the negatively charged membrane, one or more selected from the group consisting of a sulfonic acid group, a sulfonic acid ester group, a carboxylic acid group, a carboxylic acid ester group, a phosphoric acid group, a phosphoric acid ester group, and a hydroxyl group is added to the polyketone membrane. There is also a method of using a membrane having an anionic functional group of (Patent Document 2).
一般的に精密濾過膜や限外濾過膜といったサイズ排除膜は、除去対象の微粒子が小さくなるほど孔径を小さくする必要があり、処理水量が低下してしまう。また、微粒子の積算負荷量が多くなると、微粒子の除去率が低下する。
In general, for size exclusion membranes such as microfiltration membranes and ultrafiltration membranes, the smaller the particles to be removed, the smaller the pore size, which reduces the amount of treated water. Further, when the cumulative load amount of fine particles increases, the removal rate of fine particles decreases.
本発明は、このようなサイズ排除膜における欠点を改善し、サイズ排除膜の微粒子除去性能を長期に亘り維持してその使用寿命を延ばすことができる微粒子除去装置及び微粒子除去方法と、この微粒子除去装置を備える純水又は超純水製造装置を提供することを目的とする。
The present invention provides a particle removing apparatus and a particle removing method capable of improving such drawbacks of the size exclusion membrane, maintaining the particle removing performance of the size exclusion membrane for a long period of time, and prolonging the service life of the particle removing apparatus and the particle removing method. An object of the present invention is to provide a pure water or ultra-pure water production device including the device.
本発明者は、サイズ排除膜の前段に荷電性を有する濾過膜を直列に設けることで、サイズ排除膜の微粒子積算負荷量を低減して微粒子除去性能を長期に亘り維持し、その使用寿命を延ばす手法を見出した。
本発明は以下を要旨とする。 The inventors of the present invention have found that by providing an electrically charged filtration membrane in series prior to the size exclusion membrane, the accumulated fine particle load of the size exclusion membrane is reduced, the fine particle removal performance is maintained for a long period of time, and the service life of the size exclusion membrane is extended. I found a way to extend it.
The gist of the present invention is as follows.
本発明は以下を要旨とする。 The inventors of the present invention have found that by providing an electrically charged filtration membrane in series prior to the size exclusion membrane, the accumulated fine particle load of the size exclusion membrane is reduced, the fine particle removal performance is maintained for a long period of time, and the service life of the size exclusion membrane is extended. I found a way to extend it.
The gist of the present invention is as follows.
[1] 液体中の微粒子を除去する微粒子除去装置において、荷電性を有する濾過膜と、該荷電性を有する濾過膜の後段に配置されたサイズ排除膜とを有し、該液体が該荷電性を有する濾過膜、該サイズ排除膜の順に通水されることを特徴とする微粒子除去装置。
[1] A microparticle removal device for removing microparticles in a liquid, which has a chargeable filtration membrane and a size exclusion membrane disposed downstream of the chargeable filtration membrane, and the liquid is the chargeable , and a fine particle removal device characterized in that water is passed through the size exclusion membrane in this order.
[2] [1]において、前記荷電性を有する濾過膜が正荷電膜又は負荷電膜であることを特徴とする微粒子除去装置。
[2] The fine particle removal device according to [1], wherein the chargeable filtration membrane is a positively charged membrane or a negatively charged membrane.
[3] [1]において、前記荷電性を有する濾過膜として、異なる荷電性を有する2以上の濾過膜が前記サイズ排除膜とは別のサイズ排除膜を介して或いはサイズ排除膜を介さずに直列に配置され、この直列に配置された膜群の後段に前記サイズ排除膜を有することを特徴とする微粒子除去装置。
[3] In [1], as the chargeable filtration membranes, two or more chargeable filtration membranes are used through a size exclusion membrane different from the size exclusion membrane or without a size exclusion membrane. 1. A particle removing device, characterized in that it is arranged in series and has the size exclusion membrane in the rear stage of the membrane group arranged in series.
[4] [1]ないし[3]のいずれかに記載の微粒子除去装置を備える純水又は超純水製造装置。
[4] A pure water or ultrapure water production device comprising the fine particle removal device according to any one of [1] to [3].
[5] [1]ないし[3]のいずれかに記載の微粒子除去装置を用いる液体中の微粒子除去方法。
[5] A method for removing fine particles in a liquid using the fine particle removing apparatus according to any one of [1] to [3].
本発明によれば、微粒子を除去するサイズ排除膜の微粒子積算負荷量を低減して微粒子除去性能を長期に亘り維持し、その使用寿命を延ばすことができる。
本発明によれば、水系全般、特に純水や超純水製造プロセス、あるいは電子部品製造および半導体洗浄プロセスにおける各種の液体から微粒子を長期に亘り安定且つ効率的に高度に除去して高純度化を図ることができる。 According to the present invention, it is possible to reduce the cumulative particle load of the size exclusion membrane that removes particles, maintain the particle removal performance over a long period of time, and extend the service life of the membrane.
According to the present invention, fine particles are stably and efficiently removed over a long period of time from water systems in general, particularly pure water and ultrapure water production processes, or from various liquids used in electronic component production and semiconductor cleaning processes to achieve high purification. can be achieved.
本発明によれば、水系全般、特に純水や超純水製造プロセス、あるいは電子部品製造および半導体洗浄プロセスにおける各種の液体から微粒子を長期に亘り安定且つ効率的に高度に除去して高純度化を図ることができる。 According to the present invention, it is possible to reduce the cumulative particle load of the size exclusion membrane that removes particles, maintain the particle removal performance over a long period of time, and extend the service life of the membrane.
According to the present invention, fine particles are stably and efficiently removed over a long period of time from water systems in general, particularly pure water and ultrapure water production processes, or from various liquids used in electronic component production and semiconductor cleaning processes to achieve high purification. can be achieved.
以下に本発明の実施の形態を詳細に説明する。
The embodiments of the present invention will be described in detail below.
[メカニズム]
本発明では、サイズ排除膜の前段に荷電性を有する濾過膜(以下、「荷電性膜」と称す。)を直列に配置することで、被処理液体中の微粒子をサイズ排除膜の前段で予め除去することができ、後段のサイズ排除膜の微粒子負荷を軽減し、積算負荷量を低減することができる。 [mechanism]
In the present invention, by arranging in series a filtration membrane having chargeability (hereinafter referred to as "chargeable membrane") in front of the size exclusion membrane, fine particles in the liquid to be treated are removed in advance in front of the size exclusion membrane. It is possible to reduce the particulate load on the subsequent size exclusion membrane and reduce the cumulative load.
本発明では、サイズ排除膜の前段に荷電性を有する濾過膜(以下、「荷電性膜」と称す。)を直列に配置することで、被処理液体中の微粒子をサイズ排除膜の前段で予め除去することができ、後段のサイズ排除膜の微粒子負荷を軽減し、積算負荷量を低減することができる。 [mechanism]
In the present invention, by arranging in series a filtration membrane having chargeability (hereinafter referred to as "chargeable membrane") in front of the size exclusion membrane, fine particles in the liquid to be treated are removed in advance in front of the size exclusion membrane. It is possible to reduce the particulate load on the subsequent size exclusion membrane and reduce the cumulative load.
例えば、図2(a)に示すように、カチオン官能基を有する膜は、正電荷に帯電した微粒子は吸着し難いが、負電荷に帯電した微粒子を吸着し易く、負電荷に帯電した微粒子を効率的に捕捉除去できる。
逆に、図2(b)に示すように、アニオン性官能基を有する膜は、負電荷に帯電した微粒子は吸着し難いが、正電荷に帯電した微粒子を吸着し易く、正電荷に帯電した微粒子を効率的に捕捉除去できる。 For example, as shown in FIG. 2(a), a film having a cationic functional group does not easily adsorb positively charged fine particles, but easily adsorbs negatively charged fine particles. Can be efficiently captured and removed.
Conversely, as shown in FIG. 2(b), the film having an anionic functional group does not easily adsorb negatively charged fine particles, but easily adsorbs positively charged fine particles. Fine particles can be efficiently captured and removed.
逆に、図2(b)に示すように、アニオン性官能基を有する膜は、負電荷に帯電した微粒子は吸着し難いが、正電荷に帯電した微粒子を吸着し易く、正電荷に帯電した微粒子を効率的に捕捉除去できる。 For example, as shown in FIG. 2(a), a film having a cationic functional group does not easily adsorb positively charged fine particles, but easily adsorbs negatively charged fine particles. Can be efficiently captured and removed.
Conversely, as shown in FIG. 2(b), the film having an anionic functional group does not easily adsorb negatively charged fine particles, but easily adsorbs positively charged fine particles. Fine particles can be efficiently captured and removed.
一般的に、液体中の微粒子は正又は負のいずれかに帯電している場合が多く、従って、サイズ排除膜の前段に荷電性膜を設けることで、これらの微粒子を予め効率的に除去してサイズ排除膜の微粒子負荷を軽減し、その使用寿命を延長することができる。
In general, fine particles in a liquid are often positively or negatively charged. Therefore, by providing a chargeable membrane in front of the size exclusion membrane, these fine particles can be efficiently removed in advance. can reduce the particle loading of the size exclusion membrane and extend its service life.
サイズ排除膜は、膜面積全体を100%としたとき、10%以下の積算微粒子負荷量に抑えることが、微粒子除去性能を高く維持する上で望ましい。このため、本発明では、サイズ排除膜の前段に荷電性膜を設けることで、積算微粒子負荷量の割合(膜面積に対して負荷した微粒子総量が膜面積を覆う割合)が膜面積全体の10%以下となるように処理を行うことが好ましい。
For the size exclusion membrane, it is desirable to keep the integrated fine particle load to 10% or less when the entire membrane area is 100%, in order to maintain high fine particle removal performance. Therefore, in the present invention, by providing a chargeable membrane in front of the size exclusion membrane, the ratio of the integrated fine particle load (the ratio of the total amount of fine particles loaded to the membrane area covering the membrane area) to 10% of the entire membrane area. % or less.
[微粒子除去装置]
以下、図1を参照して本発明の微粒子除去装置の実施の形態を詳細に説明する。本発明の微粒子除去装置は何ら図1に示すものに限定されるものではない。 [Particle removal device]
An embodiment of the particle removing apparatus of the present invention will be described in detail below with reference to FIG. The particle removing apparatus of the present invention is not limited to that shown in FIG.
以下、図1を参照して本発明の微粒子除去装置の実施の形態を詳細に説明する。本発明の微粒子除去装置は何ら図1に示すものに限定されるものではない。 [Particle removal device]
An embodiment of the particle removing apparatus of the present invention will be described in detail below with reference to FIG. The particle removing apparatus of the present invention is not limited to that shown in FIG.
図1では、荷電性膜モジュール1とサイズ排除膜モジュール2が直列に設けられている。この荷電性膜モジュール1の前段に更に別の荷電性膜モジュール又はサイズ排除膜モジュールを配してもよい。荷電性膜モジュール1とサイズ排除膜モジュール2との間に更に別の膜モジュールを配してもよい。
In FIG. 1, a chargeable membrane module 1 and a size exclusion membrane module 2 are provided in series. An additional chargeable membrane module or a size exclusion membrane module may be arranged upstream of the chargeable membrane module 1 . Another membrane module may be arranged between the chargeable membrane module 1 and the size exclusion membrane module 2 .
図1の微粒子除去装置は、配管10より導入された被処理液体が、荷電性膜モジュール1に導入されて微粒子除去処理された後、配管11よりサイズ排除膜モジュール2に導入され、ここで更に微粒子除去処理された後、配管12より処理水として系外へ排出される。
In the particle removal apparatus of FIG. 1, the liquid to be treated introduced through the pipe 10 is introduced into the chargeable membrane module 1 and subjected to particle removal treatment, and then introduced through the pipe 11 into the size exclusion membrane module 2. After the fine particle removal treatment, the treated water is discharged out of the system through the pipe 12 .
<被処理液体>
本発明において、微粒子を除去する被処理液体としては特に制限はない。被処理液体としては、例えば、純水、イソプロピルアルコール等のアルコール、硫酸水溶液、塩酸水溶液等の無機酸水溶液、水酸化ナトリウム水溶液、アンモニア水溶液等のアルカリ水溶液、シンナー、炭酸水、過酸化水素水、フッ化水素溶液などが挙げられる。 <Liquid to be treated>
In the present invention, the liquid to be treated from which fine particles are removed is not particularly limited. Examples of the liquid to be treated include pure water, alcohol such as isopropyl alcohol, aqueous inorganic acid such as sulfuric acid aqueous solution and hydrochloric acid aqueous solution, alkaline aqueous solution such as sodium hydroxide aqueous solution and ammonia aqueous solution, thinner, carbonated water, hydrogen peroxide solution, Hydrogen fluoride solution and the like can be mentioned.
本発明において、微粒子を除去する被処理液体としては特に制限はない。被処理液体としては、例えば、純水、イソプロピルアルコール等のアルコール、硫酸水溶液、塩酸水溶液等の無機酸水溶液、水酸化ナトリウム水溶液、アンモニア水溶液等のアルカリ水溶液、シンナー、炭酸水、過酸化水素水、フッ化水素溶液などが挙げられる。 <Liquid to be treated>
In the present invention, the liquid to be treated from which fine particles are removed is not particularly limited. Examples of the liquid to be treated include pure water, alcohol such as isopropyl alcohol, aqueous inorganic acid such as sulfuric acid aqueous solution and hydrochloric acid aqueous solution, alkaline aqueous solution such as sodium hydroxide aqueous solution and ammonia aqueous solution, thinner, carbonated water, hydrogen peroxide solution, Hydrogen fluoride solution and the like can be mentioned.
本発明はpH1~14のすべてのpH領域の液体の処理に適用することができる。
pH中性域の液体としては超純水が挙げられる。pH7以下の酸性液体の代表としては炭酸水、塩酸水溶液、フッ化水素溶液などが挙げられる。pH7以上のアルカリ性液体の代表としてはアンモニア水、水酸化ナトリウム水溶液などがある。ただし、被処理液体はこの限りではない。 The present invention can be applied to the treatment of liquids in all pH ranges of pH 1-14.
Liquids in the neutral pH range include ultrapure water. Carbonated water, hydrochloric acid aqueous solution, hydrogen fluoride solution and the like are typical examples of acidic liquids having a pH of 7 or less. Representative examples of alkaline liquids having a pH of 7 or higher include ammonia water and aqueous sodium hydroxide solution. However, the liquid to be treated is not limited to this.
pH中性域の液体としては超純水が挙げられる。pH7以下の酸性液体の代表としては炭酸水、塩酸水溶液、フッ化水素溶液などが挙げられる。pH7以上のアルカリ性液体の代表としてはアンモニア水、水酸化ナトリウム水溶液などがある。ただし、被処理液体はこの限りではない。 The present invention can be applied to the treatment of liquids in all pH ranges of pH 1-14.
Liquids in the neutral pH range include ultrapure water. Carbonated water, hydrochloric acid aqueous solution, hydrogen fluoride solution and the like are typical examples of acidic liquids having a pH of 7 or less. Representative examples of alkaline liquids having a pH of 7 or higher include ammonia water and aqueous sodium hydroxide solution. However, the liquid to be treated is not limited to this.
本発明は、これらの液体中の粒径50nm以下、例えば3~30nm程度の極微小粒子の除去に有効である。
The present invention is effective in removing ultrafine particles with a particle size of 50 nm or less, for example, about 3 to 30 nm, in these liquids.
微粒子としては特に制限はないが、シリカ、アルミナ、チタニア、酸化鉄等の無機酸化物微粒子、フッ素系微粒子、有機系樹脂微粒子等が挙げられる。
Although there are no particular restrictions on the fine particles, inorganic oxide fine particles such as silica, alumina, titania, and iron oxide, fluorine-based fine particles, organic resin fine particles, and the like can be mentioned.
被処理液体中の微粒子濃度についても特に制限はないが、通常100μg/L以下、或いは1~1010個/mLである。
The fine particle concentration in the liquid to be treated is also not particularly limited, but is usually 100 μg/L or less, or 1 to 10 10 particles/mL.
被処理液体のpHは、液体中の微粒子のゼータ電位が反転しない領域(等電点をまたがない領域)であることが好ましい。例えばpH8を境に正電荷又は負電荷を帯びるアルミナ微粒子では、常にpH8以下又は常にpH8以上の領域であることが好ましい。pH3を境に負電荷又は正電荷を帯びるシリカ微粒子は常にpH3以下若しくはpH3以上の領域であることが好ましい。
The pH of the liquid to be treated is preferably in a region where the zeta potential of fine particles in the liquid is not reversed (a region where the isoelectric point is not crossed). For example, for fine alumina particles that are positively or negatively charged at a pH of 8, the pH is preferably always 8 or less or always 8 or more. It is preferable that the silica fine particles that are negatively charged or positively charged at pH 3 are always in the range of pH 3 or less or pH 3 or more.
<荷電性膜>
以下に、本発明に好適に用いられる荷電性膜について説明する。
以下において、正荷電の荷電性膜を「正荷電膜」と称し、負荷電の荷電性膜を「負荷電膜」と称す。 <Chargeable membrane>
The chargeable membrane preferably used in the present invention will be described below.
In the following, a positively charged film is referred to as a "positively charged film" and a negatively charged film is referred to as a "negatively charged film".
以下に、本発明に好適に用いられる荷電性膜について説明する。
以下において、正荷電の荷電性膜を「正荷電膜」と称し、負荷電の荷電性膜を「負荷電膜」と称す。 <Chargeable membrane>
The chargeable membrane preferably used in the present invention will be described below.
In the following, a positively charged film is referred to as a "positively charged film" and a negatively charged film is referred to as a "negatively charged film".
荷電性膜の形態としては、中空糸膜、平膜、ファイバーなどいずれでもよい。一般的に、超純水製造プロセスにおいて、微粒子を除去するための末端膜モジュールとしては、中空糸膜が用いられている。プロセス洗浄機に装着するフィルタはプリーツ状の平膜を用いることもできる。
The form of the chargeable membrane may be hollow fiber membrane, flat membrane, fiber, or the like. Hollow fiber membranes are generally used as terminal membrane modules for removing fine particles in ultrapure water production processes. A pleated flat membrane can also be used for the filter attached to the process washer.
<多孔性膜>
荷電性膜の母材となる多孔性膜としては、高分子膜、無機膜、金属膜のいずれでもよい。 <Porous membrane>
The porous membrane that serves as the base material of the chargeable membrane may be a polymer membrane, an inorganic membrane, or a metal membrane.
荷電性膜の母材となる多孔性膜としては、高分子膜、無機膜、金属膜のいずれでもよい。 <Porous membrane>
The porous membrane that serves as the base material of the chargeable membrane may be a polymer membrane, an inorganic membrane, or a metal membrane.
高分子膜としては、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリエチレンオキサイド、ポリプロピレンオキサイドなどのポリエーテル、PTFE、CTFE、PFA、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂、ポリ塩化ビニルなどのハロゲン化ポリオレフィン、ナイロン-6、ナイロン-66などのポリアミド、ユリア樹脂、フェノール樹脂、メラミン樹脂、ポリスチレン、セルロース、酢酸セルロース、硝酸セルロース、ポリエーテルケトン、ポリエーテルケトンケトン、ポリエーテルエーテルケトン、ポリスルホン、ポリアリールスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド、ポリアミドイミド、ポリベンゾイミダゾール、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリアクリルニトリル、ポリエーテルニトリル、ポリビニルアルコールおよびこれらの共重合体などの素材が使用できるが、この限りではない。高分子膜は、1種類の素材に限定されることはなく、必要に応じて種々の素材を選択できる。
荷電性や導電性のポリマーにポリオレフィン、ポリエーテル等の他のポリマーを混合してもよい。 Polymer membranes include polyolefins such as polyethylene and polypropylene, polyethers such as polyethylene oxide and polypropylene oxide, fluororesins such as PTFE, CTFE, PFA, and polyvinylidene fluoride (PVDF), halogenated polyolefins such as polyvinyl chloride, and nylon. -6, polyamides such as nylon-66, urea resins, phenolic resins, melamine resins, polystyrene, cellulose, cellulose acetate, cellulose nitrate, polyetherketones, polyetherketoneketones, polyetheretherketones, polysulfones, polyarylsulfones, poly Materials such as ethersulfone, polyimide, polyetherimide, polyamideimide, polybenzimidazole, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polyacrylonitrile, polyethernitrile, polyvinyl alcohol, and copolymers thereof can be used. However, it is not limited to this. The polymer film is not limited to one type of material, and various materials can be selected as required.
Other polymers such as polyolefins and polyethers may be mixed with the chargeable or conductive polymer.
荷電性や導電性のポリマーにポリオレフィン、ポリエーテル等の他のポリマーを混合してもよい。 Polymer membranes include polyolefins such as polyethylene and polypropylene, polyethers such as polyethylene oxide and polypropylene oxide, fluororesins such as PTFE, CTFE, PFA, and polyvinylidene fluoride (PVDF), halogenated polyolefins such as polyvinyl chloride, and nylon. -6, polyamides such as nylon-66, urea resins, phenolic resins, melamine resins, polystyrene, cellulose, cellulose acetate, cellulose nitrate, polyetherketones, polyetherketoneketones, polyetheretherketones, polysulfones, polyarylsulfones, poly Materials such as ethersulfone, polyimide, polyetherimide, polyamideimide, polybenzimidazole, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polyacrylonitrile, polyethernitrile, polyvinyl alcohol, and copolymers thereof can be used. However, it is not limited to this. The polymer film is not limited to one type of material, and various materials can be selected as required.
Other polymers such as polyolefins and polyethers may be mixed with the chargeable or conductive polymer.
無機膜としては、アルミナ、ジルコニア、チタニアなどの素材が使用できるが、この限りではない。
Materials such as alumina, zirconia, and titania can be used as inorganic films, but are not limited to these.
金属膜としては、ステンレスなどの素材が使用できるが、この限りではない。
Materials such as stainless steel can be used as the metal film, but it is not limited to this.
<荷電性官能基>
多孔性膜に導入する荷電性官能基としては、スルホン酸基、リン酸基、ホスホン酸基、ホスフィン酸基、カルボン酸基、水酸基、フェノール基、4級アンモニウム基、1~3級アミン基、ピリジン基、アミド基などがあるがこの限りではない。これらの官能基はH型、OH型だけでなく、Naなどの塩型であってもよい。 <Chargeable functional group>
The charged functional groups to be introduced into the porous membrane include sulfonic acid groups, phosphoric acid groups, phosphonic acid groups, phosphinic acid groups, carboxylic acid groups, hydroxyl groups, phenol groups, quaternary ammonium groups, primary to tertiary amine groups, Examples include pyridine group and amide group, but are not limited to these. These functional groups may be not only H-type and OH-type but also salt-type such as Na.
多孔性膜に導入する荷電性官能基としては、スルホン酸基、リン酸基、ホスホン酸基、ホスフィン酸基、カルボン酸基、水酸基、フェノール基、4級アンモニウム基、1~3級アミン基、ピリジン基、アミド基などがあるがこの限りではない。これらの官能基はH型、OH型だけでなく、Naなどの塩型であってもよい。 <Chargeable functional group>
The charged functional groups to be introduced into the porous membrane include sulfonic acid groups, phosphoric acid groups, phosphonic acid groups, phosphinic acid groups, carboxylic acid groups, hydroxyl groups, phenol groups, quaternary ammonium groups, primary to tertiary amine groups, Examples include pyridine group and amide group, but are not limited to these. These functional groups may be not only H-type and OH-type but also salt-type such as Na.
<荷電性官能基導入方法>
荷電性官能基の導入方法は、特に限定されるものではなく、各種の方法を採用することができる。例えば、ポリスチレンの場合、硫酸溶液中にパラホルムアルデヒドを適量添加し、加熱架橋することで、スルホン酸基の導入が可能である。ポリビニルアルコールの場合は、水酸基に、トリアルコキシシラン基やトリクロロロシラン基、あるいはエポキシ基などを作用させることなどにより、官能基を導入することができる。材質によって直接官能基を導入できない場合は、まず、スチレンなどの反応性の高いモノマー(反応性モノマーと呼ぶ)を導入した上で、官能基を導入するといったような、2段階以上の導入操作を経て、目的とする官能基を導入しても良い。これらの反応性モノマーとしては、グリシジルメタクリレート、スチレン、クロロメチルスチレン、アクロレイン、ビニルピリジン、アクリロニトリルなどがあるが、この限りではない。 <Method for Introducing Chargeable Functional Group>
A method for introducing the chargeable functional group is not particularly limited, and various methods can be adopted. For example, in the case of polystyrene, sulfonic acid groups can be introduced by adding an appropriate amount of paraformaldehyde to a sulfuric acid solution and heat-crosslinking. In the case of polyvinyl alcohol, a functional group can be introduced by reacting a hydroxyl group with a trialkoxysilane group, a trichlorosilane group, an epoxy group, or the like. If it is not possible to directly introduce a functional group depending on the material, first introduce a highly reactive monomer (called a reactive monomer) such as styrene, and then introduce the functional group in two or more steps. The target functional group may be introduced through the process. These reactive monomers include, but are not limited to, glycidyl methacrylate, styrene, chloromethylstyrene, acrolein, vinylpyridine, acrylonitrile, and the like.
荷電性官能基の導入方法は、特に限定されるものではなく、各種の方法を採用することができる。例えば、ポリスチレンの場合、硫酸溶液中にパラホルムアルデヒドを適量添加し、加熱架橋することで、スルホン酸基の導入が可能である。ポリビニルアルコールの場合は、水酸基に、トリアルコキシシラン基やトリクロロロシラン基、あるいはエポキシ基などを作用させることなどにより、官能基を導入することができる。材質によって直接官能基を導入できない場合は、まず、スチレンなどの反応性の高いモノマー(反応性モノマーと呼ぶ)を導入した上で、官能基を導入するといったような、2段階以上の導入操作を経て、目的とする官能基を導入しても良い。これらの反応性モノマーとしては、グリシジルメタクリレート、スチレン、クロロメチルスチレン、アクロレイン、ビニルピリジン、アクリロニトリルなどがあるが、この限りではない。 <Method for Introducing Chargeable Functional Group>
A method for introducing the chargeable functional group is not particularly limited, and various methods can be adopted. For example, in the case of polystyrene, sulfonic acid groups can be introduced by adding an appropriate amount of paraformaldehyde to a sulfuric acid solution and heat-crosslinking. In the case of polyvinyl alcohol, a functional group can be introduced by reacting a hydroxyl group with a trialkoxysilane group, a trichlorosilane group, an epoxy group, or the like. If it is not possible to directly introduce a functional group depending on the material, first introduce a highly reactive monomer (called a reactive monomer) such as styrene, and then introduce the functional group in two or more steps. The target functional group may be introduced through the process. These reactive monomers include, but are not limited to, glycidyl methacrylate, styrene, chloromethylstyrene, acrolein, vinylpyridine, acrylonitrile, and the like.
<カチオン化の方法と官能基>
正荷電性官能基を導入するカチオン化の方法については特に制限はないが、コーティングによる方法、さらにこれらを組み合わせた方法などが挙げられる。化学反応による方法は、脱水縮合反応などが挙げられる。また、プラズマ処理やコロナ処理などが挙げられる。コーティングによる方法はポリマーを含む水溶液などに含浸させる方法が挙げられる。 <Cationization Method and Functional Group>
The cationization method for introducing the positively charged functional group is not particularly limited, but examples include a coating method and a combination of these methods. A dehydration condensation reaction etc. are mentioned as the method by a chemical reaction. Plasma treatment, corona treatment and the like can also be used. The coating method includes a method of impregnating with an aqueous solution containing a polymer.
正荷電性官能基を導入するカチオン化の方法については特に制限はないが、コーティングによる方法、さらにこれらを組み合わせた方法などが挙げられる。化学反応による方法は、脱水縮合反応などが挙げられる。また、プラズマ処理やコロナ処理などが挙げられる。コーティングによる方法はポリマーを含む水溶液などに含浸させる方法が挙げられる。 <Cationization Method and Functional Group>
The cationization method for introducing the positively charged functional group is not particularly limited, but examples include a coating method and a combination of these methods. A dehydration condensation reaction etc. are mentioned as the method by a chemical reaction. Plasma treatment, corona treatment and the like can also be used. The coating method includes a method of impregnating with an aqueous solution containing a polymer.
(1) 化学修飾により直接多孔性膜にカチオン性官能基を導入する場合
例えば、ポリケトン膜にカチオン性アミノ基を付与する化学修飾方法として、1級アミンとの化学反応などが挙げられる。エチレンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,2-シクロヘキサンジアミン、N-メチルエチレンジアミン、N-メチルプロパンジアミン、N,N-ジメチルエチレンジアミン、N,N-ジメチルプロパンジアミン、N-アセチルエチレンジアミン、イソホロンジアミン、N,N-ジメチルアミノ-1,3-プロパンジアミンなどのように1級アミンを含むジアミン、トリアミン、テトラアミン、ポリエチレンイミン等の多官能化アミンであれば、多くの活性点を付与することができるので好ましい。 (1) Direct introduction of cationic functional groups into porous membrane by chemical modification For example, chemical modification methods for imparting cationic amino groups to polyketone membranes include chemical reaction with primary amines. ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, 1,2-cyclohexanediamine, N-methylethylenediamine, N-methylpropanediamine, N,N-dimethylethylenediamine, N,N-dimethylpropanediamine, N Polyfunctionalized amines such as diamines, triamines, tetraamines, polyethylenimines, including primary amines such as acetylethylenediamine, isophoronediamine, N,N-dimethylamino-1,3-propanediamine, etc., have many activities. It is preferable because points can be given.
例えば、ポリケトン膜にカチオン性アミノ基を付与する化学修飾方法として、1級アミンとの化学反応などが挙げられる。エチレンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,2-シクロヘキサンジアミン、N-メチルエチレンジアミン、N-メチルプロパンジアミン、N,N-ジメチルエチレンジアミン、N,N-ジメチルプロパンジアミン、N-アセチルエチレンジアミン、イソホロンジアミン、N,N-ジメチルアミノ-1,3-プロパンジアミンなどのように1級アミンを含むジアミン、トリアミン、テトラアミン、ポリエチレンイミン等の多官能化アミンであれば、多くの活性点を付与することができるので好ましい。 (1) Direct introduction of cationic functional groups into porous membrane by chemical modification For example, chemical modification methods for imparting cationic amino groups to polyketone membranes include chemical reaction with primary amines. ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, 1,2-cyclohexanediamine, N-methylethylenediamine, N-methylpropanediamine, N,N-dimethylethylenediamine, N,N-dimethylpropanediamine, N Polyfunctionalized amines such as diamines, triamines, tetraamines, polyethylenimines, including primary amines such as acetylethylenediamine, isophoronediamine, N,N-dimethylamino-1,3-propanediamine, etc., have many activities. It is preferable because points can be given.
(2) 正のゼータ電位を付与するという観点で、多孔性膜を構成する少なくとも1つの水素原子を他の基に置換する場合
置換方法としては、例えば、電子線、γ線、プラズマ等の照射によってラジカルを発生させた後、グラフト重合により、グリシジルメタクリレートなどの反応性の側鎖を有するモノマーを重合し、望みの機能を発現する官能基を有する反応性モノマーを付加させる方法が挙げられる。反応性モノマーの例としては、1級アミン、2級アミン、3級アミン、4級アンモニウム塩を含むアクリル酸、メタクリル酸、ビニルスルホン酸の誘導体、アリルアミン、p-ビニルベンジルトリメチルアンモニウムクロライド等が挙げられる。より具体的な例としては、アクリル酸3-(ジメチルアミノ)プロピル、メタクリル酸3-(ジメチルアミノ)プロピル、N-[3-(ジメチルアミノ)プロピル]アクリルアミド、N-[3-(ジメチルアミノ)プロピル]メタクリルアミド、(3-アクリルアミドプロピル)トリメチルアンモニウムクロリド、トリメチル[3-(メタクリロイルアミノ)プロピル]アンモニウムクロリドなどが挙げられる。 (2) Substitution of at least one hydrogen atom constituting the porous membrane with another group from the viewpoint of imparting a positive zeta potential Substitution methods include, for example, irradiation with electron beams, γ-rays, plasma, etc. After generating radicals by graft polymerization, a monomer having a reactive side chain such as glycidyl methacrylate is polymerized, and a reactive monomer having a functional group that expresses the desired function is added. Examples of reactive monomers include derivatives of acrylic acid, methacrylic acid, vinylsulfonic acid including primary amines, secondary amines, tertiary amines, quaternary ammonium salts, allylamine, p-vinylbenzyltrimethylammonium chloride, and the like. be done. More specific examples include 3-(dimethylamino)propyl acrylate, 3-(dimethylamino)propyl methacrylate, N-[3-(dimethylamino)propyl]acrylamide, N-[3-(dimethylamino) propyl]methacrylamide, (3-acrylamidopropyl)trimethylammonium chloride, trimethyl[3-(methacryloylamino)propyl]ammonium chloride and the like.
置換方法としては、例えば、電子線、γ線、プラズマ等の照射によってラジカルを発生させた後、グラフト重合により、グリシジルメタクリレートなどの反応性の側鎖を有するモノマーを重合し、望みの機能を発現する官能基を有する反応性モノマーを付加させる方法が挙げられる。反応性モノマーの例としては、1級アミン、2級アミン、3級アミン、4級アンモニウム塩を含むアクリル酸、メタクリル酸、ビニルスルホン酸の誘導体、アリルアミン、p-ビニルベンジルトリメチルアンモニウムクロライド等が挙げられる。より具体的な例としては、アクリル酸3-(ジメチルアミノ)プロピル、メタクリル酸3-(ジメチルアミノ)プロピル、N-[3-(ジメチルアミノ)プロピル]アクリルアミド、N-[3-(ジメチルアミノ)プロピル]メタクリルアミド、(3-アクリルアミドプロピル)トリメチルアンモニウムクロリド、トリメチル[3-(メタクリロイルアミノ)プロピル]アンモニウムクロリドなどが挙げられる。 (2) Substitution of at least one hydrogen atom constituting the porous membrane with another group from the viewpoint of imparting a positive zeta potential Substitution methods include, for example, irradiation with electron beams, γ-rays, plasma, etc. After generating radicals by graft polymerization, a monomer having a reactive side chain such as glycidyl methacrylate is polymerized, and a reactive monomer having a functional group that expresses the desired function is added. Examples of reactive monomers include derivatives of acrylic acid, methacrylic acid, vinylsulfonic acid including primary amines, secondary amines, tertiary amines, quaternary ammonium salts, allylamine, p-vinylbenzyltrimethylammonium chloride, and the like. be done. More specific examples include 3-(dimethylamino)propyl acrylate, 3-(dimethylamino)propyl methacrylate, N-[3-(dimethylamino)propyl]acrylamide, N-[3-(dimethylamino) propyl]methacrylamide, (3-acrylamidopropyl)trimethylammonium chloride, trimethyl[3-(methacryloylamino)propyl]ammonium chloride and the like.
(3) 正のゼータ電位を有するポリマー
正のゼータ電位を付与するためのポリマーとしては、PSQ(ポリシルセスキオキサン)、ポリエチレンイミン、ポリジアリルジメチルアンモニウムクロリド、アミノ基含有カチオン性ポリ(メタ)アクリル酸エステル、アミノ基含有カチオン性ポリ(メタ)アクリルアミド、ポリアミンアミド-エピクロロヒドリン、ポリアリルアミン、ポリジシアンジアミド、キトサン、カチオン化キトサン、アミノ基含有カチオン化デンプン、アミノ基含有カチオン化セルロース、アミノ基含有カチオン化ポリビニルアルコール及び上記ポリマーの酸塩が挙げられる。また、上記ポリマーあるいはポリマーの酸塩は、他のポリマーとの共重合体であってもよい。 (3) Polymers having a positive zeta potential Examples of polymers for imparting a positive zeta potential include PSQ (polysilsesquioxane), polyethyleneimine, polydiallyldimethylammonium chloride, amino group-containing cationic poly(meth) Acrylic acid ester, amino group-containing cationic poly(meth)acrylamide, polyamineamide-epichlorohydrin, polyallylamine, polydicyandiamide, chitosan, cationized chitosan, amino group-containing cationized starch, amino group-containing cationized cellulose, amino Group-containing cationized polyvinyl alcohols and acid salts of the above polymers are included. Further, the polymer or the acid salt of the polymer may be a copolymer with another polymer.
正のゼータ電位を付与するためのポリマーとしては、PSQ(ポリシルセスキオキサン)、ポリエチレンイミン、ポリジアリルジメチルアンモニウムクロリド、アミノ基含有カチオン性ポリ(メタ)アクリル酸エステル、アミノ基含有カチオン性ポリ(メタ)アクリルアミド、ポリアミンアミド-エピクロロヒドリン、ポリアリルアミン、ポリジシアンジアミド、キトサン、カチオン化キトサン、アミノ基含有カチオン化デンプン、アミノ基含有カチオン化セルロース、アミノ基含有カチオン化ポリビニルアルコール及び上記ポリマーの酸塩が挙げられる。また、上記ポリマーあるいはポリマーの酸塩は、他のポリマーとの共重合体であってもよい。 (3) Polymers having a positive zeta potential Examples of polymers for imparting a positive zeta potential include PSQ (polysilsesquioxane), polyethyleneimine, polydiallyldimethylammonium chloride, amino group-containing cationic poly(meth) Acrylic acid ester, amino group-containing cationic poly(meth)acrylamide, polyamineamide-epichlorohydrin, polyallylamine, polydicyandiamide, chitosan, cationized chitosan, amino group-containing cationized starch, amino group-containing cationized cellulose, amino Group-containing cationized polyvinyl alcohols and acid salts of the above polymers are included. Further, the polymer or the acid salt of the polymer may be a copolymer with another polymer.
<アニオン化の方法と官能基>
負荷電性の官能基を導入するアニオン化の方法については、特に制限はないが、以下の方法が挙げられる。 <Anionization method and functional group>
The anionization method for introducing the negatively chargeable functional group is not particularly limited, but the following methods may be mentioned.
負荷電性の官能基を導入するアニオン化の方法については、特に制限はないが、以下の方法が挙げられる。 <Anionization method and functional group>
The anionization method for introducing the negatively chargeable functional group is not particularly limited, but the following methods may be mentioned.
(1) 負のゼータ電位を付与するという観点から、負荷電性の官能基としては、スルホン酸基、スルホン酸エステル基、カルボン酸基、カルボン酸エステル基、リン酸基、リン酸エステル基、水酸基からなる群から選ばれる一つ以上の官能基が挙げられる。
これらの官能基を有する形態の例としては、化学結合や物理的に結合した状態が挙げられる。化学結合としては、共有結合のようなものであってもよい。共有結合としては、C-C結合、C=N結合、ピロール環を介する結合などが挙げられる。化学結合する物質としては、ポリマーであってもよいし、分子量の小さいモノマーのようなものであってもよい。一方、物理的に結合した状態としては、水素結合、ファンデルワールス力、静電引力、疎水相互作用のような分子間力によって化学結合を介さずに結合した吸着や付着の様な状態が挙げられる。 (1) From the viewpoint of imparting a negative zeta potential, negatively chargeable functional groups include a sulfonic acid group, a sulfonic acid ester group, a carboxylic acid group, a carboxylic acid ester group, a phosphoric acid group, a phosphoric acid ester group, One or more functional groups selected from the group consisting of hydroxyl groups are included.
Examples of forms having these functional groups include chemical bonding and physical bonding states. A chemical bond may be such as a covalent bond. A covalent bond includes a CC bond, a C=N bond, a bond via a pyrrole ring, and the like. A chemically bonding substance may be a polymer or a monomer having a small molecular weight. On the other hand, the physically bonded state includes states such as adsorption and adhesion in which intermolecular forces such as hydrogen bonding, van der Waals force, electrostatic attraction, and hydrophobic interaction are bonded without chemical bonding. be done.
これらの官能基を有する形態の例としては、化学結合や物理的に結合した状態が挙げられる。化学結合としては、共有結合のようなものであってもよい。共有結合としては、C-C結合、C=N結合、ピロール環を介する結合などが挙げられる。化学結合する物質としては、ポリマーであってもよいし、分子量の小さいモノマーのようなものであってもよい。一方、物理的に結合した状態としては、水素結合、ファンデルワールス力、静電引力、疎水相互作用のような分子間力によって化学結合を介さずに結合した吸着や付着の様な状態が挙げられる。 (1) From the viewpoint of imparting a negative zeta potential, negatively chargeable functional groups include a sulfonic acid group, a sulfonic acid ester group, a carboxylic acid group, a carboxylic acid ester group, a phosphoric acid group, a phosphoric acid ester group, One or more functional groups selected from the group consisting of hydroxyl groups are included.
Examples of forms having these functional groups include chemical bonding and physical bonding states. A chemical bond may be such as a covalent bond. A covalent bond includes a CC bond, a C=N bond, a bond via a pyrrole ring, and the like. A chemically bonding substance may be a polymer or a monomer having a small molecular weight. On the other hand, the physically bonded state includes states such as adsorption and adhesion in which intermolecular forces such as hydrogen bonding, van der Waals force, electrostatic attraction, and hydrophobic interaction are bonded without chemical bonding. be done.
負のゼータ電位を付与するためのポリマーとしては、ポリスチレンスルホン酸、ポリスチレンスルホン酸ナトリウム、ポリビニルスルホン酸、ポリビニルスルホン酸ナトリウム、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸ナトリウム、アニオン性ポリアクリルアミド、ポリ(2-アクリルアミド-2-メチル基プロパンスルホン酸)、ポリ(2-アクリルアミド-2-メチル基プロパンスルホン酸ナトリウム)、カルボキシメチルセルロース、アニオン化ポリビニルアルコール、ポリビニルホスホン酸等が挙げられる。
Polymers for imparting negative zeta potential include polystyrenesulfonic acid, sodium polystyrenesulfonate, polyvinylsulfonic acid, sodium polyvinylsulfonate, poly(meth)acrylic acid, sodium poly(meth)acrylate, anionic polyacrylamide , poly(2-acrylamido-2-methyl group propanesulfonic acid), poly(2-acrylamido-2-methyl group sodium propanesulfonate), carboxymethylcellulose, anionized polyvinyl alcohol, polyvinyl phosphonic acid and the like.
(2) 負のゼータを付与するという観点で、多孔性膜に負のゼータ電位を有するポリマーなどを付着又はコーティングさせてもよい。負のゼータ電位を有するポリマーとしては、前述の通り、ポリスチレンスルホン酸、ポリスチレンスルホン酸、ポリスチレンスルホン酸ナトリウム、ポリビニルスルホン酸、ポリビニルスルホン酸ナトリウム、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸ナトリウム、アニオン性ポリアクリルアミド、ポリ(2-アクリルアミド-2-メチル基プロパンスルホン酸)、ポリ(2-アクリルアミド-2-メチル基プロパンスルホン酸ナトリウム)、カルボキシメチルセルロース、アニオン化ポリビニルアルコール、ポリビニルホスホン酸等が挙げられる。また、上記ポリマーあるいはポリマーの酸塩は、他のポリマーとの共重合体であってもよい。
(2) From the viewpoint of imparting negative zeta, the porous membrane may be attached or coated with a polymer having a negative zeta potential. As described above, polymers having a negative zeta potential include polystyrenesulfonic acid, polystyrenesulfonic acid, sodium polystyrenesulfonate, polyvinylsulfonic acid, sodium polyvinylsulfonate, poly(meth)acrylic acid, and sodium poly(meth)acrylate. , anionic polyacrylamide, poly(2-acrylamide-2-methyl group propanesulfonic acid), poly(2-acrylamido-2-methyl group sodium propanesulfonate), carboxymethylcellulose, anionized polyvinyl alcohol, polyvinyl phosphonic acid, etc. mentioned. Further, the polymer or the acid salt of the polymer may be a copolymer with another polymer.
(3) 多孔膜に負のゼータ電位を付与するという観点で、多孔膜を構成するポリマーの少なくとも1つの水素原子を他の基に置換する場合、置換方法としては、例えば電子線、γ線、プラズマ等の照射によってラジカルを発生させた後、望みの機能を発現する官能基を有する反応性モノマーを付加させる方法が挙げられる。
反応性モノマーの例としては、スルホン酸基、スルホン酸エステル基、カルボン酸基、カルボン酸エステル基、リン酸基、リン酸エステル基、水酸基を含むアクリル酸、メタクリル酸、ビニルスルホン酸の誘導体等が挙げられる。より具体的な例としては、アクリル酸、メタクリル酸、ビニルスルホン酸、スチレンスルホン酸、及びそれらのナトリウム塩、2-アクリルアミド-2-メチルプロパンスルホン酸、2-メタクリルアミド-2-メチルプロパンスルホン酸、2-アクリルアミド-2-メチルプロパンカルボン酸、2-メタクリルアミド-2-メチルプロパンカルボン酸などが挙げられる。 (3) From the viewpoint of imparting a negative zeta potential to the porous membrane, when at least one hydrogen atom of the polymer constituting the porous membrane is replaced with another group, examples of the replacement method include electron beams, gamma rays, A method of generating radicals by irradiation with plasma or the like and then adding a reactive monomer having a functional group that exhibits a desired function can be mentioned.
Examples of reactive monomers include sulfonic acid groups, sulfonic acid ester groups, carboxylic acid groups, carboxylic acid ester groups, phosphoric acid groups, phosphoric acid ester groups, acrylic acid containing hydroxyl groups, methacrylic acid, vinyl sulfonic acid derivatives, and the like. are mentioned. More specific examples include acrylic acid, methacrylic acid, vinylsulfonic acid, styrenesulfonic acid and sodium salts thereof, 2-acrylamido-2-methylpropanesulfonic acid, 2-methacrylamido-2-methylpropanesulfonic acid , 2-acrylamido-2-methylpropanecarboxylic acid, 2-methacrylamido-2-methylpropanecarboxylic acid, and the like.
反応性モノマーの例としては、スルホン酸基、スルホン酸エステル基、カルボン酸基、カルボン酸エステル基、リン酸基、リン酸エステル基、水酸基を含むアクリル酸、メタクリル酸、ビニルスルホン酸の誘導体等が挙げられる。より具体的な例としては、アクリル酸、メタクリル酸、ビニルスルホン酸、スチレンスルホン酸、及びそれらのナトリウム塩、2-アクリルアミド-2-メチルプロパンスルホン酸、2-メタクリルアミド-2-メチルプロパンスルホン酸、2-アクリルアミド-2-メチルプロパンカルボン酸、2-メタクリルアミド-2-メチルプロパンカルボン酸などが挙げられる。 (3) From the viewpoint of imparting a negative zeta potential to the porous membrane, when at least one hydrogen atom of the polymer constituting the porous membrane is replaced with another group, examples of the replacement method include electron beams, gamma rays, A method of generating radicals by irradiation with plasma or the like and then adding a reactive monomer having a functional group that exhibits a desired function can be mentioned.
Examples of reactive monomers include sulfonic acid groups, sulfonic acid ester groups, carboxylic acid groups, carboxylic acid ester groups, phosphoric acid groups, phosphoric acid ester groups, acrylic acid containing hydroxyl groups, methacrylic acid, vinyl sulfonic acid derivatives, and the like. are mentioned. More specific examples include acrylic acid, methacrylic acid, vinylsulfonic acid, styrenesulfonic acid and sodium salts thereof, 2-acrylamido-2-methylpropanesulfonic acid, 2-methacrylamido-2-methylpropanesulfonic acid , 2-acrylamido-2-methylpropanecarboxylic acid, 2-methacrylamido-2-methylpropanecarboxylic acid, and the like.
<サイズ排除フィルタ>
本発明の微粒子除去装置は、荷電性膜モジュール1の後段にサイズ排除膜モジュール2を直列に設けたものである。
サイズ排除膜とは、前述したアニオン性もしくはカチオン性の官能基を意図的に導入しない多孔性膜、もしくは意図的に荷電性を持たせるために改質しない多孔性膜であり、所定の粒径以上の微粒子を排除することを目的とするものである。
膜の素材自体が荷電を有する場合は、サイズ排除膜に含まれる。 <Size exclusion filter>
The fine particle removal apparatus of the present invention comprises achargeable membrane module 1 followed by a size exclusion membrane module 2 in series.
The size exclusion membrane is a porous membrane that does not intentionally introduce the anionic or cationic functional group described above, or a porous membrane that is not intentionally modified to have chargeability, and has a predetermined particle size. The object is to eliminate the fine particles described above.
If the membrane material itself has an electric charge, it is included in the size exclusion membrane.
本発明の微粒子除去装置は、荷電性膜モジュール1の後段にサイズ排除膜モジュール2を直列に設けたものである。
サイズ排除膜とは、前述したアニオン性もしくはカチオン性の官能基を意図的に導入しない多孔性膜、もしくは意図的に荷電性を持たせるために改質しない多孔性膜であり、所定の粒径以上の微粒子を排除することを目的とするものである。
膜の素材自体が荷電を有する場合は、サイズ排除膜に含まれる。 <Size exclusion filter>
The fine particle removal apparatus of the present invention comprises a
The size exclusion membrane is a porous membrane that does not intentionally introduce the anionic or cationic functional group described above, or a porous membrane that is not intentionally modified to have chargeability, and has a predetermined particle size. The object is to eliminate the fine particles described above.
If the membrane material itself has an electric charge, it is included in the size exclusion membrane.
サイズ排除膜を構成する多孔性膜については、前述の荷電性膜におけると同様のものを採用することができる。
For the porous membrane that constitutes the size exclusion membrane, the same one as in the chargeable membrane described above can be adopted.
<荷電性膜とサイズ排除膜の配置構成例>
本発明の微粒子除去装置は、荷電性膜とサイズ排除膜とがこの順で直列に接続されていればよく、荷電性膜の前段、荷電性膜とサイズ排除膜との間、サイズ排除膜の後段に異なる膜が設けられていてもよい。 <Example of Arrangement Configuration of Chargeable Membrane and Size Exclusion Membrane>
In the microparticle removing apparatus of the present invention, the chargeable membrane and the size exclusion membrane are connected in series in this order. A different membrane may be provided in the subsequent stage.
本発明の微粒子除去装置は、荷電性膜とサイズ排除膜とがこの順で直列に接続されていればよく、荷電性膜の前段、荷電性膜とサイズ排除膜との間、サイズ排除膜の後段に異なる膜が設けられていてもよい。 <Example of Arrangement Configuration of Chargeable Membrane and Size Exclusion Membrane>
In the microparticle removing apparatus of the present invention, the chargeable membrane and the size exclusion membrane are connected in series in this order. A different membrane may be provided in the subsequent stage.
本発明で採用し得る膜の配置形態としては、以下のようなものが挙げられる。本発明は何ら以下の配置形態に限定されるものではない。
負荷電膜→サイズ排除膜
正荷電膜→サイズ排除膜
負荷電膜→正荷電膜→サイズ排除膜
正荷電膜→負荷電膜→サイズ排除膜
正荷電膜→サイズ排除膜→負荷電膜→サイズ排除膜
負荷電膜→サイズ排除膜→正荷電膜→サイズ排除膜
負荷電膜→サイズ排除膜→正荷電膜
正荷電膜→サイズ排除膜→負荷電膜 Arrangement forms of the films that can be employed in the present invention include the following. The present invention is by no means limited to the following arrangement forms.
Negatively charged membrane → Size exclusion membrane Positively charged membrane → Size exclusion membrane Negatively charged membrane → Positively charged membrane → Size exclusion membrane Positively charged membrane → Negatively charged membrane → Size exclusion membrane Positively charged membrane → Size exclusion membrane → Negatively charged membrane → Size exclusion Membrane Negatively charged membrane → Size exclusion membrane → Positively charged membrane → Size exclusion membrane Negatively charged membrane → Size exclusion membrane → Positively charged membrane Positively charged membrane → Size exclusion membrane → Negatively charged membrane
負荷電膜→サイズ排除膜
正荷電膜→サイズ排除膜
負荷電膜→正荷電膜→サイズ排除膜
正荷電膜→負荷電膜→サイズ排除膜
正荷電膜→サイズ排除膜→負荷電膜→サイズ排除膜
負荷電膜→サイズ排除膜→正荷電膜→サイズ排除膜
負荷電膜→サイズ排除膜→正荷電膜
正荷電膜→サイズ排除膜→負荷電膜 Arrangement forms of the films that can be employed in the present invention include the following. The present invention is by no means limited to the following arrangement forms.
Negatively charged membrane → Size exclusion membrane Positively charged membrane → Size exclusion membrane Negatively charged membrane → Positively charged membrane → Size exclusion membrane Positively charged membrane → Negatively charged membrane → Size exclusion membrane Positively charged membrane → Size exclusion membrane → Negatively charged membrane → Size exclusion Membrane Negatively charged membrane → Size exclusion membrane → Positively charged membrane → Size exclusion membrane Negatively charged membrane → Size exclusion membrane → Positively charged membrane Positively charged membrane → Size exclusion membrane → Negatively charged membrane
<好適な適用領域>
本発明の微粒子除去装置は、超純水製造・供給システムにおいて、一次純水システムから超純水を製造するサブシステム、特にそのサブシステムの最後段の微粒子除去装置として好適に用いられる。
本発明の微粒子除去装置は、サブシステムからユースポイントに超純水を送給する給水系路に設けられてもよい。
本発明の微粒子除去装置は、ユースポイントにおける最終微粒子除去装置として用いることもできる。 <Preferred application area>
INDUSTRIAL APPLICABILITY The particle removal apparatus of the present invention is suitably used as a subsystem for producing ultrapure water from a primary pure water system in an ultrapure water production/supply system, particularly as a particle removal apparatus at the final stage of the subsystem.
The particulate removal apparatus of the present invention may be provided in a water supply line that delivers ultrapure water from a subsystem to a point of use.
The particle remover of the present invention can also be used as the final particle remover at the point of use.
本発明の微粒子除去装置は、超純水製造・供給システムにおいて、一次純水システムから超純水を製造するサブシステム、特にそのサブシステムの最後段の微粒子除去装置として好適に用いられる。
本発明の微粒子除去装置は、サブシステムからユースポイントに超純水を送給する給水系路に設けられてもよい。
本発明の微粒子除去装置は、ユースポイントにおける最終微粒子除去装置として用いることもできる。 <Preferred application area>
INDUSTRIAL APPLICABILITY The particle removal apparatus of the present invention is suitably used as a subsystem for producing ultrapure water from a primary pure water system in an ultrapure water production/supply system, particularly as a particle removal apparatus at the final stage of the subsystem.
The particulate removal apparatus of the present invention may be provided in a water supply line that delivers ultrapure water from a subsystem to a point of use.
The particle remover of the present invention can also be used as the final particle remover at the point of use.
以下に実施例を挙げて本発明をより具体的に説明する。
The present invention will be described more specifically below with reference to examples.
以下においては、図3又は図4に示す試験装置を用いて微粒子除去試験を実施した。
In the following, a fine particle removal test was carried out using the test equipment shown in Figure 3 or Figure 4.
図3に示す試験装置は、被処理液体の流路11に、微粒子タンク12からポンプPにより微粒子を注入して微粒子含有試験水を調製し、微粒子除去膜モジュール13で試験水中の微粒子を除去するものである。微粒子除去膜モジュール13の入口と出口に設けた微粒子モニター14,15で入口水と出口水の微粒子濃度を計測し、これらの結果から微粒子除去率を算出するように構成されている。
The test apparatus shown in FIG. 3 prepares fine particle-containing test water by injecting fine particles from a fine particle tank 12 into a flow path 11 of a liquid to be treated by a pump P, and removes fine particles in the test water with a fine particle removal membrane module 13. It is a thing. The microparticle monitors 14 and 15 provided at the inlet and outlet of the microparticle removal membrane module 13 measure the concentration of microparticles in the inlet water and the outlet water, and the microparticle removal rate is calculated from these results.
図4に示す試験装置は、被処理液体の流路11に、微粒子タンク12からポンプPにより微粒子を注入して微粒子含有試験水を調製し、直列に配置された微粒子除去膜モジュール13A及び13Bで試験水中の微粒子を順次除去するものである。微粒子除去膜モジュール13Aの入口と微粒子除去膜モジュール13Bの出口にそれぞれ設けられた微粒子モニター14,15で微粒子濃度を計測し、これらの結果から微粒子除去率を算出するように構成されている。
The test apparatus shown in FIG. 4 prepares fine particle-containing test water by injecting fine particles from a fine particle tank 12 into a flow path 11 of a liquid to be treated by a pump P, and using fine particle removal membrane modules 13A and 13B arranged in series. Fine particles in the test water are removed sequentially. The microparticle concentration is measured by microparticle monitors 14 and 15 provided at the inlet of the microparticle removal membrane module 13A and the outlet of the microparticle removal membrane module 13B, respectively, and the microparticle removal rate is calculated from these results.
被処理液体の通水条件(通水速度)は10m/dとした。
微粒子モニターとしては以下のものを用いた。
微粒子モニター:UDI20(PMS社製) The water flow condition (water flow rate) of the liquid to be treated was set to 10 m/d.
The following microparticle monitors were used.
Particle monitor: UDI20 (manufactured by PMS)
微粒子モニターとしては以下のものを用いた。
微粒子モニター:UDI20(PMS社製) The water flow condition (water flow rate) of the liquid to be treated was set to 10 m/d.
The following microparticle monitors were used.
Particle monitor: UDI20 (manufactured by PMS)
正荷電膜、負荷電膜、サイズ排除膜としては、以下のものを用いた。
正荷電膜:旭化成メディカル社製「Qyu speed D」
ポリエチレン多孔性膜にDEA-diol(ジエチルアミン-
ジオール)が導入された膜
負荷電膜:ポール社製:「ABDIUPW3EH1」
ポリエチレン多孔性膜にスルホン基が導入された膜
サイズ排除膜:日本ポール社製「APDG1HSVH3EH1K13CウルチプリーツG2SPDR」、排除径10nm As the positively charged membrane, the negatively charged membrane, and the size exclusion membrane, the following were used.
Positively charged membrane: "Qyu speed D" manufactured by Asahi Kasei Medical
DEA-diol (diethylamine-
Diol) introduced film Negatively charged film: manufactured by Pall: "ABDIUPW3EH1"
Membrane in which a sulfone group is introduced into a polyethylene porous membrane Size exclusion membrane: "APDG1HSVH3EH1K13C Ulti-pleated G2SPDR" manufactured by Nippon Pall Co., Ltd.,exclusion diameter 10 nm
正荷電膜:旭化成メディカル社製「Qyu speed D」
ポリエチレン多孔性膜にDEA-diol(ジエチルアミン-
ジオール)が導入された膜
負荷電膜:ポール社製:「ABDIUPW3EH1」
ポリエチレン多孔性膜にスルホン基が導入された膜
サイズ排除膜:日本ポール社製「APDG1HSVH3EH1K13CウルチプリーツG2SPDR」、排除径10nm As the positively charged membrane, the negatively charged membrane, and the size exclusion membrane, the following were used.
Positively charged membrane: "Qyu speed D" manufactured by Asahi Kasei Medical
DEA-diol (diethylamine-
Diol) introduced film Negatively charged film: manufactured by Pall: "ABDIUPW3EH1"
Membrane in which a sulfone group is introduced into a polyethylene porous membrane Size exclusion membrane: "APDG1HSVH3EH1K13C Ulti-pleated G2SPDR" manufactured by Nippon Pall Co., Ltd.,
微粒子としては以下のものを用いた。
シリカ微粒子:シグマアルドリッチ社製、平均粒径22nm
アルミナ微粒子:シグマアルドリッチ社製、平均粒径22nm The following microparticles were used.
Silica fine particles: manufactured by Sigma-Aldrich, average particle size 22 nm
Alumina fine particles: manufactured by Sigma-Aldrich, average particle size 22 nm
シリカ微粒子:シグマアルドリッチ社製、平均粒径22nm
アルミナ微粒子:シグマアルドリッチ社製、平均粒径22nm The following microparticles were used.
Silica fine particles: manufactured by Sigma-Aldrich, average particle size 22 nm
Alumina fine particles: manufactured by Sigma-Aldrich, average particle size 22 nm
以下の参考例1~3では、いずれも図3の試験装置を用いた微粒子除去試験を行った。
In each of Reference Examples 1 to 3 below, a fine particle removal test was performed using the test apparatus shown in FIG.
[参考例1]
被処理液体として、pH中性の超純水、pH4.5の炭酸水、又はpH10.5のアンモニア水を用い、それぞれシリカ微粒子又はアルミナ微粒子を注入して負荷電膜モジュールに通水し、微粒子除去率をそれぞれ調べた。
結果を表1に示す。 [Reference example 1]
Ultrapure water with a neutral pH, carbonated water with a pH of 4.5, or ammonia water with a pH of 10.5 is used as the liquid to be treated. The removal rate was examined for each.
Table 1 shows the results.
被処理液体として、pH中性の超純水、pH4.5の炭酸水、又はpH10.5のアンモニア水を用い、それぞれシリカ微粒子又はアルミナ微粒子を注入して負荷電膜モジュールに通水し、微粒子除去率をそれぞれ調べた。
結果を表1に示す。 [Reference example 1]
Ultrapure water with a neutral pH, carbonated water with a pH of 4.5, or ammonia water with a pH of 10.5 is used as the liquid to be treated. The removal rate was examined for each.
Table 1 shows the results.
[参考例2]
負荷電膜モジュールの代りに正荷電膜モジュールを用い、参考例1と同様にしてそれぞれ微粒子除去率を調べた。
結果を表1に示す。 [Reference example 2]
A positively charged membrane module was used in place of the negatively charged membrane module, and the fine particle removal rate was examined in the same manner as in Reference Example 1.
Table 1 shows the results.
負荷電膜モジュールの代りに正荷電膜モジュールを用い、参考例1と同様にしてそれぞれ微粒子除去率を調べた。
結果を表1に示す。 [Reference example 2]
A positively charged membrane module was used in place of the negatively charged membrane module, and the fine particle removal rate was examined in the same manner as in Reference Example 1.
Table 1 shows the results.
[参考例3]
負荷電膜モジュールの代りにサイズ排除膜モジュールを用い、参考例1と同様にしてそれぞれ微粒子除去率を調べた。
結果を表1に示す。 [Reference example 3]
A size exclusion membrane module was used in place of the negatively charged membrane module, and the fine particle removal rate was examined in the same manner as in Reference Example 1.
Table 1 shows the results.
負荷電膜モジュールの代りにサイズ排除膜モジュールを用い、参考例1と同様にしてそれぞれ微粒子除去率を調べた。
結果を表1に示す。 [Reference example 3]
A size exclusion membrane module was used in place of the negatively charged membrane module, and the fine particle removal rate was examined in the same manner as in Reference Example 1.
Table 1 shows the results.
表1より、いずれの通水条件(使用微粒子、液体pH)においても、正荷電膜及び負荷電膜の微粒子除去性能は、サイズ排除膜の微粒子除去性能と同等かそれ以上であり、荷電性膜が液体中の微粒子を効率的に除去できることが分かる。
From Table 1, regardless of the water flow conditions (particles used, liquid pH), the particle removal performance of the positively charged membrane and the negatively charged membrane is equal to or higher than the particle removal performance of the size exclusion membrane. can efficiently remove fine particles in the liquid.
[実施例1]
図4に示す試験装置を用い、微粒子除去膜モジュール13Aとして正荷電膜モジュールを、微粒子除去膜モジュール13Bとしてサイズ排除膜モジュールを配置して、超純水にシリカ微粒子を1×107個/mL注入した試験水について微粒子除去試験を行い、微粒子除去率の経時変化を調べた。
結果を表2に示す。 [Example 1]
Using the test apparatus shown in FIG. 4, a positively charged membrane module was arranged as the particleremoval membrane module 13A, and a size exclusion membrane module was arranged as the particle removal membrane module 13B, and 1×10 7 particles/mL of silica particles were added to the ultrapure water. A fine particle removal test was performed on the injected test water, and changes over time in the fine particle removal rate were investigated.
Table 2 shows the results.
図4に示す試験装置を用い、微粒子除去膜モジュール13Aとして正荷電膜モジュールを、微粒子除去膜モジュール13Bとしてサイズ排除膜モジュールを配置して、超純水にシリカ微粒子を1×107個/mL注入した試験水について微粒子除去試験を行い、微粒子除去率の経時変化を調べた。
結果を表2に示す。 [Example 1]
Using the test apparatus shown in FIG. 4, a positively charged membrane module was arranged as the particle
Table 2 shows the results.
[実施例2]
実施例1において、正荷電膜モジュールの代りに負荷電膜モジュールを用い、シリカ微粒子の代りにアルミナ微粒子を注入したこと以外は同様にして微粒子除去試験を行った。結果を表2に示した。 [Example 2]
A fine particle removal test was conducted in the same manner as in Example 1, except that a negatively charged membrane module was used instead of the positively charged membrane module, and alumina fine particles were injected instead of the silica fine particles. Table 2 shows the results.
実施例1において、正荷電膜モジュールの代りに負荷電膜モジュールを用い、シリカ微粒子の代りにアルミナ微粒子を注入したこと以外は同様にして微粒子除去試験を行った。結果を表2に示した。 [Example 2]
A fine particle removal test was conducted in the same manner as in Example 1, except that a negatively charged membrane module was used instead of the positively charged membrane module, and alumina fine particles were injected instead of the silica fine particles. Table 2 shows the results.
[比較例1]
図3の試験装置を用い、サイズ排除膜モジュールのみを用いたこと以外は実施例1と同様の試験水について微粒子除去試験を行った。結果を表2に示した。 [Comparative Example 1]
Using the test apparatus shown in FIG. 3, a fine particle removal test was performed on the same test water as in Example 1, except that only the size exclusion membrane module was used. Table 2 shows the results.
図3の試験装置を用い、サイズ排除膜モジュールのみを用いたこと以外は実施例1と同様の試験水について微粒子除去試験を行った。結果を表2に示した。 [Comparative Example 1]
Using the test apparatus shown in FIG. 3, a fine particle removal test was performed on the same test water as in Example 1, except that only the size exclusion membrane module was used. Table 2 shows the results.
[比較例2]
図3の試験装置を用い、サイズ排除膜モジュールのみを用いたこと以外は実施例2と同様の試験水について微粒子除去試験を行った。結果を表2に示した。 [Comparative Example 2]
Using the test apparatus of FIG. 3, a fine particle removal test was conducted on the same test water as in Example 2, except that only the size exclusion membrane module was used. Table 2 shows the results.
図3の試験装置を用い、サイズ排除膜モジュールのみを用いたこと以外は実施例2と同様の試験水について微粒子除去試験を行った。結果を表2に示した。 [Comparative Example 2]
Using the test apparatus of FIG. 3, a fine particle removal test was conducted on the same test water as in Example 2, except that only the size exclusion membrane module was used. Table 2 shows the results.
表2より明らかなように、サイズ排除膜単独では、5日ほどで微粒子の除去性能の低下が認められた。サイズ排除膜の前段に荷電性膜を設けた場合は、100日経過後も微粒子の除去性能の低下が認められなかった。
サイズ排除膜の前段に荷電性膜を配置することで、サイズ排除膜の微粒子除去性能の低下を抑え、使用寿命を延ばせることができることが分かる。 As is clear from Table 2, the performance of removing fine particles decreased after about 5 days with the size exclusion membrane alone. When the chargeable membrane was provided in the preceding stage of the size exclusion membrane, no decrease in fine particle removal performance was observed even after 100 days had passed.
It can be seen that placing the chargeable membrane in front of the size exclusion membrane suppresses deterioration of the fine particle removal performance of the size exclusion membrane and extends the service life.
サイズ排除膜の前段に荷電性膜を配置することで、サイズ排除膜の微粒子除去性能の低下を抑え、使用寿命を延ばせることができることが分かる。 As is clear from Table 2, the performance of removing fine particles decreased after about 5 days with the size exclusion membrane alone. When the chargeable membrane was provided in the preceding stage of the size exclusion membrane, no decrease in fine particle removal performance was observed even after 100 days had passed.
It can be seen that placing the chargeable membrane in front of the size exclusion membrane suppresses deterioration of the fine particle removal performance of the size exclusion membrane and extends the service life.
本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
本出願は、2021年2月18日付で出願された日本特許出願2021-024382に基づいており、その全体が引用により援用される。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2021-024382 filed on February 18, 2021, which is incorporated by reference in its entirety.
本出願は、2021年2月18日付で出願された日本特許出願2021-024382に基づいており、その全体が引用により援用される。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2021-024382 filed on February 18, 2021, which is incorporated by reference in its entirety.
1 荷電性膜モジュール
2 サイズ排除膜モジュール
12 微粒子タンク
13A,13B 微粒子除去膜モジュール
14,15 微粒子モニター
1Chargeable Membrane Module 2 Size Exclusion Membrane Module 12 Particle Tank 13A, 13B Particle Removal Membrane Module 14, 15 Particle Monitor
2 サイズ排除膜モジュール
12 微粒子タンク
13A,13B 微粒子除去膜モジュール
14,15 微粒子モニター
1
Claims (5)
- 液体中の微粒子を除去する微粒子除去装置において、荷電性を有する濾過膜と、該荷電性を有する濾過膜の後段に配置されたサイズ排除膜とを有し、該液体が該荷電性を有する濾過膜、該サイズ排除膜の順に通水されることを特徴とする微粒子除去装置。 A particle removal device for removing particles in a liquid, comprising a chargeable filtration membrane and a size exclusion membrane disposed downstream of the chargeable filtration membrane, wherein the liquid is a filter having the chargeability A fine particle removing device, wherein water is passed through a membrane and said size exclusion membrane in this order.
- 請求項1において、前記荷電性を有する濾過膜が正荷電膜又は負荷電膜であることを特徴とする微粒子除去装置。 The fine particle removing device according to claim 1, wherein the chargeable filtration membrane is a positively charged membrane or a negatively charged membrane.
- 請求項1において、前記荷電性を有する濾過膜として、異なる荷電性を有する2以上の濾過膜が前記サイズ排除膜とは別のサイズ排除膜を介して或いはサイズ排除膜を介さずに直列に配置され、この直列に配置された膜群の後段に前記サイズ排除膜を有することを特徴とする微粒子除去装置。 2. In claim 1, as the chargeable filtration membranes, two or more chargeable filtration membranes are arranged in series via a size exclusion membrane different from the size exclusion membrane or without a size exclusion membrane. and having the size exclusion membrane in the rear stage of the group of membranes arranged in series.
- 請求項1ないし3のいずれか1項に記載の微粒子除去装置を備える純水又は超純水製造装置。 A pure water or ultrapure water production device comprising the fine particle removal device according to any one of claims 1 to 3.
- 請求項1ないし3のいずれか1項に記載の微粒子除去装置を用いる液体中の微粒子除去方法。
A method for removing fine particles in a liquid using the fine particle removing apparatus according to any one of claims 1 to 3.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021024382A JP2022126355A (en) | 2021-02-18 | 2021-02-18 | Fine particle removal device and fine particle removal method |
JP2021-024382 | 2021-02-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022176696A1 true WO2022176696A1 (en) | 2022-08-25 |
Family
ID=82930875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/004830 WO2022176696A1 (en) | 2021-02-18 | 2022-02-08 | Fine particle removal device and fine particle removal method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2022126355A (en) |
TW (1) | TW202233299A (en) |
WO (1) | WO2022176696A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10216721A (en) * | 1997-02-07 | 1998-08-18 | Kurita Water Ind Ltd | Ultrapure water producing device |
JP2016155052A (en) * | 2015-02-23 | 2016-09-01 | 栗田工業株式会社 | Device for removing fine particle in water, and system for producing and supplying ultrapure water |
JP2020062620A (en) * | 2018-10-19 | 2020-04-23 | 日東電工株式会社 | Water treatment system and water treatment method |
WO2020203142A1 (en) * | 2019-03-29 | 2020-10-08 | 栗田工業株式会社 | Particle removal device and particle removal method |
-
2021
- 2021-02-18 JP JP2021024382A patent/JP2022126355A/en active Pending
-
2022
- 2022-02-08 WO PCT/JP2022/004830 patent/WO2022176696A1/en active Application Filing
- 2022-02-15 TW TW111105469A patent/TW202233299A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10216721A (en) * | 1997-02-07 | 1998-08-18 | Kurita Water Ind Ltd | Ultrapure water producing device |
JP2016155052A (en) * | 2015-02-23 | 2016-09-01 | 栗田工業株式会社 | Device for removing fine particle in water, and system for producing and supplying ultrapure water |
JP2020062620A (en) * | 2018-10-19 | 2020-04-23 | 日東電工株式会社 | Water treatment system and water treatment method |
WO2020203142A1 (en) * | 2019-03-29 | 2020-10-08 | 栗田工業株式会社 | Particle removal device and particle removal method |
Also Published As
Publication number | Publication date |
---|---|
TW202233299A (en) | 2022-09-01 |
JP2022126355A (en) | 2022-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5568835B2 (en) | Reverse osmosis membrane, reverse osmosis membrane device, and method of hydrophilizing reverse osmosis membrane | |
US8528746B2 (en) | Method of manufacturing hydrophilic membrane having improved antifouling property and hydrophilic membrane manufactured by the method | |
WO2019187580A1 (en) | Fine particle removing membrane, fine particle removing device, and fine particle removing method | |
CN111249930B (en) | Hydrophilic filter membrane with side chain hydrophilic group and preparation and use methods thereof | |
JP6634918B2 (en) | Ultrapure water production system | |
US20220212145A1 (en) | Apparatus for removing fine particle and method for removing fine particle | |
WO2016136650A1 (en) | Removal device of fine particles in water and ultrapure water production/supply system | |
WO2022176696A1 (en) | Fine particle removal device and fine particle removal method | |
CN109041579B (en) | Wet cleaning device and wet cleaning method | |
JP2022126354A (en) | Fine particle removal apparatus and fine particle removal method | |
WO2021200690A1 (en) | Particulate removal apparatus | |
KR20230029818A (en) | composite filter media | |
EP4110512A1 (en) | Ligand-modified filter and methods for reducing metals from liquid compositions | |
US20230241557A1 (en) | Membranes and method for removing trace metals | |
KR20230085919A (en) | Filtration Membranes, Systems, and Methods for Producing Purified Water | |
TW202204033A (en) | Device for removing fine particles in solvent | |
JP2024068470A (en) | Photosensitive resin composition refining method | |
TW202231342A (en) | Membranes for removing metallic species from amines | |
CN117615839A (en) | Composite material for mechanical filtration and chemical binding of substances, bacteria and viruses from solution | |
TW201343233A (en) | Formation and immobilization of small particles by using polyelectrolyte multilayers | |
JPWO2020106912A5 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22756017 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22756017 Country of ref document: EP Kind code of ref document: A1 |