WO2022176237A1 - Flake graphite cast-iron product and method for manufacturing same - Google Patents
Flake graphite cast-iron product and method for manufacturing same Download PDFInfo
- Publication number
- WO2022176237A1 WO2022176237A1 PCT/JP2021/030544 JP2021030544W WO2022176237A1 WO 2022176237 A1 WO2022176237 A1 WO 2022176237A1 JP 2021030544 W JP2021030544 W JP 2021030544W WO 2022176237 A1 WO2022176237 A1 WO 2022176237A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cast iron
- mold
- mass
- flake graphite
- graphite cast
- Prior art date
Links
- 229910001018 Cast iron Inorganic materials 0.000 title claims abstract description 72
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 67
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 47
- 239000010439 graphite Substances 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 35
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 28
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000010703 silicon Substances 0.000 claims abstract description 9
- 239000002054 inoculum Substances 0.000 claims description 31
- 229910052751 metal Inorganic materials 0.000 claims description 28
- 239000002184 metal Substances 0.000 claims description 28
- 239000011135 tin Substances 0.000 claims description 17
- 239000011572 manganese Substances 0.000 claims description 15
- 238000001816 cooling Methods 0.000 claims description 11
- 229910017082 Fe-Si Inorganic materials 0.000 claims description 9
- 229910017133 Fe—Si Inorganic materials 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- 238000005266 casting Methods 0.000 description 38
- 238000011081 inoculation Methods 0.000 description 25
- 239000000463 material Substances 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 239000004576 sand Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 229910001141 Ductile iron Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D1/00—Treatment of fused masses in the ladle or the supply runners before casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/20—Measures not previously mentioned for influencing the grain structure or texture; Selection of compositions therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/04—Cast-iron alloys containing spheroidal graphite
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/10—Cast-iron alloys containing aluminium or silicon
Definitions
- cast iron may refer to castings or may refer to materials for castings.
- cast iron products may be used for castings.
- Flake graphite cast iron products are formed by cooling molten metal (molten cast iron) in a mold and solidifying it. At this time, shrinkage cavities (spaces) may be formed in the casting due to solidification shrinkage.
- Methods for reducing shrinkage cavities include, for example, increasing the amount of graphite that crystallizes when cast iron is cooled, and placing a chill in places where shrinkage cavities are likely to occur in the mold (e.g., thick parts). There are known methods for uniforming the cooling temperature.
- Patent Document 1 below discloses a technique for reducing the occurrence of shrinkage cavities while achieving high rigidity by, for example, setting the carbon equivalent (CE) value within a predetermined range in spheroidal graphite cast iron.
- the molten metal in the furnace is the following inequality, 2.7 ⁇ C ⁇ 3.5, 1.2 ⁇ Si ⁇ 1.7, and CE ⁇ 0.33 ⁇ Si+4.36 meet.
- FIG. 4 is a diagram showing carbon and silicon contents in Examples and Comparative Examples;
- the casting method according to the present embodiment may take various forms except for the composition of the cast iron and the composition of the inoculant. and/or may be similar to conventional casting methods. An outline of an example of the casting method will be described below.
- FIG. 1 is a flow chart showing an example of the procedure of the casting method according to this embodiment.
- step ST1 various raw materials that will become cast iron are melted in a furnace to produce molten metal.
- step ST2 the molten metal in the furnace is conveyed by the ladle.
- step ST3 molten metal is poured from the ladle into the mold.
- step ST4 the molten metal is cooled and solidified within the mold. This forms a flake graphite cast iron product.
- Inoculation may be performed for various purposes at an appropriate time in the above series of procedures.
- the illustrated example shows inoculation performed in a ladle (step ST5) and inoculation performed after pouring (step ST6).
- the former may be referred to as primary inoculation and the latter as secondary inoculation.
- secondary inoculation Of course, one or both of these inoculations may not be performed.
- "after pouring" includes not only after pouring but also during pouring.
- furnace configurations, ladle configurations, and mold configurations may be of various known and/or conventional types.
- the furnace and ladle may be replaced by a crucible used for both melting and transport.
- the temperature of the molten metal in the furnace and the cooling rate of the molten metal in the mold may also be set appropriately.
- the cooling of the molten metal may be performed only by allowing the heat of the mold to be taken away by the atmosphere, or may be performed by supplying a coolant (for example, normal temperature water) into the mold at appropriate times.
- a coolant for example, normal temperature water
- FIG. 2 is a schematic cross-sectional view showing part of an example of the mold 1.
- the mold 1 is a so-called sand mold, and has, for example, a frame (not shown) and a sand part 3 arranged in the frame. Furthermore, in the illustrated example, the mold 1 has chills 5A and 5B. Inside the mold 1, a casting part 7, which is a space filled with molten metal, is formed by a sand part 3 (further chills 5A and 5B in the illustrated example). It should be noted that the mold 1 may be any other type of mold such as a metal mold. Also, the chillers 5A and/or 5B may not be provided.
- a frame (not shown) is made of metal or wood, for example.
- the sand portion 3 is made of, for example, sand and a binder that binds the sand.
- Sand is, for example, silica sand.
- Binders are, for example, resins, clays or water glass.
- the chills 5A and 5B are made of a material having a higher thermal conductivity than the sand portion 3 (in other words, the main material of the mold 1). Such materials include, for example, steel and carbon. In addition, as understood from the example of carbon, the material of the chill is not limited to metal.
- the size and shape of the casting part 7 are not particularly limited. However, since the cast iron according to the present embodiment improves shrinkage due to its composition (described later), it is particularly useful for castings having thick-walled portions where shrinkage cavities are likely to occur. In addition, for example, the number and / or volume of the chills can be reduced by improving the shrinkage based on the composition, so it is particularly useful for large castings, and it is difficult to set the arrangement of the chills. It is highly useful even for castings with complex shapes.
- a casting having such a shape can be, for example, a machine tool table.
- Examples of large castings include those with a maximum length of 1m or more, 3m or more, or 5m or more, and/or those with a mass of 1000kg or more, 3000kg or more, or 5000kg or more. Examples of such large castings include the table of a machine tool.
- the cast iron according to the present embodiment is a casting in which the value of a predetermined parameter is within a predetermined range in the cast iron in the mold 1 (more precisely, in the casting part 7) (from another point of view, the casting method ) can be said to be particularly useful for
- G/R 1/2 ((° C. ⁇ min) 1/2 /cm) can be mentioned as such a parameter (hereinafter, the unit of G/R 1/2 is the same).
- G (°C/cm) is the temperature gradient.
- R (°C/min) is the cooling rate.
- the smaller the G/R 1/2 the more likely shrinkage cavities are formed.
- the cast iron in the casting part 7 may have a portion (position or point from another point of view) where G / R 1/2 is 0.4 or less. .
- the second decimal place may be rounded off. That is, the range of 0.4 or less includes 0.44 and does not include 0.45.
- the portion where G/R 1/2 is 0.4 or less may occur at any time (time point) during the cooling period of the cast iron.
- the method of calculating G / R 1/2 (including procedures and condition settings, etc.) may be appropriate. It may be set in various aspects to be less than 0.05 or 0.01 or less.
- the arrangement position may be set appropriately.
- the chill may be in contact with a local portion of the casting where shrinkage cavities are relatively likely to occur, or may be in contact with the casting as a whole.
- the chill 5A contacts substantially the entire surface of the plate-like portion (see the plate corresponding portion 7a) of the casting on the opposite side of the rib (see the rib corresponding portion 7b).
- the chill 5B abuts on corners (that is, local parts) formed by the plate-shaped part of the casting and the ribs.
- the composition of the cast iron according to the present embodiment improves the shrinkage property, so the number and/or volume of the chills can be reduced compared to the conventional ones. Whether or not the chill has been reduced may be determined, for example, using the Niiyama parameter G/R 1/2 described above when the cast iron is being cooled in the mold 1 .
- the cast iron inside the mold 1 (strictly speaking, inside the casting part 7) has a first part (the volume and the like can be set arbitrarily). No chill is provided on the part of the inner surface of the mold that is located at the shortest distance from the first part.
- the first part has a period during which G/R 1/2 is 1.0 or less or 0.4 or less.
- the portion provided with the chill may be the second portion as described below.
- the cast iron inside the mold 1 (strictly speaking, inside the casting part 7) has a second part (the volume and the like can be set arbitrarily).
- a chill is provided on the part of the inner surface of the mold that is located at the shortest distance from the second part.
- the second portion has a period of time during which G/R 1/2 is less than or equal to 0.01 assuming no chill is provided.
- the first portion may be a portion that does not have a period in which G/R 1/2 is 0.01 or less.
- the third decimal place may be rounded off. That is, 0.014 is less than or equal to 0.01 and 0.015 is greater than 0.01. Similarly, in determining whether G/R 1/2 is less than or equal to 1.0 or less than or equal to 0.4, two decimal places may be rounded off. As described above, the method of calculating G/R 1/2 (including procedures and condition settings, etc.) may be appropriate, for example, when it contributes to the determination of whether or not may have various modes in which the error is less than 0.005 or 0.001 or less.
- composition of cast iron The composition and the like of the flake graphite cast iron according to the present embodiment will be described below.
- mass % (wt%) of components of cast iron may be indicated by element symbols.
- the weight percent of carbon may be represented by C and the weight percent of silicon by Si.
- Cast iron is generally considered to be a ternary alloy of iron (Fe) containing 2.14% by mass or more and 6.67% by mass or less of carbon (C) and containing approximately 1% by mass or more and 3% by mass or less of silicon (Si).
- the carbon equivalent CE (% by mass) shall be calculated by the following formula (1).
- the flake graphite cast iron according to the present embodiment satisfies the following inequality. 2.7 ⁇ C ⁇ 3.5 1.2 ⁇ Si ⁇ 1.7 CE ⁇ 0.33 ⁇ Si+4.36 (2)
- digits smaller than the digits indicated by the value may be rounded off. For example, 2.65 may fall within the range of 2.7 or greater, and 3.54 may fall within the range of 3.5 or less.
- the value of CE may be rounded to three decimal places. The same applies to other inequalities and the like shown below.
- FC300 has a tensile strength (hereinafter sometimes abbreviated as TS) greater than 300 MPa. Also, the Brinell hardness (hereinafter sometimes abbreviated as HB) is less than 262HB.
- the flake graphite cast iron according to the present embodiment may further contain manganese (Mn) and/or tin (Sn).
- Mn manganese
- Sn tin
- the mass % of these components may be within the following ranges. 0.90 ⁇ Mn ⁇ 1.00 0.02 ⁇ Sn ⁇ 0.05
- Mn and Sn have a small effect of inhibiting graphitization during the eutectic reaction where the amount of solidification shrinkage is the largest.
- Mn and Sn have a greater effect of promoting pearlitization during the eutectoid reaction than other materials.
- the matrix structure can be entirely pearlitic and the tensile strength can be improved.
- the mass % of Mn and/or Sn is at least the above lower limit, for example, a pearlitizing effect can be obtained.
- the mass % of Mn and/or Sn is equal to or less than the above upper limit, for example, the embrittlement effect is suppressed, and it is easy to ensure mechanical properties.
- Mn and Sn are not added to cast iron because they inhibit graphite crystallization.
- mass % of Mn is made as low as possible so as not to inhibit the decomposition of compound carbon during annealing.
- the mass % mentioned above may be calculated, for example, from the mass of various materials melted in the furnace, or may be calculated by analyzing the casting taken out from the mold. Cast iron is inoculated so that the component ratio in the furnace differs from the component ratio in the mold. However, in general, the weight percent of inoculant is small (eg, 1% or less, or 0.5% or less). Therefore, although it depends on the materials contained in the inoculant, the effect on the range of mass % described above is relatively small.
- Cast iron may contain minute amounts of components other than the above.
- the component may be intentionally added aiming at a predetermined effect, or may be included unavoidably (unwanted).
- the weight percent of such other components is, for example, 2% or less, 1% or less, or 0.5% or less in total.
- the cast iron according to the present embodiment is flake graphite cast iron in which the shape of the graphite is flake (plate-like). From another point of view, in the method for producing cast iron according to the present embodiment, a specific treatment (for example, addition of Mg) for making graphite spherical is not performed. Specific aspects such as the shape of flake graphite may be appropriately selected.
- the flake graphite cast iron may be any of A-type to E-type defined by ASTM, and for example, the majority (for example, 80% or more of an arbitrary cross section) is A-type.
- primary inoculation inoculating in a ladle
- the inoculation method may take various forms.
- inoculation may be by placing the inoculant in the bottom of the ladle before the molten metal is poured, or by adding the inoculant to the surface of the molten metal in the ladle.
- a wire on which an inoculant is placed may be brought into contact with the molten metal in the ladle or the molten metal being poured into the ladle.
- the material of the inoculant (the purpose from another point of view) is also arbitrary.
- materials for the inoculant include Fe--Si, Ca--Si, Si--Zr and Fe--Cr.
- the amount to be added is, for example, 0.1% by mass or more and 0.5% by mass or less with respect to the mass of the molten metal before addition, depending on the type of inoculant.
- an inoculant when referred to as an Fe—Si system, it means that Fe and Si constitute the main components of the inoculant.
- the main component may be, for example, 50% by mass or more, 60% by mass or more, or 80% by mass or more of the inoculant.
- the total weight of Fe and Si accounts for 50% or more, 60% or more, or 80% or more by weight of the inoculant.
- the material and the amount of the inoculant added in the primary inoculation are arbitrary, but for example, 0.4% by mass or more and 0.6% by mass or less of the Fe—Si-based inoculant is inoculated with respect to the mass of the molten metal. may be performed.
- Specific examples of Fe—Si-based inoculants include 50% by mass of Si, 10% by mass of Ca, 5% by mass of Ba, and the rest of Fe by mass with respect to 100% by mass of the inoculant. can be used.
- secondary inoculation may be performed after the hot water is poured.
- This method of inoculation may vary.
- inoculation may be by adding an inoculant to the molten metal being poured into the mould, or by touching a wire with an inoculant placed thereon to the molten metal being poured into the mould.
- the inoculant may be placed in a pool or mold before the molten metal is poured.
- the material and addition amount of the inoculant are also arbitrary, and the above description of the primary inoculation may be used for these.
- the material and amount of the inoculant in the secondary inoculation are arbitrary. Inoculation may be performed.
- Fe—Si based inoculant for example, those exemplified in the explanation of the primary inoculation above may be used.
- the Si content in the molten metal in the furnace is 1.7% by mass or less as described above, which is relatively small.
- an Fe—Si based inoculant when used in secondary inoculation (and/or primary inoculation), the amount of crystallized graphite can be increased while ultimately reducing the amount of Si contained in cast iron.
- Example 2 A flake graphite cast iron having the composition described above was actually produced, and its mechanical properties (TS and HB) were investigated. The results are shown below.
- FIG. 3 is a chart showing the composition and mechanical properties of flake graphite cast iron according to Examples and Comparative Examples.
- No. 1 to No. 7 and no. 9 is a comparative example.
- No. 8 and no. 10 to No. 17 is an example.
- C (wt%) flake graphite cast iron (100 % by mass) of C, Si, Mn and Sn.
- Fe essentially (ignoring unintended minor constituents) makes up the remaining weight percent. It should be noted that the mass % here is obtained from the mass ratio of these materials supplied to the furnace, and the effects of inoculation and the like are excluded.
- CE (wt%) is the value of CE (mass%) calculated by substituting the values in the “C (wt%)” and “Si (wt%)” columns into the above formula (1). is shown.
- CE_L (wt%) is CE (mass%) calculated by substituting the values in the “C (wt%)” and “Si (wt%)” columns into the right side of the above formula (2). indicates the upper limit of
- TS (MPa) indicates tensile strength.
- HB indicates the Brinell hardness (no units). All values are values obtained by experiments.
- Eval indicates the evaluation results for TS and HB. Here, when the conditions of FC300, TS>300 MPa and HB ⁇ 262, were satisfied, "A” was given, and otherwise, "B” was given.
- primary and secondary inoculations are performed.
- 0.5% of the Fe-50%Si-10%Ca-5%Ba inoculant described above was added in a ladle.
- 0.1% of the aforementioned inoculant of Fe-50% Si-10% Ca-5% Ba was added by a weir.
- FIG. 4 is a diagram showing mass % of Si and C in the examples and comparative examples shown in FIG.
- the horizontal axis indicates the mass % of Si.
- the vertical axis indicates the mass % of C.
- the minimum and maximum values on each axis generally match the minimum and maximum mass% values of Si and C in general cast iron.
- No. No. 16 is an example with less Sn than other examples.
- No. No. 14 has C and Si conditions. It is an embodiment close to 16. From the comparison of both TS, it can be confirmed that the addition of Sn improves the tensile strength.
- the lower limit of CE was not directly mentioned, and the lower limit of CE was indirectly defined by the lower limit of C and the lower limit of Si.
- the lower limit of CE may be defined by a line parallel to the "EQ" line and away from the "EQ" line.
- the lower limit may be a line passing through the example (No. 17) farthest from the "EQ" line among the examples.
- the following inequality may be satisfied.
- CE is as close to the "EQ" line as possible, the No. No. 13 or CE of 3.83. With the line through 15 as a lower bound, the following inequality may be satisfied.
- a flake graphite cast iron product according to the embodiment was actually produced and evaluated for shrinkage. Specifically, it is as follows.
- a machine tool table was produced from flake graphite cast iron according to the embodiment.
- the shape of the table as described with reference to FIG. 2, is generally a shape having a plate-like portion and ribs rising from the plate-like portion.
- the mass of the table was 3800 kg.
- a cross-section at the intersection of the plate-shaped portion and the rib was imaged, and the area of the shrinkage cavities in the cross-section was measured by image processing.
- the area of the shrinkage cavities was 4990 mm 2 in the known general composition.
- the shrinkage cavities were 1500 mm 2 . That is, shrinkage cavities were reduced by 70%.
- the mass% of carbon and silicon contained is represented by C and Si, respectively, and the carbon equivalent (mass%) is calculated by the above-described formula (1) ,
- the method for manufacturing a flake graphite cast iron product according to the present embodiment is a method for manufacturing a flake graphite cast iron product by cooling and solidifying molten cast iron that has been melted in a furnace in a mold. and the molten metal in the furnace satisfies the above inequality.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
A flake graphite cast-iron product satisfies the inequalities: 2.7 ≤ C ≤ 3.5, 1.2 ≤ Si ≤ 1.7 and CE ≤ -0.33×Si+4.36 wherein C and Si respectively represent the amounts (% by mass) of carbon and silicon contained therein and the carbon equivalent (% by mass) is calculated in accordance with the equation: CE = C+1/3×Si.
Description
本開示は、片状黒鉛鋳鉄製品及びその製造方法に関する。なお、一般に、鋳鉄は、鋳物を指す場合と、鋳物の材料を指す場合とがある。本開示においても同様とする。また、本開示では、鋳物について鋳鉄製品の語を用いることがある。
The present disclosure relates to flake graphite cast iron products and manufacturing methods thereof. In general, cast iron may refer to castings or may refer to materials for castings. The same applies to the present disclosure. In addition, in the present disclosure, the term cast iron products may be used for castings.
片状黒鉛鋳鉄製品は、溶湯(溶融状態の鋳鉄)が鋳型内で冷却されて凝固することによって形成される。このとき、凝固収縮によって鋳物内に引け巣(空間)が形成されることがある。引け巣を低減する方法としては、例えば、鋳鉄の冷却の際に晶出する黒鉛の量を増加させる方法、及び鋳型内において引け巣が生じやすい箇所(例えば厚肉部)に冷し金を配置し、冷却温度を均一にする方法が知られている。下記特許文献1では、球状黒鉛鋳鉄において、炭素当量(CE)の値を所定の範囲内にすることなどによって、高剛性化を図りつつ、引け巣の発生を低減する技術が開示されている。
Flake graphite cast iron products are formed by cooling molten metal (molten cast iron) in a mold and solidifying it. At this time, shrinkage cavities (spaces) may be formed in the casting due to solidification shrinkage. Methods for reducing shrinkage cavities include, for example, increasing the amount of graphite that crystallizes when cast iron is cooled, and placing a chill in places where shrinkage cavities are likely to occur in the mold (e.g., thick parts). There are known methods for uniforming the cooling temperature. Patent Document 1 below discloses a technique for reducing the occurrence of shrinkage cavities while achieving high rigidity by, for example, setting the carbon equivalent (CE) value within a predetermined range in spheroidal graphite cast iron.
引け巣を低減するために黒鉛を多く晶出させると、鋳物の機械的性質(例えば引張強さ)が低下する。また、冷し金を利用する場合においては、例えば、鋳物の形状が複雑であると、引け巣の位置を特定することが困難である。ひいては、冷し金の配置位置の設定が困難である。また、鋳物が大型であると、冷し金の個数が増加し、及び/又は冷し金の体積が増大する。ひいては、工数、購入費及び管理費が増大する。従って、一定の機械的性質を確保しつつ、引け性を改善できる片状黒鉛鋳鉄製品及びその製造方法が待たれる。
If a large amount of graphite is crystallized to reduce shrinkage cavities, the mechanical properties (eg tensile strength) of the casting will decrease. Further, when using a chill, for example, if the shape of the casting is complicated, it is difficult to identify the position of the shrinkage cavities. As a result, it is difficult to set the arrangement position of the chill. Larger castings also increase the number of chills and/or increase the volume of the chills. As a result, man-hours, purchase costs, and management costs increase. Therefore, a flake graphite cast iron product capable of improving shrinkage while ensuring certain mechanical properties and a method for producing the same are awaited.
本開示に係る片状黒鉛鋳鉄製品は、含有する炭素及びケイ素の質量%をそれぞれC及びSiで表し、炭素当量(質量%)を次式
CE=C+1/3×Si
で計算するとき、下記の不等式、
2.7≦C≦3.5、
1.2≦Si≦1.7、及び
CE≦-0.33×Si+4.36
を満たす。 In the flake graphite cast iron product according to the present disclosure, the mass% of carbon and silicon contained is represented by C and Si, respectively, and the carbon equivalent (mass%) is expressed by the following formula CE = C + 1/3 × Si
When calculating with the following inequality,
2.7≦C≦3.5,
1.2≦Si≦1.7, and CE≦−0.33×Si+4.36
meet.
CE=C+1/3×Si
で計算するとき、下記の不等式、
2.7≦C≦3.5、
1.2≦Si≦1.7、及び
CE≦-0.33×Si+4.36
を満たす。 In the flake graphite cast iron product according to the present disclosure, the mass% of carbon and silicon contained is represented by C and Si, respectively, and the carbon equivalent (mass%) is expressed by the following formula CE = C + 1/3 × Si
When calculating with the following inequality,
2.7≦C≦3.5,
1.2≦Si≦1.7, and CE≦−0.33×Si+4.36
meet.
本開示に係る片状黒鉛鋳鉄製品の製造方法は、炉内で溶解されていた鋳鉄の溶湯を鋳型内で冷却して凝固させ、片状黒鉛鋳鉄製品を製造する方法であって、前記鋳鉄が含有する炭素及びケイ素の質量%をそれぞれC及びSiで表し、炭素当量を次式
CE=C+1/3×Si
で計算するとき、前記炉内における溶湯が、下記の不等式、
2.7≦C≦3.5、
1.2≦Si≦1.7、及び
CE≦-0.33×Si+4.36
を満たす。 A method for producing a flake graphite cast iron product according to the present disclosure is a method for producing a flake graphite cast iron product by cooling and solidifying molten cast iron that has been melted in a furnace in a mold, wherein the cast iron is The mass% of carbon and silicon contained is represented by C and Si, respectively, and the carbon equivalent is expressed by the following formula CE = C + 1/3 × Si
When calculating with, the molten metal in the furnace is the following inequality,
2.7≦C≦3.5,
1.2≦Si≦1.7, and CE≦−0.33×Si+4.36
meet.
CE=C+1/3×Si
で計算するとき、前記炉内における溶湯が、下記の不等式、
2.7≦C≦3.5、
1.2≦Si≦1.7、及び
CE≦-0.33×Si+4.36
を満たす。 A method for producing a flake graphite cast iron product according to the present disclosure is a method for producing a flake graphite cast iron product by cooling and solidifying molten cast iron that has been melted in a furnace in a mold, wherein the cast iron is The mass% of carbon and silicon contained is represented by C and Si, respectively, and the carbon equivalent is expressed by the following formula CE = C + 1/3 × Si
When calculating with, the molten metal in the furnace is the following inequality,
2.7≦C≦3.5,
1.2≦Si≦1.7, and CE≦−0.33×Si+4.36
meet.
上記の構成又は手順によれば、一定の機械的性質を確保しつつ、引け性を改善できる。
According to the above configuration or procedure, it is possible to improve shrinkage while ensuring certain mechanical properties.
(鋳造方法の概要)
本実施形態に係る鋳造方法(換言すれば片状黒鉛鋳鉄製品の製造方法)は、鋳鉄の組成及び接種剤の組成を除いて、種々の態様とされてよく、また、概略、公知の鋳造方法及び/又は一般的な鋳造方法と同様とされて構わない。以下に、鋳造方法の一例の概要について説明する。 (Overview of casting method)
The casting method according to the present embodiment (in other words, the method for producing a flake graphite cast iron product) may take various forms except for the composition of the cast iron and the composition of the inoculant. and/or may be similar to conventional casting methods. An outline of an example of the casting method will be described below.
本実施形態に係る鋳造方法(換言すれば片状黒鉛鋳鉄製品の製造方法)は、鋳鉄の組成及び接種剤の組成を除いて、種々の態様とされてよく、また、概略、公知の鋳造方法及び/又は一般的な鋳造方法と同様とされて構わない。以下に、鋳造方法の一例の概要について説明する。 (Overview of casting method)
The casting method according to the present embodiment (in other words, the method for producing a flake graphite cast iron product) may take various forms except for the composition of the cast iron and the composition of the inoculant. and/or may be similar to conventional casting methods. An outline of an example of the casting method will be described below.
図1は、本実施形態に係る鋳造方法の手順の一例を示すフローチャートである。
FIG. 1 is a flow chart showing an example of the procedure of the casting method according to this embodiment.
ステップST1では、鋳鉄となる種々の素材が炉において溶解されて溶湯が生成される。ステップST2では、炉内の溶湯が取鍋によって運搬される。ステップST3では、取鍋から鋳型へ溶湯が注がれる。ステップST4では、溶湯が鋳型内で冷却されて凝固される。これにより、片状黒鉛鋳鉄製品が形成される。
In step ST1, various raw materials that will become cast iron are melted in a furnace to produce molten metal. In step ST2, the molten metal in the furnace is conveyed by the ladle. In step ST3, molten metal is poured from the ladle into the mold. In step ST4, the molten metal is cooled and solidified within the mold. This forms a flake graphite cast iron product.
上記の一連の手順の適宜な時期において、種々の目的で接種が行われてよい。図示の例では、取鍋で行われる接種(ステップST5)と、注湯以後に行われる接種(ステップST6)とが示されている。本開示において、前者を一次接種といい、後者を二次接種ということがある。もちろん、これらの接種の一方又は双方は行われなくてもよい。念のために記載すると、注湯以後は、注湯の後だけでなく、注湯中も含む。
Inoculation may be performed for various purposes at an appropriate time in the above series of procedures. The illustrated example shows inoculation performed in a ladle (step ST5) and inoculation performed after pouring (step ST6). In the present disclosure, the former may be referred to as primary inoculation and the latter as secondary inoculation. Of course, one or both of these inoculations may not be performed. Just to make sure, "after pouring" includes not only after pouring but also during pouring.
各ステップにおける機器の構成及び手順も公知のもの及び/又は一般的なものとされて構わない。例えば、炉の構成、取鍋の構成及び鋳型の構成は、公知の及び/又は一般的な種々のものとされて構わない。比較的小型な鋳物の製造においては、炉及び取鍋に代えて、溶解及び運搬の双方に利用される坩堝が用いられてもよい。炉内の溶湯の温度及び鋳型内における溶湯の冷却速度も適宜に設定されてよい。溶湯の冷却では、鋳型の熱が大気に奪われる放冷のみが行われてもよいし、適宜な時期に冷媒(例えば常温の水)を鋳型内に供給する水冷が行われてもよい。
The equipment configuration and procedure in each step may be known and/or common. For example, furnace configurations, ladle configurations, and mold configurations may be of various known and/or conventional types. In the production of relatively small castings, the furnace and ladle may be replaced by a crucible used for both melting and transport. The temperature of the molten metal in the furnace and the cooling rate of the molten metal in the mold may also be set appropriately. The cooling of the molten metal may be performed only by allowing the heat of the mold to be taken away by the atmosphere, or may be performed by supplying a coolant (for example, normal temperature water) into the mold at appropriate times.
図2は、鋳型1の一例の一部を示す模式的な断面図である。
FIG. 2 is a schematic cross-sectional view showing part of an example of the mold 1. FIG.
鋳型1は、いわゆる砂型であり、例えば、不図示の枠と、枠内に配置された砂部3とを有している。さらに、図示の例では、鋳型1は、冷し金5A及び5Bを有している。鋳型1の内部には、砂部3(図示の例では更に冷し金5A及び5B)によって、溶湯が満たされる空間である鋳物部7が構成されている。なお、鋳型1は、金型などの他の形式の型であっても構わない。また、冷し金5A及び/又は5Bは設けられなくてもよい。
The mold 1 is a so-called sand mold, and has, for example, a frame (not shown) and a sand part 3 arranged in the frame. Furthermore, in the illustrated example, the mold 1 has chills 5A and 5B. Inside the mold 1, a casting part 7, which is a space filled with molten metal, is formed by a sand part 3 ( further chills 5A and 5B in the illustrated example). It should be noted that the mold 1 may be any other type of mold such as a metal mold. Also, the chillers 5A and/or 5B may not be provided.
鋳型1において、不図示の枠は、例えば、金属又は木材からなる。砂部3は、例えば、砂と、砂を結合する粘結剤とからなる。砂は、例えば、珪砂である。粘結剤は、例えば、樹脂、粘土又は水ガラスである。冷し金5A及び5Bは、砂部3(換言すれば鋳型1の主体となる材料)よりも熱伝導率が高い材料によって構成されている。そのような材料としては、例えば、鉄鋼及びカーボンを挙げることができる。なお、カーボンの例示から理解されるように、冷し金の材料は、金属に限定されない。
In the mold 1, a frame (not shown) is made of metal or wood, for example. The sand portion 3 is made of, for example, sand and a binder that binds the sand. Sand is, for example, silica sand. Binders are, for example, resins, clays or water glass. The chills 5A and 5B are made of a material having a higher thermal conductivity than the sand portion 3 (in other words, the main material of the mold 1). Such materials include, for example, steel and carbon. In addition, as understood from the example of carbon, the material of the chill is not limited to metal.
(鋳物)
鋳物部7(換言すれば鋳物)の大きさ及び形状は、特に限定されない。ただし、本実施形態に係る鋳鉄は、その組成(後述)によって引け性が改善されることから、例えば、引け巣が生じやすい厚肉部を有する鋳物に対して特に有用性が高い。また、例えば、組成に基づく引け性の改善によって、冷し金の個数及び/又は体積を低減できるから、大型の鋳物に対して特に有用性が高く、また、冷し金の配置の設定が困難な複雑な形状の鋳物に対しても有用性が高い。 (casting)
The size and shape of the casting part 7 (in other words, casting) are not particularly limited. However, since the cast iron according to the present embodiment improves shrinkage due to its composition (described later), it is particularly useful for castings having thick-walled portions where shrinkage cavities are likely to occur. In addition, for example, the number and / or volume of the chills can be reduced by improving the shrinkage based on the composition, so it is particularly useful for large castings, and it is difficult to set the arrangement of the chills. It is highly useful even for castings with complex shapes.
鋳物部7(換言すれば鋳物)の大きさ及び形状は、特に限定されない。ただし、本実施形態に係る鋳鉄は、その組成(後述)によって引け性が改善されることから、例えば、引け巣が生じやすい厚肉部を有する鋳物に対して特に有用性が高い。また、例えば、組成に基づく引け性の改善によって、冷し金の個数及び/又は体積を低減できるから、大型の鋳物に対して特に有用性が高く、また、冷し金の配置の設定が困難な複雑な形状の鋳物に対しても有用性が高い。 (casting)
The size and shape of the casting part 7 (in other words, casting) are not particularly limited. However, since the cast iron according to the present embodiment improves shrinkage due to its composition (described later), it is particularly useful for castings having thick-walled portions where shrinkage cavities are likely to occur. In addition, for example, the number and / or volume of the chills can be reduced by improving the shrinkage based on the composition, so it is particularly useful for large castings, and it is difficult to set the arrangement of the chills. It is highly useful even for castings with complex shapes.
厚肉部を有する形状としては、例えば、板状部(鋳物部7の板対応部7aを参照)と、板状部の表裏の一方の面から立ち上がるリブ(鋳物部7のリブ対応部7bを参照)とを有する形状を挙げることができる。この形状では、板状部の厚みがリブの位置にて厚くなって肉厚部が構成されているといえるから、当該位置において引け巣が生じやすい。このような形状を有する鋳物としては、例えば、工作機械のテーブルを挙げることができる。
As a shape having a thick-walled portion, for example, a plate-like portion (see the plate-corresponding portion 7a of the casting portion 7) and a rib rising from one of the front and back surfaces of the plate-like portion (the rib-corresponding portion 7b of the casting portion 7). see). In this shape, since it can be said that the thickness of the plate-like portion becomes thicker at the position of the rib to form a thick portion, shrinkage cavities are likely to occur at that position. A casting having such a shape can be, for example, a machine tool table.
大型の鋳物としては、例えば、最大長さが1m以上、3m以上若しくは5m以上のもの、及び/又は質量が1000kg以上、3000kg以上若しくは5000kg以上のものを挙げることができる。このような大型の鋳物としては、例えば、工作機械のテーブルを挙げることができる。
Examples of large castings include those with a maximum length of 1m or more, 3m or more, or 5m or more, and/or those with a mass of 1000kg or more, 3000kg or more, or 5000kg or more. Examples of such large castings include the table of a machine tool.
引け巣の生じやすさは、種々のパラメータによって表される。従って、本実施形態に係る鋳鉄は、鋳型1内(より厳密には鋳物部7内)の鋳鉄に、所定のパラメータの値が所定の範囲内となる部分が生じる鋳物(別の観点では鋳造方法)に対して特に有用であるということができる。
The susceptibility to shrinkage cavities is expressed by various parameters. Therefore, the cast iron according to the present embodiment is a casting in which the value of a predetermined parameter is within a predetermined range in the cast iron in the mold 1 (more precisely, in the casting part 7) (from another point of view, the casting method ) can be said to be particularly useful for
このようなパラメータとしては、新山パラメータG/R1/2((℃×min)1/2/cm)を挙げることができる(以下、G/R1/2の単位は同様。)。ここで、G(℃/cm)は温度勾配である。R(℃/min)は冷却速度である。G/R1/2が小さいほど、引け巣が生じやすい。例えば、鋳鉄を冷却しているとき(ステップST4)、鋳物部7内の鋳鉄は、G/R1/2が0.4以下となる部分(別の観点では位置又は点)を有してよい。
Niiyama parameter G/R 1/2 ((° C.×min) 1/2 /cm) can be mentioned as such a parameter (hereinafter, the unit of G/R 1/2 is the same). Here, G (°C/cm) is the temperature gradient. R (°C/min) is the cooling rate. The smaller the G/R 1/2 , the more likely shrinkage cavities are formed. For example, when the cast iron is cooled (step ST4), the cast iron in the casting part 7 may have a portion (position or point from another point of view) where G / R 1/2 is 0.4 or less. .
なお、G/R1/2が0.4以下か否かの判定において、小数第2位は四捨五入されてよい。すなわち、0.4以下という範囲は、0.44を含み、0.45を含まない。G/R1/2が0.4以下の部分は、鋳鉄を冷却している期間のいずれかの時期(時点)に生じればよい。G/R1/2の算出方法(手順及び条件設定等を含む)は、適宜なものとされてよく、例えば、上記の0.4以下か否かの判定に資する場合においては、誤差が0.05未満又は0.01以下となる種々の態様とされてよい。
In determining whether or not G/R 1/2 is 0.4 or less, the second decimal place may be rounded off. That is, the range of 0.4 or less includes 0.44 and does not include 0.45. The portion where G/R 1/2 is 0.4 or less may occur at any time (time point) during the cooling period of the cast iron. The method of calculating G / R 1/2 (including procedures and condition settings, etc.) may be appropriate. It may be set in various aspects to be less than 0.05 or 0.01 or less.
(冷し金の配置位置)
冷し金が配置される場合、その配置位置は適宜に設定されてよい。例えば、冷し金は、鋳物のうち引け巣が相対的に生じやすい局部に当接するものであってもよいし、鋳物に対して全体的に当接するものであってもよい。図2の例では、冷し金5Aは、鋳物の板状部(板対応部7a参照)の表裏のうちリブ(リブ対応部7b参照)とは反対側の面の略全面に当接する。また、冷し金5Bは、鋳物の板状部とリブとが成す角部(すなわち局部)に当接する。 (Position of chiller)
When a chill is arranged, the arrangement position may be set appropriately. For example, the chill may be in contact with a local portion of the casting where shrinkage cavities are relatively likely to occur, or may be in contact with the casting as a whole. In the example of FIG. 2, the chill 5A contacts substantially the entire surface of the plate-like portion (see theplate corresponding portion 7a) of the casting on the opposite side of the rib (see the rib corresponding portion 7b). Also, the chill 5B abuts on corners (that is, local parts) formed by the plate-shaped part of the casting and the ribs.
冷し金が配置される場合、その配置位置は適宜に設定されてよい。例えば、冷し金は、鋳物のうち引け巣が相対的に生じやすい局部に当接するものであってもよいし、鋳物に対して全体的に当接するものであってもよい。図2の例では、冷し金5Aは、鋳物の板状部(板対応部7a参照)の表裏のうちリブ(リブ対応部7b参照)とは反対側の面の略全面に当接する。また、冷し金5Bは、鋳物の板状部とリブとが成す角部(すなわち局部)に当接する。 (Position of chiller)
When a chill is arranged, the arrangement position may be set appropriately. For example, the chill may be in contact with a local portion of the casting where shrinkage cavities are relatively likely to occur, or may be in contact with the casting as a whole. In the example of FIG. 2, the chill 5A contacts substantially the entire surface of the plate-like portion (see the
上述のように、本実施形態に係る鋳鉄は、その組成によって引け性が改善されるから、従来に比較して、冷し金の個数及び/又は体積を低減することができる。冷し金が低減されたか否かは、例えば、鋳型1内で鋳鉄を冷却しているときの上述の新山パラメータG/R1/2を用いて判断されてよい。
As described above, the composition of the cast iron according to the present embodiment improves the shrinkage property, so the number and/or volume of the chills can be reduced compared to the conventional ones. Whether or not the chill has been reduced may be determined, for example, using the Niiyama parameter G/R 1/2 described above when the cast iron is being cooled in the mold 1 .
具体的には、例えば、上述のように、鋳型1内の鋳鉄が、G/R1/2が0.4以下となる期間を有する部分を有している場合においては、引け巣が生じやすい。このような場合において、冷し金が設けられていないときは、冷し金が低減されていると判断されてよい。
Specifically, for example, as described above, when the cast iron in the mold 1 has a portion having a period in which G / R 1/2 is 0.4 or less, shrinkage cavities are likely to occur. . In such cases, when no chill is provided, it may be determined that the chill is reduced.
また、冷し金が設けられている場合においては、例えば、以下のような第1部位が存在するときに、冷し金が低減されていると判定されてよい。鋳型1内(厳密には鋳物部7内)の鋳鉄は第1部位(体積等の設定は任意)を有する。鋳型の内面のうち第1部位から最短距離に位置する部分に冷し金は設けられていない。第1部位は、G/R1/2が1.0以下又は0.4以下となる期間を有する。
Further, in the case where a chill is provided, it may be determined that the chill is reduced when, for example, the following first portion exists. The cast iron inside the mold 1 (strictly speaking, inside the casting part 7) has a first part (the volume and the like can be set arbitrarily). No chill is provided on the part of the inner surface of the mold that is located at the shortest distance from the first part. The first part has a period during which G/R 1/2 is 1.0 or less or 0.4 or less.
上記のような第1部位が存在する場合において、冷し金が設けられる部分は、下記のような第2部位であってよい。鋳型1内(厳密には鋳物部7内)の鋳鉄は第2部位(体積等の設定は任意)を有する。鋳型の内面のうち第2部位から最短距離に位置する部分に冷し金が設けられている。第2部位は、冷し金が設けられていないと仮定した場合にG/R1/2が0.01以下となる期間を有する。なお、第1部位は、G/R1/2が0.01以下となる期間を有さない部位であってよい。
In the case where the first portion as described above exists, the portion provided with the chill may be the second portion as described below. The cast iron inside the mold 1 (strictly speaking, inside the casting part 7) has a second part (the volume and the like can be set arbitrarily). A chill is provided on the part of the inner surface of the mold that is located at the shortest distance from the second part. The second portion has a period of time during which G/R 1/2 is less than or equal to 0.01 assuming no chill is provided. Note that the first portion may be a portion that does not have a period in which G/R 1/2 is 0.01 or less.
なお、G/R1/2が0.01以下か否かの判定において、小数第3位は四捨五入されてよい。すなわち、0.014は、0.01以下であり、0.015は、0.01超である。同様に、G/R1/2が1.0以下又は0.4以下か否かの判定において、小数第2位は四捨五入されてよい。既述のように、G/R1/2の算出方法(手順及び条件設定等を含む)は、適宜なものとされてよく、例えば、上記の0.01以下か否かの判定に資する場合においては、誤差が0.005未満又は0.001以下となる種々の態様とされてよい。
In determining whether or not G/R 1/2 is 0.01 or less, the third decimal place may be rounded off. That is, 0.014 is less than or equal to 0.01 and 0.015 is greater than 0.01. Similarly, in determining whether G/R 1/2 is less than or equal to 1.0 or less than or equal to 0.4, two decimal places may be rounded off. As described above, the method of calculating G/R 1/2 (including procedures and condition settings, etc.) may be appropriate, for example, when it contributes to the determination of whether or not may have various modes in which the error is less than 0.005 or 0.001 or less.
(鋳鉄の組成)
以下、本実施形態に係る片状黒鉛鋳鉄の組成等について説明する。なお、以下の説明では、鋳鉄の成分の質量%(wt%)を元素記号で示すことがある。例えば、炭素の質量%をCで表し、ケイ素の質量%をSiで表すことがある。 (Composition of cast iron)
The composition and the like of the flake graphite cast iron according to the present embodiment will be described below. In addition, in the following description, mass % (wt%) of components of cast iron may be indicated by element symbols. For example, the weight percent of carbon may be represented by C and the weight percent of silicon by Si.
以下、本実施形態に係る片状黒鉛鋳鉄の組成等について説明する。なお、以下の説明では、鋳鉄の成分の質量%(wt%)を元素記号で示すことがある。例えば、炭素の質量%をCで表し、ケイ素の質量%をSiで表すことがある。 (Composition of cast iron)
The composition and the like of the flake graphite cast iron according to the present embodiment will be described below. In addition, in the following description, mass % (wt%) of components of cast iron may be indicated by element symbols. For example, the weight percent of carbon may be represented by C and the weight percent of silicon by Si.
鋳鉄は、一般に、炭素(C)を2.14質量%以上6.67質量%以下含み、ケイ素(Si)を概ね1質量%以上3%質量以下含む鉄(Fe)の三元合金とされている。ここで、炭素当量CE(質量%)を以下の(1)式で計算するものとする。
CE=C+1/3×Si (1) Cast iron is generally considered to be a ternary alloy of iron (Fe) containing 2.14% by mass or more and 6.67% by mass or less of carbon (C) and containing approximately 1% by mass or more and 3% by mass or less of silicon (Si). there is Here, the carbon equivalent CE (% by mass) shall be calculated by the following formula (1).
CE = C + 1/3 x Si (1)
CE=C+1/3×Si (1) Cast iron is generally considered to be a ternary alloy of iron (Fe) containing 2.14% by mass or more and 6.67% by mass or less of carbon (C) and containing approximately 1% by mass or more and 3% by mass or less of silicon (Si). there is Here, the carbon equivalent CE (% by mass) shall be calculated by the following formula (1).
CE = C + 1/3 x Si (1)
このとき、本実施形態に係る片状黒鉛鋳鉄は、以下の不等式を満たす。
2.7≦C≦3.5
1.2≦Si≦1.7
CE≦-0.33×Si+4.36 (2) At this time, the flake graphite cast iron according to the present embodiment satisfies the following inequality.
2.7≤C≤3.5
1.2≤Si≤1.7
CE≦−0.33×Si+4.36 (2)
2.7≦C≦3.5
1.2≦Si≦1.7
CE≦-0.33×Si+4.36 (2) At this time, the flake graphite cast iron according to the present embodiment satisfies the following inequality.
2.7≤C≤3.5
1.2≤Si≤1.7
CE≦−0.33×Si+4.36 (2)
C、Si及びCEの上限が上記のように規定されることによって、黒鉛が粗大化する蓋然性が低減され、一定の機械的性質を確保できる。一方で、C及びSiの下限が上記のように規定されることによって、黒鉛の晶出量を多くすることができる。その結果、引け巣を低減することができる。
By specifying the upper limits of C, Si and CE as described above, the probability of graphite coarsening is reduced, and certain mechanical properties can be secured. On the other hand, by specifying the lower limits of C and Si as described above, the amount of crystallization of graphite can be increased. As a result, shrinkage cavities can be reduced.
上記において、値が示されている桁よりも小さい桁は、四捨五入されてよい。例えば、2.65は、2.7以上の範囲に含まれてよく、3.54は、3.5以下の範囲に含まれてよい。CEの値においては、少数第3位が四捨五入されてよい。以下に示す他の不等式等においても同様である。
In the above, digits smaller than the digits indicated by the value may be rounded off. For example, 2.65 may fall within the range of 2.7 or greater, and 3.54 may fall within the range of 3.5 or less. The value of CE may be rounded to three decimal places. The same applies to other inequalities and the like shown below.
上記の一定の機械的性質は、適宜に想定されてよい。例えば、JIS(日本産業規格)及びISO(国際標準化機構)が規定するFC300における機械的性質又はこれに近い機械的性質が想定されてよい。FC300では、引張強さ(以下、TSと略すことがある。)は、300MPaよりも大きい。また、ブリネル硬さ(以下、HBと略すことがある。)は、262HBよりも小さい。
The certain mechanical properties mentioned above may be assumed as appropriate. For example, the mechanical properties of FC300 defined by JIS (Japanese Industrial Standards) and ISO (International Organization for Standardization) or similar mechanical properties may be assumed. FC300 has a tensile strength (hereinafter sometimes abbreviated as TS) greater than 300 MPa. Also, the Brinell hardness (hereinafter sometimes abbreviated as HB) is less than 262HB.
本実施形態に係る片状黒鉛鋳鉄は、さらにマンガン(Mn)及び/又はスズ(Sn)を含んでよい。この場合において、これらの成分の質量%は、以下の範囲とされてよい。
0.90≦Mn≦1.00
0.02≦Sn≦0.05 The flake graphite cast iron according to the present embodiment may further contain manganese (Mn) and/or tin (Sn). In this case, the mass % of these components may be within the following ranges.
0.90≦Mn≦1.00
0.02≦Sn≦0.05
0.90≦Mn≦1.00
0.02≦Sn≦0.05 The flake graphite cast iron according to the present embodiment may further contain manganese (Mn) and/or tin (Sn). In this case, the mass % of these components may be within the following ranges.
0.90≦Mn≦1.00
0.02≦Sn≦0.05
Mn及びSnは、他の材料に比較して、凝固収縮量が最も大きい共晶反応時において、黒鉛化を阻害する作用が小さい。その一方で、Mn及びSnは、他の材料に比較して、共析反応時にパーライト化を促進する作用が大きい。Mn及び/又はSnのパーライト化の促進によって、例えば、基地組織を全面的にパーライトにし、引張強さを向上させることができる。Mn及び/又はSnの質量%が上記の下限以上であれば、例えば、パーライト化の効果を得ることができる。また、Mn及び/又はSnの質量%が上記の上限以下であれば、例えば、脆化作用が抑えられ、ひいては、機械的性質を確保することが容易である。
Compared to other materials, Mn and Sn have a small effect of inhibiting graphitization during the eutectic reaction where the amount of solidification shrinkage is the largest. On the other hand, Mn and Sn have a greater effect of promoting pearlitization during the eutectoid reaction than other materials. By promoting the pearlitization of Mn and/or Sn, for example, the matrix structure can be entirely pearlitic and the tensile strength can be improved. If the mass % of Mn and/or Sn is at least the above lower limit, for example, a pearlitizing effect can be obtained. Further, when the mass % of Mn and/or Sn is equal to or less than the above upper limit, for example, the embrittlement effect is suppressed, and it is easy to ensure mechanical properties.
なお、一般に、Mn及びSnは、黒鉛晶出を阻害することから鋳鉄に添加されない。特に、球状黒鉛鋳鉄では、延性が要求されることから、焼鈍において化合炭素の分解が阻害されないように、Mnの質量%はできるだけ低くされる。
In general, Mn and Sn are not added to cast iron because they inhibit graphite crystallization. In particular, since spheroidal graphite cast iron requires ductility, the mass % of Mn is made as low as possible so as not to inhibit the decomposition of compound carbon during annealing.
上述した質量%は、例えば、炉で溶解される種々の素材の質量から算出されてもよいし、鋳型から取り出された鋳物を分析することによって算出されてもよい。鋳鉄は、接種が行われることによって、炉内におけるときの成分比と、鋳型内における成分比とが相違する。しかし、一般に、接種剤の質量%は小さい(例えば1%以下又は0.5%以下)。従って、接種剤が含む材料等によるが、上述した質量%の範囲に及ぼす影響は比較的小さい。
The mass % mentioned above may be calculated, for example, from the mass of various materials melted in the furnace, or may be calculated by analyzing the casting taken out from the mold. Cast iron is inoculated so that the component ratio in the furnace differs from the component ratio in the mold. However, in general, the weight percent of inoculant is small (eg, 1% or less, or 0.5% or less). Therefore, although it depends on the materials contained in the inoculant, the effect on the range of mass % described above is relatively small.
鋳鉄は、上記以外の成分を微小量含んでいてもよい。当該成分は、所定の効果を狙って意図的に添加されたものであってもよいし、不可避に(望まれずに)含まれてしまうものであってもよい。このような他の成分(接種剤を含む)の質量%は、例えば、合計で、2%以下、1%以下又は0.5%以下である。
Cast iron may contain minute amounts of components other than the above. The component may be intentionally added aiming at a predetermined effect, or may be included unavoidably (unwanted). The weight percent of such other components (including inoculant) is, for example, 2% or less, 1% or less, or 0.5% or less in total.
本実施形態に係る鋳鉄は、黒鉛の形状が片状(板状)の片状黒鉛鋳鉄である。別の観点では、本実施形態に係る鋳鉄の製造方法では、黒鉛を球状にするための特定の処理(例えばMgの添加)は行われていない。片状黒鉛の形状等の具体的な態様は適宜なものとされてよい。例えば、片状黒鉛鋳鉄は、ASTMが規定するA型~E型のいずれでもよく、例えば、大部分(例えば任意の断面において8割以上の面積)はA型である。
The cast iron according to the present embodiment is flake graphite cast iron in which the shape of the graphite is flake (plate-like). From another point of view, in the method for producing cast iron according to the present embodiment, a specific treatment (for example, addition of Mg) for making graphite spherical is not performed. Specific aspects such as the shape of flake graphite may be appropriately selected. For example, the flake graphite cast iron may be any of A-type to E-type defined by ASTM, and for example, the majority (for example, 80% or more of an arbitrary cross section) is A-type.
(一次接種)
既述のように、本実施形態では、取鍋で接種を行う一次接種が行われてよい。接種方法は、種々の態様とされてよい。例えば、接種は、溶湯が注がれる前の取鍋の底に接種剤を配置しておくものであってもよいし、取鍋内の溶湯にその表面から接種剤を添加するものであってもよいし、取鍋内の溶湯又は取鍋内に注がれる溶湯に接種剤が配置されたワイヤーを接触させるものであってもよい。 (Primary inoculation)
As already mentioned, in this embodiment, primary inoculation, inoculating in a ladle, may be performed. The inoculation method may take various forms. For example, inoculation may be by placing the inoculant in the bottom of the ladle before the molten metal is poured, or by adding the inoculant to the surface of the molten metal in the ladle. Alternatively, a wire on which an inoculant is placed may be brought into contact with the molten metal in the ladle or the molten metal being poured into the ladle.
既述のように、本実施形態では、取鍋で接種を行う一次接種が行われてよい。接種方法は、種々の態様とされてよい。例えば、接種は、溶湯が注がれる前の取鍋の底に接種剤を配置しておくものであってもよいし、取鍋内の溶湯にその表面から接種剤を添加するものであってもよいし、取鍋内の溶湯又は取鍋内に注がれる溶湯に接種剤が配置されたワイヤーを接触させるものであってもよい。 (Primary inoculation)
As already mentioned, in this embodiment, primary inoculation, inoculating in a ladle, may be performed. The inoculation method may take various forms. For example, inoculation may be by placing the inoculant in the bottom of the ladle before the molten metal is poured, or by adding the inoculant to the surface of the molten metal in the ladle. Alternatively, a wire on which an inoculant is placed may be brought into contact with the molten metal in the ladle or the molten metal being poured into the ladle.
接種剤の材料(別の観点では目的)も任意である。接種剤の材料としては、例えば、Fe-Si系、Ca-Si系、Si-Zr系及びFe-Cr系のものを挙げることができる。その添加量は、例えば、接種剤の種類にもよるが、添加前の溶湯の質量に対して、0.1質量%以上0.5%質量以下である。
The material of the inoculant (the purpose from another point of view) is also arbitrary. Examples of materials for the inoculant include Fe--Si, Ca--Si, Si--Zr and Fe--Cr. The amount to be added is, for example, 0.1% by mass or more and 0.5% by mass or less with respect to the mass of the molten metal before addition, depending on the type of inoculant.
なお、例えば、接種剤についてFe-Si系というとき、Fe及びSiが接種剤の主成分を構成することを意味する。主成分は、例えば、接種剤の50質量%以上、60質量%以上又は80質量%以上の成分とされてよい。従って、例えば、Fe-Si系接種剤は、Fe及びSiの合計質量が接種剤の質量50%以上、60質量%以上又は80質量%以上を占める。
For example, when an inoculant is referred to as an Fe—Si system, it means that Fe and Si constitute the main components of the inoculant. The main component may be, for example, 50% by mass or more, 60% by mass or more, or 80% by mass or more of the inoculant. Thus, for example, in an Fe—Si based inoculant, the total weight of Fe and Si accounts for 50% or more, 60% or more, or 80% or more by weight of the inoculant.
上記のように一次接種における接種剤の材料及び添加量は任意であるが、例えば、溶湯の質量に対して、0.4質量%以上0.6質量%以下のFe-Si系接種剤の接種が行われてよい。Fe-Si系接種剤の具体例としては、例えば、接種剤100質量%に対して、50質量%のSi、10質量%のCa、5質量%のBa、及び残りの質量%のFeを含むものが用いられてよい。
As described above, the material and the amount of the inoculant added in the primary inoculation are arbitrary, but for example, 0.4% by mass or more and 0.6% by mass or less of the Fe—Si-based inoculant is inoculated with respect to the mass of the molten metal. may be performed. Specific examples of Fe—Si-based inoculants include 50% by mass of Si, 10% by mass of Ca, 5% by mass of Ba, and the rest of Fe by mass with respect to 100% by mass of the inoculant. can be used.
(二次接種)
既述のように、本実施形態では、注湯以後に接種を行う二次接種が行われてよい。この接種方法は、種々の物とされてよい。例えば、接種は、鋳型に注がれている溶湯に接種剤を添加するものであってもよいし、鋳型に注がれている溶湯に接種剤が配置されたワイヤーを触れさせるものであってもよいし、溶湯が注がれる前の湯溜まり又は鋳型内に接種剤を配置しておくものであってもよい。接種剤の材料及び添加量も任意であり、これらについては、上記の一次接種の説明が援用されてよい。 (secondary inoculation)
As described above, in the present embodiment, secondary inoculation may be performed after the hot water is poured. This method of inoculation may vary. For example, inoculation may be by adding an inoculant to the molten metal being poured into the mould, or by touching a wire with an inoculant placed thereon to the molten metal being poured into the mould. Alternatively, the inoculant may be placed in a pool or mold before the molten metal is poured. The material and addition amount of the inoculant are also arbitrary, and the above description of the primary inoculation may be used for these.
既述のように、本実施形態では、注湯以後に接種を行う二次接種が行われてよい。この接種方法は、種々の物とされてよい。例えば、接種は、鋳型に注がれている溶湯に接種剤を添加するものであってもよいし、鋳型に注がれている溶湯に接種剤が配置されたワイヤーを触れさせるものであってもよいし、溶湯が注がれる前の湯溜まり又は鋳型内に接種剤を配置しておくものであってもよい。接種剤の材料及び添加量も任意であり、これらについては、上記の一次接種の説明が援用されてよい。 (secondary inoculation)
As described above, in the present embodiment, secondary inoculation may be performed after the hot water is poured. This method of inoculation may vary. For example, inoculation may be by adding an inoculant to the molten metal being poured into the mould, or by touching a wire with an inoculant placed thereon to the molten metal being poured into the mould. Alternatively, the inoculant may be placed in a pool or mold before the molten metal is poured. The material and addition amount of the inoculant are also arbitrary, and the above description of the primary inoculation may be used for these.
上記のように二次接種における接種剤の材料及び添加量は任意であるが、例えば、溶湯の質量に対して、0.05質量%以上0.10質量%以下のFe-Si系接種剤の接種が行われてよい。Fe-Si系接種剤としては、例えば、上記の一次接種の説明で例示したものが用いられてよい。
As described above, the material and amount of the inoculant in the secondary inoculation are arbitrary. Inoculation may be performed. As the Fe—Si based inoculant, for example, those exemplified in the explanation of the primary inoculation above may be used.
本実施形態では、炉内の溶湯におけるSiは、上記のように1.7質量%以下であり、比較的少なくされている。そして、二次接種(及び/又は一次接種)においてFe-Si系接種剤を用いると、最終的に鋳鉄が含むSiを少なくしつつも、黒鉛の晶出量を増加させることができる。一方で、そのような黒鉛の晶出量が増加した鋳鉄において、Fe-Si系接種剤によって組織を微細化して、引け性の改善及び強度の向上を図ることができる。Snが添加されてパーライト化が図られた組織においては、上記の効果が更に向上する。
In this embodiment, the Si content in the molten metal in the furnace is 1.7% by mass or less as described above, which is relatively small. Then, when an Fe—Si based inoculant is used in secondary inoculation (and/or primary inoculation), the amount of crystallized graphite can be increased while ultimately reducing the amount of Si contained in cast iron. On the other hand, in such cast iron with an increased amount of graphite crystallized out, it is possible to refine the structure with an Fe—Si based inoculant to improve shrinkage and strength. The above effect is further improved in a structure that is pearliticized by adding Sn.
(実施例)
上述の組成を有する片状黒鉛鋳鉄を実際に作製し、その機械的性質(TS及びHB)を調べた。その結果を以下に示す。 (Example)
A flake graphite cast iron having the composition described above was actually produced, and its mechanical properties (TS and HB) were investigated. The results are shown below.
上述の組成を有する片状黒鉛鋳鉄を実際に作製し、その機械的性質(TS及びHB)を調べた。その結果を以下に示す。 (Example)
A flake graphite cast iron having the composition described above was actually produced, and its mechanical properties (TS and HB) were investigated. The results are shown below.
図3は、実施例及び比較例に係る片状黒鉛鋳鉄の組成及び機械的性質を示す図表である。
FIG. 3 is a chart showing the composition and mechanical properties of flake graphite cast iron according to Examples and Comparative Examples.
この図において、「No.」の欄は、実施例及び比較例に付した通し番号を示している。No.1~No.7及びNo.9は比較例である。No.8及びNo.10~No.17は実施例である。
In this figure, the "No." column indicates the serial numbers assigned to the examples and comparative examples. No. 1 to No. 7 and no. 9 is a comparative example. No. 8 and no. 10 to No. 17 is an example.
「C(wt%)」、「Si(wt%)」、「Mn(wt%)」及び「Sn(wt%)」の欄は、それぞれ、実施例及び比較例に係る片状黒鉛鋳鉄(100質量%)が含むC、Si、Mn及びSnの質量%を示している。図示されていないが、Feは、基本的に(意図されていない微量の成分を無視したときに)、残りの質量%を占める。なお、ここでの質量%は、炉に供給されたこれらの素材の質量比から求められており、接種等の影響は除外されている。
The columns of "C (wt%)", "Si (wt%)", "Mn (wt%)" and "Sn (wt%)" respectively indicate flake graphite cast iron (100 % by mass) of C, Si, Mn and Sn. Although not shown, Fe essentially (ignoring unintended minor constituents) makes up the remaining weight percent. It should be noted that the mass % here is obtained from the mass ratio of these materials supplied to the furnace, and the effects of inoculation and the like are excluded.
「CE(wt%)」の欄は、「C(wt%)」及び「Si(wt%)」欄の値を既述の(1)式に代入して算出したCE(質量%)の値を示している。「CE_L(wt%)」の欄は、「C(wt%)」及び「Si(wt%)」欄の値を既述の(2)式の右辺に代入して算出したCE(質量%)の上限値を示している。
The column "CE (wt%)" is the value of CE (mass%) calculated by substituting the values in the "C (wt%)" and "Si (wt%)" columns into the above formula (1). is shown. The column of "CE_L (wt%)" is CE (mass%) calculated by substituting the values in the "C (wt%)" and "Si (wt%)" columns into the right side of the above formula (2). indicates the upper limit of
「TS(MPa)」の欄は引張強さを示している。「HB」の欄はブリネル硬さ(単位無し)を示している。いずれの値も実験によって得られた値である。「Eval.」は、TS及びHBについての評価結果を示している。ここでは、FC300の条件であるTS>300MPaかつHB<262が満たされた場合は「A」とし、それ以外の場合は「B」とした。
The "TS (MPa)" column indicates tensile strength. The "HB" column indicates the Brinell hardness (no units). All values are values obtained by experiments. "Eval." indicates the evaluation results for TS and HB. Here, when the conditions of FC300, TS>300 MPa and HB<262, were satisfied, "A" was given, and otherwise, "B" was given.
なお、実施例及び比較例では、一次接種及び二次接種が行われている。一次接種では、既述のFe-50%Si-10%Ca-5%Baの接種剤を取鍋にて0.5%添加している。二次接種では、既述のFe-50%Si-10%Ca-5%Baの接種剤を掛け堰にて0.1%添加している。
In the examples and comparative examples, primary and secondary inoculations are performed. In the primary inoculation, 0.5% of the Fe-50%Si-10%Ca-5%Ba inoculant described above was added in a ladle. In the secondary inoculation, 0.1% of the aforementioned inoculant of Fe-50% Si-10% Ca-5% Ba was added by a weir.
図4は、図3に示した実施例及び比較例のSi及びCの質量%を示す図である。
FIG. 4 is a diagram showing mass % of Si and C in the examples and comparative examples shown in FIG.
この図において、横軸は、Siの質量%を示している。縦軸は、Cの質量%を示している。各軸の最小値及び最大値は、一般的な鋳鉄におけるSi及びCの質量%の最小値及び最大値と概ね一致している。
In this figure, the horizontal axis indicates the mass % of Si. The vertical axis indicates the mass % of C. The minimum and maximum values on each axis generally match the minimum and maximum mass% values of Si and C in general cast iron.
図中の右上には、図中に示された点又は線の凡例が示されている。「EX」の点は、実施例に対応している。「REF」の点は、比較例に対応している。「EQ」の線は、既述の(2)式の左辺と右辺とが同じとき(CEが上限値であるとき)のCとSiとの関係を示している。「EQ」の線よりも左下の領域において(2)式が満たされている。
In the upper right of the figure, a legend for the points or lines shown in the figure is shown. The "EX" points correspond to examples. The "REF" point corresponds to the comparative example. The "EQ" line shows the relationship between C and Si when the left side and right side of the above-described equation (2) are the same (when CE is the upper limit). Expression (2) is satisfied in the lower left region of the "EQ" line.
図では、C(質量%)の下限(2.7)及び上限(3.5)を示す線、並びにSi(質量%)の下限(1.2)及び上限(1.7)を示す線も示されている。また、ハッチングは、本実施形態のC、Si及びCEに係る条件を満たす範囲を示している。
In the figure, there are also lines indicating the lower limit (2.7) and upper limit (3.5) of C (mass%), and lines indicating the lower limit (1.2) and upper limit (1.7) of Si (mass%). It is shown. In addition, hatching indicates a range that satisfies the conditions for C, Si, and CE in this embodiment.
なお、図4では、図3に示した、C(質量%)及びSi(質量%)における小数第2位の値が四捨五入されていない値をプロットしている。一方、C及びSiの範囲は、少数第1位までの値で規定されている。その結果、Si=1.2付近において、No.16(実施例)に対応する点が、ハッチングされた領域(実施例を示す領域)の外側に位置している。
In addition, in FIG. 4, the values of C (mass %) and Si (mass %) shown in FIG. On the other hand, the ranges of C and Si are defined by values up to the first decimal place. As a result, around Si=1.2, No. The points corresponding to 16 (example) are located outside the hatched area (area indicating the example).
図3に示すように、実施例は全てA評価である。一方、比較例は全てB評価である。そして、図4に示すように、実施例と比較例とは「EQ」の線の付近に密集しているとともに、「EQ」の線を境にして図の左下と右上とに分かれて分布している。以上のことから、(2)式を満たすようにCEを設定することによって、FC300における機械的性質又はこれに近い性質を確保しつつ、CE(質量%)を最大限大きくできることが確認された。CEを最大限大きくできることによって、黒鉛の晶出量を多くして、引け性を改善できる。
As shown in FIG. 3, all examples are rated A. On the other hand, all the comparative examples are rated B. As shown in FIG. 4, the examples and the comparative examples are concentrated near the "EQ" line, and are divided into the lower left and upper right parts of the figure with the "EQ" line as a boundary. ing. From the above, it was confirmed that by setting CE so as to satisfy the formula (2), the CE (% by mass) can be maximized while ensuring the mechanical properties of FC300 or properties close thereto. By maximizing the CE, it is possible to increase the amount of graphite crystallized and improve shrinkage.
図3において、No.16は、他の実施例に比較してSnが少ない実施例とされている。No.14は、C及びSiの条件がNo.16に近い実施例である。両者のTSの比較から、Snの添加によって引張強さが向上することが確認できる。
In FIG. 3, No. No. 16 is an example with less Sn than other examples. No. No. 14 has C and Si conditions. It is an embodiment close to 16. From the comparison of both TS, it can be confirmed that the addition of Sn improves the tensile strength.
なお、図3及び図4に示す実施例からは、以下のとおり、実施形態で説明した質量%の範囲よりも狭い範囲を抽出することができる。
From the examples shown in FIGS. 3 and 4, it is possible to extract a range narrower than the mass % range described in the embodiment as follows.
例えば、C(質量%)の下限として、実施例中で最も低いCの値である2.9(No.17)を抽出できる。C(質量%)の上限として、実施例中で最も高いCの値である3.4(No.8)を抽出できる。Si(質量%)の上限として、実施例中で最も低いSiの値である1.5(No.10)を抽出できる。
For example, as the lower limit of C (% by mass), 2.9 (No. 17), which is the lowest C value in the examples, can be extracted. As the upper limit of C (% by mass), 3.4 (No. 8), which is the highest C value in the examples, can be extracted. As the upper limit of Si (% by mass), 1.5 (No. 10), which is the lowest Si value in the examples, can be extracted.
実施形態では、CEの下限については直接的には触れず、Cの下限及びSiの下限によって間接的にCEの下限が規定された。ただし、例えば、「EQ」の線に平行で、「EQ」の線から離れた線によってCEの下限を規定してもよい。
In the embodiment, the lower limit of CE was not directly mentioned, and the lower limit of CE was indirectly defined by the lower limit of C and the lower limit of Si. However, for example, the lower limit of CE may be defined by a line parallel to the "EQ" line and away from the "EQ" line.
より具体的には、例えば、実施例中で、「EQ」の線から最も離れた実施例(No.17)を通る線を下限としてよい。この場合、以下の不等式が満たされてよい。
CE≧-0.33×Si+3.83 More specifically, for example, the lower limit may be a line passing through the example (No. 17) farthest from the "EQ" line among the examples. In this case, the following inequality may be satisfied.
CE≧−0.33×Si+3.83
CE≧-0.33×Si+3.83 More specifically, for example, the lower limit may be a line passing through the example (No. 17) farthest from the "EQ" line among the examples. In this case, the following inequality may be satisfied.
CE≧−0.33×Si+3.83
また、例えば、CEを「EQ」の線に極力近づけることとして、CEが3.67のNo.13又はCEが3.83のNo.15を通る線を下限として、以下の不等式が満たされてよい。
CE≧-0.33×Si+4.15、又は
CE≧-0.33×Si+4.27
なお、前者の不等式は、No.13の他、No.8、No.10~No.12及びNo.15において満たされる。後者の不等式は、No.15の他、No.8及びNo.10~No.12において満たされる。 Also, for example, assuming that the CE is as close to the "EQ" line as possible, the No. No. 13 or CE of 3.83. With the line through 15 as a lower bound, the following inequality may be satisfied.
CE≧−0.33×Si+4.15, or CE≧−0.33×Si+4.27
Note that the former inequality is No. In addition to No. 13, No. 8, No. 10 to No. 12 and no. 15 is filled. The latter inequality is given by No. In addition to No. 15, No. 8 and no. 10 to No. 12 is filled.
CE≧-0.33×Si+4.15、又は
CE≧-0.33×Si+4.27
なお、前者の不等式は、No.13の他、No.8、No.10~No.12及びNo.15において満たされる。後者の不等式は、No.15の他、No.8及びNo.10~No.12において満たされる。 Also, for example, assuming that the CE is as close to the "EQ" line as possible, the No. No. 13 or CE of 3.83. With the line through 15 as a lower bound, the following inequality may be satisfied.
CE≧−0.33×Si+4.15, or CE≧−0.33×Si+4.27
Note that the former inequality is No. In addition to No. 13, No. 8, No. 10 to No. 12 and no. 15 is filled. The latter inequality is given by No. In addition to No. 15, No. 8 and no. 10 to No. 12 is filled.
(引け性の改善)
実施形態に係る片状黒鉛鋳鉄製品を実際に作製して引け性を評価した。具体的には、以下のとおりである。 (improvement of shrinkage)
A flake graphite cast iron product according to the embodiment was actually produced and evaluated for shrinkage. Specifically, it is as follows.
実施形態に係る片状黒鉛鋳鉄製品を実際に作製して引け性を評価した。具体的には、以下のとおりである。 (improvement of shrinkage)
A flake graphite cast iron product according to the embodiment was actually produced and evaluated for shrinkage. Specifically, it is as follows.
実施形態に係る片状黒鉛鋳鉄によって、工作機械用のテーブルを作製した。テーブルの形状は、図2を参照して説明したように、概略、板状部と、板状部から立ち上がるリブとを有する形状である。テーブルの質量は、3800kgとした。板状部とリブとが交差する部分における断面を撮像し、画像処理によって前記断面における引け巣の面積を測定した。その結果、公知の一般的な組成では引け巣の面積は4990mm2だった。一方、本実施形態に係る組成では、引け巣は1500mm2だった。すなわち、引け巣が70%低減された。
A machine tool table was produced from flake graphite cast iron according to the embodiment. The shape of the table, as described with reference to FIG. 2, is generally a shape having a plate-like portion and ribs rising from the plate-like portion. The mass of the table was 3800 kg. A cross-section at the intersection of the plate-shaped portion and the rib was imaged, and the area of the shrinkage cavities in the cross-section was measured by image processing. As a result, the area of the shrinkage cavities was 4990 mm 2 in the known general composition. On the other hand, in the composition according to this embodiment, the shrinkage cavities were 1500 mm 2 . That is, shrinkage cavities were reduced by 70%.
以上のとおり、本実施形態に係る片状黒鉛鋳鉄製品は、含有する炭素及びケイ素の質量%をそれぞれC及びSiで表し、炭素当量(質量%)を既述の(1)式で計算するとき、
下記の不等式、
2.7≦C≦3.5、
1.2≦Si≦1.7、及び
CE≦-0.33×Si+4.36
を満たす。 As described above, in the flake graphite cast iron product according to the present embodiment, the mass% of carbon and silicon contained is represented by C and Si, respectively, and the carbon equivalent (mass%) is calculated by the above-described formula (1) ,
The following inequality,
2.7≦C≦3.5,
1.2≦Si≦1.7, and CE≦−0.33×Si+4.36
meet.
下記の不等式、
2.7≦C≦3.5、
1.2≦Si≦1.7、及び
CE≦-0.33×Si+4.36
を満たす。 As described above, in the flake graphite cast iron product according to the present embodiment, the mass% of carbon and silicon contained is represented by C and Si, respectively, and the carbon equivalent (mass%) is calculated by the above-described formula (1) ,
The following inequality,
2.7≦C≦3.5,
1.2≦Si≦1.7, and CE≦−0.33×Si+4.36
meet.
別の観点では、本実施形態に係る片状黒鉛鋳鉄製品の製造方法は、炉内で溶解されていた鋳鉄の溶湯を鋳型内で冷却して凝固させ、片状黒鉛鋳鉄製品を製造する方法であって、炉内における溶湯が上記の不等式を満たす。
From another point of view, the method for manufacturing a flake graphite cast iron product according to the present embodiment is a method for manufacturing a flake graphite cast iron product by cooling and solidifying molten cast iron that has been melted in a furnace in a mold. and the molten metal in the furnace satisfies the above inequality.
これにより、既に述べたように、一定の機械的性質を確保しつつ、黒鉛の晶出量を多くして、引け性を改善することができる。
As already mentioned, this makes it possible to increase the amount of graphite crystallized and improve shrinkage while ensuring certain mechanical properties.
1…鋳型、3…砂部、5A及び5B…冷し金、7…鋳物部。
1...Mold, 3...Sand section, 5A and 5B...Chill, 7...Casting section.
Claims (12)
- 含有する炭素及びケイ素の質量%をそれぞれC及びSiで表し、
炭素当量(質量%)を次式
CE=C+1/3×Si
で計算するとき、
下記の不等式、
2.7≦C≦3.5、
1.2≦Si≦1.7、及び
CE≦-0.33×Si+4.36
を満たす、
片状黒鉛鋳鉄製品。 The mass% of carbon and silicon contained is represented by C and Si, respectively,
The carbon equivalent (mass%) is given by the following formula CE = C + 1/3 x Si
When calculating with
The following inequality,
2.7≦C≦3.5,
1.2≦Si≦1.7, and CE≦−0.33×Si+4.36
satisfy the
Flaky graphite cast iron products. - 含有するマンガンの質量%をMnで表すとき、下記の不等式
0.90≦Mn≦1.00
を満たす、
請求項1に記載の片状黒鉛鋳鉄製品。 When the mass% of manganese contained is represented by Mn, the following inequality 0.90 ≤ Mn ≤ 1.00
satisfy the
The flake graphite cast iron product according to claim 1. - 含有するスズの質量%をSnで表すとき、下記の不等式
0.02≦Sn≦0.05
を満たす、
請求項1又は2に記載の片状黒鉛鋳鉄製品。 When the mass% of tin contained is represented by Sn, the following inequality 0.02 ≤ Sn ≤ 0.05
satisfy the
The flake graphite cast iron product according to claim 1 or 2. - 下記の不等式、
CE≧-0.33×Si+4.27
を満たす、
請求項1~3のいずれか1項に記載の片状黒鉛鋳鉄製品。 The following inequality,
CE≧−0.33×Si+4.27
satisfy the
The flake graphite cast iron product according to any one of claims 1 to 3. - 炉内で溶解されていた鋳鉄の溶湯を鋳型内で冷却して凝固させ、片状黒鉛鋳鉄製品を製造する方法であって、
前記鋳鉄が含有する炭素及びケイ素の質量%をそれぞれC及びSiで表し、
炭素当量を次式
CE=C+1/3×Si
で計算するとき、
前記炉内における溶湯が、下記の不等式、
2.7≦C≦3.5、
1.2≦Si≦1.7、及び
CE≦-0.33×Si+4.36
を満たす、
片状黒鉛鋳鉄製品の製造方法。 A method for producing a flake graphite cast iron product by cooling and solidifying molten cast iron that has been melted in a furnace in a mold, comprising:
The mass% of carbon and silicon contained in the cast iron is represented by C and Si, respectively,
The carbon equivalent is given by the following formula CE = C + 1/3 x Si
When calculating with
The molten metal in the furnace is determined by the following inequality:
2.7≦C≦3.5,
1.2≦Si≦1.7, and CE≦−0.33×Si+4.36
satisfy the
A method for producing flake graphite cast iron products. - 取鍋でFe-Si系接種剤を前記溶湯に添加する
請求項5に記載の片状黒鉛鋳鉄製品の製造方法。 The method for producing a flake graphite cast iron product according to claim 5, wherein an Fe—Si based inoculant is added to the molten metal in a ladle. - 前記鋳型へ前記溶湯を注ぐ時期以後にFe-Si系接種剤を前記溶湯に添加する
請求項5又は6に記載の片状黒鉛鋳鉄製品の製造方法。 The method for producing a flake graphite cast iron product according to claim 5 or 6, wherein an Fe—Si based inoculant is added to the molten metal after the timing of pouring the molten metal into the mold. - 前記鋳型内で前記鋳鉄を冷却するときの温度勾配及び冷却速度をそれぞれG(℃/cm)及びR(℃/min)で表したとき、前記鋳型内の前記鋳鉄に、新山パラメータG/R1/2((℃×min)1/2/cm)が0.4以下となる期間を有する部分が生じる
請求項5~7のいずれか1項に記載の片状黒鉛鋳鉄製品の製造方法。 When the temperature gradient and cooling rate when cooling the cast iron in the mold are represented by G (° C./cm) and R (° C./min), respectively, the cast iron in the mold has a Niiyama parameter G / R 1 /2 ((° C.×min) 1/2 /cm) is 0.4 or less. - 前記鋳型に冷し金が設けられていない
請求項8に記載の片状黒鉛鋳鉄製品の製造方法。 The method for producing a flake graphite cast iron product according to claim 8, wherein the mold is not provided with a chill. - 前記鋳型に冷し金が設けられており、
前記鋳型内の前記鋳鉄は、G/R1/2が1.0以下となる期間を有する第1部位を有し、
前記鋳型の内面のうち前記第1部位から最短距離に位置する部分に冷し金が設けられていない
請求項8に記載の片状黒鉛鋳鉄製品の製造方法。 A chill is provided in the mold,
The cast iron in the mold has a first portion having a period in which G/R 1/2 is 1.0 or less,
9. The method of manufacturing a flake graphite cast iron product according to claim 8, wherein no chill is provided in a portion of the inner surface of the mold that is located at the shortest distance from the first portion. - 前記第1部位は、G/R1/2が0.4以下となる期間を有する
請求項10に記載の片状黒鉛鋳鉄製品の製造方法。 The method for manufacturing a flake graphite cast iron product according to claim 10, wherein the first portion has a period in which G/R 1/2 is 0.4 or less. - 前記鋳型内の前記鋳鉄が第2部位を有し、
前記鋳型の内面のうち前記第2部位から最短距離に位置する部分に冷し金が設けられており、かつ
前記第2部位は、冷し金が設けられていないと仮定した場合にG/R1/2が0.01以下となる期間を有する
請求項10又は11に記載の片状黒鉛鋳鉄製品の製造方法。 said cast iron in said mold having a second portion;
A chill is provided on the part of the inner surface of the mold that is located at the shortest distance from the second part, and the second part is G / R when it is assumed that the chill is not provided. The method for producing a flake graphite cast iron product according to claim 10 or 11, having a period in which 1/2 is 0.01 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180032175.9A CN115516123A (en) | 2021-02-16 | 2021-08-20 | Flake graphite cast iron product and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-022368 | 2021-02-16 | ||
JP2021022368A JP7278316B2 (en) | 2021-02-16 | 2021-02-16 | Flaky graphite cast iron product and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022176237A1 true WO2022176237A1 (en) | 2022-08-25 |
Family
ID=82931307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/030544 WO2022176237A1 (en) | 2021-02-16 | 2021-08-20 | Flake graphite cast-iron product and method for manufacturing same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7278316B2 (en) |
CN (1) | CN115516123A (en) |
WO (1) | WO2022176237A1 (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6362840A (en) * | 1986-09-02 | 1988-03-19 | Honda Motor Co Ltd | Metal mold for synthetic resin molding |
JPH1096040A (en) * | 1996-09-20 | 1998-04-14 | Toyota Motor Corp | High strength gray cast iron excellent in cutting workability |
JP2000104138A (en) * | 1998-09-29 | 2000-04-11 | Aisin Takaoka Ltd | Cast iron material excellent in vibration damping performance and strength |
JP2002003982A (en) * | 2000-06-16 | 2002-01-09 | Kiyohito Ishida | Cast iron excellent in machinability and mechanical property |
CN103114238A (en) * | 2013-02-01 | 2013-05-22 | 太仓科博尔精密铸业有限公司 | High-strength and high-hardness gray cast iron material and method for casting same into casting |
CN103952621A (en) * | 2014-05-26 | 2014-07-30 | 四川省富邦钒钛制动鼓有限公司 | Vanadium-titanium gray cast iron and production technique thereof |
JP2014189824A (en) * | 2013-03-27 | 2014-10-06 | Nippon Piston Ring Co Ltd | Component for elevator |
CN104313232A (en) * | 2014-10-14 | 2015-01-28 | 株洲联诚集团有限责任公司 | Alloy gray cast iron material for locomotive brake disc, and casting method of alloy gray cast iron material |
CN104357734A (en) * | 2014-09-19 | 2015-02-18 | 上海材料研究所 | High-strength gray cast iron antifriction material |
JP2015158010A (en) * | 2014-02-21 | 2015-09-03 | 斗山インフラコア株式会社 | Flaky graphite cast iron and production method thereof |
CN105063471A (en) * | 2015-09-29 | 2015-11-18 | 梅州五指石科技有限公司 | Low-alloy gray cast iron material for truck brake drum and preparation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102430714A (en) * | 2011-11-30 | 2012-05-02 | 天津一机机械有限公司 | Process for casting thick and large nodular cast iron valve plate |
CN103789605A (en) * | 2014-02-19 | 2014-05-14 | 恒天重工股份有限公司 | Manufacturing method of spheroidal graphite cast iron casting of wind power yaw variable-pitch device |
CN110640088B (en) * | 2019-10-08 | 2021-04-13 | 一汽解放大连柴油机有限公司 | Process control method for shrinkage porosity defect of iron casting |
-
2021
- 2021-02-16 JP JP2021022368A patent/JP7278316B2/en active Active
- 2021-08-20 WO PCT/JP2021/030544 patent/WO2022176237A1/en active Application Filing
- 2021-08-20 CN CN202180032175.9A patent/CN115516123A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6362840A (en) * | 1986-09-02 | 1988-03-19 | Honda Motor Co Ltd | Metal mold for synthetic resin molding |
JPH1096040A (en) * | 1996-09-20 | 1998-04-14 | Toyota Motor Corp | High strength gray cast iron excellent in cutting workability |
JP2000104138A (en) * | 1998-09-29 | 2000-04-11 | Aisin Takaoka Ltd | Cast iron material excellent in vibration damping performance and strength |
JP2002003982A (en) * | 2000-06-16 | 2002-01-09 | Kiyohito Ishida | Cast iron excellent in machinability and mechanical property |
CN103114238A (en) * | 2013-02-01 | 2013-05-22 | 太仓科博尔精密铸业有限公司 | High-strength and high-hardness gray cast iron material and method for casting same into casting |
JP2014189824A (en) * | 2013-03-27 | 2014-10-06 | Nippon Piston Ring Co Ltd | Component for elevator |
JP2015158010A (en) * | 2014-02-21 | 2015-09-03 | 斗山インフラコア株式会社 | Flaky graphite cast iron and production method thereof |
CN103952621A (en) * | 2014-05-26 | 2014-07-30 | 四川省富邦钒钛制动鼓有限公司 | Vanadium-titanium gray cast iron and production technique thereof |
CN104357734A (en) * | 2014-09-19 | 2015-02-18 | 上海材料研究所 | High-strength gray cast iron antifriction material |
CN104313232A (en) * | 2014-10-14 | 2015-01-28 | 株洲联诚集团有限责任公司 | Alloy gray cast iron material for locomotive brake disc, and casting method of alloy gray cast iron material |
CN105063471A (en) * | 2015-09-29 | 2015-11-18 | 梅州五指石科技有限公司 | Low-alloy gray cast iron material for truck brake drum and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN115516123A (en) | 2022-12-23 |
JP2022124625A (en) | 2022-08-26 |
JP7278316B2 (en) | 2023-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104988381B (en) | Large-section cast ferrite nodular cast iron and preparation method thereof | |
CN102618758B (en) | Cast magnesium alloy of low linear shrinkage | |
CN101418414B (en) | QT600-3 ductile iron casting and method for producing the same | |
CN104060157B (en) | A kind of hypereutectic high-chromium white cast iron and preparation method thereof | |
EP3443130B1 (en) | Gray cast iron inoculant | |
CN103469109A (en) | Roughing roll made of graphitizable steel material and manufacturing method thereof | |
CN103614612A (en) | High-strength low stress cast nodular cast iron with high elasticity modulus and manufacturing method thereof | |
CN105132796B (en) | Middle silicon molybdenum alloy vermicular cast iron glass mold material and preparation method thereof | |
CN105506440A (en) | Nodular cast iron winding drum high in strength and ductility and preparation method thereof | |
JP5085839B2 (en) | Gray cast iron for cylinder head | |
CN111922320A (en) | Preparation method of nodular cast iron roller and roller | |
EP2749658A1 (en) | Method for as-cast production of ausferritic ductile iron | |
CN112159922A (en) | Gray cast iron inoculant and preparation method thereof | |
KR20130087213A (en) | High strength flake graphite iron using rare earth element and preparation method thereof | |
WO2022176237A1 (en) | Flake graphite cast-iron product and method for manufacturing same | |
CN104630636A (en) | Low-carbon cast steel and preparation method thereof | |
CN104532107A (en) | Vanadium-titanium vermicular cast iron brake drum and manufacture method thereof | |
CN104131220A (en) | HT200 casting | |
JP5282546B2 (en) | High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance | |
CN104060153B (en) | A kind of HT200 foundry goods and production method thereof | |
CN1044496C (en) | Assembly guide board for multiple high chromium caststeel mill and manufacture method thereof | |
JP2010149129A (en) | Holder for die-casting die, and method for producing the same | |
FI112669B (en) | Manufacture of tempered copper alloys | |
CN102618759B (en) | Low-shrinkage magnesium alloy | |
JP2007327083A (en) | Spheroidal graphite cast iron and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21926666 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202217060929 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21926666 Country of ref document: EP Kind code of ref document: A1 |