WO2022176283A1 - 光造形物の製造方法 - Google Patents

光造形物の製造方法 Download PDF

Info

Publication number
WO2022176283A1
WO2022176283A1 PCT/JP2021/041097 JP2021041097W WO2022176283A1 WO 2022176283 A1 WO2022176283 A1 WO 2022176283A1 JP 2021041097 W JP2021041097 W JP 2021041097W WO 2022176283 A1 WO2022176283 A1 WO 2022176283A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
manufacturing
photocurable resin
light
optical system
Prior art date
Application number
PCT/JP2021/041097
Other languages
English (en)
French (fr)
Inventor
裕幸 日下
正浩 柏木
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2023500533A priority Critical patent/JPWO2022176283A1/ja
Priority to US18/273,606 priority patent/US20240100769A1/en
Publication of WO2022176283A1 publication Critical patent/WO2022176283A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/277Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
    • B29C64/282Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED] of the same type, e.g. using different energy levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Definitions

  • the present invention relates to a method for forming a stereolithographic object.
  • Stereolithography which is one aspect of stereolithography, includes a scanning type that scans laser light using a galvanometer scanner and a projection type that projects patterned light using a digital micromirror device (DMD).
  • the light incident on the DMD in the projection type may be light generated by a laser light source or light generated by a lamp such as a mercury lamp.
  • Figure 5 of Non-Patent Document 1 shows an optical system for projection-type stereolithography using laser light with a wavelength ⁇ of 405 nm.
  • the laser light is collimated and then irradiated to a DMD (Digital Micromirror Device).
  • the orientation of each mirror that constitutes the DMD is controlled so that the intensity distribution in the laser light irradiation area has a desired pattern. Therefore, by being reflected by the DMD, the intensity distribution in the irradiation area of the laser light is converted from a substantially uniform one to one corresponding to the desired pattern.
  • the minimum size of the photocurable resin that is cured by being exposed to light depends on the minimum size of the light with which the photocurable resin is irradiated. ing. Also, the minimum size of the light with which the photocurable resin is irradiated depends on the resolution ⁇ of the irradiation optical system that irradiates the sample platform with the light. There are several ways of thinking about the resolution ⁇ , such as Rayleigh's resolution, Abbe's resolution, and Hopkins' resolution.
  • One aspect of the present invention has been made in view of the above-described problems, and the object thereof is to manufacture a stereolithographic object including a pattern smaller than the resolution of an irradiation optical system.
  • a method for manufacturing a stereolithographic article provides n regions R 1 to R n (n is an integer of 2 or more) in a photocurable resin.
  • a part of each region R i (i is an integer that satisfies 1 ⁇ i ⁇ n) is a part of another region R j (j is 1 ⁇ j Integer satisfying ⁇ n and j ⁇ i), and part or all of the region R i irradiated with the light in the i-th step overlapped with another region R j Cure common areas.
  • a stereolithographic object including a pattern smaller than the resolution ⁇ of the irradiation optical system.
  • FIG. 1(a) and 1(b) are schematic diagrams of projection and scanning stereolithographic apparatus, respectively, in which a manufacturing method according to an embodiment of the present invention can be preferably carried out;
  • (a) and (b) are schematic diagrams of regions R1 and R2 in a first step and a second step, respectively, included in a manufacturing method according to an embodiment of the present invention.
  • (c) is a schematic diagram showing a common region where the photocurable resin is cured by performing the first step and the second step.
  • (a) to (c) are schematic diagrams of regions R 1 to R 3 in the first to third steps included in the first modification of the manufacturing method shown in FIG. 2, respectively.
  • FIG. 1(a) is a schematic diagram showing a common region where the photocurable resin is cured by performing the first to third steps.
  • (a) and (b) are schematic diagrams of regions R1 and R2 in a first step and a second step, respectively, included in the second modification of the manufacturing method shown in FIG.
  • (c) is a schematic diagram showing a common region where the photocurable resin is cured by performing the first step and the second step.
  • Fig. 2 is a schematic diagram of a variant of the stereolithographic apparatus shown in Fig. 1(a);
  • FIGS. 1a and 1b are schematic diagrams of stereolithography apparatuses 10 and 20, respectively.
  • a stereolithography apparatus 10 includes a digital micromirror device (DMD) 11, a lens 12, a container 13, a sample table 14, and a stage 15 (see FIG. 1(a)). Although not shown in FIG. 1(a), the stereolithography apparatus 10 includes a laser device that generates light L for exposing the photocurable resin R. As shown in FIG.
  • Light L emitted from the laser device is converted from divergent light into collimated light shown in FIG. 1(a) using a collimating optical system including a lens.
  • the central axis of the luminous flux of the light L is the optical axis AL.
  • the optical axis AL coincides with the optical path along which the principal ray of the light L passes.
  • the vertical upward direction orthogonal to the surface (that is, the horizontal plane) of the liquid photocurable resin R is defined as the z-axis positive direction
  • the propagation direction of the light L before entering the DMD 11 is x.
  • the positive direction of the axis is defined as the positive direction of the axis
  • the positive direction of the y-axis is defined as the direction forming a right-handed orthogonal coordinate system together with the positive direction of the x-axis and the positive direction of the z-axis.
  • the DMD 11 has a plurality of mirrors arranged in a matrix.
  • the orientation of each mirror is controlled by a computer and can be in either a first orientation or a second orientation.
  • light L is reflected toward the negative z-axis direction. This state is called an ON state.
  • the mirror faces the second direction, the light L is reflected in a direction different from the z-axis negative direction. This state is called an off state. Therefore, the intensity distribution in the irradiation area of the light L reflected by the DMD 11 in the negative direction of the z-axis can be patterned by selecting the mirrors to be turned on among the mirrors arranged in a matrix.
  • the light L whose intensity distribution has been patterned into a desired pattern by the DMD 11 is projected onto the main surface 141 of the sample table 14 located below the layer of the photocurable resin R using the lens 12 .
  • Lens 12 functions as an objective lens. Note that the sample stage 14 will be described later.
  • the laser device, the collimating optical system, the DMD 11 and the lens 12 constitute an irradiation optical system for irradiating the photocurable resin R with the light L in the stereolithography apparatus 10 .
  • the irradiation optical system is preferably adjusted so that the pattern of the light L projected onto the main surface 141, which will be described later, can be made as fine as possible.
  • the illumination optical system is preferably adjusted to maximize its resolution.
  • the resolution ⁇ of the irradiation optical system such as Rayleigh's resolution, Abbe's resolution, and Hopkins' resolution.
  • the Rayleigh resolution and Abbe resolution are 247 nm and 405 nm, respectively.
  • a container 13 , a sample stage 14 and a stage 15 are provided below the DMD 11 .
  • the stage 15 is a three-axis stage that can translate the table in each of the x-axis direction, y-axis direction, and z-axis direction.
  • the stage 15 has nm-order resolution in order to precisely control the positions of the container 13 and the sample stage 14, which will be described later.
  • An xyz stage having a nanometer-order resolution includes an xyz stage that uses piezo actuators to drive a table in each axial direction. Such an xyz stage has a resolution of about 5 nm, for example.
  • FIG. 1(a) shows only the table of the stage 15. As shown in FIG. Note that the stage 15 is controlled by a computer.
  • a z-axis stage, which will be described later, is fixed to the table of the stage 15 .
  • a container 13 is placed on the table of the stage 15 .
  • a sample table 14 and a photocurable resin R are accommodated inside the container 13 .
  • the sample stage 14 is connected to a z-axis stage that can translate along the z-axis direction outside the container 13 .
  • the z-axis stage is fixed to the table of stage 15 . Therefore, when the table of the stage 15 is moved, the container 13, the z-axis stage, and the sample stage 14 are moved synchronously (moved together). In other words, the relative position of the sample stage 14 with respect to the container 13, which is within the xy plane, is fixed.
  • the z-axis stage is controlled by a computer.
  • the photocurable resin R is cured from a liquid to a solid by being irradiated with a dose of light L exceeding the threshold.
  • the photocurable resin R can be selected from photocurable resins on the market for stereolithography according to the application.
  • the stereolithography apparatus 10 is of a free liquid level type in which the free liquid level of the photocurable resin R is irradiated with the light L from the vertically upward direction. Therefore, the position of the sample table 14 in the z-axis direction is adjusted by the z-axis stage so that the principal surface 141, which is the principal surface on the z-axis positive direction side of the pair of principal surfaces, is positioned slightly below the free liquid surface. controlled. As a result, a layer of photocurable resin R having a predetermined thickness (for example, 2 ⁇ m or more and 5 ⁇ m or less) is formed on main surface 141 .
  • a predetermined thickness for example, 2 ⁇ m or more and 5 ⁇ m or less
  • the container 13 , the sample table 14 , the stage 15 and the z-axis stage constitute a photocurable resin storage system that stores the photocurable resin R in the stereolithography apparatus 10 .
  • the light L patterned by the DMD 11 is projected onto the main surface 141 located below the layer of the photocurable resin R using the lens 12 . Therefore, the pattern formed by the ON-state mirrors in the DMD 11 is transferred to the layer of the photocurable resin R on the main surface 141 . As a result, a stereolithographic article having a desired pattern on the main surface 141 is formed.
  • the stereolithography apparatus 20 includes a galvanometer scanner 21, a lens 22, a container 13, a sample stage 14, and a stage 15 (see (b) of FIG. 1).
  • Stereolithography apparatus 20 is an example of a scanning stereolithography apparatus.
  • the container 13, sample stage 14, and stage 15 are the same as those provided in the stereolithography apparatus 10.
  • the stereolithography apparatus 20 includes a laser device that generates light L for exposing the photocurable resin R. This laser device is also the same as that provided in the stereolithography apparatus 10 .
  • the collimated light L emitted from the laser device enters the galvanometer scanner 21 .
  • the galvanometer scanner 21 has two mirrors and two motors that control the orientation of each mirror. Galvanometer scanner 21 is controlled by a computer.
  • the galvanometer scanner 21 can scan the light L with which the main surface 141 is irradiated by adjusting the directions of the two mirrors.
  • the laser device, the collimating optical system, and the galvanometer scanner 21 constitute an irradiation optical system that irradiates the light L onto the photocurable resin R.
  • the lens 22 like the lens 12, functions as an objective lens.
  • FIG. 2( c ) is a schematic diagram showing a common region Rc where the photocurable resin R is cured by performing the first step and the second step.
  • 2A to 2C are plan views of respective regions obtained when the main surface 141 of the sample stage 14 provided in the stereolithography apparatus 10 is viewed from above.
  • 2A to 2C are graphs showing dose amounts on the line segment AB shown in FIG. 2A.
  • a layer of photocurable resin R is formed on the main surface 141 .
  • When using a projection-type stereolithography apparatus>
  • the Rayleigh resolution and Abbe resolution are 247 nm and 405 nm, respectively.
  • the first step is a step of irradiating the region R1 of the photocurable resin R on the main surface 141 with the light L.
  • the second step is a step of irradiating the region R2 of the photocurable resin R on the main surface 141 with the light L.
  • the region R2 is a square with a side length L of 405 nm, similar to the region R1 .
  • the stereolithography apparatus 10 having one DMD 11 is used, so the first step and the second step are sequentially performed at different timings. Further, in the present embodiment, the dose amount of the light L in the first step and the second step are both the same dose amount Vd .
  • the common region Rc is a rectangle with a length along the x -axis direction of 202.5 nm corresponding to L/2 and a length along the y-axis direction of 405 nm.
  • the dose amount Vd of the light L in the first step and the second step can be set to a desired value according to the intensity of the light L and the exposure time.
  • the photocurable resin R is cured only in the common region Rc described later among the regions R1 and R2 , and the photocurable resin R in the other regions is not cured. Therefore, the dose amount V d is set so as to satisfy V th ⁇ 2V d and V d ⁇ V th , where V th is the threshold at which the photocurable resin R is cured, in other words, V th /2 ⁇ V d ⁇ V th is set to be satisfied.
  • this manufacturing method it is possible to manufacture a stereolithographic object including a pattern smaller than the resolution ⁇ (for example, 235 nm) of the irradiation optical system.
  • the first step and the second step are sequentially performed at different timings.
  • the positions of the regions R 1 and R 2 in the photocurable resin R are respectively part of an irradiation optical system that is an optical system for irradiating the light L onto the photocurable resin R (for example, A configuration may be employed as determined by the placement of the DMD 11 and/or the lens 12).
  • the positions of the regions R 1 and R 2 in the photocurable resin R are determined according to the positions of the sample stage 14 irradiated with the light L and the container 13 . good too. In this case, the sample stage 14 and the container 13 may be configured to move synchronously (moving as one).
  • the minimum size (L/2 in FIG . 2A) of the pattern included in the common region Rc is determined by the resolution ⁇ (eg, 235 nm) or less, the manufacturing method is more effective. In other words, this manufacturing method is more effective when the amount of translational movement from the region R1 to the region R2 in the photocurable resin R is equal to or less than the resolution ⁇ .
  • n is not limited to 2, and n may be an integer of 2 or more.
  • the manufacturing method according to one aspect of the present invention includes the first to n-th steps of irradiating each of the n regions R 1 to R n in the photocurable resin R with light.
  • each region R i (i is an integer that satisfies 1 ⁇ i ⁇ n) overlaps a part of another region R j (j is an integer that satisfies 1 ⁇ j ⁇ n and j ⁇ i) there is
  • the common region which is part or all of the region R i irradiated with the light L in the i-th step and overlaps with another region R j , is cured.
  • the area of a part of the region Ri may be larger than 20% and smaller than 100% of the total area of the region Ri .
  • the area of a portion of the region Rj may be larger than 20% and smaller than 100% of the total area of the region Rj .
  • FIGS. 3A to 3C are schematic diagrams of regions R 1 to R 3 in the first to third steps included in the manufacturing method of the first modification, respectively.
  • FIG. 3( d ) is a schematic diagram showing a common region Rc where the photocurable resin R is cured by performing the first to third steps.
  • the upper diagrams of FIGS. It is a top view.
  • 3A to 3D are graphs showing dose amounts on the line segment CD shown in FIG. 3D.
  • Region R i+1 is obtained by translating region R i by L/3 in each of the positive x-axis direction and the positive y-axis direction, respectively. Therefore, each region R i overlaps one another.
  • a region where at least two of the regions R 1 to R 3 overlap is called a first common region R c1
  • a region where all of the regions R 1 to R 3 overlap is called a second common region R c1 .
  • a common region Rc2 is called a common region Rc2 .
  • the first common region R c1 overlapped with another region R j (j is an integer satisfying 1 ⁇ j ⁇ n and j ⁇ i) among the regions R i irradiated with the light L in the i-th step The whole area.
  • the first common region R c1 has a shape in which two squares each having a side length of 270 nm overlap each other.
  • the second common region Rc2 is a part of the region Rj irradiated with the light L in the i -th step, which overlaps with another region Rj .
  • the width of the narrowest portion of the first common region Rc1 is 191 nm.
  • the second common region Rc2 is a square with a side length of 135 nm.
  • the dose amount of the light L in each of the i-th steps is the same dose amount Vd .
  • the threshold at which the photo-curing resin R is cured when curing the first common region R c1 is defined as the threshold V th1 .
  • the dose amount V d may be set so as to satisfy V th1 ⁇ 2V d and V d ⁇ V th1 , in other words, to satisfy V th1 /2 ⁇ V d ⁇ V th1 .
  • the threshold at which the photocurable resin R is cured when the second common region Rc2 is cured is defined as a threshold Vth2 .
  • the dose amount V d may be set so as to satisfy V th2 ⁇ 3 V d and 2 V d ⁇ V th2 , in other words, to satisfy V th2 /3 ⁇ V d ⁇ V th2 /2.
  • the first common region R c1 or the second common region R c2 can be selectively cured by controlling the dose amount Vd in each i-th step as described above. can.
  • FIGS. 4A and 4B are schematic diagrams of regions R1 and R2 in a first step and a second step, respectively, included in the manufacturing method of the second modification.
  • ( c ) of FIG. 4 is a schematic diagram showing a common region Rc where the photocurable resin R is cured by performing the first step and the second step.
  • 4A to 4C are plan views of respective regions obtained when the main surface 141 of the sample stage 14 provided in the stereolithography apparatus 20 is viewed from above.
  • 4A to 4C are graphs showing dose amounts on the line segment EF shown in FIG. 4A.
  • a layer of photocurable resin R is formed on the main surface 141 .
  • the manufacturing method is performed using a scanning stereolithography apparatus 20 instead of the projection type stereolithography apparatus 10 .
  • the Rayleigh resolution and Abbe resolution are 247 nm and 405 nm, respectively.
  • This modification includes a first step and a second step of irradiating each of the two regions R 1 and R 2 in the photocurable resin R with light.
  • the first step and the second step are sequentially performed at different timings.
  • each region R i (i is an integer that satisfies 1 ⁇ i ⁇ n) overlaps another region R j (j is an integer that satisfies 1 ⁇ j ⁇ n and j ⁇ i). .
  • the region R1 and the region R2 overlap.
  • the common region Rc which is the region where the region R1 and the region R2 overlap , is cured.
  • the configuration of this modification is the same as the manufacturing method shown in FIG.
  • the pattern of the regions R 1 and R 2 is transferred to the photocurable resin R by scanning the light L, which is a laser beam, using the galvanometer scanner 21 shown in FIG. 1(b).
  • each of the regions R 1 and R 2 is a region having a square outer edge and an annular shape (see FIGS. 4A and 4B).
  • the length of one side of the outer edge is 2.46 ⁇ m
  • region R2 is obtained by translating region R1 by W/2 in each of the positive x-axis direction and the positive y-axis direction.
  • the common region Rc which is the entire overlapping region of the region R1 and the region R2 , is obtained.
  • the common region Rc is a region having a square outer edge shape and an annular shape, similar to the regions R1 and R2 .
  • the length of one side of the outer edge of the common region R c is the same as the length of one side of the outer edges of the regions R 1 and R 2 , while the width of the annular portion is mostly 202.5 nm, corresponding to W/2. be.
  • FIG. 5 is a schematic diagram of a stereolithography apparatus 10A.
  • the stereolithography apparatus 10 has one DMD 11 as means for patterning the light L.
  • Each DMD 11Ai is an example of an i -th digital micromirror device Di.
  • the stereolithography apparatus 10A is equipped with three laser devices, the number of which is the same as n, in order to make separate light incident on each DMD 11Ai (i is an integer that satisfies 1 ⁇ i ⁇ 3) (see FIG. 5). not shown).
  • the optical axis ALi which is the central axis of each luminous flux, is illustrated as a representative of each light corresponding to each DMD 11Ai .
  • each DMD 11Ai reflects each light propagating along the optical axis ALi while patterning it into the shape of each region Ri .
  • the stereolithography apparatus 10A includes the same number of irradiation optical systems as n (three in this modification). Therefore, the stereolithography apparatus 10A can perform each i-th step at the same timing.
  • Each light whose intensity distribution has been patterned into a desired pattern by each DMD 11Ai is projected onto the main surface 141 of the sample stage 14 located below the layer of the photocurable resin R using the lens 12A.
  • the lens 12A functions as an objective lens, like the lens 12 shown in FIG. 1(a).
  • lenses 16i corresponding to the respective DMDs 11Ai are provided on the optical paths from the respective DMDs 11Ai to the photocurable resin R, respectively.
  • Each lens 16i is an example of lens Mi.
  • each lens 16i is provided between the lens 12A and the photocurable resin R in the optical path.
  • a microlens array 16 integrated in an arranged state is used as each lens 16i.
  • DMD 11A2 is arranged to face the same direction as DMD 11 of stereolithography apparatus 10 .
  • the DMD 11A2 irradiates a region R 2 (see FIG. 3B) of the layer of the photocurable resin R provided on the main surface 141 of the sample table 14 with light.
  • the orientation of the DMD 11A1 is adjusted so as to irradiate the region R 1 (see (a) of FIG. 3) of the photocurable resin R with light. Further, the direction of the DMD 11A3 is adjusted so as to irradiate the region R3 (see (c) of FIG. 3 ) of the photocurable resin R with light.
  • each region R i is formed by a corresponding DMD 11Ai (an example of the i-th digital micromirror device D i ).
  • each i-th step is preferably performed at the same timing.
  • the stereolithography apparatus 10A is obtained by modifying the stereolithography apparatus 10 shown in FIG. 1(a) as a base so as to have the same number of irradiation optical systems as n. Similarly, by using the stereolithography apparatus 20 shown in FIG. Each i-th step can be performed at the same timing even when the manufacturing method according to the aspect is performed. (summary)
  • a method for producing a stereolithographic article according to a first aspect of the present invention includes a first step of irradiating each of n regions R 1 to R n (n is an integer of 2 or more) in a photocurable resin.
  • Part of each region R i (i is an integer that satisfies 1 ⁇ i ⁇ n) is a part of another region R j (j is 1 ⁇ j ⁇ n and j ⁇ i
  • the common region which is part or all of the region Rj overlapped with another region Rj among the region Ri irradiated with the light in the i -th step, is cured.
  • the common region which is a part or the whole of the region Rj that overlaps with the other region Rj , is cured. can be manufactured.
  • each region Ri corresponds to each A configuration is employed, formed by the i-th digital micromirror device D i .
  • the timing of performing each i-th step can be freely determined.
  • the light from each digital micromirror device D i A configuration is employed in which a lens M i corresponding to each digital micromirror device D i is provided on the optical path leading to the curable resin.
  • each region R i when each region R i is imaged using a plurality of i-th digital micromirror devices D i , each region R i can be reliably imaged at a predetermined position.
  • the regions Ri are collectively exposed, it is possible to prevent the positions of the regions Ri from shifting due to temporal factors. Moreover, the time required for stereolithography can be shortened.
  • each region Ri includes one digital micro A configuration is adopted in which the mirror device is formed and each i-th step is performed at different timings.
  • each region Ri can be formed without using a plurality of digital micromirror devices. Therefore, this manufacturing method can be implemented using a simple irradiation optical system.
  • each region Ri in the photocurable resin A configuration is adopted in which the positions are respectively determined according to the arrangement of a part of an irradiation optical system, which is an optical system for irradiating the light to the photocurable resin.
  • the position of each region Ri can be controlled by controlling the position of a part of the irradiation optical system. Therefore, the present manufacturing method can be implemented using an existing projection-type stereolithography irradiation optical system.
  • each region R i is determined according to the positions of the sample stage irradiated with the light and the container containing the photocurable resin, and the sample stage and the container move synchronously. configuration is adopted.
  • the present manufacturing method can be implemented using an existing projection-type stereolithography irradiation optical system.
  • a configuration is employed in which the minimum size of the pattern included in the common area is less than the resolution of an irradiation optical system, which is an optical system for irradiating the photocurable resin with light.
  • the minimum size of the pattern included in the common area is the resolution of the irradiation optical system, which is an optical system for irradiating the photocurable resin with light. It is more effective when it is less than

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

照射光学系の分解能δよりも小さなパターンを含む光造形物を製造する。光造形物の製造方法は、光硬化型樹脂(R)におけるn個の領域R~R(図2ではR,R)の各々に光を照射する第1の工程~第nの工程を含み、各領域R(iは、1≦i≦nを満たす整数)の一部は、他の領域R(jは、1≦j≦n及びj≠iを満たす整数)の一部と重なっており、領域Rのうち他の領域Rと重なった領域の一部又は全部である共通領域(R)を硬化させる。

Description

光造形物の製造方法
 本発明は、光造形物の造形方法に関する。
 光造形法の一態様であるステレオリソグラフィには、ガルバノスキャナを用いてレーザ光を走査する走査型と、デジタルマイクロミラーデバイス(Digital Micromirror Device,DMD)を用いてパターニングされた光を投影する投影型とがある。投影型においてDMDに入射する光は、レーザ光源により生成された光であってもよいし、水銀ランプなどに代表されるランプにより生成された光であってもよい。例えば、非特許文献1のFigure 5には、波長λが405nmであるレーザ光を用いた投影型のステレオリソグラフィの光学系が示されている。
 非特許文献1の光学系において、レーザ光は、コリメートされたうえでDMD(Digital Micromirror Device)に照射される。DMDを構成する各ミラーの向きは、レーザ光の照射領域における強度分布が所望のパターンになるように制御されている。したがって、DMDにより反射されることによって、レーザ光の照射領域における強度分布は、ほぼ一様なものから所望のパターンに対応したものに変換される。所望のパターンに対応するように強度分布をパターニングされたレーザ光は、焦点距離fがf=45mmである対物レンズを用いて、光硬化型樹脂の層が表面に設けられたサンプルフラットフォームに投影される。その結果、サンプルフラットフォーム上の光硬化型樹脂の層に所望のパターンに対応するレーザ光が照射され、所望のパターンを有する光造形物が得られる。
Michael P. Lee et. al.,"Development of a 3D printer using scanning projection stereolithography", SCIENTIFIC REPORTS,5, 9875, 2015
 ところで、走査型及び投影型の何れのステレオリソグラフィを用いる場合であっても、感光することによって硬化する光硬化型樹脂の最小サイズは、光硬化型樹脂に照射される光の最小サイズに依存している。また、光硬化型樹脂に照射される光の最小サイズは、サンプルフラットフォームに光を照射する照射光学系の分解能δに依存している。分解能δには、レイリーの分解能、アッベの分解能、及びホプキンスの分解能というようにいくつかの考え方がある。波長λ及び開口数NAを用いて、レイリーの分解能は、δ=0.61λ/NAで表され、アッベの分解能は、δ=λ/NAで表され、ホプキンスの分解能は、δ=κλ/NAで表される。なお、ホプキンスの分解能に含まれるκは、照明状態によって決まる定数であり、最小でκ=0.58である。
 このように、ステレオリソグラフィを用いる場合、サイズが照射光学系の分解能δよりも小さなパターンを含む光造形物を製造することができない。
 本発明の一態様は、上述した課題に鑑みなされたものであり、その目的は、照射光学系の分解能よりも小さなパターンを含む光造形物を製造することである。
 上記の課題を解決するために、本発明の一態様に係る光造形物の製造方法は、光硬化型樹脂におけるn個の領域R~R(nは、2以上の整数)の各々に光を照射する第1の工程~第nの工程を含み、各領域R(iは、1≦i≦nを満たす整数)の一部は、他の領域R(jは、1≦j≦n及びj≠iを満たす整数)の一部と重なっており、第iの工程において前記光を照射された領域Rのうち他の領域Rと重なった領域の一部又は全部である共通領域を硬化させる。
 本発明の一態様に係る光造形物の製造方法によれば、照射光学系の分解能δよりも小さなパターンを含む光造形物を製造することができる。
(a)及び(b)は、それぞれ、本発明の一実施形態に係る製造方法を好適に実施することができる投影型及び走査型のステレオリソグラフィ装置の模式図である。 (a)及び(b)は、それぞれ、本発明の一実施形態に係る製造方法に含まれる第1の工程及び第2の工程における領域R及びRの模式図である。(c)は、第1の工程及び第2の工程を実施することにより光硬化型樹脂が硬化する共通領域を示す模式図である。 (a)~(c)は、それぞれ、図2に示した製造方法の第1の変形例に含まれる第1の工程~第3の工程における領域R~Rの模式図である。(d)は、第1の工程~第3の工程を実施することにより光硬化型樹脂が硬化する共通領域を示す模式図である。 (a)及び(b)は、それぞれ、図2に示した製造方法の第2の変形例に含まれる第1の工程及び第2の工程における領域R及びRの模式図である。(c)は、第1の工程及び第2の工程を実施することにより光硬化型樹脂が硬化する共通領域を示す模式図である。 図1の(a)に示したステレオリソグラフィ装置の変形例の模式図である。
 〔ステレオリソグラフィ装置〕
 本発明の一実施形態に係る光造形物の製造方法について説明する前に、本製造方法を好適に実施することができるステレオリソグラフィ装置10,20の構成について、図1を参照して説明する。図1の(a)及び(b)は、それぞれ、ステレオリソグラフィ装置10,20の模式図である。
 <投影型>
 ステレオリソグラフィ装置10は、デジタルマイクロミラーデバイス(Digital Micromirror Device,DMD)11と、レンズ12と、容器13と、試料台14と、ステージ15とを備えている(図1の(a)参照)。また、図1の(a)には図示していないものの、ステレオリソグラフィ装置10は、光硬化型樹脂Rを露光する光Lを生成するレーザ装置を備えている。ステレオリソグラフィ装置10は、非特許文献1のFigure 5に記載のステレオリソグラフィ装置と同様に、投影型のステレオリソグラフィ装置の一例である。
 (照射光学系)
 本実施形態において、レーザ装置は、波長λがλ=405nmである光Lを生成する半導体モジュールを備えている。レーザ装置から出射された光Lは、レンズを含むコリメート用の光学系を用いて発散光から図1の(a)に示すコリメート光に変換される。なお、図1の(a)では、光Lの光束の中心軸を光軸Aとしている。光軸Aは、光Lの主光線が通る光路と一致する。
 図1の(a)においては、液体である光硬化型樹脂Rの表面(すなわち水平面)に直交する鉛直上向き方向をz軸正方向と定め、DMD11に入射する前の光Lの伝搬方向をx軸正方向と定め、x軸正方向及びz軸正方向とともに右手系の直交座標系を構成する方向をy軸正方向と定めている。
 DMD11は、マトリクス状に配置された複数のミラーを備えている。各ミラーの向きは、コンピュータにより制御されており、第1の方向及び第2の方向の何れかをとり得る。ミラーが第1の方向を向いている場合、光Lは、z軸負方向に向かって反射される。この状態をオン状態と呼ぶ。また、ミラーが第2の方向を向いている場合、光Lは、z軸負方向とは異なる方向に向かって反射される。この状態をオフ状態と呼ぶ。したがって、マトリクス状に配置された各ミラーのうちオン状態にするミラーを選択することによって、DMD11によりz軸負方向に向かって反射される光Lの照射領域における強度分布をパターニングすることができる。
 DMD11により所望のパターンに強度分布をパターニングされた光Lは、レンズ12を用いて、光硬化型樹脂Rの層の下方に位置する試料台14の主面141に投影される。レンズ12は、対物レンズとして機能する。なお、試料台14については、後述する。
 レーザ装置、コリメート用の光学系、DMD11、及びレンズ12は、ステレオリソグラフィ装置10において、光硬化型樹脂Rに光Lを照射する照射光学系を構成する。なお、照射光学系は、後述する主面141に投影される光Lのパターンをできるだけ精細にできるように調整されていることが好ましい。換言すれば、照射光学系は、その分解能をできるだけ高められるように調整されていることが好ましい。
 なお、発明が解決しようとする課題の欄に上述したように、照射光学系の分解能δには、レイリーの分解能、アッベの分解能、及びホプキンスの分解能というようにいくつかの考え方がある。波長λ及び開口数NAとしてλ=405nm,NA=1を採用した場合、レイリーの分解能及びアッベの分解能は、それぞれ、247nm及び405nmとなる。また、ホプキンスの分解能は、κが最小であるκ=0.58である場合に235nmとなる。
 (光硬化型樹脂収容系)
 DMD11の下方には、容器13、試料台14、及びステージ15が設けられている。
 ステージ15は、x軸方向、y軸方向、及びz軸方向の各方向にテーブルを並進移動させることができる3軸ステージである。ステージ15は、後述する容器13及び試料台14の位置を精密に制御するために、nmオーダーの分解能を有する。nmオーダーの分解能を有するxyzステージとしては、各軸方向へのテーブルの駆動用にピエゾアクチュエータを用いるxyzステージが挙げられる。このようなxyzステージは、例えば、5nm程度の分解能を有する。なお、図1の(a)には、ステージ15のテーブルのみを示している。なお、ステージ15は、コンピュータにより制御されている。また、ステージ15のテーブルには、後述するz軸ステージが固定されている。
 ステージ15のテーブルの上には、容器13が載置されている。また、容器13の内部には、試料台14と、光硬化型樹脂Rとが収容されている。
 試料台14は、容器13の外部においてz軸方向に沿って並進移動することができるz軸ステージに接続されている。上述したように、z軸ステージは、ステージ15のテーブルに固定されている。したがって、ステージ15のテーブルを移動させた場合、容器13、z軸ステージ、及び試料台14は、同期して移動する(一体として移動する)。換言すれば、容器13に対する試料台14の相対位置であって、xy平面内における相対位置は、固定されている。なお、z軸ステージは、コンピュータにより制御されている。
 光硬化型樹脂Rは、閾値を超えるドーズ量の光Lを照射されることによって、液体から固体へ硬化する。光硬化型樹脂Rは、光造形用として市場に出回っている光硬化型樹脂のなかから用途に応じて選択することができる。
 ステレオリソグラフィ装置10は、光硬化型樹脂Rの自由液面に対して鉛直上向き方向から光Lを照射する自由液面方式である。したがって、試料台14は、一対の主面のうちz軸正方向側の主面である主面141が自由液面のわずかに下方に位置するように、z軸方向における位置をz軸ステージにより制御されている。その結果、主面141の上には、光硬化型樹脂Rの所定の厚み(例えば2μm以上5μm以下)を有する層が形成されている。
 容器13、試料台14、ステージ15、及びz軸ステージは、ステレオリソグラフィ装置10において、光硬化型樹脂Rを収容する光硬化型樹脂収容系を構成する。
 上述したように、DMD11によりパターニングされた光Lは、レンズ12を用いて、光硬化型樹脂Rの層の下方に位置する主面141に投影される。したがって、DMD11におけるオン状態のミラーにより構成されたパターンが、主面141上の光硬化型樹脂Rの層に転写される。その結果、主面141上に所望のパターンを有する光造形物が造形される。
 <走査型>
 ステレオリソグラフィ装置20は、ガルバノスキャナ21と、レンズ22と、容器13と、試料台14と、ステージ15とを備えている(図1の(b)参照)。ステレオリソグラフィ装置20は、走査型のステレオリソグラフィ装置の一例である。
 容器13、試料台14、及びステージ15は、ステレオリソグラフィ装置10が備えているものと同一である。
 また、図1の(b)には図示していないものの、ステレオリソグラフィ装置20は、光硬化型樹脂Rを露光する光Lを生成するレーザ装置を備えている。このレーザ装置もステレオリソグラフィ装置10が備えているものと同一である。
 ガルバノスキャナ21には、レーザ装置から出射され、コリメートされた光Lが入射する。ガルバノスキャナ21は、2枚のミラーと、各ミラーの向きをそれぞれ制御する2つのモータとを備えている。ガルバノスキャナ21は、コンピュータにより制御されている。ガルバノスキャナ21は、2枚のミラーの向きを調整することによって、主面141に照射する光Lを走査することができる。
 ステレオリソグラフィ装置20において、レーザ装置、コリメート用の光学系、及びガルバノスキャナ21は、光硬化型樹脂Rに光Lを照射する照射光学系を構成する。
 レンズ22は、レンズ12と同様に、対物レンズとして機能する。
 〔光造形物の製造方法〕
 本発明の一実施形態に係る光造形物の製造方法について、図2を参照して説明する。図2の(a)及び(b)は、それぞれ、本製造方法に含まれる第1の工程及び第2の工程における領域R及びRの模式図である。図2の(c)は、第1の工程及び第2の工程を実施することにより光硬化型樹脂Rが硬化する共通領域Rを示す模式図である。なお、図2の(a)~(c)の上段の図は、ステレオリソグラフィ装置10が備えている試料台14の主面141を平面視した場合に得られる各領域の平面図である。また、図2の(a)~(c)の下段の図は、図2の(a)に示した線分AB上におけるドーズ量を示すグラフである。なお、主面141の上には、光硬化型樹脂Rの層が形成されている。
 <投影型のステレオリソグラフィ装置を用いる場合>
 ここでは、投影型であるステレオリソグラフィ装置10を用いて本製造方法を実施するものとして説明する。光Lの波長λは、λ=405nmであり、レンズ12の開口数NAは、NA=1である。この場合、レイリーの分解能及びアッベの分解能は、それぞれ、247nm及び405nmとなる。また、ホプキンスの分解能は、κが最小であるκ=0.58である場合に235nmとなる。
 本製造方法は、図2の(a)に示す第1の工程と、図2の(b)に示す第2の工程とを含む。すなわち、本製造方法は、本発明の一態様に係る製造方法のうちn=2である場合の一例である。ただし、本発明の一態様に係る製造方法において、n=2に限定されず、nは、2以上の整数であればよい。
 第1の工程は、主面141の上の光硬化型樹脂Rにおける領域Rに対して、光Lを照射する工程である。本実施形態において、領域Rは、一辺の長さLがL=405nmである正方形である。例えば、図3を参照して後述する第1の変形例は、n=3を採用している。
 第2の工程は、主面141の上の光硬化型樹脂Rにおける領域Rに対して、光Lを照射する工程である。本実施形態において、領域Rは、領域Rと同様に一辺の長さLがL=405nmである正方形である。
 本製造方法においては、1つのDMD11を備えたステレオリソグラフィ装置10を用いるので、第1の工程及び第2の工程を異なるタイミングで順番に実施する。また、本実施形態においては、第1の工程及び第2の工程における光Lのドーズ量は、何れも等しくドーズ量Vである。
 領域Rは、領域Rをx軸正方向にL/2だけ並進移動することによって得られる。したがって、領域R及び領域Rは、互いに重なっている。本製造方法においては、n=2であるので、領域R及び領域Rの重なった領域の全部が共通領域Rとなる。共通領域Rは、x軸方向に沿った長さがL/2に対応する202.5nmであり、y軸方向に沿った長さが405nmである長方形である。
 第1の工程及び第2の工程における光Lのドーズ量Vは、光Lの強度と、露光時間とに応じて所望の値に設定することができる。本製造方法においては、領域R,Rのうち後述する共通領域Rのみの光硬化型樹脂Rを硬化させ、それ以外の領域の光硬化型樹脂Rを硬化させない。したがって、ドーズ量Vは、光硬化型樹脂Rが硬化する閾値を閾値Vthとして、Vth<2V及びV<Vthを満たすように、換言すれば、Vth/2<V<Vthを満たすように設定されている。本製造方法においては、V=2Vth/3になるように第1の工程における光Lのドーズ量Vを定めている(図2の(c)参照)。
 共通領域Rにおけるドーズ量2Vは、2V=4Vth/3になる。一方、領域R,Rのうち共通領域Rと重なっていない領域におけるドーズ量Vは、V=2Vth/3である。したがって、共通領域Rの光硬化型樹脂Rのみが硬化する。
 このように、本製造方法によれば、照射光学系の分解能δ(例えば235nm)よりも小さなパターンを含む光造形物を製造することができる。
 図1の(a)に示したステレオリソグラフィ装置10を用いて本製造方法を実施する場合、各領域R,Rは、1つのDMD11により形成される。そのため、第1の工程及び第2の工程は、異なるタイミングで順番に実施される。また、光硬化型樹脂Rにおける各領域R,Rの位置(図2参照)は、それぞれ、光硬化型樹脂Rに光Lを照射する光学系である照射光学系の一部(例えば、DMD11及びレンズ12の少なくとも何れか一方)の配置に応じて定められるように構成が採用されていてもよい。また、光硬化型樹脂Rにおける各領域R,Rの位置は、それぞれ、光Lが照射される試料台14と、容器13との位置に応じて定められるように構成が採用されていてもよい。この場合、試料台14及び容器13は、同期して移動する(一体として移動する)ように構成されていればよい。また、共通領域Rに含まれるパターンの最小サイズ(図2の(a)においては、L/2)は、光硬化型樹脂Rに光Lを照射する光学系である照射光学系の分解能δ(例えば235nm)以下である場合、本製造方法は、より効果的である。換言すれば、光硬化型樹脂Rにおいて、領域Rから領域Rに至る並進移動の移動量が分解能δ以下である場合、本製造方法は、より効果的である。
 なお、本発明の一態様に係る製造方法において、n=2の場合に限定されず、nとして2以上の整数を採用することもできる。この場合、本発明の一態様に係る製造方法は、光硬化型樹脂Rにおけるn個の領域R~Rの各々に光を照射する第1の工程~第nの工程を含んでいる。各領域R(iは、1≦i≦nを満たす整数)の一部は、他の領域R(jは、1≦j≦n及びj≠iを満たす整数)の一部と重なっている。そのうえで、本発明の一態様に係る製造方法は、第iの工程において光Lを照射された領域Rのうち他の領域Rと重なった領域の一部又は全部である共通領域を硬化させる。なお、領域Rの一部の面積は、領域Rの全部の面積に対して、20%より大きく、100%より小さくてもよい。また、領域Rの一部の面積は、領域Rの全部の面積に対して、20%より大きく、100%より小さくてもよい。
 <第1の変形例>
 図2に示した製造方法の第1の変形例について、図3を参照して説明する。図3の(a)~(c)は、それぞれ、第1の変形例の製造方法に含まれる第1の工程~第3の工程における領域R~Rの模式図である。図3の(d)は、第1の工程~第3の工程を実施することにより光硬化型樹脂Rが硬化する共通領域Rを示す模式図である。図2の場合と同様に、図3の(a)~(d)の上段の図は、ステレオリソグラフィ装置20が備えている試料台14の主面141を平面視した場合に得られる各領域の平面図である。また、図3の(a)~(d)の下段の図は、図3の(d)に示した線分CD上におけるドーズ量を示すグラフである。
 本変形例は、本発明の一態様に係る製造方法のうちn=3である場合の一例である。したがって、図3の(a)、(b)、及び(c)に示すように、第1の工程、第2の工程、及び第3の工程を含む。
 第iの工程(iは、1≦i≦3を満たす整数)は、各領域Rに光Lを照射する。図2の示した製造方法の場合と同様に、各領域Rは、一辺の長さLがL=405nmである正方形である。
 領域Ri+1は、領域Rをx軸正方向及びy軸正方向の各々に、それぞれ、L/3だけ並進移動することによって得られる。したがって、各領域Rは、互いに重なっている。以下では、領域R~領域Rのうち少なくとも2つの領域が重なった領域を第1の共通領域Rc1と呼び、領域R~領域Rのうち全ての領域が重なった領域を第2の共通領域Rc2と呼ぶ。
 第1の共通領域Rc1は、第iの工程において光Lを照射された領域Rのうち他の領域R(jは、1≦j≦n及びj≠iを満たす整数)と重なった領域の全部である。第1の共通領域Rc1は、一辺の長さが270nmである2つの正方形が重なった形状である。
 第2の共通領域Rc2は、第iの工程において光Lを照射された領域Rのうち他の領域Rと重なった領域の一部である。第1の共通領域Rc1において、最も狭い部分の幅は、191nmである。また、第2の共通領域Rc2は、一辺の長さが135nmである正方形である。
 本変形例において、第iの工程の各々における光Lのドーズ量は、何れも等しくドーズ量Vである。
 第1の共通領域Rc1を硬化させる場合における光硬化型樹脂Rが硬化する閾値を閾値Vth1とする。この場合、Vth1<2V及びV<Vth1を満たすように、換言すれば、Vth1/2<V<Vth1を満たすように、ドーズ量Vを設定すればよい。
 また、第2の共通領域Rc2を硬化させる場合における光硬化型樹脂Rが硬化する閾値を閾値Vth2とする。この場合、Vth2<3V及び2V<Vth2を満たすように、換言すれば、Vth2/3<V<Vth2/2を満たすように、ドーズ量Vを設定すればよい。
 本変形例によれば、各第iの工程におけるドーズ量Vを上述したように制御することによって、第1の共通領域Rc1又は第2の共通領域Rc2を選択的に硬化させることができる。このように、本変形例によれば、照射光学系の分解能δ(例えば235nm)よりも小さなパターンを含む光造形物を製造することができる。
 <第2の変形例:走査型のステレオリソグラフィ装置を用いる場合>
 図2に示した製造方法の第2の変形例について、図4を参照して説明する。図4(a)及び(b)は、それぞれ、第2の変形例の製造方法に含まれる第1の工程及び第2の工程における領域R及びRの模式図である。図4の(c)は、第1の工程及び第2の工程を実施することにより光硬化型樹脂Rが硬化する共通領域Rを示す模式図である。なお、図4の(a)~(c)の上段の図は、ステレオリソグラフィ装置20が備えている試料台14の主面141を平面視した場合に得られる各領域の平面図である。また、図の(a)~(c)の下段の図は、図4の(a)に示した線分EF上におけるドーズ量を示すグラフである。なお、主面141の上には、光硬化型樹脂Rの層が形成されている。
 本変形例では、投影型であるステレオリソグラフィ装置10の代わりに、走査型であるステレオリソグラフィ装置20を用いて本製造方法を実施するものとして説明する。光Lの波長λは、λ=405nmであり、レンズ12の開口数NAは、NA=1である。この場合、レイリーの分解能及びアッベの分解能は、それぞれ、247nm及び405nmとなる。また、ホプキンスの分解能は、κが最小であるκ=0.58である場合に235nmとなる。
 本変形例は、光硬化型樹脂Rにおける2個の領域R,Rの各々に光を照射する第1の工程及び第2の工程を含む。本変形例では、走査型であるステレオリソグラフィ装置20を用いるので、第1の工程及び第2の工程を異なるタイミングで順番に実施する。
 本変形例において、各領域R(iは、1≦i≦nを満たす整数)は、他の領域R(jは、1≦j≦n及びj≠iを満たす整数)と重なっている。具体的には、領域Rと領域Rとは、重なっている。そのうえで、本変形例は、領域Rと領域Rとが重なった領域である共通領域Rを硬化させる。これらの構成について、本変形例は、図2に示した製造方法と同様である。
 本変形例と、図2に示した製造方法との違いは、光硬化型樹脂Rに光Lを照射する場合の方式である。本変形例では、図1の(b)に示したガルバノスキャナ21を用いてレーザ光である光Lを走査することによって、領域R,Rのパターンを光硬化型樹脂Rに転写する。
 本変形例において、領域R,Rの各々は、何れも、外縁の形状が正方形であり、且つ、環状である領域である(図4の(a)及び(b)参照)。なお、領域R,Rの各々において、外縁の一辺の長さは、2.46μmであり、環状部分の幅Wは、W=405nmである。また、領域Rは、領域Rをx軸正方向及びy軸正方向の各々に、それぞれ、W/2だけ並進移動することによって得られる。
 第1の工程及び第2の工程を実施することによって、領域Rと領域Rとが重なった領域の全部である共通領域Rが得られる。共通領域Rは、領域R,Rと同様に、外縁の形状が正方形であり、且つ、環状である領域である。共通領域Rの外縁の一辺の長さは、領域R,Rの外縁の一辺の長さと同じである一方、環状部分の幅は、大部分においてW/2に対応する202.5nmである。
 このように、本変形例によれば、走査型であるステレオリソグラフィ装置20を用いても、照射光学系の分解能δ(例えば235nm)よりも小さなパターンを含む光造形物を製造することができる。
 〔ステレオリソグラフィ装置の変形例〕
 図1の(a)に示したステレオリソグラフィ装置10の変形例であるステレオリソグラフィ装置10Aについて、図5を参照して説明する。図5は、ステレオリソグラフィ装置10Aの模式図である。
 ステレオリソグラフィ装置10は、光Lをパターニングする手段として1つのDMD11を備えている。したがって、図2に示した製造方法においては、第1の工程及び第2の工程の各々において、領域R及び領域Rの各々に光Lを照射するようにDMD11を順番に制御する。そのため、図2に示した製造方法(n=2の場合)は、第1の工程及び第2の工程を異なるタイミングで順番に実施する構成を採用している。図3に示した製造方法(n=3の場合)においても、この点は、同じである。
 一方、ステレオリソグラフィ装置10Aは、n=3を採用しており、光Lをパターニングする手段としてnと同数である3つのDMD11A1,11A2,11A3を備えている(図5参照)。各DMD11Aiは、第iのデジタルマイクロミラーデバイスDの一例である。また、ステレオリソグラフィ装置10Aは、各DMD11Ai(iは、1≦i≦3を満たす整数)に別個の光を入射させるために、nと同数である3つのレーザ装置を備えている(図5には不図示)。なお、図5においては、各DMD11Aiに対応する各光を代表して、各光束の中心軸である光軸ALiを図示している。
 したがって、各DMD11Aiは、光軸ALiに沿って伝搬する各光を、各領域Rの形状にパターニングしつつ反射する。このように、ステレオリソグラフィ装置10Aは、照射光学系をnと同じ数(本変形例では3)だけ備えている。したがって、ステレオリソグラフィ装置10Aは、各第iの工程を同じタイミングで実施することができる。
 各DMD11Aiにより所望のパターンに強度分布をパターニングされた各光は、レンズ12Aを用いて光硬化型樹脂Rの層の下方に位置する試料台14の主面141に投影される。レンズ12Aは、図1の(a)に示したレンズ12と同様に、対物レンズとして機能する。
 また、ステレオリソグラフィ装置10Aは、各DMD11Aiから光硬化型樹脂Rに至る各光路上には、各DMD11Aiに対応するレンズ16iがそれぞれ設けられている。各レンズ16iは、レンズMの一例である。なお、本変形例においては、上記光路のうちレンズ12Aと光硬化型樹脂Rとの間に各レンズ16iを設けている。なお、各レンズ16iとしては、配列された状態で一体化されたマイクロレンズアレイ16を用いている。
 各DMD11Aiのうち、DMD11A2は、ステレオリソグラフィ装置10のDMD11と同じ向きを向くように配置されている。DMD11A2は、試料台14の主面141上に設けられた光硬化型樹脂Rの層のうち、領域R(図3の(b)参照)に光を照射する。
 DMD11A1は、光硬化型樹脂Rのうち領域R(図3の(a)参照)に光を照射するように、向きを調整されている。また、DMD11A3は、光硬化型樹脂Rのうち領域R(図3の(c)参照)に光を照射するように、向きを調整されている。
 このように構成されたステレオリソグラフィ装置10Aを用いることによって、各領域Rは、それぞれに対応するDMD11Ai(第iのデジタルマイクロミラーデバイスDの一例)により形成される。この場合、各第iの工程は、同じタイミングで実施されることが好ましい。
 なお、ステレオリソグラフィ装置10Aは、図1の(a)に示したステレオリソグラフィ装置10をベースにし、nと同じ数の照射光学系を有するように変更することによってえられる。同様に、図1の(b)に示したステレオリソグラフィ装置20をベースにし、nと同じ数の照射光学系を有するように変更することによって、走査型のステレオリソグラフィ装置を用いて本発明の一態様に係る製造方法を実施する場合であっても、各第iの工程を同じタイミングで実施することができる。
 (まとめ)
 本発明の第1の態様に係る光造形物の製造方法は、光硬化型樹脂におけるn個の領域R~R(nは、2以上の整数)の各々に光を照射する第1の工程~第nの工程を含み、各領域R(iは、1≦i≦nを満たす整数)の一部は、他の領域R(jは、1≦j≦n及びj≠iを満たす整数)の一部と重なっており、第iの工程において前記光を照射された領域Rのうち他の領域Rと重なった領域の一部又は全部である共通領域を硬化させる。
 上記の構成によれば、領域Rのうち他の領域Rと重なった領域の一部又は全部である共通領域を硬化させるので、照射光学系の分解能よりも小さなパターンを含む光造形物を製造することができる。
 また、本発明の第2の態様に係る光造形物の製造方法においては、上述した第1の態様に係る光造形物の製造方法の構成に加えて、各領域Rは、それぞれに対応する第iのデジタルマイクロミラーデバイスDにより形成される、構成が採用されている。
 上記の構成によれば、各第iの工程を実施するタイミングを自由に決めることができる。
 また、本発明の第3の態様に係る光造形物の製造方法においては、上述した第2の態様に係る光造形物の製造方法の構成に加えて、各デジタルマイクロミラーデバイスDから前記光硬化型樹脂に至る光路上には、各デジタルマイクロミラーデバイスDに対応するレンズMが設けられている、構成が採用されている。
 上記の構成によれば、複数の第iのデジタルマイクロミラーデバイスDを用いて各領域Rを結像させる場合に各領域Rを所定の位置に確実に結像させることができる。
 また、本発明の第4の態様に係る光造形物の製造方法においては、上述した第2の態様又は第3の態様の何れか一態様に係る光造形物の製造方法の構成に加えて、各第iの工程は、同じタイミングで実施される、構成が採用されている。
 上記の構成によれば、各領域Rを一括して露光するので、各領域Rの位置が経時的な要因によりずれることを防ぐことができる。また、光造形に要する時間を短縮することができる。
 また、本発明の第5の態様に係る光造形物の製造方法においては、上述した第1の態様に係る光造形物の製造方法の構成に加えて、各領域Rは、1つのデジタルマイクロミラーデバイスにより形成され、且つ、各第iの工程は、異なるタイミングで実施される、構成が採用されている。
 上記の構成によれば、複数のデジタルマイクロミラーデバイスを用いることなく各領域Rを形成することができる。したがって、簡易な照射光学系を用いて本製造方法を実施することができる。
 また、本発明の第6の態様に係る光造形物の製造方法においては、上述した第5の態様に係る光造形物の製造方法の構成に加えて、光硬化型樹脂における各領域Rの位置は、それぞれ、前記光硬化型樹脂に前記光を照射する光学系である照射光学系の一部の配置に応じて定められる、構成が採用されている。
 上記の構成によれば、照射光学系の一部の位置を制御することにより各領域Rの位置を制御することができる。したがって、既存の投影型のステレオリソグラフィの照射光学系を用いて本製造方法を実施することができる。
 また、本発明の第7の態様に係る光造形物の製造方法においては、上述した第5の態様又は第6の態様に係る光造形物の製造方法の構成に加えて、光硬化型樹脂における各領域Rの位置は、それぞれ、前記光が照射される試料台と、前記光硬化型樹脂を収容する容器との位置に応じて定められ、前記試料台及び前記容器は、同期して移動する、構成が採用されている。
 上記の構成によれば、同期して移動する(一体として移動する)試料台及び容器の位置を制御することにより各領域Rの位置を制御することができる。したがって、既存の投影型のステレオリソグラフィの照射光学系を用いて本製造方法を実施することができる。
 また、本発明の第8の態様に係る光造形物の製造方法においては、上述した第1の態様~第7の態様の何れか一態様に係る光造形物の製造方法の構成に加えて、前記共通領域に含まれるパターンの最小サイズは、前記光硬化型樹脂に光を照射する光学系である照射光学系の分解能未満である、構成が採用されている。
 このように、本発明の一態様に係る光造形物の製造方法は、前記共通領域に含まれるパターンの最小サイズは、前記光硬化型樹脂に光を照射する光学系である照射光学系の分解能未満である場合に、より効果的である。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 10,10A,20 ステレオリソグラフィ装置
 11,11A1~11A3 デジタルマイクロミラーデバイス(DMD)
 12,12A,22 レンズ
 13 容器
 14 試料台
141 主面
 15 ステージ
 16 マイクロレンズアレイ
161~163 レンズ
 R 光硬化型樹脂
 21 ガルバノスキャナ
 R~R,R 領域
 R 共通領域
 Rc1,Rc2 第1の共通領域,第2の共通領域(共通領域の一例)

Claims (8)

  1.  光硬化型樹脂におけるn個の領域R~R(nは、2以上の整数)の各々に光を照射する第1の工程~第nの工程を含み、
     各領域R(iは、1≦i≦nを満たす整数)の一部は、他の領域R(jは、1≦j≦n及びj≠iを満たす整数)の一部と重なっており、
     第iの工程において前記光を照射された領域Rのうち他の領域Rと重なった領域の一部又は全部である共通領域を硬化させる、
    ことを特徴とする光造形物の製造方法。
  2.  各領域Rは、それぞれに対応する第iのデジタルマイクロミラーデバイスDにより形成される、
    ことを特徴とする請求項1に記載の光造形物の製造方法。
  3.  各デジタルマイクロミラーデバイスDから前記光硬化型樹脂に至る光路上には、各デジタルマイクロミラーデバイスDに対応するレンズMが設けられている、
    ことを特徴とする請求項2に記載の光造形物の製造方法。
  4.  各第iの工程は、同じタイミングで実施される、
    ことを特徴とする請求項2又は3に記載の光造形物の製造方法。
  5.  各領域Rは、1つのデジタルマイクロミラーデバイスにより形成され、且つ、各第iの工程は、異なるタイミングで実施される、
    ことを特徴とする請求項1に記載の光造形物の製造方法。
  6.  光硬化型樹脂における各領域Rの位置は、それぞれ、前記光硬化型樹脂に前記光を照射する光学系である照射光学系の一部の配置に応じて定められる、
    ことを特徴とする請求項5に記載の光造形物の製造方法。
  7.  光硬化型樹脂における各領域Rの位置は、それぞれ、前記光が照射される試料台と、前記光硬化型樹脂を収容する容器との位置に応じて定められ、
     前記試料台及び前記容器は、同期して移動する、
    ことを特徴とする請求項5又は6に記載の光造形物の製造方法。
  8.  前記共通領域に含まれるパターンの最小サイズは、前記光硬化型樹脂に光を照射する光学系である照射光学系の分解能未満である、
    ことを特徴とする請求項1~7の何れか1項に記載の光造形物の製造方法。
PCT/JP2021/041097 2021-02-18 2021-11-09 光造形物の製造方法 WO2022176283A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023500533A JPWO2022176283A1 (ja) 2021-02-18 2021-11-09
US18/273,606 US20240100769A1 (en) 2021-02-18 2021-11-09 Method for manufacturing stereolithographically fabricated object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-024500 2021-02-18
JP2021024500 2021-02-18

Publications (1)

Publication Number Publication Date
WO2022176283A1 true WO2022176283A1 (ja) 2022-08-25

Family

ID=82931327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041097 WO2022176283A1 (ja) 2021-02-18 2021-11-09 光造形物の製造方法

Country Status (3)

Country Link
US (1) US20240100769A1 (ja)
JP (1) JPWO2022176283A1 (ja)
WO (1) WO2022176283A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002210834A (ja) * 2001-01-23 2002-07-31 Teijin Seiki Co Ltd 立体造形装置および立体造形方法
JP2016513818A (ja) * 2013-03-14 2016-05-16 ストラタシス リミテッド 高解像度dlpプロジェクタ装置、及びその利用方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002210834A (ja) * 2001-01-23 2002-07-31 Teijin Seiki Co Ltd 立体造形装置および立体造形方法
JP2016513818A (ja) * 2013-03-14 2016-05-16 ストラタシス リミテッド 高解像度dlpプロジェクタ装置、及びその利用方法

Also Published As

Publication number Publication date
US20240100769A1 (en) 2024-03-28
JPWO2022176283A1 (ja) 2022-08-25

Similar Documents

Publication Publication Date Title
KR102386069B1 (ko) 공간적으로 비균일한 조명을 사용하는 임프린트 시스템 및 임프린팅 프로세스
WO2016015389A1 (zh) 一种飞秒激光双光子聚合微纳加工系统及方法
KR102605356B1 (ko) 조명 광학계, 노광 방법 및 디바이스 제조 방법
TWI448830B (zh) 微影裝置及元件製造方法
KR102438345B1 (ko) 결상 광학계, 노광 장치 및 디바이스 제조 방법
US7083405B2 (en) Photo-fabrication apparatus
JP2007027722A (ja) リソグラフィ装置、デバイス製造方法、および、この方法により製造されて焦点深さの増したデバイス
CN1790169A (zh) 光刻设备和器件制造方法
US9791784B2 (en) Assembly for a projection exposure apparatus for EUV projection lithography
EP2583141A2 (en) Illumination optical system for microlithography and projection exposure system with an illumination optical system of this type
TWI765527B (zh) 用於無光罩微影之方法及系統
WO2022176283A1 (ja) 光造形物の製造方法
Erdmann et al. MEMS-based lithography for the fabrication of micro-optical components
CN111656245B (zh) 投射光刻的照明光学单元
Pan et al. Dynamic resolution control in a laser projection-based stereolithography system
TWI374340B (en) Optical apparatus and associated method
KR20180005169A (ko) Euv 투영 리소그래피용 패싯 미러 및 이러한 패싯 미러를 포함하는 조명 광학 유닛
US10018917B2 (en) Illumination optical unit for EUV projection lithography
Erdmann et al. MOEMS-based lithography for the fabrication of micro-optical components
KR101501967B1 (ko) 리소그래피 장치 및 디바이스 제조 방법
JP2004319581A (ja) パターン描画装置及びパターン描画方法
JP2006179933A (ja) リソグラフィ装置及びデバイス製造方法
JP2009137230A (ja) 光造形装置
WO2022176313A1 (ja) 光造形装置及び製造方法
JP2010118383A (ja) 照明装置、露光装置、及びデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500533

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18273606

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926711

Country of ref document: EP

Kind code of ref document: A1