WO2022176693A1 - Centrifugal clutch and straddle-type vehicle - Google Patents

Centrifugal clutch and straddle-type vehicle Download PDF

Info

Publication number
WO2022176693A1
WO2022176693A1 PCT/JP2022/004826 JP2022004826W WO2022176693A1 WO 2022176693 A1 WO2022176693 A1 WO 2022176693A1 JP 2022004826 W JP2022004826 W JP 2022004826W WO 2022176693 A1 WO2022176693 A1 WO 2022176693A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure plate
weight
centrifugal clutch
centrifugal
force
Prior art date
Application number
PCT/JP2022/004826
Other languages
French (fr)
Japanese (ja)
Inventor
拓仁 村山
恭平 沖田
和之 前田
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2023500754A priority Critical patent/JP7446516B2/en
Priority to TW111105246A priority patent/TWI812005B/en
Publication of WO2022176693A1 publication Critical patent/WO2022176693A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/22Friction clutches with axially-movable clutching members
    • F16D13/38Friction clutches with axially-movable clutching members with flat clutching surfaces, e.g. discs
    • F16D13/52Clutches with multiple lamellae ; Clutches in which three or more axially moveable members are fixed alternately to the shafts to be coupled and are pressed from one side towards an axially-located member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D43/00Automatic clutches
    • F16D43/02Automatic clutches actuated entirely mechanically
    • F16D43/04Automatic clutches actuated entirely mechanically controlled by angular speed
    • F16D43/06Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating axially a movable pressure ring or the like
    • F16D43/08Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating axially a movable pressure ring or the like the pressure ring actuating friction plates, cones or similar axially-movable friction surfaces

Definitions

  • the present invention relates to an operable centrifugal clutch that transmits the rotational driving force of a power source to a transmission.
  • Patent Document 1 shows a centrifugal clutch provided in a vehicle.
  • the centrifugal clutch disclosed in Patent Document 1 transmits rotational driving force of an engine, which is a power source, to a transmission.
  • the centrifugal clutch of Patent Document 1 has friction plates (drive plate and driven plate), weights, and an intermittent mechanism. Each friction plate is engaged by pressing. Rotational driving force of the engine is transmitted to the transmission mechanism by the engagement of each friction plate. The weights are moved by the centrifugal force associated with the rotation, so that the respective friction plates are engaged with each other. Rotation driving force is thereby transmitted.
  • the disconnecting mechanism has, for example, a push rod. When the friction plates are separated from each other by the operation of the connecting/disconnecting mechanism, the transmission of the rotational driving force is cut off and the clutch is released.
  • a mechanism operated by an operating force from a clutch lever can be considered.
  • the clutch lever When the clutch lever is operated, the released state of power transmission changes to the connected state at a position in the middle of the displacement of the clutch lever.
  • Each friction plate wears as the centrifugal clutch is used. If the thickness of each friction plate decreases due to wear, the engagement may not be completed even if each friction plate is in the engaged position before wear. Wear of the friction plates also affects the engagement of the friction plates when the weight moves due to centrifugal force. Further, the position where the weight moves on the centrifugal clutch and the connection position on the clutch lever are also related to each other.
  • centrifugal clutch it is desired to suppress the influence of wear on the connection state of the friction plates, and also to suppress the change in the connection position due to the rotation speed.
  • An object of the present invention is to provide a centrifugal clutch and a straddle-type vehicle that can suppress the influence of wear on the connection state of the friction plates and also suppress changes in the connection position due to rotational speed.
  • the centrifugal clutch of Patent Document 1 has a screw for adjustment inside.
  • the size of the clearance between the friction plates, which increases with wear, is adjusted by adjusting the screws.
  • the centrifugal clutch of Patent Document 1 is required to adjust the screw inside the centrifugal clutch according to the degree of wear.
  • the inventor focused on movement of the weight due to centrifugal force in relation to the adjustment of the gap. For example, the weight receives centrifugal force and moves outward as the rotational speed increases, thereby engaging each friction plate. Engagement of the friction plates is completed when the weight moves to the connected position.
  • the inventor considered a configuration in which the weight at the connection position where the friction plate engages has a margin for further outward movement. In this configuration, the weight at the connection position moves outward from the connection position by receiving a larger centrifugal force. Even if each friction plate wears, the engagement of each friction plate is completed while the weight is moving outward from the connecting position. As a result, even if wear occurs, the engagement of each friction plate is completed by centrifugal force rather than screwing.
  • the weight that moves outward from the connection position moves the second pressure plate in the release direction by the reaction force that presses the friction plate.
  • the release direction is the direction opposite to the pressing direction.
  • the inventor of the present invention came up with the idea of moving the operating force transmission member that transmits the operating force of the clutch lever relative to the second pressure plate when the second pressure plate moves in the releasing direction. Specifically, it is conceivable to provide a relative movement mechanism.
  • the relative movement mechanism moves the operating force transmission member relative to the second pressure plate so as to reduce or eliminate a gap between the operating force transmission member and the second pressure plate.
  • the centrifugal clutch itself can suppress changes in the connection position of the clutch lever due to wear, without adjusting screws or adding an adjusting mechanism using an actuator.
  • the centrifugal clutch according to each aspect of the present invention completed based on the above knowledge has the following configuration.
  • the centrifugal clutch for transmitting rotational driving force of a power source to a transmission
  • the centrifugal clutch is a first friction plate (113) that rotates integrally with a first rotating member (111) that receives the rotational driving force of the power source; a second friction plate (114) that rotates integrally with the second rotating member; One of the first friction plates and the second friction plates is pressed against the other friction plate in a pressing direction parallel to the axis of rotation to engage the first friction plates and the second friction plates with each other.
  • An operating force transmission member (121) displaced to A first pressure plate disposed between the second pressure plate and the first pressure plate in the direction of the rotation axis and moving radially outward of the rotation axis under centrifugal force of the rotation of the first rotating member.
  • the centrifugal clutch is arranged at a position between the power source and the transmission in the rotational drive transmission path.
  • a centrifugal clutch is connected with the output shaft of the power source.
  • a centrifugal clutch is connected with the transmission.
  • the centrifugal clutch may be connected to the output shaft via a driving force transmission component other than the output shaft of the power source.
  • the centrifugal clutch may, for example, be connected to the transmission via a driving force transmission component other than the transmission.
  • the transmission is, for example, a manual transmission that receives a driver's operation force and switches the gear ratio.
  • the transmission is operated by the driver's foot.
  • the transmission switches gear ratios by operating force received from the driver's feet.
  • the second elastic body is an elastic body for urging the second pressure plate in the pressing direction.
  • the range of movement of the second pressure plate in the pressing direction is regulated by the movement range regulating portion.
  • the first elastic body urges the first pressure plate in the release direction. Therefore, the first pressure plate has not moved to the position where the first friction plate and the second friction plate engage with each other. That is, the first friction plate and the second friction plate are not engaged.
  • the first rotating member receives the rotational driving force of the power source and rotates, the first weight rotates together with the first rotating member. The first weight moves outward along the first pressure plate drive under the centrifugal force of rotation. Outward is the direction away from the axis of rotation.
  • a first pressure plate driving section is provided on one or both of the mutually facing surfaces of the second pressure plate and the first pressure plate.
  • the first pressure plate driving portion is, for example, a slope portion.
  • the first pressure plate driving portion is formed such that the distance between the second pressure plate and the first pressure plate becomes smaller toward the outer side in the radial direction.
  • the first weight moves outward along the first pressure plate driving portion to move the first pressure plate in the pressing direction against the biasing force of the first elastic body.
  • the first pressure plate presses one of the first friction plate and the second friction plate against the other friction plate in the pressing direction. This causes the first friction plate and the second friction plate to engage with each other.
  • the first weight receives centrifugal force and moves first to the connecting position.
  • connection position is the position at which the engagement of the first friction plate and the second friction plate is completed.
  • the connection position is also the position where the first weight has room to move further outward.
  • the first weight then moves outward from the connecting position by being subjected to a greater centrifugal force. Thereby, the first weight moves the second pressure plate in the release direction against the biasing force of the second elastic body.
  • the connection state may become incomplete.
  • the first weight has room to move further outward at the connection position. Therefore, when the first friction plate and the second friction plate wear, the first weight moves outward from the initial connection position. This allows the first friction plate and the second friction plate to complete engagement. Therefore, even if wear occurs, the connected state can be achieved by centrifugal force without adjustment of screws or the like.
  • the operating force transmission member receives an operating force for releasing the centrifugal clutch and displaces the second pressure plate.
  • the operating force transmission member receives the operating force and displaces the second pressure plate in the release direction against the pressing force of the second elastic body. This releases the centrifugal clutch. That is, the centrifugal clutch is released, for example, by operating the clutch lever.
  • a connected state caused by centrifugal force and a released state caused by operating force are realized.
  • the centrifugal clutch of (1) when the first weight moves outward from the connected position, the first weight moves the second pressure plate in the release direction against the biasing force of the second elastic body.
  • the amount of operation from the non-operating position to the releasing position increases, for example, when the clutch lever is in the operating position. do.
  • the amount of operation from the non-operating position to the released position of the clutch lever corresponds to play of the clutch lever. That is, play of the clutch lever differs between when the first weight is at the connected position and when it is outside the connected position. For example, even when an electric actuator outputs an operating force, there is an effect due to play.
  • the relative movement mechanism reduces or eliminates the gap generated between the operating force transmission member and the second pressure plate when the first weight moves the second pressure plate in the release direction. , the operating force transmission member is moved relative to the second pressure plate.
  • the relative movement mechanism moves the operating force transmission member relative to the second pressure plate without using the actuator.
  • the centrifugal clutch can suppress changes in the operating position due to wear by itself without adjusting screws or adding an adjusting mechanism using an actuator.
  • the centrifugal clutch of (1) The relative movement mechanism (130) is interposed between the second pressure plate (117) and the operating force transmission member (121), and comprises a second weight (131) and a first cam portion (132). have the second weight (131) rotates around the axis of rotation (Ax) and is moved outward by centrifugal force of rotation; By contacting the second weight (131), the first cam portion (131) moves from the operating force transmission member (121) by the outward movement of the second weight (131). extending the length in the direction of the rotation axis (Ax) of the relative movement mechanism (130) to the second pressure plate (117); centrifugal clutch.
  • the relative movement mechanism is interposed between the second pressure plate and the operating force transmission member.
  • the relative movement mechanism has a second weight and a first cam portion.
  • the second weight rotates around the axis of rotation.
  • the second weight moves outward due to the centrifugal force of rotation.
  • the second pressure plate extends the length in the direction of the rotational axis of the relative movement mechanism from the operating force transmission member to the second pressure plate by movement of the second weight.
  • the first cam portion in contact with the second weight causes the movement from the operating force transmission member to the second pressure plate.
  • the length in the direction of the rotation axis of the relative movement mechanism between is extended. Therefore, the displacement of the second pressure plate in the direction of the rotation axis caused by the outward movement of the first weight subjected to the centrifugal force from the initial connection position will have an effect on the second weight subjected to the centrifugal force. and cams. Therefore, it is possible to suppress the change in the connection position between when the vehicle starts running and during the vehicle running by utilizing the centrifugal force acting on the two weights in common. Therefore, for example, a change in connection position between when the vehicle starts running and when the vehicle is running can be easily suppressed.
  • the centrifugal clutch of (2) The relative movement mechanism (130) rotates together with the second pressure plate (117) and the second weight, and displaces relative to the second pressure plate (117) in the direction of the rotation axis (Ax). having a displaceable member (134), The first cam portion (132) is provided on at least one of the second pressure plate (171) and the displacement member (134), centrifugal clutch.
  • the relative movement mechanism has the displacement member.
  • the displacement member rotates together with the second pressure plate.
  • the displacement member is relatively displaceable in the direction of the rotation axis with respect to the second pressure plate.
  • the first cam portion is provided on at least one of the second pressure plate and the displacement member.
  • the centrifugal clutch of (2) or (3) The rotation speed of the second weight (131) at which the centrifugal force applied to the second weight (131) and the biasing force of the third elastic body (133) that suppresses the movement of the second weight (131) are balanced is It is smaller than the rotation speed at which the centrifugal force applied to the second pressure plate (117) and the biasing force of the second elastic body (116) are balanced. centrifugal clutch.
  • the centrifugal force received by the second weight and the biasing force of the third elastic body are balanced at a speed lower than the speed at which the centrifugal force received by the second pressure plate and the second elastic body are balanced. Therefore, when the speed increases, the rotation axis from the operating force transmission member to the second pressure plate does not lag behind the movement of the second pressure plate in the release direction due to the outward movement of the first weight. Directional length can be extended. Therefore, in any speed range, the change in the connection position of the clutch lever at the start of running and during running can be suppressed by utilizing the centrifugal force acting on the two weights in common. Therefore, in a wide range of speeds, it is easy to suppress the change in the connection position between when the vehicle starts running and when it is running.
  • the centrifugal clutch of any one of (1) to (4) The relative movement mechanism (330) is Interposed between the second pressure plate (117) and the operating force transmission member (121), the second pressure plate (117) is pushed by the first pressure plate (115) in the release direction (R). It has a one-way slide mechanism (340) that is freely expandable when moving and restricts contraction when the operating force transmission member (121) receives the operating force and moves in the release direction (R), centrifugal clutch.
  • the relative movement mechanism has a one-way slide mechanism interposed between the second pressure plate and the operating force transmission member.
  • the one-way slide mechanism can freely extend when the second pressure plate is pushed by the first pressure plate and moves in the release direction. Therefore, when the speed increases, the rotation axis from the operating force transmission member to the second pressure plate does not lag behind the movement of the second pressure plate in the release direction due to the outward movement of the first weight. The length in any direction can be extended.
  • contraction of the length from the operating force transmission member to the second pressure plate in the direction of the rotation axis is restricted. Therefore, the second pressure plate starts to move in accordance with the operation of the clutch lever while maintaining the extended length. Therefore, in a wide operating range, it is easy to suppress the change in the connecting position between when the vehicle starts running and when the vehicle is running.
  • the centrifugal clutch of (2) The second weight (131) receives torque transmission from the second pressure plate (117) to accelerate and decelerate rotation, The second pressure plate (117) is formed to transmit deceleration torque to the second weight (131) and move the second weight (131) inward in the radial direction. having two cam parts (141), centrifugal clutch.
  • the second weight of the relative movement mechanism moves outward due to the centrifugal force that the second weight receives. Due to the frictional force generated between the second weight and the first cam portion, the second weight that has moved outward may become difficult to return inward while maintaining the state of outward movement even if the centrifugal force is reduced. .
  • the second pressure plate has the second cam portion. The second cam portion moves the second weight radially inward when the rotation of the second pressure plate slows down. Therefore, according to the configuration of (6), the second weight can easily return radially inward when the rotation is decelerated even if a frictional force is generated between the second weight and the first cam portion.
  • the centrifugal force is reduced and the second weight tends to return to the original position. Therefore, the adjustment of the displacement in the direction of the rotation axis of the second pressure plate caused by the movement of the first weight outward from the connection position, which receives the centrifugal force, is easily restored when the centrifugal force is reduced. Therefore, it is possible to more precisely suppress the change in the connecting position between when the vehicle starts running and when it is running. Therefore, for example, a change in connection position between when the vehicle starts running and when the vehicle is running can be easily suppressed.
  • a straddle-type vehicle The straddle-type vehicle power source; a transmission; and a centrifugal clutch according to any one of (1) to (6) for transmitting the rotational driving force of the power source to the transmission.
  • a straddle-type vehicle refers to a vehicle in which a rider sits astride a saddle.
  • a straddle-type vehicle is configured to run or turn by shifting the rider's weight.
  • a straddle-type vehicle includes a handlebar that is gripped by a rider.
  • a straddle-type vehicle is configured such that a rider performs posture control by shifting his or her weight while gripping a handlebar with both hands during running or turning.
  • a straddle-type vehicle has drive wheels.
  • Straddle-type vehicles are not particularly limited, and include, for example, motorcycles (motorcycles, tricycles, etc.) and ATVs (All-Terrain Vehicles).
  • a straddle-type vehicle is, for example, a lean vehicle configured to lean in the direction of the turning center on the left and right when turning.
  • the power source is, for example, an engine.
  • An engine outputs power generated by combustion of a mixture of air and fuel as torque and rotation speed of a crankshaft, which is an output shaft.
  • the power source is not particularly limited, and may be, for example, a motor operated by electric power, or may be a combination of an engine and a motor.
  • the transmission has multiple gear ratios that can be switched.
  • the number of gear ratios is not particularly limited, and, for example, there are 4 to 6 gear ratios in addition to the neutral position.
  • the operating force transmission member is, for example, a push rod that is pushed by a rotating cam portion that rotates upon receiving the operating force of the clutch lever.
  • the means for transmitting the operating force of the clutch lever to the operating force transmission member is not limited to the rotating cam portion, and may be, for example, a screw that converts rotation into linear motion, or a hydraulically operated piston.
  • the operating force transmission member is not limited to a push rod that pushes the second pressure plate in the release direction.
  • the operating force transmission member may be, for example, a pull rod that hooks the second pressure plate and pulls it in the release direction.
  • a centrifugal clutch is, for example, a multi-plate clutch having a plurality of first friction plates and a plurality of second friction plates, which are alternately arranged in the rotation axis direction.
  • the centrifugal clutch may be a single-plate clutch having one first friction plate and one second friction plate.
  • the first pressure plate presses one of the first friction plate and the second friction plate against the other friction plate in a pressing direction parallel to the rotation axis
  • the first pressure plate pushes the first friction plate to the first friction plate.
  • the first pressure plate may press the second friction plate against the first friction plate.
  • the first pressure plate in the multi-plate clutch may press the plurality of second friction plates and the plurality of first friction plates against each other.
  • the second pressure plate is formed of, for example, one member.
  • the second pressure plate may be composed of, for example, multiple members.
  • the second pressure plate may be composed of, for example, a member that presses the friction plate and a member that contacts the movement range restricting portion.
  • the first elastic body is composed of, for example, a spring.
  • the first elastic body is composed of, for example, a coil spring.
  • the first elastic body is not particularly limited, and may be composed of, for example, a disc spring or rubber.
  • the first elastic body is not interposed between the first pressure plate and the first friction plate and the second friction plate. More specifically, the first elastic body is provided so as not to be mechanically connected in series between the first pressure plate and the first and second friction plates. More specifically, the first elastic body is provided such that the first elastic body, the first friction plate and the second friction plate are mechanically connected in parallel with the first pressure plate.
  • the second elastic body is composed of, for example, a spring.
  • the second elastic body is composed of, for example, a disc spring.
  • the second elastic body is not particularly limited, and may be composed of, for example, a coil spring or rubber.
  • the third elastic body is composed of, for example, a spring.
  • the third elastic body is composed of, for example, a coil spring.
  • the third elastic body is not particularly limited, and may be composed of, for example, a disc spring or rubber.
  • the first pressure plate driving section is provided on the second pressure plate.
  • the first pressure plate driving section is not particularly limited, and may be provided on the first pressure plate, for example. Also, the first pressure plate driving section may be provided on both the second pressure plate and the first pressure plate, for example.
  • the first pressure plate driving part is, for example, a slope part.
  • the first weight moves outward along the first pressure plate drive.
  • the first pressure plate driving section is not particularly limited, and may have, for example, a moving member different from the first weight that is pushed outward by the first weight and moves outward.
  • the movement range restriction part is, for example, a step.
  • the movement range restricting part is not particularly limited, and may be a combination of members such as projections or bolts, for example.
  • An operable centrifugal clutch is, for example, a centrifugal clutch that can be operated by an external operating force.
  • the operable centrifugal clutch can be disengaged by an actuating force even when it is engaged by the centrifugal force of rotation.
  • the operable centrifugal clutch is, for example, a manually operated (MT) centrifugal clutch configured to be actuated by an operating force output by a rider operated clutch lever.
  • the centrifugal clutch is a manually operated centrifugal clutch configured to be operated by an operating force applied to the clutch lever by the rider.
  • the operable centrifugal clutch is not limited to mechanical wires and may for example be actuated by actuating forces transmitted via hydraulic pressure.
  • the operable centrifugal clutch may be actuated, for example, by an actuating force output by an electric actuator.
  • the centrifugal clutch may operate, for example, upon detection of an operating state of a clutch lever or a shift pedal, or upon receiving an operating force generated by an electric actuator that operates according to the traveling state of the straddle-type vehicle.
  • the second pressure plate and the first pressure plate facing each other include a configuration in which the second pressure plate and the first pressure plate are parallel to each other and a state in which they are oblique to each other.
  • An actuator is a driving device that converts various energies such as electricity or hydraulics into mechanical movement.
  • Actuators are, for example, electric motors, solenoid actuators or hydraulic cylinders.
  • an actuator does not include a mechanism that merely changes the direction of mechanical force.
  • the second weight of the relative movement mechanism rotates around the rotation axis by receiving the rotational force of the second pressure plate.
  • the second weight directly receives the rotational force of the second pressure plate, for example.
  • the second weight may receive the rotational force of the second pressure plate via a component that constitutes the relative movement mechanism, such as a displacement member.
  • the relatively moving mechanism being interposed between the second pressure plate and the operating force transmission member means that at least a part of the members constituting the relative moving mechanism is capable of handling the operating force transmitted from the operating force transmitting member to the second pressure plate. It is to be placed in the transmission path.
  • the gap generated between the operating force transmission member and the second pressure plate is a gap generated in the transmission path of the operating force transmitted from the operating force transmission member to the second pressure plate.
  • the operating force from the operating force transmission member is not transmitted to the second pressure plate.
  • the space generated between the component that does not contribute to the transmission of the operating force does not correspond to the gap described above.
  • connection and “coupled” are not limited to physical or mechanical connections or couplings, but can include direct or indirect electrical connections or couplings.
  • all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries are to be construed to have a meaning consistent with their meaning in the context of the relevant technology and this disclosure, and are expressly defined herein. not be construed in an ideal or overly formal sense unless explicitly stated. In describing the invention, it is understood that techniques and multiple steps are disclosed. Each of these has individual benefits, and each can also be used with one or more, or possibly all, of the other disclosed techniques.
  • a centrifugal clutch capable of suppressing a change in the connection position of the clutch lever due to wear by its own operation and suppressing a change in the connection position of the clutch lever at the start of running and during running by its own operation;
  • a straddle-type vehicle can be realized.
  • FIG. 5 is a cross-sectional view for explaining the state of the centrifugal clutch when the crankshaft is rotating
  • FIG. 3 is a cross-sectional view illustrating a state of a centrifugal clutch that rotates at a higher speed than the state of FIG. 2
  • FIG. 3 is a diagram illustrating that the centrifugal clutch in the state of FIG. 2 is put into a released state by operating the clutch lever;
  • FIG. 5 is a cross-sectional view for explaining the state of the centrifugal clutch when the crankshaft is rotating
  • FIG. 3 is a cross-sectional view illustrating a state of a centrifugal clutch that rotates at a higher speed than the state of FIG. 2
  • FIG. 3 is a diagram illustrating that the centrifugal clutch in the state of FIG. 2 is put into a released state by operating the clutch lever
  • FIG. 5 is a cross-sectional view for explaining the state of the centrifugal clutch when the crankshaft is rotating
  • FIG. 3 is
  • FIG. 4 is a cross-sectional view showing a reference example without a relative movement mechanism as a comparison with the present embodiment; It is a graph which shows the relationship between the rotation speed of the 1st rotation member of the centrifugal clutch which concerns on 2nd embodiment of this invention, and the displacement amount of a 1st weight.
  • FIG. 6 is a cross-sectional view schematically showing a centrifugal clutch according to a third embodiment of the invention;
  • FIG. 8 is a cross-sectional view illustrating a state of a centrifugal clutch that rotates at a higher speed than the state of FIG. 7;
  • FIG. 5 is a cross-sectional view schematically showing a centrifugal clutch according to a fourth embodiment of the invention;
  • (a) to (d) are cross-sectional views of the centrifugal clutch of FIG. 9 taken along line II'.
  • It is a figure which shows the Example of the centrifugal clutch of embodiment, (a) is sectional drawing of a rotating shaft line direction, (b) is the figure which looked at the pressing direction of the relative movement mechanism in (a).
  • 1 is a side view showing a straddle-type vehicle to which the centrifugal clutch of the embodiment is applied;
  • FIG. 1 is a cross-sectional view schematically showing a centrifugal clutch according to a first embodiment of the invention.
  • FIG. 1 shows a cross section including the rotation axis Ax of the centrifugal clutch.
  • Also shown in FIG. 1 are part of the engine EG, part of the transmission MT and the clutch lever LV.
  • part of the boundary lines of a plurality of members that move together is omitted, and common hatching is given.
  • a centrifugal clutch 10 shown in FIG. 1 is a component that transmits rotational driving force of an engine EG, which is a power source, to a transmission MT. More specifically, the centrifugal clutch 10 has a connected state in which the rotational driving force of the engine EG is transmitted to the transmission MT, and a released state in which transmission of the rotational driving force is disconnected. The centrifugal clutch 10 switches between a connected state and a released state. The centrifugal clutch 10 also has a so-called half-clutch state in which part of the rotational driving force of the engine EG is transmitted. However, in this specification, for the sake of clarity, unless otherwise specified, the state in which the engagement of the friction plates is completed will be described as the "connected state.”
  • Centrifugal clutch 10 is a multi-plate clutch.
  • the centrifugal clutch 10 includes a first rotating member 111, a second rotating member 112, a plurality of first friction plates 113, a plurality of second friction plates 114, a first pressure plate 115, and a second elastic body 116. , and a second pressure plate 117 .
  • Centrifugal clutch 10 also includes movement range restricting portion 118 , first elastic body 119 , operating force transmission member 121 , first pressure plate driving portion 122 , first weight 123 , and relative movement mechanism 130 . Prepare.
  • the first rotating member 111 is a member that rotates by receiving the rotational driving force of the engine EG.
  • the first rotating member 111 is, for example, a clutch housing.
  • the first rotating member 111 is configured to rotate by receiving a rotational driving force from a crankshaft CL, which is the output shaft of the engine EG.
  • the first rotating member 111 has a clutch input gear 111a.
  • the clutch input gear 111a is engaged with a crank gear G provided on the crankshaft CL.
  • the first rotating member 111 rotates together with the crankshaft CL of the engine EG. Due to the gear ratio between the clutch input gear 111a and the crank gear G, the first rotating member 111 rotates at a speed lower than the speed of the crankshaft CL.
  • the second rotating member 112 is provided rotatably relative to the first rotating member 111 .
  • the first rotating member 111 and the second rotating member 112 are configured to rotate about a common rotation axis Ax.
  • the second rotating member 112 is, for example, a clutch boss.
  • the first friction plate 113 is configured to rotate integrally with the first rotating member 111 .
  • the first friction plate 113 functions as a drive plate.
  • the second friction plate 114 rotates integrally with the second rotating member 112 .
  • the second friction plate 114 functions as a driven plate.
  • Each of the first friction plate 113 and the second friction plate 114 is an annular plate.
  • the first friction plates 113 and the second friction plates 114 are alternately arranged side by side.
  • the first pressure plate 115 is a member that presses one of the first friction plate 113 and the second friction plate 114 against the other friction plate in a pressing direction P parallel to the rotation axis Ax.
  • the first pressure plate 115 is an annular plate.
  • the first pressure plate 115 rotates integrally with the first rotating member 111 .
  • the first pressure plate 115 is movable relative to the first rotating member 111 in the direction of the rotation axis Ax.
  • the first pressure plate 115 presses the first friction plate 113 and the second friction plate 114 in the pressing direction P.
  • the rotational driving force of the first friction plate 113 is transmitted to the second friction plate 114 by the friction between the first friction plate 113 and the second friction plate 114 . That is, the first friction plate 113 and the second friction plate 114 are engaged with each other.
  • the second elastic body 116 is a member attached to the first rotating member 111 .
  • the second elastic body 116 is composed of, for example, an annular disc spring. A portion of the second elastic body 116 is fixed to the first rotating member 111 .
  • the second elastic body 116 is provided so as to rotate integrally with the first rotating member 111 .
  • the second elastic body 116 urges the first pressure plate 115 in the pressing direction P. As shown in FIG. A second pressure plate 117 and a first weight 123 are interposed between the second elastic body 116 and the first pressure plate 115 .
  • the second pressure plate 117 is provided so as to rotate integrally with the first rotating member 111 .
  • the second pressure plate 117 is provided so as to be relatively movable in the pressing direction P or the releasing direction R with respect to the first rotating member 111 .
  • the second pressure plate 117 is biased by the second elastic body 116 .
  • the second pressure plate 117 transmits the biasing force in the pressing direction P from the second elastic body 116 to the first pressure plate 115 .
  • the movement range restricting portion 118 is configured to restrict the range of movement of the second pressure plate 117 in the pressing direction P.
  • the movement range restricting portion 118 is, for example, a step provided on the first rotating member 111 .
  • the moving range restricting portion 118 cannot move in the pressing direction P beyond the position where it hits the moving range restricting portion 118 .
  • the first elastic body 119 biases the first pressure plate 115 in the release direction R. As shown in FIG. The release direction R is opposite to the pressing direction P.
  • the first elastic body 119 is not interposed between the first pressure plate 115 and the first friction plate 113 and the second friction plate 114 .
  • First elastic body 119 , first friction plate 113 and second friction plate 114 are mechanically connected in parallel to first pressure plate 115 .
  • the first elastic body 119 is configured to release the centrifugal clutch 10 when the rotational speed of the crankshaft CL is in a relatively low speed range such as idling speed.
  • the first elastic body 119 is composed of, for example, a coil spring.
  • the centrifugal clutch 10 operates according to the operation of the clutch lever LV.
  • the operating force transmission member 121 is configured to displace the second pressure plate 117 in the release direction R upon receiving an operating force generated by operating the clutch lever LV.
  • the operating force transmission member 121 displaces the second pressure plate 117 in the release direction R against the pressing force of the second elastic body 116 .
  • the first pressure plate driving section 122 is provided on the second pressure plate 117, for example.
  • the first pressure plate driving portion 122 is provided on a surface facing the first pressure plate 115 .
  • the first pressure plate driving portion 122 is configured to function as a cam surface.
  • the first pressure plate driving portion 122 is formed so that the distance between the second pressure plate 117 and the first pressure plate 115 becomes smaller toward the outer side in the radial direction.
  • the outward direction is the direction away from the rotation axis Ax.
  • First weight 123 is provided between first pressure plate 115 and second pressure plate 117 .
  • the first weight 123 rotates integrally with the first rotating member 111 and the first pressure plate 115 . More specifically, first weight 123 rotates integrally with first pressure plate 115 and second pressure plate 117 .
  • the first weight 123 is provided movably in the radial direction with respect to the first rotating member 111 and the first pressure plate 115 . More specifically, the first weight 123 is provided movably in the radial direction with respect to the first pressure plate 115 and the second pressure plate 117 .
  • FIG. 1 shows the stopped state or idling state of the engine EG. When the engine EG is stopped, the first weight 123 is not rotating.
  • the relative movement mechanism 130 moves the operating force transmitting member 121 relative to the second pressure plate 117 so as to reduce or eliminate the gap between the operating force transmitting member 121 and the second pressure plate 117 .
  • the relative movement mechanism 130 is a mechanism that moves the operating force transmission member 121 without using an actuator.
  • Relative movement mechanism 130 is interposed between operating force transmission member 121 and second pressure plate 117 .
  • Relative movement mechanism 130 is configured to move operating force transmission member 121 relative to second pressure plate 117 when first weight 123 moves second pressure plate 117 in release direction R.
  • the relative movement mechanism 130 moves the operating force transmitting member 121 relative to the second pressure plate 117 so as to reduce or eliminate the gap between the operating force transmitting member 121 and the second pressure plate 117.
  • the relative movement mechanism 130 moves the operating force transmission member 121 relatively to the second pressure plate 117. Move in the pressing direction P.
  • the relative movement mechanism 130 has a second weight 131 and a first cam portion 132 .
  • the second weight 131 receives rotational driving force from the second pressure plate 117 and rotates integrally with the first rotating member 111 and the second pressure plate 117 around the rotation axis Ax.
  • the second weight 131 is provided movably in the radial direction with respect to the second pressure plate 117 .
  • the second weight 131 is configured to move outward due to the centrifugal force of rotation.
  • the outward movement of the second weight 131 moves the relative movement mechanism 130 between the operating force transmission member 121 and the second pressure plate 117 . in the direction of the rotation axis Ax.
  • the relative movement mechanism 130 has a displacement member 134 .
  • the displacement member 134 rotates together with the second pressure plate 117 and the second weight 131 and is relatively displaceable with respect to the second pressure plate 117 in the direction of the rotation axis Ax.
  • the relative movement mechanism 130 also has a third elastic body 133 that biases the second weight 131 so as to restrain the outward movement of the second weight 131 .
  • the third elastic body 133 is shown only in FIG. 1 and is omitted from the rest of the drawings.
  • the displacement member 134 has a shaft 134a to which the operating force from the operating force transmission member 121 is transmitted, and a washer portion 134b fixed to the shaft 134a and extending radially from the shaft 134a.
  • the washer portion 134b receives the operating force transmitted from the operating force transmission member 121 by the shaft 134a, and transmits the operating force from the washer portion 134b to the second weight 131.
  • the first cam portion 132 is provided on the second pressure plate 117 .
  • the first cam portion 132 is a slope.
  • the first cam portion 132 is formed such that the distance to the operating force transmission member 121 in the rotation axis direction A decreases toward the outside.
  • FIG. 1 shows the state of the centrifugal clutch 10 when the engine EG is stopped or idling. That is, FIG. 1 shows the state of the centrifugal clutch 10 when the vehicle is stopped. FIG. 1 shows the case where no external force acts on the centrifugal clutch 10 .
  • the second elastic body 116 urges the second pressure plate 117 in the pressing direction P. As shown in FIG. The second pressure plate 117 pushes the first weight 123 in the pressing direction P. As shown in FIG. The first weight 123 pushes the first pressure plate 115 in the pressing direction P. As shown in FIG. A range in which the second pressure plate 117 can move in the pressing direction P is restricted by a movement range restricting portion 118 .
  • FIG. 2 is a cross-sectional view explaining the state of the centrifugal clutch when the crankshaft is rotating.
  • Each part in FIG. 2 is the same as each part in FIG. Therefore, here, the parts different from those in FIG. 1 will mainly be described with reference numerals, and the reference numerals will be omitted for other parts.
  • the first weight 123 When the first rotating member 111 rotates due to the rotational driving force of the engine EG, the first weight 123 receives the centrifugal force of the rotation of the first rotating member 111 and moves outward along the first pressure plate driving portion 122 . move to More specifically, when the first weight 123 rotates at such a speed as to move outward against the force of the first elastic body 119, the first weight 123 moves outward. More specifically, when the first weight 123 rotates at a speed greater than the idle speed, the first weight 123 moves outward. The first weight 123 moves outward along the first pressure plate driving portion 122 to move the first pressure plate 115 in the pressing direction P against the biasing force of the first elastic body 119. .
  • the first pressure plate 115 presses the first friction plate 113 or the second friction plate 114 in the pressing direction P when the first weight 123 is at the connection position L2. This causes the first friction plate 113 and the second friction plate 114 to engage with each other.
  • the centrifugal clutch 10 is connected by moving the first weight 123 to the connection position L2.
  • the connection position L2 is the position of the first weight 123 when the non-worn first friction plate 113 and the second friction plate 114 complete engagement.
  • the first weight 123 at the connection position L2 has a margin M for further outward movement.
  • FIG. 3 is a cross-sectional view explaining the state of the centrifugal clutch rotating at a higher speed than the state of FIG.
  • the first weight 123 moves outward from the connection position L2 by receiving a centrifugal force greater than that corresponding to the connection position L2 (see FIG. 2).
  • the first weight 123 moves, for example, to position L3 shown in FIG.
  • the first pressure plate 115 cannot move. Therefore, the first weight 123 pushes the second pressure plate 117 in the release direction R by the reaction force pushing the first pressure plate 115 .
  • the first weight 123 moves the second pressure plate 117 in the release direction R against the biasing force of the second elastic body 116 .
  • the first weight 123 moves the second pressure plate 117 in the release direction R while pressing the first pressure plate 115 in the pressing direction P. Therefore, the connected state of the centrifugal clutch 10 is maintained.
  • the thickness of the first friction plates 113 and the second friction plates 114 in the rotation axis direction A decreases.
  • the first weight 123 moves to the connection position L2 shown in FIG. 2, that is, the connection position L2 where the connection is completed before being worn, the engagement between the first friction plate 113 and the second friction plate 114 will not occur. does not complete. In other words, the connection becomes incomplete.
  • the first weight 123 of the centrifugal clutch 10 has a margin M for further outward movement at the connection position L2 shown in FIG. Therefore, when the first friction plate 113 and the second friction plate 114 wear, the first weight 123 can move outward from the connecting position L2 shown in FIG. Thereby, the engagement between the worn first friction plate 113 and the second friction plate 114 can be completed. Therefore, even if wear occurs, the connected state can be achieved without manual operation such as adjustment of screws or the like, and without complicated control by an electric device.
  • FIG. 4 is a diagram explaining how the centrifugal clutch 10 in the state of FIG. 2 is put into the released state by operating the clutch lever LV.
  • the operating force transmission member 121 When the centrifugal clutch 10 is in the engaged state, the operating force transmission member 121 receives the operating force from the clutch lever LV and displaces the second pressure plate 117 in the release direction R. The operating force transmission member 121 pushes the second pressure plate 117 in the release direction R via the relative movement mechanism 130 . The second pressure plate 117 moves in the release direction R together with the operating force transmission member 121 and the relative movement mechanism 130 . However, the relative movement mechanism 130 rotates relative to the operating force transmission member 121 . The operating force transmission member 121 displaces the second pressure plate 117 against the pressing force of the second elastic body 116 by operating force from the clutch lever LV.
  • the centrifugal clutch 10 is released. That is, the centrifugal clutch 10 is released by operating the clutch lever LV.
  • the engaged state caused by the centrifugal force and the released state caused by the operation of the clutch lever LV are realized.
  • Relative movement mechanism 130 moves operating force transmission member 121 to second pressure plate 117 when first weight 123 moves outward from connection position L2 to move second pressure plate 117 in release direction R. Move relative to The relative movement mechanism 130 moves the operating force transmitting member 121 so as to reduce or eliminate the gap generated between the operating force transmitting member 121 and the second pressure plate 117 .
  • the rotation causes the second weight 131 of the relative movement mechanism 130 to move outward as shown in FIG.
  • the relative movement mechanism 130 moves the operating force transmission member 121 in the pressing direction P relative to the second pressure plate 117 .
  • the displacement member 134 is pushed in the pressing direction P relative to the second pressure plate 117 by the second weight 131 .
  • the displacement member 134 of the relative movement mechanism 130 pushes the operating force transmission member 121 in the pressing direction P.
  • the length in the rotation axis direction A from the operating force transmission member 121 to the second pressure plate 117 is extended.
  • FIG. 5 is a sectional view showing a reference example without a relative movement mechanism as a comparison with this embodiment.
  • FIG. 5 shows the condition of centrifugal clutch 90 rotating at a speed equivalent to the condition of FIG.
  • the first weight 923 moves to position L3 by receiving the same centrifugal force as in the state shown in FIG.
  • the second pressure plate 917 is pushed by the first weight 923 and moves in the release direction R.
  • a gap S is created between the second pressure plate 917 and the operating force transmission member 921 .
  • the gap S increases as the first weight 923 moves outward from the connection position (see L2 in FIG. 2).
  • the amount of operation of the clutch lever LV from the non-operating position indicated by the solid line in FIG. 5 to the released position indicated by the broken line increases.
  • the amount of operation of the clutch lever LV from the non-operated position to the released position corresponds to play of the clutch lever LV.
  • the size of the gap S when the first weight 923 is at the connection position (see L2 in FIG. 2) and the gap S when the first weight 923 moves to the position L3 They differ in size. That is, the amount of play of the clutch lever LV differs between when the first weight 923 is at the connected position (see L2 in FIG. 2) and when it is at the position L3.
  • the play of the clutch lever LV is not limited to the connection position L2, but is also the position where the repulsive force due to the biasing force of the second elastic body 916 is generated when the clutch lever LV is operated.
  • the position at which the second elastic body 916 gives a response during the operation of the clutch lever LV depends on whether the first weight 923 is at the connected position (see L2 in FIG. 2) or at the position L3. different.
  • the relative movement mechanism 130 of the embodiment of the present invention shown in FIGS. 1 to 4 moves the operating force transmission member 121 to the second pressure plate 117 when the first weight 123 moves the second pressure plate 117 in the release direction R.
  • Move relative to The relative movement mechanism 130 relatively moves the operating force transmitting member 121 so as to reduce or eliminate the gap generated between the operating force transmitting member 121 and the second pressure plate 117 . Therefore, it is possible to suppress the change in the engagement position of the clutch lever LV due to the rotation speed.
  • centrifugal clutch 10 can suppress changes in the operating position of the clutch lever LV caused by wear without adjusting screws or the like. That is, the centrifugal clutch 10 itself can suppress changes in the operating position of the clutch lever LV due to wear.
  • the centrifugal clutch 10 can suppress the influence of wear of the first friction plate 113 and the second friction plate 114 on the connection state, and can also reduce the influence of the rotation speed on the connection position.
  • FIG. 6 is a graph showing the relationship between the rotation speed of the first rotating member and the displacement amount of the first weight of the centrifugal clutch according to the second embodiment of the invention.
  • the configuration of the centrifugal clutch 10 in this embodiment is the same as the first embodiment shown in FIGS. 1 to 4, and each elastic body has specific characteristics. Accordingly, the configuration of each part is given the same reference numerals and will be described with reference to FIGS. 1 to 4.
  • FIG. 1 is the same reference numerals and will be described with reference to FIGS. 1 to 4.
  • the horizontal axis of the graph indicates the rotational speed of the first rotating member 111 .
  • the rotational speed of the first rotating member 111 is determined by the gear ratio between the clutch input gear 111a and the crank gear G with respect to the rotational speed of the crankshaft CL.
  • the first weight 123 rotates at the same speed as the first rotating member 111 .
  • the second weight 131 rotates at the same speed as the first rotating member 111 .
  • the vertical axis of the graph indicates the amount of displacement of the first weight 123 .
  • the vertical axis indicates positions L1, L2, and L3 of the first weight 123 shown in FIGS.
  • the graph also shows the length in the rotation axis direction A from the operating force transmission member 121 to the second pressure plate 117 .
  • This length is represented by, for example, the shortest distance between the operating force transmission member 121 and the second pressure plate 117 in the direction A of the rotation axis.
  • the length can also be represented by the longest distance in the rotation axis direction A, for example.
  • the first rotating member 111 rotates at a speed smaller than or equal to the speed N1.
  • This rotational speed is, for example, the idling state of the engine EG.
  • the first weight 123 is at the initial position L1 shown in FIG.
  • the speed N1 is the speed at which the centrifugal force applied to the first weight 123 and the biasing force of the first elastic body 119 are balanced.
  • the accelerator operation increases the rotation speed of the first rotating member 111 and exceeds the speed N1
  • the first weight 123 moves outward against the biasing force of the first elastic body 119 .
  • the centrifugal clutch 10 is connected. The vehicle starts running.
  • the first weight 123 resists the biasing force of the second elastic body 116 and moves outward from the connection position L2.
  • the first weight 123 stops at position L3 (see also FIG. 3).
  • the speed N2 of the second weight 131 at which the centrifugal force applied to the second weight 131 and the biasing force of the third elastic body 133 that suppresses the movement of the second weight 131 are balanced is due to the centrifugal force applied to the second weight 131. is smaller than the speed N3 at which the force received by the second pressure plate 117 and the biasing force of the second elastic body 116 are balanced.
  • the second weight 131 of the relative movement mechanism 130 attempts to move outward against the biasing force of the third elastic body 133.
  • Relative movement mechanism 130 attempts to move operating force transmission member 121 relative to second pressure plate 117 .
  • no gap is generated between the second pressure plate 117 and the operating force transmission member 121 . Therefore, the operating force transmission member 121 does not move and only presses in the pressing direction P. As shown in FIG.
  • the relative movement mechanism 130 moves the operating force transmission member 121 relative to the second pressure plate 117 so as to reduce or eliminate a gap (for example, S in FIG. 5) that may occur at this time.
  • the relative movement mechanism 130 moves the operating force transmission member 121 relative to the second pressure plate 117 when the rotation speed of the first rotating member 111 exceeds the speed N3. It is possible to move Therefore, a gap (for example, S in FIG. 5) is less likely to occur in a wide speed range.
  • FIG. 7 is a cross-sectional view schematically showing a centrifugal clutch according to a third embodiment of the invention.
  • a relative movement mechanism 330 of the centrifugal clutch 30 of FIG. 7 has a one-way slide mechanism 340 .
  • the relative movement mechanism 330 has bearings 350 .
  • the bearing 350 rotatably supports the one-way slide mechanism 340 with respect to the second pressure plate 117 .
  • One-way slide mechanism 340 is interposed between second pressure plate 117 and operating force transmission member 121 .
  • the one-way slide mechanism 340 is configured to be freely extendable when the second pressure plate 117 is pushed by the first pressure plate 115 and moves in the release direction R. Further, the one-way slide mechanism 340 is configured to restrict contraction when the operating force transmission member 121 receives an operating force and moves in the release direction R.
  • one-way slide mechanism 340 includes slide housing 341 , ratchet 342 , ratchet spring 343 , extension spring 344 and transmission member extension 345 .
  • the second rotating member 112 is provided with a releasing portion 112a.
  • Slide housing 341 is rotatably supported by second pressure plate 117 via bearing 350 .
  • the slide housing 341 moves in the rotational axis direction A together with the second pressure plate 117 .
  • the slide housing 341 is cylindrical with a bottom.
  • the transmission member extension 345 is housed in the slide housing 341 .
  • the transmission member extension portion 345 is a member that extends from the operating force transmission member 121 .
  • a wedge-shaped ratchet 342 is provided between the inner surface of the slide housing 341 and the operating force transmission member 121 .
  • the ratchet 342 is pushed between the slide housing 341 and the operating force transmission member 121 by being biased by the ratchet spring 343 . Movement of the operating force transmission member 121 with respect to the slide housing 341 is blocked.
  • Other configurations in this embodiment are the same as those in the first embodiment shown in FIG. Therefore, common elements are denoted by the same reference numerals as in the first embodiment, and differences from the first embodiment will be mainly described.
  • FIG. 8 is a cross-sectional view explaining the state of the centrifugal clutch rotating at a higher speed than the state of FIG.
  • the first weight 123 moves the second pressure plate 117 in the release direction R while moving outward from the connection position L2.
  • the one-way slide mechanism 340 can be freely extended. Accordingly, the one-way slide mechanism 340 moves the operating force transmission member 121 relative to the second pressure plate 117 .
  • the one-way slide mechanism 340 moves the operating force transmitting member 121 so as to reduce or eliminate the gap in the rotational axis direction A between the operating force transmitting member 121 and the second pressure plate 117 . More specifically, the transmission member extension 345 biased in the pressing direction P by the extension spring 344 is pushed out toward the operating force transmission member 121 .
  • the operating force transmission member 121 moves in the pressing direction P when the clutch lever LV is released from operation.
  • the ratchet 342 keeps the one-way slide mechanism 340 from being deformed. Therefore, the entire one-way slide mechanism 340 moves in the pressing direction P together with the operating force transmission member 121 .
  • Centrifugal clutch 30 returns to the engaged state.
  • the ratchet 342 hits the release portion 112a. The restriction by the ratchet 342 is released when the ratchet 342 hits the release portion 112a.
  • FIG. 9 is a cross-sectional view schematically showing a centrifugal clutch according to a fourth embodiment of the invention.
  • the second pressure plate 117 of the centrifugal clutch 10 in FIG. 9 has a second cam portion 141.
  • the second weight 131 receives torque from the second pressure plate 117 to accelerate and decelerate its rotation.
  • the second cam portion 141 is formed on the second pressure plate 117 so as to transmit deceleration torque to the second weight 131 and move the second weight 131 radially inward.
  • the second cam portion 141 of the second pressure plate 117 of the present embodiment is configured by a plane having a normal that obliquely intersects the circumference of the second pressure plate 117 centered on the rotation axis Ax. .
  • the plane of the second cam portion 141 obliquely intersects with the radial direction.
  • the second weight 131 of the relative movement mechanism 130 moves outward due to the centrifugal force that the second weight 131 receives.
  • the second cam portion 141 applies radially inward force to the second weight 131 when decelerating the rotation. Therefore, even if frictional force is generated between the second weight 131 and the first cam portion 132, the second weight 131 tends to return radially inward when the rotation is decelerated.
  • FIG. 10(a) shows the state in which the engine EG is stopped.
  • the second weight 131 of the centrifugal clutch 10 of this embodiment is composed of two weights 131a and 131b.
  • the two weights 131a and 131b are coupled by a third elastic body 133 and urged inward by the urging force C2 of the third elastic body 133.
  • No centrifugal force is generated in the second weight 131 (131a, 131b) when the rotation is stopped.
  • the first weight 123 is at the initial position L1 as shown in FIG.
  • a second cam portion 141 and a wall 142 are formed on the second pressure plate 117 .
  • the second pressure plate 117 When the rotation starts, the second pressure plate 117 also rotates via the first rotating member 111. At this time, the second weight 131 receives a force F1 in the direction of rotation of the second pressure plate 117 by the wall 142 formed on the second pressure plate 117 and rotates in the same direction as the second pressure plate 117 .
  • the second weight 131 (131a, 131b) rotates, the second weight 131 generates a centrifugal force C1.
  • the magnitude of the centrifugal force C1 generated in the second weight 131 moves outward against the biasing force C2 of the third elastic body 133, thereby exerting an operating force on the first cam portion 132. less than the degree that gives Therefore, when the engine EG is in the idling operation state, the second weights 131 (131a, 131b) do not move from the positions shown in FIG. 10(a).
  • FIG. 10(b) shows the state of the centrifugal clutch 10 when the crankshaft CL is rotating.
  • the centrifugal force C1 that the second weight 131 receives increases, as shown in FIG. 10(b).
  • the two weights 131a and 131b constituting the second weight 131 move outward along the wall 142 against the biasing force C2 of the third elastic body 133 respectively.
  • the first weight 123 moves from the initial position L1 as shown in FIG. 1 to the position L3 as shown in FIG. It moves further outward along the 1 cam portion 132 .
  • the second weight 131 pushes the operating force transmission member 121 in the pressing direction P relative to the second pressure plate 117 via the displacement member 134 (see FIG. 9). At this time, a frictional force is generated between the second weight 131 and the first cam portion 132 and the displacement member 134 .
  • FIGS. 10(c) and (d) show the state of the centrifugal clutch 10 in which the crankshaft CL is decelerated from the state of FIG. 10(b).
  • the second pressure plate 117 also decelerates.
  • the second cam portion 141 contacts the second weight 131 to transmit deceleration torque.
  • the second weight 131 leaves the wall 142 of the second pressure plate 117 and contacts the second cam portion 141 .
  • the second weight 131 applies a rotating force F2 to the second cam portion 141 and receives a reaction force F3.
  • the centrifugal force applied to the two weights 131a and 131b becomes smaller than the state shown in FIG. 10(b).
  • an inward force acts on the two weights 131a and 131b due to the biasing force C2 of the third elastic body 133.
  • the second weight 131 may become difficult to return inward due to the frictional force generated between the first cam portion 132 and the displacement member 134 .
  • the second weight 131 in this embodiment receives a reaction force F3 from the second cam portion 141, as shown in FIG. 10(c). As a result, the two weights 131a and 131b move inward along the second cam portion 141, respectively.
  • the two weights 131a and 131b are released from the frictional force generated between the first cam portion 132 and the displacement member 134, and the biasing force of the third elastic body 133 causes the weights 131a and 131b to move inward.
  • the second weight 131 that has received the centrifugal force moves outward from its original position, it easily returns to its original position when the centrifugal force decreases. Therefore, displacement of the second pressure plate 117 in the direction of the rotation axis Ax caused by the first weight 123 receiving the centrifugal force moving outward from the connection position is likely to return when the centrifugal force is reduced. Therefore, it is possible to more precisely suppress the change in the connection position between when the vehicle starts running and when the vehicle is running. Therefore, for example, a change in connection position between when the vehicle starts running and when the vehicle is running can be easily suppressed.
  • FIG. 11 is a diagram showing an example of the centrifugal clutch of the embodiment described above.
  • 11(a) is a cross-sectional view in the rotation axis direction
  • FIG. 11(b) is a view of the relative movement mechanism 130 in FIG.
  • Elements of the centrifugal clutch shown in FIG. 11 are assigned the same reference numerals as in the first to fourth embodiments.
  • the first cam portion 132 in this embodiment is provided on the displacement member 134 . More specifically, a portion of the peripheral edge of the washer portion 134b of the displacement member 134 is formed thick.
  • the first cam portion 132 is composed of an inclined surface of the thick portion of the washer portion 134b.
  • the second cam portion 141 is provided on the second pressure plate 117 . More specifically, the second pressure plate 117 is provided with a hole 143 penetrating in the rotational axis direction A. As shown in FIG. A second cam portion 141 and a wall 142 are provided in the hole 143 .
  • the second weight 131 has a protrusion 131c. Projection 131 c is received in hole 143 of second pressure plate 117 .
  • the projecting portion 131 c functions as a cam follower that receives the action of the second cam portion 141 .
  • the second weight 131 assumes a position rotated relative to the second pressure plate 117 .
  • the reference line Y1 between the two weights 131a, 131b rotates as indicated by Y2.
  • the projecting portion 131c of the second weight 131 contacts the second cam portion 141 and moves inward along the second cam portion 141 .
  • the second weight 131 moves inward due to the biasing force of the third elastic body 133 .
  • the inward movement of the second weight 131 is promoted by the action of the second cam portion 141 .
  • the position X3 of the inwardly moved second weight 131 (131a) is indicated by a two-dot chain line
  • the position X4 of the projecting portion 131c is also indicated by a two-dot chain line.
  • the second weight 131 rotates relative to the second pressure plate 117 in a direction opposite to the direction in which the second pressure plate 117 rotates and returns to its original position. return. At this time, the projection 131c of the second weight 131 contacts the wall 142. As shown in FIG. After that, when the rotational speed further increases, the projection 131c of the second weight 131 moves outward along the wall 142 .
  • FIG. 12 is a side view showing a straddle-type vehicle to which the centrifugal clutch of the embodiment is applied.
  • the straddle-type vehicle 1 shown in FIG. 12 is also one embodiment of the present invention.
  • a straddle-type vehicle 1 shown in FIG. 12 is a motorcycle.
  • a straddle-type vehicle 1 includes an engine EG, a transmission MT, and centrifugal clutches (10, 30). Centrifugal clutches (10, 30) transmit rotational driving force of engine EG to transmission MT.
  • the transmission MT is operated by the foot of the driver of the straddle-type vehicle 1 .
  • the straddle-type vehicle 1 also includes a clutch lever LV and drive wheels 5 .
  • the clutch lever LV is operated by the driver of the straddle-type vehicle 1 .
  • Centrifugal clutches (10, 30) switch between a connected state in which rotational driving force is transmitted from the engine EG to the transmission MT and a released state in which the transmission is released, in response to operation of a clutch lever LV.
  • the centrifugal clutch (10, 30) also switches between a connected state and a released state according to the rotation speed of the engine EG.
  • the transmission MT transmits rotational driving force to the drive wheels 5 .
  • the straddle-type vehicle 1 travels by driving the driving wheels 5 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)

Abstract

The purpose of the present invention is to provide a centrifugal clutch capable of suppressing, itself, the effects of friction on a connection state of a friction plate, and also suppressing, itself, a change in a connection position caused by rotation speed. The centrifugal clutch comprises: a first friction plate; a second friction plate; a first pressure plate; a second elastic body; a second pressure plate; a movement range restriction unit; a first elastic body; an operation force transmission member; a first pressure plate drive unit; and a first weight. The first weight moves to a connection position at which engagement of the first friction plate and the second friction plate is complete, and at which there is leeway allowing further movement toward the outside. The centrifugal clutch further comprises a relative movement mechanism, and when the first weight moves further toward the outside than the connection position, thus causing the second pressure plate to be moved in a release direction, the mechanism causes the operation force transmission member to move relative to the second pressure plate so as to decrease or eliminate a gap which forms between the operation force transmission member and the second pressure plate.

Description

遠心クラッチ、及びストラドルドビークルCentrifugal clutch and straddled vehicle
 本発明は、動力源の回転駆動力をトランスミッションに伝達する、操作可能に構成された遠心クラッチに関する。 The present invention relates to an operable centrifugal clutch that transmits the rotational driving force of a power source to a transmission.
 例えば、特許文献1には、車両に設けられる遠心クラッチが示されている。特許文献1の遠心クラッチは、動力源であるエンジンの回転駆動力をトランスミッションに伝達する。特許文献1の遠心クラッチは、摩擦板(ドライブプレート及びドリブンプレート)、ウェイト、及び断続機構を有する。各摩擦板は、圧接することで係合する。各摩擦板が係合することによりエンジンの回転駆動力がトランスミッション機構に伝達される。ウェイトが、回転に伴う遠心力によって移動することで、各摩擦板が互いに係合する。これによって回転駆動力が伝達される。断続機構は、例えばプッシュロッドを有する。断続機構の動作により各摩擦板が互いに引き離されると、回転駆動力の伝達が切断され、クラッチがリリース状態になる。 For example, Patent Document 1 shows a centrifugal clutch provided in a vehicle. The centrifugal clutch disclosed in Patent Document 1 transmits rotational driving force of an engine, which is a power source, to a transmission. The centrifugal clutch of Patent Document 1 has friction plates (drive plate and driven plate), weights, and an intermittent mechanism. Each friction plate is engaged by pressing. Rotational driving force of the engine is transmitted to the transmission mechanism by the engagement of each friction plate. The weights are moved by the centrifugal force associated with the rotation, so that the respective friction plates are engaged with each other. Rotation driving force is thereby transmitted. The disconnecting mechanism has, for example, a push rod. When the friction plates are separated from each other by the operation of the connecting/disconnecting mechanism, the transmission of the rotational driving force is cut off and the clutch is released.
特開平10-176727号公報JP-A-10-176727
 各摩擦板を互いに引き離す機構として、例えば、クラッチレバーからの操作力で動作する機構が考えられる。クラッチレバーが操作されるとき、クラッチレバーが変位する途中の位置で動力伝達のリリース状態が接続状態に変わる。 As a mechanism for separating the friction plates from each other, for example, a mechanism operated by an operating force from a clutch lever can be considered. When the clutch lever is operated, the released state of power transmission changes to the connected state at a position in the middle of the displacement of the clutch lever.
 各摩擦板は、遠心クラッチの使用に伴い摩耗する。摩耗によって各摩擦板の厚みが減少すると、各摩擦板が摩耗前における係合位置にあっても係合が完成しない場合がある。また、摩擦板の摩耗は、ウェイトが遠心力によって移動する場合における各摩擦板の係合にも影響する。また、遠心クラッチにおけるウェイトが移動する位置と、クラッチレバーにおける接続位置も互いに関連する。  Each friction plate wears as the centrifugal clutch is used. If the thickness of each friction plate decreases due to wear, the engagement may not be completed even if each friction plate is in the engaged position before wear. Wear of the friction plates also affects the engagement of the friction plates when the weight moves due to centrifugal force. Further, the position where the weight moves on the centrifugal clutch and the connection position on the clutch lever are also related to each other.
 遠心クラッチでは、摩耗による摩擦板の接続状態への影響を自ら抑えつつ、回転速度による接続位置の変化も自ら抑えることが望まれている。 In the centrifugal clutch, it is desired to suppress the influence of wear on the connection state of the friction plates, and also to suppress the change in the connection position due to the rotation speed.
 本発明の目的は、摩耗による摩擦板の接続状態への影響を自ら抑えつつ、回転速度による接続位置の変化も自ら抑えることが可能な遠心クラッチ、及び鞍乗型車両を提供することである。 An object of the present invention is to provide a centrifugal clutch and a straddle-type vehicle that can suppress the influence of wear on the connection state of the friction plates and also suppress changes in the connection position due to rotational speed.
 特許文献1の遠心クラッチは、調整のためのねじを内部に有する。特許文献1の遠心クラッチでは、ねじを調整することで摩耗に伴い増大する各摩擦板の隙間の大きさが調整される。
 しかし、特許文献1の遠心クラッチは、摩耗の程度に応じて遠心クラッチ内部のねじを調整することが求められる。
The centrifugal clutch of Patent Document 1 has a screw for adjustment inside. In the centrifugal clutch of Patent Document 1, the size of the clearance between the friction plates, which increases with wear, is adjusted by adjusting the screws.
However, the centrifugal clutch of Patent Document 1 is required to adjust the screw inside the centrifugal clutch according to the degree of wear.
 本発明者は、隙間の調整に関して、遠心力によるウェイトの移動に着目した。
 例えば、ウェイトは、回転速度の上昇に伴い遠心力を受け外方へ移動することで、各摩擦板を係合させる。ウェイトが接続位置へ移動すると、摩擦板の係合が完成する。
 本発明者は、摩擦板が係合する接続位置にあるウェイトが、更に外方へ移動可能な余裕を有するような構成を考えた。この構成の場合、接続位置のウェイトは、更に大きな遠心力を受けることによって接続位置よりも外方へ移動する。各摩擦板に摩耗が生じても、ウェイトが接続位置よりも外方へ移動する途中で、各摩擦板の係合が完成する。これによって、摩耗が生じても、ねじ等の操作でなく遠心力によって各摩擦板の係合が完成する。
The inventor focused on movement of the weight due to centrifugal force in relation to the adjustment of the gap.
For example, the weight receives centrifugal force and moves outward as the rotational speed increases, thereby engaging each friction plate. Engagement of the friction plates is completed when the weight moves to the connected position.
The inventor considered a configuration in which the weight at the connection position where the friction plate engages has a margin for further outward movement. In this configuration, the weight at the connection position moves outward from the connection position by receiving a larger centrifugal force. Even if each friction plate wears, the engagement of each friction plate is completed while the weight is moving outward from the connecting position. As a result, even if wear occurs, the engagement of each friction plate is completed by centrifugal force rather than screwing.
 しかし、例えば各摩擦板が摩耗していない状態でウェイトが接続位置よりも外方へ移動する場合、ウェイトは、摩擦板を更に押付けることはできない。このため、接続位置よりも外方へ移動するウェイトは、摩擦板を押付ける反力によって第2プレッシャプレートをリリース方向へ移動させる。リリース方向は、押付方向とは逆の方向である。この結果、ウェイトが接続位置よりも外方にある場合、クラッチレバーがリリース位置まで変位する変位量は、ウェイトが接続位置にある場合の変位量と異なる。即ち、クラッチレバーの操作開始からリリース状態になる位置までのクラッチレバーの操作量が、回転速度によって異なることとなる。
 なお、遠心クラッチが例えば電動アクチュエータの操作力によって動作する場合、上記の変位量は、電動アクチュエータが所定の接続位置まで動作した場合における摩擦板の係合状態の完成度の変化として表れる。
However, if the weight moves outward from the connecting position, for example when each friction plate is not worn, the weight cannot press the friction plate further. Therefore, the weight that moves outward from the connection position moves the second pressure plate in the release direction by the reaction force that presses the friction plate. The release direction is the direction opposite to the pressing direction. As a result, when the weight is outside the engaged position, the amount of displacement of the clutch lever to the released position differs from the amount of displacement when the weight is in the engaged position. That is, the amount of operation of the clutch lever from the start of operation of the clutch lever to the position where it is released differs depending on the rotation speed.
When the centrifugal clutch is operated by, for example, an operating force of an electric actuator, the above displacement amount appears as a change in the degree of perfection of the engagement state of the friction plates when the electric actuator is operated to a predetermined connecting position.
 本発明者は、第2プレッシャプレートがリリース方向へ移動するときに、クラッチレバーの操作力を伝達する操作力伝達部材を第2プレッシャプレートに対し相対的に移動させることを思いついた。具体的には、相対移動機構を設けることが考えられる。相対移動機構は、操作力伝達部材と第2プレッシャプレートの間に生じる隙間を小さく又は無くすように操作力伝達部材を第2プレッシャプレートに対し相対的に移動させる。
 これによって遠心クラッチは、ねじ等の調整操作やアクチュエータによる調整機構の追加無しに、摩耗によるクラッチレバーの接続位置の変化を自ら抑えることができる。
The inventor of the present invention came up with the idea of moving the operating force transmission member that transmits the operating force of the clutch lever relative to the second pressure plate when the second pressure plate moves in the releasing direction. Specifically, it is conceivable to provide a relative movement mechanism. The relative movement mechanism moves the operating force transmission member relative to the second pressure plate so as to reduce or eliminate a gap between the operating force transmission member and the second pressure plate.
As a result, the centrifugal clutch itself can suppress changes in the connection position of the clutch lever due to wear, without adjusting screws or adding an adjusting mechanism using an actuator.
 以上の知見に基づいて完成した本発明の各観点による遠心クラッチは、次の構成を備える。 The centrifugal clutch according to each aspect of the present invention completed based on the above knowledge has the following configuration.
 (1) 動力源の回転駆動力をトランスミッションに伝達する操作可能な遠心クラッチであって、
 前記遠心クラッチは、
 前記動力源の回転駆動力を受ける第1回転部材(111)と一体に回転する第1摩擦板(113)と、
 第2回転部材と一体に回転する第2摩擦板(114)と、
 前記第1摩擦板及び前記第2摩擦板のうち一方の摩擦板を他方の摩擦板に回転軸線と平行な押付方向に押し付け前記第1摩擦板および前記第2摩擦板を相互に係合させる第1プレッシャプレート(115)と、
 前記第1プレッシャプレートと前記第1摩擦板及び前記第2摩擦板との間に介在せずに、前記第1プレッシャプレートを前記押付方向とは逆のリリース方向へ付勢するように配置された第1弾性体(119)と、
 前記回転軸線上において前記第1プレッシャプレートと互いに相対移動可能に配置された第2プレッシャプレート(117)と、
 前記第2プレッシャプレートを前記押付方向へ付勢する第2弾性体(116)と、
 前記第2プレッシャプレートの前記押付方向への移動の範囲を規制する移動範囲規制部(118)と、
 前記遠心クラッチをリリースするための操作力を受けることにより、前記リリース方向へ前記第2プレッシャプレートを押すことにより、前記第2プレッシャプレートを前記第2弾性体の付勢力に抗して前記リリース方向へ変位させる操作力伝達部材(121)と、
 前記回転軸線の方向における前記第2プレッシャプレートと前記第1プレッシャプレートの間に配置され、前記第1回転部材の回転の遠心力を受け前記回転軸線の径方向の外方に移動する第1のウェイト(123)と、
 前記第1のウェイトの前記外方への移動に応じて、前記第1プレッシャプレートを前記押付方向に押し付けるように構成された第1プレッシャプレート駆動部(122)と
を備えた遠心クラッチ(10,30)であって、
次のことを特徴とする:
 前記第1のウェイト(123)は、前記遠心力を受け前記第1弾性体(119)の付勢力に抗して前記第1プレッシャプレートを前記押付方向に移動させながら前記外方へ移動することで、更に前記外方へ移動可能な余裕を有しつつ前記第1摩擦板および前記第2摩擦板の係合を完了する接続位置へ移動し、更に大きな前記遠心力を受けることによって前記接続位置よりも前記外方へ移動することで前記第2弾性体(116)の付勢力に抗して前記第2プレッシャプレートを前記リリース方向へ移動させ、
 前記遠心クラッチは、前記第1のウェイト(123)が前記接続位置よりも前記外方に移動することによって前記第2プレッシャプレート(117)を前記リリース方向へ移動させるときに、前記操作力伝達部材と前記第2プレッシャプレートの間に生じる隙間を小さく又は無くすように前記操作力伝達部材を前記第2プレッシャプレートに対し相対的にアクチュエータによらずに移動させる相対移動機構(130,330)を更に備える、
遠心クラッチ。
(1) An operable centrifugal clutch for transmitting rotational driving force of a power source to a transmission,
The centrifugal clutch is
a first friction plate (113) that rotates integrally with a first rotating member (111) that receives the rotational driving force of the power source;
a second friction plate (114) that rotates integrally with the second rotating member;
One of the first friction plates and the second friction plates is pressed against the other friction plate in a pressing direction parallel to the axis of rotation to engage the first friction plates and the second friction plates with each other. 1 pressure plate (115);
not interposed between the first pressure plate and the first friction plate and the second friction plate, but arranged so as to bias the first pressure plate in the release direction opposite to the pressing direction; a first elastic body (119);
a second pressure plate (117) arranged to be movable relative to the first pressure plate on the rotation axis;
a second elastic body (116) that biases the second pressure plate in the pressing direction;
a movement range regulating portion (118) that regulates the range of movement of the second pressure plate in the pressing direction;
By receiving an operating force for releasing the centrifugal clutch and pushing the second pressure plate in the release direction, the second pressure plate is moved in the release direction against the biasing force of the second elastic body. An operating force transmission member (121) displaced to
A first pressure plate disposed between the second pressure plate and the first pressure plate in the direction of the rotation axis and moving radially outward of the rotation axis under centrifugal force of the rotation of the first rotating member. a weight (123);
a centrifugal clutch (10, 30) and
Characterized by:
The first weight (123) receives the centrifugal force and moves outward while moving the first pressure plate in the pressing direction against the biasing force of the first elastic body (119). and moves to the connection position where the engagement between the first friction plate and the second friction plate is completed while still having the margin for the outward movement, and receives the greater centrifugal force, thereby moving to the connection position. moving the second pressure plate in the release direction against the biasing force of the second elastic body (116) by moving the second pressure plate in the outward direction;
When the first weight (123) moves outward from the connection position, the centrifugal clutch moves the second pressure plate (117) in the release direction. and a relative movement mechanism (130, 330) for moving the operating force transmission member relative to the second pressure plate without using an actuator so as to reduce or eliminate the gap generated between the second pressure plate and the prepare
centrifugal clutch.
 遠心クラッチは、回転駆動力の伝達経路における、動力源とトランスミッションの間の位置に配置される。例えば、遠心クラッチは、動力源の出力軸と接続される。例えば、遠心クラッチは、トランスミッションと接続される。
 遠心クラッチは、例えば、動力源の出力軸以外の駆動力伝達部品を介して出力軸と接続されてもよい。遠心クラッチは、例えば、トランスミッション以外の駆動力伝達部品を介してトランスミッションと接続されてもよい。
 トランスミッションは、例えば、運転者の操作力を受け、変速比を切替えるマニュアルトランスミッションである。トランスミッションは、運転者の足で操作される。トランスミッションは、運転者の足から受ける操作力で変速比を切替える。
The centrifugal clutch is arranged at a position between the power source and the transmission in the rotational drive transmission path. For example, a centrifugal clutch is connected with the output shaft of the power source. For example, a centrifugal clutch is connected with the transmission.
For example, the centrifugal clutch may be connected to the output shaft via a driving force transmission component other than the output shaft of the power source. The centrifugal clutch may, for example, be connected to the transmission via a driving force transmission component other than the transmission.
The transmission is, for example, a manual transmission that receives a driver's operation force and switches the gear ratio. The transmission is operated by the driver's foot. The transmission switches gear ratios by operating force received from the driver's feet.
 (1)の構成において、第2弾性体は、第2プレッシャプレートを押付方向へ付勢するための弾性体である。
 しかし、移動範囲規制部によって、第2プレッシャプレートの押付方向への移動の範囲が規制される。また、第1弾性体が、第1プレッシャプレートをリリース方向へ付勢する。このため、第1プレッシャプレートは、第1摩擦板および第2摩擦板を相互に係合する位置まで移動していない。つまり、第1摩擦板および第2摩擦板は係合していない。
 第1回転部材が動力源の回転駆動力を受け回転すると、第1のウェイトが第1回転部材と共に回転する。第1のウェイトは、回転の遠心力を受け第1プレッシャプレート駆動部に沿って外方に移動する。外方は、回転軸線から遠ざかる方向である。
 第2プレッシャプレートと第1プレッシャプレートの互いに対面する面の一方又は両方には第1プレッシャプレート駆動部が設けられている。第1プレッシャプレート駆動部は、例えば斜面部である。第1プレッシャプレート駆動部は、径方向における外方ほど第2プレッシャプレートおよび第1プレッシャプレートの間隔が小さくなるように形成されている。
 第1のウェイトは、第1プレッシャプレート駆動部に沿って外方へ移動することで、第1弾性体の付勢力に抗して、第1プレッシャプレートを押付方向に移動させる。第1プレッシャプレートは、第1摩擦板及び第2摩擦板のうちの一方の摩擦板を他方の摩擦板に押付方向に押し付ける。これによって、第1摩擦板および第2摩擦板が相互に係合する。
 第1のウェイトは、遠心力を受け、まず、接続位置へ移動する。接続位置は、第1摩擦板および第2摩擦板の係合を完了する位置である。第1のウェイトが接続位置まで移動すると、遠心クラッチが接続状態となる。接続位置は、また、第1のウェイトが更に外方へ移動可能な余裕を有する位置である。
 第1のウェイトは、更に大きな遠心力を受けることによって、次に、接続位置よりも外方へ移動する。これによって、第1のウェイトは、第2弾性体の付勢力に抗して第2プレッシャプレートをリリース方向へ移動させる。
In the configuration of (1), the second elastic body is an elastic body for urging the second pressure plate in the pressing direction.
However, the range of movement of the second pressure plate in the pressing direction is regulated by the movement range regulating portion. Also, the first elastic body urges the first pressure plate in the release direction. Therefore, the first pressure plate has not moved to the position where the first friction plate and the second friction plate engage with each other. That is, the first friction plate and the second friction plate are not engaged.
When the first rotating member receives the rotational driving force of the power source and rotates, the first weight rotates together with the first rotating member. The first weight moves outward along the first pressure plate drive under the centrifugal force of rotation. Outward is the direction away from the axis of rotation.
A first pressure plate driving section is provided on one or both of the mutually facing surfaces of the second pressure plate and the first pressure plate. The first pressure plate driving portion is, for example, a slope portion. The first pressure plate driving portion is formed such that the distance between the second pressure plate and the first pressure plate becomes smaller toward the outer side in the radial direction.
The first weight moves outward along the first pressure plate driving portion to move the first pressure plate in the pressing direction against the biasing force of the first elastic body. The first pressure plate presses one of the first friction plate and the second friction plate against the other friction plate in the pressing direction. This causes the first friction plate and the second friction plate to engage with each other.
The first weight receives centrifugal force and moves first to the connecting position. The connection position is the position at which the engagement of the first friction plate and the second friction plate is completed. When the first weight moves to the engaged position, the centrifugal clutch is engaged. The connected position is also the position where the first weight has room to move further outward.
The first weight then moves outward from the connecting position by being subjected to a greater centrifugal force. Thereby, the first weight moves the second pressure plate in the release direction against the biasing force of the second elastic body.
 例えば、第1摩擦板および第2摩擦板が摩耗する場合、第1摩擦板および第2摩擦板の軸方向での厚みが減少する。このため、摩耗する前の接続位置に第1のウェイトが移動しても、第1摩擦板および第2摩擦板の係合が完了しない。つまり、接続状態が不完全となる可能性がある。
 しかし、(1)の構成によれば、第1のウェイトは、接続位置では、更に外方へ移動可能な余裕を有する。このため、第1摩擦板および第2摩擦板が摩耗した場合、第1のウェイトは、初期の接続位置よりも外方へ移動する。これによって、第1摩擦板および第2摩擦板が係合を完了できる。従って、摩耗が生じても、ねじ等の調整操作無しに、遠心力によって接続状態が実現する。
For example, when the first friction plate and the second friction plate wear, the axial thickness of the first friction plate and the second friction plate decreases. Therefore, even if the first weight moves to the connecting position before it is worn, the engagement between the first friction plate and the second friction plate is not completed. In other words, the connection state may become incomplete.
However, according to the configuration (1), the first weight has room to move further outward at the connection position. Therefore, when the first friction plate and the second friction plate wear, the first weight moves outward from the initial connection position. This allows the first friction plate and the second friction plate to complete engagement. Therefore, even if wear occurs, the connected state can be achieved by centrifugal force without adjustment of screws or the like.
 また、操作力伝達部材は、遠心クラッチをリリースするための操作力を受け、第2プレッシャプレートを変位させる。操作力伝達部材は、操作力を受け、第2プレッシャプレートを第2弾性体の押付力に抗してリリース方向へ変位させる。これによって、遠心クラッチはリリース状態になる。つまり、例えばクラッチレバーの操作によって、遠心クラッチはリリース状態になる。
 このようにして、遠心クラッチにおいて、遠心力に起因した接続状態と、操作力によるリリース状態が実現する。
Further, the operating force transmission member receives an operating force for releasing the centrifugal clutch and displaces the second pressure plate. The operating force transmission member receives the operating force and displaces the second pressure plate in the release direction against the pressing force of the second elastic body. This releases the centrifugal clutch. That is, the centrifugal clutch is released, for example, by operating the clutch lever.
Thus, in the centrifugal clutch, a connected state caused by centrifugal force and a released state caused by operating force are realized.
 (1)の遠心クラッチでは、第1のウェイトが接続位置よりも外方へ移動する場合、第1のウェイトは、第2弾性体の付勢力に抗して第2プレッシャプレートをリリース方向へ移動させる。この場合に、操作力伝達部材と第2プレッシャプレートの間に隙間が生じたり、または、隙間が大きくなったりすると、例えばクラッチレバーの操作位置において、非操作位置からリリース位置までの操作量が増大する。クラッチレバーの非操作位置からリリース位置までの操作量は、クラッチレバーの遊びに相当する。つまり、第1のウェイトが接続位置にある場合と、接続位置よりも外方にある場合とで、クラッチレバーの遊びが異なる。例えば、電動アクチュエータが操作力を出力する場合も、遊びによる影響が生じる。 In the centrifugal clutch of (1), when the first weight moves outward from the connected position, the first weight moves the second pressure plate in the release direction against the biasing force of the second elastic body. Let In this case, if there is a gap between the operating force transmission member and the second pressure plate, or if the gap increases, the amount of operation from the non-operating position to the releasing position increases, for example, when the clutch lever is in the operating position. do. The amount of operation from the non-operating position to the released position of the clutch lever corresponds to play of the clutch lever. That is, play of the clutch lever differs between when the first weight is at the connected position and when it is outside the connected position. For example, even when an electric actuator outputs an operating force, there is an effect due to play.
 (1)の構成によれば、相対移動機構が、第1のウェイトが第2プレッシャプレートをリリース方向へ移動させるときに、操作力伝達部材と第2プレッシャプレートの間に生じる隙間を小さく又は無くすように操作力伝達部材を第2プレッシャプレートに対し相対的に移動させる。相対移動機構は、アクチュエータによらずに操作力伝達部材を第2プレッシャプレートに対し相対的に移動させる。
 これによって、遠心クラッチは、ねじ等の調整操作やアクチュエータによる調整機構の追加無しに、摩耗に起因する操作位置の変化を自ら抑えることができる。
According to the configuration (1), the relative movement mechanism reduces or eliminates the gap generated between the operating force transmission member and the second pressure plate when the first weight moves the second pressure plate in the release direction. , the operating force transmission member is moved relative to the second pressure plate. The relative movement mechanism moves the operating force transmission member relative to the second pressure plate without using the actuator.
As a result, the centrifugal clutch can suppress changes in the operating position due to wear by itself without adjusting screws or adding an adjusting mechanism using an actuator.
 このように、(1)の構成によれば、摩耗による摩擦板の接続状態への影響を自ら抑えつつ、回転速度による接続位置の変化も自ら抑えることができる。 In this way, according to the configuration (1), it is possible to suppress the influence of wear on the connection state of the friction plates and also suppress the change in the connection position due to the rotational speed.
 (2) (1)の遠心クラッチであって、
 前記相対移動機構(130)は、前記第2プレッシャプレート(117)と前記操作力伝達部材(121)の間に介在し、第2のウェイト(131)と、第1カム部(132)とを有し、
 前記第2のウェイト(131)は、前記回転軸線(Ax)周りに回転し、回転の遠心力によって前記外方へ移動し、
 前記第1カム部(131)は、前記第2のウェイト(131)と接触することで、前記第2のウェイト(131)の前記外方への移動によって、前記操作力伝達部材(121)から前記第2プレッシャプレート(117)までの間の前記相対移動機構(130)の前記回転軸線(Ax)の方向での長さを延長する、
遠心クラッチ。
(2) The centrifugal clutch of (1),
The relative movement mechanism (130) is interposed between the second pressure plate (117) and the operating force transmission member (121), and comprises a second weight (131) and a first cam portion (132). have
the second weight (131) rotates around the axis of rotation (Ax) and is moved outward by centrifugal force of rotation;
By contacting the second weight (131), the first cam portion (131) moves from the operating force transmission member (121) by the outward movement of the second weight (131). extending the length in the direction of the rotation axis (Ax) of the relative movement mechanism (130) to the second pressure plate (117);
centrifugal clutch.
 (2)の構成によれば、相対移動機構は、第2プレッシャプレートと操作力伝達部材の間に介在する。相対移動機構は、第2のウェイトと、第1カム部とを有する。第2のウェイトは、回転軸線周りに回転する。第2のウェイトは、回転の遠心力によって外方へ移動する。第2プレッシャプレートは、第2のウェイトの移動によって、操作力伝達部材から第2プレッシャプレートまでの間の相対移動機構の回転軸線の方向の長さを延長する。 According to the configuration (2), the relative movement mechanism is interposed between the second pressure plate and the operating force transmission member. The relative movement mechanism has a second weight and a first cam portion. The second weight rotates around the axis of rotation. The second weight moves outward due to the centrifugal force of rotation. The second pressure plate extends the length in the direction of the rotational axis of the relative movement mechanism from the operating force transmission member to the second pressure plate by movement of the second weight.
 (2)の構成によれば、第2のウェイトが、回転の遠心力によって外方へ移動すると、第2のウェイトと接触する第1カム部によって、操作力伝達部材から第2プレッシャプレートまでの間の相対移動機構の回転軸線の方向の長さが延長される。
 従って、遠心力を受けた第1のウェイトが初期の接続位置よりも外方へ移動することにより生じた第2プレッシャプレートの回転軸線の方向の変位の影響が、遠心力を受ける第2のウェイトとカムとによって吸収されやすい。そのため、走行開始時と走行中とにおける接続位置の変化を、2つのウェイトに共通に作用する遠心力を利用して抑えることができる。従って、例えば走行開始時と走行中とにおける接続位置の変化が、抑えられやすい。
According to the configuration (2), when the second weight moves outward due to the centrifugal force of rotation, the first cam portion in contact with the second weight causes the movement from the operating force transmission member to the second pressure plate. The length in the direction of the rotation axis of the relative movement mechanism between is extended.
Therefore, the displacement of the second pressure plate in the direction of the rotation axis caused by the outward movement of the first weight subjected to the centrifugal force from the initial connection position will have an effect on the second weight subjected to the centrifugal force. and cams. Therefore, it is possible to suppress the change in the connection position between when the vehicle starts running and during the vehicle running by utilizing the centrifugal force acting on the two weights in common. Therefore, for example, a change in connection position between when the vehicle starts running and when the vehicle is running can be easily suppressed.
 (3) (2)の遠心クラッチであって、
 前記相対移動機構(130)は、前記第2プレッシャプレート(117)及び第2のウェイトと共に回転しつつ、前記第2プレッシャプレート(117)に対し前記回転軸線(Ax)の方向に相対的に変位可能な変位部材(134)を有し、
 前記第1カム部(132)は、前記第2プレッシャプレート(171)及び前記変位部材(134)の少なくとも何れかに設けられる、
遠心クラッチ。
(3) The centrifugal clutch of (2),
The relative movement mechanism (130) rotates together with the second pressure plate (117) and the second weight, and displaces relative to the second pressure plate (117) in the direction of the rotation axis (Ax). having a displaceable member (134),
The first cam portion (132) is provided on at least one of the second pressure plate (171) and the displacement member (134),
centrifugal clutch.
 (3)の構成によれば、相対移動機構は、変位部材を有している。変位部材は、第2プレッシャプレートと共に回転する。また、変位部材は、第2プレッシャプレートに対し回転軸線の方向に相対的に変位可能である。第1カム部は、第2プレッシャプレート及び変位部材の少なくとも何れかに設けられる。第2のウェイトが遠心力により外方へ移動すると、第2のウェイトが、第2プレッシャプレート及び変位部材の少なくとも何れかに設けられた第1カム部に作用する。これにより、操作力伝達部材から第2プレッシャプレートまでの回転軸線方向における長さを延長することができる。このため、走行開始時と走行中とにおける接続位置の変化を、2つのウェイトに共通に作用する遠心力を利用して抑えることができる。従って、例えば走行開始時と走行中とにおける接続位置の変化が、抑えられやすい。 According to the configuration of (3), the relative movement mechanism has the displacement member. The displacement member rotates together with the second pressure plate. Also, the displacement member is relatively displaceable in the direction of the rotation axis with respect to the second pressure plate. The first cam portion is provided on at least one of the second pressure plate and the displacement member. When the second weight moves outward due to centrifugal force, the second weight acts on the first cam portion provided on at least one of the second pressure plate and the displacement member. Thereby, the length in the rotation axis direction from the operating force transmission member to the second pressure plate can be extended. Therefore, it is possible to suppress the change in the connection position between when the vehicle starts running and during the vehicle running by utilizing the centrifugal force acting on the two weights in common. Therefore, for example, a change in connection position between when the vehicle starts running and when the vehicle is running can be easily suppressed.
 (4) (2)又は(3)の遠心クラッチであって、
 前記第2のウェイト(131)が受ける遠心力と前記第2のウェイト(131)の移動を抑える第3弾性体(133)の付勢力が釣り合う前記第2のウェイト(131)の回転速度は、前記第2プレッシャプレート(117)が受ける遠心力と前記第2弾性体(116)の付勢力が釣り合う回転速度よりも小さい、
遠心クラッチ。
(4) The centrifugal clutch of (2) or (3),
The rotation speed of the second weight (131) at which the centrifugal force applied to the second weight (131) and the biasing force of the third elastic body (133) that suppresses the movement of the second weight (131) are balanced is It is smaller than the rotation speed at which the centrifugal force applied to the second pressure plate (117) and the biasing force of the second elastic body (116) are balanced.
centrifugal clutch.
 (4)の構成によれば、第2プレッシャプレートが受ける遠心力と第2弾性体が釣り合う速度よりも小さい速度で、第2のウェイトが受ける遠心力と第3弾性体の付勢力が釣り合う。従って、速度が上昇する場面で、第1のウェイトの外方への移動によって第2プレッシャプレートがリリース方向へ移動することに遅れることなく、操作力伝達部材から第2プレッシャプレートまでの回転軸線の方向の長さが延長できる。従って、いずれの速度範囲でも、走行開始時と走行中とにおけるクラッチレバーの接続位置の変化を、2つのウェイトに共通に作用する遠心力を利用して抑えることができる。従って、広い速度範囲において、走行開始時と走行中とにおける接続位置の変化が、抑えられやすい。 According to the configuration (4), the centrifugal force received by the second weight and the biasing force of the third elastic body are balanced at a speed lower than the speed at which the centrifugal force received by the second pressure plate and the second elastic body are balanced. Therefore, when the speed increases, the rotation axis from the operating force transmission member to the second pressure plate does not lag behind the movement of the second pressure plate in the release direction due to the outward movement of the first weight. Directional length can be extended. Therefore, in any speed range, the change in the connection position of the clutch lever at the start of running and during running can be suppressed by utilizing the centrifugal force acting on the two weights in common. Therefore, in a wide range of speeds, it is easy to suppress the change in the connection position between when the vehicle starts running and when it is running.
 (5) (1)から(4)の何れか1つの遠心クラッチであって、
 前記相対移動機構(330)は、
 前記第2プレッシャプレート(117)と前記操作力伝達部材(121)の間に介在し、前記第2プレッシャプレート(117)が前記第1プレッシャプレート(115)に押され前記リリース方向(R)へ移動する場合の伸長が自在であり、前記操作力伝達部材(121)が前記操作力を受け前記リリース方向(R)に移動する場合の収縮が規制される一方向スライド機構(340)を有する、
遠心クラッチ。
(5) The centrifugal clutch of any one of (1) to (4),
The relative movement mechanism (330) is
Interposed between the second pressure plate (117) and the operating force transmission member (121), the second pressure plate (117) is pushed by the first pressure plate (115) in the release direction (R). It has a one-way slide mechanism (340) that is freely expandable when moving and restricts contraction when the operating force transmission member (121) receives the operating force and moves in the release direction (R),
centrifugal clutch.
 (5)の構成によれば、相対移動機構は、第2プレッシャプレートと操作力伝達部材の間に介在する一方向スライド機構を有する。一方向スライド機構は、第2プレッシャプレートが第1プレッシャプレートに押されリリース方向へ移動する場合の伸長が自在である。従って、速度が上昇する場面で、第1のウェイトの外方への移動によって第2プレッシャプレートがリリース方向へ移動するのに遅れることなく、操作力伝達部材から第2プレッシャプレートまでの回転軸線の方向での長さが延長できる。この一方、クラッチレバーが操作される場合に、操作力伝達部材から第2プレッシャプレートまでの回転軸線の方向での長さの収縮が規制される。このため、伸長した長さが維持されたままで、クラッチレバーの操作に応じた第2プレッシャプレートの移動が開始する。
 従って、広い動作範囲において、走行開始時と走行中とにおける接続位置の変化が、抑えられやすい。
According to configuration (5), the relative movement mechanism has a one-way slide mechanism interposed between the second pressure plate and the operating force transmission member. The one-way slide mechanism can freely extend when the second pressure plate is pushed by the first pressure plate and moves in the release direction. Therefore, when the speed increases, the rotation axis from the operating force transmission member to the second pressure plate does not lag behind the movement of the second pressure plate in the release direction due to the outward movement of the first weight. The length in any direction can be extended. On the other hand, when the clutch lever is operated, contraction of the length from the operating force transmission member to the second pressure plate in the direction of the rotation axis is restricted. Therefore, the second pressure plate starts to move in accordance with the operation of the clutch lever while maintaining the extended length.
Therefore, in a wide operating range, it is easy to suppress the change in the connecting position between when the vehicle starts running and when the vehicle is running.
 (6) (2)の遠心クラッチであって、
 前記第2のウェイト(131)は、前記第2プレッシャプレート(117)からトルクの伝達を受けて回転を加速及び減速し、
 前記第2プレッシャプレート(117)は、前記第2のウェイト(131)に減速のトルクを伝達するとともに前記第2のウェイト(131)を前記径方向の内方に移動させるように形成された第2カム部(141)を有する、
遠心クラッチ。
(6) The centrifugal clutch of (2),
The second weight (131) receives torque transmission from the second pressure plate (117) to accelerate and decelerate rotation,
The second pressure plate (117) is formed to transmit deceleration torque to the second weight (131) and move the second weight (131) inward in the radial direction. having two cam parts (141),
centrifugal clutch.
 相対移動機構の第2のウェイトは、第2のウェイトが受ける遠心力により、外方に移動する。外方に移動した第2のウェイトは、第1カム部との間に生じる摩擦力により、遠心力が減少しても外方に移動した状態を維持したまま内方に戻りにくくなる場合がある。(6)の構成によれば、第2プレッシャプレートは、第2カム部を有する。第2カム部は、第2プレッシャプレートの回転が減速する場合に、第2のウェイトを径方向の内方に移動させる。従って、(6)の構成によれば、第2のウェイトは、第1カム部との間に摩擦力が生じていても、回転が減速する場合に径方向の内方に戻りやすくできる。 The second weight of the relative movement mechanism moves outward due to the centrifugal force that the second weight receives. Due to the frictional force generated between the second weight and the first cam portion, the second weight that has moved outward may become difficult to return inward while maintaining the state of outward movement even if the centrifugal force is reduced. . According to the configuration of (6), the second pressure plate has the second cam portion. The second cam portion moves the second weight radially inward when the rotation of the second pressure plate slows down. Therefore, according to the configuration of (6), the second weight can easily return radially inward when the rotation is decelerated even if a frictional force is generated between the second weight and the first cam portion.
 従って、(6)の構成によれば、遠心力を受けた第2のウェイトが元の位置よりも外方へ移動した後、遠心力が減少することにより元の位置に戻りやすい。従って、遠心力を受けた第1のウェイトが接続位置よりも外方へ移動することにより生じた第2プレッシャプレートの回転軸線の方向の変位に対する調整が、遠心力の減少時に、戻りやすい。そのため、走行開始時と走行中とにおける接続位置の変化を、より精密に抑えることができる。従って、例えば走行開始時と走行中とにおける接続位置の変化が、抑えられやすい。 Therefore, according to the configuration of (6), after the second weight that has received the centrifugal force moves outward from the original position, the centrifugal force is reduced and the second weight tends to return to the original position. Therefore, the adjustment of the displacement in the direction of the rotation axis of the second pressure plate caused by the movement of the first weight outward from the connection position, which receives the centrifugal force, is easily restored when the centrifugal force is reduced. Therefore, it is possible to more precisely suppress the change in the connecting position between when the vehicle starts running and when it is running. Therefore, for example, a change in connection position between when the vehicle starts running and when the vehicle is running can be easily suppressed.
 (7)鞍乗型車両であって、
 前記鞍乗型車両は、
 動力源と、
 トランスミッションと、
 前記動力源の回転駆動力を前記トランスミッションに伝達する(1)から(6)のいずれか1つの遠心クラッチと、を備える
 鞍乗型車両。
(7) A straddle-type vehicle,
The straddle-type vehicle
power source;
a transmission;
and a centrifugal clutch according to any one of (1) to (6) for transmitting the rotational driving force of the power source to the transmission.
 (7)の構成によれば、遠心クラッチの摩耗によるクラッチレバーの接続位置の変化を自らの動作で抑えつつ、走行開始時と走行中とにおけるクラッチレバーの接続位置の変化も遠心クラッチ自体の動作で抑えることができる。 According to the configuration (7), while suppressing the change in the connection position of the clutch lever due to wear of the centrifugal clutch by its own operation, the change in the connection position of the clutch lever at the start of running and during running is also caused by the operation of the centrifugal clutch itself. can be suppressed by
[用語の定義]
 鞍乗型車両とは、ライダーがサドルに跨って着座する形式の車両をいう。鞍乗型車両は、ライダーの体重移動によって走行乃至旋回を行うように構成されている。鞍乗型車両は、ライダーにより把持されるハンドルバーを備える。鞍乗型車両は、ライダーが、走行乃至旋回時に、両手でハンドルバーを把持しながら体重移動による姿勢制御を行うように構成されている。鞍乗型車両は、駆動輪を備えている。鞍乗型車両としては、特に限定されず、例えば、モータサイクル(自動二輪車や自動三輪車等)、ATV(All-Terrain Vehicle)が挙げられる。鞍乗型車両は、例えば、旋回時に左右における旋回中心の方向へリーンするように構成されたリーン車両である。
[Definition of terms]
A straddle-type vehicle refers to a vehicle in which a rider sits astride a saddle. A straddle-type vehicle is configured to run or turn by shifting the rider's weight. A straddle-type vehicle includes a handlebar that is gripped by a rider. A straddle-type vehicle is configured such that a rider performs posture control by shifting his or her weight while gripping a handlebar with both hands during running or turning. A straddle-type vehicle has drive wheels. Straddle-type vehicles are not particularly limited, and include, for example, motorcycles (motorcycles, tricycles, etc.) and ATVs (All-Terrain Vehicles). A straddle-type vehicle is, for example, a lean vehicle configured to lean in the direction of the turning center on the left and right when turning.
 動力源は、例えばエンジンである。エンジンは、空気及び燃料の混合気の燃焼によって生じるパワーを、出力軸であるクランク軸のトルク及び回転速度として出力する。なお、動力源は、特に限定されず、例えば電力によって動作するモータであってもよく、また、エンジン及びモータの組み合わせであってもよい。 The power source is, for example, an engine. An engine outputs power generated by combustion of a mixture of air and fuel as torque and rotation speed of a crankshaft, which is an output shaft. The power source is not particularly limited, and may be, for example, a motor operated by electric power, or may be a combination of an engine and a motor.
 トランスミッションは、切替え可能な複数の変速比を有する。変速比の数は、特に限定されず、例えば、ニュートラルポジションに加えて、4~6個の変速比を有する。 The transmission has multiple gear ratios that can be switched. The number of gear ratios is not particularly limited, and, for example, there are 4 to 6 gear ratios in addition to the neutral position.
 操作力伝達部材は、例えば、クラッチレバーの操作力を受けて回転する回転カム部に押されるプッシュロッドである。
 クラッチレバーの操作力を操作力伝達部材に伝達する手段は、回転カム部に限定されず、例えば、回転を直線運動に変えるスクリュー、又は、油圧で動作するピストンでもよい。また、操作力伝達部材は、第2プレッシャプレートをリリース方向へ押すプッシュロッドに限定されない。操作力伝達部材は、例えば、第2プレッシャプレートを引っ掛けてリリース方向へ引くプルロッドでもよい。
The operating force transmission member is, for example, a push rod that is pushed by a rotating cam portion that rotates upon receiving the operating force of the clutch lever.
The means for transmitting the operating force of the clutch lever to the operating force transmission member is not limited to the rotating cam portion, and may be, for example, a screw that converts rotation into linear motion, or a hydraulically operated piston. Also, the operating force transmission member is not limited to a push rod that pushes the second pressure plate in the release direction. The operating force transmission member may be, for example, a pull rod that hooks the second pressure plate and pulls it in the release direction.
 遠心クラッチは、例えば、複数の第1摩擦板及び複数の第2摩擦板を有し、回転軸線方向に交互に配置される多板式クラッチである。ただし、遠心クラッチは、1つの第1摩擦板及び1つの第2摩擦板を有する単板式クラッチであってもよい。第1プレッシャプレートが、第1摩擦板及び第2摩擦板のうち一方の摩擦板を他方の摩擦板に回転軸線と平行な押付方向に押し付ける場合、第1プレッシャプレートが、第1摩擦板を第2摩擦板に押し付けてもよく、また、第1プレッシャプレートが、第2摩擦板を第1摩擦板に押し付けてもよい。また、多板式クラッチにおける第1プレッシャプレートが、複数の第2摩擦板と複数の第1摩擦板を押し付け合うようにしてもよい。 A centrifugal clutch is, for example, a multi-plate clutch having a plurality of first friction plates and a plurality of second friction plates, which are alternately arranged in the rotation axis direction. However, the centrifugal clutch may be a single-plate clutch having one first friction plate and one second friction plate. When the first pressure plate presses one of the first friction plate and the second friction plate against the other friction plate in a pressing direction parallel to the rotation axis, the first pressure plate pushes the first friction plate to the first friction plate. The first pressure plate may press the second friction plate against the first friction plate. Also, the first pressure plate in the multi-plate clutch may press the plurality of second friction plates and the plurality of first friction plates against each other.
 第2プレッシャプレートは、例えば、1つの部材で形成される。第2プレッシャプレートは、例えば、複数の部材で構成されてもよい。第2プレッシャプレートは、例えば、摩擦板を押し付ける部材と、移動範囲規制部に当たる部材とで構成されてもよい。 The second pressure plate is formed of, for example, one member. The second pressure plate may be composed of, for example, multiple members. The second pressure plate may be composed of, for example, a member that presses the friction plate and a member that contacts the movement range restricting portion.
 第1弾性体は、例えば、ばねで構成される。第1弾性体は、例えば、コイルばねで構成される。第1弾性体は、特に限定されず、例えば皿ばね又はゴムで構成されてもよい。第1弾性体は、第1プレッシャプレートと第1摩擦板及び第2摩擦板との間に介在しない。より詳細には、第1弾性体は、第1プレッシャプレートと第1摩擦板及び第2摩擦板との間に機械的に直列に接続されないように設けられている。より詳細には、第1弾性体は、第1弾性体と、第1摩擦板及び第2摩擦板とが、第1プレッシャプレートに対し機械的に並列に接続されるように設けられている。 The first elastic body is composed of, for example, a spring. The first elastic body is composed of, for example, a coil spring. The first elastic body is not particularly limited, and may be composed of, for example, a disc spring or rubber. The first elastic body is not interposed between the first pressure plate and the first friction plate and the second friction plate. More specifically, the first elastic body is provided so as not to be mechanically connected in series between the first pressure plate and the first and second friction plates. More specifically, the first elastic body is provided such that the first elastic body, the first friction plate and the second friction plate are mechanically connected in parallel with the first pressure plate.
 第2弾性体は、例えば、ばねで構成されている。第2弾性体は、例えば、皿ばねで構成されている。第2弾性体は、特に限定されず、例えば、コイルばね又はゴムで構成されてもよい。 The second elastic body is composed of, for example, a spring. The second elastic body is composed of, for example, a disc spring. The second elastic body is not particularly limited, and may be composed of, for example, a coil spring or rubber.
 第3弾性体は、例えば、ばねで構成される。第3弾性体は、例えば、コイルばねで構成される。第3弾性体は、特に限定されず、例えば皿ばね又はゴムで構成されてもよい。 The third elastic body is composed of, for example, a spring. The third elastic body is composed of, for example, a coil spring. The third elastic body is not particularly limited, and may be composed of, for example, a disc spring or rubber.
 第1プレッシャプレート駆動部は、第2プレッシャプレートに設けられている。第1プレッシャプレート駆動部は、特に限定されず、例えば、第1プレッシャプレートに設けられてもよい。また、第1プレッシャプレート駆動部は、例えば、第2プレッシャプレート及び第1プレッシャプレートの両方に設けられてもよい。 The first pressure plate driving section is provided on the second pressure plate. The first pressure plate driving section is not particularly limited, and may be provided on the first pressure plate, for example. Also, the first pressure plate driving section may be provided on both the second pressure plate and the first pressure plate, for example.
 第1プレッシャプレート駆動部は、例えば斜面部である。例えば、第1のウェイトは、第1プレッシャプレート駆動部に沿って外方へ移動する。ただし、第1プレッシャプレート駆動部は、特に限定されず、例えば第1のウェイトに外方へ押されて外方へ移動する、第1のウェイトとは異なる移動部材を有してもよい。  The first pressure plate driving part is, for example, a slope part. For example, the first weight moves outward along the first pressure plate drive. However, the first pressure plate driving section is not particularly limited, and may have, for example, a moving member different from the first weight that is pushed outward by the first weight and moves outward.
 移動範囲規制部は、例えば、段差である。移動範囲規制部は、特に限定されず、例えば、突起又はボルトといった部材の組合せでもよい。 The movement range restriction part is, for example, a step. The movement range restricting part is not particularly limited, and may be a combination of members such as projections or bolts, for example.
 操作可能な遠心クラッチは、例えば、外部から受ける操作力によって動作することが可能な遠心クラッチである。操作可能な遠心クラッチは、回転の遠心力によって接続状態となっている場合でも、操作力によってリリース状態になることができる。操作可能な遠心クラッチは、例えば、ライダーに操作されるクラッチレバーが出力する操作力によって動作するように構成されたマニュアル操作型(MT)遠心クラッチである。即ち、遠心クラッチは、クラッチレバーがライダーから受ける操作力によって動作するように構成されたマニュアル操作型遠心クラッチである。操作可能な遠心クラッチは、機械式ワイヤに限らず、例えば、油圧を介して伝達される操作力によって動作してもよい。また、操作可能な遠心クラッチは、例えば、電動アクチュエータが出力する操作力によって動作してもよい。遠心クラッチは、例えば、クラッチレバー又はシフトペダルの操作状態の検出、あるいは、鞍乗型車両の走行状態に応じて動作する電動アクチュエータが発生する操作力を受けて動作してもよい。 An operable centrifugal clutch is, for example, a centrifugal clutch that can be operated by an external operating force. The operable centrifugal clutch can be disengaged by an actuating force even when it is engaged by the centrifugal force of rotation. The operable centrifugal clutch is, for example, a manually operated (MT) centrifugal clutch configured to be actuated by an operating force output by a rider operated clutch lever. In other words, the centrifugal clutch is a manually operated centrifugal clutch configured to be operated by an operating force applied to the clutch lever by the rider. The operable centrifugal clutch is not limited to mechanical wires and may for example be actuated by actuating forces transmitted via hydraulic pressure. Also, the operable centrifugal clutch may be actuated, for example, by an actuating force output by an electric actuator. The centrifugal clutch may operate, for example, upon detection of an operating state of a clutch lever or a shift pedal, or upon receiving an operating force generated by an electric actuator that operates according to the traveling state of the straddle-type vehicle.
 第2プレッシャプレートと第1プレッシャプレートが互いに対面することは、第2プレッシャプレートと第1プレッシャプレートが互いに並行である構成、及び、互いに斜めの関係である状態を含む。 The second pressure plate and the first pressure plate facing each other include a configuration in which the second pressure plate and the first pressure plate are parallel to each other and a state in which they are oblique to each other.
 アクチュエータは、電気又は油圧といった種々のエネルギーを機械的な動きに変換する駆動装置である。アクチュエータは、例えば、電気モータ、ソレノイドアクチュエータ、又は油圧シリンダである。例えば、単に機械的な力の向きを変換する機構はアクチュエータに含まれない。 An actuator is a driving device that converts various energies such as electricity or hydraulics into mechanical movement. Actuators are, for example, electric motors, solenoid actuators or hydraulic cylinders. For example, an actuator does not include a mechanism that merely changes the direction of mechanical force.
 相対移動機構の第2のウェイトは、第2プレッシャプレートの回転力を受けることにより回転軸線周りに回転する。第2のウェイトは、例えば第2プレッシャプレートの回転力を直接受ける。第2のウェイトは、例えば変位部材といった相対移動機構を構成する部品を介して第2プレッシャプレートの回転力を受けてもよい。 The second weight of the relative movement mechanism rotates around the rotation axis by receiving the rotational force of the second pressure plate. The second weight directly receives the rotational force of the second pressure plate, for example. The second weight may receive the rotational force of the second pressure plate via a component that constitutes the relative movement mechanism, such as a displacement member.
 相対移動機構が、第2プレッシャプレートと操作力伝達部材の間に介在するとは、相対移動機構を構成する部材の少なくとも一部が、操作力伝達部材から第2プレッシャプレートに伝達される操作力の伝達経路中に配置されることである。 The relatively moving mechanism being interposed between the second pressure plate and the operating force transmission member means that at least a part of the members constituting the relative moving mechanism is capable of handling the operating force transmitted from the operating force transmitting member to the second pressure plate. It is to be placed in the transmission path.
 操作力伝達部材と第2プレッシャプレートとの間に生じる隙間とは、操作力伝達部材から第2プレッシャプレートに伝達される操作力の伝達経路中に生じる隙間である。隙間が生じている場合、操作力伝達部材からの操作力は、第2プレッシャプレートに伝達されない。また、操作力伝達部材又は第2プレッシャプレートに接触する部品であっても、操作力の伝達に寄与しない部品(例えばケース)との間に生じる空間は、上記の隙間に該当しない。 The gap generated between the operating force transmission member and the second pressure plate is a gap generated in the transmission path of the operating force transmitted from the operating force transmission member to the second pressure plate. When there is a gap, the operating force from the operating force transmission member is not transmitted to the second pressure plate. Further, even if the component contacts the operating force transmission member or the second pressure plate, the space generated between the component that does not contribute to the transmission of the operating force (for example, the case) does not correspond to the gap described above.
 本明細書にて使用される専門用語は特定の実施例のみを定義する目的であって発明を制限する意図を有しない。本明細書にて使用される用語「および/または」はひとつの、または複数の関連した列挙された構成物のあらゆるまたはすべての組み合わせを含む。本明細書中で使用される場合、用語「含む、備える(including)」「含む、備える(comprising)」または「有する(having)」およびその変形の使用は、記載された特徴、工程、操作、要素、成分および/またはそれらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、および/またはそれらのグループのうちの1つまたは複数を含むことができる。本明細書中で使用される場合、用語「取り付けられた」、「接続された」、「結合された」および/またはそれらの等価物は広く使用され、直接的および間接的な取り付け、接続および結合の両方を包含する。さらに、「接続された」および「結合された」は、物理的または機械的な接続または結合に限定されず、直接的または間接的な電気的接続または結合を含むことができる。他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的または過度に形式的な意味で解釈されることはない。本発明の説明においては、技術および多数の工程が開示されていると理解される。これらの各々は個別の利益を有し、それぞれは、他の開示された技術の1つ以上、または、場合によっては全てと共に使用することもできる。したがって、明確にするために、この説明は、不要に個々のステップの可能な組み合わせをすべて繰り返すことを控える。それにもかかわらず、明細書および特許請求の範囲は、そのような組み合わせがすべて本発明および請求項の範囲内にあることを理解して読まれるべきである。以下の説明では、説明の目的で、本発明の完全な理解を提供するために多数の具体的な詳細を述べる。しかしながら、当業者には、これらの特定の詳細なしに本発明を実施できることが明らかである。本開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面または説明によって示される特定の実施形態に限定することを意図するものではない。 The terminology used in this specification is for the purpose of defining specific examples only and is not intended to limit the invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed constructs. As used herein, use of the terms "including," "comprising," or "having," and variations thereof, refers to the features, steps, operations, While specifying the presence of elements, components and/or their equivalents, it can include one or more of the steps, acts, elements, components and/or groups thereof. As used herein, the terms "attached", "connected", "coupled" and/or their equivalents are used broadly to refer to direct and indirect attachment, connection and includes both bindings. Furthermore, "connected" and "coupled" are not limited to physical or mechanical connections or couplings, but can include direct or indirect electrical connections or couplings. Unless defined otherwise, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries are to be construed to have a meaning consistent with their meaning in the context of the relevant technology and this disclosure, and are expressly defined herein. not be construed in an ideal or overly formal sense unless explicitly stated. In describing the invention, it is understood that techniques and multiple steps are disclosed. Each of these has individual benefits, and each can also be used with one or more, or possibly all, of the other disclosed techniques. Therefore, for the sake of clarity, this description refrains from unnecessarily repeating all possible combinations of individual steps. Nevertheless, the specification and claims should be read with the understanding that all such combinations are within the scope of the invention and claims. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be obvious to those skilled in the art that the present invention may be practiced without these specific details. The present disclosure should be considered exemplary of the invention and is not intended to limit the invention to the specific embodiments illustrated by the following drawings or description.
 本発明によれば、摩耗によるクラッチレバーの接続位置の変化を自らの動作で抑えつつ、走行開始時と走行中でクラッチレバーの接続位置の変化も自らの動作で抑えることができる遠心クラッチ、及び鞍乗型車両を実現することができる。 According to the present invention, a centrifugal clutch capable of suppressing a change in the connection position of the clutch lever due to wear by its own operation and suppressing a change in the connection position of the clutch lever at the start of running and during running by its own operation; A straddle-type vehicle can be realized.
本発明の第一実施形態に係る遠心クラッチを概略的に示す断面図である。It is a sectional view showing roughly a centrifugal clutch concerning a first embodiment of the present invention. クランク軸が回転している場合の遠心クラッチの状態を説明する断面図である。FIG. 5 is a cross-sectional view for explaining the state of the centrifugal clutch when the crankshaft is rotating; 図2の状態よりも大きな速度で回転する遠心クラッチの状態を説明する断面図である。FIG. 3 is a cross-sectional view illustrating a state of a centrifugal clutch that rotates at a higher speed than the state of FIG. 2; 図2の状態の遠心クラッチがクラッチレバーの操作によってリリース状態になることを説明する図である。FIG. 3 is a diagram illustrating that the centrifugal clutch in the state of FIG. 2 is put into a released state by operating the clutch lever; 本実施形態に対する比較として、相対移動機構を有さない参考例を示す断面図である。FIG. 4 is a cross-sectional view showing a reference example without a relative movement mechanism as a comparison with the present embodiment; 本発明の第二実施形態に係る遠心クラッチの第1回転部材の回転速度と、第1のウェイトの変位量との関係を示すグラフである。It is a graph which shows the relationship between the rotation speed of the 1st rotation member of the centrifugal clutch which concerns on 2nd embodiment of this invention, and the displacement amount of a 1st weight. 本発明の第三実施形態に係る遠心クラッチを概略的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a centrifugal clutch according to a third embodiment of the invention; 図7の状態よりも大きな速度で回転する遠心クラッチの状態を説明する断面図である。FIG. 8 is a cross-sectional view illustrating a state of a centrifugal clutch that rotates at a higher speed than the state of FIG. 7; 本発明の第四実施形態に係る遠心クラッチを概略的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a centrifugal clutch according to a fourth embodiment of the invention; (a)~(d)は、図9の遠心クラッチのI-I′における断面図である。(a) to (d) are cross-sectional views of the centrifugal clutch of FIG. 9 taken along line II'. 実施形態の遠心クラッチの実施例を示す図であり、(a)は、回転軸線方向の断面図であり、(b)は、(a)における相対移動機構を押付方向に見た図である。It is a figure which shows the Example of the centrifugal clutch of embodiment, (a) is sectional drawing of a rotating shaft line direction, (b) is the figure which looked at the pressing direction of the relative movement mechanism in (a). 実施形態の遠心クラッチの適用例である鞍乗型車両を示す側面図である。1 is a side view showing a straddle-type vehicle to which the centrifugal clutch of the embodiment is applied; FIG.
 以下、本発明の実施形態について、図面を参照しながら説明される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 [第一実施形態]
 図1は、本発明の第一実施形態に係る遠心クラッチを概略的に示す断面図である。図1には、遠心クラッチの回転軸線Axを含む断面が示されている。図1には、エンジンEGの一部、トランスミッションMTの一部、及びクラッチレバーLVも示されている。図1では、各部の動作を分かりやすくするため、共に一体となって動く複数の部材の境界線の一部は省略され、共通のハッチングが付されている。
[First embodiment]
FIG. 1 is a cross-sectional view schematically showing a centrifugal clutch according to a first embodiment of the invention. FIG. 1 shows a cross section including the rotation axis Ax of the centrifugal clutch. Also shown in FIG. 1 are part of the engine EG, part of the transmission MT and the clutch lever LV. In FIG. 1, in order to make the operation of each part easier to understand, part of the boundary lines of a plurality of members that move together is omitted, and common hatching is given.
 図1に示す遠心クラッチ10は、動力源であるエンジンEGの回転駆動力をトランスミッションMTに伝達する部品である。より詳細には、遠心クラッチ10は、エンジンEGの回転駆動力がトランスミッションMTに伝達される接続状態と、回転駆動力の伝達が切断されるリリース状態とを有する。遠心クラッチ10は、接続状態と、リリース状態とを切り替える。
 遠心クラッチ10は、エンジンEGの回転駆動力の一部を伝達する、いわゆる半クラッチ状態も有する。但し、本明細書では、分かりやすさのため、特に明示しない限り、摩擦板の係合が完了した状態を「接続状態」として説明する。
A centrifugal clutch 10 shown in FIG. 1 is a component that transmits rotational driving force of an engine EG, which is a power source, to a transmission MT. More specifically, the centrifugal clutch 10 has a connected state in which the rotational driving force of the engine EG is transmitted to the transmission MT, and a released state in which transmission of the rotational driving force is disconnected. The centrifugal clutch 10 switches between a connected state and a released state.
The centrifugal clutch 10 also has a so-called half-clutch state in which part of the rotational driving force of the engine EG is transmitted. However, in this specification, for the sake of clarity, unless otherwise specified, the state in which the engagement of the friction plates is completed will be described as the "connected state."
 遠心クラッチ10は、多板クラッチである。
 遠心クラッチ10は、第1回転部材111と、第2回転部材112と、複数の第1摩擦板113と、複数の第2摩擦板114と、第1プレッシャプレート115と、第2弾性体116と、第2プレッシャプレート117とを備える。遠心クラッチ10は、また、移動範囲規制部118と、第1弾性体119と、操作力伝達部材121と、第1プレッシャプレート駆動部122と、第1のウェイト123と、相対移動機構130とを備える。
Centrifugal clutch 10 is a multi-plate clutch.
The centrifugal clutch 10 includes a first rotating member 111, a second rotating member 112, a plurality of first friction plates 113, a plurality of second friction plates 114, a first pressure plate 115, and a second elastic body 116. , and a second pressure plate 117 . Centrifugal clutch 10 also includes movement range restricting portion 118 , first elastic body 119 , operating force transmission member 121 , first pressure plate driving portion 122 , first weight 123 , and relative movement mechanism 130 . Prepare.
 第1回転部材111は、エンジンEGの回転駆動力を受けて回転する部材である。第1回転部材111は、例えばクラッチハウジングである。第1回転部材111は、エンジンEGの出力軸であるクランク軸CLから回転駆動力を受けて回転するように構成されている。第1回転部材111は、クラッチ入力ギア111aを有する。クラッチ入力ギア111aは、クランク軸CLに設けられたクランクギアGと係合している。第1回転部材111は、エンジンEGのクランク軸CLとともに回転する。第1回転部材111は、クラッチ入力ギア111aとクランクギアGとのギア比によって、クランク軸CLの速度よりも遅い速度で回転する。 The first rotating member 111 is a member that rotates by receiving the rotational driving force of the engine EG. The first rotating member 111 is, for example, a clutch housing. The first rotating member 111 is configured to rotate by receiving a rotational driving force from a crankshaft CL, which is the output shaft of the engine EG. The first rotating member 111 has a clutch input gear 111a. The clutch input gear 111a is engaged with a crank gear G provided on the crankshaft CL. The first rotating member 111 rotates together with the crankshaft CL of the engine EG. Due to the gear ratio between the clutch input gear 111a and the crank gear G, the first rotating member 111 rotates at a speed lower than the speed of the crankshaft CL.
 第2回転部材112は、第1回転部材111に対し相対回転可能に設けられている。第1回転部材111と第2回転部材112は、共通の回転軸線Axを中心として回転するように構成されている。第2回転部材112は、例えば、クラッチボスである。 The second rotating member 112 is provided rotatably relative to the first rotating member 111 . The first rotating member 111 and the second rotating member 112 are configured to rotate about a common rotation axis Ax. The second rotating member 112 is, for example, a clutch boss.
 第1摩擦板113は、第1回転部材111と一体に回転するように構成されている。第1摩擦板113は、駆動プレートとして機能する。第2摩擦板114は、第2回転部材112と一体に回転する。第2摩擦板114は、被駆動プレートとして機能する。
 第1摩擦板113及び第2摩擦板114のそれぞれは、環状のプレートである。第1摩擦板113及び第2摩擦板114は、交互に並んで配置されている。
The first friction plate 113 is configured to rotate integrally with the first rotating member 111 . The first friction plate 113 functions as a drive plate. The second friction plate 114 rotates integrally with the second rotating member 112 . The second friction plate 114 functions as a driven plate.
Each of the first friction plate 113 and the second friction plate 114 is an annular plate. The first friction plates 113 and the second friction plates 114 are alternately arranged side by side.
 第1プレッシャプレート115は、第1摩擦板113及び第2摩擦板114のうち一方の摩擦板を他方の摩擦板に回転軸線Axと平行な押付方向Pに押し付ける部材である。第1プレッシャプレート115は、環状のプレートである。第1プレッシャプレート115は、第1回転部材111と一体で回転する。第1プレッシャプレート115は、第1回転部材111に対し、回転軸線Axの方向に移動可能である。
 第1プレッシャプレート115は、第1摩擦板113及び第2摩擦板114を押付方向Pに押し付ける。これによって、第1摩擦板113及び第2摩擦板114が相互に押付け合うように接触する。第1摩擦板113と第2摩擦板114の摩擦によって、第1摩擦板113の回転駆動力が第2摩擦板114に伝達される。即ち、第1摩擦板113及び第2摩擦板114が相互に係合する。
The first pressure plate 115 is a member that presses one of the first friction plate 113 and the second friction plate 114 against the other friction plate in a pressing direction P parallel to the rotation axis Ax. The first pressure plate 115 is an annular plate. The first pressure plate 115 rotates integrally with the first rotating member 111 . The first pressure plate 115 is movable relative to the first rotating member 111 in the direction of the rotation axis Ax.
The first pressure plate 115 presses the first friction plate 113 and the second friction plate 114 in the pressing direction P. As shown in FIG. As a result, the first friction plate 113 and the second friction plate 114 contact each other so as to press against each other. The rotational driving force of the first friction plate 113 is transmitted to the second friction plate 114 by the friction between the first friction plate 113 and the second friction plate 114 . That is, the first friction plate 113 and the second friction plate 114 are engaged with each other.
 第2弾性体116は、第1回転部材111に取り付けられている部材である。第2弾性体116は、例えば、環状の皿ばねで構成されている。第2弾性体116の一部は、第1回転部材111に固定されている。第2弾性体116は、第1回転部材111と一体に回転するように設けられている。第2弾性体116は、第1プレッシャプレート115を押付方向Pへ付勢する。
 第2弾性体116と第1プレッシャプレート115の間には第2プレッシャプレート117及び第1のウェイト123が介在している。
The second elastic body 116 is a member attached to the first rotating member 111 . The second elastic body 116 is composed of, for example, an annular disc spring. A portion of the second elastic body 116 is fixed to the first rotating member 111 . The second elastic body 116 is provided so as to rotate integrally with the first rotating member 111 . The second elastic body 116 urges the first pressure plate 115 in the pressing direction P. As shown in FIG.
A second pressure plate 117 and a first weight 123 are interposed between the second elastic body 116 and the first pressure plate 115 .
 第2プレッシャプレート117は、第1回転部材111と一体に回転するように設けられている。但し、第2プレッシャプレート117は、第1回転部材111に対し、押付方向Pまたはリリース方向Rへ相対移動可能に設けられている。
 第2プレッシャプレート117は、第2弾性体116に付勢される。第2プレッシャプレート117は、第2弾性体116からの押付方向Pの付勢力を第1プレッシャプレート115へ伝達する。
The second pressure plate 117 is provided so as to rotate integrally with the first rotating member 111 . However, the second pressure plate 117 is provided so as to be relatively movable in the pressing direction P or the releasing direction R with respect to the first rotating member 111 .
The second pressure plate 117 is biased by the second elastic body 116 . The second pressure plate 117 transmits the biasing force in the pressing direction P from the second elastic body 116 to the first pressure plate 115 .
 移動範囲規制部118は、第2プレッシャプレート117の押付方向Pへの移動の範囲を規制するように構成されている。移動範囲規制部118は、例えば、第1回転部材111に設けられた段差である。第2プレッシャプレート117は、押付方向Pへ移動すると移動範囲規制部118に当たる。移動範囲規制部118は、移動範囲規制部118に当たる位置よりも押付方向Pへ移動することができない。 The movement range restricting portion 118 is configured to restrict the range of movement of the second pressure plate 117 in the pressing direction P. The movement range restricting portion 118 is, for example, a step provided on the first rotating member 111 . When the second pressure plate 117 moves in the pressing direction P, it hits the movement range restricting portion 118 . The moving range restricting portion 118 cannot move in the pressing direction P beyond the position where it hits the moving range restricting portion 118 .
 第1弾性体119は、第1プレッシャプレート115をリリース方向Rへ付勢する。リリース方向Rは、押付方向Pとは逆の方向である。第1弾性体119は、第1プレッシャプレート115と第1摩擦板113及び第2摩擦板114との間に介在しない。第1弾性体119と、第1摩擦板113及び第2摩擦板114とは、第1プレッシャプレート115に対し機械的に並列に接続される。
 第1弾性体119は、クランク軸CLの回転速度がアイドリング速度といった比較的低い速度範囲にある場合に、遠心クラッチ10をリリース状態にするように構成される。第1弾性体119は、例えば、コイルバネで構成される。
The first elastic body 119 biases the first pressure plate 115 in the release direction R. As shown in FIG. The release direction R is opposite to the pressing direction P. The first elastic body 119 is not interposed between the first pressure plate 115 and the first friction plate 113 and the second friction plate 114 . First elastic body 119 , first friction plate 113 and second friction plate 114 are mechanically connected in parallel to first pressure plate 115 .
The first elastic body 119 is configured to release the centrifugal clutch 10 when the rotational speed of the crankshaft CL is in a relatively low speed range such as idling speed. The first elastic body 119 is composed of, for example, a coil spring.
 遠心クラッチ10は、クラッチレバーLVの操作に応じて動作する。操作力伝達部材121は、クラッチレバーLVの操作による操作力を受け、第2プレッシャプレート117をリリース方向Rへ変位させるように構成される。操作力伝達部材121は、第2弾性体116の押付力に抗して第2プレッシャプレート117をリリース方向Rへ変位させる。 The centrifugal clutch 10 operates according to the operation of the clutch lever LV. The operating force transmission member 121 is configured to displace the second pressure plate 117 in the release direction R upon receiving an operating force generated by operating the clutch lever LV. The operating force transmission member 121 displaces the second pressure plate 117 in the release direction R against the pressing force of the second elastic body 116 .
 第1プレッシャプレート駆動部122は、例えば、第2プレッシャプレート117に設けられている。第1プレッシャプレート駆動部122は、第1プレッシャプレート115と対面する面に設けられている。第1プレッシャプレート駆動部122は、カム面として機能するように構成されている。第1プレッシャプレート駆動部122は、径方向における外方ほど第2プレッシャプレート117および第1プレッシャプレート115の間隔が小さくなるように形成されている。外方は、回転軸線Axから遠ざかる方向である。 The first pressure plate driving section 122 is provided on the second pressure plate 117, for example. The first pressure plate driving portion 122 is provided on a surface facing the first pressure plate 115 . The first pressure plate driving portion 122 is configured to function as a cam surface. The first pressure plate driving portion 122 is formed so that the distance between the second pressure plate 117 and the first pressure plate 115 becomes smaller toward the outer side in the radial direction. The outward direction is the direction away from the rotation axis Ax.
 第1のウェイト123は、第1プレッシャプレート115と第2プレッシャプレート117の間に設けられている。第1のウェイト123は、第1回転部材111及び第1プレッシャプレート115と一体に回転する。より詳細には、第1のウェイト123は、第1プレッシャプレート115及び第2プレッシャプレート117と一体に回転する。第1のウェイト123は、第1回転部材111及び第1プレッシャプレート115に対し、径方向へ移動可能に設けられている。より詳細には、第1のウェイト123は、第1プレッシャプレート115及び第2プレッシャプレート117に対し、径方向へ移動可能に設けられている。
 図1は、エンジンEGの停止状態またはアイドリング状態を示している。エンジンEGが停止状態の場合、第1のウェイト123は回転していない。第1のウェイト123には遠心力が生じない。また、エンジンEGがアイドリング状態の場合、第1のウェイト123はアイドリング状態に応じた回転速度で回転する。この場合、第1のウェイト123には遠心力が生じる。しかし、第1弾性体119の力に抗して第1プレッシャプレート115を押付方向Pに移動させる程度の遠心力は生じない。このため、エンジンEGの停止状態またはアイドリング状態において、第1のウェイト123は、図1に示すように、初期位置L1に配置されている。
First weight 123 is provided between first pressure plate 115 and second pressure plate 117 . The first weight 123 rotates integrally with the first rotating member 111 and the first pressure plate 115 . More specifically, first weight 123 rotates integrally with first pressure plate 115 and second pressure plate 117 . The first weight 123 is provided movably in the radial direction with respect to the first rotating member 111 and the first pressure plate 115 . More specifically, the first weight 123 is provided movably in the radial direction with respect to the first pressure plate 115 and the second pressure plate 117 .
FIG. 1 shows the stopped state or idling state of the engine EG. When the engine EG is stopped, the first weight 123 is not rotating. No centrifugal force is generated in the first weight 123 . Also, when the engine EG is in the idling state, the first weight 123 rotates at a rotational speed corresponding to the idling state. In this case, centrifugal force is generated in the first weight 123 . However, the centrifugal force that moves the first pressure plate 115 in the pressing direction P against the force of the first elastic body 119 is not generated. Therefore, when the engine EG is stopped or idling, the first weight 123 is placed at the initial position L1 as shown in FIG.
 相対移動機構130は、操作力伝達部材121と第2プレッシャプレート117の間に生じる隙間を小さく又は無くすように操作力伝達部材121を第2プレッシャプレート117に対し相対的に移動させる。
 相対移動機構130は、操作力伝達部材121をアクチュエータによらずに移動させる機構である。
The relative movement mechanism 130 moves the operating force transmitting member 121 relative to the second pressure plate 117 so as to reduce or eliminate the gap between the operating force transmitting member 121 and the second pressure plate 117 .
The relative movement mechanism 130 is a mechanism that moves the operating force transmission member 121 without using an actuator.
 相対移動機構130は、操作力伝達部材121と第2プレッシャプレート117の間に介在している。
 相対移動機構130は、第1のウェイト123が第2プレッシャプレート117をリリース方向Rへ移動させるときに、操作力伝達部材121を第2プレッシャプレート117に対し相対的に移動させるように構成されている。より詳細には、相対移動機構130は、操作力伝達部材121と第2プレッシャプレート117の間に生じる隙間を小さく又は無くすように操作力伝達部材121を第2プレッシャプレート117に対し相対的に移動させる。図1に示す例において、第1のウェイト123が第2プレッシャプレート117をリリース方向Rへ移動させるときに、相対移動機構130は、操作力伝達部材121を第2プレッシャプレート117に対し相対的に押付方向Pへ移動させる。
Relative movement mechanism 130 is interposed between operating force transmission member 121 and second pressure plate 117 .
Relative movement mechanism 130 is configured to move operating force transmission member 121 relative to second pressure plate 117 when first weight 123 moves second pressure plate 117 in release direction R. there is More specifically, the relative movement mechanism 130 moves the operating force transmitting member 121 relative to the second pressure plate 117 so as to reduce or eliminate the gap between the operating force transmitting member 121 and the second pressure plate 117. Let In the example shown in FIG. 1, when the first weight 123 moves the second pressure plate 117 in the release direction R, the relative movement mechanism 130 moves the operating force transmission member 121 relatively to the second pressure plate 117. Move in the pressing direction P.
 より詳細には、相対移動機構130は、第2のウェイト131と、第1カム部132と、を有する。
 第2のウェイト131は、第2プレッシャプレート117から回転駆動力を受け、回転軸線Ax周りに、第1回転部材111及び第2プレッシャプレート117と一体に回転する。第2のウェイト131は、第2プレッシャプレート117に対し、径方向へ移動可能に設けられている。第2のウェイト131は、回転の遠心力によって外方へ移動するように構成されている。第1カム部132は、第2のウェイト131と接触することで、第2のウェイト131の外方への移動によって、操作力伝達部材121から第2プレッシャプレート117までの間の相対移動機構130の回転軸線Axの方向での長さを延長する。
More specifically, the relative movement mechanism 130 has a second weight 131 and a first cam portion 132 .
The second weight 131 receives rotational driving force from the second pressure plate 117 and rotates integrally with the first rotating member 111 and the second pressure plate 117 around the rotation axis Ax. The second weight 131 is provided movably in the radial direction with respect to the second pressure plate 117 . The second weight 131 is configured to move outward due to the centrifugal force of rotation. When the first cam portion 132 comes into contact with the second weight 131 , the outward movement of the second weight 131 moves the relative movement mechanism 130 between the operating force transmission member 121 and the second pressure plate 117 . in the direction of the rotation axis Ax.
 また、相対移動機構130は、変位部材134を有する。変位部材134は、第2プレッシャプレート117及び第2のウェイト131と共に回転しつつ、第2プレッシャプレート117に対し回転軸線Axの方向に相対的に変位可能である。相対移動機構130は、第2のウェイト131の外方への移動を抑えるように第2のウェイト131を付勢する第3弾性体133も有する。なお、図の見やすさのため、第3弾性体133は図1のみに示され、残りの図では図示が省略される。 Also, the relative movement mechanism 130 has a displacement member 134 . The displacement member 134 rotates together with the second pressure plate 117 and the second weight 131 and is relatively displaceable with respect to the second pressure plate 117 in the direction of the rotation axis Ax. The relative movement mechanism 130 also has a third elastic body 133 that biases the second weight 131 so as to restrain the outward movement of the second weight 131 . For ease of viewing, the third elastic body 133 is shown only in FIG. 1 and is omitted from the rest of the drawings.
 変位部材134は、操作力伝達部材121からの操作力が伝達される軸134aと、軸134aに固定され、軸134aから径方向に延びたワッシャ部134bとを有する。ワッシャ部134bは、操作力伝達部材121から伝達される操作力を軸134aで受け、ワッシャ部134bから第2のウェイト131に操作力を伝達する。第1カム部132は、第2プレッシャプレート117に設けられている。第1カム部132は、斜面である。第1カム部132は、外方ほど操作力伝達部材121までの、回転軸線方向Aにおける距離が小さくなるように形成されている。このため、第2のウェイト131が外方へ移動すると、第2のウェイト131が、第1カム部132に作用する。そうすると、相対移動機構130は、操作力伝達部材121を第2プレッシャプレート117に対し相対的に移動させる。これによって、操作力伝達部材121から第2プレッシャプレート117までの回転軸線方向Aにおける長さが延長される。 The displacement member 134 has a shaft 134a to which the operating force from the operating force transmission member 121 is transmitted, and a washer portion 134b fixed to the shaft 134a and extending radially from the shaft 134a. The washer portion 134b receives the operating force transmitted from the operating force transmission member 121 by the shaft 134a, and transmits the operating force from the washer portion 134b to the second weight 131. As shown in FIG. The first cam portion 132 is provided on the second pressure plate 117 . The first cam portion 132 is a slope. The first cam portion 132 is formed such that the distance to the operating force transmission member 121 in the rotation axis direction A decreases toward the outside. Therefore, when the second weight 131 moves outward, the second weight 131 acts on the first cam portion 132 . Then, relative movement mechanism 130 moves operating force transmission member 121 relative to second pressure plate 117 . Thereby, the length in the rotation axis direction A from the operating force transmission member 121 to the second pressure plate 117 is extended.
 [動作]
 図1は、エンジンEGが停止状態、又はアイドリング動作状態における遠心クラッチ10の状態を示している。即ち、図1は、車両の停止状態における遠心クラッチ10の状態を示している。図1は、遠心クラッチ10に外部からの力が作用しない場合を示している。
 第2弾性体116は、第2プレッシャプレート117を押付方向Pへ付勢する。第2プレッシャプレート117は、第1のウェイト123を押付方向Pへ押す。第1のウェイト123は、第1プレッシャプレート115を押付方向Pへ押す。
 第2プレッシャプレート117が押付方向Pへ移動できる範囲は、移動範囲規制部118によって規制される。また、第1のウェイト123に、第1弾性体119及び第2弾性体116の付勢力に抗して外方へ移動する程度の遠心力は、作用していない。この場合、第1のウェイト123は、初期位置L1にある。
 また、第1弾性体119が、第1プレッシャプレート115をリリース方向Rへ付勢する。このため、第1プレッシャプレート115は、第1摩擦板113および第2摩擦板114を相互に係合する位置まで移動していない。つまり、遠心クラッチ10に外部からの力が作用しない場合、第1摩擦板113および第2摩擦板114は相互に係合していない。つまり、遠心クラッチ10は、リリース状態である。
 移動範囲規制部118は、第1のウェイト123が初期位置L1にある場合に、第2プレッシャプレート117が第1摩擦板113および第2摩擦板114を相互に係合する位置まで移動しないように規制している。
[motion]
FIG. 1 shows the state of the centrifugal clutch 10 when the engine EG is stopped or idling. That is, FIG. 1 shows the state of the centrifugal clutch 10 when the vehicle is stopped. FIG. 1 shows the case where no external force acts on the centrifugal clutch 10 .
The second elastic body 116 urges the second pressure plate 117 in the pressing direction P. As shown in FIG. The second pressure plate 117 pushes the first weight 123 in the pressing direction P. As shown in FIG. The first weight 123 pushes the first pressure plate 115 in the pressing direction P. As shown in FIG.
A range in which the second pressure plate 117 can move in the pressing direction P is restricted by a movement range restricting portion 118 . In addition, no centrifugal force acts on the first weight 123 to the extent that it moves outward against the urging forces of the first elastic body 119 and the second elastic body 116 . In this case, the first weight 123 is at the initial position L1.
Also, the first elastic body 119 urges the first pressure plate 115 in the release direction R. As shown in FIG. Therefore, first pressure plate 115 has not moved to a position where first friction plate 113 and second friction plate 114 engage with each other. That is, when no external force acts on centrifugal clutch 10, first friction plates 113 and second friction plates 114 are not engaged with each other. That is, the centrifugal clutch 10 is in the released state.
Movement range restricting portion 118 prevents second pressure plate 117 from moving to a position where first friction plate 113 and second friction plate 114 engage with each other when first weight 123 is at initial position L1. Regulating.
 図2は、クランク軸が回転している場合の遠心クラッチの状態を説明する断面図である。
 図2における各部は、図1の各部と同じである。従って、ここでは、主に図1と異なる部分が符号を付して説明され、その他の部分については符号が省略される。
FIG. 2 is a cross-sectional view explaining the state of the centrifugal clutch when the crankshaft is rotating.
Each part in FIG. 2 is the same as each part in FIG. Therefore, here, the parts different from those in FIG. 1 will mainly be described with reference numerals, and the reference numerals will be omitted for other parts.
 第1回転部材111が、エンジンEGの回転駆動力を受け回転すると、第1のウェイト123が、第1回転部材111の回転の遠心力を受け、第1プレッシャプレート駆動部122に沿って外方に移動する。より詳細には、第1のウェイト123が、第1弾性体119の力に抗して外方へ移動する程度の速度で回転すると、第1のウェイト123は外方に移動する。より詳細には、第1のウェイト123が、アイドリング状態の速度よりも大きい速度で回転すると、第1のウェイト123は外方に移動する。
 第1のウェイト123は、第1プレッシャプレート駆動部122に沿って外方へ移動することで、第1弾性体119の付勢力に抗して、第1プレッシャプレート115を押付方向Pに移動させる。第1のウェイト123が接続位置L2にある時、第1プレッシャプレート115は、第1摩擦板113、又は第2摩擦板114を押付方向Pに押し付ける。これによって、第1摩擦板113、及び第2摩擦板114が相互に係合する。第1のウェイト123が接続位置L2まで移動することで、遠心クラッチ10が接続状態となる。
 接続位置L2は、摩耗していない第1摩擦板113および第2摩擦板114が係合を完了する時の、第1のウェイト123の位置である。接続位置L2にある第1のウェイト123は、更に外方へ移動可能な余裕Mを有する。
When the first rotating member 111 rotates due to the rotational driving force of the engine EG, the first weight 123 receives the centrifugal force of the rotation of the first rotating member 111 and moves outward along the first pressure plate driving portion 122 . move to More specifically, when the first weight 123 rotates at such a speed as to move outward against the force of the first elastic body 119, the first weight 123 moves outward. More specifically, when the first weight 123 rotates at a speed greater than the idle speed, the first weight 123 moves outward.
The first weight 123 moves outward along the first pressure plate driving portion 122 to move the first pressure plate 115 in the pressing direction P against the biasing force of the first elastic body 119. . The first pressure plate 115 presses the first friction plate 113 or the second friction plate 114 in the pressing direction P when the first weight 123 is at the connection position L2. This causes the first friction plate 113 and the second friction plate 114 to engage with each other. The centrifugal clutch 10 is connected by moving the first weight 123 to the connection position L2.
The connection position L2 is the position of the first weight 123 when the non-worn first friction plate 113 and the second friction plate 114 complete engagement. The first weight 123 at the connection position L2 has a margin M for further outward movement.
 図3は、図2の状態よりも大きな速度で回転する遠心クラッチの状態を説明する断面図である。 FIG. 3 is a cross-sectional view explaining the state of the centrifugal clutch rotating at a higher speed than the state of FIG.
 第1のウェイト123は、接続位置L2(図2参照)に対応する遠心力よりも大きな遠心力を受けることによって、接続位置L2よりも外方へ移動する。第1のウェイト123は、例えば、図3に示す位置L3まで移動する。
 第1のウェイト123が接続位置L2よりも外方へ移動する場合、第1プレッシャプレート115は移動できない。このため、第1のウェイト123は、第1プレッシャプレート115を押す反力によって、第2プレッシャプレート117をリリース方向Rへ押す。第1のウェイト123は、第2弾性体116の付勢力に抗して第2プレッシャプレート117をリリース方向Rへ移動させる。第1のウェイト123は、第1プレッシャプレート115を押付方向Pに押し付けつつ、第2プレッシャプレート117をリリース方向Rへ移動させる。従って、遠心クラッチ10の接続状態が維持される。
The first weight 123 moves outward from the connection position L2 by receiving a centrifugal force greater than that corresponding to the connection position L2 (see FIG. 2). The first weight 123 moves, for example, to position L3 shown in FIG.
When the first weight 123 moves outward from the connecting position L2, the first pressure plate 115 cannot move. Therefore, the first weight 123 pushes the second pressure plate 117 in the release direction R by the reaction force pushing the first pressure plate 115 . The first weight 123 moves the second pressure plate 117 in the release direction R against the biasing force of the second elastic body 116 . The first weight 123 moves the second pressure plate 117 in the release direction R while pressing the first pressure plate 115 in the pressing direction P. Therefore, the connected state of the centrifugal clutch 10 is maintained.
 例えば、遠心クラッチ10の使用期間の経過に伴い第1摩擦板113および第2摩擦板114が摩耗すると、第1摩擦板113および第2摩擦板114の回転軸線方向Aの厚みが減少する。この場合、図2に示す接続位置L2、即ち、摩耗する前に接続が完了した接続位置L2に第1のウェイト123が移動しても、第1摩擦板113および第2摩擦板114の係合が完了しない。つまり、接続が不完全となる。 For example, when the first friction plates 113 and the second friction plates 114 wear as the centrifugal clutch 10 is used, the thickness of the first friction plates 113 and the second friction plates 114 in the rotation axis direction A decreases. In this case, even if the first weight 123 moves to the connection position L2 shown in FIG. 2, that is, the connection position L2 where the connection is completed before being worn, the engagement between the first friction plate 113 and the second friction plate 114 will not occur. does not complete. In other words, the connection becomes incomplete.
 しかし、遠心クラッチ10の第1のウェイト123は、図2に示す接続位置L2において、更に外方へ移動可能な余裕Mを有する。このため、第1摩擦板113および第2摩擦板114が摩耗した場合、第1のウェイト123は、図2に示す接続位置L2よりも外方へ移動することができる。これによって、摩耗した第1摩擦板113および第2摩擦板114の係合が完了できる。従って、摩耗が生じても、例えば、ねじ等の調整といった手動の操作も、電動装置による複雑な制御も無しに、接続状態が実現する。 However, the first weight 123 of the centrifugal clutch 10 has a margin M for further outward movement at the connection position L2 shown in FIG. Therefore, when the first friction plate 113 and the second friction plate 114 wear, the first weight 123 can move outward from the connecting position L2 shown in FIG. Thereby, the engagement between the worn first friction plate 113 and the second friction plate 114 can be completed. Therefore, even if wear occurs, the connected state can be achieved without manual operation such as adjustment of screws or the like, and without complicated control by an electric device.
 図4は、図2の状態の遠心クラッチ10がクラッチレバーLVの操作によってリリース状態になることを説明する図である。 FIG. 4 is a diagram explaining how the centrifugal clutch 10 in the state of FIG. 2 is put into the released state by operating the clutch lever LV.
 遠心クラッチ10が接続状態の場合、操作力伝達部材121は、クラッチレバーLVからの操作力を受け、第2プレッシャプレート117をリリース方向Rへ変位させる。操作力伝達部材121は、相対移動機構130を介して、第2プレッシャプレート117をリリース方向Rへ押す。第2プレッシャプレート117は、操作力伝達部材121及び相対移動機構130と一体にリリース方向Rへ移動する。但し、相対移動機構130は、操作力伝達部材121に対し相対的に回転する。
 操作力伝達部材121は、クラッチレバーLVからの操作力によって、第2プレッシャプレート117を第2弾性体116の押付力に抗して変位させる。これによって、第1プレッシャプレート115は、第1のウェイト123及び第2プレッシャプレート117による押付けから開放される。従って、第1摩擦板113と第2摩擦板114の係合が解除される。従って、遠心クラッチ10はリリース状態になる。つまり、クラッチレバーLVの操作によって、遠心クラッチ10はリリース状態になる。
 このようにして、遠心クラッチ10において、遠心力に起因した接続状態と、クラッチレバーLVの操作によるリリース状態が実現する。
When the centrifugal clutch 10 is in the engaged state, the operating force transmission member 121 receives the operating force from the clutch lever LV and displaces the second pressure plate 117 in the release direction R. The operating force transmission member 121 pushes the second pressure plate 117 in the release direction R via the relative movement mechanism 130 . The second pressure plate 117 moves in the release direction R together with the operating force transmission member 121 and the relative movement mechanism 130 . However, the relative movement mechanism 130 rotates relative to the operating force transmission member 121 .
The operating force transmission member 121 displaces the second pressure plate 117 against the pressing force of the second elastic body 116 by operating force from the clutch lever LV. As a result, the first pressure plate 115 is released from being pressed by the first weight 123 and the second pressure plate 117 . Therefore, the engagement between the first friction plate 113 and the second friction plate 114 is released. Therefore, the centrifugal clutch 10 is released. That is, the centrifugal clutch 10 is released by operating the clutch lever LV.
Thus, in the centrifugal clutch 10, the engaged state caused by the centrifugal force and the released state caused by the operation of the clutch lever LV are realized.
 相対移動機構130は、第1のウェイト123が接続位置L2よりも外方に移動することによって第2プレッシャプレート117をリリース方向Rへ移動させるときに、操作力伝達部材121を第2プレッシャプレート117に対し相対的に移動させる。相対移動機構130は、操作力伝達部材121と第2プレッシャプレート117の間に生じる隙間を小さく又は無くすように操作力伝達部材121を移動させる。 Relative movement mechanism 130 moves operating force transmission member 121 to second pressure plate 117 when first weight 123 moves outward from connection position L2 to move second pressure plate 117 in release direction R. Move relative to The relative movement mechanism 130 moves the operating force transmitting member 121 so as to reduce or eliminate the gap generated between the operating force transmitting member 121 and the second pressure plate 117 .
 相対移動機構130の第2のウェイト131は、回転のによって、図3に示すように、外方へ移動する。
 第2のウェイト131が第1カム部132に沿って外方へ移動すると、相対移動機構130は、操作力伝達部材121を第2プレッシャプレート117に対し相対的に押付方向Pへ移動させる。より詳細には、相対移動機構130の第2のウェイト131が外方へ移動すると、変位部材134が第2のウェイト131により第2プレッシャプレート117に対し相対的に押付方向Pへ押し出される。これにより、相対移動機構130の変位部材134は、操作力伝達部材121を押付方向Pへ押し出す。これによって、操作力伝達部材121から第2プレッシャプレート117までの回転軸線方向Aにおける長さが延長される。
The rotation causes the second weight 131 of the relative movement mechanism 130 to move outward as shown in FIG.
When the second weight 131 moves outward along the first cam portion 132 , the relative movement mechanism 130 moves the operating force transmission member 121 in the pressing direction P relative to the second pressure plate 117 . More specifically, when the second weight 131 of the relative movement mechanism 130 moves outward, the displacement member 134 is pushed in the pressing direction P relative to the second pressure plate 117 by the second weight 131 . As a result, the displacement member 134 of the relative movement mechanism 130 pushes the operating force transmission member 121 in the pressing direction P. As shown in FIG. Thereby, the length in the rotation axis direction A from the operating force transmission member 121 to the second pressure plate 117 is extended.
 図5は、本実施形態に対する比較として、相対移動機構を有さない参考例を示す断面図である。図5は、図3の状態と等しい速度で回転している遠心クラッチ90の状態を示す。
 図5に示す状態で、第1のウェイト923は、図3の状態と等しい遠心力を受けることによって、位置L3まで移動する。この場合、第2プレッシャプレート917は、第1のウェイト923に押され、リリース方向Rへ移動する。この結果、第2プレッシャプレート917と操作力伝達部材921との間には、隙間Sが生じる。
 第1のウェイト923が接続位置(図2のL2参照)にある場合、隙間Sは無いか、又は隙間Sの大きさは、本発明の実施形態の場合と実質的に等しい。図5の参考例の構成において、隙間Sは、第1のウェイト923が接続位置(図2のL2参照)よりも外方へ移動するほど増大する。
FIG. 5 is a sectional view showing a reference example without a relative movement mechanism as a comparison with this embodiment. FIG. 5 shows the condition of centrifugal clutch 90 rotating at a speed equivalent to the condition of FIG.
In the state shown in FIG. 5, the first weight 923 moves to position L3 by receiving the same centrifugal force as in the state shown in FIG. In this case, the second pressure plate 917 is pushed by the first weight 923 and moves in the release direction R. As a result, a gap S is created between the second pressure plate 917 and the operating force transmission member 921 .
When the first weight 923 is in the connected position (see L2 in FIG. 2), there is no gap S or the size of the gap S is substantially the same as in the embodiment of the invention. In the configuration of the reference example in FIG. 5, the gap S increases as the first weight 923 moves outward from the connection position (see L2 in FIG. 2).
 隙間Sが生じると、クラッチレバーLVの操作において、図5の実線に示す非操作位置から破線で示すリリース位置までの操作量が増大する。クラッチレバーLVの非操作位置からリリース位置までの操作量は、クラッチレバーLVの遊びに相当する。
 図5の参考例の構成において、第1のウェイト923が接続位置(図2のL2参照)にある場合の隙間Sの大きさと、第1のウェイト923が位置L3まで移動した場合の隙間Sの大きさは異なる。
 つまり、第1のウェイト923が接続位置(図2のL2参照)にある場合と、位置L3にある場合とで、クラッチレバーLVの遊びの量が異なる。
 クラッチレバーLVの遊びは、接続位置L2のみでなく、クラッチレバーLVを操作する場合に、第2弾性体916の付勢力による反発力が生じる位置でもある。つまり、クラッチレバーLVの操作途中で、第2弾性体916による手応えが生じる位置は、第1のウェイト923が接続位置(図2のL2参照)にある場合と、位置L3にある場合とで、異なる。
When the clearance S is generated, the amount of operation of the clutch lever LV from the non-operating position indicated by the solid line in FIG. 5 to the released position indicated by the broken line increases. The amount of operation of the clutch lever LV from the non-operated position to the released position corresponds to play of the clutch lever LV.
In the configuration of the reference example in FIG. 5, the size of the gap S when the first weight 923 is at the connection position (see L2 in FIG. 2) and the gap S when the first weight 923 moves to the position L3 They differ in size.
That is, the amount of play of the clutch lever LV differs between when the first weight 923 is at the connected position (see L2 in FIG. 2) and when it is at the position L3.
The play of the clutch lever LV is not limited to the connection position L2, but is also the position where the repulsive force due to the biasing force of the second elastic body 916 is generated when the clutch lever LV is operated. In other words, the position at which the second elastic body 916 gives a response during the operation of the clutch lever LV depends on whether the first weight 923 is at the connected position (see L2 in FIG. 2) or at the position L3. different.
 図1から4に示す本発明の実施形態の相対移動機構130は、第1のウェイト123が第2プレッシャプレート117をリリース方向Rへ移動させるときに、操作力伝達部材121を第2プレッシャプレート117に対し相対的に移動させる。相対移動機構130は、操作力伝達部材121と第2プレッシャプレート117の間に生じる隙間を小さく又は無くすように操作力伝達部材121を相対的に移動させる。
 このため、クラッチレバーLVの接続位置の、回転速度による変化を抑えることができる。
The relative movement mechanism 130 of the embodiment of the present invention shown in FIGS. 1 to 4 moves the operating force transmission member 121 to the second pressure plate 117 when the first weight 123 moves the second pressure plate 117 in the release direction R. Move relative to The relative movement mechanism 130 relatively moves the operating force transmitting member 121 so as to reduce or eliminate the gap generated between the operating force transmitting member 121 and the second pressure plate 117 .
Therefore, it is possible to suppress the change in the engagement position of the clutch lever LV due to the rotation speed.
 また、遠心クラッチ10は、ねじ等の調整操作無しに、クラッチレバーLVの操作位置における、摩耗に起因する変化を抑えることができる。つまり、遠心クラッチ10は、クラッチレバーLVの操作位置における、摩耗に起因する変化を自ら抑えることができる。 In addition, the centrifugal clutch 10 can suppress changes in the operating position of the clutch lever LV caused by wear without adjusting screws or the like. That is, the centrifugal clutch 10 itself can suppress changes in the operating position of the clutch lever LV due to wear.
 遠心クラッチ10は、第1摩擦板113および第2摩擦板114の摩耗による接続状態への影響を自ら抑えつつ、回転速度による接続位置への影響も自ら抑えることができる。 The centrifugal clutch 10 can suppress the influence of wear of the first friction plate 113 and the second friction plate 114 on the connection state, and can also reduce the influence of the rotation speed on the connection position.
 [第二実施形態]
 図6は、本発明の第二実施形態に係る遠心クラッチの第1回転部材の回転速度と、第1のウェイトの変位量との関係を示すグラフである。
[Second embodiment]
FIG. 6 is a graph showing the relationship between the rotation speed of the first rotating member and the displacement amount of the first weight of the centrifugal clutch according to the second embodiment of the invention.
 本実施形態における遠心クラッチ10の構成は、図1から4に示す第一実施形態と同じであり、各弾性体が特定の特性を有する。従って、各部の構成には同一の符号が付され、図1から4を参照して説明される。 The configuration of the centrifugal clutch 10 in this embodiment is the same as the first embodiment shown in FIGS. 1 to 4, and each elastic body has specific characteristics. Accordingly, the configuration of each part is given the same reference numerals and will be described with reference to FIGS. 1 to 4. FIG.
 グラフの横軸は、第1回転部材111の回転速度を示す。第1回転部材111の回転速度は、クランク軸CLの回転速度に対し、クラッチ入力ギア111aとクランクギアGとのギア比によって決まる。第1のウェイト123は、第1回転部材111と同じ速度で回転する。また、遠心クラッチ10の接続状態で、第2のウェイト131は、第1回転部材111と同じ速度で回転する。
 グラフの縦軸は、第1のウェイト123の変位量を示す。縦軸には、図1から3に示す第1のウェイト123の位置L1,L2,L3が示されている。
 また、グラフには、操作力伝達部材121から第2プレッシャプレート117までの回転軸線方向Aにおける長さも示されている。この長さは、例えば、回転軸線方向Aにおける、操作力伝達部材121と第2プレッシャプレート117の最短距離で代表される。長さは、例えば、回転軸線方向Aにおける最長距離で代表されることも可能である。
The horizontal axis of the graph indicates the rotational speed of the first rotating member 111 . The rotational speed of the first rotating member 111 is determined by the gear ratio between the clutch input gear 111a and the crank gear G with respect to the rotational speed of the crankshaft CL. The first weight 123 rotates at the same speed as the first rotating member 111 . Also, in the engaged state of the centrifugal clutch 10 , the second weight 131 rotates at the same speed as the first rotating member 111 .
The vertical axis of the graph indicates the amount of displacement of the first weight 123 . The vertical axis indicates positions L1, L2, and L3 of the first weight 123 shown in FIGS.
The graph also shows the length in the rotation axis direction A from the operating force transmission member 121 to the second pressure plate 117 . This length is represented by, for example, the shortest distance between the operating force transmission member 121 and the second pressure plate 117 in the direction A of the rotation axis. The length can also be represented by the longest distance in the rotation axis direction A, for example.
 エンジンEGが始動すると、第1回転部材111は、速度N1より小さいか又は等しい速度で回転する。この回転速度は、例えば、エンジンEGのアイドリング状態である。この場合、第1のウェイト123は、図1に示す初期位置L1にある。
 速度N1は、第1のウェイト123が受ける遠心力と第1弾性体119の付勢力が釣り合う速度である。
When the engine EG starts, the first rotating member 111 rotates at a speed smaller than or equal to the speed N1. This rotational speed is, for example, the idling state of the engine EG. In this case, the first weight 123 is at the initial position L1 shown in FIG.
The speed N1 is the speed at which the centrifugal force applied to the first weight 123 and the biasing force of the first elastic body 119 are balanced.
 例えば、アクセル操作により、第1回転部材111の回転速度が増大し、速度N1を超えると、第1のウェイト123が第1弾性体119の付勢力に抗して外方へ移動する。第1のウェイト123が接続位置L2(図2も参照)に移動すると、遠心クラッチ10が接続状態になる。車両が走行を開始する。 For example, when the accelerator operation increases the rotation speed of the first rotating member 111 and exceeds the speed N1, the first weight 123 moves outward against the biasing force of the first elastic body 119 . When the first weight 123 moves to the connection position L2 (see also FIG. 2), the centrifugal clutch 10 is connected. The vehicle starts running.
 第1回転部材111の回転速度が増大し、速度N3を超えると、第1のウェイト123が第2弾性体116の付勢力に抗して接続位置L2よりも外方へ移動する。第1のウェイト123は、位置L3(図3も参照)で止まる。 When the rotation speed of the first rotating member 111 increases and exceeds the speed N3, the first weight 123 resists the biasing force of the second elastic body 116 and moves outward from the connection position L2. The first weight 123 stops at position L3 (see also FIG. 3).
 第2のウェイト131が受ける遠心力と第2のウェイト131の移動を抑える第3弾性体133の付勢力が釣り合う第2のウェイト131の速度N2は、第2のウェイト131が受ける遠心力に起因して第2プレッシャプレート117が受ける力と第2弾性体116の付勢力が釣り合う速度N3よりも小さい。 The speed N2 of the second weight 131 at which the centrifugal force applied to the second weight 131 and the biasing force of the third elastic body 133 that suppresses the movement of the second weight 131 are balanced is due to the centrifugal force applied to the second weight 131. is smaller than the speed N3 at which the force received by the second pressure plate 117 and the biasing force of the second elastic body 116 are balanced.
 まず、第1回転部材111の回転速度が速度N2を超えると、相対移動機構130の第2のウェイト131が第3弾性体133の付勢力に抗して外方へ移動しようとする。相対移動機構130は、操作力伝達部材121を第2プレッシャプレート117に対し相対的に移動させようとする。しかし、この回転速度で、第2プレッシャプレート117と操作力伝達部材121との間には、隙間が生じていない。従って、操作力伝達部材121は移動せず、押付方向Pへ押付けるだけである。 First, when the rotation speed of the first rotating member 111 exceeds the speed N2, the second weight 131 of the relative movement mechanism 130 attempts to move outward against the biasing force of the third elastic body 133. Relative movement mechanism 130 attempts to move operating force transmission member 121 relative to second pressure plate 117 . However, at this rotational speed, no gap is generated between the second pressure plate 117 and the operating force transmission member 121 . Therefore, the operating force transmission member 121 does not move and only presses in the pressing direction P. As shown in FIG.
 次に、第1回転部材111の回転速度が速度N3を超えると、第1のウェイト123が接続位置L2よりも外方へ移動する。この時に生じ得る隙間(例えば図5のS)を小さくするか又は無くすように、相対移動機構130は、操作力伝達部材121を第2プレッシャプレート117に対し相対的に移動させる。 Next, when the rotation speed of the first rotating member 111 exceeds the speed N3, the first weight 123 moves outward from the connecting position L2. The relative movement mechanism 130 moves the operating force transmission member 121 relative to the second pressure plate 117 so as to reduce or eliminate a gap (for example, S in FIG. 5) that may occur at this time.
 上述したように、速度N2は、速度N3よりも小さいので、第1回転部材111の回転速度が速度N3を超える時には、相対移動機構130が操作力伝達部材121を第2プレッシャプレート117に対し相対的に移動させることが可能である。
 従って、広い速度範囲において、隙間(例えば図5のS)が生じ難い。
As described above, since the speed N2 is smaller than the speed N3, the relative movement mechanism 130 moves the operating force transmission member 121 relative to the second pressure plate 117 when the rotation speed of the first rotating member 111 exceeds the speed N3. It is possible to move
Therefore, a gap (for example, S in FIG. 5) is less likely to occur in a wide speed range.
 本実施形態によれば、広い速度範囲において、走行開始時と走行中とにおけるクラッチレバーLVの接続位置の変化が抑えられやすい。 According to this embodiment, it is easy to suppress changes in the connection position of the clutch lever LV between when the vehicle starts running and when the vehicle is running over a wide speed range.
 [第三実施形態]
 図7は、本発明の第三実施形態に係る遠心クラッチを概略的に示す断面図である。
[Third Embodiment]
FIG. 7 is a cross-sectional view schematically showing a centrifugal clutch according to a third embodiment of the invention.
 図7の遠心クラッチ30の相対移動機構330は、一方向スライド機構340を有する。相対移動機構330は、軸受350を有する。軸受350は、第2プレッシャプレート117に対し、一方向スライド機構340を回転自在に支持する。
 一方向スライド機構340は、第2プレッシャプレート117と操作力伝達部材121の間に介在する。一方向スライド機構340は、第2プレッシャプレート117が第1プレッシャプレート115に押されリリース方向Rへ移動する場合、伸長が自在であるように構成される。また、一方向スライド機構340は、操作力伝達部材121が操作力を受け、リリース方向Rに移動する場合の収縮が規制されるように構成される。
A relative movement mechanism 330 of the centrifugal clutch 30 of FIG. 7 has a one-way slide mechanism 340 . The relative movement mechanism 330 has bearings 350 . The bearing 350 rotatably supports the one-way slide mechanism 340 with respect to the second pressure plate 117 .
One-way slide mechanism 340 is interposed between second pressure plate 117 and operating force transmission member 121 . The one-way slide mechanism 340 is configured to be freely extendable when the second pressure plate 117 is pushed by the first pressure plate 115 and moves in the release direction R. Further, the one-way slide mechanism 340 is configured to restrict contraction when the operating force transmission member 121 receives an operating force and moves in the release direction R.
 より詳細には、一方向スライド機構340は、スライドハウジング341と、ラチェット342と、ラチェットばね343と、伸長ばね344と、伝達部材延長部345とを備える。また、第2回転部材112には、解除部112aが設けられている。
 スライドハウジング341は、軸受350を介して第2プレッシャプレート117に回転自在に支持される。スライドハウジング341は第2プレッシャプレート117と共に回転軸線方向Aに移動する。しかし、第2プレッシャプレート117が回転しても、スライドハウジング341は回転しない。
 スライドハウジング341は、有底の筒状である。伝達部材延長部345は、スライドハウジング341に収容されている。伝達部材延長部345は、操作力伝達部材121から延長するように延びる部材である。
 スライドハウジング341の内側面と操作力伝達部材121との間には、くさび状のラチェット342が設けられている。ラチェット342は、ラチェットばね343に付勢されることで、スライドハウジング341と操作力伝達部材121との間に押し込まれている。スライドハウジング341に対する操作力伝達部材121の移動が阻止されている。
 本実施形態におけるその他の構成は、図1に示す第一実施形態と同一である。従って、共通の要素には第一実施形態と同一の符号が付され、第一実施形態と異なる点を主に説明される。
More specifically, one-way slide mechanism 340 includes slide housing 341 , ratchet 342 , ratchet spring 343 , extension spring 344 and transmission member extension 345 . Further, the second rotating member 112 is provided with a releasing portion 112a.
Slide housing 341 is rotatably supported by second pressure plate 117 via bearing 350 . The slide housing 341 moves in the rotational axis direction A together with the second pressure plate 117 . However, even if the second pressure plate 117 rotates, the slide housing 341 does not rotate.
The slide housing 341 is cylindrical with a bottom. The transmission member extension 345 is housed in the slide housing 341 . The transmission member extension portion 345 is a member that extends from the operating force transmission member 121 .
A wedge-shaped ratchet 342 is provided between the inner surface of the slide housing 341 and the operating force transmission member 121 . The ratchet 342 is pushed between the slide housing 341 and the operating force transmission member 121 by being biased by the ratchet spring 343 . Movement of the operating force transmission member 121 with respect to the slide housing 341 is blocked.
Other configurations in this embodiment are the same as those in the first embodiment shown in FIG. Therefore, common elements are denoted by the same reference numerals as in the first embodiment, and differences from the first embodiment will be mainly described.
 図8は、図7の状態よりも大きな速度で回転する遠心クラッチの状態を説明する断面図である。 FIG. 8 is a cross-sectional view explaining the state of the centrifugal clutch rotating at a higher speed than the state of FIG.
 第1のウェイト123は、接続位置L2よりも外方へ移動しながら、第2プレッシャプレート117をリリース方向Rへ移動させる。この時、一方向スライド機構340は、伸長が自在である。従って、一方向スライド機構340は、操作力伝達部材121を第2プレッシャプレート117に対し相対的に移動させる。一方向スライド機構340は、操作力伝達部材121と第2プレッシャプレート117の間に生じる回転軸線方向Aの隙間を小さく又は無くすように操作力伝達部材121を移動させる。より詳細には、伸長ばね344によって押付方向Pに付勢された伝達部材延長部345が操作力伝達部材121に向かって押し出される。 The first weight 123 moves the second pressure plate 117 in the release direction R while moving outward from the connection position L2. At this time, the one-way slide mechanism 340 can be freely extended. Accordingly, the one-way slide mechanism 340 moves the operating force transmission member 121 relative to the second pressure plate 117 . The one-way slide mechanism 340 moves the operating force transmitting member 121 so as to reduce or eliminate the gap in the rotational axis direction A between the operating force transmitting member 121 and the second pressure plate 117 . More specifically, the transmission member extension 345 biased in the pressing direction P by the extension spring 344 is pushed out toward the operating force transmission member 121 .
 図8に示された状態で、クラッチレバーLVが操作されると、操作力伝達部材121がリリース方向Rへ移動する。この場合、一方向スライド機構340は、くさび状のラチェット342によって収縮が規制される。このため、一方向スライド機構340全体が、操作力伝達部材121と一体で、リリース方向Rへ移動する。この時、軸受350を介して一方向スライド機構340と接続された第2プレッシャプレート117が、リリース方向Rに移動する。つまり、伸長した長さが維持されたままで、クラッチレバーLVの操作に応じた第2プレッシャプレート117の移動が開始する。この結果、遠心クラッチ30はリリース状態になる。広い動作範囲において、走行開始時と走行中とにおけるクラッチレバーLVの接続位置の変化が、抑えられやすい。 When the clutch lever LV is operated in the state shown in FIG. 8, the operating force transmission member 121 moves in the release direction R. In this case, the contraction of the one-way slide mechanism 340 is restricted by a wedge-shaped ratchet 342 . Therefore, the one-way slide mechanism 340 as a whole moves in the release direction R together with the operating force transmission member 121 . At this time, the second pressure plate 117 connected to the one-way slide mechanism 340 via the bearing 350 moves in the release direction R. That is, the second pressure plate 117 starts to move in accordance with the operation of the clutch lever LV while maintaining the extended length. As a result, the centrifugal clutch 30 is released. In a wide range of motion, changes in the connection position of the clutch lever LV between when the vehicle starts running and during running are likely to be suppressed.
 なお、クラッチレバーLVが操作から解放されると、操作力伝達部材121が押付方向Pへ移動する。この時、一方向スライド機構340は、ラチェット342によって変形の規制が維持される。このため、一方向スライド機構340全体が、操作力伝達部材121と一体で、押付方向Pへ移動する。遠心クラッチ30は接続状態に戻る。
 一方向スライド機構340が押付方向Pへ移動すると、ラチェット342が解除部112aに当たる。ラチェット342が解除部112aに当たることで、ラチェット342による規制が解除される。
Note that the operating force transmission member 121 moves in the pressing direction P when the clutch lever LV is released from operation. At this time, the ratchet 342 keeps the one-way slide mechanism 340 from being deformed. Therefore, the entire one-way slide mechanism 340 moves in the pressing direction P together with the operating force transmission member 121 . Centrifugal clutch 30 returns to the engaged state.
When the one-way slide mechanism 340 moves in the pressing direction P, the ratchet 342 hits the release portion 112a. The restriction by the ratchet 342 is released when the ratchet 342 hits the release portion 112a.
 [第四実施形態]
 図9は、本発明の第四実施形態に係る遠心クラッチを概略的に示す断面図である。
[Fourth embodiment]
FIG. 9 is a cross-sectional view schematically showing a centrifugal clutch according to a fourth embodiment of the invention.
 図9の遠心クラッチ10の第2プレッシャプレート117は、第2カム部141を有する。第2のウェイト131は、第2プレッシャプレート117からトルクの伝達を受けて回転を加速及び減速する。第2カム部141は、第2のウェイト131に減速のトルクを伝達するとともに第2のウェイト131を径方向の内方に移動させるように第2プレッシャプレート117に形成される。 The second pressure plate 117 of the centrifugal clutch 10 in FIG. 9 has a second cam portion 141. The second weight 131 receives torque from the second pressure plate 117 to accelerate and decelerate its rotation. The second cam portion 141 is formed on the second pressure plate 117 so as to transmit deceleration torque to the second weight 131 and move the second weight 131 radially inward.
 より詳細には、本実施形態の第2プレッシャプレート117の第2カム部141は、第2プレッシャプレート117の回転軸線Axを中心とする円周と斜めに交わる法線を有する平面により構成される。第2カム部141が有する平面は、径方向と斜めに交わる。第2プレッシャプレート117の回転が、クランク軸CLからトルクの伝達を受けて減速すると、第2カム部141は、第2のウェイト131に接触して減速のトルクを伝達する。この時、第2カム部141は、第2のウェイト131に内方への力を与える。これにより、第2のウェイト131は、第2カム部141に沿って内方へ移動する。
 本実施形態におけるその他の構成は、図1に示す第一実施形態と同一である。従って、共通の要素には第一実施形態と同一の符号が付され、第一実施形態と異なる点を主に説明される。
More specifically, the second cam portion 141 of the second pressure plate 117 of the present embodiment is configured by a plane having a normal that obliquely intersects the circumference of the second pressure plate 117 centered on the rotation axis Ax. . The plane of the second cam portion 141 obliquely intersects with the radial direction. When the rotation of the second pressure plate 117 receives transmission of torque from the crankshaft CL and decelerates, the second cam portion 141 contacts the second weight 131 to transmit deceleration torque. At this time, the second cam portion 141 applies an inward force to the second weight 131 . Thereby, the second weight 131 moves inward along the second cam portion 141 .
Other configurations in this embodiment are the same as those in the first embodiment shown in FIG. Therefore, common elements are denoted by the same reference numerals as in the first embodiment, and differences from the first embodiment will be mainly described.
 相対移動機構130の第2のウェイト131は、第2のウェイト131が受ける遠心力により、外方に移動する。この時、第2のウェイト131は、第1カム部132との間に生じる摩擦力により、遠心力が減少しても外方に移動した状態を維持したまま内方に戻りにくくなる場合がある。第2カム部141は、回転の減速時、第2のウェイト131に径方向の内方への力を与える。このため、第2のウェイト131は、第1カム部132との間に摩擦力が生じていても、回転が減速する場合に径方向の内方に戻りやすい。 The second weight 131 of the relative movement mechanism 130 moves outward due to the centrifugal force that the second weight 131 receives. At this time, due to the frictional force generated between the second weight 131 and the first cam portion 132, even if the centrifugal force decreases, the second weight 131 may become difficult to return inward while maintaining the outward movement state. . The second cam portion 141 applies radially inward force to the second weight 131 when decelerating the rotation. Therefore, even if frictional force is generated between the second weight 131 and the first cam portion 132, the second weight 131 tends to return radially inward when the rotation is decelerated.
 [動作]
 図10(a)~(d)は図9の遠心クラッチのI-I’における断面図である。図10(a)~(d)は、本実施形態における遠心クラッチの動作を説明する図である。
 図10(a)は、エンジンEGが停止状態における状態を示している。本実施形態の遠心クラッチ10の第2のウェイト131は、2つのウェイト131a及び131bから構成される。2つのウェイト131a及び131bは、第3弾性体133により結合され、第3弾性体133の付勢力C2により内方向に付勢されている。回転が停止している状態では、第2のウェイト131(131a、131b)には、遠心力は生じていない。この時、第1のウェイト123は、図1に示すように初期位置L1にある。第2プレッシャプレート117には、第2カム部141及び壁142が形成される。
[motion]
10(a) to (d) are cross-sectional views of the centrifugal clutch of FIG. 9 taken along line II'. 10(a) to (d) are diagrams for explaining the operation of the centrifugal clutch in this embodiment.
FIG. 10(a) shows the state in which the engine EG is stopped. The second weight 131 of the centrifugal clutch 10 of this embodiment is composed of two weights 131a and 131b. The two weights 131a and 131b are coupled by a third elastic body 133 and urged inward by the urging force C2 of the third elastic body 133. As shown in FIG. No centrifugal force is generated in the second weight 131 (131a, 131b) when the rotation is stopped. At this time, the first weight 123 is at the initial position L1 as shown in FIG. A second cam portion 141 and a wall 142 are formed on the second pressure plate 117 .
 回転が開始すると、第1回転部材111を介して第2プレッシャプレート117も回転する。この時、第2のウェイト131は、第2プレッシャプレート117に形成された壁142により、第2プレッシャプレート117が回転する方向の力F1を受け、第2プレッシャプレート117と同じ方向に回転する。第2のウェイト131(131a、131b)が回転すると、第2のウェイト131には、遠心力C1が生じる。エンジンEGがアイドリング動作状態では、第2のウェイト131に生じる遠心力C1の大きさは、第3弾性体133の付勢力C2に逆らって外方に移動することにより第1カム部132に作動力を与える程度よりも小さい。従って、エンジンEGがアイドリング動作状態において、第2のウェイト131(131a、131b)は、図10(a)に示す位置から移動していない。 When the rotation starts, the second pressure plate 117 also rotates via the first rotating member 111. At this time, the second weight 131 receives a force F1 in the direction of rotation of the second pressure plate 117 by the wall 142 formed on the second pressure plate 117 and rotates in the same direction as the second pressure plate 117 . When the second weight 131 (131a, 131b) rotates, the second weight 131 generates a centrifugal force C1. When the engine EG is in the idling state, the magnitude of the centrifugal force C1 generated in the second weight 131 moves outward against the biasing force C2 of the third elastic body 133, thereby exerting an operating force on the first cam portion 132. less than the degree that gives Therefore, when the engine EG is in the idling operation state, the second weights 131 (131a, 131b) do not move from the positions shown in FIG. 10(a).
 図10(b)は、クランク軸CLが回転している場合の遠心クラッチ10の状態を示している。
 クランク軸CLの回転速度が増加すると、図10(b)に示すように、第2のウェイト131が受ける遠心力C1が大きくなる。この時、第2のウェイト131を構成する2つのウェイト131a及び131bは、第3弾性体133の付勢力C2に抗してそれぞれ壁142に沿って外方へ移動する。クランク軸CLの回転速度が更に上昇し、例えば、第1のウェイト123が図1に示したように初期位置L1から図3に示したように位置L3まで移動すると、第2のウェイト131が第1カム部132に沿って更に外方へ移動する。そうすると、第2のウェイト131は、変位部材134を介して操作力伝達部材121を第2プレッシャプレート117に対し相対的に押付方向Pへ押し出す(図9参照)。この時、第2のウェイト131と、第1カム部132及び変位部材134との間に摩擦力が生じる。
FIG. 10(b) shows the state of the centrifugal clutch 10 when the crankshaft CL is rotating.
As the rotation speed of the crankshaft CL increases, the centrifugal force C1 that the second weight 131 receives increases, as shown in FIG. 10(b). At this time, the two weights 131a and 131b constituting the second weight 131 move outward along the wall 142 against the biasing force C2 of the third elastic body 133 respectively. When the rotation speed of the crankshaft CL further increases and, for example, the first weight 123 moves from the initial position L1 as shown in FIG. 1 to the position L3 as shown in FIG. It moves further outward along the 1 cam portion 132 . Then, the second weight 131 pushes the operating force transmission member 121 in the pressing direction P relative to the second pressure plate 117 via the displacement member 134 (see FIG. 9). At this time, a frictional force is generated between the second weight 131 and the first cam portion 132 and the displacement member 134 .
 図10(c)及び(d)は、クランク軸CLが図10(b)の状態よりも減速した遠心クラッチ10の状態を示している。クランク軸CLが減速すると、第2プレッシャプレート117も減速する。この時、図10(c)に示すように、第2カム部141は、第2のウェイト131に接触して減速のトルクを伝達する。この時、第2のウェイト131は、第2プレッシャプレート117の壁142から離れて第2カム部141に接触する。第2のウェイト131が第2カム部141に接触すると、第2のウェイト131は、第2カム部141に回転する方向の力F2を与えるとともに、反力F3を受ける。 FIGS. 10(c) and (d) show the state of the centrifugal clutch 10 in which the crankshaft CL is decelerated from the state of FIG. 10(b). When the crankshaft CL decelerates, the second pressure plate 117 also decelerates. At this time, as shown in FIG. 10(c), the second cam portion 141 contacts the second weight 131 to transmit deceleration torque. At this time, the second weight 131 leaves the wall 142 of the second pressure plate 117 and contacts the second cam portion 141 . When the second weight 131 contacts the second cam portion 141, the second weight 131 applies a rotating force F2 to the second cam portion 141 and receives a reaction force F3.
 クランク軸CLの回転速度が減少すると、2つのウェイト131a及び131bが受ける遠心力は、図10(b)の状態よりも小さくなる。この時、2つのウェイト131a及び131bには、第3弾性体133の付勢力C2により内方への力が働く。しかし、第2のウェイト131は、第1カム部132及び変位部材134との間に生じた摩擦力により、内方に戻りにくくなる場合がある。
 本実施形態における第2のウェイト131は、図10(c)に示すように、第2カム部141から反力F3を受ける。これにより、2つのウェイト131a及び131bはそれぞれ第2カム部141に沿って内方に移動する。そうすると、図10(d)に示すように、2つのウェイト131a及び131bは、第1カム部132及び変位部材134との間に生じた摩擦力から解放され、第3弾性体133の付勢力により内方へ移動する。
When the rotation speed of the crankshaft CL decreases, the centrifugal force applied to the two weights 131a and 131b becomes smaller than the state shown in FIG. 10(b). At this time, an inward force acts on the two weights 131a and 131b due to the biasing force C2 of the third elastic body 133. As shown in FIG. However, the second weight 131 may become difficult to return inward due to the frictional force generated between the first cam portion 132 and the displacement member 134 .
The second weight 131 in this embodiment receives a reaction force F3 from the second cam portion 141, as shown in FIG. 10(c). As a result, the two weights 131a and 131b move inward along the second cam portion 141, respectively. Then, as shown in FIG. 10(d), the two weights 131a and 131b are released from the frictional force generated between the first cam portion 132 and the displacement member 134, and the biasing force of the third elastic body 133 causes the weights 131a and 131b to move inward.
 本実施形態によれば、遠心力を受けた第2のウェイト131が元の位置よりも外方へ移動した後、遠心力が減少する時に元の位置に戻りやすい。従って、遠心力を受けた第1のウェイト123が接続位置よりも外方へ移動することにより生じた第2プレッシャプレート117の回転軸線Axの方向の変位が、遠心力の減少時に戻りやすい。そのため、走行開始時と走行中とにおける接続位置の変化をより精密に抑えることができる。従って、例えば走行開始時と走行中とにおける接続位置の変化が、抑えられやすい。 According to this embodiment, after the second weight 131 that has received the centrifugal force moves outward from its original position, it easily returns to its original position when the centrifugal force decreases. Therefore, displacement of the second pressure plate 117 in the direction of the rotation axis Ax caused by the first weight 123 receiving the centrifugal force moving outward from the connection position is likely to return when the centrifugal force is reduced. Therefore, it is possible to more precisely suppress the change in the connection position between when the vehicle starts running and when the vehicle is running. Therefore, for example, a change in connection position between when the vehicle starts running and when the vehicle is running can be easily suppressed.
 [実施例]
 図11は、上述した実施形態の遠心クラッチの実施例を示す図である。図11(a)は、回転軸線方向の断面図であり、図11(b)は、図11(a)における相対移動機構130を押付方向Pに見た図である。本実施例では、主に相対移動機構130の動作が説明される。図11の遠心クラッチの各要素には、第一実施形態から第4実施形態と共通の符号が付される。
 本実施例における第1カム部132は、変位部材134に設けられている。より詳細には、変位部材134のワッシャ部134bの周縁の一部が肉厚に形成されている。第1カム部132は、ワッシャ部134bの肉厚部分の斜面で構成されている。
 また、第2カム部141は、第2プレッシャプレート117に設けられている。より詳細には、第2プレッシャプレート117に、回転軸線方向Aに貫通する穴143が設けられている。穴143に、第2カム部141及び壁142が設けられている。
 第2のウェイト131は、突出部131cを有する。突出部131cは、第2プレッシャプレート117の穴143に受容されている。突出部131cは、第2カム部141の作用を受けるカムフォロワとして機能する。
[Example]
FIG. 11 is a diagram showing an example of the centrifugal clutch of the embodiment described above. 11(a) is a cross-sectional view in the rotation axis direction, and FIG. 11(b) is a view of the relative movement mechanism 130 in FIG. In this embodiment, the operation of the relative movement mechanism 130 is mainly described. Elements of the centrifugal clutch shown in FIG. 11 are assigned the same reference numerals as in the first to fourth embodiments.
The first cam portion 132 in this embodiment is provided on the displacement member 134 . More specifically, a portion of the peripheral edge of the washer portion 134b of the displacement member 134 is formed thick. The first cam portion 132 is composed of an inclined surface of the thick portion of the washer portion 134b.
Also, the second cam portion 141 is provided on the second pressure plate 117 . More specifically, the second pressure plate 117 is provided with a hole 143 penetrating in the rotational axis direction A. As shown in FIG. A second cam portion 141 and a wall 142 are provided in the hole 143 .
The second weight 131 has a protrusion 131c. Projection 131 c is received in hole 143 of second pressure plate 117 . The projecting portion 131 c functions as a cam follower that receives the action of the second cam portion 141 .
 クランク軸CLの回転速度の増加に伴い、第1回転部材111とともに第2プレッシャプレート117の回転速度が増加すると、第2のウェイト131が外方に移動する。このため、変位部材134は、第2プレッシャプレート117に対して押付方向Pに相対的に移動する。また、第2のウェイト131が外方に移動する時、突出部131cは壁142に沿って外方に移動する。
 図11(b)において、外方に移動した第2のウェイト131(131a,131b)の位置X1が細線で示されている。この状態における突出部131cの位置X2も細線で示される。
As the rotation speed of the crankshaft CL increases, the rotation speed of the first rotating member 111 and the second pressure plate 117 increase, causing the second weight 131 to move outward. Therefore, the displacement member 134 moves in the pressing direction P relative to the second pressure plate 117 . Also, when the second weight 131 moves outward, the protrusion 131 c moves outward along the wall 142 .
In FIG. 11(b), the position X1 of the outwardly moved second weight 131 (131a, 131b) is indicated by a thin line. The position X2 of the projecting portion 131c in this state is also indicated by a thin line.
 クランク軸CLの回転速度が減少すると、第2のウェイト131は、第2プレッシャプレート117に対して相対的に回転した姿勢になる。例えば、2つのウェイト131a,131bの間の基準線Y1が、Y2に示すように回転する。
 この時、第2のウェイト131の突出部131cは、第2カム部141に接触して、第2カム部141に沿って内方に移動する。また、第2のウェイト131は、第3弾性体133の付勢力により内方に移動する。第2のウェイト131が第2カム部141の作用を受けることで、内方への移動が促進される。
 図11(b)において、内方に移動した第2のウェイト131(131a)の位置X3が二点鎖線で示され、突出部131cの位置X4も二点鎖線で示される。
When the rotation speed of the crankshaft CL decreases, the second weight 131 assumes a position rotated relative to the second pressure plate 117 . For example, the reference line Y1 between the two weights 131a, 131b rotates as indicated by Y2.
At this time, the projecting portion 131c of the second weight 131 contacts the second cam portion 141 and moves inward along the second cam portion 141 . Also, the second weight 131 moves inward due to the biasing force of the third elastic body 133 . The inward movement of the second weight 131 is promoted by the action of the second cam portion 141 .
In FIG. 11(b), the position X3 of the inwardly moved second weight 131 (131a) is indicated by a two-dot chain line, and the position X4 of the projecting portion 131c is also indicated by a two-dot chain line.
 クランク軸CLの回転速度が再度増加すると、第2のウェイト131は、第2プレッシャプレート117に対して第2プレッシャプレート117が回転する方向と逆の方向に相対的に回転して元の位置に戻る。この時、第2のウェイト131の突出部131cは、壁142に接触する。その後、回転速度がさらに増加すると、第2のウェイト131は、突出部131cが壁142に沿って外方に移動する。 When the rotational speed of the crankshaft CL increases again, the second weight 131 rotates relative to the second pressure plate 117 in a direction opposite to the direction in which the second pressure plate 117 rotates and returns to its original position. return. At this time, the projection 131c of the second weight 131 contacts the wall 142. As shown in FIG. After that, when the rotational speed further increases, the projection 131c of the second weight 131 moves outward along the wall 142 .
 [適用例]
 図12は、実施形態の遠心クラッチの適用例である鞍乗型車両を示す側面図である。
 図12に示す鞍乗型車両1は、本発明の一実施形態でもある。
[Application example]
FIG. 12 is a side view showing a straddle-type vehicle to which the centrifugal clutch of the embodiment is applied.
The straddle-type vehicle 1 shown in FIG. 12 is also one embodiment of the present invention.
 図12に示す鞍乗型車両1は、自動二輪車である。
 鞍乗型車両1は、エンジンEGと、トランスミッションMTと、遠心クラッチ(10,30)とを備える。
 遠心クラッチ(10,30)は、エンジンEGの回転駆動力をトランスミッションMTに伝達する。トランスミッションMTは、鞍乗型車両1の運転者の足に依って操作される。
A straddle-type vehicle 1 shown in FIG. 12 is a motorcycle.
A straddle-type vehicle 1 includes an engine EG, a transmission MT, and centrifugal clutches (10, 30).
Centrifugal clutches (10, 30) transmit rotational driving force of engine EG to transmission MT. The transmission MT is operated by the foot of the driver of the straddle-type vehicle 1 .
 鞍乗型車両1は、クラッチレバーLV、及び、駆動輪5も備える。クラッチレバーLV、は、鞍乗型車両1の運転者の手によって操作される。遠心クラッチ(10,30)は、クラッチレバーLVの操作に応じて、エンジンEGからトランスミッションMTへの回転駆動力を伝達する接続状態と、伝達がリリースされるリリース状態とを切り替える。遠心クラッチ(10,30)は、また、エンジンEGの回転速度に応じて接続状態と、リリース状態とを切り替える。
 トランスミッションMTは、回転駆動力を駆動輪5に伝達する。鞍乗型車両1は、駆動輪5の駆動により、走行する。
The straddle-type vehicle 1 also includes a clutch lever LV and drive wheels 5 . The clutch lever LV is operated by the driver of the straddle-type vehicle 1 . Centrifugal clutches (10, 30) switch between a connected state in which rotational driving force is transmitted from the engine EG to the transmission MT and a released state in which the transmission is released, in response to operation of a clutch lever LV. The centrifugal clutch (10, 30) also switches between a connected state and a released state according to the rotation speed of the engine EG.
The transmission MT transmits rotational driving force to the drive wheels 5 . The straddle-type vehicle 1 travels by driving the driving wheels 5 .
1  鞍乗型車両
5  駆動輪
10,30  遠心クラッチ
111  第1回転部材
112  第2回転部材
113  第1摩擦板
114  第2摩擦板
115  第1プレッシャプレート
117  第2プレッシャプレート
118  移動範囲規制部
121  操作力伝達部材
122  第1プレッシャプレート駆動部
123  第1のウェイト
130,330  相対移動機構
131  第2のウェイト
132  第1カム部
133  第3弾性体
134  変位部材
141  第2カム部
340  一方向スライド機構
1 saddle type vehicle 5 driving wheels 10, 30 centrifugal clutch 111 first rotating member 112 second rotating member 113 first friction plate 114 second friction plate 115 first pressure plate 117 second pressure plate 118 movement range regulating portion 121 operation Force transmission member 122 First pressure plate driving portion 123 First weights 130, 330 Relative movement mechanism 131 Second weight 132 First cam portion 133 Third elastic body 134 Displacement member 141 Second cam portion 340 One-way slide mechanism

Claims (7)

  1. 動力源の回転駆動力をトランスミッションに伝達する操作可能な遠心クラッチであって、
     前記遠心クラッチは、
     前記動力源の回転駆動力を受ける第1回転部材と一体に回転する第1摩擦板と、
     第2回転部材と一体に回転する第2摩擦板と、
     前記第1摩擦板及び前記第2摩擦板のうち一方の摩擦板を他方の摩擦板に回転軸線と平行な押付方向に押し付け前記第1摩擦板および前記第2摩擦板を相互に係合させる第1プレッシャプレートと、
     前記第1プレッシャプレートと前記第1摩擦板及び前記第2摩擦板との間に介在せずに、前記第1プレッシャプレートを前記押付方向とは逆のリリース方向へ付勢するように配置された第1弾性体と、
     前記回転軸線上において前記第1プレッシャプレートと互いに相対移動可能に配置された第2プレッシャプレートと、
     前記第2プレッシャプレートを前記押付方向へ付勢する第2弾性体と、
     前記第2プレッシャプレートの前記押付方向への移動の範囲を規制する移動範囲規制部と、
     前記遠心クラッチをリリースするための操作力を受けることにより、前記リリース方向へ前記第2プレッシャプレートを押すことにより、前記第2プレッシャプレートを前記第2弾性体の付勢力に抗して前記リリース方向へ変位させる操作力伝達部材と、
     前記回転軸線の方向における前記第2プレッシャプレートと前記第1プレッシャプレートの間に配置され、前記第1回転部材の回転の遠心力を受け前記回転軸線の径方向の外方に移動する第1のウェイトと、
     前記第1のウェイトの前記外方への移動に応じて、前記第1プレッシャプレートを前記押付方向に押し付けるように構成された第1プレッシャプレート駆動部と
    を備えた遠心クラッチであって、
    次のことを特徴とする:
     前記第1のウェイトは、前記遠心力を受け前記第1弾性体の付勢力に抗して前記第1プレッシャプレートを前記押付方向に移動させながら前記外方へ移動することで、更に前記外方へ移動可能な余裕を有しつつ前記第1摩擦板および前記第2摩擦板の係合を完了する接続位置へ移動し、更に大きな前記遠心力を受けることによって前記接続位置よりも前記外方へ移動することで前記第2弾性体の付勢力に抗して前記第2プレッシャプレートを前記リリース方向へ移動させ、
     前記遠心クラッチは、前記第1のウェイトが前記接続位置よりも前記外方に移動することによって前記第2プレッシャプレートを前記リリース方向へ移動させるときに、前記操作力伝達部材と前記第2プレッシャプレートの間に生じる隙間を小さく又は無くすように前記操作力伝達部材を前記第2プレッシャプレートに対し相対的にアクチュエータによらずに移動させる相対移動機構を更に備える、
    遠心クラッチ。
    An operable centrifugal clutch for transmitting rotational driving force of a power source to a transmission,
    The centrifugal clutch is
    a first friction plate that rotates integrally with a first rotating member that receives the rotational driving force of the power source;
    a second friction plate that rotates integrally with the second rotating member;
    One of the first friction plates and the second friction plates is pressed against the other friction plate in a pressing direction parallel to the axis of rotation to engage the first friction plates and the second friction plates with each other. 1 pressure plate;
    not interposed between the first pressure plate and the first friction plate and the second friction plate, but arranged so as to bias the first pressure plate in the release direction opposite to the pressing direction; a first elastic body;
    a second pressure plate arranged to be movable relative to the first pressure plate on the rotation axis;
    a second elastic body that biases the second pressure plate in the pressing direction;
    a movement range regulating portion that regulates the range of movement of the second pressure plate in the pressing direction;
    By receiving an operating force for releasing the centrifugal clutch and pushing the second pressure plate in the release direction, the second pressure plate is moved in the release direction against the biasing force of the second elastic body. An operating force transmission member that displaces to
    A first pressure plate disposed between the second pressure plate and the first pressure plate in the direction of the rotation axis and moving radially outward of the rotation axis under centrifugal force of the rotation of the first rotating member. weight and
    a first pressure plate driving section configured to press the first pressure plate in the pressing direction in response to the outward movement of the first weight, the centrifugal clutch comprising:
    Characterized by:
    The first weight moves outward while receiving the centrifugal force and moving the first pressure plate in the pressing direction against the biasing force of the first elastic body. to the connection position where the engagement between the first friction plate and the second friction plate is completed while having a margin for movement to the outside of the connection position by further receiving the large centrifugal force. By moving, the second pressure plate is moved in the release direction against the biasing force of the second elastic body;
    The centrifugal clutch rotates the operating force transmission member and the second pressure plate when the first weight moves outward from the connection position to move the second pressure plate in the release direction. Further comprising a relative movement mechanism for moving the operating force transmission member relative to the second pressure plate without using an actuator so as to reduce or eliminate the gap generated between
    centrifugal clutch.
  2.  請求項1に記載の遠心クラッチであって、
     前記相対移動機構は、前記第2プレッシャプレートと前記操作力伝達部材の間に介在し、第2のウェイトと、第1カム部とを有し、
     前記第2のウェイトは、前記回転軸線周りに回転し、回転の遠心力によって前記外方へ移動し、
     前記第1カム部は、前記第2のウェイトと接触することで、前記第2のウェイトの前記外方への移動によって、前記操作力伝達部材から前記第2プレッシャプレートまでの間の前記相対移動機構の前記回転軸線の方向での長さを延長する、
    遠心クラッチ。
    A centrifugal clutch according to claim 1,
    The relative movement mechanism is interposed between the second pressure plate and the operating force transmission member and has a second weight and a first cam portion,
    the second weight rotates about the axis of rotation and moves outward due to the centrifugal force of rotation;
    The first cam portion is in contact with the second weight so that the relative movement between the operating force transmission member and the second pressure plate is caused by the outward movement of the second weight. extending the length of the mechanism in the direction of said axis of rotation;
    centrifugal clutch.
  3.  請求項2に記載の遠心クラッチであって、
     前記相対移動機構は、前記第2プレッシャプレート及び第2のウェイトと共に回転しつつ、前記第2プレッシャプレートに対し前記回転軸線の方向に相対的に変位可能な変位部材を有し、
     前記第1カム部は、前記第2プレッシャプレート及び前記変位部材の少なくとも何れかに設けられる、
    遠心クラッチ。
    A centrifugal clutch according to claim 2,
    The relative movement mechanism has a displacement member that rotates together with the second pressure plate and the second weight and is relatively displaceable in the direction of the rotation axis with respect to the second pressure plate,
    The first cam portion is provided on at least one of the second pressure plate and the displacement member,
    centrifugal clutch.
  4.  請求項2に記載の遠心クラッチであって、
     前記第2のウェイトが受ける遠心力と前記第2のウェイトの移動を抑える第3弾性体の付勢力が釣り合う前記第2のウェイトの回転速度は、前記第2プレッシャプレートが受ける遠心力と前記第2弾性体の付勢力が釣り合う回転速度よりも小さい、
    遠心クラッチ。
    A centrifugal clutch according to claim 2,
    The rotation speed of the second weight at which the centrifugal force applied to the second weight and the biasing force of the third elastic body that suppresses the movement of the second weight are balanced is the centrifugal force applied to the second pressure plate and the second weight. 2 is smaller than the rotational speed at which the biasing force of the elastic body is balanced,
    centrifugal clutch.
  5.  請求項1に記載の遠心クラッチであって、
     前記相対移動機構は、
     前記第2プレッシャプレートと前記操作力伝達部材の間に介在し、前記第2プレッシャプレートが前記第1プレッシャプレートに押され前記リリース方向へ移動する場合の伸長が自在であり、前記操作力伝達部材が前記操作力を受け前記リリース方向に移動する場合の収縮が規制される一方向スライド機構を有する、
    遠心クラッチ。
    A centrifugal clutch according to claim 1,
    The relative movement mechanism is
    The operating force transmitting member is interposed between the second pressure plate and the operating force transmitting member, and is freely expandable when the second pressure plate is pushed by the first pressure plate and moves in the releasing direction, and the operating force transmitting member has a unidirectional slide mechanism that restricts contraction when receiving the operating force and moving in the release direction,
    centrifugal clutch.
  6.  請求項2に記載の遠心クラッチであって、
     前記第2のウェイトは、前記第2プレッシャプレートからトルクの伝達を受けて回転を加速及び減速し、
     前記第2プレッシャプレートは、前記第2のウェイトに減速のトルクを伝達するとともに前記第2のウェイトを前記径方向の内方に移動させるように形成された第2カム部を有する、
    遠心クラッチ。
    A centrifugal clutch according to claim 2,
    the second weight receives torque transmission from the second pressure plate to accelerate and decelerate rotation;
    The second pressure plate has a second cam portion formed to transmit deceleration torque to the second weight and move the second weight inward in the radial direction,
    centrifugal clutch.
  7.  鞍乗型車両であって、
     前記鞍乗型車両は、
     動力源と、
     トランスミッションと、
     前記動力源の回転駆動力を前記トランスミッションに伝達する請求項1から請求項6のいずれか1項に記載の遠心クラッチと、を備える
     鞍乗型車両。
    A straddle-type vehicle,
    The straddle-type vehicle
    power source;
    a transmission;
    A straddle-type vehicle, comprising: a centrifugal clutch according to any one of claims 1 to 6, which transmits rotational driving force of the power source to the transmission.
PCT/JP2022/004826 2021-02-18 2022-02-08 Centrifugal clutch and straddle-type vehicle WO2022176693A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023500754A JP7446516B2 (en) 2021-02-18 2022-02-08 Centrifugal clutch and straddle vehicle
TW111105246A TWI812005B (en) 2021-02-18 2022-02-14 Centrifugal clutches, and straddle vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021024215 2021-02-18
JP2021-024215 2021-02-18

Publications (1)

Publication Number Publication Date
WO2022176693A1 true WO2022176693A1 (en) 2022-08-25

Family

ID=82930858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004826 WO2022176693A1 (en) 2021-02-18 2022-02-08 Centrifugal clutch and straddle-type vehicle

Country Status (3)

Country Link
JP (1) JP7446516B2 (en)
TW (1) TWI812005B (en)
WO (1) WO2022176693A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54140051A (en) * 1978-04-24 1979-10-30 Yamaha Motor Co Ltd Centrifugal clutch
US5377803A (en) * 1992-05-06 1995-01-03 Fichtel & Sachs Ag Pressure plate arrangement for a motor vehicle friction clutch
US5638935A (en) * 1995-10-26 1997-06-17 Fehring; Thomas C. Centrifugal clutch
JP2009197991A (en) * 2008-02-25 2009-09-03 Yamaha Motor Co Ltd Friction clutch
JP2012031901A (en) * 2010-07-29 2012-02-16 Honda Motor Co Ltd Clutch system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8210333B2 (en) * 2007-06-29 2012-07-03 Yamaha Hatsudoki Kabushiki Kaisha Clutch and vehicle having clutch
JP2009197823A (en) * 2008-02-19 2009-09-03 Yamaha Motor Co Ltd Electronically controlled transmission device and straddling type vehicle equipped therewith

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54140051A (en) * 1978-04-24 1979-10-30 Yamaha Motor Co Ltd Centrifugal clutch
US5377803A (en) * 1992-05-06 1995-01-03 Fichtel & Sachs Ag Pressure plate arrangement for a motor vehicle friction clutch
US5638935A (en) * 1995-10-26 1997-06-17 Fehring; Thomas C. Centrifugal clutch
JP2009197991A (en) * 2008-02-25 2009-09-03 Yamaha Motor Co Ltd Friction clutch
JP2012031901A (en) * 2010-07-29 2012-02-16 Honda Motor Co Ltd Clutch system

Also Published As

Publication number Publication date
JPWO2022176693A1 (en) 2022-08-25
JP7446516B2 (en) 2024-03-08
TW202238014A (en) 2022-10-01
TWI812005B (en) 2023-08-11

Similar Documents

Publication Publication Date Title
JP6843634B2 (en) Clutch device and automatic transmission
JP5444153B2 (en) Clutch device
MX2014006648A (en) Pulley assembly with a decoupling mechanism.
JP2013520633A (en) Belt wheel with asymmetric torque-sensitive clutch action
JP2016211688A5 (en)
JP7556870B2 (en) Newly designed clutch assembly
US10197113B2 (en) Coupling device and drive train having a coupling device
WO2012053281A1 (en) Clutch device
WO2019044951A1 (en) Power transmission device
WO2019044950A1 (en) Power transmission device
WO2022176693A1 (en) Centrifugal clutch and straddle-type vehicle
JP2024032853A (en) power transmission device
JP7149827B2 (en) power transmission device
JP2010216501A (en) Piston structure for automatic transmission
JP7161285B2 (en) clutch device
WO2009093529A1 (en) Clutch device for motorcycle
JP2008303975A (en) Clutch
KR101448394B1 (en) Clutch actuator for automated manual transmisson
US5833041A (en) Clutch operating mechanism
WO2006067399A1 (en) Friction clutch with phased engagement of multiple diaphragm springs
US6790161B2 (en) Clutch for automobiles
WO1998040638A1 (en) A friction clutch
KR20100067948A (en) Transmission with prevention function of reverse drive
JP2009174618A (en) Clutch device
JP5901700B2 (en) Multi-disc transmission and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756014

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023500754

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202317061356

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756014

Country of ref document: EP

Kind code of ref document: A1