JP4196026B2 - Lightning strike detection circuit - Google Patents

Lightning strike detection circuit Download PDF

Info

Publication number
JP4196026B2
JP4196026B2 JP2003162756A JP2003162756A JP4196026B2 JP 4196026 B2 JP4196026 B2 JP 4196026B2 JP 2003162756 A JP2003162756 A JP 2003162756A JP 2003162756 A JP2003162756 A JP 2003162756A JP 4196026 B2 JP4196026 B2 JP 4196026B2
Authority
JP
Japan
Prior art keywords
lightning
circuit
approaching
detection circuit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003162756A
Other languages
Japanese (ja)
Other versions
JP2004361349A (en
Inventor
良作 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kouatsu Electric Co
Original Assignee
Nippon Kouatsu Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kouatsu Electric Co filed Critical Nippon Kouatsu Electric Co
Priority to JP2003162756A priority Critical patent/JP4196026B2/en
Priority to US10/538,080 priority patent/US7256977B2/en
Priority to KR1020057010558A priority patent/KR20050084244A/en
Priority to AU2003302828A priority patent/AU2003302828A1/en
Priority to PCT/JP2003/014546 priority patent/WO2004054062A1/en
Publication of JP2004361349A publication Critical patent/JP2004361349A/en
Application granted granted Critical
Publication of JP4196026B2 publication Critical patent/JP4196026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、通信信号線又は低圧電源線から侵入してくる雷サージから通信信号線及び/又は低圧電源線に接続されている機器を保護する雷保護装置などに使用される雷接近状態を判別する襲雷検出回路の改良に関するものである。
【0002】
【従来の技術】
商用周波の低圧電源線は通常、高圧配電線から柱上変圧器によって100Vに降圧されて一般家庭等の建物内へ配線されており、冷蔵庫、洗濯機、エアコンなどの電気機器及び通信信号線にも接続されているTV、電話、ファクシミリ、パソコン等の電気機器にも電気を供給している。
低圧電源線又は通信信号線には、高圧配電線への落雷などによって雷サージが発生し、その雷サージは電源線路或いは通信線路を伝播して建物内に侵入して、これら線路に接続されている電気機器を破壊させることが知られている。
これらの電気機器を保護するために、例えば雷サージによる異常電圧を検知して制御信号を送り、落雷警報表示などを行う雷サージ保護装置などが提案されている。(例えば、特許文献1参照。)
【0003】
【特許文献1】
特開平5−326108号公報(第2−3頁、第1図)
【0004】
【発明が解決しようとする課題】
しかしながら、雷放電は、遠方から接近してくるものだけでなく、突然近くで発生する場合もあり、遠方から接近してくるものとこの突然の近接した雷放電の両方に対応できる雷接近を判断する判別回路を有する雷保護装置が望まれている。
【0005】
また、雷放電を検出する検出回路から雷接近を判断する判別回路に至る襲来検出回路内に故障が発生している場合には、誤判別を生じて被保護機器を破損させたり、不要動作を生じる恐れがあり、
そのため回路全体の故障有無を自己判断させることができる安価な自己診断回路が望まれているが、雷サージ検出手段が接地型アンテナを用いて雷ノイズ電波を受信する場合には、アンテナを含めた襲雷検出回路全体の故障有無を容易に自己診断させることが困難であるという問題点がある。
【0006】
【発明が解決するための手段】
本発明は前記課題を解決するためになされたもので、
雷サージ検出手段にて検出された雷サージの検出信号と判定値とを比較して雷接近を判別する雷保護装置に使用される襲雷検出回路において、
前記判定値が所定の第1レベル値以上でありかつ所定時間内に所定数以上の前記雷サージが発生した場合に雷接近と判別する第1判別回路と、前記判定値が第1レベル値よりも高い所定の第2レベル値に設定されており第2レベル以上の雷サージが発生した場合に直ちに雷接近と判別する第2判別回路とを備え、前記第1判別回路、第2判別回路のいずれか一方が雷接近と判別した場合に雷接近と判別すると共にさらに前記検出手段が接地型アンテナであって、しかも前記襲雷検出回路の故障有無を確認する模擬信号発生回路を該アンテナに接続された受信同調用のタンク回路の接地側接続点と接地との間に挿入接続して同接続点と接地間に模擬信号を発生させるようにしたことを特徴とする雷保護装置に使用する襲雷検出回路である。
【0009】
【発明の実施の形態】
本発明の実施例について図を用いて説明する。
図1に示すように、襲雷検出回路1は雷サージ検出回路2、徐々に遠方から近づく雷に対して雷接近を判別する第1判別回路3と急に発達した近接の雷雲に対して雷接近を判別する第2判別回路4を設けた判別回路5から構成されており、
雷サージ検出回路2で検出された雷サージ信号は判別回路5に送られて、判別回路5で雷接近有無を判別し、その判別結果は出力回路6に発信されるようになっている。
【0010】
出力回路6は襲雷検出回路1より送信された雷接近状態の出力信号により、雷接近通知、被保護機器の保護動作などを行うもので、
落雷警報、電源線路や通信線路からの被保護機器の切り離しや非常電源への切替、電源線路への耐雷トランスの挿入などを例示することができる。
なお雷接近解除状態になった場合には警報停止や、電源線路や通信線路への被保護機器の接続、電源線路への耐雷トランスの切り離しなどは自動的に行われる。
【0011】
判別回路5の動作について説明する。
図3、図4に示すような雷サージ信号が雷サージ検出回路2で検出されて、第1判別回路3と第2判別回路4に同時に送られる。
【0012】
第1判別回路3では、例えば図3に示すように雷サージ信号レベルのL1レベルを判定値として使用し、図2に示すように雷サージ信号が所定のL1レベル以上かを判断して、L1レベル以上の場合、所定の時間Ta(10分)を計測開始して、時間Ta内に発生するL1レベル以上の雷サージ信号の発生数をカウンタにてカウントし、カウンタが所定の判定値n(3)以上になった場合に雷接近状態と判断して出力信号を発信する。
なお時間Ta経過後には、カウンタをリセットするようにしている。
【0013】
時間Taと判定値nは雷サージとノイズとを判別させるための時間とカウント値であり、連続的に発生する雷サージを識別することができる時間と数に設定されていればよく、本実施例の数値に限定されるものではない。
またカウント値に信号レベルに応じて予め設定しておいた係数を掛け算させて、雷接近状態の判断に個々の信号レベルの大きさを加味させることもできる。
【0014】
このように第1判別回路3により、徐々に遠方から近づく雷に対して雷接近を判別して、被保護機器を雷害より保護することができる
【0015】
次に第2判別回路4では、例えば図4に示すように雷サージ信号レベルがL1レベルよりも高い値に設定されているL2レベルを判定値として使用し、図2に示すように雷サージ信号がL2レベル以上かを判断して、L2レベル以上の場合に直ちに雷接近状態と判断して出力信号を発信するようになっている。
【0016】
このように第2判別回路4により、急に発達した近接の雷に対しても、雷接近状態と判断して出力信号を発信することができ、被保護機器を雷害より保護することができる。
【0017】
そして襲雷検出回路1は、第1判別回路3又は第2判別回路4からの雷接近状態との出力に基づいて、L1レベル以上の雷サージ信号が無くなり、かつ時間Taと同じかそれより長く設定されている所定の時間Tb経過するまで、出力回路6に雷接近状態の信号を発信するようになっている。
【0018】
時間Tbは警報の中止や被保護機器を復帰させるための時間であり、雷サージが無くなった後に安全時間を見込んだ時間に設定されている。
なお時間Tb経過後は雷接近解除状態にもどすようになっており、
時間Ta、時間TbはタイマAで計時されており、タイマAはL1レベル以上の信号を検出する毎にリセットされるようになっている。
【0019】
また本実施例では、時間Taと時間TbはタイマAで計時されているが、所定の時間を計時できるものであればタイマに限定されるものではなく、公知の計時手段を用いることができ、時間Taと時間Tbを別々に計時させてもよい。
さらに本実施例では、時間Tb≧時間Taの関係になっているが、時間Tb<時間Taに設定させてもよい。
【0020】
また図1では雷サージ検出回路2として接地型のアンテナ11の場合を示しているが、雷サージ検出回路2には、線路に流れる雷サージ信号をCT又はPTなどで検出する方法、雷雲の電界を静電界センサで検出する方法などの検出回路を使用することもでき、雷サージを検出できるものであればよく、図1に限定されるものではない。
【0021】
次に模擬信号発生回路16にて発生する模擬信号E2により接地型のアンテナ11との接続を含めた回路全体の故障確認が出来ることについて説明する。
アンテナ11が雷サージ信号を受信している場合は、図5の受信時に示すように、接地型のアンテナ11にて受信された受信信号E1により接地型のアンテナ11から受信同調用のタンク回路13を通って電流iが流れることになる。
なおRrはアンテナの放射抵抗、Xaはアンテナのリアクタンスをそれぞれ示す。
【0022】
同様に、図1に示すように接地型のアンテナ11と受信同調用のタンク回路13の接地線に挿入接続されている模擬信号発生回路16により発生する模擬信号E2は、図5の模擬信号発生時に示すように、タンク回路13と接地線との間に信号を発生させることができるため、模擬信号E2の値を適切な値にすることにより、アンテナ11のRrとXaからタンク回路13を通る閉回路に受信時と同じ電流iを流すことができる。
【0023】
つまり、アンテナ11が故障している場合には、アンテナ11の放射抵抗RrとリアクタンスXaの数値が変化するため、同じ模擬信号E2を発生させても閉回路に流れる電流iの数値が変化して故障有無を容易に確認することができる。
そのため、アンテナ11の接続状態も含めた全体の回路の故障有無を模擬信号発生回路16により確認することができ、回路故障による誤判断を防ぐことができる。
【0024】
模擬信号発生回路16の具体的な回路例を図6に示す。
常時はスイッチSはe側に接続されており、故障有無を診断する場合にはスイッチSをk側に切り替える。
k側に切り替えることにより、模擬信号E2がタンク回路13と接地線との間に挿入されてアンテナ11との接続長さに関係することなく、受信によって発生した受信信号E1を生じさせたのと全く同じ現象を回路内に発生させることができる。
【0025】
なおR1、R2は模擬信号E2値の調整用抵抗であり、抵抗R1の両端には電圧E3のR1とR2で分担された電圧が発生するため、R1とR2の組み合わせにより任意の模擬信号E2を発生させることができる。
またコンデンサC1は矩形波状電圧の立ち上がりを制限して不必要に高い周波数成分の発生を防止させるためのものであり、省略させてもよい。
【0026】
模擬信号E2としては、直流電圧に限定されるものではなく、正弦波電圧や矩形波状の電圧など任意の波形の電圧を使用することができる。
特に正弦波電圧を使用することにより、アンテナ11とタンク回路13を含めた感度特性を容易に測定することができるメリットもある。
【0027】
図7、図8に別の実施例を示す。
図7はアンテナ11の直下にタンク回路13を設けたもので、タンク回路の出力側を低インピーダンスにするための回路17が挿入接続されて接続ケーブル12に接続されており、増幅回路14、検波回路15を介して判別回路16に受信した雷サージ信号が送られる。
模擬信号発生回路16は接続ケーブル12に接続される接地線との間に接続されており、図6と同じものには同じ符号を付けて、説明を省略する。
【0030】
【発明の効果】
本発明においては、判定値を第1レベル値以上でありかつ、所定時間内に所定数以上の前記雷サージが発生した場合に雷接近と判別する第1判別回路を設けることにより、徐々に遠方から近づく雷に対して誤判断することなく雷接近を判別することができると共に判定値を第1レベル値よりも高い第2レベル値以上の雷サージが発生した場合に直ちに雷接近と判別する第2判別回路により、急に発達した近接の雷雲に対しても直ちに雷接近を判別させることができるため、被保護機器を雷害からより確実に保護させることができる。
さらに模擬信号発生回路をアンテナに接続されたタンク回路の接地側接続点と接地間に挿入接続させたことにより、アンテナの接続状態を含めた回路全体の故障有無を容易に確認することができるため、襲雷検出回路の故障発生を早期に発見できる。
そのため、故障による誤判断を未然に防止することができ、故障による誤判断の無い襲雷検出回路を提供することができ、被保護機器を雷害からより確実に保護させることができる。
【図面の簡単な説明】
【図1】本発明の実施例の概要を示すブロック図である。
【図2】判別回路5の動作説明フローチャートである。
【図3】図2の動作説明図である。
【図4】図2の別の動作説明図である。
【図5】模擬信号発生回路16の原理説明図である。
【図6】模擬信号発生回路16の回路説明図である。
【図7】別の実施例の説明図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention discriminates a lightning approaching state used in a lightning protection device for protecting a device connected to a communication signal line and / or a low voltage power line from a lightning surge entering from the communication signal line or the low voltage power line. The present invention relates to an improved lightning strike detection circuit.
[0002]
[Prior art]
Commercial frequency low-voltage power lines are usually stepped down from high-voltage distribution lines to 100V by pole transformers and wired into buildings such as ordinary households, and are connected to electrical equipment and communication signal lines such as refrigerators, washing machines, and air conditioners. It also supplies electricity to connected electrical equipment such as TVs, telephones, facsimiles and personal computers.
Lightning surges occur in low-voltage power lines or communication signal lines due to lightning strikes on high-voltage distribution lines, etc., and lightning surges propagate through power lines or communication lines and enter buildings, and are connected to these lines. It is known to destroy existing electrical equipment.
In order to protect these electric devices, for example, a lightning surge protection device that detects an abnormal voltage caused by a lightning surge and sends a control signal to display a lightning strike alarm or the like has been proposed. (For example, refer to Patent Document 1.)
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 5-326108 (page 2-3, FIG. 1)
[0004]
[Problems to be solved by the invention]
However, lightning discharges may occur not only from those approaching from a distance, but also suddenly, and it is determined whether there is lightning approach that can handle both those approaching from a distance and this sudden close lightning discharge. What is desired is a lightning protection device having a discriminating circuit.
[0005]
In addition, if a failure occurs in the intrusion detection circuit from the detection circuit that detects lightning discharge to the determination circuit that determines the approach of lightning, erroneous detection may occur and the protected device may be damaged or unnecessary operations may occur. May occur,
Therefore, an inexpensive self-diagnosis circuit that can make a self-judgment of whether or not the entire circuit is faulty is desired, but when the lightning surge detection means receives lightning noise radio waves using a grounded antenna, the antenna is included. There is a problem that it is difficult to easily self-diagnose the presence or absence of a failure in the entire lightning strike detection circuit.
[0006]
[Means for Solving the Invention]
The present invention has been made to solve the above problems,
In the lightning strike detection circuit used in the lightning protection device that compares the lightning surge detection signal detected by the lightning surge detection means with the judgment value to determine the approach of lightning,
A first discriminating circuit for discriminating that a lightning is approaching when the judgment value is greater than or equal to a predetermined first level value and a predetermined number of lightning surges occur within a predetermined time; and the determination value is greater than the first level value A second discrimination circuit that is set to a high predetermined second level value and immediately discriminates that lightning is approaching when a lightning surge of the second level or higher occurs, the first discrimination circuit and the second discrimination circuit When one of them is determined to be approaching lightning, it is determined that lightning is approaching, and the detection means is a grounded antenna, and a simulated signal generation circuit for confirming the presence or absence of failure of the lightning detection circuit is connected to the antenna. An attack used for a lightning protection device, characterized in that a simulated signal is generated between the connection point and the ground by inserting and connecting between the connection point of the received tank circuit for receiving tuning and the ground. It is a lightning detection circuit.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the lightning strike detection circuit 1 includes a lightning surge detection circuit 2, a first discrimination circuit 3 for discriminating lightning approach to a lightning approaching gradually from a distance, and a lightning strike against a rapidly developed thundercloud. It comprises a discrimination circuit 5 provided with a second discrimination circuit 4 for discriminating approach,
The lightning surge signal detected by the lightning surge detection circuit 2 is sent to the discrimination circuit 5, and the discrimination circuit 5 discriminates the presence or absence of lightning, and the discrimination result is transmitted to the output circuit 6.
[0010]
The output circuit 6 performs a lightning approach notification, a protection operation of the protected device, etc., based on the output signal of the lightning approach state transmitted from the lightning detection circuit 1.
Examples include a lightning strike alarm, disconnection of protected equipment from a power line or communication line, switching to an emergency power source, insertion of a lightning resistant transformer into the power line, and the like.
When the lightning approach is released, alarm stop, connection of protected equipment to the power line and communication line, disconnection of the lightning resistant transformer to the power line, etc. are automatically performed.
[0011]
The operation of the determination circuit 5 will be described.
A lightning surge signal as shown in FIGS. 3 and 4 is detected by the lightning surge detection circuit 2 and sent to the first determination circuit 3 and the second determination circuit 4 simultaneously.
[0012]
For example, the first determination circuit 3 uses the L1 level of the lightning surge signal level as a determination value as shown in FIG. 3, determines whether the lightning surge signal is equal to or higher than a predetermined L1 level as shown in FIG. When the level is equal to or higher than the level, measurement of a predetermined time Ta (10 minutes) is started, and the number of occurrences of lightning surge signals of the L1 level or higher occurring within the time Ta is counted by a counter. 3) When it becomes above, it judges that it is a thunder approaching state and sends an output signal.
The counter is reset after the time Ta has elapsed.
[0013]
The time Ta and the determination value n are a time and count value for discriminating lightning surge and noise, and it is sufficient that the time Ta and the determination value n are set to the time and number that can identify the lightning surge that occurs continuously. It is not limited to the numerical values in the examples.
Further, the count value can be multiplied by a coefficient set in advance according to the signal level, and the magnitude of each signal level can be added to the determination of the lightning approaching state.
[0014]
In this way, the first discrimination circuit 3 can discriminate lightning approach to lightning that gradually approaches from far away, and protect the protected device from lightning damage.
Next, the second determination circuit 4 uses, for example, the L2 level at which the lightning surge signal level is set higher than the L1 level as shown in FIG. 4 as the determination value, and the lightning surge signal as shown in FIG. Is determined to be equal to or higher than the L2 level, and if it is equal to or higher than the L2 level, it is immediately determined that the lightning is approaching and an output signal is transmitted.
[0016]
As described above, the second determination circuit 4 can determine that the lightning is approaching even for a suddenly developed lightning, and can output an output signal, thereby protecting the protected device from lightning damage. .
[0017]
Based on the output of the lightning approaching state from the first discrimination circuit 3 or the second discrimination circuit 4, the lightning strike detection circuit 1 has no lightning surge signal of the L1 level or more and is equal to or longer than the time Ta. A lightning approaching state signal is transmitted to the output circuit 6 until a predetermined time Tb has elapsed.
[0018]
The time Tb is a time for stopping the alarm and returning the protected device, and is set to a time when the safety time is expected after the lightning surge disappears.
After the time Tb has elapsed, the lightning approach is released.
Time Ta and time Tb are measured by the timer A, and the timer A is reset every time a signal of the L1 level or higher is detected.
[0019]
In this embodiment, the time Ta and the time Tb are timed by the timer A, but the time is not limited to the timer as long as the predetermined time can be measured, and a known time measuring means can be used. Time Ta and time Tb may be measured separately.
Further, in this embodiment, the relationship of time Tb ≧ time Ta is established, but time Tb <time Ta may be set.
[0020]
Although FIG. 1 shows the case of the grounded antenna 11 as the lightning surge detection circuit 2, the lightning surge detection circuit 2 includes a method for detecting a lightning surge signal flowing in the line by CT or PT, a thundercloud electric field, and the like. It is also possible to use a detection circuit such as a method for detecting a lightning with an electrostatic field sensor, as long as it can detect a lightning surge and is not limited to FIG.
[0021]
Next, it will be described that the failure of the entire circuit including the connection with the grounded antenna 11 can be confirmed by the simulation signal E2 generated by the simulation signal generation circuit 16. FIG.
When the antenna 11 is receiving a lightning surge signal, as shown in FIG. 5, the reception tuning tank circuit 13 from the grounded antenna 11 is received by the received signal E1 received by the grounded antenna 11. Current i will flow through.
Rr represents the radiation resistance of the antenna, and Xa represents the reactance of the antenna.
[0022]
Similarly, as shown in FIG. 1, the simulation signal E2 generated by the simulation signal generation circuit 16 inserted and connected to the grounding antenna 11 and the ground line of the reception tuning tank circuit 13 is generated as shown in FIG. As shown sometimes, since a signal can be generated between the tank circuit 13 and the ground line, the value of the simulation signal E2 is set to an appropriate value, so that Rr and Xa of the antenna 11 pass through the tank circuit 13. The same current i as in reception can be passed through the closed circuit.
[0023]
That is, when the antenna 11 is out of order, the numerical values of the radiation resistance Rr and the reactance Xa of the antenna 11 change. Therefore, even if the same simulated signal E2 is generated, the numerical value of the current i flowing through the closed circuit changes. The presence or absence of a failure can be easily confirmed.
Therefore, the simulation signal generation circuit 16 can confirm whether or not the entire circuit including the connection state of the antenna 11 has a failure, thereby preventing erroneous determination due to the circuit failure.
[0024]
A specific circuit example of the simulation signal generating circuit 16 is shown in FIG.
Normally, the switch S is connected to the e side, and when diagnosing the presence or absence of a failure, the switch S is switched to the k side.
By switching to the k side, the simulation signal E2 is inserted between the tank circuit 13 and the ground line, and the reception signal E1 generated by reception is generated regardless of the connection length with the antenna 11. Exactly the same phenomenon can be generated in the circuit.
[0025]
R1 and R2 are resistances for adjusting the simulation signal E2 value. Since a voltage shared by R1 and R2 of the voltage E3 is generated at both ends of the resistance R1, an arbitrary simulation signal E2 is generated by a combination of R1 and R2. Can be generated.
The capacitor C1 is for limiting the rise of the rectangular wave voltage to prevent the generation of an unnecessarily high frequency component, and may be omitted.
[0026]
The simulation signal E2 is not limited to a DC voltage, and a voltage having an arbitrary waveform such as a sine wave voltage or a rectangular wave voltage can be used.
In particular, by using a sine wave voltage, there is an advantage that sensitivity characteristics including the antenna 11 and the tank circuit 13 can be easily measured.
[0027]
7 and 8 show another embodiment.
In FIG. 7, a tank circuit 13 is provided immediately below the antenna 11, and a circuit 17 for lowering the output side of the tank circuit is inserted and connected to the connection cable 12. The amplifier circuit 14, the detection circuit The received lightning surge signal is sent to the discrimination circuit 16 via the circuit 15.
The simulation signal generation circuit 16 is connected to a ground line connected to the connection cable 12, and the same components as those in FIG.
[0030]
【The invention's effect】
In the present invention, by providing a first determination circuit that determines a lightning approach when the determination value is equal to or higher than the first level value and a predetermined number of lightning surges occur within a predetermined time, the distance is gradually increased. It is possible to discriminate lightning approach without making a misjudgment with respect to a lightning approaching from the first, and to immediately determine that lightning is approaching when a lightning surge exceeding a second level value higher than the first level value occurs. Because the two-discriminating circuit can immediately determine the approach of lightning even to a rapidly developed thundercloud, the protected device can be more reliably protected from lightning damage.
Furthermore, by inserting and connecting the simulated signal generation circuit between the ground side connection point of the tank circuit connected to the antenna and the ground, it is possible to easily check whether there is a failure in the entire circuit including the connection state of the antenna. It is possible to detect a failure of the lightning detection circuit early.
Therefore, misjudgment due to failure can be prevented in advance, a lightning detection circuit free from misjudgment due to failure can be provided, and the protected device can be more reliably protected from lightning damage.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an outline of an embodiment of the present invention.
FIG. 2 is a flowchart for explaining the operation of a determination circuit 5;
FIG. 3 is an operation explanatory diagram of FIG. 2;
FIG. 4 is another operation explanatory diagram of FIG. 2;
FIG. 5 is a diagram illustrating the principle of a simulation signal generation circuit 16;
FIG. 6 is a circuit explanatory diagram of a simulation signal generation circuit 16;
FIG. 7 is an explanatory diagram of another embodiment.

Claims (1)

雷サージ検出手段にて検出された雷サージの検出信号と判定値とを比較して雷接近を判別する雷保護装置に使用される襲雷検出回路において、In the lightning strike detection circuit used in the lightning protection device that compares the lightning surge detection signal detected by the lightning surge detection means with the judgment value to determine the approach of lightning,
前記判定値が所定の第1レベル値以上でありかつ所定時間内に所定数以上の前記雷サージが発生した場合に雷接近と判別する第1判別回路と、前記判定値が第1レベル値よりも高い所定の第2レベル値に設定されており第2レベル以上の雷サージが発生した場合に直ちに雷接近と判別する第2判別回路とを備え、前記第1判別回路、第2判別回路のいずれか一方が雷接近と判別した場合に雷接近と判別すると共にさらに前記検出手段が接地型アンテナであって、しかも前記襲雷検出回路の故障有無を確認する模擬信号発生回路を該アンテナに接続された受信同調用のタンク回路の接地側接続点と接地との間に挿入接続して同接続点と接地間に模擬信号を発生させるようにしたことを特徴とする雷保護装置に使用する襲雷検出回路。A first discriminating circuit for discriminating that a lightning is approaching when the judgment value is greater than or equal to a predetermined first level value and a predetermined number of lightning surges occur within a predetermined time; and the determination value is greater than the first level value A second discrimination circuit that is set to a high predetermined second level value and immediately discriminates that lightning is approaching when a lightning surge of the second level or higher occurs, the first discrimination circuit and the second discrimination circuit When one of them is determined to be approaching lightning, it is determined that lightning is approaching, and the detection means is a grounded antenna, and a simulated signal generation circuit for confirming the presence or absence of failure of the lightning detection circuit is connected to the antenna. An attack used for a lightning protection device, characterized in that a simulated signal is generated between the connection point and the ground by inserting and connecting between the connection point of the received tank circuit for receiving tuning and the ground. Lightning detection circuit.
JP2003162756A 2002-12-10 2003-06-06 Lightning strike detection circuit Expired - Fee Related JP4196026B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003162756A JP4196026B2 (en) 2003-06-06 2003-06-06 Lightning strike detection circuit
US10/538,080 US7256977B2 (en) 2002-12-10 2003-11-14 Device for protection from thunder
KR1020057010558A KR20050084244A (en) 2002-12-10 2003-11-14 Device for protection from thunder
AU2003302828A AU2003302828A1 (en) 2002-12-10 2003-11-14 Thunderbolt Disaster Protecting Apparatus
PCT/JP2003/014546 WO2004054062A1 (en) 2002-12-10 2003-11-14 Device for protection from thunder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162756A JP4196026B2 (en) 2003-06-06 2003-06-06 Lightning strike detection circuit

Publications (2)

Publication Number Publication Date
JP2004361349A JP2004361349A (en) 2004-12-24
JP4196026B2 true JP4196026B2 (en) 2008-12-17

Family

ID=34054816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162756A Expired - Fee Related JP4196026B2 (en) 2002-12-10 2003-06-06 Lightning strike detection circuit

Country Status (1)

Country Link
JP (1) JP4196026B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112659A (en) * 2010-11-19 2012-06-14 East Japan Railway Co Electroscope and method for detecting voltage
KR101295617B1 (en) * 2012-04-06 2013-08-12 주식회사 티지오 System for warning thunderbolt
KR101521134B1 (en) * 2013-10-15 2015-05-19 선광엘티아이(주) System for warning thunderbolt and prevention
JP2020136606A (en) * 2019-02-25 2020-08-31 三菱重工業株式会社 Electronic device protection device and electronic device
KR102269172B1 (en) * 2020-09-01 2021-06-24 주식회사 엘피에스코리아 Spare Power Automatic Transfer Device and Method According To Lightning Prediction

Also Published As

Publication number Publication date
JP2004361349A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
US6798628B1 (en) Arc fault circuit detector having two arc fault detection levels
US5963408A (en) Ground fault circuit interrupter incorporating miswiring prevention circuitry
CA2236283C (en) Ground fault circuit interrupter system with uncommitted contacts
US5654857A (en) Ground fault circuit interrupt system including auxiliary surge suppression ability
EP2541715B1 (en) Dc power supply insulation fault detection circuit
CN103733457B (en) Mitigate the adaptive optical detection of system for electric arc
US20160025794A1 (en) Apparatus and method for detecting leakage current
KR100906304B1 (en) Leakage current isolating control device of the surge voltage protecting circuit
US20220224101A1 (en) Device and method for detecting faulty electrical circuits with fault identification and alert system
CN103633568A (en) Household multifunctional safety protection distribution box
CN203596508U (en) Multifunctional household safety protection distribution box
KR100885632B1 (en) Intelligent Surge Protective Devide
CN109412107A (en) Electronic state reports breaker
JP4196026B2 (en) Lightning strike detection circuit
JP6509029B2 (en) Distribution board
CN107765138B (en) Power grid monitoring system
KR101638632B1 (en) Leakage current breaking apparatus
EP1482317B1 (en) Earth resistance measurement instrument by neutral-to-earth loop and measurement procedure
CN103368256B (en) A kind of detectable Surge Protector
KR101454121B1 (en) A detection device of leakage current for deterioration diagnosis of DC lightning arresters
KR200203518Y1 (en) Reclamation type concent
CN201937242U (en) Monitoring device of surge protector
AU2008203195A1 (en) A power shutdown system
KR20190080221A (en) Short circuit breaker with preventing malfunction and false notification by leakage current
KR20210047657A (en) Anti-theft and Monitoring System for Ground wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4196026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees