WO2013187270A1 - Blower - Google Patents

Blower Download PDF

Info

Publication number
WO2013187270A1
WO2013187270A1 PCT/JP2013/065320 JP2013065320W WO2013187270A1 WO 2013187270 A1 WO2013187270 A1 WO 2013187270A1 JP 2013065320 W JP2013065320 W JP 2013065320W WO 2013187270 A1 WO2013187270 A1 WO 2013187270A1
Authority
WO
WIPO (PCT)
Prior art keywords
blower
blower chamber
vibration
diaphragm
piezoelectric
Prior art date
Application number
PCT/JP2013/065320
Other languages
French (fr)
Japanese (ja)
Inventor
若林祐貴
金井俊吾
兼田陽子
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2013187270A1 publication Critical patent/WO2013187270A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0054Special features particularities of the flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F7/00Pumps displacing fluids by using inertia thereof, e.g. by generating vibrations therein

Definitions

  • the present invention relates to a blower that transports gas.
  • Patent Document 1 discloses a microblower for cooling the heat generated inside a portable electronic device or supplying oxygen necessary for power generation by a fuel cell.
  • FIG. 10 is a cross-sectional view of a micro blower 900 according to Patent Document 1.
  • the micro blower 900 includes an inner case 2, an elastic metal plate 5 ⁇ / b> A, a piezoelectric element 5 ⁇ / b> B, an outer case 3 that covers the outer side of the inner case 2, and a lid member 9.
  • the inner case 2 is elastically supported with respect to the outer case 3 by a plurality of connecting portions 4.
  • the inner case 2 has a U-shaped cross section with an opening at the bottom, and an elastic metal plate 5A is joined so as to close the opening. Thereby, the inner case 2 forms the blower chamber 6 together with the elastic metal plate 5A.
  • the inner case 2 is formed with an opening 8 that communicates the inside and outside of the blower chamber 6.
  • a piezoelectric element 5B is attached to the main surface of the elastic metal plate 5A opposite to the blower chamber 6.
  • a discharge port 3 ⁇ / b> A is formed in the region of the outer case 3 facing the opening 8.
  • the outer case 3 has a lid member 9 so as to accommodate the inner case 2.
  • a suction port 9 ⁇ / b> A is formed in the center of the lid member 9.
  • An air inflow passage 7 is formed between the outer case 3 and the joined body of the inner case 2, the elastic metal plate 5A and the piezoelectric element 5B.
  • the piezoelectric element 5B when an AC drive voltage is applied to the piezoelectric element 5B, the piezoelectric element 5B expands and contracts, and the elastic metal plate 5A bends and vibrates due to the expansion and contraction of the piezoelectric element 5B. And the volume of the blower chamber 6 changes periodically by the bending deformation of the elastic metal plate 5A.
  • the air flow discharged from the blower chamber 6 is discharged from the discharge port 3A while drawing the air outside the micro blower 900 through the suction port 9A and the inflow passage 7. Therefore, the flow rate of the air discharged from the discharge port 3A increases by the flow rate of the drawn air.
  • the discharge flow rate per power consumption is increased.
  • an object of the present invention is to provide a blower that can greatly increase the discharge flow rate per power consumption and can secure a necessary discharge flow rate with low power consumption.
  • the blower of the present invention has the following configuration in order to solve the above problems.
  • a vibration plate that flexibly vibrates;
  • a driver that is provided on at least one main surface of the diaphragm and vibrates the diaphragm;
  • a first housing that forms a blower chamber together with the diaphragm,
  • the first housing has a top plate portion facing the diaphragm, and a side wall portion connecting the diaphragm and the top plate portion,
  • the top plate portion is formed with a vent hole that communicates the inside and outside of the blower chamber,
  • the side wall is formed with a protrusion that protrudes toward the center of the blower chamber.
  • the driving body when a driving voltage is applied to the driving body, the driving body causes the diaphragm to bend and vibrate.
  • the volume of the blower chamber is periodically changed by the deformation of the diaphragm, and the gas in the blower chamber is discharged from the vent hole.
  • the flow rate of air per displacement of the diaphragm discharged from the inside of the blower chamber to the outside of the blower chamber through the vent hole is increased as compared with the conventional micro blower.
  • the displacement amount of the diaphragm is determined by the power consumption to the driving body.
  • the discharge flow rate per power consumption can be greatly increased, and the necessary discharge flow rate can be ensured with low power consumption.
  • the protrusion is formed in the blower chamber in a range that does not contact the vibration plate that is flexibly vibrated.
  • the diaphragm bends and vibrates in an odd-order vibration mode equal to or higher than a third-order mode that forms a plurality of vibration antinodes by the driver,
  • the protrusion is formed to have a length not more than a length from a position of the vibration plate in contact with a side surface of the blower chamber to a vibration node having the shortest distance among vibration nodes formed by bending vibration of the vibration plate. It is preferable.
  • the top plate portion bends and vibrates with bending vibration of the diaphragm.
  • the vibration amplitude can be substantially increased, and thereby the discharge pressure and the discharge flow rate can be increased.
  • the discharge flow rate per power consumption can be greatly increased, and the necessary discharge flow rate can be ensured with low power consumption.
  • a second casing in which the first casing is covered with an interval to form a ventilation path between the first casing and a discharge port is formed in a region facing the vent hole. And a body.
  • the airflow flowing out from the blower chamber through the vent hole is discharged from the discharge port while drawing the gas existing outside the blower through the vent passage.
  • the discharge flow rate of the blower is increased by the flow rate of the drawn gas.
  • the discharge flow rate per power consumption can be greatly increased, and the necessary discharge flow rate can be ensured with low power consumption.
  • the discharge flow rate per power consumption can be greatly increased, and the necessary discharge flow rate can be ensured with low power consumption.
  • FIG. 1 is an external perspective view of a piezoelectric blower 100 according to a first embodiment of the present invention. It is a disassembled perspective view of the piezoelectric blower 100 shown in FIG.
  • FIG. 2 is a sectional view taken along line SS of the piezoelectric blower 100 shown in FIG.
  • FIG. 4 is a cross-sectional view taken along line SS of the piezoelectric blower 100 when the piezoelectric blower 100 shown in FIG. 1 is operated in the primary mode.
  • 4A is a diagram when the volume of the blower chamber is increased
  • FIG. 4B is a diagram when the volume of the blower chamber is decreased.
  • FIG. 5 is a sectional view taken along the line SS of the piezoelectric blower 100 when the piezoelectric blower 100 shown in FIG. 1 is operated in the tertiary mode.
  • 5A is a diagram when the volume of the blower chamber is increased
  • FIG. 5B is a diagram when the volume of the blower chamber is decreased.
  • FIG. 7 is a cross-sectional view of the piezoelectric blower 200 when the piezoelectric blower 200 shown in FIG. 6 is operated in the primary mode.
  • 7A is a view when the volume of the blower chamber is increased
  • FIG. 7B is a view when the volume of the blower chamber is decreased.
  • FIG. 9 is a cross-sectional view of the piezoelectric blower 300 when the piezoelectric blower 300 shown in FIG. 8 is operated in the primary mode.
  • FIG. 9A is a diagram when the volume of the blower chamber is increased
  • FIG. 9B is a diagram when the volume of the blower chamber is decreased.
  • FIG. 9A is a diagram when the volume of the blower chamber is increased
  • FIG. 9B is a diagram when the volume of the blower chamber is decreased.
  • FIG. 9A is a diagram when the volume of the blower chamber is increased
  • FIG. 9B is a diagram when the volume of the blower chamber is decreased.
  • FIG. 9A is a diagram when the volume of the blower chamber is increased
  • FIG. 9B is a diagram when the volume of the blower chamber is decreased.
  • FIG. 1 is an external perspective view of the piezoelectric blower 100 according to the first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the piezoelectric blower 100 shown in FIG.
  • FIG. 3 is a cross-sectional view taken along line SS of the piezoelectric blower 100 shown in FIG.
  • the piezoelectric blower 100 includes an outer casing 17, a top plate 37, a side plate 38, a vibration plate 39, a piezoelectric element 40, and a cap 42 in order from the top, and has a structure in which these are stacked in order.
  • the top plate 37, the side plate 38, and the diaphragm 39 constitute a blower chamber 36.
  • the piezoelectric blower 100 has dimensions of a width of 20 mm ⁇ a length of 20 mm ⁇ a height of 1.85 mm in a region other than the nozzle 18.
  • the joined body of the top plate 37 and the side plate 38 corresponds to the “first casing” of the present invention, and the outer casing 17 corresponds to the “second casing” of the present invention.
  • the top plate 37 corresponds to the “top plate portion” of the present invention, and the side plate 38 corresponds to the “side wall portion” of the present invention.
  • the piezoelectric element 40 corresponds to the “driving body” of the present invention.
  • the outer casing 17 has a nozzle 18 formed around a discharge port 24 through which air is discharged.
  • the nozzle 18 has a size of an outer diameter of 2.0 mm ⁇ an inner shape (that is, a discharge port 24) of a diameter of 0.8 mm ⁇ a height of 1.6 mm.
  • Screw holes 56A to 56D are formed in the square of the outer casing 17.
  • the outer casing 17 is formed in a U-shaped cross-section with an open bottom, and the outer casing 17 houses the top plate 37 of the blower chamber 36, the side plate 38 of the blower chamber 36, the vibration plate 39 and the piezoelectric element 40. To do.
  • the outer casing 17 is made of, for example, resin.
  • the top plate 37 of the blower chamber 36 has a disk shape and is made of, for example, metal.
  • the top plate 37 is formed with a central portion 61, a key-like protruding portion 62 that protrudes horizontally from the central portion 61 and contacts the inner wall of the outer casing 17, and an external terminal 63 for connecting to an external circuit. Has been.
  • the central portion 61 of the top plate 37 is provided with a vent hole 45 that allows the inside and outside of the blower chamber 36 to communicate with each other.
  • the vent hole 45 is formed at a position facing the discharge port 24 of the outer casing 17.
  • the top plate 37 is joined to the upper surface of the side plate 38.
  • the side plate 38 of the blower chamber 36 has an annular shape, and is made of, for example, metal.
  • the side plate 38 is joined to the upper surface of the diaphragm 39. Therefore, the thickness of the side plate 38 is the height of the blower chamber 36.
  • a plurality of protrusions 138 projecting toward the center of the blower chamber 36 are formed on the inner surface of the side plate 38 constituting the side surface of the blower chamber 36.
  • the shape of the protrusion 138 is a convex curved surface.
  • the protrusion 138 does not contact the diaphragm 39 and the top plate 37 that flexurally vibrate at the frequency of the primary mode (hereinafter, fundamental wave) as shown in FIGS. Is formed.
  • the protrusion 138 is a region in which the displacement is large in the vibration plate 39 and the top plate 37 that flexurally vibrate at a third-order mode frequency (third harmonic wave). That is, on the side surface of the blower chamber 36 among the vibration nodes formed by the bending vibration of the vibration plate 39 so as not to contact the region from the center of the vibration plate 39 and the top plate 37 to the vibration node with the shortest distance. It is formed below the length from the position of the diaphragm 39 in contact with the node F of the vibration with the shortest distance.
  • the diaphragm 39 has a disk shape and is made of, for example, metal.
  • the diaphragm 39 constitutes the bottom surface of the blower chamber 36.
  • the piezoelectric element 40 has a disk shape and is made of, for example, lead zirconate titanate ceramic.
  • the piezoelectric element 40 is bonded to the main surface of the diaphragm 39 opposite to the blower chamber 36, and bends according to the applied AC voltage.
  • the joined body of the top plate 37, the side plate 38, the vibration plate 39, and the piezoelectric element 40 is elastically supported with respect to the outer casing 17 by the four projecting portions 62 provided on the top plate 37. Yes.
  • the electrode conduction plate 70 includes an internal terminal 73 for connection to the piezoelectric element 40 and an external terminal 72 for connection to an external circuit.
  • the tip of the internal terminal 73 is soldered to the flat surface of the piezoelectric element 40. By setting the soldering position to a position corresponding to the bending vibration node of the piezoelectric element 40, the vibration of the internal terminal 73 can be further suppressed.
  • a disc-shaped suction port 53 is formed in the cap 42.
  • the diameter of the suction port 53 is longer than the diameter of the piezoelectric element 40.
  • the cap 42 has notches 55A to 55D formed at positions corresponding to the screw holes 56A to 56D of the outer casing 17.
  • the cap 42 has a protruding portion 52 that protrudes toward the top plate 37 on the outer peripheral edge.
  • the cap 42 holds the outer casing 17 with the protruding portion 52, and houses the top plate 37 of the blower chamber 36, the side plate 38 of the blower chamber 36, the vibration plate 39, and the piezoelectric element 40 together with the outer casing 17.
  • the cap 42 is made of, for example, resin.
  • a ventilation path 31 is formed between the joined body of the top plate 37, the side plate 38, the vibration plate 39 and the piezoelectric element 40 and the outer casing 17 and the cap 42.
  • FIG. 4A and 4B are cross-sectional views taken along the line SS of the piezoelectric blower 100 when the piezoelectric blower 100 shown in FIG. 1 is operated at a primary mode frequency (fundamental wave).
  • a primary mode frequency fundamental wave
  • the arrows in the figure indicate the flow of air.
  • the airflow discharged from the blower chamber 36 discharges air from the discharge port 24 while drawing air outside the piezoelectric blower 100 through the suction port 53 and the air passage 31. Therefore, if the pressure applied to the discharge hole from the outside of the piezoelectric blower 100 is 0 (hereinafter referred to as no load), the flow rate of the air discharged from the discharge port 24 increases by the flow rate of the drawn air.
  • the protrusion 138 is provided in the piezoelectric blower 100 of this embodiment, the volume V 1 when the blower chamber is fully expanded is smaller than that of the conventional micro blower 900. That is, by providing the protrusion 138, the volume change rate H of the blower chamber is increased.
  • the flow rate of air per displacement amount of the diaphragm 39 discharged from the inside of the blower chamber 36 to the outside of the blower chamber 36 through the vent hole 45 is increased as compared with the conventional case.
  • the displacement amount of the diaphragm 39 is determined by the power consumption to the piezoelectric element 40.
  • the discharge flow rate per power consumption can be greatly increased, and the necessary discharge flow rate can be ensured with low power consumption.
  • the protrusion 138 is formed on the inner surface of the side plate 38 in a range not contacting the vibration plate 39 that is flexibly vibrated in the blower chamber 36. Therefore, according to the piezoelectric blower 100 of this embodiment, it is possible to prevent the vibrations of the vibration plate 39 and the top plate 37 from being inhibited by the protrusions 138.
  • the diaphragm 39 is Bending vibration concentrically in a third-order mode that generates a vibration node F and two vibration antinodes.
  • the top plate 37 is also in the third mode with the bending vibration of the vibration plate 39 (in this embodiment, the vibration phase is delayed by 180 °) due to the pressure fluctuation of the blower chamber 36 accompanying the bending vibration of the vibration plate 39. Bend and vibrate concentrically.
  • 5A and 5B are cross-sectional views taken along the line SS of the piezoelectric blower 100 when the piezoelectric blower 100 shown in FIG. 1 is operated in the tertiary mode.
  • the arrows in the figure indicate the flow of air.
  • the protrusion 138 is provided in the piezoelectric blower 100 of this embodiment, the volume V 1 when the blower chamber is fully expanded is smaller than that of the conventional micro blower 900. That is, by providing the protrusion 138, the volume change rate H of the blower chamber is increased. Accordingly, even in the tertiary mode, the flow rate of air per displacement amount of the diaphragm 39 discharged from the inside of the blower chamber 36 to the outside of the blower chamber 36 through the vent hole 45 by providing the protrusion 138. Will increase.
  • the protrusion 138 has a large displacement in the vibration plate 39 and the top plate 37 that flexurally vibrate in the third-order mode, that is, from the center of the vibration plate 39 and the top plate 37.
  • the inner surface of the side plate 38 is not longer than the length from the position of the vibration plate 39 in contact with the side surface of the blower chamber 36 to the bending vibration node F of the vibration plate 39 so as not to contact the region up to the vibration node with the shortest distance. Is formed. Therefore, even in the tertiary mode, the vibration of the diaphragm 39 can be prevented from being inhibited by the protrusion 138.
  • the discharge flow rate per power consumption can be greatly increased, and the necessary discharge flow rate can be secured while maintaining low power consumption.
  • FIG. 6 is a sectional view of the piezoelectric blower 200 according to the second embodiment of the present invention.
  • 7A and 7B are cross-sectional views of the piezoelectric blower 200 when the piezoelectric blower 200 shown in FIG. 6 is operated in the primary mode.
  • the difference between the piezoelectric blower 200 according to the second embodiment and the piezoelectric blower 100 according to the first embodiment is the shape of the protrusion 238.
  • the protrusion 238 has a rectangular parallelepiped shape. Other configurations are the same.
  • the piezoelectric blower 200 of this embodiment when an AC drive voltage having a primary mode frequency (fundamental wave) is applied to the piezoelectric element 40 from the external terminals 63 and 72, the diaphragm 39 is concentric in the primary mode.
  • the top plate 37 bends and vibrates concentrically in the primary mode with the bending vibration of the vibration plate 39 (in this embodiment, the vibration phase is delayed by 180 °).
  • the piezoelectric blower 200 of the present embodiment is compared with the conventional micro blower 900 shown in FIG. 10, the difference between the volume V 1 when the blower chamber is fully expanded and the volume V 2 when the blower chamber is maximum contracted (V 1 -V 2 ) is the same.
  • the volume V 1 at the time of maximum expansion of the blower chamber is smaller than that of the conventional micro blower 900. That is, also in the piezoelectric blower 200 of this embodiment, by providing the protrusion 238, the volume change rate H of the blower chamber is increased. Thereby, the flow rate of air per displacement amount of the diaphragm 39 discharged from the inside of the blower chamber 36 to the outside of the blower chamber 36 through the vent hole 45 is increased as compared with the conventional case.
  • the protrusion 238 is also formed on the inner surface of the side plate 38 in a range where the vibration of the vibration plate 39 in the blower chamber 36 does not come into contact with a region where the vibration plate 39 is largely displaced (center portion of the vibration plate). Yes.
  • FIG. 8 is a cross-sectional view of a piezoelectric blower 300 according to a third embodiment of the present invention.
  • 9A and 9B are cross-sectional views of the piezoelectric blower 300 when the piezoelectric blower 300 shown in FIG. 8 is operated in the primary mode.
  • the piezoelectric blower 300 according to the third embodiment is different from the piezoelectric blower 100 according to the first embodiment in the shape of the protrusion 338.
  • the tip of the protrusion 338 has a convex curved surface shape, and the remaining body portion has a cylindrical shape. Other configurations are the same.
  • the piezoelectric blower 300 of this embodiment when an AC drive voltage having a primary mode frequency (fundamental wave) is applied from the external terminals 63 and 72 to the piezoelectric element 40, the diaphragm 39 is concentric in the primary mode.
  • the top plate 37 bends and vibrates concentrically in the primary mode with the bending vibration of the vibration plate 39 (in this embodiment, the vibration phase is delayed by 180 °).
  • the piezoelectric blower 300 of the present embodiment is compared with the conventional micro blower 900 shown in FIG. 10, the difference between the volume V 1 when the blower chamber is fully expanded and the volume V 2 when the blower chamber is maximum contracted (V 1 -V 2 ) is the same.
  • the protrusion 338 is provided in the piezoelectric blower 300 of this embodiment, the volume V 1 when the blower chamber is fully expanded is smaller than that of the conventional micro blower 900. That is, also in the piezoelectric blower 300 of the present embodiment, the provision of the protrusion 338 increases the volume change rate H of the blower chamber. Thereby, the flow rate of air per displacement amount of the diaphragm 39 discharged from the inside of the blower chamber 36 to the outside of the blower chamber 36 through the vent hole 45 is increased as compared with the conventional case.
  • the protrusion 338 is also formed on the inner surface of the side plate 38 in a range where the vibration of the vibration plate 39 in the blower chamber 36 does not contact the region where the displacement of the vibration plate 39 is large (the center portion of the vibration plate). Yes.
  • the piezoelectric blower 300 of the third embodiment the same effect as that of the piezoelectric blower 100 of the first embodiment can be obtained.
  • air is used as the fluid, but the present invention is not limited to this. It can be applied even if the fluid is a gas other than air.
  • the piezoelectric element 40 is provided as a blower drive source, but the present invention is not limited to this.
  • it may be configured as a blower that performs pumping by electromagnetic driving.
  • the piezoelectric element 40 is made of a lead zirconate titanate ceramic, but is not limited thereto.
  • a unimorph type piezoelectric vibrator is used, but the present invention is not limited to this.
  • a bimorph type piezoelectric vibrator in which the piezoelectric elements 40 are attached to both surfaces of the vibration plate 39 may be used.
  • the disk-shaped piezoelectric element 40, the disk-shaped diaphragm 39, and the disk-shaped top plate 37 are used, but the present invention is not limited to this.
  • these shapes may be rectangular or polygonal.
  • the shape of the protrusion is not limited to the shape of the above embodiment, and may be formed by a rectangular parallelepiped shape, a spherical shape, or a combination thereof.
  • the plurality of protrusions 138 are formed on the inner surface of the side plate 38, but the present invention is not limited to this.
  • one projection 138 may be formed on the inner surface of the side plate 38, and for example, an annular projection may be provided in contact with the inner periphery of the side plate 38.
  • the vibration plate of the piezoelectric blower is bent and vibrated at the frequency of the primary mode and the tertiary mode.
  • the present invention is not limited to this.
  • the diaphragm may be bent and vibrated in an odd-order vibration mode that is a third-order mode or more that forms a plurality of vibration antinodes.
  • the top plate 37 bends and vibrates concentrically with the bending vibration of the diaphragm 39.
  • the present invention is not limited to this. At the time of implementation, only the diaphragm 39 is flexibly vibrated, and the top plate 37 may not be flexibly vibrated with the flexural vibration of the diaphragm 39.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

A piezoelectric blower (100) is provided with an external case (17), a top plate (37), a side plate (38), an oscillating plate (39), a piezoelectric element (40), and a cap (42). The top plate (37), the side plate (38), and the oscillating plate (39) constitute a blower chamber (36). A through-hole (45) is provided in the top plate (37). A plurality of projections (138) projecting toward the center of the blower chamber (36) are formed on the inside surfaces of the side plates (38) constituting side surfaces of the blower chamber (36). When an alternating driving voltage is applied to the piezoelectric elements (40), the oscillating plate (39) oscillates by bending and the top plate (37) oscillates by bending in concert with the bending oscillation of the oscillating plate (39). Consequently, the volume of the blower chamber (36) changes in a cyclical manner.

Description

ブロアBlower
 本発明は、気体の輸送を行うブロアに関するものである。 The present invention relates to a blower that transports gas.
 特許文献1には、携帯型電子機器の内部で発生する熱を冷却するため、あるいは燃料電池で発電するのに必要な酸素を供給するためのマイクロブロアが開示されている。 Patent Document 1 discloses a microblower for cooling the heat generated inside a portable electronic device or supplying oxygen necessary for power generation by a fuel cell.
 図10は、特許文献1に係るマイクロブロア900の断面図である。マイクロブロア900は、内ケース2と、弾性金属板5Aと、圧電素子5Bと、内ケース2の外側を覆う外ケース3と、蓋部材9と、を備えている。内ケース2は複数個の連結部4によって外ケース3に対して弾性的に支持されている。 FIG. 10 is a cross-sectional view of a micro blower 900 according to Patent Document 1. The micro blower 900 includes an inner case 2, an elastic metal plate 5 </ b> A, a piezoelectric element 5 </ b> B, an outer case 3 that covers the outer side of the inner case 2, and a lid member 9. The inner case 2 is elastically supported with respect to the outer case 3 by a plurality of connecting portions 4.
 内ケース2は下方が開口した断面コの字形状であり、開口を閉じるように、弾性金属板5Aが接合されている。これにより、内ケース2は、弾性金属板5Aとともにブロア室6を構成している。そして、内ケース2には、ブロア室6の内部と外部を連通する開口部8が形成されている。また、弾性金属板5Aのブロア室6とは逆側の主面には、圧電素子5Bが貼付されている。 The inner case 2 has a U-shaped cross section with an opening at the bottom, and an elastic metal plate 5A is joined so as to close the opening. Thereby, the inner case 2 forms the blower chamber 6 together with the elastic metal plate 5A. The inner case 2 is formed with an opening 8 that communicates the inside and outside of the blower chamber 6. A piezoelectric element 5B is attached to the main surface of the elastic metal plate 5A opposite to the blower chamber 6.
 開口部8に対向する外ケース3の領域には、吐出口3Aが形成されている。外ケース3は、内ケース2を収納するよう、蓋部材9を有している。蓋部材9の中央には、吸引口9Aが形成されている。そして、内ケース2、弾性金属板5A及び圧電素子5Bの接合体と外ケース3との間には空気の流入通路7が形成されている。 A discharge port 3 </ b> A is formed in the region of the outer case 3 facing the opening 8. The outer case 3 has a lid member 9 so as to accommodate the inner case 2. A suction port 9 </ b> A is formed in the center of the lid member 9. An air inflow passage 7 is formed between the outer case 3 and the joined body of the inner case 2, the elastic metal plate 5A and the piezoelectric element 5B.
 以上の構成において、交流駆動電圧が圧電素子5Bに印加されると、圧電素子5Bが伸縮し、圧電素子5Bの伸縮により弾性金属板5Aが屈曲振動する。そして、弾性金属板5Aの屈曲変形によりブロア室6の体積が周期的に変化する。 In the above configuration, when an AC drive voltage is applied to the piezoelectric element 5B, the piezoelectric element 5B expands and contracts, and the elastic metal plate 5A bends and vibrates due to the expansion and contraction of the piezoelectric element 5B. And the volume of the blower chamber 6 changes periodically by the bending deformation of the elastic metal plate 5A.
 詳述すると、交流駆動電圧が圧電素子5Bに印加されて弾性金属板5Aが圧電素子5B側へ屈曲すると、ブロア室6の容積が増大する。これに伴い、マイクロブロア900の外部の空気が吸引口9A、流入通路7、及び開口部8を介してブロア室6内に吸引される。この際、ブロア室6からの空気の流出は無いものの、吐出口3Aからマイクロブロア900の外部への空気の流れの慣性力が働いている。 More specifically, when an AC drive voltage is applied to the piezoelectric element 5B and the elastic metal plate 5A is bent toward the piezoelectric element 5B, the volume of the blower chamber 6 increases. Accordingly, air outside the micro blower 900 is sucked into the blower chamber 6 through the suction port 9 </ b> A, the inflow passage 7, and the opening 8. At this time, although there is no outflow of air from the blower chamber 6, the inertial force of the air flow from the discharge port 3 </ b> A to the outside of the microblower 900 works.
 次に、交流駆動電圧が圧電素子5Bに印加されて弾性金属板5Aがブロア室6側へ屈曲すると、ブロア室6の容積が減少する。これに伴い、ブロア室6内の空気が開口部8、流入通路7を介して吐出口3Aから吐出する。 Next, when an AC drive voltage is applied to the piezoelectric element 5B and the elastic metal plate 5A is bent toward the blower chamber 6, the volume of the blower chamber 6 decreases. Accordingly, the air in the blower chamber 6 is discharged from the discharge port 3 </ b> A through the opening 8 and the inflow passage 7.
 このとき、ブロア室6から吐出される気流は,マイクロブロア900の外部の空気を吸引口9A及び流入通路7を介して引き込みながら吐出口3Aから吐出する。そのため、吐出口3Aから吐出される空気の流量が、引き込まれる空気の流量分増大する。 At this time, the air flow discharged from the blower chamber 6 is discharged from the discharge port 3A while drawing the air outside the micro blower 900 through the suction port 9A and the inflow passage 7. Therefore, the flow rate of the air discharged from the discharge port 3A increases by the flow rate of the drawn air.
 以上により、マイクロブロア900では、消費電力あたりの吐出流量を増大させている。 As described above, in the micro blower 900, the discharge flow rate per power consumption is increased.
特開2011-27079号公報JP 2011-27079 A
 しかしながら、近年、前述の図10に示すような構造のマイクロブロアを搭載する電子機器には、低消費電力化の傾向がある。そのため、吐出流量を減少させずに消費電力をより低減したマイクロブロアが求められている。 However, in recent years, electronic devices equipped with the microblower having the structure shown in FIG. 10 have a tendency to reduce power consumption. Therefore, there is a demand for a micro blower that further reduces power consumption without reducing the discharge flow rate.
 そこで本発明は、消費電力あたりの吐出流量を大幅に増大させ、低消費電力でありながら必要な吐出流量を確保できるブロアを提供することを目的とする。 Therefore, an object of the present invention is to provide a blower that can greatly increase the discharge flow rate per power consumption and can secure a necessary discharge flow rate with low power consumption.
 本発明のブロアは、前記課題を解決するために以下の構成を備えている。 The blower of the present invention has the following configuration in order to solve the above problems.
(1)屈曲振動する振動板と、
 前記振動板の少なくとも一方の主面に設けられ、前記振動板を振動させる駆動体と、
 前記振動板とともにブロア室を構成する第1筐体と、を備え、
 前記第1筐体は、前記振動板に対向する天板部と、前記振動板と前記天板部とを接続する側壁部と、を有し、
 前記天板部には、前記ブロア室の内部と外部とを連通させる通気孔が形成されており、
 前記側壁部には、前記ブロア室の中央に向かって突出する突起が形成されている。
(1) a vibration plate that flexibly vibrates;
A driver that is provided on at least one main surface of the diaphragm and vibrates the diaphragm;
A first housing that forms a blower chamber together with the diaphragm,
The first housing has a top plate portion facing the diaphragm, and a side wall portion connecting the diaphragm and the top plate portion,
The top plate portion is formed with a vent hole that communicates the inside and outside of the blower chamber,
The side wall is formed with a protrusion that protrudes toward the center of the blower chamber.
 この構成では、駆動電圧が駆動体に印加されると、駆動体により振動板が屈曲振動する。そして、この振動板の変形によりブロア室の体積が周期的に変化し、ブロア室の気体が通気孔から吐出される。 In this configuration, when a driving voltage is applied to the driving body, the driving body causes the diaphragm to bend and vibrate. The volume of the blower chamber is periodically changed by the deformation of the diaphragm, and the gas in the blower chamber is discharged from the vent hole.
 この構成のブロアと図10に示すような構造の従来のマイクロブロアとを比べると、ブロア室の最大拡張時の体積Vとブロア室の最大収縮時の体積Vとの差(V-V)は同じである。しかし、この構成のブロアでは突起を設けているので、ブロア室の最大拡張時の体積Vが従来のマイクロブロアよりも減少する。すなわち、突起を設けたことにより、ブロア室の体積変化率(V-V)/Vが高まる。 Comparing the blower having this configuration with the conventional microblower having the structure shown in FIG. 10, the difference between the volume V 1 when the blower chamber is fully expanded and the volume V 2 when the blower chamber is maximum contracted (V 1 − V 2 ) is the same. However, since provided with projections in the blower of this configuration, the volume V 1 of the time of maximum expansion of the blower chamber is reduced than the conventional micro-blower. That is, by providing the protrusion, the volume change rate (V 1 −V 2 ) / V 1 of the blower chamber is increased.
 これにより、ブロア室の内部から通気孔を介してブロア室の外部へ吐出される、振動板の変位量あたりの空気の流量が従来のマイクロブロアよりも増大する。ここで、振動板の変位量は駆動体への消費電力によって定まる。 Thereby, the flow rate of air per displacement of the diaphragm discharged from the inside of the blower chamber to the outside of the blower chamber through the vent hole is increased as compared with the conventional micro blower. Here, the displacement amount of the diaphragm is determined by the power consumption to the driving body.
 また、この構成では、ブロア室が最大拡張状態から最大収縮状態になる間、従来よりもブロア室内における突起と振動板との間隔が狭くなるので、ブロア室内における突起と振動板との間の気体がブロア室の中央へ移動してブロア室の中央の圧力が高まる。このため、ブロア室が最大拡張状態から最大収縮状態になる間に、ブロア室内の気体が通気孔からブロア室の外部へ吐出される割合が従来のマイクロブロアよりも大きくなる。 Further, in this configuration, while the blower chamber changes from the maximum expanded state to the maximum contracted state, the gap between the projection and the diaphragm in the blower chamber becomes narrower than before, so the gas between the projection and the diaphragm in the blower chamber Moves to the center of the blower chamber and the pressure in the center of the blower chamber increases. For this reason, while the blower chamber changes from the maximum expanded state to the maximum contracted state, the rate at which the gas in the blower chamber is discharged from the vent hole to the outside of the blower chamber becomes larger than that of the conventional micro blower.
 したがって、この構成によれば、消費電力あたりの吐出流量を大幅に増大させ、低消費電力でありながら必要な吐出流量を確保できる。 Therefore, according to this configuration, the discharge flow rate per power consumption can be greatly increased, and the necessary discharge flow rate can be ensured with low power consumption.
(2)前記突起は、前記ブロア室のうち、屈曲振動する前記振動板に接触しない範囲に形成されていることが好ましい。 (2) It is preferable that the protrusion is formed in the blower chamber in a range that does not contact the vibration plate that is flexibly vibrated.
 この構成では、突起が、屈曲振動する振動板に接触しないため、振動板の振動が突起によって阻害されることを防止できる。 In this configuration, since the protrusion does not come into contact with the diaphragm that vibrates and vibrates, it is possible to prevent the vibration of the diaphragm from being inhibited by the protrusion.
(3)前記振動板は、前記駆動体により、複数の振動の腹を形成する3次モード以上の奇数次の振動モードで屈曲振動し、
 前記突起は、前記振動板の屈曲振動により形成される振動の節のうち、前記ブロア室の側面に接する前記振動板の位置から最も距離が短い振動の節までの長さ以下に形成されていることが好ましい。
(3) The diaphragm bends and vibrates in an odd-order vibration mode equal to or higher than a third-order mode that forms a plurality of vibration antinodes by the driver,
The protrusion is formed to have a length not more than a length from a position of the vibration plate in contact with a side surface of the blower chamber to a vibration node having the shortest distance among vibration nodes formed by bending vibration of the vibration plate. It is preferable.
 この構成では、突起が、奇数次の振動モードで屈曲振動する振動板のうち、振動板の変位が大きい領域(振動板の中央部)に接触しないため、振動板の振動が突起によって阻害されることを防止できる。 In this configuration, since the protrusion does not come into contact with a region where the vibration plate is largely displaced (the center portion of the vibration plate) among vibration plates that flexurally vibrate in an odd-order vibration mode, vibration of the vibration plate is inhibited by the protrusion. Can be prevented.
(4)前記天板部は、前記振動板の屈曲振動に伴って屈曲振動することが好ましい。 (4) It is preferable that the top plate portion bends and vibrates with bending vibration of the diaphragm.
 この構成では、振動板の振動に伴い天板部が振動するため、実質的に振動振幅を増すことができ、そのことにより吐出圧力と吐出流量を増加させることができる。 In this configuration, since the top plate portion vibrates with the vibration of the diaphragm, the vibration amplitude can be substantially increased, and thereby the discharge pressure and the discharge flow rate can be increased.
 従って、この構成によれば、消費電力あたりの吐出流量を大幅に増大させ、低消費電力でありながら必要な吐出流量を確保できる。 Therefore, according to this configuration, the discharge flow rate per power consumption can be greatly increased, and the necessary discharge flow rate can be ensured with low power consumption.
(5)前記第1筐体を、間隔を設けて被覆して前記第1筐体との間に通気路を形成し、前記通気孔と対向する領域に吐出口が形成されている第2筐体と、を備えることが好ましい。 (5) A second casing in which the first casing is covered with an interval to form a ventilation path between the first casing and a discharge port is formed in a region facing the vent hole. And a body.
 この構成では、ブロア室から通気孔を介して流出する気流が、通気路を介してブロアの外部に存在する気体を引き込みながら吐出口から吐出される。これにより、ブロアの吐出流量が引き込まれる気体の流量分増大する。 In this configuration, the airflow flowing out from the blower chamber through the vent hole is discharged from the discharge port while drawing the gas existing outside the blower through the vent passage. Thereby, the discharge flow rate of the blower is increased by the flow rate of the drawn gas.
 従って、この構成によれば、消費電力あたりの吐出流量を大幅に増大させ、低消費電力でありながら必要な吐出流量を確保できる。 Therefore, according to this configuration, the discharge flow rate per power consumption can be greatly increased, and the necessary discharge flow rate can be ensured with low power consumption.
 この発明によれば、消費電力あたりの吐出流量を大幅に増大させ、低消費電力でありながら必要な吐出流量を確保できる。 According to the present invention, the discharge flow rate per power consumption can be greatly increased, and the necessary discharge flow rate can be ensured with low power consumption.
本発明の第1実施形態に係る圧電ブロア100の外観斜視図である。1 is an external perspective view of a piezoelectric blower 100 according to a first embodiment of the present invention. 図1に示す圧電ブロア100の分解斜視図である。It is a disassembled perspective view of the piezoelectric blower 100 shown in FIG. 図1に示す圧電ブロア100のS-S線の断面図である。FIG. 2 is a sectional view taken along line SS of the piezoelectric blower 100 shown in FIG. 図4は、図1に示す圧電ブロア100を1次モードで動作させた場合における圧電ブロア100のS-S線の断面図である。図4(A)はブロア室の容積が増大したときの図、図4(B)はブロア室の容積が減少したときの図である。FIG. 4 is a cross-sectional view taken along line SS of the piezoelectric blower 100 when the piezoelectric blower 100 shown in FIG. 1 is operated in the primary mode. 4A is a diagram when the volume of the blower chamber is increased, and FIG. 4B is a diagram when the volume of the blower chamber is decreased. 図5は、図1に示す圧電ブロア100を3次モードで動作させた場合における圧電ブロア100のS-S線の断面図である。図5(A)はブロア室の容積が増大したときの図、図5(B)はブロア室の容積が減少したときの図である。FIG. 5 is a sectional view taken along the line SS of the piezoelectric blower 100 when the piezoelectric blower 100 shown in FIG. 1 is operated in the tertiary mode. 5A is a diagram when the volume of the blower chamber is increased, and FIG. 5B is a diagram when the volume of the blower chamber is decreased. 本発明の第2実施形態に係る圧電ブロア200の断面図である。It is sectional drawing of the piezoelectric blower 200 which concerns on 2nd Embodiment of this invention. 図7は、図6に示す圧電ブロア200を1次モードで動作させた場合における圧電ブロア200の断面図である。図7(A)はブロア室の容積が増大したときの図、図7(B)は、ブロア室の容積が減少したときの図である。FIG. 7 is a cross-sectional view of the piezoelectric blower 200 when the piezoelectric blower 200 shown in FIG. 6 is operated in the primary mode. 7A is a view when the volume of the blower chamber is increased, and FIG. 7B is a view when the volume of the blower chamber is decreased. 本発明の第3実施形態に係る圧電ブロア300の断面図である。It is sectional drawing of the piezoelectric blower 300 which concerns on 3rd Embodiment of this invention. 図9は、図8に示す圧電ブロア300を1次モードで動作させた場合における圧電ブロア300の断面図である。図9(A)はブロア室の容積が増大したときの図、図9(B)は、ブロア室の容積が減少したときの図である。FIG. 9 is a cross-sectional view of the piezoelectric blower 300 when the piezoelectric blower 300 shown in FIG. 8 is operated in the primary mode. FIG. 9A is a diagram when the volume of the blower chamber is increased, and FIG. 9B is a diagram when the volume of the blower chamber is decreased. 特許文献1に係るマイクロブロア900の断面図である。It is sectional drawing of the micro blower 900 which concerns on patent document 1. FIG.
《本発明の第1実施形態》
 以下、本発明の第1実施形態に係る圧電ブロア100について説明する。
<< First Embodiment of the Invention >>
Hereinafter, the piezoelectric blower 100 according to the first embodiment of the present invention will be described.
 図1は、本発明の第1実施形態に係る圧電ブロア100の外観斜視図である。図2は、図1に示す圧電ブロア100の分解斜視図である。図3は、図1に示す圧電ブロア100のS-S線の断面図である。 FIG. 1 is an external perspective view of the piezoelectric blower 100 according to the first embodiment of the present invention. FIG. 2 is an exploded perspective view of the piezoelectric blower 100 shown in FIG. FIG. 3 is a cross-sectional view taken along line SS of the piezoelectric blower 100 shown in FIG.
 圧電ブロア100は、上から順に、外筐体17、天板37、側板38、振動板39、圧電素子40、及びキャップ42を備え、それらを順に積層した構造を有している。天板37、側板38、及び振動板39は、ブロア室36を構成している。圧電ブロア100は、幅20mm×長さ20mm×ノズル18以外の領域の高さ1.85mmの寸法となっている。 The piezoelectric blower 100 includes an outer casing 17, a top plate 37, a side plate 38, a vibration plate 39, a piezoelectric element 40, and a cap 42 in order from the top, and has a structure in which these are stacked in order. The top plate 37, the side plate 38, and the diaphragm 39 constitute a blower chamber 36. The piezoelectric blower 100 has dimensions of a width of 20 mm × a length of 20 mm × a height of 1.85 mm in a region other than the nozzle 18.
 なお、天板37及び側板38の接合体が本発明の「第1筐体」に相当し、外筐体17が本発明の「第2筐体」に相当する。また、天板37が本発明の「天板部」に相当し、側板38が本発明の「側壁部」に相当する。また、圧電素子40が本発明の「駆動体」に相当する。 The joined body of the top plate 37 and the side plate 38 corresponds to the “first casing” of the present invention, and the outer casing 17 corresponds to the “second casing” of the present invention. The top plate 37 corresponds to the “top plate portion” of the present invention, and the side plate 38 corresponds to the “side wall portion” of the present invention. The piezoelectric element 40 corresponds to the “driving body” of the present invention.
 外筐体17は、空気が吐出される吐出口24が中心に形成されたノズル18を有する。このノズル18は、外形の直径2.0mm×内形(即ち吐出口24)の直径0.8mm×高さ1.6mmの寸法となっている。外筐体17の四角には、ネジ穴56A~56Dが形成されている。 The outer casing 17 has a nozzle 18 formed around a discharge port 24 through which air is discharged. The nozzle 18 has a size of an outer diameter of 2.0 mm × an inner shape (that is, a discharge port 24) of a diameter of 0.8 mm × a height of 1.6 mm. Screw holes 56A to 56D are formed in the square of the outer casing 17.
 外筐体17は、下方が開口した断面コ字状に形成されており、外筐体17は、ブロア室36の天板37、ブロア室36の側板38、振動板39及び圧電素子40を収納する。外筐体17は、例えば樹脂から構成される。 The outer casing 17 is formed in a U-shaped cross-section with an open bottom, and the outer casing 17 houses the top plate 37 of the blower chamber 36, the side plate 38 of the blower chamber 36, the vibration plate 39 and the piezoelectric element 40. To do. The outer casing 17 is made of, for example, resin.
 ブロア室36の天板37は、円板状であり、例えば金属から構成されている。天板37には、中央部61と、中央部61から水平方向に突出し、外筐体17の内壁に当接する鍵状の突出部62と、外部回路に接続するための外部端子63とが形成されている。 The top plate 37 of the blower chamber 36 has a disk shape and is made of, for example, metal. The top plate 37 is formed with a central portion 61, a key-like protruding portion 62 that protrudes horizontally from the central portion 61 and contacts the inner wall of the outer casing 17, and an external terminal 63 for connecting to an external circuit. Has been.
 また、天板37の中央部61には、ブロア室36の内部と外部とを連通させる通気孔45が設けられている。この通気孔45は、外筐体17の吐出口24と対向する位置に形成されている。天板37は、側板38の上面に接合する。 Further, the central portion 61 of the top plate 37 is provided with a vent hole 45 that allows the inside and outside of the blower chamber 36 to communicate with each other. The vent hole 45 is formed at a position facing the discharge port 24 of the outer casing 17. The top plate 37 is joined to the upper surface of the side plate 38.
 ブロア室36の側板38は、円環状であり、例えば金属から構成されている。側板38は、振動板39の上面に接合する。そのため、側板38の厚みは、ブロア室36の高さとなる。 The side plate 38 of the blower chamber 36 has an annular shape, and is made of, for example, metal. The side plate 38 is joined to the upper surface of the diaphragm 39. Therefore, the thickness of the side plate 38 is the height of the blower chamber 36.
 ここで、ブロア室36の側面を構成する側板38の内側面には、ブロア室36の中央に向かって突出する突起138が複数個形成されている。突起138の形状は、凸の曲面状である。 Here, a plurality of protrusions 138 projecting toward the center of the blower chamber 36 are formed on the inner surface of the side plate 38 constituting the side surface of the blower chamber 36. The shape of the protrusion 138 is a convex curved surface.
 突起138は、ブロア室36のうち、後述の図4(A)(B)に示すように1次モードの周波数(以下、基本波)で屈曲振動する振動板39及び天板37に接触しない範囲に形成されている。 As shown in FIGS. 4A and 4B to be described later, the protrusion 138 does not contact the diaphragm 39 and the top plate 37 that flexurally vibrate at the frequency of the primary mode (hereinafter, fundamental wave) as shown in FIGS. Is formed.
 また、突起138は、後述の図5(A)(B)に示すように3次モードの周波数(基本波の3倍波)で屈曲振動する振動板39及び天板37において、変位が大きい領域、すなわち振動板39及び天板37の中心から最も距離が短い振動の節までの領域に接触しないよう、前記振動板39の屈曲振動により形成される振動の節のうち、ブロア室36の側面に接する振動板39の位置から、最も距離が短い振動の節Fまでの長さ以下に形成されている。 Further, as shown in FIGS. 5A and 5B described later, the protrusion 138 is a region in which the displacement is large in the vibration plate 39 and the top plate 37 that flexurally vibrate at a third-order mode frequency (third harmonic wave). That is, on the side surface of the blower chamber 36 among the vibration nodes formed by the bending vibration of the vibration plate 39 so as not to contact the region from the center of the vibration plate 39 and the top plate 37 to the vibration node with the shortest distance. It is formed below the length from the position of the diaphragm 39 in contact with the node F of the vibration with the shortest distance.
 振動板39は、円板状であり、例えば金属から構成されている。振動板39は、ブロア室36の底面を構成する。 The diaphragm 39 has a disk shape and is made of, for example, metal. The diaphragm 39 constitutes the bottom surface of the blower chamber 36.
 圧電素子40は、円板形状であり、例えばチタン酸ジルコン酸鉛系セラミックスから構成されている。圧電素子40は、振動板39のブロア室36とは逆側の主面に接合されており、印加された交流電圧に応じて屈曲する。 The piezoelectric element 40 has a disk shape and is made of, for example, lead zirconate titanate ceramic. The piezoelectric element 40 is bonded to the main surface of the diaphragm 39 opposite to the blower chamber 36, and bends according to the applied AC voltage.
 そして、天板37、側板38、振動板39、及び圧電素子40の接合体は、天板37に設けられている4個の突出部62によって外筐体17に対して弾性的に支持されている。 The joined body of the top plate 37, the side plate 38, the vibration plate 39, and the piezoelectric element 40 is elastically supported with respect to the outer casing 17 by the four projecting portions 62 provided on the top plate 37. Yes.
 電極導通用板70は、圧電素子40に接続するための内部端子73と、外部回路に接続するための外部端子72とで構成されている。内部端子73の先端は圧電素子40の平板面にはんだ付けされている。はんだ付け位置を圧電素子40の屈曲振動の節に相当する位置とすることにより、内部端子73の振動がより抑制できる。 The electrode conduction plate 70 includes an internal terminal 73 for connection to the piezoelectric element 40 and an external terminal 72 for connection to an external circuit. The tip of the internal terminal 73 is soldered to the flat surface of the piezoelectric element 40. By setting the soldering position to a position corresponding to the bending vibration node of the piezoelectric element 40, the vibration of the internal terminal 73 can be further suppressed.
 キャップ42には、円板形状の吸引口53が形成されている。吸引口53の直径は、圧電素子40の直径より長い。また、キャップ42には、外筐体17のネジ穴56A~56Dに対応する位置に切欠き55A~55Dが形成されている。 A disc-shaped suction port 53 is formed in the cap 42. The diameter of the suction port 53 is longer than the diameter of the piezoelectric element 40. Further, the cap 42 has notches 55A to 55D formed at positions corresponding to the screw holes 56A to 56D of the outer casing 17.
 また、キャップ42は、外周縁に、天板37側へ突出する突出部52を有する。キャップ42は、突出部52で外筐体17を挟持し、ブロア室36の天板37、ブロア室36の側板38、振動板39及び圧電素子40を、外筐体17とともに収納する。キャップ42は、例えば樹脂から構成されている。 The cap 42 has a protruding portion 52 that protrudes toward the top plate 37 on the outer peripheral edge. The cap 42 holds the outer casing 17 with the protruding portion 52, and houses the top plate 37 of the blower chamber 36, the side plate 38 of the blower chamber 36, the vibration plate 39, and the piezoelectric element 40 together with the outer casing 17. The cap 42 is made of, for example, resin.
 そして、図3に示すように、天板37、側板38、振動板39及び圧電素子40の接合体と外筐体17及びキャップ42との間には通気路31が形成されている。 As shown in FIG. 3, a ventilation path 31 is formed between the joined body of the top plate 37, the side plate 38, the vibration plate 39 and the piezoelectric element 40 and the outer casing 17 and the cap 42.
 以下、圧電ブロア100が動作するときにおける空気の流れについて説明する。 Hereinafter, the flow of air when the piezoelectric blower 100 operates will be described.
 図4(A)(B)は、図1に示す圧電ブロア100を1次モードの周波数(基本波)で動作させた場合における圧電ブロア100のS-S線の断面図である。ここで、図中の矢印は、空気の流れを示している。 4A and 4B are cross-sectional views taken along the line SS of the piezoelectric blower 100 when the piezoelectric blower 100 shown in FIG. 1 is operated at a primary mode frequency (fundamental wave). Here, the arrows in the figure indicate the flow of air.
 図3に示す状態において、1次モードの周波数(基本波)の交流駆動電圧が外部端子63,72から圧電素子40に印加されると、振動板39は同心円状に屈曲振動する。同時に、天板37は、振動板39の屈曲振動に伴うブロア室36の圧力変動により、振動板39の屈曲振動に伴って(この実施形態では振動位相が180°遅れて)同心円状に屈曲振動する。これにより、図4(A)(B)に示すように、振動板39及び天板37が屈曲変形してブロア室36の体積が周期的に変化する。 In the state shown in FIG. 3, when an AC drive voltage having a primary mode frequency (fundamental wave) is applied from the external terminals 63 and 72 to the piezoelectric element 40, the diaphragm 39 bends and vibrates concentrically. At the same time, the top plate 37 is flexibly vibrated concentrically with the bending vibration of the vibration plate 39 (in this embodiment, the vibration phase is delayed by 180 °) due to the pressure fluctuation of the blower chamber 36 accompanying the bending vibration of the vibration plate 39. To do. Accordingly, as shown in FIGS. 4A and 4B, the diaphragm 39 and the top plate 37 are bent and deformed, and the volume of the blower chamber 36 is periodically changed.
 図4(A)に示すように、圧電素子40に交流電圧を印加して振動板39を圧電素子40側へ屈曲させると、ブロア室36の容積が増大する。これに伴い、圧電ブロア100の外部の空気が吸引口53、通気路31、及び通気孔45を介してブロア室36内に吸引される。ブロア室36からの空気の流出は無いものの、吐出口24から圧電ブロア100の外部への空気の流れの慣性力が働いている。 As shown in FIG. 4A, when an alternating voltage is applied to the piezoelectric element 40 and the diaphragm 39 is bent toward the piezoelectric element 40, the volume of the blower chamber 36 increases. Along with this, air outside the piezoelectric blower 100 is sucked into the blower chamber 36 through the suction port 53, the vent path 31, and the vent hole 45. Although there is no outflow of air from the blower chamber 36, the inertial force of the air flow from the discharge port 24 to the outside of the piezoelectric blower 100 works.
 図4(B)に示すように、圧電素子40に交流電圧を印加して振動板39をブロア室36側へ屈曲させると、ブロア室36の容積が減少する。これに伴い、ブロア室36内の空気が通気孔45、通気路31を介して吐出口24から吐出する。 As shown in FIG. 4B, when an AC voltage is applied to the piezoelectric element 40 to bend the diaphragm 39 toward the blower chamber 36, the volume of the blower chamber 36 decreases. Accordingly, air in the blower chamber 36 is discharged from the discharge port 24 through the vent hole 45 and the vent path 31.
 このとき、ブロア室36から吐出される気流が,圧電ブロア100の外部の空気を吸引口53及び通気路31を介して引き込みながら吐出口24から吐出する。そのため、圧電ブロア100の外部から吐出孔に付与される圧力を0(以下、無負荷)とすると、吐出口24から吐出される空気の流量は、引き込まれる空気の流量分増大する。 At this time, the airflow discharged from the blower chamber 36 discharges air from the discharge port 24 while drawing air outside the piezoelectric blower 100 through the suction port 53 and the air passage 31. Therefore, if the pressure applied to the discharge hole from the outside of the piezoelectric blower 100 is 0 (hereinafter referred to as no load), the flow rate of the air discharged from the discharge port 24 increases by the flow rate of the drawn air.
 ここで、ブロア室36が図4(A)に示す最大拡張状態から図4(B)に示す最大収縮状態になると、ブロア室36内における突起138と振動板39との間隔及びブロア室36内における突起138と天板37との間隔が狭くなっていく。 Here, when the blower chamber 36 changes from the maximum expanded state shown in FIG. 4 (A) to the maximum contracted state shown in FIG. 4 (B), the distance between the projection 138 and the diaphragm 39 in the blower chamber 36 and the inside of the blower chamber 36. The distance between the projection 138 and the top plate 37 becomes narrower.
 このとき、ブロア室36内における突起138と振動板39との間の空気及びブロア室36内における突起138と天板37との間の空気が、図4(B)の矢印に示すようにブロア室36の中心側へ移動して、ブロア室36の中心部分の圧力が高まる。 At this time, the air between the projection 138 and the diaphragm 39 in the blower chamber 36 and the air between the projection 138 and the top plate 37 in the blower chamber 36 are blown as shown by arrows in FIG. Moving to the center side of the chamber 36, the pressure in the central portion of the blower chamber 36 increases.
 このため、ブロア室36が最大拡張状態から最大収縮状態になるときに、ブロア室36内の空気が通気孔45からブロア室36の外部へ吐出される割合が従来よりも大きくなる。 For this reason, when the blower chamber 36 changes from the maximum expanded state to the maximum contracted state, the ratio of the air in the blower chamber 36 discharged from the vent hole 45 to the outside of the blower chamber 36 becomes larger than before.
 以下にメカニズムを詳述する。一般的に、ブロア室の体積変化率Hは、H=(V-V)/Vの式で求められる。本実施形態の圧電ブロア100と図10に示す従来のマイクロブロア900とを比較すると、ブロア室の最大拡張時の体積Vとブロア室の最大収縮時の体積Vとの差(V-V)は同じである。 The mechanism is described in detail below. In general, the volume change rate H of the blower chamber is obtained by the equation H = (V 1 −V 2 ) / V 1 . Comparing the piezoelectric blower 100 of the present embodiment with the conventional micro blower 900 shown in FIG. 10, the difference between the volume V 1 when the blower chamber is fully expanded and the volume V 2 when the blower chamber is maximum contracted (V 1 − V 2 ) is the same.
 しかし、本実施形態の圧電ブロア100では突起138を設けているので、ブロア室の最大拡張時の体積Vが従来のマイクロブロア900よりも減少する。すなわち、突起138を設けたことにより、ブロア室の体積変化率Hが高まる。 However, since the protrusion 138 is provided in the piezoelectric blower 100 of this embodiment, the volume V 1 when the blower chamber is fully expanded is smaller than that of the conventional micro blower 900. That is, by providing the protrusion 138, the volume change rate H of the blower chamber is increased.
 これにより、ブロア室36の内部から通気孔45を介してブロア室36の外部へ吐出される、振動板39の変位量あたりの空気の流量が従来よりも増大する。ここで、振動板39の変位量は圧電素子40への消費電力によって定まる。 Thereby, the flow rate of air per displacement amount of the diaphragm 39 discharged from the inside of the blower chamber 36 to the outside of the blower chamber 36 through the vent hole 45 is increased as compared with the conventional case. Here, the displacement amount of the diaphragm 39 is determined by the power consumption to the piezoelectric element 40.
 従って、この実施形態の圧電ブロア100によれば、消費電力あたりの吐出流量を大幅に増大させ、低消費電力でありながら必要な吐出流量を確保できる。 Therefore, according to the piezoelectric blower 100 of this embodiment, the discharge flow rate per power consumption can be greatly increased, and the necessary discharge flow rate can be ensured with low power consumption.
 また、この実施形態の圧電ブロア100では、突起138が、ブロア室36のうち、屈曲振動する振動板39に接触しない範囲で側板38の内側面に形成されている。したがって、この実施形態の圧電ブロア100によれば、振動板39及び天板37の振動が突起138によって阻害されることを防止できる。 Further, in the piezoelectric blower 100 of this embodiment, the protrusion 138 is formed on the inner surface of the side plate 38 in a range not contacting the vibration plate 39 that is flexibly vibrated in the blower chamber 36. Therefore, according to the piezoelectric blower 100 of this embodiment, it is possible to prevent the vibrations of the vibration plate 39 and the top plate 37 from being inhibited by the protrusions 138.
 次に、図3に示す状態において、3次モードの周波数(基本波の3倍波)の交流駆動電圧が外部端子63,72から圧電素子40に印加されると、振動板39は、1つの振動の節Fと2つの振動の腹を生じる3次モードで同心円状に屈曲振動する。同時に、天板37は、振動板39の屈曲振動に伴うブロア室36の圧力変動により、振動板39の屈曲振動に伴って(この実施形態では振動位相が180°遅れて)同じく3次モードで同心円状に屈曲振動する。 Next, in the state shown in FIG. 3, when an AC drive voltage having a third-order mode frequency (third harmonic wave) is applied from the external terminals 63 and 72 to the piezoelectric element 40, the diaphragm 39 is Bending vibration concentrically in a third-order mode that generates a vibration node F and two vibration antinodes. At the same time, the top plate 37 is also in the third mode with the bending vibration of the vibration plate 39 (in this embodiment, the vibration phase is delayed by 180 °) due to the pressure fluctuation of the blower chamber 36 accompanying the bending vibration of the vibration plate 39. Bend and vibrate concentrically.
 これにより、3次モードにおいても、図5(A)(B)に示すように、振動板39及び天板37が屈曲変形してブロア室36の体積が周期的に変化する。 Thereby, also in the tertiary mode, as shown in FIGS. 5A and 5B, the diaphragm 39 and the top plate 37 are bent and deformed, and the volume of the blower chamber 36 is periodically changed.
 図5(A)(B)は、図1に示す圧電ブロア100を3次モードで動作させた場合における圧電ブロア100のS-S線の断面図である。ここで、図中の矢印は、空気の流れを示している。 5A and 5B are cross-sectional views taken along the line SS of the piezoelectric blower 100 when the piezoelectric blower 100 shown in FIG. 1 is operated in the tertiary mode. Here, the arrows in the figure indicate the flow of air.
 本実施形態の圧電ブロア100と図10に示す従来のマイクロブロア900とを比較すると、ブロア室の最大拡張時の体積Vとブロア室の最大収縮時の体積Vとの差(V-V)は同じである。 Comparing the piezoelectric blower 100 of the present embodiment with the conventional micro blower 900 shown in FIG. 10, the difference between the volume V 1 when the blower chamber is fully expanded and the volume V 2 when the blower chamber is maximum contracted (V 1 − V 2 ) is the same.
 しかし、本実施形態の圧電ブロア100では突起138を設けているので、ブロア室の最大拡張時の体積Vが従来のマイクロブロア900よりも減少する。すなわち、突起138を設けたことにより、ブロア室の体積変化率Hが高まる。これにより、3次モードにおいても、突起138を設けたことにより、ブロア室36の内部から通気孔45を介してブロア室36の外部へ吐出される、振動板39の変位量あたりの空気の流量が増大する。 However, since the protrusion 138 is provided in the piezoelectric blower 100 of this embodiment, the volume V 1 when the blower chamber is fully expanded is smaller than that of the conventional micro blower 900. That is, by providing the protrusion 138, the volume change rate H of the blower chamber is increased. Accordingly, even in the tertiary mode, the flow rate of air per displacement amount of the diaphragm 39 discharged from the inside of the blower chamber 36 to the outside of the blower chamber 36 through the vent hole 45 by providing the protrusion 138. Will increase.
 また、突起138は、図5(A)(B)に示すように3次モードで屈曲振動する振動板39及び天板37において、変位が大きい領域、すなわち振動板39及び天板37の中心から最も距離が短い振動の節までの領域に接触しないよう、ブロア室36の側面に接する振動板39の位置から、振動板39の屈曲振動の節Fまでの長さ以下で側板38の内側面に形成されている。そのため、3次モードにおいても、振動板39の振動が突起138によって阻害されることを防止できる。 Further, as shown in FIGS. 5A and 5B, the protrusion 138 has a large displacement in the vibration plate 39 and the top plate 37 that flexurally vibrate in the third-order mode, that is, from the center of the vibration plate 39 and the top plate 37. The inner surface of the side plate 38 is not longer than the length from the position of the vibration plate 39 in contact with the side surface of the blower chamber 36 to the bending vibration node F of the vibration plate 39 so as not to contact the region up to the vibration node with the shortest distance. Is formed. Therefore, even in the tertiary mode, the vibration of the diaphragm 39 can be prevented from being inhibited by the protrusion 138.
 従って、3次モードにおいても、消費電力あたりの吐出流量を大幅に増大させ、低消費電力でありながら必要な吐出流量を確保できる。 Therefore, even in the tertiary mode, the discharge flow rate per power consumption can be greatly increased, and the necessary discharge flow rate can be secured while maintaining low power consumption.
《本発明の第2実施形態》
 以下、本発明の第2実施形態に係る圧電ブロア200について説明する。
<< Second Embodiment of the Invention >>
Hereinafter, a piezoelectric blower 200 according to a second embodiment of the present invention will be described.
 図6は、本発明の第2実施形態に係る圧電ブロア200の断面図である。図7(A)(B)は、図6に示す圧電ブロア200を1次モードで動作させた場合における圧電ブロア200の断面図である。 FIG. 6 is a sectional view of the piezoelectric blower 200 according to the second embodiment of the present invention. 7A and 7B are cross-sectional views of the piezoelectric blower 200 when the piezoelectric blower 200 shown in FIG. 6 is operated in the primary mode.
 この第2実施形態に係る圧電ブロア200が、第1実施形態に係る圧電ブロア100と相違する点は、突起238の形状である。突起238は、直方体状である。その他の構成については同じである。 The difference between the piezoelectric blower 200 according to the second embodiment and the piezoelectric blower 100 according to the first embodiment is the shape of the protrusion 238. The protrusion 238 has a rectangular parallelepiped shape. Other configurations are the same.
 この実施形態の圧電ブロア200においても、1次モードの周波数(基本波)の交流駆動電圧が外部端子63,72から圧電素子40に印加されると、振動板39は、1次モードで同心円状に屈曲振動し、天板37は、振動板39の屈曲振動に伴って(この実施形態では振動位相が180°遅れて)1次モードで同心円状に屈曲振動する。 Also in the piezoelectric blower 200 of this embodiment, when an AC drive voltage having a primary mode frequency (fundamental wave) is applied to the piezoelectric element 40 from the external terminals 63 and 72, the diaphragm 39 is concentric in the primary mode. The top plate 37 bends and vibrates concentrically in the primary mode with the bending vibration of the vibration plate 39 (in this embodiment, the vibration phase is delayed by 180 °).
 これにより、この実施形態の圧電ブロア200においても、図7(A)(B)に示すように、振動板39及び天板37が屈曲変形してブロア室36の体積が周期的に変化する。 Thereby, also in the piezoelectric blower 200 of this embodiment, as shown in FIGS. 7A and 7B, the diaphragm 39 and the top plate 37 are bent and deformed, and the volume of the blower chamber 36 is periodically changed.
 この第2実施形態の圧電ブロア200においても、ブロア室36が図7(A)に示す最大拡張状態から図7(B)に示す最大収縮状態になると、ブロア室36内における突起238と振動板39との間隔及びブロア室36内における突起238と天板37との間隔が狭くなっていく。 Also in the piezoelectric blower 200 of the second embodiment, when the blower chamber 36 is changed from the maximum expanded state shown in FIG. 7A to the maximum contracted state shown in FIG. 7B, the protrusions 238 and the diaphragm in the blower chamber 36 are obtained. The distance between the projection 39 and the top plate 37 in the blower chamber 36 becomes narrower.
 このとき、ブロア室36内における突起238と振動板39との間の空気及びブロア室36内における突起238と天板37との間の空気が、図7(B)の矢印に示すようにブロア室36の中心側へ移動して、ブロア室36の中心部分の圧力が高まる。このため、ブロア室36が最大拡張状態から最大収縮状態になるときに、ブロア室36内の空気が通気孔45からブロア室36の外部へ吐出される割合が従来よりも大きくなる。 At this time, the air between the projection 238 and the diaphragm 39 in the blower chamber 36 and the air between the projection 238 and the top plate 37 in the blower chamber 36 are blown as shown by arrows in FIG. Moving to the center side of the chamber 36, the pressure in the central portion of the blower chamber 36 increases. For this reason, when the blower chamber 36 changes from the maximum expanded state to the maximum contracted state, the rate at which the air in the blower chamber 36 is discharged from the vent hole 45 to the outside of the blower chamber 36 becomes larger than before.
 また、本実施形態の圧電ブロア200と図10に示す従来のマイクロブロア900とを比較すると、ブロア室の最大拡張時の体積Vとブロア室の最大収縮時の体積Vとの差(V-V)は同じである。 Further, when the piezoelectric blower 200 of the present embodiment is compared with the conventional micro blower 900 shown in FIG. 10, the difference between the volume V 1 when the blower chamber is fully expanded and the volume V 2 when the blower chamber is maximum contracted (V 1 -V 2 ) is the same.
 しかし、本実施形態の圧電ブロア200では突起238を設けているので、ブロア室の最大拡張時の体積Vが従来のマイクロブロア900よりも減少する。すなわち、本実施形態の圧電ブロア200においても、突起238を設けたことにより、ブロア室の体積変化率Hが高まる。これにより、ブロア室36の内部から通気孔45を介してブロア室36の外部へ吐出される、振動板39の変位量あたりの空気の流量が従来よりも増大する。 However, since the protrusion 238 is provided in the piezoelectric blower 200 of the present embodiment, the volume V 1 at the time of maximum expansion of the blower chamber is smaller than that of the conventional micro blower 900. That is, also in the piezoelectric blower 200 of this embodiment, by providing the protrusion 238, the volume change rate H of the blower chamber is increased. Thereby, the flow rate of air per displacement amount of the diaphragm 39 discharged from the inside of the blower chamber 36 to the outside of the blower chamber 36 through the vent hole 45 is increased as compared with the conventional case.
 また、突起238も、ブロア室36のうち、屈曲振動する振動板39のうち、振動板39の変位が大きい領域(振動板の中央部)に接触しない範囲で側板38の内側面に形成されている。 Further, the protrusion 238 is also formed on the inner surface of the side plate 38 in a range where the vibration of the vibration plate 39 in the blower chamber 36 does not come into contact with a region where the vibration plate 39 is largely displaced (center portion of the vibration plate). Yes.
 したがって、この第2実施形態の圧電ブロア200によれば、前記第1実施形態の圧電ブロア100と同様の効果を奏する。 Therefore, according to the piezoelectric blower 200 of the second embodiment, the same effects as those of the piezoelectric blower 100 of the first embodiment can be obtained.
《本発明の第3実施形態》
 以下、本発明の第3実施形態に係る圧電ブロア300について説明する。
<< Third Embodiment of the Invention >>
Hereinafter, a piezoelectric blower 300 according to a third embodiment of the present invention will be described.
 図8は、本発明の第3実施形態に係る圧電ブロア300の断面図である。図9(A)(B)は、図8に示す圧電ブロア300を1次モードで動作させた場合における圧電ブロア300の断面図である。 FIG. 8 is a cross-sectional view of a piezoelectric blower 300 according to a third embodiment of the present invention. 9A and 9B are cross-sectional views of the piezoelectric blower 300 when the piezoelectric blower 300 shown in FIG. 8 is operated in the primary mode.
 この第3実施形態に係る圧電ブロア300が、第1実施形態に係る圧電ブロア100と相違する点は、突起338の形状である。突起338の先端は凸の曲面状であり、残りの胴体部分が円柱状である。その他の構成については同じである。 The piezoelectric blower 300 according to the third embodiment is different from the piezoelectric blower 100 according to the first embodiment in the shape of the protrusion 338. The tip of the protrusion 338 has a convex curved surface shape, and the remaining body portion has a cylindrical shape. Other configurations are the same.
 この実施形態の圧電ブロア300においても、1次モードの周波数(基本波)の交流駆動電圧が外部端子63,72から圧電素子40に印加されると、振動板39は、1次モードで同心円状に屈曲振動し、天板37は、振動板39の屈曲振動に伴って(この実施形態では振動位相が180°遅れて)1次モードで同心円状に屈曲振動する。 Also in the piezoelectric blower 300 of this embodiment, when an AC drive voltage having a primary mode frequency (fundamental wave) is applied from the external terminals 63 and 72 to the piezoelectric element 40, the diaphragm 39 is concentric in the primary mode. The top plate 37 bends and vibrates concentrically in the primary mode with the bending vibration of the vibration plate 39 (in this embodiment, the vibration phase is delayed by 180 °).
 これにより、この実施形態の圧電ブロア300においても、図9(A)(B)に示すように、振動板39及び天板37が屈曲変形してブロア室36の体積が周期的に変化する。 Thereby, also in the piezoelectric blower 300 of this embodiment, as shown in FIGS. 9A and 9B, the diaphragm 39 and the top plate 37 are bent and deformed, and the volume of the blower chamber 36 is periodically changed.
 この第3実施形態の圧電ブロア300においても、ブロア室36が図9(A)に示す最大拡張状態から図9(B)に示す最大収縮状態になる間、従来よりもブロア室36内における突起338と振動板39との間隔及びブロア室36内における突起338と天板37との間隔が狭くなる。 Also in the piezoelectric blower 300 according to the third embodiment, while the blower chamber 36 is changed from the maximum expanded state shown in FIG. 9A to the maximum contracted state shown in FIG. The distance between the 338 and the diaphragm 39 and the distance between the projection 338 and the top plate 37 in the blower chamber 36 are reduced.
 このとき、ブロア室36内における突起338と振動板39との間の空気及びブロア室36内における突起338と天板37との間の空気が、図9(B)の矢印に示すようにブロア室36の中心側へ移動して、ブロア室36の中心部分の圧力が高まる。このため、ブロア室36が最大拡張状態から最大収縮状態になるときに、ブロア室36内の空気が通気孔45からブロア室36の外部へ吐出される割合が従来よりも大きくなる。 At this time, the air between the projection 338 and the diaphragm 39 in the blower chamber 36 and the air between the projection 338 and the top plate 37 in the blower chamber 36 are blown as shown by arrows in FIG. Moving to the center side of the chamber 36, the pressure in the central portion of the blower chamber 36 increases. For this reason, when the blower chamber 36 changes from the maximum expanded state to the maximum contracted state, the rate at which the air in the blower chamber 36 is discharged from the vent hole 45 to the outside of the blower chamber 36 becomes larger than before.
 また、本実施形態の圧電ブロア300と図10に示す従来のマイクロブロア900とを比較すると、ブロア室の最大拡張時の体積Vとブロア室の最大収縮時の体積Vとの差(V-V)は同じである。 Further, when the piezoelectric blower 300 of the present embodiment is compared with the conventional micro blower 900 shown in FIG. 10, the difference between the volume V 1 when the blower chamber is fully expanded and the volume V 2 when the blower chamber is maximum contracted (V 1 -V 2 ) is the same.
 しかし、本実施形態の圧電ブロア300では突起338を設けているので、ブロア室の最大拡張時の体積Vが従来のマイクロブロア900よりも減少する。すなわち、本実施形態の圧電ブロア300においても、突起338を設けたことにより、ブロア室の体積変化率Hが高まる。これにより、ブロア室36の内部から通気孔45を介してブロア室36の外部へ吐出される、振動板39の変位量あたりの空気の流量が従来よりも増大する。 However, since the protrusion 338 is provided in the piezoelectric blower 300 of this embodiment, the volume V 1 when the blower chamber is fully expanded is smaller than that of the conventional micro blower 900. That is, also in the piezoelectric blower 300 of the present embodiment, the provision of the protrusion 338 increases the volume change rate H of the blower chamber. Thereby, the flow rate of air per displacement amount of the diaphragm 39 discharged from the inside of the blower chamber 36 to the outside of the blower chamber 36 through the vent hole 45 is increased as compared with the conventional case.
 また、突起338も、ブロア室36のうち、屈曲振動する振動板39のうち、振動板39の変位が大きい領域(振動板の中央部)に接触しない範囲で側板38の内側面に形成されている。 Further, the protrusion 338 is also formed on the inner surface of the side plate 38 in a range where the vibration of the vibration plate 39 in the blower chamber 36 does not contact the region where the displacement of the vibration plate 39 is large (the center portion of the vibration plate). Yes.
 したがって、この第3実施形態の圧電ブロア300によれば、前記第1実施形態の圧電ブロア100と同様の効果を奏する。 Therefore, according to the piezoelectric blower 300 of the third embodiment, the same effect as that of the piezoelectric blower 100 of the first embodiment can be obtained.
《その他の実施形態》
 前記実施形態では流体として空気を用いているが、これに限るものではない。当該流体が、空気以外の気体であっても適用できる。
<< Other Embodiments >>
In the embodiment, air is used as the fluid, but the present invention is not limited to this. It can be applied even if the fluid is a gas other than air.
 また、前記実施形態ではブロアの駆動源として圧電素子40を設けたが、これに限るものではない。例えば、電磁駆動でポンピングを行うブロアとして構成されていても構わない。 In the above embodiment, the piezoelectric element 40 is provided as a blower drive source, but the present invention is not limited to this. For example, it may be configured as a blower that performs pumping by electromagnetic driving.
 また、前記実施形態では、圧電素子40はチタン酸ジルコン酸鉛系セラミックスから構成されているが、これに限るものではない。例えば、ニオブ酸カリウムナトリウム系及びアルカリニオブ酸系セラミックス等の非鉛系圧電体セラミックスの圧電材料などから構成してもよい。 In the above embodiment, the piezoelectric element 40 is made of a lead zirconate titanate ceramic, but is not limited thereto. For example, you may comprise from the piezoelectric material of lead-free piezoelectric ceramics, such as potassium sodium niobate type | system | group and alkali niobic acid type | system | group ceramics.
 また、前記実施形態ではユニモルフ型の圧電振動子を使用しているが、これに限るものではない。振動板39の両面に圧電素子40を貼着したバイモルフ型の圧電振動子を使用してもよい。 In the above embodiment, a unimorph type piezoelectric vibrator is used, but the present invention is not limited to this. A bimorph type piezoelectric vibrator in which the piezoelectric elements 40 are attached to both surfaces of the vibration plate 39 may be used.
 また、前記実施形態では円板状の圧電素子40、円板状の振動板39及び円板状の天板37を用いたが、これに限るものではない。例えば、これらの形状が矩形や多角形であってもよい。同様に、突起の形状も、前記実施形態の形状に限るものではなく、直方体形状、球体形状、またはこれらの組み合わせにより形成されていてもよい。 In the above embodiment, the disk-shaped piezoelectric element 40, the disk-shaped diaphragm 39, and the disk-shaped top plate 37 are used, but the present invention is not limited to this. For example, these shapes may be rectangular or polygonal. Similarly, the shape of the protrusion is not limited to the shape of the above embodiment, and may be formed by a rectangular parallelepiped shape, a spherical shape, or a combination thereof.
 また、前記実施形態では側板38の内側面に複数個の突起138が形成されているが、これに限るものではない。例えば、側板38の内側面に突起138が1個形成されていても良く、例えば側板38の内周に接して環状の突起が設けられていてもよい。 In the above embodiment, the plurality of protrusions 138 are formed on the inner surface of the side plate 38, but the present invention is not limited to this. For example, one projection 138 may be formed on the inner surface of the side plate 38, and for example, an annular projection may be provided in contact with the inner periphery of the side plate 38.
 また、前記実施形態では、1次モード及び3次モードの周波数で圧電ブロアの振動板を屈曲振動させたが、これに限るものではない。実施の際は、複数の振動の腹を形成する、3次モード以上の奇数次の振動モードで振動板を屈曲振動させても良い。 In the above embodiment, the vibration plate of the piezoelectric blower is bent and vibrated at the frequency of the primary mode and the tertiary mode. However, the present invention is not limited to this. In implementation, the diaphragm may be bent and vibrated in an odd-order vibration mode that is a third-order mode or more that forms a plurality of vibration antinodes.
 また、前記実施形態では、天板37が、振動板39の屈曲振動に伴って同心円状に屈曲振動するが、これに限るものではない。実施の際は、振動板39のみが屈曲振動し、天板37が、振動板39の屈曲振動に伴って屈曲振動しなくても良い。 In the above embodiment, the top plate 37 bends and vibrates concentrically with the bending vibration of the diaphragm 39. However, the present invention is not limited to this. At the time of implementation, only the diaphragm 39 is flexibly vibrated, and the top plate 37 may not be flexibly vibrated with the flexural vibration of the diaphragm 39.
 最後に、前記実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Finally, the description of the embodiment should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above embodiments but by the claims. Furthermore, the scope of the present invention is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 2…内ケース
 3…外ケース
 3A…吐出口
 4…連結部
 5A…弾性金属板
 5B…圧電素子
 6…ブロア室
 7…流入通路
 8…開口部
 9…蓋部材
 9A…吸引口
 17…外筐体
 18…ノズル
 24…吐出口
 31…通気路
 36…ブロア室
 37…天板
 38…側板
 39…振動板
 40…圧電素子
 42…キャップ
 45…通気孔
 52…突出部
 53…吸引口
 55A~55D…切欠き
 56A~56D…ネジ穴
 61…中央部
 62…突出部
 63…外部端子
 70…電極導通用板
 72…外部端子
 73…内部端子
 100、200、300…圧電ブロア
 138、238、338…突起
 900…マイクロブロア
DESCRIPTION OF SYMBOLS 2 ... Inner case 3 ... Outer case 3A ... Discharge port 4 ... Connection part 5A ... Elastic metal plate 5B ... Piezoelectric element 6 ... Blower chamber 7 ... Inflow passage 8 ... Opening part 9 ... Lid member 9A ... Suction port 17 ... Outer housing 18 ... Nozzle 24 ... Discharge port 31 ... Ventilation path 36 ... Blower chamber 37 ... Top plate 38 ... Side plate 39 ... Vibrating plate 40 ... Piezoelectric element 42 ... Cap 45 ... Vent hole 52 ... Protruding part 53 ... Suction port 55A-55D ... Cut off Notches 56A to 56D ... Screw hole 61 ... Center part 62 ... Projection part 63 ... External terminal 70 ... Electrode conduction plate 72 ... External terminal 73 ... Internal terminal 100, 200, 300 ... Piezoelectric blower 138, 238, 338 ... Projection 900 ... Micro blower

Claims (5)

  1.  屈曲振動する振動板と、
     前記振動板の少なくとも一方の主面に設けられ、前記振動板を振動させる駆動体と、
     前記振動板とともにブロア室を構成する第1筐体と、を備え、
     前記第1筐体は、前記振動板に対向する天板部と、前記振動板と前記天板部とを接続する側壁部と、を有し、
     前記天板部には、前記ブロア室の内部と外部とを連通させる通気孔が形成されており、
     前記側壁部には、前記ブロア室の中央に向かって突出する突起が形成されている、ブロア。
    A vibration plate that vibrates and vibrates;
    A driver that is provided on at least one main surface of the diaphragm and vibrates the diaphragm;
    A first housing that forms a blower chamber together with the diaphragm,
    The first housing has a top plate portion facing the diaphragm, and a side wall portion connecting the diaphragm and the top plate portion,
    The top plate portion is formed with a vent hole that communicates the inside and outside of the blower chamber,
    The side wall is formed with a protrusion that protrudes toward the center of the blower chamber.
  2.  前記突起は、前記ブロア室のうち、屈曲振動する前記振動板に接触しない範囲に形成されている、請求項1に記載のブロア。 2. The blower according to claim 1, wherein the protrusion is formed in the blower chamber in a range where it does not contact the vibration plate that bends and vibrates.
  3.  前記振動板は、前記駆動体により、複数の振動の腹を形成する3次モード以上の奇数次の振動モードで屈曲振動し、
     前記突起は、前記振動板の屈曲振動により形成される振動の節のうち、前記ブロア室の側面に接する前記振動板の位置から最も距離が短い振動の節までの長さ以下に形成されている、請求項1または2に記載のブロア。
    The vibration plate is flexibly vibrated in an odd-order vibration mode of a third-order mode or more that forms a plurality of vibration antinodes by the driver,
    The protrusion is formed to have a length not more than a length from a position of the vibration plate in contact with a side surface of the blower chamber to a vibration node having the shortest distance among vibration nodes formed by bending vibration of the vibration plate. The blower according to claim 1 or 2.
  4.  前記天板部は、前記振動板の屈曲振動に伴って屈曲振動する、請求項1から3のいずれか1項に記載のブロア。 The blower according to any one of claims 1 to 3, wherein the top plate portion bends and vibrates with bending vibration of the diaphragm.
  5.  前記第1筐体を、間隔を設けて被覆して前記第1筐体との間に通気路を形成し、前記通気孔と対向する領域に吐出口が形成されている第2筐体と、を備える、請求項1から4のいずれか1項に記載のブロア。 A second casing in which the first casing is covered with a space to form a ventilation path between the first casing and a discharge port is formed in a region facing the vent; The blower according to claim 1, comprising:
PCT/JP2013/065320 2012-06-11 2013-06-03 Blower WO2013187270A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-131541 2012-06-11
JP2012131541 2012-06-11

Publications (1)

Publication Number Publication Date
WO2013187270A1 true WO2013187270A1 (en) 2013-12-19

Family

ID=49758096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065320 WO2013187270A1 (en) 2012-06-11 2013-06-03 Blower

Country Status (1)

Country Link
WO (1) WO2013187270A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002606A1 (en) * 2014-07-02 2016-01-07 株式会社村田製作所 Suction device
WO2020039399A1 (en) * 2018-08-24 2020-02-27 Bartels Mikrotechnik Gmbh Microblower
CN112196755A (en) * 2020-10-04 2021-01-08 长春工业大学 Three-piezoelectric-stack inertia pump with rhombic amplification structure
WO2022006988A1 (en) * 2020-07-08 2022-01-13 瑞声声学科技(深圳)有限公司 Sound production device and electronic apparatus having same
US11578715B2 (en) 2015-04-27 2023-02-14 Murata Manufacturing Co., Ltd. Pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727053A (en) * 1993-07-05 1995-01-27 Itec Kk Piezoelectric pump
JP2005113918A (en) * 2003-10-07 2005-04-28 Samsung Electronics Co Ltd Valve-less micro air supply device
JP2009250132A (en) * 2008-04-07 2009-10-29 Sony Corp Cooling device and electronic equipment
JP2011027079A (en) * 2009-07-29 2011-02-10 Murata Mfg Co Ltd Micro blower
WO2011040320A1 (en) * 2009-10-01 2011-04-07 株式会社村田製作所 Piezoelectric micro-blower

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727053A (en) * 1993-07-05 1995-01-27 Itec Kk Piezoelectric pump
JP2005113918A (en) * 2003-10-07 2005-04-28 Samsung Electronics Co Ltd Valve-less micro air supply device
JP2009250132A (en) * 2008-04-07 2009-10-29 Sony Corp Cooling device and electronic equipment
JP2011027079A (en) * 2009-07-29 2011-02-10 Murata Mfg Co Ltd Micro blower
WO2011040320A1 (en) * 2009-10-01 2011-04-07 株式会社村田製作所 Piezoelectric micro-blower

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002606A1 (en) * 2014-07-02 2016-01-07 株式会社村田製作所 Suction device
JPWO2016002606A1 (en) * 2014-07-02 2017-04-27 株式会社村田製作所 Inhaler
US10286124B2 (en) 2014-07-02 2019-05-14 Murata Manufacturing Co., Ltd. Inhalation device
US11578715B2 (en) 2015-04-27 2023-02-14 Murata Manufacturing Co., Ltd. Pump
DE112016001938B4 (en) 2015-04-27 2024-07-25 Murata Manufacturing Co., Ltd. pump
WO2020039399A1 (en) * 2018-08-24 2020-02-27 Bartels Mikrotechnik Gmbh Microblower
US11434893B2 (en) 2018-08-24 2022-09-06 Bartels Mikrotechnik Gmbh Microblower
WO2022006988A1 (en) * 2020-07-08 2022-01-13 瑞声声学科技(深圳)有限公司 Sound production device and electronic apparatus having same
CN112196755A (en) * 2020-10-04 2021-01-08 长春工业大学 Three-piezoelectric-stack inertia pump with rhombic amplification structure
CN112196755B (en) * 2020-10-04 2022-06-17 长春工业大学 Three-piezoelectric-stack inertia pump with rhombic amplification structure

Similar Documents

Publication Publication Date Title
JP5692465B2 (en) Blower
JP6528849B2 (en) Blower
JP5692468B2 (en) Blower
JP5177331B1 (en) Pump device
US10890171B2 (en) Fluid control device and pump
US10107281B2 (en) Piezoelectric blower
KR101333542B1 (en) Fluid pump
WO2018021514A1 (en) Valve and gas control device
JP6065160B2 (en) Blower
WO2013187270A1 (en) Blower
JPWO2015125608A1 (en) Blower
JP6575634B2 (en) Blower
JP2016211442A (en) Blower
JP6089584B2 (en) Blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13803637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP