WO2022176306A1 - Pump device - Google Patents

Pump device Download PDF

Info

Publication number
WO2022176306A1
WO2022176306A1 PCT/JP2021/043567 JP2021043567W WO2022176306A1 WO 2022176306 A1 WO2022176306 A1 WO 2022176306A1 JP 2021043567 W JP2021043567 W JP 2021043567W WO 2022176306 A1 WO2022176306 A1 WO 2022176306A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
pump
piezoelectric
storage member
piezoelectric pump
Prior art date
Application number
PCT/JP2021/043567
Other languages
French (fr)
Japanese (ja)
Inventor
伸拓 田中
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2023500546A priority Critical patent/JP7416324B2/en
Priority to CN202180086396.4A priority patent/CN116635632A/en
Publication of WO2022176306A1 publication Critical patent/WO2022176306A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a pump device equipped with a piezoelectric pump.
  • Patent Document 1 describes a blower that conveys fluid.
  • the blower has a pump section and a valve section.
  • the pump section includes a piezoelectric element and a diaphragm.
  • a piezoelectric element is attached to the diaphragm.
  • the piezoelectric body of the piezoelectric element When the drive signal is applied to the piezoelectric element, the piezoelectric body of the piezoelectric element is distorted, and this distortion causes the diaphragm to vibrate. Thereby, the pump section conveys the fluid.
  • the piezoelectric element generates heat due to the application of the driving signal and the distortion.
  • an object of the present invention is to stabilize the temperature of the pump even while the piezoelectric element is being driven.
  • a pump device of the present invention includes a piezoelectric pump and a heat storage member.
  • a piezoelectric pump includes a flat plate having a piezoelectric element arranged on one main surface thereof, and a housing in which the flat plate is arranged and which supports the flat plate so as to vibrate.
  • the heat storage member is arranged in the housing.
  • heat from the piezoelectric pump is stored in the heat storage member.
  • the heat storage member maintains a substantially constant temperature with this heat. This also stabilizes the temperature of the piezoelectric pump in which the heat storage member is arranged.
  • the temperature of the pump can be stabilized even while the piezoelectric element is being driven, and the pump characteristics are stabilized.
  • FIG. 1 is an exploded perspective view showing the configuration of the pump device according to the first embodiment.
  • FIG. 2 is a schematic side cross-sectional view including fluid flow of the pump device according to the first embodiment.
  • FIG. 3 is a schematic graph showing an example of temperature change of a piezoelectric pump.
  • FIG. 4 is a schematic side cross-sectional view including fluid flow of a pumping device according to a second embodiment.
  • FIG. 5 is a schematic side view of a pump device according to a third embodiment;
  • FIG. 6 is a side view of the pump device according to the fourth embodiment.
  • FIG. 7 is a side view showing the configuration of the pump device according to the fifth embodiment.
  • FIG. 1 is an exploded perspective view showing the configuration of the pump device according to the first embodiment.
  • FIG. 2 is a schematic side cross-sectional view including fluid flow of the pump device according to the first embodiment.
  • the shape of each constituent element is partially or wholly exaggerated in order to make the configuration of the pump device easier to understand.
  • the pump device 1 includes a piezoelectric pump 10 and a heat storage member 51.
  • the piezoelectric pump 10 includes a pump body 20, a base housing 30, and a lid member 40.
  • the base housing 30 and the lid member 40 constitute the "housing" of the present invention.
  • the pump body 20 includes a flat plate 211 , a frame 212 , a support portion 213 and a piezoelectric element 22 .
  • the flat plate 211 is circular in plan view.
  • the frame body 212 has a shape surrounding the outer peripheral edge of the flat plate 211 and is arranged at a position spaced apart from the outer peripheral edge of the flat plate 211 .
  • the support portion 213 is arranged between the flat plate 211 and the frame 212 .
  • the supporting portion 213 has a beam shape, and supports the flat plate 211 with respect to the frame 212 so as to be able to vibrate.
  • the piezoelectric element 22 includes a disk-shaped piezoelectric body and a drive electrode.
  • the piezoelectric element 22 is installed on one main surface of the flat plate 211 .
  • a drive signal is applied to the piezoelectric element 22 by a drive signal application electrode 251 and a drive signal application electrode 252 .
  • the base housing 30 includes a main member 31, a suction side nozzle 321, a discharge side nozzle 322, and a terminal mounting portion 35.
  • the main member 31, the suction side nozzle 321, the discharge side nozzle 322, and the terminal mounting portion 35 are integrally molded, for example, from an insulating resin material.
  • the main member 31 has a bottom wall 311 and side walls 312 .
  • the main member 31 has a recess 33 surrounded by a bottom wall 311 and side walls 312 .
  • the recessed portion 33 includes a central recessed portion 333 in plan view, a recessed portion 332 arranged on the outer periphery thereof, and a recessed portion 331 arranged on the outer periphery thereof and in contact with the inner edge of the side wall 312 .
  • Recess 333 is deeper than recess 332
  • recess 332 is deeper than recess 331 .
  • the suction side nozzle 321 and the discharge side nozzle 322 are attached to the outer surface of the side wall 312 of the main member 31 .
  • a suction port 3210 provided in the suction-side nozzle 321 communicates with the recessed portion 333 of the main member 31 through a through hole penetrating the side wall 312 in the thickness direction.
  • a discharge port 3220 provided in the discharge-side nozzle 322 communicates with the concave portion 332 through a through-hole penetrating the side wall 312 in the thickness direction.
  • the terminal mounting portion 35 is arranged at a position different from the position where the suction side nozzle 321 and the discharge side nozzle 322 are connected on the outer surface of the side wall 312 of the main member 31 .
  • the terminal mounting portion 35 has a shape protruding outward from the side wall 312 of the main member 31 .
  • One ends of the driving signal applying electrode 251 and the driving signal applying electrode 252 are placed on the terminal mounting portion 35 .
  • the portions of the driving signal applying electrode 251 and the driving signal applying electrode 252 that are placed on the terminal mounting portion 35 serve as portions for supplying drive signals from the outside.
  • the lid member 40 is a flat plate and is made of metal, for example.
  • the outer shape of the lid member 40 is substantially the same as the inner shape of the side wall 312 of the base housing 30 , that is, the outer shape of the recess 331 .
  • the lid member 40 may be made of resin, it is preferably made of a material having a higher thermal conductivity than the base housing 30, and is more preferably made of metal as described above.
  • the pump body 20 is fitted into the recess 332 of the base housing 30 . More specifically, the pump main body 20 is fitted so that one main surface of the flat plate 211 on which the piezoelectric element 22 is installed is opposite to the concave portion 331 . At this time, the frame 212 contacts the surface of the concave portion 332 , and the flat plate 211 and the support portion 213 do not contact the concave portion 332 . That is, a suction-side space 101 is formed between the flat plate 211 and the support portion 213 and the surface of the recess 331, as shown in FIG.
  • the lid member 40 is fitted into the recess 331 of the base housing 30 .
  • a discharge side space 102 is formed between the lid member 40 and the flat plate 211 and the support portion 213 of the pump body 20 by adjusting the height of the recess 332. be.
  • the pump body 20 is arranged so that the vibration of the flat plate 211 does not cause the flat plate 211 , the support portion 213 and the piezoelectric element 22 to come into contact with the lid member 40 .
  • the pump body 20 is arranged in the internal space of the housing while the flat plate 211 can vibrate.
  • the outer surface of the wall on the suction side space 101 side (corresponding to the “second wall” of the present invention) in the housing becomes the suction side outer wall surface 130, and the wall on the discharge side space 102 side (the “first wall” of the present invention). ) is the discharge-side outer wall surface 140 .
  • the piezoelectric body of the piezoelectric element 22 is distorted and the flat plate 211 undergoes bending vibration.
  • This bending vibration mainly changes the pressure distribution in the suction-side space 101 .
  • fluid for example, air
  • the fluid that has flowed into the suction side space 101 is conveyed to the discharge side space 102 through the communication port 103 between the support portions 213 .
  • the fluid conveyed to the ejection-side space 102 is carried out to the ejection port 3220 of the ejection-side nozzle 322 and ejected to the outside.
  • the driving of the piezoelectric element 22 causes the piezoelectric element 22 to generate heat, and the temperature of the internal space of the housing rises.
  • the temperature of the discharge side space 102 on the downstream side in the fluid transport direction is likely to rise significantly.
  • the heat storage member 51 has a flat plate shape with a predetermined thickness and has heat storage properties.
  • the heat storage member 51 is preferably a latent heat storage material.
  • the heat storage member 51 is a paraffin-based heat storage material, and normal paraffin, particularly nonadecane, icosane, henicosane, tetracosane, triacontane, etc., having a melting point of 30° C. to 70° C. are preferable.
  • the heat storage member 51 is not limited to the latent heat storage material or the paraffin-based heat storage material, and any material that can keep the temperature within a certain temperature range for a predetermined time may be used.
  • the heat storage density of the heat storage member 51 can be increased, and a constant temperature can be maintained for a longer period of time.
  • a paraffin-based heat storage material it is possible to realize a weight reduction as well as a temperature retention capability.
  • the heat storage member 51 is arranged on the discharge-side outer wall surface 140 of the housing of the piezoelectric pump 10 . At this time, the heat storage member 51 has a shape that covers the entire surface of the discharge-side outer wall surface 140 .
  • the heat storage member 51 undergoes a phase change or phase transition by this heat, and stores the associated transition heat (latent heat) as thermal energy. As a result, the heat storage member 51 maintains a constant temperature over a predetermined length of time during which heat is applied.
  • the temperature of the piezoelectric pump 10 in which the heat storage member 51 is installed is also stabilized at a constant temperature by the heat storage member 51 having a constant temperature.
  • FIG. 3 is a schematic graph showing an example of temperature change of a piezoelectric pump.
  • the horizontal axis is the elapsed time (time) from the start of driving of the piezoelectric element 22
  • the vertical axis is the temperature of the piezoelectric pump 10 , more specifically the temperature of the discharge-side outer wall surface 140 .
  • the solid line indicates the case of the configuration of the present invention (with the heat storage member), and the dashed line indicates the case of the comparative configuration (without the heat storage member).
  • the temperature of the piezoelectric pump 10 is substantially constant over a predetermined period of time.
  • the temperature of the piezoelectric pump 10 increases unilaterally with the passage of time.
  • the pump device 1 can maintain the piezoelectric pump 10 at a predetermined temperature by installing the heat storage member 51 in the piezoelectric pump 10 . Thereby, the pump characteristics of the piezoelectric pump 10 can be stabilized.
  • the pump device 1 can prevent the piezoelectric pump 10 from becoming hotter than the temperature determined by the heat storage member 51 .
  • the thermal stress of the piezoelectric pump 10 can be reduced and the life of the piezoelectric pump 10 can be extended.
  • the temperature determined by the heat storage member 51 is, for example, the temperature at which the phase changes from solid to liquid when the heat storage member 51 is a latent heat storage material. That is, the temperature determined by the heat storage member 51 is the temperature that the heat storage member 51 can keep within a certain temperature range for a predetermined time.
  • the temperature of the discharge side space 102 tends to be higher than that of the suction side space 101 . Therefore, by arranging the heat storage member 51 on the discharge-side outer wall surface 140 of the piezoelectric pump 10, it is possible to effectively suppress a rise in temperature, and stabilize the temperature of the piezoelectric pump 10 more effectively.
  • the heat storage member 51 is arranged on the entire surface of the discharge-side outer wall surface 140 .
  • the heat storage effect described above is improved as compared with arranging the heat storage member 51 on a part of the discharge-side outer wall surface 140 .
  • the heat storage member 51 can be provided on a portion of the discharge-side outer wall surface 140, the above-described heat storage effect can be obtained. Therefore, the temperature of the piezoelectric pump 10 can be stabilized more reliably.
  • the heat storage member 51 may be arranged so as to overlap at least the piezoelectric element 22 when the pump device 1 is viewed from above.
  • the main heat source is the piezoelectric element 22 . Therefore, by arranging the heat storage member 51 so as to overlap the piezoelectric element 22 , the heat storage member 51 can more efficiently and effectively store the heat generated in the piezoelectric pump 10 .
  • the heat storage member 51 may be other heat storage material instead of latent heat storage material such as paraffin-based heat storage material.
  • latent heat storage material the heat storage density of the heat storage member 51 can be increased, and the time for which a constant temperature is maintained can be lengthened.
  • paraffin-based heat storage material the weight of the heat storage member 51 can be reduced. This makes it possible to realize a lightweight pump device 1 having stable pump characteristics.
  • the heat storage member 51 preferably has flexibility. Accordingly, even if the lid member 40 vibrates due to the vibration of the flat plate 211 , the vibration can be absorbed by the heat storage member 51 . Thus, for example, the pump device 1 can suppress vibration noise.
  • the heat storage member 51 has a similar shape to the discharge-side outer wall surface 140 , and further has a similar shape to the lid member 40 .
  • vibrations are absorbed substantially uniformly in all azimuth directions around the piezoelectric element 22 in plan view. Therefore, the difference in vibration in each direction is suppressed, and the distortion occurring in the housing can be suppressed. As a result, the reliability of the pump device 1 is improved.
  • the suction side nozzle 321 and the discharge side nozzle 322 are arranged on the side wall 312 of the housing.
  • the opening surfaces of inlet 3210 and outlet 3220 do not directly face heat storage member 51 . Therefore, the influence of the sucked fluid and the discharged fluid on the heat storage member 51 can be suppressed. As a result, the temperature of the pump device 1 is more reliably stabilized, and stable pump performance can be more reliably achieved.
  • FIG. 4 is a schematic side cross-sectional view including fluid flow of a pumping device according to a second embodiment.
  • the pump device 1A according to the second embodiment differs from the pump device 1 according to the first embodiment in that a heat storage member 52 is added.
  • Other configurations of the pump device 1A are the same as those of the pump device 1, and the description of the same parts is omitted.
  • the pump device 1A includes a heat storage member 52.
  • the heat storage member 52 is, for example, the same material as the heat storage member 51 .
  • the heat storage member 52 may be made of a material different from that of the heat storage member 51 and may have a smaller heat storage capacity than the heat storage member 51 .
  • the heat storage member 52 is arranged on the suction side outer wall surface 130 of the housing of the piezoelectric pump 10 . At this time, the heat storage member 52 has a shape that covers the entire surface of the suction side outer wall surface 130 .
  • the pump device 1A can stabilize the temperature on the suction side of the piezoelectric pump 10 as well. Thereby, the pump device 1A can further stabilize the temperature of the piezoelectric pump 10 .
  • the shape of the heat storage member 51 and the shape of the heat storage member 52 may be the same or different.
  • FIG. 5 is a schematic side view of a pump device according to a third embodiment
  • the pump device 1B according to the third embodiment differs from the pump device 1 according to the first embodiment in that a heat storage member 50 is provided.
  • the rest of the configuration of the pump device 1B is the same as that of the pump device 1, and the description of the same portions will be omitted.
  • the pump device 1B includes a heat storage member 50.
  • the heat storage member 50 is made of the same material as the heat storage member 51 according to the first embodiment.
  • the heat storage member 50 covers the outer surfaces of the suction-side outer wall surface 130 , the discharge-side outer wall surface 140 , and the side wall 312 of the piezoelectric pump 10 .
  • the pump device 1B stores heat on both main surfaces and two side surfaces overlapping the piezoelectric elements 22 of the piezoelectric pump 10 . Therefore, the pump device 1B can further stabilize the temperature of the piezoelectric pump 10 .
  • the heat storage member 50 is not arranged on the surface on which the suction side nozzle 321 and the discharge side nozzle 322 of the piezoelectric pump 10 are formed.
  • the heat storage member 50 may also be arranged on the surface where the suction side nozzle 321 and the discharge side nozzle 322 of the piezoelectric pump 10 are formed.
  • FIG. 6 is a side view of the pump device according to the fourth embodiment.
  • the pump device 1C according to the fourth embodiment differs from the pump device 1 according to the first embodiment in that it includes a plurality of piezoelectric pumps and a plurality of heat storage members.
  • the pump device 1C includes a piezoelectric pump 10A, a piezoelectric pump 10B, and a connection pipe 80.
  • the piezoelectric pump 10A and the piezoelectric pump 10B have the same configuration as the piezoelectric pump 10 according to the first embodiment.
  • the piezoelectric pump 10A and the piezoelectric pump 10B are connected by a connection pipe 80. More specifically, the discharge side nozzle 322A of the piezoelectric pump 10A and the suction side nozzle 321B of the piezoelectric pump 10B are connected by a connection pipe 80. As shown in FIG. The discharge port of the discharge-side nozzle 322A of the piezoelectric pump 10A and the suction port of the suction-side nozzle 321B of the piezoelectric pump 10B communicate with each other through the cavity of the connection pipe 80 .
  • the piezoelectric pump 10A and the piezoelectric pump 10B are driven.
  • the fluid is sucked into the piezoelectric pump 10A from the suction port of the suction side nozzle 321A of the piezoelectric pump 10A.
  • the piezoelectric pump 10A discharges the sucked fluid to the connection pipe 80 from the discharge port of the discharge-side nozzle 322A of the piezoelectric pump 10A.
  • the fluid discharged to the connecting pipe 80 is sucked into the piezoelectric pump 10B from the suction port of the suction side nozzle 321B of the piezoelectric pump 10B.
  • the piezoelectric pump 10B discharges the sucked fluid to the outside from the discharge port of the discharge-side nozzle 322B of the piezoelectric pump 10B.
  • the fluid is transported by the piezoelectric pump 10A and the piezoelectric pump 10B, so a larger flow rate can be achieved than when the piezoelectric pump 10A or the piezoelectric pump 10B is used alone.
  • the piezoelectric pump 10A and the piezoelectric pump 10B are arranged such that the suction-side outer wall surface 130A of the piezoelectric pump 10A faces the suction-side outer wall surface 130B of the piezoelectric pump 10B. More specifically, the piezoelectric pump 10A and the piezoelectric pump 10B are such that the suction-side outer wall surface 130A of the piezoelectric pump 10A and the suction-side outer wall surface 130B of the piezoelectric pump 10B face each other, are close to each other, and are substantially parallel to each other. are placed so that
  • the piezoelectric pump 10A is arranged so that the discharge-side outer wall surface 140A faces the side opposite to the piezoelectric pump 10B side.
  • the piezoelectric pump 10B is arranged such that the discharge-side outer wall surface 140B faces the side opposite to the piezoelectric pump 10A side.
  • the heat storage member 51A is arranged on the discharge side outer wall surface 140A of the piezoelectric pump 10A.
  • the heat storage member 51B is arranged on the discharge side outer wall surface 140B of the piezoelectric pump 10B. That is, in the pump device 1C, heat storage members 51A and 51B are arranged for the plurality of piezoelectric pumps 10A and 10B, respectively.
  • the pump device 1C can stabilize the temperature even if it has a plurality of piezoelectric pumps 10A and 10B each serving as a heat source.
  • FIG. 7 is a side view showing the configuration of the pump device according to the fifth embodiment.
  • the pump device 1D according to the fifth embodiment differs from the pump device 1C according to the fourth embodiment in the arrangement of the piezoelectric pumps 10A and 10B.
  • the rest of the configuration of the pump device 1D is the same as that of the pump device 1C, and the description of the similar portions will be omitted.
  • the piezoelectric pump 10A and the piezoelectric pump 10B are arranged so that the discharge-side outer wall surface 140A of the piezoelectric pump 10A and the discharge-side outer wall surface 140B of the piezoelectric pump 10B face each other, are close to each other, and are substantially parallel to each other. , is placed.
  • the heat storage member 51D is sandwiched between the discharge-side outer wall surface 140A and the discharge-side outer wall surface 140B.
  • the pump device 1D can stabilize the temperature even if it has a plurality of piezoelectric pumps 10A and 10B each serving as a heat source.
  • piezoelectric pumps are provided.
  • a configuration including three or more piezoelectric pumps may be used.
  • an individual heat storage member may be arranged for each piezoelectric pump, or a common heat storage member may be arranged for a plurality of piezoelectric pumps.
  • the heat storage member is directly brought into contact with the piezoelectric pump.
  • the heat storage member does not have to be in direct contact with the piezoelectric pump.
  • a thermally conductive adhesive layer may be placed between the heat storage member and the piezoelectric pump, or even if there is a gap between the piezoelectric pump and the heat storage member that allows heat to propagate from the piezoelectric pump to the heat storage member. good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

A pump device (1) is provided with a piezoelectric pump (10) and a heat storage member (51). The piezoelectric pump (10) is provided with a plate (211) that has a piezoelectric element (22) disposed on one main surface thereof, and a casing that has the plate (211) disposed therein and supports the plate (211) in a manner that allows vibration thereof. The heat storage material (51) is disposed in the casing.

Description

ポンプ装置pumping equipment
 本発明は、圧電ポンプを備えるポンプ装置に関する。 The present invention relates to a pump device equipped with a piezoelectric pump.
 特許文献1には、流体を搬送するブロアが記載されている。ブロアは、ポンプ部とバルブ部とを備える。ポンプ部は、圧電素子と振動板とを備える。圧電素子は、振動板に取り付けられる。 Patent Document 1 describes a blower that conveys fluid. The blower has a pump section and a valve section. The pump section includes a piezoelectric element and a diaphragm. A piezoelectric element is attached to the diaphragm.
 駆動信号が圧電素子に印加されることによって、圧電素子の圧電体は歪み、この歪みによって、振動板は振動する。これにより、ポンプ部は、流体を搬送する。 When the drive signal is applied to the piezoelectric element, the piezoelectric body of the piezoelectric element is distorted, and this distortion causes the diaphragm to vibrate. Thereby, the pump section conveys the fluid.
 この際、圧電素子は、駆動信号の印加、歪みによって発熱する。 At this time, the piezoelectric element generates heat due to the application of the driving signal and the distortion.
国際公開2017/038565号WO2017/038565
 上述のように圧電素子が発熱すると、ポンプの温度が安定せず、特性も不安定になる。 As mentioned above, when the piezoelectric element heats up, the temperature of the pump becomes unstable and the characteristics become unstable.
 したがって、本発明の目的は、圧電素子の駆動中においてもポンプの温度を安定させることである。 Therefore, an object of the present invention is to stabilize the temperature of the pump even while the piezoelectric element is being driven.
 この発明のポンプ装置は、圧電ポンプと蓄熱部材とを備える。圧電ポンプは、一方主面に圧電素子が配置された平板、および、平板が内部に配置され、平板を振動可能に支持する筐体を備える。蓄熱部材は、筐体に配置される。 A pump device of the present invention includes a piezoelectric pump and a heat storage member. A piezoelectric pump includes a flat plate having a piezoelectric element arranged on one main surface thereof, and a housing in which the flat plate is arranged and which supports the flat plate so as to vibrate. The heat storage member is arranged in the housing.
 この構成では、圧電ポンプからの熱は、蓄熱部材で蓄熱される。蓄熱部材は、この熱によって、略一定温度を維持する。これにより、蓄熱部材が配置された圧電ポンプの温度も安定する。 In this configuration, heat from the piezoelectric pump is stored in the heat storage member. The heat storage member maintains a substantially constant temperature with this heat. This also stabilizes the temperature of the piezoelectric pump in which the heat storage member is arranged.
 この発明によれば、圧電素子の駆動中においてもポンプの温度を安定させることができ、ポンプ特性が安定になる。 According to this invention, the temperature of the pump can be stabilized even while the piezoelectric element is being driven, and the pump characteristics are stabilized.
図1は、第1の実施形態に係るポンプ装置の構成を示す分解斜視図である。FIG. 1 is an exploded perspective view showing the configuration of the pump device according to the first embodiment. 図2は、第1の実施形態に係るポンプ装置の流体の流れを含む側断面の概略図である。FIG. 2 is a schematic side cross-sectional view including fluid flow of the pump device according to the first embodiment. 図3は、圧電ポンプの温度変化の一例を示す概略的なグラフである。FIG. 3 is a schematic graph showing an example of temperature change of a piezoelectric pump. 図4は、第2の実施形態に係るポンプ装置の流体の流れを含む側断面の概略図である。FIG. 4 is a schematic side cross-sectional view including fluid flow of a pumping device according to a second embodiment. 図5は、第3の実施形態に係るポンプ装置の概略側面図である。FIG. 5 is a schematic side view of a pump device according to a third embodiment; 図6は、第4の実施形態に係るポンプ装置の側面図である。FIG. 6 is a side view of the pump device according to the fourth embodiment. 図7は、第5の実施形態に係るポンプ装置の構成を示す側面図である。FIG. 7 is a side view showing the configuration of the pump device according to the fifth embodiment.
 [第1の実施形態]
 本発明の第1の実施形態に係るポンプ装置について、図を参照して説明する。図1は、第1の実施形態に係るポンプ装置の構成を示す分解斜視図である。図2は、第1の実施形態に係るポンプ装置の流体の流れを含む側断面の概略図である。なお、本実施形態を含む各実施形態に示す図は、ポンプ装置の構成を分かり易くするため、それぞれの構成要素の形状を部分的または全体として誇張して記載している。
[First embodiment]
A pump device according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an exploded perspective view showing the configuration of the pump device according to the first embodiment. FIG. 2 is a schematic side cross-sectional view including fluid flow of the pump device according to the first embodiment. In addition, in the drawings shown in each embodiment including this embodiment, the shape of each constituent element is partially or wholly exaggerated in order to make the configuration of the pump device easier to understand.
 図1、図2に示すように、ポンプ装置1は、圧電ポンプ10、および、蓄熱部材51を備える。 As shown in FIGS. 1 and 2, the pump device 1 includes a piezoelectric pump 10 and a heat storage member 51.
 圧電ポンプ10は、ポンプ本体20、ベース筐体30、および、蓋部材40を備える。ベース筐体30と蓋部材40とによって、本発明の「筐体」が構成される。 The piezoelectric pump 10 includes a pump body 20, a base housing 30, and a lid member 40. The base housing 30 and the lid member 40 constitute the "housing" of the present invention.
 ポンプ本体20は、平板211、枠体212、支持部213、および、圧電素子22を備える。平板211は、平面視して円形である。枠体212は、平板211の外周縁を囲む形状であり、平板211の外周縁から離間する位置に配置される。支持部213は、平板211と枠体212との間に配置される。支持部213は、梁形状であり、枠体212に対して平板211を振動可能に支持する。 The pump body 20 includes a flat plate 211 , a frame 212 , a support portion 213 and a piezoelectric element 22 . The flat plate 211 is circular in plan view. The frame body 212 has a shape surrounding the outer peripheral edge of the flat plate 211 and is arranged at a position spaced apart from the outer peripheral edge of the flat plate 211 . The support portion 213 is arranged between the flat plate 211 and the frame 212 . The supporting portion 213 has a beam shape, and supports the flat plate 211 with respect to the frame 212 so as to be able to vibrate.
 圧電素子22は、円板状の圧電体と駆動用電極とを備える。圧電素子22は、平板211における一方主面に設置される。圧電素子22には、駆動信号印加電極251および駆動信号印加電極252によって、駆動信号が印加される。 The piezoelectric element 22 includes a disk-shaped piezoelectric body and a drive electrode. The piezoelectric element 22 is installed on one main surface of the flat plate 211 . A drive signal is applied to the piezoelectric element 22 by a drive signal application electrode 251 and a drive signal application electrode 252 .
 ベース筐体30は、主部材31、吸入側ノズル321、吐出側ノズル322、および、端子載置部35を備える。主部材31、吸入側ノズル321、吐出側ノズル322、および、端子載置部35は、例えば、絶縁性の樹脂材料によって一体成型されている。 The base housing 30 includes a main member 31, a suction side nozzle 321, a discharge side nozzle 322, and a terminal mounting portion 35. The main member 31, the suction side nozzle 321, the discharge side nozzle 322, and the terminal mounting portion 35 are integrally molded, for example, from an insulating resin material.
 主部材31は、底壁311と側壁312とを備える。主部材31は、底壁311と側壁312とによって囲まれる凹部33を備える。凹部33は、平面視した中央の凹部333、その外周に配置される凹部332、さらにその外周に配置され、側壁312の内縁に接する凹部331からなる。凹部333は、凹部332よりも深く、凹部332は、凹部331よりも深い。 The main member 31 has a bottom wall 311 and side walls 312 . The main member 31 has a recess 33 surrounded by a bottom wall 311 and side walls 312 . The recessed portion 33 includes a central recessed portion 333 in plan view, a recessed portion 332 arranged on the outer periphery thereof, and a recessed portion 331 arranged on the outer periphery thereof and in contact with the inner edge of the side wall 312 . Recess 333 is deeper than recess 332 , and recess 332 is deeper than recess 331 .
 吸入側ノズル321および吐出側ノズル322は、主部材31の側壁312の外面に取り付けられている。吸入側ノズル321に設けられた吸入口3210は、側壁312を厚み方向に貫通する貫通孔を通じて、主部材31の凹部333に連通する。吐出側ノズル322に設けられた吐出口3220は、側壁312を厚み方向に貫通する貫通孔を通じて、凹部332に連通する。 The suction side nozzle 321 and the discharge side nozzle 322 are attached to the outer surface of the side wall 312 of the main member 31 . A suction port 3210 provided in the suction-side nozzle 321 communicates with the recessed portion 333 of the main member 31 through a through hole penetrating the side wall 312 in the thickness direction. A discharge port 3220 provided in the discharge-side nozzle 322 communicates with the concave portion 332 through a through-hole penetrating the side wall 312 in the thickness direction.
 端子載置部35は、主部材31の側壁312の外面における吸入側ノズル321および吐出側ノズル322が接続される位置と異なる位置に配置される。端子載置部35は、主部材31の側壁312から外方に突出する形状である。端子載置部35には、駆動信号印加電極251および駆動信号印加電極252の一方端が載置される。この駆動信号印加電極251および駆動信号印加電極252における端子載置部35に載置される部分が、外部からの駆動信号の供給部となる。 The terminal mounting portion 35 is arranged at a position different from the position where the suction side nozzle 321 and the discharge side nozzle 322 are connected on the outer surface of the side wall 312 of the main member 31 . The terminal mounting portion 35 has a shape protruding outward from the side wall 312 of the main member 31 . One ends of the driving signal applying electrode 251 and the driving signal applying electrode 252 are placed on the terminal mounting portion 35 . The portions of the driving signal applying electrode 251 and the driving signal applying electrode 252 that are placed on the terminal mounting portion 35 serve as portions for supplying drive signals from the outside.
 蓋部材40は、平板であり、例えば、金属からなる。蓋部材40の外形形状は、ベース筐体30の側壁312の内側の形状、すなわち、凹部331の外形形状と略同じである。なお、蓋部材40は、樹脂でもよいが、ベース筐体30よりも熱伝導率が高い材料であることが好ましく、上述のように金属であることがより好ましい。 The lid member 40 is a flat plate and is made of metal, for example. The outer shape of the lid member 40 is substantially the same as the inner shape of the side wall 312 of the base housing 30 , that is, the outer shape of the recess 331 . Although the lid member 40 may be made of resin, it is preferably made of a material having a higher thermal conductivity than the base housing 30, and is more preferably made of metal as described above.
 ポンプ本体20は、ベース筐体30の凹部332に嵌め込まれる。より具体的には、ポンプ本体20は、平板211における圧電素子22が設置される一方主面が凹部331と逆側になるように嵌め込まれる。この際、枠体212が凹部332の表面に当接し、平板211および支持部213は、凹部332に当接しない。すなわち、平板211および支持部213と凹部331の表面との間には、図2に示すように、吸引側空間101が形成される。 The pump body 20 is fitted into the recess 332 of the base housing 30 . More specifically, the pump main body 20 is fitted so that one main surface of the flat plate 211 on which the piezoelectric element 22 is installed is opposite to the concave portion 331 . At this time, the frame 212 contacts the surface of the concave portion 332 , and the flat plate 211 and the support portion 213 do not contact the concave portion 332 . That is, a suction-side space 101 is formed between the flat plate 211 and the support portion 213 and the surface of the recess 331, as shown in FIG.
 蓋部材40は、ベース筐体30の凹部331にはめ込まれる。この際、凹部332の高さが調整されていることによって、蓋部材40とポンプ本体20の平板211および支持部213との間には、図2に示すように、吐出側空間102が形成される。この際、ポンプ本体20は、平板211の振動によって、平板211、支持部213、および圧電素子22が蓋部材40に接触しないように、配置される。 The lid member 40 is fitted into the recess 331 of the base housing 30 . At this time, as shown in FIG. 2, a discharge side space 102 is formed between the lid member 40 and the flat plate 211 and the support portion 213 of the pump body 20 by adjusting the height of the recess 332. be. At this time, the pump body 20 is arranged so that the vibration of the flat plate 211 does not cause the flat plate 211 , the support portion 213 and the piezoelectric element 22 to come into contact with the lid member 40 .
 このような構成によって、ポンプ本体20は、平板211が振動可能な状態で、筐体の内部空間内に配置される。そして、筐体における吸引側空間101側の壁(本発明の「第2壁」に対応する)の外面が吸入側外壁面130となり、吐出側空間102側の壁(本発明の「第1壁」に対応する)の外面が吐出側外壁面140となる。 With such a configuration, the pump body 20 is arranged in the internal space of the housing while the flat plate 211 can vibrate. The outer surface of the wall on the suction side space 101 side (corresponding to the “second wall” of the present invention) in the housing becomes the suction side outer wall surface 130, and the wall on the discharge side space 102 side (the “first wall” of the present invention). ) is the discharge-side outer wall surface 140 .
 このような構成の圧電ポンプ10に対して、駆動信号印加電極251および駆動信号印加電極252によって駆動信号が印加されることで、圧電素子22の圧電体がひずみ、平板211がベンディング振動する。このベンディング振動によって、主として吸引側空間101の圧力分布が変化する。 By applying drive signals from the drive signal application electrodes 251 and 252 to the piezoelectric pump 10 having such a configuration, the piezoelectric body of the piezoelectric element 22 is distorted and the flat plate 211 undergoes bending vibration. This bending vibration mainly changes the pressure distribution in the suction-side space 101 .
 これにより、図2の太矢印に示すように、流体(例えば、空気)は、吸入側ノズル321の吸入口3210から、吸引側空間101に流入する。吸引側空間101に流入した流体は、支持部213の間の連通口103を通じて、吐出側空間102に搬送される。吐出側空間102に搬送された流体は、吐出側ノズル322の吐出口3220に搬出され、外部に吐出される。 As a result, fluid (for example, air) flows into the suction side space 101 from the suction port 3210 of the suction side nozzle 321, as indicated by the thick arrow in FIG. The fluid that has flowed into the suction side space 101 is conveyed to the discharge side space 102 through the communication port 103 between the support portions 213 . The fluid conveyed to the ejection-side space 102 is carried out to the ejection port 3220 of the ejection-side nozzle 322 and ejected to the outside.
 この際、圧電素子22の駆動によって、圧電素子22が発熱し、筐体の内部空間の温度が上昇する。特に、流体の搬送方向の下流側となる吐出側空間102の温度は大きく上昇し易い。 At this time, the driving of the piezoelectric element 22 causes the piezoelectric element 22 to generate heat, and the temperature of the internal space of the housing rises. In particular, the temperature of the discharge side space 102 on the downstream side in the fluid transport direction is likely to rise significantly.
 蓄熱部材51は、所定厚みを有する平板状であり、蓄熱性を有する。蓄熱部材51は、潜熱蓄熱材であることが好ましい。例えば、より具体的には、蓄熱部材51は、パラフィン系蓄熱材であり、ノルマルパラフィン、特にノナデカンやイコサン、やヘンイコサン、テトラコサン、トリアコンタンなどのように融点が30℃から70℃のものが好ましい。なお、蓄熱部材51は、潜熱蓄熱材、パラフィン系蓄熱材に限るものではなく、所定時間に亘って一定の温度範囲内に温度を保てる材料であればよい。 The heat storage member 51 has a flat plate shape with a predetermined thickness and has heat storage properties. The heat storage member 51 is preferably a latent heat storage material. For example, more specifically, the heat storage member 51 is a paraffin-based heat storage material, and normal paraffin, particularly nonadecane, icosane, henicosane, tetracosane, triacontane, etc., having a melting point of 30° C. to 70° C. are preferable. . Note that the heat storage member 51 is not limited to the latent heat storage material or the paraffin-based heat storage material, and any material that can keep the temperature within a certain temperature range for a predetermined time may be used.
 例えば、潜熱蓄熱材を用いることによって、蓄熱部材51の蓄熱密度を高くでき、一定の温度をより長く保持できる。また、パラフィン系蓄熱材を用いることによって、温度の保持能力とともに、軽量化を実現できる。 For example, by using a latent heat storage material, the heat storage density of the heat storage member 51 can be increased, and a constant temperature can be maintained for a longer period of time. Moreover, by using a paraffin-based heat storage material, it is possible to realize a weight reduction as well as a temperature retention capability.
 蓄熱部材51は、圧電ポンプ10の筐体における吐出側外壁面140に配置される。この際、蓄熱部材51は、吐出側外壁面140の全面を覆う形状である。 The heat storage member 51 is arranged on the discharge-side outer wall surface 140 of the housing of the piezoelectric pump 10 . At this time, the heat storage member 51 has a shape that covers the entire surface of the discharge-side outer wall surface 140 .
 このような構成において、圧電ポンプ10が駆動して発熱すると、この熱は、蓄熱部材51に伝搬される。 In such a configuration, when the piezoelectric pump 10 is driven and generates heat, this heat is transferred to the heat storage member 51 .
 蓄熱部材51は、この熱によって、相変化、相転移し、これに伴う転移熱(潜熱)を熱エネルギーとして蓄える。これにより、蓄熱部材51は、熱が加わる所定時間長に亘って、一定温度を維持する。 The heat storage member 51 undergoes a phase change or phase transition by this heat, and stores the associated transition heat (latent heat) as thermal energy. As a result, the heat storage member 51 maintains a constant temperature over a predetermined length of time during which heat is applied.
 このように、蓄熱部材51が一定温度になることによって、蓄熱部材51が設置された圧電ポンプ10の温度も一定温度に安定化する。 As described above, the temperature of the piezoelectric pump 10 in which the heat storage member 51 is installed is also stabilized at a constant temperature by the heat storage member 51 having a constant temperature.
 図3は、圧電ポンプの温度変化の一例を示す概略的なグラフである。図3において、横軸は、圧電素子22の駆動開始からの経過時間(時刻)であり、縦軸は、圧電ポンプ10の温度、より具体的には吐出側外壁面140の温度である。図3において、実線が、本願発明の構成(蓄熱部材有)の場合を示し、破線が比較構成(蓄熱部材無)の場合である。 FIG. 3 is a schematic graph showing an example of temperature change of a piezoelectric pump. In FIG. 3 , the horizontal axis is the elapsed time (time) from the start of driving of the piezoelectric element 22 , and the vertical axis is the temperature of the piezoelectric pump 10 , more specifically the temperature of the discharge-side outer wall surface 140 . In FIG. 3, the solid line indicates the case of the configuration of the present invention (with the heat storage member), and the dashed line indicates the case of the comparative configuration (without the heat storage member).
 図3の実線に示すように、蓄熱部材51を備える場合、圧電ポンプ10の温度は、所定時間に亘って、略一定になる。一方、蓄熱部材51を備えない場合、圧電ポンプ10の温度は、経過時間とともに一方的に上昇する。 As shown by the solid line in FIG. 3, when the heat storage member 51 is provided, the temperature of the piezoelectric pump 10 is substantially constant over a predetermined period of time. On the other hand, when the heat storage member 51 is not provided, the temperature of the piezoelectric pump 10 increases unilaterally with the passage of time.
 このように、ポンプ装置1は、蓄熱部材51を圧電ポンプ10に設置することによって、圧電ポンプ10を、所定の温度で一定に保持することができる。これにより、圧電ポンプ10のポンプ特性を安定させることができる。 Thus, the pump device 1 can maintain the piezoelectric pump 10 at a predetermined temperature by installing the heat storage member 51 in the piezoelectric pump 10 . Thereby, the pump characteristics of the piezoelectric pump 10 can be stabilized.
 また、ポンプ装置1は、蓄熱部材51によって決まる温度よりも圧電ポンプ10が高温になることを抑制できる。これにより、圧電ポンプ10の熱ストレスを軽減でき、長寿命化を実現できる。なお、蓄熱部材51によって決まる温度とは、例えば、蓄熱部材51が潜熱蓄熱材の場合、固相から液相に相変化する温度である。すなわち、蓄熱部材51によって決まる温度とは、蓄熱部材51が所定時間に亘って一定の温度範囲内に保てる温度である。 In addition, the pump device 1 can prevent the piezoelectric pump 10 from becoming hotter than the temperature determined by the heat storage member 51 . As a result, the thermal stress of the piezoelectric pump 10 can be reduced and the life of the piezoelectric pump 10 can be extended. Note that the temperature determined by the heat storage member 51 is, for example, the temperature at which the phase changes from solid to liquid when the heat storage member 51 is a latent heat storage material. That is, the temperature determined by the heat storage member 51 is the temperature that the heat storage member 51 can keep within a certain temperature range for a predetermined time.
 また、上述の構成の圧電ポンプ10では、吸引側空間101よりも吐出側空間102の方が高温になり易い。したがって、圧電ポンプ10の吐出側外壁面140に蓄熱部材51が配置されることによって、高温化を効果的に抑制でき、圧電ポンプ10の温度の安定化を、より効果的に実現できる。 Further, in the piezoelectric pump 10 configured as described above, the temperature of the discharge side space 102 tends to be higher than that of the suction side space 101 . Therefore, by arranging the heat storage member 51 on the discharge-side outer wall surface 140 of the piezoelectric pump 10, it is possible to effectively suppress a rise in temperature, and stabilize the temperature of the piezoelectric pump 10 more effectively.
 さらに、上述の構成では、吐出側外壁面140の全面に蓄熱部材51が配置される。これにより、吐出側外壁面140の一部に蓄熱部材51を配置するよりも、上述の蓄熱による効果が向上する。言い換えれば、吐出側外壁面140の一部に蓄熱部材51を配置する構成でも、上述の蓄熱による効果は得られるが、吐出側外壁面140の全面に蓄熱部材51を配置することで、より効果的な蓄熱を実現でき、圧電ポンプ10の温度をより確実に安定化できる。 Furthermore, in the configuration described above, the heat storage member 51 is arranged on the entire surface of the discharge-side outer wall surface 140 . As a result, the heat storage effect described above is improved as compared with arranging the heat storage member 51 on a part of the discharge-side outer wall surface 140 . In other words, although the heat storage member 51 can be provided on a portion of the discharge-side outer wall surface 140, the above-described heat storage effect can be obtained. Therefore, the temperature of the piezoelectric pump 10 can be stabilized more reliably.
 なお、この部分的に蓄熱部材51を配置する態様では、ポンプ装置1を平面視して、蓄熱部材51は、少なくとも、圧電素子22に重なるように配置すればよい。上述のように、主たる発熱源は圧電素子22である。したがって、圧電素子22に重なるように蓄熱部材51を配置することで、蓄熱部材51は、圧電ポンプ10内で発生する熱を、より効率的、効果的に蓄熱できる。 Note that in this mode in which the heat storage member 51 is partially arranged, the heat storage member 51 may be arranged so as to overlap at least the piezoelectric element 22 when the pump device 1 is viewed from above. As mentioned above, the main heat source is the piezoelectric element 22 . Therefore, by arranging the heat storage member 51 so as to overlap the piezoelectric element 22 , the heat storage member 51 can more efficiently and effectively store the heat generated in the piezoelectric pump 10 .
 また、蓄熱部材51は、パラフィン系蓄熱材等の潜熱蓄熱材でなく、他の蓄熱材であってもよい。しかしながら、潜熱蓄熱材を採用することによって、蓄熱部材51の蓄熱密度を大きくでき、一定温度を保持する時間を長くできる。また、パラフィン系蓄熱材を採用することによって、蓄熱部材51を軽量化できる。これにより、安定なポンプ特性を有するポンプ装置1を軽量に実現できる。 Further, the heat storage member 51 may be other heat storage material instead of latent heat storage material such as paraffin-based heat storage material. However, by adopting the latent heat storage material, the heat storage density of the heat storage member 51 can be increased, and the time for which a constant temperature is maintained can be lengthened. Further, by adopting the paraffin-based heat storage material, the weight of the heat storage member 51 can be reduced. This makes it possible to realize a lightweight pump device 1 having stable pump characteristics.
 また、上述の構成において、蓄熱部材51は、可撓性を有するとよい。これにより、平板211の振動によって、蓋部材40が振動しても、蓄熱部材51によって振動を吸収できる。これより、例えば、ポンプ装置1は、振動音を抑制できる。 Also, in the above configuration, the heat storage member 51 preferably has flexibility. Accordingly, even if the lid member 40 vibrates due to the vibration of the flat plate 211 , the vibration can be absorbed by the heat storage member 51 . Thus, for example, the pump device 1 can suppress vibration noise.
 この際、蓄熱部材51は、吐出側外壁面140に対して相似形、さらには、蓋部材40に対して相似形であることが好ましい。これにより、平面視して、圧電素子22を中心とした全方位方向で、略均一に振動が吸収される。したがって、各方位での振動の差が抑制され、筐体に生じる歪みを抑制できる。この結果、ポンプ装置1の信頼性は向上する。 At this time, it is preferable that the heat storage member 51 has a similar shape to the discharge-side outer wall surface 140 , and further has a similar shape to the lid member 40 . As a result, vibrations are absorbed substantially uniformly in all azimuth directions around the piezoelectric element 22 in plan view. Therefore, the difference in vibration in each direction is suppressed, and the distortion occurring in the housing can be suppressed. As a result, the reliability of the pump device 1 is improved.
 また、この構成では、吸入側ノズル321および吐出側ノズル322が、筐体の側壁312に配置されている。これにより、吸入口3210および吐出口3220の開口面が、蓄熱部材51に直接向いていない。したがって、吸入される流体、吐出される流体が、蓄熱部材51に与える影響を抑制できる。この結果、ポンプ装置1の温度は、より確実に安定化し、安定したポンプ性能をより確実に実現できる。 Also, in this configuration, the suction side nozzle 321 and the discharge side nozzle 322 are arranged on the side wall 312 of the housing. As a result, the opening surfaces of inlet 3210 and outlet 3220 do not directly face heat storage member 51 . Therefore, the influence of the sucked fluid and the discharged fluid on the heat storage member 51 can be suppressed. As a result, the temperature of the pump device 1 is more reliably stabilized, and stable pump performance can be more reliably achieved.
 [第2の実施形態]
 本発明の第2の実施形態に係るポンプ装置について、図を参照して説明する。図4は、第2の実施形態に係るポンプ装置の流体の流れを含む側断面の概略図である。
[Second embodiment]
A pump device according to a second embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a schematic side cross-sectional view including fluid flow of a pumping device according to a second embodiment.
 図4に示すように、第2の実施形態に係るポンプ装置1Aは、第1の実施形態に係るポンプ装置1に、蓄熱部材52を追加した点で異なる。ポンプ装置1Aの他の構成は、ポンプ装置1と同様であり、同様の箇所の説明は省略する。 As shown in FIG. 4, the pump device 1A according to the second embodiment differs from the pump device 1 according to the first embodiment in that a heat storage member 52 is added. Other configurations of the pump device 1A are the same as those of the pump device 1, and the description of the same parts is omitted.
 ポンプ装置1Aは、蓄熱部材52を備える。蓄熱部材52は、例えば、蓄熱部材51と同じ材料である。なお、蓄熱部材52は、蓄熱部材51と異なる材料であってもよく、蓄熱部材51よりも蓄熱容量が小さくてもよい。 The pump device 1A includes a heat storage member 52. The heat storage member 52 is, for example, the same material as the heat storage member 51 . Note that the heat storage member 52 may be made of a material different from that of the heat storage member 51 and may have a smaller heat storage capacity than the heat storage member 51 .
 蓄熱部材52は、圧電ポンプ10の筐体における吸入側外壁面130に配置される。この際、蓄熱部材52は吸入側外壁面130の全面を覆う形状である。 The heat storage member 52 is arranged on the suction side outer wall surface 130 of the housing of the piezoelectric pump 10 . At this time, the heat storage member 52 has a shape that covers the entire surface of the suction side outer wall surface 130 .
 このような構成によって、ポンプ装置1Aは、圧電ポンプ10の吸入側においても温度を安定化できる。これにより、ポンプ装置1Aは、圧電ポンプ10の温度をさらに安定化できる。 With such a configuration, the pump device 1A can stabilize the temperature on the suction side of the piezoelectric pump 10 as well. Thereby, the pump device 1A can further stabilize the temperature of the piezoelectric pump 10 .
 なお、蓄熱部材51の形状と蓄熱部材52の形状は、同じであっても異なっていてもよい。 The shape of the heat storage member 51 and the shape of the heat storage member 52 may be the same or different.
 [第3の実施形態]
 本発明の第3の実施形態に係るポンプ装置について、図を参照して説明する。図5は、第3の実施形態に係るポンプ装置の概略側面図である。
[Third embodiment]
A pump device according to a third embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a schematic side view of a pump device according to a third embodiment;
 図5に示すように、第3の実施形態に係るポンプ装置1Bは、第1の実施形態に係るポンプ装置1に対して、蓄熱部材50を備える点で異なる。ポンプ装置1Bの他の構成は、ポンプ装置1と同様であり、同様の箇所の説明を省略する。 As shown in FIG. 5, the pump device 1B according to the third embodiment differs from the pump device 1 according to the first embodiment in that a heat storage member 50 is provided. The rest of the configuration of the pump device 1B is the same as that of the pump device 1, and the description of the same portions will be omitted.
 ポンプ装置1Bは、蓄熱部材50を備える。蓄熱部材50は、第1の実施形態に係る蓄熱部材51と同じ材料によって構成される。 The pump device 1B includes a heat storage member 50. The heat storage member 50 is made of the same material as the heat storage member 51 according to the first embodiment.
 蓄熱部材50は、圧電ポンプ10の吸入側外壁面130、吐出側外壁面140、側壁312の外面を覆う。 The heat storage member 50 covers the outer surfaces of the suction-side outer wall surface 130 , the discharge-side outer wall surface 140 , and the side wall 312 of the piezoelectric pump 10 .
 このような構成によって、ポンプ装置1Bは、圧電ポンプ10における圧電素子22に重なる両主面、二側面で蓄熱される。したがって、ポンプ装置1Bは、圧電ポンプ10の温度をさらに安定化できる。 With such a configuration, the pump device 1B stores heat on both main surfaces and two side surfaces overlapping the piezoelectric elements 22 of the piezoelectric pump 10 . Therefore, the pump device 1B can further stabilize the temperature of the piezoelectric pump 10 .
 なお、本実施形態では、圧電ポンプ10における吸入側ノズル321および吐出側ノズル322の形成面には、蓄熱部材50は、配置されていない。しかしながら、蓄熱部材50は、圧電ポンプ10における吸入側ノズル321および吐出側ノズル322の形成面にも配置してもよい。 Note that, in the present embodiment, the heat storage member 50 is not arranged on the surface on which the suction side nozzle 321 and the discharge side nozzle 322 of the piezoelectric pump 10 are formed. However, the heat storage member 50 may also be arranged on the surface where the suction side nozzle 321 and the discharge side nozzle 322 of the piezoelectric pump 10 are formed.
 [第4の実施形態]
 本発明の第4の実施形態に係るポンプ装置について、図を参照して説明する。図6は、第4の実施形態に係るポンプ装置の側面図である。
[Fourth embodiment]
A pump device according to a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 6 is a side view of the pump device according to the fourth embodiment.
 図6に示すように、第4の実施形態に係るポンプ装置1Cは、第1の実施形態に係るポンプ装置1に対して、複数の圧電ポンプおよび複数の蓄熱部材を備える点で異なる。 As shown in FIG. 6, the pump device 1C according to the fourth embodiment differs from the pump device 1 according to the first embodiment in that it includes a plurality of piezoelectric pumps and a plurality of heat storage members.
 ポンプ装置1Cは、圧電ポンプ10A、圧電ポンプ10B、および、接続管80を備える。圧電ポンプ10Aおよび圧電ポンプ10Bは、第1の実施形態に係る圧電ポンプ10と同じ構成を備える。 The pump device 1C includes a piezoelectric pump 10A, a piezoelectric pump 10B, and a connection pipe 80. The piezoelectric pump 10A and the piezoelectric pump 10B have the same configuration as the piezoelectric pump 10 according to the first embodiment.
 圧電ポンプ10Aと圧電ポンプ10Bとは、接続管80によって接続される。より具体的には、圧電ポンプ10Aの吐出側ノズル322Aと、圧電ポンプ10Bの吸入側ノズル321Bとは、接続管80によって接続される。圧電ポンプ10Aの吐出側ノズル322Aの吐出口と、圧電ポンプ10Bの吸入側ノズル321Bの吸入口とは、接続管80の空洞を通じて連通する。 The piezoelectric pump 10A and the piezoelectric pump 10B are connected by a connection pipe 80. More specifically, the discharge side nozzle 322A of the piezoelectric pump 10A and the suction side nozzle 321B of the piezoelectric pump 10B are connected by a connection pipe 80. As shown in FIG. The discharge port of the discharge-side nozzle 322A of the piezoelectric pump 10A and the suction port of the suction-side nozzle 321B of the piezoelectric pump 10B communicate with each other through the cavity of the connection pipe 80 .
 この構成において、圧電ポンプ10Aおよび圧電ポンプ10Bを駆動する。これにより、圧電ポンプ10Aの吸入側ノズル321Aの吸入口から流体が、圧電ポンプ10Aに吸入される。圧電ポンプ10Aは、吸入された流体を、圧電ポンプ10Aの吐出側ノズル322Aの吐出口から接続管80に吐出する。接続管80に吐出された流体は、圧電ポンプ10Bの吸入側ノズル321Bの吸入口から、圧電ポンプ10Bに吸入される。圧電ポンプ10Bは、吸入された流体を、圧電ポンプ10Bの吐出側ノズル322Bの吐出口から外部に吐出する。 In this configuration, the piezoelectric pump 10A and the piezoelectric pump 10B are driven. As a result, the fluid is sucked into the piezoelectric pump 10A from the suction port of the suction side nozzle 321A of the piezoelectric pump 10A. The piezoelectric pump 10A discharges the sucked fluid to the connection pipe 80 from the discharge port of the discharge-side nozzle 322A of the piezoelectric pump 10A. The fluid discharged to the connecting pipe 80 is sucked into the piezoelectric pump 10B from the suction port of the suction side nozzle 321B of the piezoelectric pump 10B. The piezoelectric pump 10B discharges the sucked fluid to the outside from the discharge port of the discharge-side nozzle 322B of the piezoelectric pump 10B.
 このような構成によって、圧電ポンプ10Aと圧電ポンプ10Bとによって流体が搬送されるので、圧電ポンプ10Aまたは圧電ポンプ10Bを単体で用いるよりも、大きな流量を実現できる。 With such a configuration, the fluid is transported by the piezoelectric pump 10A and the piezoelectric pump 10B, so a larger flow rate can be achieved than when the piezoelectric pump 10A or the piezoelectric pump 10B is used alone.
 この際、図6に示すように、圧電ポンプ10Aと圧電ポンプ10Bは、圧電ポンプ10Aの吸入側外壁面130Aと、圧電ポンプ10Bの吸入側外壁面130Bとが対向するように、配置される。より具体的には、圧電ポンプ10Aと圧電ポンプ10Bとは、圧電ポンプ10Aの吸入側外壁面130Aと、圧電ポンプ10Bの吸入側外壁面130Bとが対向、近接し、且つ、互いに略平行になるように、配置される。 At this time, as shown in FIG. 6, the piezoelectric pump 10A and the piezoelectric pump 10B are arranged such that the suction-side outer wall surface 130A of the piezoelectric pump 10A faces the suction-side outer wall surface 130B of the piezoelectric pump 10B. More specifically, the piezoelectric pump 10A and the piezoelectric pump 10B are such that the suction-side outer wall surface 130A of the piezoelectric pump 10A and the suction-side outer wall surface 130B of the piezoelectric pump 10B face each other, are close to each other, and are substantially parallel to each other. are placed so that
 言い換えれば、圧電ポンプ10Aは、吐出側外壁面140Aが圧電ポンプ10B側と反対側を向くように配置される。圧電ポンプ10Bは、吐出側外壁面140Bが圧電ポンプ10A側と反対側を向くように配置される。 In other words, the piezoelectric pump 10A is arranged so that the discharge-side outer wall surface 140A faces the side opposite to the piezoelectric pump 10B side. The piezoelectric pump 10B is arranged such that the discharge-side outer wall surface 140B faces the side opposite to the piezoelectric pump 10A side.
 蓄熱部材51Aは、圧電ポンプ10Aの吐出側外壁面140Aに配置される。蓄熱部材51Bは、圧電ポンプ10Bの吐出側外壁面140Bに配置される。すなわち、ポンプ装置1Cでは、複数の圧電ポンプ10A、10Bのそれぞれに対して、蓄熱部材51A、51Bが配置される。 The heat storage member 51A is arranged on the discharge side outer wall surface 140A of the piezoelectric pump 10A. The heat storage member 51B is arranged on the discharge side outer wall surface 140B of the piezoelectric pump 10B. That is, in the pump device 1C, heat storage members 51A and 51B are arranged for the plurality of piezoelectric pumps 10A and 10B, respectively.
 このような構成によって、ポンプ装置1Cは、それぞれが熱源となる複数の圧電ポンプ10A、10Bを備えていても、温度を安定化できる。 With such a configuration, the pump device 1C can stabilize the temperature even if it has a plurality of piezoelectric pumps 10A and 10B each serving as a heat source.
 [第5の実施形態]
 本発明の第5の実施形態に係るポンプ装置について、図を参照して説明する。図7は、第5の実施形態に係るポンプ装置の構成を示す側面図である。
[Fifth Embodiment]
A pump device according to a fifth embodiment of the present invention will be described with reference to the drawings. FIG. 7 is a side view showing the configuration of the pump device according to the fifth embodiment.
 図7に示すように、第5の実施形態に係るポンプ装置1Dは、第4の実施形態に係るポンプ装置1Cに対して、圧電ポンプ10Aおよび圧電ポンプ10Bの配置において異なる。ポンプ装置1Dの他の構成は、ポンプ装置1Cと同様であり同様の箇所の説明は、省略する。 As shown in FIG. 7, the pump device 1D according to the fifth embodiment differs from the pump device 1C according to the fourth embodiment in the arrangement of the piezoelectric pumps 10A and 10B. The rest of the configuration of the pump device 1D is the same as that of the pump device 1C, and the description of the similar portions will be omitted.
 ポンプ装置1Dでは、圧電ポンプ10Aと圧電ポンプ10Bとは、圧電ポンプ10Aの吐出側外壁面140Aと、圧電ポンプ10Bの吐出側外壁面140Bとが対向、近接し、且つ、互いに略平行になるように、配置される。 In the pump device 1D, the piezoelectric pump 10A and the piezoelectric pump 10B are arranged so that the discharge-side outer wall surface 140A of the piezoelectric pump 10A and the discharge-side outer wall surface 140B of the piezoelectric pump 10B face each other, are close to each other, and are substantially parallel to each other. , is placed.
 蓄熱部材51Dは、吐出側外壁面140Aと吐出側外壁面140Bとに挟持される。 The heat storage member 51D is sandwiched between the discharge-side outer wall surface 140A and the discharge-side outer wall surface 140B.
 このような構成によって、ポンプ装置1Dは、それぞれが熱源となる複数の圧電ポンプ10A、10Bを備えていても、温度を安定化できる。 With such a configuration, the pump device 1D can stabilize the temperature even if it has a plurality of piezoelectric pumps 10A and 10B each serving as a heat source.
 なお、第4の実施形態および第5の実施形態では、2個の圧電ポンプを備える態様を示した。しかしながら、3個以上の圧電ポンプを備える構成であってもよい。3個以上の圧電ポンプを備える場合、それぞれの圧電ポンプに個別の蓄熱部材を配置してもよく、複数の圧電ポンプに共用の蓄熱部材を配置してもよい。 It should be noted that in the fourth and fifth embodiments, two piezoelectric pumps are provided. However, a configuration including three or more piezoelectric pumps may be used. When three or more piezoelectric pumps are provided, an individual heat storage member may be arranged for each piezoelectric pump, or a common heat storage member may be arranged for a plurality of piezoelectric pumps.
 また、上述の各実施形態では、蓄熱部材を圧電ポンプに直接当接する態様を示した。しかしながら、蓄熱部材を圧電ポンプに直接当接させなくてもよい。たとえば、蓄熱部材と圧電ポンプとの間に、熱伝導性を有する接着層を配置したり、圧電ポンプと蓄熱部材と間に、圧電ポンプから蓄熱部材に熱が伝搬する程度の隙間があってもよい。 Also, in each of the above-described embodiments, the heat storage member is directly brought into contact with the piezoelectric pump. However, the heat storage member does not have to be in direct contact with the piezoelectric pump. For example, a thermally conductive adhesive layer may be placed between the heat storage member and the piezoelectric pump, or even if there is a gap between the piezoelectric pump and the heat storage member that allows heat to propagate from the piezoelectric pump to the heat storage member. good.
 なお、上述の各実施形態の構成は、適宜組合せが可能であり、それぞれの組合せに応じた作用効果を奏することができる。 It should be noted that the configurations of the above-described embodiments can be combined as appropriate, and effects can be obtained according to each combination.
1、1A、1B、1C、1D:ポンプ装置
10、10A、10B:圧電ポンプ
20:ポンプ本体
22:圧電素子
30:ベース筐体
31:主部材
33、331、332、333:凹部
35:端子載置部
40:蓋部材
50、51、51A、51B、51D、52:蓄熱部材
80:接続管
101:吸引側空間
102:吐出側空間
103:連通口
130、130A、130B:吸入側外壁面
140、140A、140B:吐出側外壁面
211:平板
212:枠体
213:支持部
251、252:駆動信号印加電極
311:底壁
312:側壁
321、321A、321B:吸入側ノズル
322、322A、322B:吐出側ノズル
3210:吸入口
3220:吐出口
1, 1A, 1B, 1C, 1D: Pump device 10, 10A, 10B: Piezoelectric pump 20: Pump body 22: Piezoelectric element 30: Base housing 31: Main member 33, 331, 332, 333: Concave part 35: Terminal mounting Placement portion 40: Lid members 50, 51, 51A, 51B, 51D, 52: Heat storage member 80: Connection pipe 101: Suction side space 102: Discharge side space 103: Communication ports 130, 130A, 130B: Suction side outer wall surface 140, 140A, 140B: ejection side outer wall surface 211: flat plate 212: frame 213: support portions 251, 252: drive signal applying electrode 311: bottom wall 312: side walls 321, 321A, 321B: suction side nozzles 322, 322A, 322B: ejection Side nozzle 3210: suction port 3220: discharge port

Claims (6)

  1.  一方主面に圧電素子が配置された平板、および、前記平板が内部に配置され前記平板を振動可能に支持する筐体を備える圧電ポンプと、
     前記筐体に配置された蓄熱部材と、
     を備える、ポンプ装置。
    a piezoelectric pump comprising a flat plate on which a piezoelectric element is arranged on one main surface, and a housing in which the flat plate is arranged and which supports the flat plate so as to vibrate;
    a heat storage member disposed in the housing;
    A pump device.
  2.  前記筐体は、前記平板を挟んで対向する第1壁と第2壁とを備え、
     前記蓄熱部材は、前記第1壁と前記第2壁の少なくとも一方に配置される、
     請求項1に記載のポンプ装置。
    The housing includes a first wall and a second wall facing each other across the flat plate,
    The heat storage member is arranged on at least one of the first wall and the second wall,
    2. Pumping device according to claim 1.
  3.  前記第1壁は、前記平板の前記一方主面に対向し、
     前記蓄熱部材は、前記第1壁に配置される、
     請求項2に記載のポンプ装置。
    The first wall faces the one main surface of the flat plate,
    The heat storage member is arranged on the first wall,
    3. Pumping device according to claim 2.
  4.  前記平板の一方主面から他方主面方向に平面視して、前記蓄熱部材は、圧電素子に重なる位置に配置される、
     請求項3に記載のポンプ装置。
    When viewed from one main surface of the flat plate to the other main surface, the heat storage member is arranged at a position overlapping the piezoelectric element,
    4. Pumping device according to claim 3.
  5.  前記蓄熱部材は、潜熱蓄熱材である、
     請求項1乃至請求項4のいずれかに記載のポンプ装置。
    The heat storage member is a latent heat storage material,
    The pump device according to any one of claims 1 to 4.
  6.  前記蓄熱部材は、パラフィン系蓄熱材である、
     請求項5に記載のポンプ装置。
    The heat storage member is a paraffin-based heat storage material,
    6. Pumping device according to claim 5.
PCT/JP2021/043567 2021-02-16 2021-11-29 Pump device WO2022176306A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023500546A JP7416324B2 (en) 2021-02-16 2021-11-29 pump equipment
CN202180086396.4A CN116635632A (en) 2021-02-16 2021-11-29 Pump device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-022350 2021-02-16
JP2021022350 2021-02-16

Publications (1)

Publication Number Publication Date
WO2022176306A1 true WO2022176306A1 (en) 2022-08-25

Family

ID=82931374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043567 WO2022176306A1 (en) 2021-02-16 2021-11-29 Pump device

Country Status (3)

Country Link
JP (1) JP7416324B2 (en)
CN (1) CN116635632A (en)
WO (1) WO2022176306A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017108628A1 (en) * 2015-12-23 2017-06-29 Alcatel Lucent A fluidic pump
JP2019171312A (en) * 2018-03-29 2019-10-10 日本電産株式会社 Solution application device
WO2020188966A1 (en) * 2019-03-18 2020-09-24 株式会社村田製作所 Pump unit
WO2020261686A1 (en) * 2019-06-27 2020-12-30 株式会社村田製作所 Pump device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229894A (en) 2013-06-07 2013-11-07 Olympus Imaging Corp Imaging element module, lens unit using the same, and portable electronic apparatus using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017108628A1 (en) * 2015-12-23 2017-06-29 Alcatel Lucent A fluidic pump
JP2019171312A (en) * 2018-03-29 2019-10-10 日本電産株式会社 Solution application device
WO2020188966A1 (en) * 2019-03-18 2020-09-24 株式会社村田製作所 Pump unit
WO2020261686A1 (en) * 2019-06-27 2020-12-30 株式会社村田製作所 Pump device

Also Published As

Publication number Publication date
JPWO2022176306A1 (en) 2022-08-25
JP7416324B2 (en) 2024-01-17
CN116635632A (en) 2023-08-22

Similar Documents

Publication Publication Date Title
US11598330B2 (en) Fluid control device and pump
US9028226B2 (en) Fluid control device
US9482217B2 (en) Fluid control device
KR101333542B1 (en) Fluid pump
JP5177331B1 (en) Pump device
CN112204256B (en) Pump and method of operating the same
JP7485002B2 (en) Pumping equipment
JP6319517B2 (en) pump
TWM540932U (en) Micro-fluid control device
WO2022176306A1 (en) Pump device
WO2013187270A1 (en) Blower
WO2020195075A1 (en) Piezoelectric pump
JP2013100746A (en) Fluid control device
JP7435894B2 (en) pump equipment
JP7409518B2 (en) fluid control device
CN114208212B (en) Shell for piezoelectric sounding component and piezoelectric sounding component
WO2022230677A1 (en) Actuator, pump, and method for manufacturing actuator
JP2023126991A (en) Pump and fluid control device
TW201825780A (en) Micro-fluid control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500546

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180086396.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926734

Country of ref document: EP

Kind code of ref document: A1