WO2022176169A1 - Lightning protection system, control device, lightning protection method and program - Google Patents

Lightning protection system, control device, lightning protection method and program Download PDF

Info

Publication number
WO2022176169A1
WO2022176169A1 PCT/JP2021/006445 JP2021006445W WO2022176169A1 WO 2022176169 A1 WO2022176169 A1 WO 2022176169A1 JP 2021006445 W JP2021006445 W JP 2021006445W WO 2022176169 A1 WO2022176169 A1 WO 2022176169A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
lightning protection
protected
protection system
determination unit
Prior art date
Application number
PCT/JP2021/006445
Other languages
French (fr)
Japanese (ja)
Inventor
尚倫 中村
直樹 花岡
裕二 樋口
徹 田中
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/006445 priority Critical patent/WO2022176169A1/en
Publication of WO2022176169A1 publication Critical patent/WO2022176169A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage

Definitions

  • the present invention relates to a lightning protection system, a control device, a lightning protection method and a program.
  • Non-Patent Document 1 discloses a connection method in which a lightning arrester (SPD: Surge Protective Device) is connected in parallel with a device to be protected, and the grounding of the lightning arrester and the device to be protected is commonly connected.
  • SPD Surge Protective Device
  • ITU-T K.66 "Protection of customer premises from overvoltages,” Nov. 2019.
  • the operation of the lightning arrester causes a temporary short-circuit state on the output side of the protected device when a lightning surge current passes through, and there is a problem that the current output from the protected device increases.
  • a device to be protected such as a DC power supply device has an overcurrent protection function
  • the overcurrent protection function may be activated and the output may be stopped.
  • the disclosed technology aims to suppress an increase in the output current of a protected device when a lightning surge occurs.
  • the disclosed technology is a lightning protection system comprising a current suppressor, a lightning arrester, a current measuring device, and a control device, wherein the current measuring device measures a current value flowing from a device to be protected to the lightning arrester, and the control device is a current determination unit that determines whether the current value measured by the current measuring device exceeds a reference value, and an output from the protected device when it is determined that the current value exceeds the reference value and a current controller for controlling the current suppressor to limit the amount of current drawn.
  • FIG. 10 is a diagram showing an image of failure of an internal circuit by a conventional lightning protection method
  • FIG. 10 is a diagram showing an operation outline of an overcurrent protection function according to a conventional lightning protection method
  • 1 is a system configuration diagram of a lightning protection system according to Embodiment 1
  • FIG. 2 is a functional configuration diagram of a control device according to Embodiment 1
  • FIG. 6 is a flow chart showing an example of the flow of control processing according to the first embodiment
  • FIG. 10 is a system configuration diagram of a lightning protection system according to a second embodiment
  • FIG. 8 is a functional configuration diagram of a control device according to Embodiment 2
  • FIG. 11 is a flow chart showing an example of the flow of control processing according to the second embodiment;
  • FIG. FIG. 11 is a system configuration diagram of a lightning protection system according to Example 3;
  • FIG. 11 is a functional configuration diagram of a control device according to Example 3;
  • FIG. 11 is a flow chart showing an example of the flow of control processing according to the third embodiment;
  • FIG. 11 is a functional configuration diagram of a control device according to Embodiment 4;
  • FIG. 11 is a flow chart showing an example of the flow of control processing according to the fourth embodiment;
  • FIG. FIG. 11 is a diagram for explaining a method of calculating a difference in impedance characteristics according to Example 4; It is a hardware block diagram of a control apparatus.
  • FIG. 1 is a diagram showing an outline of a conventional lightning protection method.
  • a conventional lightning surge countermeasure system for a DC power supply device 20 includes a first lightning arrester 11 installed between two power cables 30 on the output side of the DC power supply device 20, and a first lightning arrester 11 installed between the ground of each power cable. and two second lightning arresters 12.
  • the two second lightning arresters 12 have one end connected to one of the power cables via the ground wire 40, and the other end connected to each other on the ground side via the ground wire 41 and to the ground electrode 50.
  • the housing of the DC power supply device 20 is made of metal, has a ground terminal, and is connected (connected) to the ground side of the second lightning arrester 12 via a ground wire 42 connected to the ground terminal. If the housing is directly connected to the ground electrode 50 , the effect of countermeasures will be reduced, so the housing has a ground terminal and is not directly connected to the ground electrode 50 .
  • the insulation bushing 23 or the like is used to avoid electrical continuity with the ground electrode due to contact with the rack, which is equivalent to the case where the housing and the ground electrode 50 are connected. Insulation is ensured between the chassis and the metal parts of the rack.
  • the countermeasure effect is affected depending on the wire diameter and length of the power cable 30, the wire diameter and length of the ground wire 42, and the wire diameter and length of the ground wire 41.
  • the power cable 30 of the DC power supply device 20 has a wire diameter of 38 sq and a length of 3 m
  • the ground wire 42 has a wire diameter of 38 sq and a length of 3 m
  • the ground wire 41 has a wire diameter of 38 sq and a length of 3 m. conditions are desirable.
  • the DC power supply device 20 also has an overcurrent detection circuit 21 and a noise countermeasure capacitor 22 .
  • the overcurrent detection circuit 21 monitors the current value of each power cable 30 and stops the output when an overcurrent is detected.
  • the noise countermeasure capacitor 22 is installed between the ground terminal and each power cable 30 .
  • FIG. 2 is a diagram showing an internal circuit failure image according to a conventional lightning surge countermeasure method.
  • the countermeasure effect of the lightning protection method shown in FIG. 1 is insufficient, part of the lightning surge current may enter the DC power supply device 20 and damage, for example, the noise countermeasure capacitor 22 . Also, if the distance between the two power cables 30 is short, there is a possibility that the internal circuit 24 and the like will be damaged by the discharge.
  • noise countermeasure capacitor 22, internal circuit 24, etc. are circuits that function in an emergency such as when electromagnetic noise occurs outside, the user may not notice a failure during normal use. Therefore, there is a possibility that the user will continue to use these devices while they are out of order.
  • connection between the DC power supply device 20 and the lightning protection system 10 may occur due to the case of the DC power supply device 20 being directly connected to the ground electrode 50 or the insulation between the case and the rack being improper. Condition may not be appropriate.
  • wire diameter and length of the power cable 30, the wire diameter and length of the ground wire 42, and the wire diameter and length of the ground wire 41 may not be appropriate.
  • FIG. 3 is a diagram showing an overview of the operation of an overcurrent protection function based on a conventional lightning surge countermeasure method.
  • the overcurrent detection circuit 21 provided in the DC power supply device 20 detects the overcurrent, and the overcurrent protection function operates, which may cause the output to stop. be.
  • the output of the DC power supply device 20 may be stopped and stable power supply may not be possible.
  • Example 1 Example 2, Example 3, and Example 4 will be described.
  • Example 1 shows an example of a configuration for solving the problem that the output current of the DC power supply device 20 shown in FIG. 3 suddenly increases.
  • FIG. 4 is a system configuration diagram of the lightning protection system according to the first embodiment. Note that the DC power supply device 20, which is an example of the device to be protected, is the same as in FIG.
  • the lightning protection system 10 is a system for protecting the DC power supply device 20, which is the equipment to be protected, from lightning surges.
  • the lightning protection system 10 comprises a first lightning arrester 11 , two second lightning arresters 12 , a controller 13 , a detector 14 and two switches 15 .
  • the first lightning arrester 11 and the two second lightning arresters 12 are the same as in FIG. 1, and are SPDs such as metal oxide varistors (MOVs), for example.
  • SPDs such as metal oxide varistors (MOVs), for example.
  • the detector 14 is composed of a first detector 14a and a second detector 14b.
  • the first detector 14a and the second detector 14b each inject a signal between the power cable 30 and the second lightning arrester 12, and receive the signal reflected by each element or connection point.
  • the first detector 14 a and the second detector 14 b measure the current value between the power cable 30 and the second lightning arrester 12 and transmit data indicating the measured current value to the control device 13 .
  • the first detector 14a and the second detector 14b are an example of a current measuring device that measures the value of the current flowing from the device to be protected to the lightning arrester.
  • the control device 13 is a device that controls the opening and closing of the switch 15.
  • the control device 13 controls opening and closing of the switch 15 based on the current value measured by the detector 14 . That is, the control device 13 controls to open (OFF) the switch 15 when both the current values measured by the first detector 14a and the second detector 14b exceed the reference value.
  • the lightning protection system 10 suppresses the amount of current output from the DC power supply device 20 .
  • the two switches 15 are connected to the two power cables 30, respectively, and are in a short-circuit (ON) state in the initial state.
  • ON short-circuit
  • OFF open
  • the switch 15 is an example of a current suppressor for suppressing the amount of current output from the DC power supply device 20, which is an example of the device to be protected.
  • the current suppressor does not have to be a switch as long as it can suppress the amount of current output from the DC power supply device 20 under the control of the control device 13.
  • an element such as a high resistor, an inductor, or the like in which current does not easily flow. may be inserted in the middle of each power cable 30 .
  • FIG. 5 is a functional configuration diagram of a control device according to the first embodiment.
  • the control device 13 includes a current determination section 131 , an integrated control section 132 and a current control section 133 .
  • the current determination unit 131 receives data indicating current values from the first detector 14a and the second detector 14b. Then, it is determined whether or not the received current value exceeds the reference value.
  • the reference value is a value set in advance as a reference for the current value when a lightning surge occurs.
  • the integrated control unit 132 controls the control processing of the control device 13 as a whole.
  • the current control section 133 controls opening and closing of the switch 15 based on the determination result of the current determination section 131 .
  • FIG. 6 is a flowchart illustrating an example of the flow of control processing according to the first embodiment
  • the integrated control unit 132 periodically executes control processing, for example, every 1 microsecond.
  • the current determination unit 131 acquires the first current value and the second current value from the first detector 14a and the second detector 14b (step S11).
  • the first current value is the current value measured by the first detector 14a.
  • the second current value is the current value measured by the second detector 14b.
  • the current determination unit 131 determines whether both the first current value and the second current value exceed the reference value (step S12).
  • the current control unit 133 transmits an open (OFF) signal to each switch 15 (step S13).
  • Each switch 15 becomes an open (OFF) state when receiving an open (OFF) signal, and cuts off the current of the power cable 30 . That is, current control unit 133 controls switch 15 so as to suppress the amount of current output from DC power supply device 20 .
  • the current control unit 133 outputs the short-circuit (ON) signal to each It is transmitted to the switch 15 (step S14).
  • each switch 15 receives a short-circuit (ON) signal, it enters a short-circuit (ON) state and does not interrupt the current of the power cable 30 . That is, current control unit 133 controls switch 15 so as not to suppress the amount of current output from DC power supply device 20 .
  • the lightning protection system 10 According to the lightning protection system 10 according to the first embodiment, it is possible to grasp the occurrence of a lightning surge by measuring the current value in the path in which the lightning surge current is generated. Then, when the current value exceeds the reference value, the amount of current output from the DC power supply device 20 is suppressed. As a result, it is possible to suppress an increase in the current value of the output current from the DC power supply device 20 when a lightning surge occurs.
  • Example 2 Next, Example 2 will be described.
  • the second embodiment as a technique for solving the problem that the user may not notice the failure of the device such as the noise countermeasure capacitor 22 and the internal circuit 24, an example of displaying information indicating the failure of the device will be shown. .
  • the differences from the first embodiment will be mainly described, and the same reference numerals as those used in the description of the first embodiment will be used for those having the same functional configuration as the first embodiment. given, and its explanation is omitted.
  • FIG. 7 is a system configuration diagram of a lightning protection system according to the second embodiment.
  • a lightning protection system 10 according to the second embodiment has a configuration in which a detector 16 is added to the lightning protection system 10 according to the first embodiment.
  • the detector 14 according to Example 2 injects the inspection signal into the ground line 40 .
  • the inspection signal is a signal for inspecting the internal failure of the DC power supply device 20 .
  • the detector 16 is composed of a third detector 16 a and a fourth detector 16 b, receives the inspection signal injected by the detector 14 and transmits it to the control device 13 .
  • the third detector 16a and the fourth detector 16b are examples of current measuring devices that measure the value of current flowing from the device to be protected to the lightning arrester.
  • the inspection signal injected by the detector 14 is received by propagating to the detector 16 via the noise countermeasure capacitor 22 of the DC power supply device 20 . Since the two second lightning arresters 12 have high impedance, the inspection signal does not pass through, but it propagates depending on the frequency. It is desirable to set the capacitor 22 to a frequency that is easily propagated.
  • FIG. 8 is a functional configuration diagram of a control device according to the second embodiment.
  • a control device 13 according to the second embodiment has a configuration in which an input reception unit 134, a failure determination unit 135, a storage unit 136, and a display unit 137 are added to the control device 13 according to the first embodiment.
  • the input reception unit 134 receives a failure check instruction from the user or other operation equipment.
  • the failure check is a function of inspecting the internal failure of the DC power supply device 20 .
  • the failure determination unit 135 receives the inspection signal from the detector 16 and determines whether or not there is a failure inside the DC power supply device 20 based on the received inspection signal.
  • the storage unit 136 stores various types of information, specifically, normal waveform information 901 .
  • the normal waveform information 901 is information indicating the waveform of the inspection signal when the DC power supply device 20 is in a normal state.
  • Failure determination unit 135 determines whether or not there is a failure inside DC power supply device 20 by comparing normal waveform information 901 with the received inspection signal.
  • the display unit 137 displays the determination result by the failure determination unit 135.
  • FIG. 9 is a flowchart illustrating an example of the flow of control processing according to the second embodiment.
  • the input reception unit 134 of the control device 13 receives a failure check instruction from the user or the like (step S21).
  • the failure determination unit 135 causes the first detector 14a and the second detector 14b to inject inspection signals (step S22).
  • the failure determination unit 135 acquires inspection signals received by the third detector 16a and the fourth detector 16b (step S23).
  • the failure determination unit 135 calculates the difference between the waveform of the acquired test signal and the waveform indicated in the normal waveform information 901 (step S24).
  • a known method may be used to calculate the waveform difference.
  • the failure determination unit 135 calculates a statistical value or the like indicating the difference.
  • the failure determination unit 135 determines whether the calculated difference exceeds the threshold (step S25).
  • the threshold is set in advance according to the method of calculating the waveform difference.
  • step S25: Yes the display unit 137 displays information indicating that there is a failure (step S26). If the failure determination unit 135 determines that the difference does not exceed the threshold (step S25: No), the display unit 137 displays information indicating no failure (step S27).
  • Example 3 Next, Example 3 will be described.
  • the third embodiment as a technique for solving the problem that the connection state between the DC power supply device 20 and the lightning protection system 10 may not be appropriate, an example of displaying information indicating the connection state of the equipment will be shown.
  • the differences from the second embodiment will be mainly described, and the same reference numerals as those used in the description of the second embodiment will be used for those having the same functional configuration as the second embodiment. given, and its explanation is omitted.
  • FIG. 10 is a system configuration diagram of a lightning protection system according to the third embodiment.
  • a lightning protection system 10 according to the third embodiment has a configuration in which a resistance circuit 17 is added to the lightning protection system 10 according to the second embodiment.
  • the detector 14 according to Example 3 injects an inspection signal into the ground line 40 .
  • the inspection signal is a signal for inspecting whether or not the connection state between the DC power supply device 20 and the lightning protection system 10 is appropriate.
  • the resistance circuit 17 changes the impedance between the second lightning arrester 12 and the DC power supply device 20 and the ground electrode 50 under the control of the control device 13 . Normally, the resistance value of the resistance circuit 17 is approximately 0 ⁇ .
  • FIG. 11 is a functional configuration diagram of a control device according to the third embodiment.
  • a control device 13 according to the third embodiment has a configuration in which a connection determination unit 138 and an impedance control unit 139 are added to the control device 13 according to the second embodiment.
  • the input reception unit 134 receives an instruction to check the connection of the ground wire from the user or other operation equipment.
  • the ground wire connection check is a function of inspecting the connection state of the ground wire 40 of the DC power supply device 20 .
  • the connection determination unit 138 receives the inspection signal from the detector 16 and determines whether or not the connection state of the ground wire 40 of the DC power supply device 20 is normal based on the received inspection signal.
  • the impedance control section 139 controls the impedance of the resistance circuit 17 . Specifically, when the test signal is injected into the detector 16 (eg, immediately before), the impedance of the resistance circuit 17 is increased. Thus, the connection determination unit 138 can determine whether the connection state is normal or not based on whether or not the detection signal can be received by the detector 16 even when the impedance of the resistance circuit 17 is high. can.
  • the display unit 137 displays the determination result by the connection determination unit 138.
  • the input reception unit 134 obtains the impedance [Z] of the ground wire from the two second lightning arresters 12 to the ground electrode 50 (when the resistance value of the resistance circuit 17 is 0 ⁇ ), the ground resistance value [R ] will be accepted.
  • the display unit 137 displays that the two second lightning arresters 12 are not sufficiently effective.
  • the user may measure the impedance [Z] and the ground resistance value [R], or the lightning protection system 10 may include a circuit capable of measuring the impedance [Z] and the ground resistance value [R].
  • FIG. 12 is a flowchart illustrating an example of the flow of control processing according to the third embodiment
  • the input reception unit 134 of the control device 13 receives an instruction to check the connection of the ground wire from the user or the like (step S31).
  • the impedance control section 139 transmits a high impedance control signal to the resistance circuit 17 (step S32).
  • the high impedance control signal is a signal indicating control for increasing impedance.
  • Resistor circuit 17 raises the impedance when it receives the high impedance control signal.
  • connection determination unit 138 causes the first detector 14a and the second detector 14b to inject inspection signals (step S33). The connection determination unit 138 then determines whether or not the third detector 16a and the fourth detector 16b have received the inspection signal (step S34).
  • connection determination unit 138 determines that the inspection signal has been received (step S34: Yes)
  • the display unit 137 displays information indicating normal connection (step S35). Further, when the connection determination unit 138 determines that the inspection signal has not been received (step S34: No), the display unit 137 displays information indicating a connection abnormality (step S36).
  • Example 4 Next, Example 4 will be described.
  • the wire diameter and length of the power cable 30, the wire diameter and length of the ground wire 42, and the wire diameter and length of the ground wire 41 may not be appropriate.
  • an example of displaying information indicating whether or not the connection line is proper will be shown.
  • the differences from the third embodiment will be mainly described, and the same reference numerals as those used in the description of the third embodiment will be used for those having the same functional configuration as the third embodiment. given, and its explanation is omitted.
  • the detector 14 according to Example 4 injects an inspection signal into the ground line 40 .
  • the inspection signal is a signal for inspecting whether or not the ground lines 40, 41, 42 are appropriate in linearity, length, and the like.
  • FIG. 13 is a functional configuration diagram of a control device according to the fourth embodiment.
  • a control device 13 according to the fourth embodiment has a configuration in which a ground wire adequacy determining unit 140 is added to the control device 13 according to the third embodiment.
  • the input reception unit 134 receives an instruction to check the suitability of the grounding wire from the user or other operation equipment.
  • the ground wire suitability check is a function of inspecting whether or not the linearity, length, etc. of the ground wires 40, 41, 42 of the DC power supply device 20 are appropriate.
  • the storage unit 136 according to the fourth embodiment further stores failure determination result information 902 and impedance characteristic information 903 in addition to the storage unit 136 according to the third embodiment.
  • the failure determination result information 902 is information indicating the determination result by the failure determination unit 135 .
  • the impedance characteristic information 903 is information set in advance as information indicating impedance characteristics of the ground lines 40, 41, and 42 having a high countermeasure effect.
  • the ground wire suitability determination unit 140 receives the measurement results of the current value and the voltage value from each detector, and determines whether or not the ground wires 40, 41, 42, etc. are appropriate based on the received measurement results. do.
  • the display unit 137 displays the result of determination by the grounding wire adequacy determination unit 140 .
  • FIG. 14 is a flowchart illustrating an example of the flow of control processing according to the fourth embodiment.
  • the input receiving unit 134 of the control device 13 receives an instruction to check the suitability of the grounding wire from the user (step S401).
  • the integrated control unit 132 reads out the failure determination result information 902 from the storage unit 136 and determines whether or not the failure determination result indicates no failure (step S402).
  • the display unit 137 displays information indicating that the ground wire appropriateness check is not possible (step S403). This prompts the user to perform a failure check first, because if there is a failure inside the DC power supply device 20, it cannot be determined whether or not the grounding wire is proper.
  • the impedance control unit 139 transmits a high impedance control signal to the resistance circuit 17 (step S404). Resistor circuit 17 raises the impedance when it receives the high impedance control signal.
  • the ground wire adequacy determination unit 140 receives the measurement results of the current value and the voltage value from each detector (step S405).
  • Each detector is a first detector 14a, a second detector 14b, a third detector 16a and a fourth detector 16b.
  • the grounding wire adequacy determining unit 140 calculates impedance characteristics from the measurement results (step S406). Then, the ground wire adequacy determination unit 140 calculates the difference between the calculated impedance identification and the appropriate impedance characteristic (step S407). Appropriate impedance characteristics are indicated in the impedance characteristic information 903. FIG.
  • FIG. 15 is a diagram for explaining a method of calculating the difference in impedance characteristics according to the fourth embodiment.
  • FIG. 15A is an example of data included in the impedance characteristic information 903.
  • FIG. 15A is an example of data included in the impedance characteristic information 903.
  • the dashed-dotted line 903a shows the impedance characteristics when the grounding wires 41 and 42 are 5 m long and 22 sq in diameter with respect to the power cable 30 with a length of 5 m and a wire diameter of 22 sq.
  • a solid line 903b represents the impedance characteristics of the power cable 30 having a length of 10 m and a wire diameter of 14 sq, and the ground wires 41 and 42 having a length of 10 m and a wire diameter of 14 sq.
  • a dotted line 903c indicates the impedance characteristics of the power cable 30 having a length of 20 m and a wire diameter of 38 sq, and the ground wires 41 and 42 having a length of 20 m and a wire diameter of 38 sq.
  • the grounding wire adequacy determination unit 140 calculates the difference from these data. As shown in FIG. 15(a), when a plurality of data are included in the impedance characteristic information, the difference from each data is calculated, and the minimum value of the calculated differences is used. For example, when the impedance characteristic calculated from the measurement result is similar to the solid line 903b as shown in FIG. 15B, the calculated difference value is small. Also, when the impedance characteristic calculated from the measurement result does not resemble any of the impedance characteristics as shown in FIG. 15(c), the calculated difference value is large.
  • a known method may be used for calculating the difference between these waveforms, and the grounding wire adequacy determining unit 140 calculates, for example, a statistical value indicating the difference.
  • the grounding wire adequacy determining unit 140 determines whether the difference exceeds the threshold (step S408).
  • the threshold is set in advance through experiments and the like.
  • step S408: Yes the display unit 137 displays information indicating the ground wire suitability (step S409). Further, when the ground wire suitability determination unit 140 determines that the difference does not exceed the threshold (step S408: No), the display unit 137 displays information indicating the ground wire suitability (step S410).
  • control device 13 can be implemented, for example, by causing a computer to execute a program describing the processing details described in the present embodiment.
  • this "computer” may be a physical machine or a virtual machine on the cloud.
  • the "hardware” described here is virtual hardware.
  • the above program can be recorded on a computer-readable recording medium (portable memory, etc.), saved, or distributed. It is also possible to provide the above program through a network such as the Internet or e-mail.
  • FIG. 16 is a diagram showing a hardware configuration example of the computer.
  • the computer of FIG. 16 has a drive device 1000, an auxiliary storage device 1002, a memory device 1003, a CPU 1004, an interface device 1005, a display device 1006, an input device 1007, an output device 1008, etc., which are connected to each other via a bus B.
  • a program that implements the processing in the computer is provided by a recording medium 1001 such as a CD-ROM or memory card, for example.
  • a recording medium 1001 such as a CD-ROM or memory card
  • the program is installed from the recording medium 1001 to the auxiliary storage device 1002 via the drive device 1000 .
  • the program does not necessarily need to be installed from the recording medium 1001, and may be downloaded from another computer via the network.
  • the auxiliary storage device 1002 stores installed programs, as well as necessary files and data.
  • the memory device 1003 reads and stores the program from the auxiliary storage device 1002 when a program activation instruction is received.
  • the CPU 1004 implements functions related to the device according to programs stored in the memory device 1003 .
  • the interface device 1005 is used as an interface for connecting to the network.
  • a display device 1006 displays a GUI (Graphical User Interface) or the like by a program.
  • An input device 1007 is composed of a keyboard, a mouse, buttons, a touch panel, or the like, and is used to input various operational instructions.
  • the output device 1008 outputs the calculation result.
  • a lightning protection system comprising a current suppressor, a lightning arrester, a current measuring device and a controller, The current measuring device measures a current value flowing from the device to be protected to the lightning arrester,
  • the control device is a current determination unit that determines whether the current value measured by the current measuring device exceeds a reference value; a current control unit that controls the current suppressor to suppress the amount of current output from the protected device when it is determined that the current value exceeds the reference value; Lightning protection system.
  • the current suppressor is a switch that cuts off a current output from the protected device in an open state, The current control unit controls to open the switch when it is determined that the current value exceeds the reference value.
  • a lightning protection system according to claim 1. The device to be protected is a DC power supply device that supplies a DC power supply, The current measuring device has two current measuring devices for measuring respective current values of two grounding wires connected to the lightning arrester from two power cables output from the DC power supply device, The current determination unit controls the current suppressor to suppress the amount of current output from the protected device when the current values of the two current measuring devices both exceed a reference value.
  • a lightning protection system according to paragraphs 1 or 2.
  • (Section 4) further comprising a signal receiver that receives the inspection signal injected by the current measuring device via the protected device;
  • the control device is a determination unit that determines whether or not an inspection signal received by the signal receiver is receivable or based on the waveform of the received signal;
  • a display unit that displays the determination result by the determination unit, A lightning protection system according to any one of paragraphs 1 to 3.
  • (Section 5) receiving measurement results of current and voltage values from the current measuring device and the signal receiver, calculating impedance characteristics from the measurement results, and determining whether the ground wire is appropriate based on the calculated impedance characteristics; It further comprises a ground wire adequacy determination unit that determines The display unit displays the determination result of the ground wire adequacy determination unit.
  • Lightning protection system a current determination unit that determines whether or not the current value flowing from the device to be protected to the lightning arrester exceeds a reference value; a current control unit that controls a current suppressor to suppress the amount of current output from the protected device when it is determined that the current value exceeds the reference value; Control device.
  • (Section 7) A computer implemented method comprising: a step of determining whether a current value flowing from the device to be protected to the lightning arrester exceeds a reference value; and controlling a current suppressor to suppress the amount of current output from the protected device when it is determined that the current value exceeds the reference value.
  • Lightning protection method. (Section 8) A program for causing a computer to function as each unit in the control device according to item 6.

Abstract

This lightning protection system is provided with a current suppressor, a lightning arrester, a current measurement instrument and a control device, wherein the current measurement instrument measures the value of current flowing from a protected device to the lightning arrester, and the control device is provided with a current determination unit which determines whether or not the current value measured by the current measurement instrument exceeds a reference value, and a current control unit which, if the current value has been determined to exceed the reference value, controls the current suppressor to suppress the amount of current outputted from the protected device.

Description

雷防護システム、制御装置、雷防護方法およびプログラムLightning protection system, controller, lightning protection method and program
 本発明は、雷防護システム、制御装置、雷防護方法およびプログラムに関する。 The present invention relates to a lightning protection system, a control device, a lightning protection method and a program.
 雷サージは、しばしば家庭やオフィスなどの機器にダメージを与える。そこで、雷サージから機器を防護するため、さまざまなサージ防護機器が開発されている。 Lightning surges often damage equipment in homes and offices. Therefore, various surge protection devices have been developed to protect devices from lightning surges.
 例えば、非特許文献1には、被保護機器と並列に避雷器(SPD;Surge Protective Device)を接続し、避雷器と被保護機器の接地を共通で接続する接続方法が開示されている。 For example, Non-Patent Document 1 discloses a connection method in which a lightning arrester (SPD: Surge Protective Device) is connected in parallel with a device to be protected, and the grounding of the lightning arrester and the device to be protected is commonly connected.
 従来の技術では、避雷器の動作によって雷サージ電流の通過時に一時的に被保護機器の出力側に短絡状態が発生し、被保護機器から出力する電流が増加するという問題がある。直流給電装置等の被保護機器が過電流保護機能を有する場合、出力する電流が急激に増加すると、過電流保護機能が動作して出力が停止するおそれがある。 With the conventional technology, the operation of the lightning arrester causes a temporary short-circuit state on the output side of the protected device when a lightning surge current passes through, and there is a problem that the current output from the protected device increases. When a device to be protected such as a DC power supply device has an overcurrent protection function, if the output current suddenly increases, the overcurrent protection function may be activated and the output may be stopped.
 開示の技術は、雷サージの発生時における被保護機器の出力電流の増加を抑制することを目的とする。 The disclosed technology aims to suppress an increase in the output current of a protected device when a lightning surge occurs.
 開示の技術は、電流抑制器と避雷器と電流測定器と制御装置とを備える雷防護システムであって、前記電流測定器は、被保護機器から前記避雷器に流れる電流値を測定し、前記制御装置は、前記電流測定器が測定した前記電流値が基準値を超えるか否かを判定する電流判定部と、前記電流値が前記基準値を超えると判定された場合に、前記被保護機器から出力される電流の量を抑制するように前記電流抑制器を制御する電流制御部と、を備える雷防護システムである。 The disclosed technology is a lightning protection system comprising a current suppressor, a lightning arrester, a current measuring device, and a control device, wherein the current measuring device measures a current value flowing from a device to be protected to the lightning arrester, and the control device is a current determination unit that determines whether the current value measured by the current measuring device exceeds a reference value, and an output from the protected device when it is determined that the current value exceeds the reference value and a current controller for controlling the current suppressor to limit the amount of current drawn.
 雷サージの発生時における被保護機器の出力電流の増加を抑制することができる。 It is possible to suppress an increase in the output current of the protected device when a lightning surge occurs.
従来の雷防護方法の概要を示す図である。It is a figure which shows the outline|summary of the conventional lightning protection method. 従来の雷防護方法による内部回路の故障イメージを示す図である。FIG. 10 is a diagram showing an image of failure of an internal circuit by a conventional lightning protection method; 従来の雷防護方法による過電流保護機能の動作概要を示す図である。FIG. 10 is a diagram showing an operation outline of an overcurrent protection function according to a conventional lightning protection method; 実施例1に係る雷防護システムのシステム構成図である。1 is a system configuration diagram of a lightning protection system according to Embodiment 1; FIG. 実施例1に係る制御装置の機能構成図である。2 is a functional configuration diagram of a control device according to Embodiment 1; FIG. 実施例1に係る制御処理の流れの一例を示すフローチャートである。6 is a flow chart showing an example of the flow of control processing according to the first embodiment; 実施例2に係る雷防護システムのシステム構成図である。FIG. 10 is a system configuration diagram of a lightning protection system according to a second embodiment; 実施例2に係る制御装置の機能構成図である。FIG. 8 is a functional configuration diagram of a control device according to Embodiment 2; 実施例2に係る制御処理の流れの一例を示すフローチャートである。FIG. 11 is a flow chart showing an example of the flow of control processing according to the second embodiment; FIG. 実施例3に係る雷防護システムのシステム構成図である。FIG. 11 is a system configuration diagram of a lightning protection system according to Example 3; 実施例3に係る制御装置の機能構成図である。FIG. 11 is a functional configuration diagram of a control device according to Example 3; 実施例3に係る制御処理の流れの一例を示すフローチャートである。FIG. 11 is a flow chart showing an example of the flow of control processing according to the third embodiment; FIG. 実施例4に係る制御装置の機能構成図である。FIG. 11 is a functional configuration diagram of a control device according to Embodiment 4; 実施例4に係る制御処理の流れの一例を示すフローチャートである。FIG. 11 is a flow chart showing an example of the flow of control processing according to the fourth embodiment; FIG. 実施例4に係るインピーダンス特性の差分の算出方法について説明するための図である。FIG. 11 is a diagram for explaining a method of calculating a difference in impedance characteristics according to Example 4; 制御装置のハードウェア構成図である。It is a hardware block diagram of a control apparatus.
 以下、図面を参照して本発明の実施の形態(本実施の形態)を説明する。以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。本実施の形態に係る技術を説明する前に、まずは、本実施の形態の雷防護方法に関連する従来技術とその課題を説明する。 An embodiment (this embodiment) of the present invention will be described below with reference to the drawings. The embodiments described below are merely examples, and embodiments to which the present invention is applied are not limited to the following embodiments. Prior to explaining the technology according to this embodiment, first, the conventional technology and its problems related to the lightning protection method of this embodiment will be explained.
 (従来技術について)
 図1は、従来の雷防護方法の概要を示す図である。従来の直流給電装置20の雷サージ対策システムは、直流給電装置20の出力側の2本の電源ケーブル30の線間に設置された第一避雷器11と、それぞれの電源ケーブルの対地間に設置された2つの第二避雷器12と、を備える。2つの第二避雷器12は、一端が電源ケーブルの一方と接地線40を介してそれぞれ接続され、他端が接地線41を介して接地側で互いに接続されているとともに接地極50に接続されている。
(Regarding conventional technology)
FIG. 1 is a diagram showing an outline of a conventional lightning protection method. A conventional lightning surge countermeasure system for a DC power supply device 20 includes a first lightning arrester 11 installed between two power cables 30 on the output side of the DC power supply device 20, and a first lightning arrester 11 installed between the ground of each power cable. and two second lightning arresters 12. The two second lightning arresters 12 have one end connected to one of the power cables via the ground wire 40, and the other end connected to each other on the ground side via the ground wire 41 and to the ground electrode 50. there is
 直流給電装置20の筐体は、金属によって形成され、接地端子を有し、第二避雷器12の接地側に接地端子に接続される接地線42を介して接続(連接)されている。当該筐体を仮に直接に接地極50に接続すると、対策効果が低下するため、筐体は接地端子を有し、筐体が直接に接地極50に接続されない。例えば、直流給電装置20をラックに搭載する場合は、ラックとの接触で接地極と導通され、筐体と接地極50が接続された場合と同等になることを避けるため、絶縁ブッシング23などによって筐体とラックの金属部分との絶縁を確保している。 The housing of the DC power supply device 20 is made of metal, has a ground terminal, and is connected (connected) to the ground side of the second lightning arrester 12 via a ground wire 42 connected to the ground terminal. If the housing is directly connected to the ground electrode 50 , the effect of countermeasures will be reduced, so the housing has a ground terminal and is not directly connected to the ground electrode 50 . For example, when the DC power supply device 20 is mounted on a rack, the insulation bushing 23 or the like is used to avoid electrical continuity with the ground electrode due to contact with the rack, which is equivalent to the case where the housing and the ground electrode 50 are connected. Insulation is ensured between the chassis and the metal parts of the rack.
 また、電源ケーブル30の線径と長さ、接地線42の線径と長さおよび接地線41の線径と長さの条件によっては、対策効果に影響を及ぼす。例えば、対策効果が高いため、直流給電装置20の電源ケーブル30の線径38sqと長さが3m、接地線42の線径38sqと長さ3m、接地線41の線径38sqと長さ3mという条件が望ましい。 Also, depending on the wire diameter and length of the power cable 30, the wire diameter and length of the ground wire 42, and the wire diameter and length of the ground wire 41, the countermeasure effect is affected. For example, since the countermeasure effect is high, the power cable 30 of the DC power supply device 20 has a wire diameter of 38 sq and a length of 3 m, the ground wire 42 has a wire diameter of 38 sq and a length of 3 m, and the ground wire 41 has a wire diameter of 38 sq and a length of 3 m. conditions are desirable.
 また、直流給電装置20は、過電流検出回路21と、ノイズ対策用コンデンサ22と、を有する。過電流検出回路21は、各電源ケーブル30の電流値を監視して、過電流を検出すると、出力を停止する。ノイズ対策用コンデンサ22は、接地端子と各電源ケーブル30との間に設置されている。 The DC power supply device 20 also has an overcurrent detection circuit 21 and a noise countermeasure capacitor 22 . The overcurrent detection circuit 21 monitors the current value of each power cable 30 and stops the output when an overcurrent is detected. The noise countermeasure capacitor 22 is installed between the ground terminal and each power cable 30 .
 (従来技術の課題について)
 図2は、従来の雷サージ対策方法による内部回路の故障イメージを示す図である。
(Regarding problems with conventional technology)
FIG. 2 is a diagram showing an internal circuit failure image according to a conventional lightning surge countermeasure method.
 図1に示した雷防護方法の対策効果が不十分であると、雷サージ電流の一部が直流給電装置20の内部に侵入し、例えばノイズ対策用コンデンサ22を破損する可能性がある。また、2本の電源ケーブル30の離隔距離が短い場合は、放電によって内部回路24等が破損する可能性がある。 If the countermeasure effect of the lightning protection method shown in FIG. 1 is insufficient, part of the lightning surge current may enter the DC power supply device 20 and damage, for example, the noise countermeasure capacitor 22 . Also, if the distance between the two power cables 30 is short, there is a possibility that the internal circuit 24 and the like will be damaged by the discharge.
 ノイズ対策用コンデンサ22、内部回路24等は、外部で電磁ノイズが発生した場合等の非常時に機能する回路である場合、通常の使用状態ではユーザは故障に気付かない場合がある。したがって、ユーザは、これらの機器が故障したまま継続して使用し続けてしまう可能性がある。 If the noise countermeasure capacitor 22, internal circuit 24, etc. are circuits that function in an emergency such as when electromagnetic noise occurs outside, the user may not notice a failure during normal use. Therefore, there is a possibility that the user will continue to use these devices while they are out of order.
 また、直流給電装置20の筐体が直接接地極50に接続されたり、筐体とラックとの間の絶縁が正しくできていなかったりといったように、直流給電装置20と雷防護システム10との接続状態が適切でない可能性がある。 In addition, the connection between the DC power supply device 20 and the lightning protection system 10 may occur due to the case of the DC power supply device 20 being directly connected to the ground electrode 50 or the insulation between the case and the rack being improper. Condition may not be appropriate.
 また、電源ケーブル30の線径と長さ、接地線42の線径と長さおよび接地線41の線径と長さの条件が適切でない可能性がある。 Also, the wire diameter and length of the power cable 30, the wire diameter and length of the ground wire 42, and the wire diameter and length of the ground wire 41 may not be appropriate.
 図3は、従来の雷サージ対策方法による過電流保護機能の動作概要を示す図である。 FIG. 3 is a diagram showing an overview of the operation of an overcurrent protection function based on a conventional lightning surge countermeasure method.
 雷サージが発生し、第一避雷器11または第二避雷器12が動作すると、大量の雷サージ電流が流れるため、第一避雷器11または第二避雷器12は低インピーダンスとなる。したがって、直流給電装置20の出力側における2本の電源ケーブル30は、雷サージ電流の通過際に一時的に短絡状態となる(図3:矢印3,4)。 When a lightning surge occurs and the first lightning arrester 11 or the second lightning arrester 12 operates, a large amount of lightning surge current flows, so the first lightning arrester 11 or the second lightning arrester 12 becomes low impedance. Therefore, the two power cables 30 on the output side of the DC power supply device 20 are temporarily short-circuited when the lightning surge current passes (arrows 3 and 4 in FIG. 3).
 そのため、直流給電装置20の出力電流が急激に増加し、直流給電装置20が備える過電流検出回路21が過電流を検出し、過電流保護機能が動作することによって、出力が停止する可能性がある。 Therefore, the output current of the DC power supply device 20 suddenly increases, the overcurrent detection circuit 21 provided in the DC power supply device 20 detects the overcurrent, and the overcurrent protection function operates, which may cause the output to stop. be.
 このように、従来の雷サージ対策方法では、雷サージ電流が流れると、直流給電装置20の出力が停止し、安定した電力供給ができなくなるおそれがある。 As described above, in the conventional lightning surge countermeasure method, when a lightning surge current flows, the output of the DC power supply device 20 may be stopped and stable power supply may not be possible.
 そこで、以下では、本実施の形態として、上述した各課題を解決する技術として、実施例1、実施例2、実施例3および実施例4について説明する。 Therefore, in the following, as the present embodiment, as techniques for solving the above-described problems, Example 1, Example 2, Example 3, and Example 4 will be described.
 (実施例1)
 まず、実施例1について説明する。実施例1では、図3に示した直流給電装置20の出力電流が急激に増加するという課題を解決するための構成の例を示す。
(Example 1)
First, Example 1 will be described. Embodiment 1 shows an example of a configuration for solving the problem that the output current of the DC power supply device 20 shown in FIG. 3 suddenly increases.
 (実施例1に係る雷防護システムのシステム構成)
 図4は、実施例1に係る雷防護システムのシステム構成図である。なお、被保護機器の一例である直流給電装置20については、図1と同様である。
(System configuration of lightning protection system according to embodiment 1)
FIG. 4 is a system configuration diagram of the lightning protection system according to the first embodiment. Note that the DC power supply device 20, which is an example of the device to be protected, is the same as in FIG.
 雷防護システム10は、被保護機器である直流給電装置20を雷サージから防護するためのシステムである。雷防護システム10は、第一避雷器11と、2つの第二避雷器12と、制御装置13と、検出器14と、2つのスイッチ15と、を備える。 The lightning protection system 10 is a system for protecting the DC power supply device 20, which is the equipment to be protected, from lightning surges. The lightning protection system 10 comprises a first lightning arrester 11 , two second lightning arresters 12 , a controller 13 , a detector 14 and two switches 15 .
 第一避雷器11および2つの第二避雷器12は、図1と同様であり、例えば金属酸化物バリスタ(MOV;Metal Oxide Varistor)等のSPDである。 The first lightning arrester 11 and the two second lightning arresters 12 are the same as in FIG. 1, and are SPDs such as metal oxide varistors (MOVs), for example.
 検出器14は、第一検出器14aおよび第二検出器14bから構成されている。第一検出器14aおよび第二検出器14bは、それぞれ電源ケーブル30と第二避雷器12との間に信号を注入し、各素子や接続点において反射してくる信号を受信する。これによって、第一検出器14aおよび第二検出器14bは、電源ケーブル30と第二避雷器12との間の電流値を測定し、測定した電流値を示すデータを制御装置13に送信する。なお、第一検出器14aおよび第二検出器14bは、被保護機器から避雷器に流れる電流値を測定する電流測定器の一例である。 The detector 14 is composed of a first detector 14a and a second detector 14b. The first detector 14a and the second detector 14b each inject a signal between the power cable 30 and the second lightning arrester 12, and receive the signal reflected by each element or connection point. Thereby, the first detector 14 a and the second detector 14 b measure the current value between the power cable 30 and the second lightning arrester 12 and transmit data indicating the measured current value to the control device 13 . The first detector 14a and the second detector 14b are an example of a current measuring device that measures the value of the current flowing from the device to be protected to the lightning arrester.
 制御装置13は、スイッチ15の開閉を制御する装置である。制御装置13は、検出器14が測定した電流値に基づいて、スイッチ15の開閉を制御する。すなわち、制御装置13は、第一検出器14aおよび第二検出器14bが測定した各電流値がともに基準値を超える場合に、スイッチ15を開放(OFF)するように制御する。これによって、雷防護システム10は、直流給電装置20から出力される電流の量を抑制する。 The control device 13 is a device that controls the opening and closing of the switch 15. The control device 13 controls opening and closing of the switch 15 based on the current value measured by the detector 14 . That is, the control device 13 controls to open (OFF) the switch 15 when both the current values measured by the first detector 14a and the second detector 14b exceed the reference value. Thereby, the lightning protection system 10 suppresses the amount of current output from the DC power supply device 20 .
 2つのスイッチ15は、2本の電源ケーブル30にそれぞれ接続され、初期状態では短絡(ON)状態となっている。そして、制御装置13によって開放(OFF)状態となると、各電源ケーブル30を流れる電流を遮断する。 The two switches 15 are connected to the two power cables 30, respectively, and are in a short-circuit (ON) state in the initial state. When the control device 13 switches to an open (OFF) state, the current flowing through each power cable 30 is cut off.
 なお、スイッチ15は、被保護機器の一例である直流給電装置20から出力される電流の量を抑制するための電流抑制器の一例である。電流抑制器は、制御装置13の制御によって直流給電装置20から出力される電流の量を抑制することができれば、スイッチでなくても良く、例えば、高抵抗器、インダクタ等の電流が流れにくい素子を、各電源ケーブル30の途中に挿入する機器であっても良い。 Note that the switch 15 is an example of a current suppressor for suppressing the amount of current output from the DC power supply device 20, which is an example of the device to be protected. The current suppressor does not have to be a switch as long as it can suppress the amount of current output from the DC power supply device 20 under the control of the control device 13. For example, an element such as a high resistor, an inductor, or the like in which current does not easily flow. may be inserted in the middle of each power cable 30 .
 (実施例1に係る制御装置の機能構成)
 図5は、実施例1に係る制御装置の機能構成図である。制御装置13は、電流判定部131と、統合制御部132と、電流制御部133と、を備える。
(Functional configuration of the control device according to the first embodiment)
FIG. 5 is a functional configuration diagram of a control device according to the first embodiment; The control device 13 includes a current determination section 131 , an integrated control section 132 and a current control section 133 .
 電流判定部131は、第一検出器14aおよび第二検出器14bから電流値を示すデータを受信する。そして、受信した電流値が基準値を超えるか否かを判定する。基準値は、雷サージが発生した場合の電流値の基準としてあらかじめ設定された値である。 The current determination unit 131 receives data indicating current values from the first detector 14a and the second detector 14b. Then, it is determined whether or not the received current value exceeds the reference value. The reference value is a value set in advance as a reference for the current value when a lightning surge occurs.
 統合制御部132は、制御装置13の制御処理を全体的に制御する。 The integrated control unit 132 controls the control processing of the control device 13 as a whole.
 電流制御部133は、電流判定部131の判定結果に基づいて、スイッチ15の開閉を制御する。 The current control section 133 controls opening and closing of the switch 15 based on the determination result of the current determination section 131 .
 (実施例1に係る雷防護システムの動作)
 次に、実施例1に係る雷防護システム10の動作について説明する。図6は、実施例1に係る制御処理の流れの一例を示すフローチャートである。
(Operation of lightning protection system according to embodiment 1)
Next, operation of the lightning protection system 10 according to the first embodiment will be described. FIG. 6 is a flowchart illustrating an example of the flow of control processing according to the first embodiment;
 統合制御部132は、制御処理を定期的に、例えば1マイクロ秒おきに実行する。統合制御部132が制御処理を開始すると、電流判定部131は、第一検出器14aおよび第二検出器14bから第一電流値および第二電流値を取得する(ステップS11)。第一電流値は、第一検出器14aが測定した電流値である。第二電流値は、第二検出器14bが測定した電流値である。 The integrated control unit 132 periodically executes control processing, for example, every 1 microsecond. When the integrated control unit 132 starts control processing, the current determination unit 131 acquires the first current value and the second current value from the first detector 14a and the second detector 14b (step S11). The first current value is the current value measured by the first detector 14a. The second current value is the current value measured by the second detector 14b.
 次に、電流判定部131は、第一電流値および第二電流値がともに基準値を超えているか否かを判定する(ステップS12)。電流判定部131が、ともに基準値を超えていると判定すると(ステップS12:Yes)、電流制御部133は、開放(OFF)信号を各スイッチ15に送信する(ステップS13)。各スイッチ15は、開放(OFF)信号を受信すると開放(OFF)状態となり、電源ケーブル30の電流を遮断する。すなわち、電流制御部133は、直流給電装置20から出力される電流の量を抑制するようにスイッチ15を制御する。 Next, the current determination unit 131 determines whether both the first current value and the second current value exceed the reference value (step S12). When the current determination unit 131 determines that both of them exceed the reference value (step S12: Yes), the current control unit 133 transmits an open (OFF) signal to each switch 15 (step S13). Each switch 15 becomes an open (OFF) state when receiving an open (OFF) signal, and cuts off the current of the power cable 30 . That is, current control unit 133 controls switch 15 so as to suppress the amount of current output from DC power supply device 20 .
 また、電流判定部131が、第一電流値および第二電流値のいずれかが基準値を超えていないと判定すると(ステップS12:No)、電流制御部133は、短絡(ON)信号を各スイッチ15に送信する(ステップS14)。各スイッチ15は、短絡(ON)信号を受信すると短絡(ON)状態となり、電源ケーブル30の電流を遮断しない状態となる。すなわち、電流制御部133は、直流給電装置20から出力される電流の量を抑制しないようにスイッチ15を制御する。 Further, when the current determination unit 131 determines that either the first current value or the second current value does not exceed the reference value (step S12: No), the current control unit 133 outputs the short-circuit (ON) signal to each It is transmitted to the switch 15 (step S14). When each switch 15 receives a short-circuit (ON) signal, it enters a short-circuit (ON) state and does not interrupt the current of the power cable 30 . That is, current control unit 133 controls switch 15 so as not to suppress the amount of current output from DC power supply device 20 .
 なお、第一電流値および第二電流値のいずれか一方が基準値を超えていても、他方が基準値を超えていなければ、上述した短絡状態が発生しないと考えられるため、電流判定部131は、第一電流値および第二電流値がともに基準値を超えているか否かを判定することとしている。 In addition, even if one of the first current value and the second current value exceeds the reference value, if the other does not exceed the reference value, it is considered that the above-described short-circuit state does not occur. determines whether both the first current value and the second current value exceed the reference value.
 また、上述した処理では、開放(OFF)信号を送信するか否かの判定と、短絡(ON)信号を送信するか否かの判定とを、同一の基準値によって行う例を示したが、より安定的な動作のために、異なる基準値によって判定するようにしても良い。 Further, in the above-described processing, an example is shown in which the determination of whether to transmit an open (OFF) signal and the determination of whether to transmit a short-circuit (ON) signal are performed using the same reference value. A different reference value may be used for determination for more stable operation.
 (実施例1のまとめ)
 実施例1に係る雷防護システム10によれば、雷サージ電流が発生する経路において電流値を測定することによって、雷サージの発生を把握することができる。そして、電流値が基準値を超える場合に、直流給電装置20から出力される電流の量を抑制する。これによって、雷サージが発生した場合に、直流給電装置20から出力電流の電流値の増加を抑制することができる。
(Summary of Example 1)
According to the lightning protection system 10 according to the first embodiment, it is possible to grasp the occurrence of a lightning surge by measuring the current value in the path in which the lightning surge current is generated. Then, when the current value exceeds the reference value, the amount of current output from the DC power supply device 20 is suppressed. As a result, it is possible to suppress an increase in the current value of the output current from the DC power supply device 20 when a lightning surge occurs.
 (実施例2)
 次に、実施例2について説明する。実施例2では、ノイズ対策用コンデンサ22、内部回路24等の機器の故障にユーザが気付かない可能性があるという問題を解決するための技術として、機器の故障を示す情報を表示する例を示す。以下の実施例2の説明では、実施例1との相違点を中心に説明し、実施例1と同様の機能構成を有するものには、実施例1の説明で用いた符号と同様の符号を付与し、その説明を省略する。
(Example 2)
Next, Example 2 will be described. In the second embodiment, as a technique for solving the problem that the user may not notice the failure of the device such as the noise countermeasure capacitor 22 and the internal circuit 24, an example of displaying information indicating the failure of the device will be shown. . In the following description of the second embodiment, the differences from the first embodiment will be mainly described, and the same reference numerals as those used in the description of the first embodiment will be used for those having the same functional configuration as the first embodiment. given, and its explanation is omitted.
 (実施例2に係る雷防護システムのシステム構成)
 図7は、実施例2に係る雷防護システムのシステム構成図である。実施例2に係る雷防護システム10は、実施例1に係る雷防護システム10に、検出器16を追加した構成である。
(System configuration of lightning protection system according to embodiment 2)
FIG. 7 is a system configuration diagram of a lightning protection system according to the second embodiment. A lightning protection system 10 according to the second embodiment has a configuration in which a detector 16 is added to the lightning protection system 10 according to the first embodiment.
 実施例2に係る検出器14は、検査信号を接地線40に注入する。検査信号は、直流給電装置20の内部の故障を検査するための信号である。 The detector 14 according to Example 2 injects the inspection signal into the ground line 40 . The inspection signal is a signal for inspecting the internal failure of the DC power supply device 20 .
 検出器16は、第三検出器16aと第四検出器16bとから構成され、検出器14によって注入された検査信号を受信し、制御装置13に送信する。なお、第三検出器16aおよび第四検出器16bは、被保護機器から避雷器に流れる電流値を測定する電流測定器の一例である。 The detector 16 is composed of a third detector 16 a and a fourth detector 16 b, receives the inspection signal injected by the detector 14 and transmits it to the control device 13 . The third detector 16a and the fourth detector 16b are examples of current measuring devices that measure the value of current flowing from the device to be protected to the lightning arrester.
 検出器14によって注入された検査信号は、直流給電装置20のノイズ対策用コンデンサ22を介して、検出器16に伝搬することで受信される。2つの第二避雷器12は、高インピーダンスであるため、検査信号を通さないが、周波数によっては伝搬するため、検査信号の周波数は、2つの第二避雷器12より、直流給電装置20のノイズ対策用コンデンサ22を伝搬しやすい周波数とすることが望ましい。 The inspection signal injected by the detector 14 is received by propagating to the detector 16 via the noise countermeasure capacitor 22 of the DC power supply device 20 . Since the two second lightning arresters 12 have high impedance, the inspection signal does not pass through, but it propagates depending on the frequency. It is desirable to set the capacitor 22 to a frequency that is easily propagated.
 (実施例2に係る制御装置の機能構成)
 図8は、実施例2に係る制御装置の機能構成図である。実施例2に係る制御装置13は、実施例1に係る制御装置13に、入力受付部134と、故障判定部135と、記憶部136と、表示部137と、を追加した構成である。
(Functional configuration of the control device according to the second embodiment)
FIG. 8 is a functional configuration diagram of a control device according to the second embodiment. A control device 13 according to the second embodiment has a configuration in which an input reception unit 134, a failure determination unit 135, a storage unit 136, and a display unit 137 are added to the control device 13 according to the first embodiment.
 入力受付部134は、ユーザまたは他の操作機器等から故障チェックの指示を受ける。故障チェックは、直流給電装置20の内部の故障の検査を行う機能である。 The input reception unit 134 receives a failure check instruction from the user or other operation equipment. The failure check is a function of inspecting the internal failure of the DC power supply device 20 .
 故障判定部135は、検出器16から検査信号を受信して、受信した検査信号に基づいて、直流給電装置20の内部に故障があるか否かを判定する。 The failure determination unit 135 receives the inspection signal from the detector 16 and determines whether or not there is a failure inside the DC power supply device 20 based on the received inspection signal.
 記憶部136は、各種情報を記憶し、具体的には、正常波形情報901を記憶する。正常波形情報901は、直流給電装置20が正常な状態における検査信号の波形を示す情報である。故障判定部135は、正常波形情報901と、受信した検査信号とを比較することによって、直流給電装置20の内部に故障があるか否かを判定する。 The storage unit 136 stores various types of information, specifically, normal waveform information 901 . The normal waveform information 901 is information indicating the waveform of the inspection signal when the DC power supply device 20 is in a normal state. Failure determination unit 135 determines whether or not there is a failure inside DC power supply device 20 by comparing normal waveform information 901 with the received inspection signal.
 表示部137は、故障判定部135による判定結果を表示する。 The display unit 137 displays the determination result by the failure determination unit 135.
 (実施例2に係る雷防護システムの動作)
 次に、実施例2に係る雷防護システム10の動作について説明する。図9は、実施例2に係る制御処理の流れの一例を示すフローチャートである。
(Operation of the lightning protection system according to the second embodiment)
Next, operation of the lightning protection system 10 according to the second embodiment will be described. FIG. 9 is a flowchart illustrating an example of the flow of control processing according to the second embodiment.
 制御装置13の入力受付部134は、ユーザ等から故障チェックの指示を受ける(ステップS21)。次に、故障判定部135は、第一検出器14aおよび第二検出器14bに、検査信号を注入させる(ステップS22)。そして、故障判定部135は、第三検出器16aおよび第四検出器16bが受信した検査信号を取得する(ステップS23)。 The input reception unit 134 of the control device 13 receives a failure check instruction from the user or the like (step S21). Next, the failure determination unit 135 causes the first detector 14a and the second detector 14b to inject inspection signals (step S22). Then, the failure determination unit 135 acquires inspection signals received by the third detector 16a and the fourth detector 16b (step S23).
 続いて、故障判定部135は、取得した検査信号の波形と正常波形情報901に示される波形との差分を算出する(ステップS24)。波形の差分を算出する方法は、既知の方法で良い。例えば、故障判定部135は、差分を示す統計値等を算出する。 Subsequently, the failure determination unit 135 calculates the difference between the waveform of the acquired test signal and the waveform indicated in the normal waveform information 901 (step S24). A known method may be used to calculate the waveform difference. For example, the failure determination unit 135 calculates a statistical value or the like indicating the difference.
 故障判定部135は、算出した差分が閾値を超えているか否かを判定する(ステップS25)。閾値は、波形の差分の算出方法等に応じてあらかじめ設定されている。 The failure determination unit 135 determines whether the calculated difference exceeds the threshold (step S25). The threshold is set in advance according to the method of calculating the waveform difference.
 故障判定部135が、差分が閾値を超えていると判定すると(ステップS25:Yes)、表示部137は、故障ありを示す情報を表示する(ステップS26)。また、故障判定部135が、差分が閾値を超えていないと判定すると(ステップS25:No)、表示部137は、故障なしを示す情報を表示する(ステップS27)。 When the failure determination unit 135 determines that the difference exceeds the threshold (step S25: Yes), the display unit 137 displays information indicating that there is a failure (step S26). If the failure determination unit 135 determines that the difference does not exceed the threshold (step S25: No), the display unit 137 displays information indicating no failure (step S27).
 (実施例2のまとめ)
 実施例2に係る雷防護システム10によれば、ユーザの指示を受けて、直流給電装置20の内部の故障を検査し、検査結果を表示することができる。これによって、ユーザは、雷サージが発生した場合に、直流給電装置20の内部に故障が発生したか否かを把握することができる。
(Summary of Example 2)
According to the lightning protection system 10 according to the second embodiment, it is possible to inspect the internal failure of the DC power supply device 20 and display the inspection result in response to a user's instruction. This allows the user to grasp whether or not a failure has occurred inside the DC power supply device 20 when a lightning surge occurs.
 (実施例3)
 次に、実施例3について説明する。実施例3では、直流給電装置20と雷防護システム10との接続状態が適切でない可能性があるという問題を解決するための技術として、機器の接続状態を示す情報を表示する例を示す。以下の実施例3の説明では、実施例2との相違点を中心に説明し、実施例2と同様の機能構成を有するものには、実施例2の説明で用いた符号と同様の符号を付与し、その説明を省略する。
(Example 3)
Next, Example 3 will be described. In the third embodiment, as a technique for solving the problem that the connection state between the DC power supply device 20 and the lightning protection system 10 may not be appropriate, an example of displaying information indicating the connection state of the equipment will be shown. In the following description of the third embodiment, the differences from the second embodiment will be mainly described, and the same reference numerals as those used in the description of the second embodiment will be used for those having the same functional configuration as the second embodiment. given, and its explanation is omitted.
 (実施例3に係る雷防護システムのシステム構成)
 図10は、実施例3に係る雷防護システムのシステム構成図である。実施例3に係る雷防護システム10は、実施例2に係る雷防護システム10に、抵抗回路17を追加した構成である。
(System configuration of lightning protection system according to embodiment 3)
FIG. 10 is a system configuration diagram of a lightning protection system according to the third embodiment. A lightning protection system 10 according to the third embodiment has a configuration in which a resistance circuit 17 is added to the lightning protection system 10 according to the second embodiment.
 実施例3に係る検出器14は、検査信号を接地線40に注入する。検査信号は、直流給電装置20と雷防護システム10との接続状態が適切であるか否かを検査するための信号である。 The detector 14 according to Example 3 injects an inspection signal into the ground line 40 . The inspection signal is a signal for inspecting whether or not the connection state between the DC power supply device 20 and the lightning protection system 10 is appropriate.
 抵抗回路17は、制御装置13による制御を受けて、第二避雷器12および直流給電装置20と、接地極50との間のインピーダンスを変更する。通常時、抵抗回路17の抵抗値は、ほぼ0Ωである。 The resistance circuit 17 changes the impedance between the second lightning arrester 12 and the DC power supply device 20 and the ground electrode 50 under the control of the control device 13 . Normally, the resistance value of the resistance circuit 17 is approximately 0Ω.
 (実施例3に係る制御装置の機能構成)
 図11は、実施例3に係る制御装置の機能構成図である。実施例3に係る制御装置13は、実施例2に係る制御装置13に、接続判定部138と、インピーダンス制御部139と、を追加した構成である。
(Functional configuration of control device according to embodiment 3)
FIG. 11 is a functional configuration diagram of a control device according to the third embodiment. A control device 13 according to the third embodiment has a configuration in which a connection determination unit 138 and an impedance control unit 139 are added to the control device 13 according to the second embodiment.
 実施例3に係る入力受付部134は、ユーザまたは他の操作機器等から接地線接続チェックの指示を受ける。接地線接続チェックは、直流給電装置20の接地線40の接続状態の検査を行う機能である。 The input reception unit 134 according to the third embodiment receives an instruction to check the connection of the ground wire from the user or other operation equipment. The ground wire connection check is a function of inspecting the connection state of the ground wire 40 of the DC power supply device 20 .
 接続判定部138は、検出器16から検査信号を受信して、受信した検査信号に基づいて、直流給電装置20の接地線40の接続状態が正常であるか否かを判定する。 The connection determination unit 138 receives the inspection signal from the detector 16 and determines whether or not the connection state of the ground wire 40 of the DC power supply device 20 is normal based on the received inspection signal.
 インピーダンス制御部139は、抵抗回路17のインピーダンスを制御する。具体的には、検出器16に検査信号を注入する際(直前など)に、抵抗回路17のインピーダンスを高くする。これによって、接続判定部138は、抵抗回路17のインピーダンスが高い状態であっても検出器16による検査信号の受信ができるか否かによって、接続状態が正常であるか否かを判定することができる。 The impedance control section 139 controls the impedance of the resistance circuit 17 . Specifically, when the test signal is injected into the detector 16 (eg, immediately before), the impedance of the resistance circuit 17 is increased. Thus, the connection determination unit 138 can determine whether the connection state is normal or not based on whether or not the detection signal can be received by the detector 16 even when the impedance of the resistance circuit 17 is high. can.
 表示部137は、接続判定部138による判定結果を表示する。 The display unit 137 displays the determination result by the connection determination unit 138.
 通常時、抵抗回路17の抵抗値は、ほぼ0Ωである。そこで、入力受付部134は、2つの第二避雷器12から接地極50までの接地線のインピーダンス[Z](抵抗回路17の抵抗値が0Ωのとき)と、接地極50の接地抵抗値[R]との入力を受け付ける。表示部137は、入力されたインピーダンス[Z]と接地抵抗値[R]との関係が、Z≪Rである場合、すなわち、インピーダンスから前記接地抵抗値を引いた値(Z-R)が、あらかじめ設定された基準値より大きい場合は、2つの第二避雷器12の効果が十分に得られないことを表示部137に表示する。なお、ユーザがインピーダンス[Z]および接地抵抗値[R]を測定しても良く、雷防護システム10がインピーダンス[Z]および接地抵抗値[R]を測定できる回路を備えていても良い。 Normally, the resistance value of the resistance circuit 17 is approximately 0Ω. Therefore, the input reception unit 134 obtains the impedance [Z] of the ground wire from the two second lightning arresters 12 to the ground electrode 50 (when the resistance value of the resistance circuit 17 is 0Ω), the ground resistance value [R ] will be accepted. When the relationship between the input impedance [Z] and the ground resistance value [R] is Z<<R, that is, the value (Z−R) obtained by subtracting the ground resistance value from the impedance is If it is larger than the preset reference value, the display unit 137 displays that the two second lightning arresters 12 are not sufficiently effective. The user may measure the impedance [Z] and the ground resistance value [R], or the lightning protection system 10 may include a circuit capable of measuring the impedance [Z] and the ground resistance value [R].
 (実施例3に係る雷防護システムの動作)
 次に、実施例3に係る雷防護システム10の動作について説明する。図12は、実施例3に係る制御処理の流れの一例を示すフローチャートである。
(Operation of lightning protection system according to embodiment 3)
Next, operation of the lightning protection system 10 according to the third embodiment will be described. FIG. 12 is a flowchart illustrating an example of the flow of control processing according to the third embodiment;
 制御装置13の入力受付部134は、ユーザ等から接地線接続チェックの指示を受ける(ステップS31)。次に、インピーダンス制御部139は、高インピーダンス制御信号を抵抗回路17に送信する(ステップS32)。高インピーダンス制御信号は、インピーダンスを高くするための制御を示す信号である。抵抗回路17は、高インピーダンス制御信号を受信すると、インピーダンスを高くする。 The input reception unit 134 of the control device 13 receives an instruction to check the connection of the ground wire from the user or the like (step S31). Next, the impedance control section 139 transmits a high impedance control signal to the resistance circuit 17 (step S32). The high impedance control signal is a signal indicating control for increasing impedance. Resistor circuit 17 raises the impedance when it receives the high impedance control signal.
 次に、接続判定部138は、第一検出器14aおよび第二検出器14bに、検査信号を注入させる(ステップS33)。そして、接続判定部138は、第三検出器16aおよび第四検出器16bが検査信号を受信したか否かを判定する(ステップS34)。 Next, the connection determination unit 138 causes the first detector 14a and the second detector 14b to inject inspection signals (step S33). The connection determination unit 138 then determines whether or not the third detector 16a and the fourth detector 16b have received the inspection signal (step S34).
 接続判定部138が、検査信号を受信したと判定すると(ステップS34:Yes)、表示部137は、接続正常を示す情報を表示する(ステップS35)。また、接続判定部138が、検査信号を受信していないと判定すると(ステップS34:No)、表示部137は、接続異常を示す情報を表示する(ステップS36)。 When the connection determination unit 138 determines that the inspection signal has been received (step S34: Yes), the display unit 137 displays information indicating normal connection (step S35). Further, when the connection determination unit 138 determines that the inspection signal has not been received (step S34: No), the display unit 137 displays information indicating a connection abnormality (step S36).
 (実施例3のまとめ)
 実施例3に係る雷防護システム10によれば、ユーザの指示を受けて、接地線40の接続状態を検査し、検査結果を表示することができる。これによって、ユーザは、接地線40の接続状態が正常であるか否かを把握することができる。
(Summary of Example 3)
According to the lightning protection system 10 according to the third embodiment, it is possible to inspect the connection state of the ground wire 40 in response to a user's instruction, and display the inspection result. Thereby, the user can grasp whether the connection state of the ground line 40 is normal.
 (実施例4)
 次に、実施例4について説明する。実施例4では、電源ケーブル30の線径と長さ、接地線42の線径と長さおよび接地線41の線径と長さの条件が適切でない可能性があるという問題を解決するための技術として、接続線が適正か否かを示す情報を表示する例を示す。以下の実施例4の説明では、実施例3との相違点を中心に説明し、実施例3と同様の機能構成を有するものには、実施例3の説明で用いた符号と同様の符号を付与し、その説明を省略する。
(Example 4)
Next, Example 4 will be described. In the fourth embodiment, the wire diameter and length of the power cable 30, the wire diameter and length of the ground wire 42, and the wire diameter and length of the ground wire 41 may not be appropriate. As a technique, an example of displaying information indicating whether or not the connection line is proper will be shown. In the following description of the fourth embodiment, the differences from the third embodiment will be mainly described, and the same reference numerals as those used in the description of the third embodiment will be used for those having the same functional configuration as the third embodiment. given, and its explanation is omitted.
 (実施例4に係る雷防護システムのシステム構成)
 実施例4に係る雷防護システムのシステム構成は、実施例3に係る雷防護システム10と同様である。
(System configuration of lightning protection system according to embodiment 4)
The system configuration of the lightning protection system according to the fourth embodiment is the same as the lightning protection system 10 according to the third embodiment.
 実施例4に係る検出器14は、検査信号を接地線40に注入する。検査信号は、接地線40、41、42の線形、長さ等が適正であるか否かを検査するための信号である。 The detector 14 according to Example 4 injects an inspection signal into the ground line 40 . The inspection signal is a signal for inspecting whether or not the ground lines 40, 41, 42 are appropriate in linearity, length, and the like.
 (実施例4に係る制御装置の機能構成)
 図13は、実施例4に係る制御装置の機能構成図である。実施例4に係る制御装置13は、実施例3に係る制御装置13に、接地線適正判定部140を追加した構成である。
(Functional configuration of control device according to embodiment 4)
FIG. 13 is a functional configuration diagram of a control device according to the fourth embodiment. A control device 13 according to the fourth embodiment has a configuration in which a ground wire adequacy determining unit 140 is added to the control device 13 according to the third embodiment.
 実施例4に係る入力受付部134は、ユーザまたは他の操作機器等から接地線適正チェックの指示を受ける。接地線適正チェックは、直流給電装置20の接地線40、41、42の線形、長さ等が適正であるか否かの検査を行う機能である。 The input reception unit 134 according to the fourth embodiment receives an instruction to check the suitability of the grounding wire from the user or other operation equipment. The ground wire suitability check is a function of inspecting whether or not the linearity, length, etc. of the ground wires 40, 41, 42 of the DC power supply device 20 are appropriate.
 また、実施例4に係る記憶部136は、実施例3に係る記憶部136に加えて、故障判定結果情報902と、インピーダンス特性情報903と、をさらに記憶する。 Further, the storage unit 136 according to the fourth embodiment further stores failure determination result information 902 and impedance characteristic information 903 in addition to the storage unit 136 according to the third embodiment.
 故障判定結果情報902は、故障判定部135による判定結果を示す情報である。インピーダンス特性情報903は、対策効果が高い接地線40、41、42のインピーダンス特性を示す情報としてあらかじめ設定された情報である。 The failure determination result information 902 is information indicating the determination result by the failure determination unit 135 . The impedance characteristic information 903 is information set in advance as information indicating impedance characteristics of the ground lines 40, 41, and 42 having a high countermeasure effect.
 接地線適正判定部140は、各検出器から電流値および電圧値の測定結果を受信して、受信した測定結果に基づいて、接地線40、41、42等が適正であるか否かを判定する。 The ground wire suitability determination unit 140 receives the measurement results of the current value and the voltage value from each detector, and determines whether or not the ground wires 40, 41, 42, etc. are appropriate based on the received measurement results. do.
 表示部137は、接地線適正判定部140による判定結果を表示する。 The display unit 137 displays the result of determination by the grounding wire adequacy determination unit 140 .
 (実施例4に係る雷防護システムの動作)
 次に、実施例4に係る雷防護システム10の動作について説明する。図14は、実施例4に係る制御処理の流れの一例を示すフローチャートである。
(Operation of the lightning protection system according to the fourth embodiment)
Next, operation of the lightning protection system 10 according to the fourth embodiment will be described. FIG. 14 is a flowchart illustrating an example of the flow of control processing according to the fourth embodiment.
 制御装置13の入力受付部134は、ユーザ等から接地線適正チェックの指示を受ける(ステップS401)。次に、統合制御部132は、故障判定結果情報902を記憶部136から読み出して、故障判定結果が故障なしを示すか否かを判定する(ステップS402)。統合制御部132が、故障判定結果が故障なしを示していないと判定すると(ステップS402:No)、表示部137は、接地線適正チェック不可を示す情報を表示する(ステップS403)。これは、直流給電装置20の内部に故障があると、接地線が適正か否かを判定できないため、故障チェックを先に行うようにユーザに促すものである。 The input receiving unit 134 of the control device 13 receives an instruction to check the suitability of the grounding wire from the user (step S401). Next, the integrated control unit 132 reads out the failure determination result information 902 from the storage unit 136 and determines whether or not the failure determination result indicates no failure (step S402). When the integrated control unit 132 determines that the failure determination result does not indicate that there is no failure (step S402: No), the display unit 137 displays information indicating that the ground wire appropriateness check is not possible (step S403). This prompts the user to perform a failure check first, because if there is a failure inside the DC power supply device 20, it cannot be determined whether or not the grounding wire is proper.
 統合制御部132が、故障判定結果が故障なしを示すと判定すると(ステップS402:No)、インピーダンス制御部139は、高インピーダンス制御信号を抵抗回路17に送信する(ステップS404)。抵抗回路17は、高インピーダンス制御信号を受信すると、インピーダンスを高くする。 When the integrated control unit 132 determines that the failure determination result indicates no failure (step S402: No), the impedance control unit 139 transmits a high impedance control signal to the resistance circuit 17 (step S404). Resistor circuit 17 raises the impedance when it receives the high impedance control signal.
 次に、接地線適正判定部140は、各検出器から電流値および電圧値の測定結果を受信する(ステップS405)。各検出器とは、第一検出器14a、第二検出器14b、第三検出器16aおよび第四検出器16bである。 Next, the ground wire adequacy determination unit 140 receives the measurement results of the current value and the voltage value from each detector (step S405). Each detector is a first detector 14a, a second detector 14b, a third detector 16a and a fourth detector 16b.
 接地線適正判定部140は、測定結果からインピーダンス特性を算出する(ステップS406)。そして、接地線適正判定部140は、算出したインピーダンス特定と、適正なインピーダンス特性との差分を算出する(ステップS407)。なお、適正なインピーダンス特性は、インピーダンス特性情報903に示される。 The grounding wire adequacy determining unit 140 calculates impedance characteristics from the measurement results (step S406). Then, the ground wire adequacy determination unit 140 calculates the difference between the calculated impedance identification and the appropriate impedance characteristic (step S407). Appropriate impedance characteristics are indicated in the impedance characteristic information 903. FIG.
 図15は、実施例4に係るインピーダンス特性の差分の算出方法について説明するための図である。図15(a)は、インピーダンス特性情報903に含まれるデータの一例である。 FIG. 15 is a diagram for explaining a method of calculating the difference in impedance characteristics according to the fourth embodiment. FIG. 15A is an example of data included in the impedance characteristic information 903. FIG.
 例えば、一点鎖線903aは、長さ5m、線径22sqの電源ケーブル30に対して、接地線41および42の長さが5m、線径が22sqの場合のインピーダンス特性を示している。実線903bは、長さ10m、線径14sqの電源ケーブル30に対して、接地線41および42の長さが10m、線径が14sqの場合のインピーダンス特性を示している。また、点線903cは、長さ20m、線径38sqの電源ケーブル30に対して、接地線41および42の長さが20m、線径が38sqの場合のインピーダンス特性を示している。 For example, the dashed-dotted line 903a shows the impedance characteristics when the grounding wires 41 and 42 are 5 m long and 22 sq in diameter with respect to the power cable 30 with a length of 5 m and a wire diameter of 22 sq. A solid line 903b represents the impedance characteristics of the power cable 30 having a length of 10 m and a wire diameter of 14 sq, and the ground wires 41 and 42 having a length of 10 m and a wire diameter of 14 sq. A dotted line 903c indicates the impedance characteristics of the power cable 30 having a length of 20 m and a wire diameter of 38 sq, and the ground wires 41 and 42 having a length of 20 m and a wire diameter of 38 sq.
 接地線適正判定部140は、これらのデータとの差分を算出する。図15(a)に示されるように、インピーダンス特性情報に複数のデータが含まれる場合には、各データとの差分を算出し、算出された差分の最小値を使用する。例えば、測定結果から算出されたインピーダンス特性が、図15(b)に示されるように、実線903bと似た特性である場合、算出される差分の値は小さくなる。また、測定結果から算出されたインピーダンス特性が、図15(c)に示されるように、インピーダンス特性のいずれとも似ていない場合、算出される差分の値は大きくなる。 The grounding wire adequacy determination unit 140 calculates the difference from these data. As shown in FIG. 15(a), when a plurality of data are included in the impedance characteristic information, the difference from each data is calculated, and the minimum value of the calculated differences is used. For example, when the impedance characteristic calculated from the measurement result is similar to the solid line 903b as shown in FIG. 15B, the calculated difference value is small. Also, when the impedance characteristic calculated from the measurement result does not resemble any of the impedance characteristics as shown in FIG. 15(c), the calculated difference value is large.
 これらの波形の差分の算出方法については、既知の方法で良く、接地線適正判定部140は、例えば差分を示す統計値を算出する。 A known method may be used for calculating the difference between these waveforms, and the grounding wire adequacy determining unit 140 calculates, for example, a statistical value indicating the difference.
 図14に戻り、ステップS407に続いて、接地線適正判定部140は、差分が閾値を超えているか否かを判定する(ステップS408)。閾値は、実験等を経てあらかじめ設定される。 Returning to FIG. 14, following step S407, the grounding wire adequacy determining unit 140 determines whether the difference exceeds the threshold (step S408). The threshold is set in advance through experiments and the like.
 接地線適正判定部140が、差分が閾値を超えていると判定すると(ステップS408:Yes)、表示部137は、接地線不適正を示す情報を表示する(ステップS409)。また、接地線適正判定部140は、差分が閾値を超えていないと判定すると(ステップS408:No)、表示部137は、接地線適正を示す情報を表示する(ステップS410)。 When the ground wire suitability determination unit 140 determines that the difference exceeds the threshold (step S408: Yes), the display unit 137 displays information indicating the ground wire suitability (step S409). Further, when the ground wire suitability determination unit 140 determines that the difference does not exceed the threshold (step S408: No), the display unit 137 displays information indicating the ground wire suitability (step S410).
 (実施例4のまとめ)
 実施例4に係る雷防護システム10によれば、ユーザの指示を受けて、接地線40、41、42の適正を検査し、検査結果を表示することができる。これによって、ユーザは、接地線40、41、42が適正であるか否かを把握することができる。
(Summary of Example 4)
According to the lightning protection system 10 according to the fourth embodiment, it is possible to inspect the adequacy of the grounding wires 40, 41, and 42 in response to a user's instruction, and display the inspection results. Thereby, the user can grasp whether the ground lines 40, 41, and 42 are proper.
 (制御装置13のハードウェア構成例)
 制御装置13は、例えば、コンピュータに、本実施の形態で説明する処理内容を記述したプログラムを実行させることにより実現可能である。なお、この「コンピュータ」は、物理マシンであってもよいし、クラウド上の仮想マシンであってもよい。仮想マシンを使用する場合、ここで説明する「ハードウェア」は仮想的なハードウェアである。
(Hardware configuration example of control device 13)
The control device 13 can be implemented, for example, by causing a computer to execute a program describing the processing details described in the present embodiment. Note that this "computer" may be a physical machine or a virtual machine on the cloud. When using a virtual machine, the "hardware" described here is virtual hardware.
 上記プログラムは、コンピュータが読み取り可能な記録媒体(可搬メモリ等)に記録して、保存したり、配布したりすることが可能である。また、上記プログラムをインターネットや電子メール等、ネットワークを通して提供することも可能である。 The above program can be recorded on a computer-readable recording medium (portable memory, etc.), saved, or distributed. It is also possible to provide the above program through a network such as the Internet or e-mail.
 図16は、上記コンピュータのハードウェア構成例を示す図である。図16のコンピュータは、それぞれバスBで相互に接続されているドライブ装置1000、補助記憶装置1002、メモリ装置1003、CPU1004、インタフェース装置1005、表示装置1006、入力装置1007、出力装置1008等を有する。 FIG. 16 is a diagram showing a hardware configuration example of the computer. The computer of FIG. 16 has a drive device 1000, an auxiliary storage device 1002, a memory device 1003, a CPU 1004, an interface device 1005, a display device 1006, an input device 1007, an output device 1008, etc., which are connected to each other via a bus B.
 当該コンピュータでの処理を実現するプログラムは、例えば、CD-ROM又はメモリカード等の記録媒体1001によって提供される。プログラムを記憶した記録媒体1001がドライブ装置1000にセットされると、プログラムが記録媒体1001からドライブ装置1000を介して補助記憶装置1002にインストールされる。但し、プログラムのインストールは必ずしも記録媒体1001より行う必要はなく、ネットワークを介して他のコンピュータよりダウンロードするようにしてもよい。補助記憶装置1002は、インストールされたプログラムを格納すると共に、必要なファイルやデータ等を格納する。 A program that implements the processing in the computer is provided by a recording medium 1001 such as a CD-ROM or memory card, for example. When the recording medium 1001 storing the program is set in the drive device 1000 , the program is installed from the recording medium 1001 to the auxiliary storage device 1002 via the drive device 1000 . However, the program does not necessarily need to be installed from the recording medium 1001, and may be downloaded from another computer via the network. The auxiliary storage device 1002 stores installed programs, as well as necessary files and data.
 メモリ装置1003は、プログラムの起動指示があった場合に、補助記憶装置1002からプログラムを読み出して格納する。CPU1004は、メモリ装置1003に格納されたプログラムに従って、当該装置に係る機能を実現する。インタフェース装置1005は、ネットワークに接続するためのインタフェースとして用いられる。表示装置1006はプログラムによるGUI(Graphical User Interface)等を表示する。入力装置1007はキーボード及びマウス、ボタン、又はタッチパネル等で構成され、様々な操作指示を入力させるために用いられる。出力装置1008は演算結果を出力する。 The memory device 1003 reads and stores the program from the auxiliary storage device 1002 when a program activation instruction is received. The CPU 1004 implements functions related to the device according to programs stored in the memory device 1003 . The interface device 1005 is used as an interface for connecting to the network. A display device 1006 displays a GUI (Graphical User Interface) or the like by a program. An input device 1007 is composed of a keyboard, a mouse, buttons, a touch panel, or the like, and is used to input various operational instructions. The output device 1008 outputs the calculation result.
 (実施の形態のまとめ)
 本明細書には、少なくとも下記の各項に記載した雷防護システム、制御装置、雷防護方法およびプログラムが記載されている。
(第1項)
 電流抑制器と避雷器と電流測定器と制御装置とを備える雷防護システムであって、
 前記電流測定器は、被保護機器から前記避雷器に流れる電流値を測定し、
 前記制御装置は、
 前記電流測定器が測定した前記電流値が基準値を超えるか否かを判定する電流判定部と、
 前記電流値が前記基準値を超えると判定された場合に、前記被保護機器から出力される電流の量を抑制するように前記電流抑制器を制御する電流制御部と、を備える、
 雷防護システム。
(第2項)
 前記電流抑制器は、開放状態において、前記被保護機器から出力される電流を遮断するスイッチであって、
 前記電流制御部は、前記電流値が前記基準値を超えると判定された場合に、前記スイッチを開放するように制御する、
 第1項に記載の雷防護システム。
(第3項)
 前記被保護機器は、直流電源を供給する直流給電装置であって、
 前記電流測定器は、前記直流給電装置から出力される2本の電源ケーブルから前記避雷器に接続される2本の接地線のそれぞれの電流値を測定する2つの電流測定器を有し、
 前記電流判定部は、前記2つの電流測定器のそれぞれの電流値がともに基準値を超える場合に、前記被保護機器から出力される電流の量を抑制するように前記電流抑制器を制御する、
 第1項または第2項に記載の雷防護システム。
(第4項)
 前記電流測定器が注入した検査信号を、前記被保護機器を介して受信する信号受信器をさらに備え、
 前記制御装置は、
 前記信号受信器が受信した検査信号の受信可否または受信した信号の波形に基づいて、前記被保護機器の内部の故障または接地線の接続状態を判定する判定部と、
 前記判定部による判定結果を表示する表示部と、を備える、
 第1項から第3項のいずれか1項に記載の雷防護システム。
(第5項)
 前記電流測定器および前記信号受信器から電流値および電圧値の測定結果を受信して、測定結果からインピーダンス特性を算出し、算出されたインピーダンス特性に基づいて、接地線が適正であるか否かを判定する接地線適正判定部をさらに備え、
 前記表示部は、前記接地線適正判定部の判定結果を表示する、
 第4項に記載の雷防護システム。
(第6項)
 被保護機器から避雷器に流れる電流値が基準値を超えるか否かを判定する電流判定部と、
 前記電流値が前記基準値を超えると判定された場合に、前記被保護機器から出力される電流の量を抑制するように電流抑制器を制御する電流制御部と、を備える、
 制御装置。
(第7項)
 コンピュータが実行する方法であって、
 被保護機器から避雷器に流れる電流値が基準値を超えるか否かを判定するステップと、
 前記電流値が前記基準値を超えると判定された場合に、前記被保護機器から出力される電流の量を抑制するように電流抑制器を制御するステップと、を備える、
 雷防護方法。
(第8項)
 コンピュータを第6項に記載の制御装置における各部として機能させるためのプログラム。
(Summary of embodiment)
This specification describes at least a lightning protection system, a control device, a lightning protection method and a program as described in the following sections.
(Section 1)
A lightning protection system comprising a current suppressor, a lightning arrester, a current measuring device and a controller,
The current measuring device measures a current value flowing from the device to be protected to the lightning arrester,
The control device is
a current determination unit that determines whether the current value measured by the current measuring device exceeds a reference value;
a current control unit that controls the current suppressor to suppress the amount of current output from the protected device when it is determined that the current value exceeds the reference value;
Lightning protection system.
(Section 2)
The current suppressor is a switch that cuts off a current output from the protected device in an open state,
The current control unit controls to open the switch when it is determined that the current value exceeds the reference value.
A lightning protection system according to claim 1.
(Section 3)
The device to be protected is a DC power supply device that supplies a DC power supply,
The current measuring device has two current measuring devices for measuring respective current values of two grounding wires connected to the lightning arrester from two power cables output from the DC power supply device,
The current determination unit controls the current suppressor to suppress the amount of current output from the protected device when the current values of the two current measuring devices both exceed a reference value.
A lightning protection system according to paragraphs 1 or 2.
(Section 4)
further comprising a signal receiver that receives the inspection signal injected by the current measuring device via the protected device;
The control device is
a determination unit that determines whether or not an inspection signal received by the signal receiver is receivable or based on the waveform of the received signal;
A display unit that displays the determination result by the determination unit,
A lightning protection system according to any one of paragraphs 1 to 3.
(Section 5)
receiving measurement results of current and voltage values from the current measuring device and the signal receiver, calculating impedance characteristics from the measurement results, and determining whether the ground wire is appropriate based on the calculated impedance characteristics; It further comprises a ground wire adequacy determination unit that determines
The display unit displays the determination result of the ground wire adequacy determination unit.
Lightning protection system according to paragraph 4.
(Section 6)
a current determination unit that determines whether or not the current value flowing from the device to be protected to the lightning arrester exceeds a reference value;
a current control unit that controls a current suppressor to suppress the amount of current output from the protected device when it is determined that the current value exceeds the reference value;
Control device.
(Section 7)
A computer implemented method comprising:
a step of determining whether a current value flowing from the device to be protected to the lightning arrester exceeds a reference value;
and controlling a current suppressor to suppress the amount of current output from the protected device when it is determined that the current value exceeds the reference value.
Lightning protection method.
(Section 8)
A program for causing a computer to function as each unit in the control device according to item 6.
 以上、本実施の形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the present embodiment has been described above, the present invention is not limited to such a specific embodiment, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It is possible.
10 雷防護システム
11 第一避雷器
12 第二避雷器
13 制御装置
14 検出器
15 スイッチ
16 検出器
17 抵抗回路
20 直流給電装置
21 過電流検出回路
22 ノイズ対策用コンデンサ
23 絶縁ブッシング
24 内部回路
30 電源ケーブル
40,41,42 接地線
50 接地極
131 電流判定部
132 統合制御部
133 電流制御部
134 入力受付部
135 故障判定部
136 記憶部
137 表示部
138 接続判定部
139 インピーダンス制御部
140 接地線適正判定部
901 正常波形情報
902 故障判定結果情報
903 インピーダンス特性情報
1000 ドライブ装置
1001 記録媒体
1002 補助記憶装置
1003 メモリ装置
1004 CPU
1005 インタフェース装置
1006 表示装置
1007 入力装置
1008 出力装置
10 Lightning Protection System 11 First Lightning Arrestor 12 Second Lightning Arrestor 13 Control Device 14 Detector 15 Switch 16 Detector 17 Resistance Circuit 20 DC Power Supply Device 21 Overcurrent Detection Circuit 22 Noise Countermeasure Capacitor 23 Insulating Bushing 24 Internal Circuit 30 Power Cable 40 , 41, 42 ground line 50 ground electrode 131 current determination unit 132 integrated control unit 133 current control unit 134 input reception unit 135 failure determination unit 136 storage unit 137 display unit 138 connection determination unit 139 impedance control unit 140 ground wire appropriateness determination unit 901 Normal waveform information 902 Failure determination result information 903 Impedance characteristic information 1000 Drive device 1001 Recording medium 1002 Auxiliary storage device 1003 Memory device 1004 CPU
1005 interface device 1006 display device 1007 input device 1008 output device

Claims (8)

  1.  電流抑制器と避雷器と電流測定器と制御装置とを備える雷防護システムであって、
     前記電流測定器は、被保護機器から前記避雷器に流れる電流値を測定し、
     前記制御装置は、
     前記電流測定器が測定した前記電流値が基準値を超えるか否かを判定する電流判定部と、
     前記電流値が前記基準値を超えると判定された場合に、前記被保護機器から出力される電流の量を抑制するように前記電流抑制器を制御する電流制御部と、を備える、
     雷防護システム。
    A lightning protection system comprising a current suppressor, a lightning arrester, a current measuring device and a controller,
    The current measuring device measures a current value flowing from the device to be protected to the lightning arrester,
    The control device is
    a current determination unit that determines whether the current value measured by the current measuring device exceeds a reference value;
    a current control unit that controls the current suppressor to suppress the amount of current output from the protected device when it is determined that the current value exceeds the reference value;
    Lightning protection system.
  2.  前記電流抑制器は、開放状態において、前記被保護機器から出力される電流を遮断するスイッチであって、
     前記電流制御部は、前記電流値が前記基準値を超えると判定された場合に、前記スイッチを開放するように制御する、
     請求項1に記載の雷防護システム。
    The current suppressor is a switch that cuts off a current output from the protected device in an open state,
    The current control unit controls to open the switch when it is determined that the current value exceeds the reference value.
    A lightning protection system according to claim 1.
  3.  前記被保護機器は、直流電源を供給する直流給電装置であって、
     前記電流測定器は、前記直流給電装置から出力される2本の電源ケーブルから前記避雷器に接続される2本の接地線のそれぞれの電流値を測定する2つの電流測定器を有し、
     前記電流判定部は、前記2つの電流測定器のそれぞれの電流値がともに基準値を超える場合に、前記被保護機器から出力される電流の量を抑制するように前記電流抑制器を制御する、
     請求項1または2に記載の雷防護システム。
    The device to be protected is a DC power supply device that supplies a DC power supply,
    The current measuring device has two current measuring devices for measuring respective current values of two grounding wires connected to the lightning arrester from two power cables output from the DC power supply device,
    The current determination unit controls the current suppressor to suppress the amount of current output from the protected device when the current values of the two current measuring devices both exceed a reference value.
    Lightning protection system according to claim 1 or 2.
  4.  前記電流測定器が注入した検査信号を、前記被保護機器を介して受信する信号受信器をさらに備え、
     前記制御装置は、
     前記信号受信器が受信した検査信号の受信可否または受信した信号の波形に基づいて、前記被保護機器の内部の故障または接地線の接続状態を判定する判定部と、
     前記判定部による判定結果を表示する表示部と、を備える、
     請求項1から3のいずれか1項に記載の雷防護システム。
    further comprising a signal receiver that receives the inspection signal injected by the current measuring device via the protected device;
    The control device is
    a determination unit that determines whether or not an inspection signal received by the signal receiver is receivable or based on the waveform of the received signal;
    A display unit that displays the determination result by the determination unit,
    Lightning protection system according to any one of claims 1-3.
  5.  前記電流測定器および前記信号受信器から電流値および電圧値の測定結果を受信して、測定結果からインピーダンス特性を算出し、算出されたインピーダンス特性に基づいて、接地線が適正であるか否かを判定する接地線適正判定部をさらに備え、
     前記表示部は、前記接地線適正判定部の判定結果を表示する、
     請求項4に記載の雷防護システム。
    receiving measurement results of current and voltage values from the current measuring device and the signal receiver, calculating impedance characteristics from the measurement results, and determining whether the ground wire is appropriate based on the calculated impedance characteristics; It further comprises a ground wire adequacy determination unit that determines
    The display unit displays the determination result of the ground wire adequacy determination unit.
    Lightning protection system according to claim 4.
  6.  被保護機器から避雷器に流れる電流値が基準値を超えるか否かを判定する電流判定部と、
     前記電流値が前記基準値を超えると判定された場合に、前記被保護機器から出力される電流の量を抑制するように電流抑制器を制御する電流制御部と、を備える、
     制御装置。
    a current determination unit that determines whether or not the current value flowing from the device to be protected to the lightning arrester exceeds a reference value;
    a current control unit that controls a current suppressor to suppress the amount of current output from the protected device when it is determined that the current value exceeds the reference value;
    Control device.
  7.  コンピュータが実行する方法であって、
     被保護機器から避雷器に流れる電流値が基準値を超えるか否かを判定するステップと、
     前記電流値が前記基準値を超えると判定された場合に、前記被保護機器から出力される電流の量を抑制するように電流抑制器を制御するステップと、を備える、
     雷防護方法。
    A computer implemented method comprising:
    a step of determining whether a current value flowing from the device to be protected to the lightning arrester exceeds a reference value;
    and controlling a current suppressor to suppress the amount of current output from the protected device when it is determined that the current value exceeds the reference value.
    Lightning protection method.
  8.  コンピュータを請求項6に記載の制御装置における各部として機能させるためのプログラム。

     
    A program for causing a computer to function as each unit in the control device according to claim 6.

PCT/JP2021/006445 2021-02-19 2021-02-19 Lightning protection system, control device, lightning protection method and program WO2022176169A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/006445 WO2022176169A1 (en) 2021-02-19 2021-02-19 Lightning protection system, control device, lightning protection method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/006445 WO2022176169A1 (en) 2021-02-19 2021-02-19 Lightning protection system, control device, lightning protection method and program

Publications (1)

Publication Number Publication Date
WO2022176169A1 true WO2022176169A1 (en) 2022-08-25

Family

ID=82930386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006445 WO2022176169A1 (en) 2021-02-19 2021-02-19 Lightning protection system, control device, lightning protection method and program

Country Status (1)

Country Link
WO (1) WO2022176169A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013984A (en) * 1998-06-18 2000-01-14 Nippon Telegr & Teleph Corp <Ntt> Circuit for protecting communication equipment from lightning
WO2002017458A1 (en) * 2000-08-22 2002-02-28 Mitsubishi Denki Kabushiki Kaisha Ground fault interrupter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013984A (en) * 1998-06-18 2000-01-14 Nippon Telegr & Teleph Corp <Ntt> Circuit for protecting communication equipment from lightning
WO2002017458A1 (en) * 2000-08-22 2002-02-28 Mitsubishi Denki Kabushiki Kaisha Ground fault interrupter

Similar Documents

Publication Publication Date Title
US10690709B2 (en) System for monitoring resistance and current in ground line
US11435409B2 (en) Temporary overvoltage and ground fault overvoltage protection based on arrester current measurement and analysis
US9829530B2 (en) Method for adapting an arc sensor
US20160141123A1 (en) Synthetic fault remote disconnect for a branch circuit
KR101456137B1 (en) High voltage distributing board, low voltage distributing board, motor contorl board, distributing board for detecting arc or corona discharge using transient earth voltage signal
CN110854809B (en) Detection method of transformer neutral point protection device and protection device
CA2921170C (en) Two-wire resistance terminated ground check
KR101391823B1 (en) Automatically transfer switching overvoltage protection apparatus
WO2022176169A1 (en) Lightning protection system, control device, lightning protection method and program
JP2014176240A (en) Arrestor monitoring system
WO2022176170A1 (en) Lightning protection system, control apparatus, lightning protection method, and program
JP2018179633A (en) Protective device selection system, device, method and program
US7148674B2 (en) Apparatus for automatically measuring a relatively wide range of leakage currents
AU2019200425B2 (en) System and method for single wire ground check measurement
KR101673819B1 (en) Distance relay with correction function and method for operating thereof
CN101595617B (en) Device for protecting data lines against overvoltages
CN113075482A (en) Electric power instrument
KR200489928Y1 (en) Insulation resistance measuring apparatus
KR101409479B1 (en) Surge protect device having short detection type surge counter
JP4196026B2 (en) Lightning strike detection circuit
Radulovic et al. Effects of different combination wave generator design on surge protective devices characteristics in cascade protection systems
CN113125897A (en) Memory, overhead line single-phase earth fault detection method, system and equipment
EP4012868A1 (en) Power management system
KR100624779B1 (en) Measurement apparatus of wide-band temperature and leakage current
EP2936641B1 (en) Method and apparatus relating to surge protection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP