WO2022176098A1 - Terminal, base station, communication method, and program - Google Patents

Terminal, base station, communication method, and program Download PDF

Info

Publication number
WO2022176098A1
WO2022176098A1 PCT/JP2021/006091 JP2021006091W WO2022176098A1 WO 2022176098 A1 WO2022176098 A1 WO 2022176098A1 JP 2021006091 W JP2021006091 W JP 2021006091W WO 2022176098 A1 WO2022176098 A1 WO 2022176098A1
Authority
WO
WIPO (PCT)
Prior art keywords
slice
terminal
information
network
cell
Prior art date
Application number
PCT/JP2021/006091
Other languages
French (fr)
Japanese (ja)
Inventor
克成 上村
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Priority to PCT/JP2021/006091 priority Critical patent/WO2022176098A1/en
Publication of WO2022176098A1 publication Critical patent/WO2022176098A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to terminals, base stations, communication methods and programs.
  • the 3GPP (3rd Generation Partnership Project), an international standardization body, is studying the 5G system (5GS: 5G System), which is the 5th generation (5G) cellular system.
  • Network slicing is being considered as a technology for operating an optimal network for 5G services.
  • Network slicing is a technique of building multiple virtualized logical networks on a physical network in order to support the service requirements of a certain communication service.
  • Each of these virtualized logical networks is called a network slice or simply a slice (Non-Patent Document 1).
  • a terminal transmits information indicating a desired network slice for registration to a cell selected by cell selection or reselection, thereby performing network registration processing. conduct. If the network cannot provide the network slice specified by the terminal, registration with the specified network slice will be refused.
  • the terminal cannot know whether the network slice for which it wishes to register is provided unless it performs the registration process with the network for the cell selected by cell selection or reselection. can't In addition, even if the network provides a network slice for which registration is desired, if the terminal does not support the implementation method of the network slice, wireless resources related to the registration process with the network are wasted. It may get lost.
  • an object of the present invention is to provide a technology that enables selection or reselection of cells in consideration of a network slice implementation method.
  • a terminal includes an acquisition unit that acquires slice information indicating a network slice that can be provided in a cell and slice additional information indicating a method for realizing the network slice, slice information, slice additional information, and a terminal. and a control unit that selects or reselects a cell to camp on from among cells that can provide network slices, based on the network slice implementation method supported by .
  • FIG. 1 is a diagram showing an example of an overview of a wireless communication system according to an embodiment
  • FIG. FIG. 2 is a diagram for explaining network slicing and network slicing
  • FIG. 1 is a diagram illustrating a conventional processing procedure when a terminal is registered with a network
  • FIG. FIG. 4 is a diagram showing the bit configuration of S-NSSAI; This is the definition of the SST Value.
  • FIG. 4 is a diagram exemplifying correspondence relationships and contents of slice information and slice additional information
  • FIG. 2 is a diagram showing an example of hardware configurations of a terminal and a base station
  • FIG. FIG. 3 is a diagram showing a functional block configuration example of a terminal
  • FIG. 4 is a diagram for explaining an operation of changing/not changing the frequency priority of a cell;
  • FIG. 4 is a diagram for explaining an operation of changing/not changing the frequency priority of a cell;
  • FIG. 2 is a diagram showing an example of a functional block configuration of a base station;
  • FIG. 4 is a flowchart showing an example of a processing procedure when a terminal selects or reselects a cell;
  • the radio communication system targets a 5G system (5G system: 5GS) including a radio access network (RAN), a core network (CN), and a terminal, but is limited to this not.
  • 5G system 5G system: 5GS
  • RAN radio access network
  • CN core network
  • a terminal a terminal
  • the radio access network may operate with multiple RATs (multi-RAT) including LTE and/or LTE-Advanced and NR (described later), or operate with any one RAT (Radio Access Technology)
  • EUTRA Evolved Universal Terrestrial Radio Access
  • 5G is also called NR (New Radio).
  • This embodiment can be applied to any wireless communication system as long as it includes at least a terminal, a base station, and a core network.
  • FIG. 1 is a diagram showing an example of an outline of a wireless communication system 1 according to this embodiment.
  • the radio communication system 1 includes a terminal 10, base stations 20A-20B, and a core network 30.
  • FIG. When the base stations 20A-20B and cells C1-C2 are not distinguished, they are collectively referred to as base station 20 and cell C, respectively.
  • the numbers of terminals 10 and base stations 20 shown in FIG. 1 are merely examples, and are not limited to the numbers shown.
  • the terminal 10 is, for example, a predetermined terminal, device, integrated circuit, or apparatus such as a smartphone, a personal computer, an in-vehicle terminal, an in-vehicle device, and a stationary device.
  • the terminal 10 may also be called a user equipment (UE).
  • the terminal 10 may be mobile or stationary.
  • the terminal 10 can communicate with a RAT that adopts at least one of EUTRA and NR, for example.
  • a base station for EUTRA Evolved Universal Terrestrial Radio Access
  • a base station for NR or a base station that supports both EUTRA and NR
  • the base station 20 for EUTRA is called eNB (evolved NodeB)
  • the base station 20 for NR is called gNB (g-NodeB).
  • the base station 20 includes ng-eNB, gNodeB (gNB), en-gNB, Next Generation-Radio Access Network (NG-RAN) node, Donor eNodeB (DeNB), Donor node, Central Unit (CU), low power node ( low-power node), pico eNB, Home eNB (HeNB), Distributed Unit (DU), gNB-DU, Remote Radio Head (RRH), or Integrated Access and Backhaul/Backhauling (IAB) node, etc. good.
  • ng-eNB gNodeB
  • NG-RAN Next Generation-Radio Access Network
  • DeNB Donor eNodeB
  • CU Central Unit
  • low power node low-power node
  • pico eNB low-power node
  • HeNB Home eNB
  • DU Distributed Unit
  • RRH Remote Radio Head
  • IAB Integrated Access and Backhaul/Backhauling
  • the base station 20 forms one or more cells C.
  • Cell C is a serving cell, carrier, component carrier (CC), primary cell (PCell), secondary cell (Secondary Cell: SCell), primary secondary cell (Primary SCell), special cell (SpCell) ) and the like.
  • CC component carrier
  • PCell primary cell
  • SCell secondary cell
  • Primary SCell Primary secondary cell
  • SpCell special cell
  • the base stations 20A and 20B form cells C1 and C2, respectively, in FIG. 1, each base station 20 may form a plurality of cells.
  • the plurality of base stations 20 may be connected to each other via a predetermined interface (eg, X2 or Xn interface).
  • the core network 30 is, for example, an EUTRA-compatible core network (Evolved Packet Core: EPC) or an NR-compatible core network (5G Core Network: 5GC).
  • the core network 30 includes a plurality of entities such as AMF (Access and Mobility Management Function), SMF (Session Management Function), UPF (User Plane Function) and NSSF (Network Slice Selection Function) (not shown). figure). These entities are implemented in one or more physical or logical devices. For example, each slice may have an AMF, an SMF, and a UPF, respectively, or may share some or all.
  • the terminal 10 can communicate with one or more base stations 20.
  • a terminal 10 can communicate with one base station 20 using carrier aggregation (CA) that integrates a plurality of cells C.
  • CA carrier aggregation
  • FIG. The terminal 10 can also communicate with a plurality of base stations 20 by dual connectivity (DC) connecting to two cell groups each including one or more cells C.
  • DC may be called a Multi-RAT DC (MR-DC).
  • FIG. 2 is a diagram for explaining network slicing and network slicing.
  • network slicing By network slicing, the entire or partial resources of the network including the radio access network (RAN) 2 composed of a plurality of base stations 20 and the core network 30 are virtually divided as network slices.
  • the core network 30 and the base station 20 may be individually prepared for each network slice, or part or all of them may be shared between different network slices.
  • Network slicing typically divides the core network 30 logically/virtually, but may divide the radio access network 2 physically/logically/virtually.
  • the base station 20 allocates (scheduling) radio resources to the terminal 10, and performs various functions related to layer 1 (physical layer), layer 2 (MAC layer, RLC layer, PDCP layer) and layer 3 (RRC layer). By performing processing for each slice, network slicing can be realized in the radio access network 2 .
  • layer 1 physical layer
  • layer 2 MAC layer, RLC layer, PDCP layer
  • RRC layer layer 3
  • the core network 30 includes a core network (eMBB (enhanced Mobile Broadband)) 30-1 for high-capacity high-speed communication and a core network (URLLC (Ultra Reliable Low Latency Communication) 30-1 for low delay).
  • eMBB enhanced Mobile Broadband
  • URLLC Ultra Reliable Low Latency Communication
  • MIoT massive IoT
  • Terminals having different service requirements for example, a terminal 10-1 used as a game machine, a terminal 10-2 mounted on a vehicle and used as an IoT device, and a terminal 10-3 used as an IoT device, have respective service requirements. belong to slice 1, slice 2 and slice 3.
  • the communication performed by the terminal 10-1 is processed by the core network (eMBB) 30-1.
  • Communication performed by the terminal 10-2 is processed by the core network (URLLC) 30-2.
  • Communication performed by the terminal 10-3 is processed by a core network (MIoT) 30-3.
  • FIG. 3 is a diagram illustrating a conventional processing procedure when the terminal 10 is registered with the network.
  • the radio access network 2 including at least one base station 20 and the core network 30 are collectively described as "network”. It is also assumed that the core network 30 has previously known which base station 20 (cell) supports which network slice.
  • the state of the terminal 10 includes an idle state, an inactive state, and a connected state (in-communication state).
  • the idle state is a state in which the terminal 10 has not established an RRC connection with the base station 20, and is also called an RRC_IDLE state, an idle mode, or the like.
  • the terminal 10 in the idle state receives the system information of the cell C (step S10), and camps on the cell C selected by cell selection or reselection (step S11). "Camping (on) in cell C” may be rephrased as "being in cell C.” It should be understood that the system information received by the terminal 10 means information broadcast from the network and is different from an RRC (Radio Resource Control) message that the network can individually notify to each terminal 10.
  • RRC Radio Resource Control
  • Cell selection is to select a cell C (also called a "suitable cell") that satisfies a predetermined criterion (Cell Selection Criteria).
  • Cell reselection is to discover (detect) and camp on a cell C (more suitable cell) that is more suitable than the cell C currently camped on according to a predetermined criterion (Cell Reselection Criteria).
  • Cell reselection includes reselection of cell C with the same carrier frequency as cell C to camp on (intra-frequency cell reselection), reselection of cell C with a carrier frequency different from cell C to camp on.
  • Selection inter-frequency cell reselection
  • the terminal 10 transmits a signal called a random access preamble to the base station 20 using radio resources notified in advance by system information (step S12).
  • the random access preamble is also called message 1 (Msg1).
  • the base station 20 Upon receiving the random access preamble, the base station 20 transmits a random access response message (Random Access response) to the terminal 10 (step S13).
  • the random access response message is also called message 2 (Msg2).
  • the terminal 10 transmits an RRC message including an RRC setup request (RRC Setup Request) to the base station 20 (step S14).
  • the RRC setup request message includes at least information indicating the reason for establishing RRC (Establishment Cause).
  • the message containing the RRC setup request is also called message 3 (Msg3).
  • the base station 20 transmits an RRC message including RRC setup (RRC Setup) to the terminal 10 (step S15).
  • the RRC message containing RRC setup is also called message 4 (Msg4).
  • the terminal 10 transmits an RRC message including RRC setup complete (RRC Setup Complete) to the base station 20 (step S16).
  • the RRC message containing the RRC setup complete is also called message 5 (Msg5).
  • the terminal 10 When the terminal 10 wishes to register with a network slice, the terminal 10 sends a registration request (Registration Request) including an ID that uniquely identifies the network slice that requests registration to an RRC Setup Complete (RRC Setup Complete) message. and transmit it to the base station 20.
  • a registration request (Registration Request) is notified as a NAS (Non-Access Stratum) message, which is an upper layer of the RRC layer.
  • An ID that uniquely identifies a network slice is called S-NSSAI (Single Network Slice Selection Assistance Information).
  • a list of multiple S-NSSAIs is called NSSAI (Network Slice Selection Assistance Information).
  • S-NSSAI Network Slice Selection Assistance Information
  • the base station 20 selects the core network 30 (AMF) for registering the terminal information, and sends the registration request to the selected core network 30. Request).
  • the core network 30 registers the requested network slice based on the network slice supported by the base station 20 (or cell) that received the registration request and the network slice supported by the core network 30. It determines whether or not it is possible to accept registration at the base station 20, and notifies the base station 20 of the determination result.
  • the base station 20 includes information (Allowed NSSAI) or It includes information indicating that the requested S-NSSAI is not supported (Rejected NSSAI) and transmits it to the terminal 10 (step S17).
  • FIG. 4 is a diagram explaining the structure of the S-NSSAI defined in the 3GPP specifications.
  • FIG. 4A shows the bit structure of the S-NSSAI.
  • S-NSSAI is composed of SST (Slice/Service Type) indicating the type of network slice and SD (Slice Differentiator) which is information for distinguishing network slices belonging to the same SST.
  • SST may consist of 8 bits and SD may consist of 24 bits. Since SD is optional information, it does not necessarily have to be included in S-NSSAI. That is, S-NSSAI is an information bit consisting of 8 bits or 32 bits.
  • FIG. 4B is the definition of the SST Value.
  • SST values 1, 2, 3 and 4 indicate that the service types (or slice types) provided by the network slices are eMBB, URLLC, MIoT and V2X (Vehicle-to-Everything), respectively. It should be noted that the definition of the SST value will not be limited to that in FIG. 4B in the future, and new SST values may be added.
  • the terminal 10 executes the random access procedure in the cell camped on by cell selection or reselection, and registers in the network. Without processing, it is impossible to know whether a given network slice is supported or not. If the network does not support the network slice that the terminal 10 wishes to register, the random access procedure and the network registration process (that is, the process procedure of steps S12 to S17 in FIG. 3) will be wasted. .
  • slice information indicating network slices that can be provided in the cell C formed by each base station 20 and a network slice realization method (execution method) are provided. , provision method, support type, etc.), and the terminal 10, when selecting or reselecting a cell, uses an implementation method that the terminal 10 supports (provides), A cell (frequency corresponding to the cell) capable of providing network slices supported by the terminal 10 is preferentially camped on.
  • FIG. 5 is a diagram exemplifying the contents of slice information and slice additional information included in system information.
  • Slice information includes slice type information that indicates the service type (Slice/service type) of the slice, and a unique slice that is coded and assigned that uniquely indicates the correspondence relationship between the slice type information and slice additional information (described later). identification information, etc., may be included.
  • the system information including slice information and slice additional information may be transmitted from the base station 20 as periodically scheduled system information, or system information transmitted in response to a request from the terminal 10 (on-demand system information). system information) may be transmitted from the base station 20.
  • Slice additional information is support function information indicating the support function of the terminal 10 required for realizing (executing) the slice (that is, the terminal capability information minimum required to satisfy the requirements of the service corresponding to the slice);
  • frequency information representing the frequency or combination information of multiple frequencies, other additional information (for example, detailed content of support function information), etc. may be included. good.
  • the slice additional information is an execution condition (requirement condition) for executing the slice.
  • "Packet duplication (2CC)” and “Packet duplication (4CC)” indicated in the support function information are techniques for realizing URLLC (slice) using a plurality of frequencies (cells).
  • IIoT enhancement is a technology that implements URLLC (slice) using transmission priority control and the like in a single frequency (cell).
  • Packet duplication (2CC) and Packet duplication (4CC) are duplicated using 2 CCs (2 cells) and 4 CCs (4 cells) by using CA or DC, respectively. It means a technology to improve the arrival probability (reliability) of packets by transmitting the packets through different transmission routes.
  • X and “Y” indicated in the frequency information indicate the band number to be used, and the band number specified by 3GPP is set. For example, if X is 1, band 1 is used, and if X is 40, band 40 is used.
  • CA#X corresponding to "Packet duplication (2CC)” means performing carrier aggregation (CA) using two frequencies (two cells) in band X. .
  • CA#X-Y corresponding to "Packet duplication (4CC)” uses two frequencies in band X and two frequencies in band Y (that is, a total of four cells).
  • DC#XY which means performing carrier aggregation (CA) using "Packet duplication (4CC)" has two frequencies in band X and frequencies in band Y. It means performing dual connectivity (DC) using two (that is, four cells in total).
  • FIG. 6 is a diagram showing an example of hardware configurations of the terminal 10 and the base station 20.
  • the terminal 10 and the base station 20 have a processor 11, a memory 12, a storage device 13, a communication device 14 for wired or wireless communication, an input device 15 for receiving input operations, an output device 16 for outputting information, and an antenna 17.
  • the processor 11 is, for example, a CPU (Central Processing Unit) and controls the terminal 10 or the base station 20.
  • CPU Central Processing Unit
  • the memory 12 is composed of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM) and/or RAM (Random Access Memory).
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically Erasable Programmable ROM
  • RAM Random Access Memory
  • the storage device 13 is composed of storage such as HDD (Hard Disk Drive), SSD (Solid State Drive) and/or eMMC (embedded Multi Media Card), for example.
  • HDD Hard Disk Drive
  • SSD Solid State Drive
  • eMMC embedded Multi Media Card
  • the communication device 14 is a device that communicates via a wired and/or wireless network, such as a network card or a communication module. Further, the communication device 14 may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
  • RF Radio Frequency
  • BB BaseBand
  • the RF device generates a radio signal to be transmitted from the antenna 17 by performing D/A conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A/D conversion, etc. on the radio signal received from the antenna 17, and transmits the digital baseband signal to the BB device.
  • the BB device performs a process of converting a digital baseband signal into a packet and a process of converting the packet into a digital baseband signal.
  • the input device 15 is, for example, a keyboard, touch panel, mouse and/or microphone.
  • the output device 16 is, for example, a display and/or a speaker.
  • FIG. 7 is a diagram showing a functional block configuration example of the terminal 10.
  • Terminal 10 includes a storage unit 100 , a reception unit 101 , a transmission unit 102 , an acquisition unit 103 and a control unit 104 .
  • Storage unit 100 may be implemented using memory 12 and/or storage device 13 provided in terminal 10 .
  • the receiving unit 101 and the transmitting unit 102 may be implemented by the communication device 14, for example, or may be implemented by the processor 11 executing a program stored in the storage device 13 in addition to the communication device 14.
  • Acquisition unit 103 and control unit 104 may be implemented by processor 11 of terminal 10 executing a program stored in storage device 13 .
  • the program can be stored in a storage medium.
  • the storage medium storing the program may be a non-transitory computer readable medium.
  • Non-temporary storage media are not particularly limited, but may be storage media such as USB memory or CD-ROM, for example.
  • the storage unit 100 stores, as terminal capability information, slice information indicating one or more network slices supported by the terminal 10 itself, slice additional information indicating a method of implementing the network slices supported by the terminal 10 itself, and the like.
  • the receiving unit 101 receives downlink signals from the base station 20 .
  • the transmitting unit 102 generates an uplink (UP Link) signal and transmits it to the base station 20 .
  • the transmitting unit 102 utilizes an RRC message (eg, message 5 including RRC setup complete) instead of or in addition to S-NSSAI to implement (execute, Terminal 10 notifies base station 20 of the slices that terminal 10 can implement by transmitting to base station 20 one or more pieces of slice identification information indicating slices that can be supported.
  • RRC message eg, message 5 including RRC setup complete
  • the acquisition unit 103 acquires slice additional information indicating a network slice realization method together with slice information indicating a network slice that can be provided by a cell (see FIG. 5).
  • Network slices that can be provided by cells include “network slices supported by cells”, “network slices that can be registered in an area including cells”, “network slices that can be provided by the base station 20 (or network)", It may be read as “a network slice supported by the base station 20 (or network)" or "a network slice that can be registered in an area including the base station 20 (or network)”.
  • Acquisition section 103 acquires slice information and slice additional information from the system information received from base station 20 .
  • Control unit 104 selects a cell to camp on (cell selection) or reselects (cell reselect). Specifically, first, based on the slice information and slice additional information acquired by the acquisition unit 103, the control unit 104 checks the network slice supported by each cell (or the carrier frequency of the cell) and the implementation method of the slice. do. Then, control section 104 refers to the terminal capability information stored in storage section 100 and determines whether or not own terminal 10 supports the checked slice and slice realization method.
  • the control unit 104 Based on the check result, the control unit 104 identifies a cell that can provide a network slice by the implementation method supported by the terminal 10 . Then, the control unit 104 regards the specified cell as a suitable cell, and selects or reselects a cell to camp on from among the suitable cells. As an example, the control unit 104 selects or reselects a cell by increasing the frequency priority (hereinafter referred to as frequency priority) of a cell that supports the checked slice and slice implementation method. Note that the frequency priority of the cell is notified as system information and set in the storage unit 100, SIM card, or the like as priority information.
  • frequency priority hereinafter referred to as frequency priority
  • the terminal 10 supports at least a method of realizing "eMBB" (slice) and "URLLC” (slice).
  • the terminal 10 supports at least frequency #0 (F#0), frequency #1 (F#1), and frequency #2 (F#2) as usable frequencies.
  • terminal 10 supports a function (CA and/or DC) that simultaneously uses frequencies F#1 and F#2 and at least supports packet duplication using frequencies F#1 and F#2 assume.
  • CA and/or DC that simultaneously uses frequencies F#1 and F#2 and at least supports packet duplication using frequencies F#1 and F#2 assume.
  • the control unit 104 sets the priority of each frequency (F#1, #2) as (corresponding) frequency information related to the support function information "Packet duplication (2CC)" to the frequency (F#0 ), the frequency priority indicated in the priority information is changed so as to be higher than the priority of .
  • the slice that the terminal 10 preferentially (intentionally) tries to use is URLLC, and any frequency indicated by the frequency information related to the support function information “Packet duplication (2CC)” ( Here, when camped on F#1), the control unit 104 does not need to change the frequency priority indicated in the priority information. After changing the frequency priority of the cell in this way, the control unit 104 can select or reselect the cell according to the changed frequency priority of the cell.
  • Packet duplication (2CC) Packet duplication
  • FIG. 9 is a diagram showing an example of the functional block configuration of the base station 20.
  • Base station 20 includes storage section 200 , receiving section 201 and transmitting section 202 .
  • FIG. 9 shows functional blocks required in this embodiment.
  • Storage unit 200 may be implemented using memory 12 and/or storage device 13 provided in base station 20 .
  • the receiving unit 201 and the transmitting unit 202 may be implemented by the communication device 14, for example, or may be implemented by the processor 11 executing a program stored in the storage device 13 in addition to the communication device 14.
  • the program can be stored in a storage medium.
  • the storage medium storing the program may be a computer-readable non-temporary storage medium.
  • Non-temporary storage media are not particularly limited, but may be storage media such as USB memory or CD-ROM, for example.
  • the receiving unit 201 receives uplink signals from the terminal 10 .
  • the transmitting unit 202 generates a downlink signal and transmits it to the terminal 10 .
  • the transmitting unit 202 transmits system information including slice information and slice additional information.
  • the receiving unit 201 and the transmitting unit 202 perform random access procedures and RRC connection establishment processing with the terminal 10 (for example, reception of an RRC Setup Complete message containing desired slice information), and transmission and reception of other RRC messages. and perform the corresponding processing.
  • the receiving unit 201 and the transmitting unit 202 transmit and receive messages (NAS messages) to and from the core network 30 .
  • NAS messages messages
  • the transmission unit 202 transmits slice information indicating network slices that can be provided in a cell and slice additional information indicating a method of realizing network slices in the system information.
  • Transmitter 202 includes, as system information, SIB1 (System Information Block Type1) containing information on serving cells, SIB2 (System Information Block Type2) containing cell reselection information, and SIB4 (System Information Block Type4) containing peripheral cell information.
  • SIB1 System Information Block Type1
  • SIB2 System Information Block Type2
  • SIB4 System Information Block Type4
  • Slice information and slice additional information are transmitted using all or one of them.
  • the transmitting unit 202 may include the slice information and the additional slice information in separate system information and transmit them, or may transmit either of them as the on-demand system information.
  • the transmitting unit 202 may transmit the slice information as normal system information, and transmit the slice additional information as on-demand system information at any timing in response to a request from the terminal 10 .
  • the receiving unit 201 selects or reselects a cell to camp on from among the cells that can provide network slices by the implementation method supported by the terminal 10, based on the slice information and the slice additional information for the terminal 10. to receive from the terminal 10 the information of the network slice that the terminal 10 uses.
  • a base station 20 may support network slicing in multiple implementations in a single cell. The base station 20 may explicitly or implicitly notify the terminal 10 of which implementation method is prioritized in the system information.
  • the base station 20 may notify the priority based on the setting order of slices set in the system information (for example, when the terminal 10 is notified in a list format, the list descending order (ascending order) is considered to have lower priority).
  • the terminal 10 may select or reselect a cell according to the explicitly or implicitly notified priority.
  • FIG. 10 is a flowchart showing an example of a processing procedure when the terminal 10 selects or reselects a cell.
  • step S100 the acquiring unit 103 searches for neighboring cells of the terminal 10 itself, receives system information including slice information and slice additional information in the detected cell, and receives slice information and slice additional information at camp-on. Get the information you need.
  • step S101 when selecting or reselecting a cell, the control unit 104 determines whether or not there is an appropriate cell capable of providing a network slice by an implementation method supported by the terminal 10 itself, terminal capability information held by the terminal 10, The determination is made based on the obtained system information.
  • the terminal capability information includes slice information indicating network slices supported by the terminal 10 itself, and additional slice information indicating a method of implementing the network slices supported by the terminal 10 itself.
  • the terminal capability information may be stored in the storage unit 100 in advance, or may be stored in a SIM (Subscriber Identity Module).
  • the control unit 104 proceeds to the processing procedure of step S102 if the cell is found, and proceeds to the processing procedure of step S103 if not found.
  • SIM Subscriber Identity Module
  • the "appropriate cell” in the procedure of step S101 may mean the cell C that satisfies a predetermined criterion (Cell Selection Criteria) when selecting a cell.
  • Cell Selection Criteria Cell Selection Criteria
  • the "suitable cell” is a cell C (more suitable cell) that is found according to a predetermined criterion (Cell Reselection Criteria) and is more suitable than the currently camped-on cell C. It can mean.
  • the terminal 10 may be capable of supporting network slicing in multiple implementations. For example, it is assumed that the terminal 10 supports a slice whose slice/service type is 'URLLC' by a plurality of implementation methods such as 'Packet duplication (2CC)' and 'IIoT enhancement'.
  • 'Packet duplication (2CC)' 'IIoT enhancement'.
  • the terminal 10 preferentially, for example, prefers a cell that supports "packet duplication (2CC)" over "IIoT enhancement" as a cell to camp on, according to a user's instruction or an operator's (PLMN) contract. You may make it select.
  • 2CC packet duplication
  • IIoT enhancement operator's
  • the terminal 10 determines whether a network slice can be provided by a supported implementation method. can be Additionally, a determination may be made whether a supported implementation can provide a network slice regardless of whether it meets predetermined criteria. In addition, the terminal 10 determines whether the network slice can be provided by the supported implementation method only when the quality of the cell in which the terminal 10 is located (camped) or the measured cell quality is equal to or higher than a certain threshold.
  • the terminal 10 may apply a normal cell selection or cell reselection procedure that does not consider slice information. good.
  • the base station 20 may notify the threshold associated with cell selection or cell reselection in system information for each slice as part of slice additional information.
  • step S102 the control unit 104 of the terminal 10 camps on the cell discovered in step S101, and returns to the processing procedure of step S100 to search for a more suitable cell than the camped-on cell. do.
  • step S103 when the control unit 104 of the terminal 10 ends the cell selection or reselection process (for example, when turning off the power of the terminal 10) (step S103-YES), the processing procedure shown in FIG. 10 ends. . If not finished (step S103-NO), the procedure returns to step S100.
  • the priority of cells may be changed. For example, when the terminal 10 supports a plurality of slices and slice realization methods, when selecting or reselecting a cell, the terminal 10 selects the slice with the highest priority and the slice realization method. , may be selected as the cell to camp on. Note that the cell priority may be set in the storage unit 100, the SIM card, or the like as priority information.
  • (Modification 2) Acquisition section 103 uses an RRC message (for example, RRC Reconfiguration, RRC Release, etc.) individually notified from base station 20 to each terminal 10 instead of broadcasted system information, thereby obtaining slice information related to neighboring cells in advance. and slice additional information.
  • slice information may be obtained from system information
  • slice additional information may be obtained from an RRC message (RRC Release, etc.).
  • the control section 104 may change the frequency priority of the cell based on the additional slice information included in the individually notified RRC message.
  • the control unit 104 receives the other information notified in the RRC message.
  • slice information and slice additional information may be preferentially used.
  • the base station 20 may set valid time for other slice information and slice additional information notified by the RRC message.
  • the control unit 104 uses other slice information and slice additional information notified by the RRC message during the valid time, and slices from the system information of the serving cell after the valid time expires. Information and slice additional information may be reacquired and used.
  • the slice information may be provided in a bitmap format in which bits corresponding to the slices to be supported are set, may be provided in a list format in which the slices to be supported are listed, or may be notified of the SST value. good. Also, the slice additional information may be provided in the form of a list in which the slice realization method is registered for each supported slice, for example (see FIG. 5).
  • the base station 20 considers the case where the target quality corresponding to a slice differs between uplink (UL) and downlink (DL), for example, and combines uplink frequency information and downlink frequency information. It may be set separately in the system information or RRC message.
  • frequency information such as “UL: CA#X1, CA#Y1” is set for the uplink (UL), while the downlink For (DL), frequency information such as “DL: CA#X2, CA#Y2” (X1 ⁇ X2, Y1 ⁇ Y2) can also be set.
  • Control unit 104 based on the slice additional information in which different frequency information is set for uplink and downlink, and the determination result as to whether the service using slices corresponds to uplink or downlink, the cell It is sufficient to change the frequency priority of .
  • the information amount of slice additional information may be reduced by linking frequency information related to a method of implementing network slices supported by the terminal 10 to the band combination information transmitted from the terminal 10 to the base station 20 .
  • “Band combination information” is information indicating a combination of frequencies (bands) supported by the terminal 10 , and is transmitted to the base station 20 by being included in an RRC message such as a “UE Capability Information message”, for example.
  • the terminal 10 uses bands (for example, bands “F#1” and “F#2”) corresponding to frequency information related to a network slice implementation method. etc.) and band combination, flag information (or SST) corresponding to the slice is added and transmitted to the base station 20 as a "UE Capability Information message".
  • bands for example, bands “F#1” and “F#2”
  • flag information or SST
  • the base station 20 notifies the frequency information as the slice additional information by the RRC message
  • the number corresponding to the band combination information transmitted from the terminal 10 is set instead of the frequency information, thereby reducing the amount of information.
  • the terminal 10 includes the band combination "CA#X1" at the n-th position in the band combination information list and transmits it, instead of notifying "CA#X1" as the frequency information, it notifies "n".
  • the terminal 10 camps on a cell capable of providing a network slice by a method supported by the terminal 10 itself, based on slice information and slice additional information included in system information and the like. made it This makes it possible to provide a technique that enables selection or reselection of cells in consideration of the implementation method of network slicing.
  • Reference Signs List 1 wireless communication system 10 terminal 11 processor 12 memory 13 storage device 14 communication device 15 input device 16 output device 17 antenna 20 base station 30 core Network 100 Storage unit 101 Reception unit 102 Transmission unit 103 Acquisition unit 104 Control unit 200 Storage unit 201 Reception unit 202 Transmission unit

Abstract

Provided is a terminal including an acquisition unit for acquiring slice information indicating network slices that can be provided by cells and slice additional information indicating network slice implementation methods; and a control unit for selecting or reselecting a cell to be camped on from among the cells that can provide the network slices on the basis of the slice information, the slice additional information, and a network slice implementation method supported by the terminal.

Description

端末、基地局、通信方法及びプログラムTerminal, base station, communication method and program
 本発明は、端末、基地局、通信方法及びプログラムに関する。 The present invention relates to terminals, base stations, communication methods and programs.
 国際標準化団体である3GPP(3rd Generation Partnership Project)において、第5世代(5G)のセルラーシステムである5Gシステム(5GS:5G System)の検討が行われている。  The 3GPP (3rd Generation Partnership Project), an international standardization body, is studying the 5G system (5GS: 5G System), which is the 5th generation (5G) cellular system.
 例えば、5Gのサービスに対して最適なネットワークを運用するための技術として、ネットワークスライシング(Network Slicing)が検討されている。ネットワークスライシングとは、ある通信サービスのサービス要件をサポートするために、物理的なネットワーク上に複数の仮想化された論理ネットワークを構築する技術である。この複数の仮想化された論理ネットワークをそれぞれネットワークスライス、または、単にスライスと呼称する(非特許文献1)。 For example, network slicing is being considered as a technology for operating an optimal network for 5G services. Network slicing is a technique of building multiple virtualized logical networks on a physical network in order to support the service requirements of a certain communication service. Each of these virtualized logical networks is called a network slice or simply a slice (Non-Patent Document 1).
 現在、3GPPで検討されている仕様によれば、端末は、セルの選択または再選択により選択したセルに対し、登録を希望するネットワークスライスを示す情報を送信することで、ネットワークへの登録処理を行う。もし、ネットワークが、端末から指定されたネットワークスライスを提供することができない場合、指定されたネットワークスライスへの登録は拒否されることになる。 According to the specifications currently being considered by 3GPP, a terminal transmits information indicating a desired network slice for registration to a cell selected by cell selection or reselection, thereby performing network registration processing. conduct. If the network cannot provide the network slice specified by the terminal, registration with the specified network slice will be refused.
 しかしながら、現在の仕様では、端末は、セルの選択または再選択により選択したセルに対してネットワークへの登録処理を行わない限り、登録を希望するネットワークスライスが提供されているのか否かを知ることができない。くわえて、ネットワークが登録を希望するネットワークスライスを提供していたとしても、端末が、そのネットワークスライスの実現方法をサポートしていなければ、ネットワークへの登録処理に係る無線リソースを無駄に消費してしまう可能性がある。 However, according to the current specifications, the terminal cannot know whether the network slice for which it wishes to register is provided unless it performs the registration process with the network for the cell selected by cell selection or reselection. can't In addition, even if the network provides a network slice for which registration is desired, if the terminal does not support the implementation method of the network slice, wireless resources related to the registration process with the network are wasted. It may get lost.
 そこで、本発明は、ネットワークスライスの実現方法を考慮してセルの選択または再選択を行うことを可能とする技術を提供することを目的とする。 Therefore, an object of the present invention is to provide a technology that enables selection or reselection of cells in consideration of a network slice implementation method.
 本発明の一態様に係る端末は、セルで提供可能なネットワークスライスを示すスライス情報、及びネットワークスライスの実現方法を示すスライス付加情報を取得する取得部と、スライス情報と、スライス付加情報と、端末がサポートするネットワークスライスの実現方法とに基づいて、ネットワークスライスを提供可能なセルの中から、キャンプオンするセルの選択または再選択を行う制御部と、を有する。 A terminal according to an aspect of the present invention includes an acquisition unit that acquires slice information indicating a network slice that can be provided in a cell and slice additional information indicating a method for realizing the network slice, slice information, slice additional information, and a terminal. and a control unit that selects or reselects a cell to camp on from among cells that can provide network slices, based on the network slice implementation method supported by .
 本発明によれば、ネットワークスライスの実現方法を考慮してセルの選択または再選択を行うことを可能とする技術を提供することができる。 According to the present invention, it is possible to provide a technology that enables cell selection or reselection in consideration of the network slice implementation method.
本実施形態に係る無線通信システムの概要の一例を示す図である。1 is a diagram showing an example of an overview of a wireless communication system according to an embodiment; FIG. ネットワークスライシング及びネットワークスライスを説明するための図である。FIG. 2 is a diagram for explaining network slicing and network slicing; FIG. 端末がネットワークに登録される際の従来の処理手順を説明する図である。1 is a diagram illustrating a conventional processing procedure when a terminal is registered with a network; FIG. S-NSSAIのビット構成を示す図である。FIG. 4 is a diagram showing the bit configuration of S-NSSAI; SST値(SST Value)の定義である。This is the definition of the SST Value. スライス情報及びスライス付加情報の対応関係並びに内容を例示した図である。FIG. 4 is a diagram exemplifying correspondence relationships and contents of slice information and slice additional information; 端末及び基地局のハードウェア構成の一例を示す図である。FIG. 2 is a diagram showing an example of hardware configurations of a terminal and a base station; FIG. 端末の機能ブロック構成例を示す図である。FIG. 3 is a diagram showing a functional block configuration example of a terminal; セルの周波数優先度の変更/非変更動作を説明するための図である。FIG. 4 is a diagram for explaining an operation of changing/not changing the frequency priority of a cell; セルの周波数優先度の変更/非変更動作を説明するための図である。FIG. 4 is a diagram for explaining an operation of changing/not changing the frequency priority of a cell; 基地局の機能ブロック構成の一例を示す図である。FIG. 2 is a diagram showing an example of a functional block configuration of a base station; FIG. 端末がセルの選択または再選択を行う際の処理手順の一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of a processing procedure when a terminal selects or reselects a cell; FIG.
 添付図面を参照して、本発明の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一または同様の構成を有する。 An embodiment of the present invention will be described with reference to the accompanying drawings. It should be noted that, in each figure, the same reference numerals have the same or similar configurations.
 <システム構成>
 本実施形態に係る無線通信システムは、無線アクセスネットワーク(Radio Access Network:RAN)、コアネットワーク(Core network:CN)及び端末を含む5Gシステム(5G system:5GS)を対象とするが、これに限定されない。例えば、LTE及びLTE-Advancedを採用する無線通信システムに対しても適用可能である。また、無線アクセスネットワークは、LTE及び/またはLTE-AdvancedとNR(後述)とを含む複数のRAT(multi-RAT)で動作してもよいし、いずれか1つのRAT(Radio Access Technology)で動作してもよい。LTE及び/またはLTE-Advancedは、EUTRA(Evolved Universal Terrestrial Radio Access)とも呼ばれる。また、5Gは、NR(New Radio)とも呼ばれる。本実施形態は、少なくとも端末と基地局とコアネットワークを備える無線通信システムであればどのような無線通信システムに対しても適用可能である。
<System configuration>
The radio communication system according to the present embodiment targets a 5G system (5G system: 5GS) including a radio access network (RAN), a core network (CN), and a terminal, but is limited to this not. For example, it is also applicable to wireless communication systems adopting LTE and LTE-Advanced. In addition, the radio access network may operate with multiple RATs (multi-RAT) including LTE and/or LTE-Advanced and NR (described later), or operate with any one RAT (Radio Access Technology) You may LTE and/or LTE-Advanced is also called EUTRA (Evolved Universal Terrestrial Radio Access). 5G is also called NR (New Radio). This embodiment can be applied to any wireless communication system as long as it includes at least a terminal, a base station, and a core network.
 図1は、本実施形態に係る無線通信システム1の概要の一例を示す図である。図1に示すように、無線通信システム1は、端末10と、基地局20A~20Bと、コアネットワーク30と、を含む。なお、基地局20A~20B、セルC1~C2を区別しない場合、それぞれ、基地局20、セルCと総称する。また、図1に示す端末10及び基地局20の数は例示にすぎず、図示する数に限られない。 FIG. 1 is a diagram showing an example of an outline of a wireless communication system 1 according to this embodiment. As shown in FIG. 1, the radio communication system 1 includes a terminal 10, base stations 20A-20B, and a core network 30. FIG. When the base stations 20A-20B and cells C1-C2 are not distinguished, they are collectively referred to as base station 20 and cell C, respectively. Also, the numbers of terminals 10 and base stations 20 shown in FIG. 1 are merely examples, and are not limited to the numbers shown.
 端末10は、例えば、スマートフォン、パーソナルコンピュータ、車載端末、車載装置及び静止装置等、所定の端末、デバイス、集積回路、または装置である。端末10は、ユーザ装置(User Equipment:UE)と呼ばれてもよい。端末10は、移動型であってもよいし、固定型であってもよい。端末10は、例えば、EUTRA及びNRのうち少なくとも一つを採用するRATとの間で通信可能である。 The terminal 10 is, for example, a predetermined terminal, device, integrated circuit, or apparatus such as a smartphone, a personal computer, an in-vehicle terminal, an in-vehicle device, and a stationary device. The terminal 10 may also be called a user equipment (UE). The terminal 10 may be mobile or stationary. The terminal 10 can communicate with a RAT that adopts at least one of EUTRA and NR, for example.
 基地局20には、EUTRA(Evolved Universal Terrestrial Radio Access)用の基地局、NR用の基地局、または、EUTRA及びNRの両方をサポートする基地局を用いることができる。EUTRA用の基地局20はeNB(evolved NodeB)、NR用の基地局20はgNB(g-NodeB)と呼ばれる。 For the base station 20, a base station for EUTRA (Evolved Universal Terrestrial Radio Access), a base station for NR, or a base station that supports both EUTRA and NR can be used. The base station 20 for EUTRA is called eNB (evolved NodeB), and the base station 20 for NR is called gNB (g-NodeB).
 基地局20は、ng-eNB、gNodeB(gNB)、en-gNB、Next Generation‐Radio Access Network(NG-RAN)ノード、Donor eNodeB(DeNB)、Donor node、Central Unit(CU)、低電力ノード(low-power node)、pico eNB、Home eNB(HeNB)、Distributed Unit(DU)、gNB-DU、Remote Radio Head(RRH)、または、Integrated Access and Backhaul/Backhauling(IAB)ノード等と呼ばれてもよい。 The base station 20 includes ng-eNB, gNodeB (gNB), en-gNB, Next Generation-Radio Access Network (NG-RAN) node, Donor eNodeB (DeNB), Donor node, Central Unit (CU), low power node ( low-power node), pico eNB, Home eNB (HeNB), Distributed Unit (DU), gNB-DU, Remote Radio Head (RRH), or Integrated Access and Backhaul/Backhauling (IAB) node, etc. good.
 基地局20は、一以上のセルCを形成する。セルCは、サービングセル、キャリア、コンポーネントキャリア(Component Carrier:CC)、プライマリセル(Primary Cell:PCell)、セカンダリセル(Secondary Cell:SCell)、プライマリセカンダリセル(Primary SCell)、スペシャルセル(Special Cell:SpCell)等と言い換えられてもよい。なお、図1では、基地局20A及び20BはそれぞれセルC1及びC2を形成するが、これに限られず、各基地局20は、複数のセルCを形成してもよい。また、複数の基地局20は、所定のインタフェース(例えば、X2またはXnインタフェース)で互いに接続されてもよい。 The base station 20 forms one or more cells C. Cell C is a serving cell, carrier, component carrier (CC), primary cell (PCell), secondary cell (Secondary Cell: SCell), primary secondary cell (Primary SCell), special cell (SpCell) ) and the like. Although the base stations 20A and 20B form cells C1 and C2, respectively, in FIG. 1, each base station 20 may form a plurality of cells. Also, the plurality of base stations 20 may be connected to each other via a predetermined interface (eg, X2 or Xn interface).
 コアネットワーク30は、例えば、EUTRAに対応したコアネットワーク(Evolved Packet Core:EPC)、または、NRに対応したコアネットワーク(5G Core Network:5GC)である。コアネットワーク30には、AMF(Access and Mobility Management Function)、SMF(Session Management Function)、UPF(User Plane Function)及びNSSF(Network Slice Selection Function)など、複数のエンティティ(entity)が含まれる(図示せず)。これらのエンティティは、1または複数の物理的、あるいは論理的な装置に実装される。例えば、各スライスがAMF、SMF、UPFをそれぞれ具備してもよいし、一部または全部を共有してもよい。 The core network 30 is, for example, an EUTRA-compatible core network (Evolved Packet Core: EPC) or an NR-compatible core network (5G Core Network: 5GC). The core network 30 includes a plurality of entities such as AMF (Access and Mobility Management Function), SMF (Session Management Function), UPF (User Plane Function) and NSSF (Network Slice Selection Function) (not shown). figure). These entities are implemented in one or more physical or logical devices. For example, each slice may have an AMF, an SMF, and a UPF, respectively, or may share some or all.
 無線通信システム1において、端末10は、一つまたは複数の基地局20と通信を行うことができる。例えば、図1において、端末10は、複数のセルCを統合するキャリアアグリゲーション(Carrier Aggregation:CA)を用いて、一つの基地局20との間で通信を行うことができる。また、端末10は、一以上のセルCをそれぞれ含む2つのセルグループに接続するデュアルコネクティビティ(Dual Connectivity:DC)により、複数の基地局20との間で通信を行うこともできる。2つのセルグループが異なるRATを用いる場合、当該DCは、マルチRAT DC(Multi-RAT DC:MR-DC)と呼ばれてもよい。 In the wireless communication system 1, the terminal 10 can communicate with one or more base stations 20. For example, in FIG. 1, a terminal 10 can communicate with one base station 20 using carrier aggregation (CA) that integrates a plurality of cells C. FIG. The terminal 10 can also communicate with a plurality of base stations 20 by dual connectivity (DC) connecting to two cell groups each including one or more cells C. When two cell groups use different RATs, the DC may be called a Multi-RAT DC (MR-DC).
 図2は、ネットワークスライシング及びネットワークスライスを説明するための図である。ネットワークスライシングにより、複数の基地局20から構成される無線アクセスネットワーク(RAN)2、及びコアネットワーク30を含むネットワーク全体または一部の資源(リソース)は、ネットワークスライスとしてそれぞれ仮想的に分割される。コアネットワーク30と基地局20は、ネットワークスライス毎に個別に用意されてもよいし、異なるネットワークスライス間で一部または全てが共有されてもよい。ネットワークスライシングは、典型的にはコアネットワーク30を論理的/仮想的に分割するものであるが、無線アクセスネットワーク2を物理的/論理的/仮想的に分割することとしてもよい。例えば、基地局20は、端末10への無線リソースの割り当て(スケジューリング)、及び、レイヤ1(物理レイヤ)、レイヤ2(MACレイヤ、RLCレイヤ、PDCPレイヤ)及びレイヤ3(RRCレイヤ)に関する各種の処理をスライスごとに行うことで、無線アクセスネットワーク2でネットワークスライシングを実現することができる。 FIG. 2 is a diagram for explaining network slicing and network slicing. By network slicing, the entire or partial resources of the network including the radio access network (RAN) 2 composed of a plurality of base stations 20 and the core network 30 are virtually divided as network slices. The core network 30 and the base station 20 may be individually prepared for each network slice, or part or all of them may be shared between different network slices. Network slicing typically divides the core network 30 logically/virtually, but may divide the radio access network 2 physically/logically/virtually. For example, the base station 20 allocates (scheduling) radio resources to the terminal 10, and performs various functions related to layer 1 (physical layer), layer 2 (MAC layer, RLC layer, PDCP layer) and layer 3 (RRC layer). By performing processing for each slice, network slicing can be realized in the radio access network 2 .
 図2の例では、コアネットワーク30は、大容量高速通信向けのコアネットワーク(eMBB(enhanced Mobile Broadband))30-1と、低遅延向けのコアネットワーク(URLLC(Ultra Reliable Low Latency Communication))30-2と、IoT端末向けのコアネットワーク(MIoT(massive IoT))30-3との少なくとも3つの異なるネットワークを仮想的に実現する機能を具備し、それぞれ、スライス1、スライス2及びスライス3として運用可能であることを示す。異なるサービス要件を持つ端末、例えば、ゲーム機として使用される端末10-1、車両に搭載されて使用される端末10-2及びIoT機器として使用される端末10-3は、それぞれのサービス要件を満たす、スライス1、スライス2及びスライス3に属している。 In the example of FIG. 2, the core network 30 includes a core network (eMBB (enhanced Mobile Broadband)) 30-1 for high-capacity high-speed communication and a core network (URLLC (Ultra Reliable Low Latency Communication) 30-1 for low delay). 2 and a core network for IoT terminals (MIoT (massive IoT)) 30-3, which can be operated as slice 1, slice 2, and slice 3, respectively. indicates that Terminals having different service requirements, for example, a terminal 10-1 used as a game machine, a terminal 10-2 mounted on a vehicle and used as an IoT device, and a terminal 10-3 used as an IoT device, have respective service requirements. belong to slice 1, slice 2 and slice 3.
 この場合、端末10-1が行う通信は、コアネットワーク(eMBB)30-1で処理される。また、端末10-2が行う通信は、コアネットワーク(URLLC)30-2で処理される。端末10-3が行う通信は、コアネットワーク(MIoT)30-3で処理される。このように、ネットワークスライスを利用することで、端末10に要求されるサービスの特性に適した通信処理を行うことが可能になる。 In this case, the communication performed by the terminal 10-1 is processed by the core network (eMBB) 30-1. Communication performed by the terminal 10-2 is processed by the core network (URLLC) 30-2. Communication performed by the terminal 10-3 is processed by a core network (MIoT) 30-3. By using network slices in this way, it becomes possible to perform communication processing suitable for the characteristics of the service required of the terminal 10 .
 図3は、端末10がネットワークに登録される際の従来の処理手順を説明する図である。図3では、少なくとも1つの基地局20を含む無線アクセスネットワーク2及びコアネットワーク30をまとめて「ネットワーク」と記載する。また、コアネットワーク30は、どの基地局20(セル)がどのネットワークスライスをサポートしているのか予め把握しているものとする。 FIG. 3 is a diagram illustrating a conventional processing procedure when the terminal 10 is registered with the network. In FIG. 3, the radio access network 2 including at least one base station 20 and the core network 30 are collectively described as "network". It is also assumed that the core network 30 has previously known which base station 20 (cell) supports which network slice.
 まず、端末10の状態(state)について説明する。端末10の状態は、アイドル状態、非アクティブ状態、コネクティッド状態(通信中状態)を含む。アイドル状態は、端末10が基地局20との間のRRCコネクションを確立(establish)していない状態であり、RRC#IDLE状態、アイドルモード等とも呼ばれる。 First, the state of the terminal 10 will be explained. The state of the terminal 10 includes an idle state, an inactive state, and a connected state (in-communication state). The idle state is a state in which the terminal 10 has not established an RRC connection with the base station 20, and is also called an RRC_IDLE state, an idle mode, or the like.
 アイドル状態の端末10は、当該セルCのシステム情報(System Information)を受信し(ステップS10)、セルの選択または再選択により選択されたセルCにキャンプオン(camp on)する(ステップS11)。「セルCにキャンプ(オン)する」は、「セルCに在圏する」と言い換えられてもよい。なお、端末10が受信するシステム情報は、ネットワークからブロードキャストされる情報を意味し、ネットワークが各端末10に個別に通知可能なRRC(Radio Resource Control)メッセージとは異なるものとして理解されたい。 The terminal 10 in the idle state receives the system information of the cell C (step S10), and camps on the cell C selected by cell selection or reselection (step S11). "Camping (on) in cell C" may be rephrased as "being in cell C." It should be understood that the system information received by the terminal 10 means information broadcast from the network and is different from an RRC (Radio Resource Control) message that the network can individually notify to each terminal 10.
 セルの選択とは、所定の基準(Cell Selection Criteria)を満たすセルC(適切セル「suitable cell」ともいう)を選択することである。 Cell selection is to select a cell C (also called a "suitable cell") that satisfies a predetermined criterion (Cell Selection Criteria).
 セルの再選択とは、所定の基準(Cell Reselection Criteria)に従って、現在キャンプオンしているセルCよりも適切なセルC(more suitable cell)を発見(検出)してキャンプオンすることである。セル再選択は、キャンプオンするセルCと同一のキャリア周波数のセルCの再選択(同周波数セル再選択(intra-frequency cell reselection))、キャンプオンするセルCと異なるキャリア周波数のセルCの再選択(異周波数セル選択(inter-frequency cell reselection))、キャンプオンするセルCと異なるRATのキャリア周波数のセルCの再選択(RAT間セル再選択(inter-RAT cell reselection))を含む。 Cell reselection is to discover (detect) and camp on a cell C (more suitable cell) that is more suitable than the cell C currently camped on according to a predetermined criterion (Cell Reselection Criteria). Cell reselection includes reselection of cell C with the same carrier frequency as cell C to camp on (intra-frequency cell reselection), reselection of cell C with a carrier frequency different from cell C to camp on. Selection (inter-frequency cell reselection), including reselection (inter-RAT cell reselection) of cell C on a carrier frequency of a different RAT than cell C to camp on.
 次に、端末10は、システム情報で予め通知された無線リソースを利用し、ランダムアクセスプリアンブル(Random access preamble)と呼ばれる信号を基地局20に送信する(ステップS12)。ランダムアクセスプリアンブルは、メッセージ1(Msg1)とも呼ばれる。基地局20は、ランダムアクセスプリアンブルを受信すると、ランダムアクセス応答メッセージ(Random Access response)を端末10に送信する(ステップS13)。ランダムアクセス応答メッセージは、メッセージ2(Msg2)とも呼ばれる。続いて、端末10は、RRCセットアップリクエスト(RRC Setup Request)を含むRRCメッセージを基地局20に送信する(ステップS14)。RRCセットアップリクエストメッセージには、RRCを確立する理由を示す情報(Establishment Cause)が少なくとも含まれる。RRCセットアップリクエストを含むメッセージは、メッセージ3(Msg3)とも呼ばれる。 Next, the terminal 10 transmits a signal called a random access preamble to the base station 20 using radio resources notified in advance by system information (step S12). The random access preamble is also called message 1 (Msg1). Upon receiving the random access preamble, the base station 20 transmits a random access response message (Random Access response) to the terminal 10 (step S13). The random access response message is also called message 2 (Msg2). Subsequently, the terminal 10 transmits an RRC message including an RRC setup request (RRC Setup Request) to the base station 20 (step S14). The RRC setup request message includes at least information indicating the reason for establishing RRC (Establishment Cause). The message containing the RRC setup request is also called message 3 (Msg3).
 続いて、基地局20は、RRCセットアップ(RRC Setup)を含むRRCメッセージを端末10に送信する(ステップS15)。RRCセットアップを含むRRCメッセージは、メッセージ4(Msg4)とも呼ばれる。続いて、端末10は、RRCセットアップコンプリート(RRC Setup Complete)を含むRRCメッセージを基地局20に送信する(ステップS16)。RRCセットアップコンプリートを含むRRCメッセージは、メッセージ5(Msg5)とも呼ばれる。メッセージ5の送信が完了すると、RRCコネクションが確立され、アイドル状態の端末10は、コネクティッド状態に遷移する。 Subsequently, the base station 20 transmits an RRC message including RRC setup (RRC Setup) to the terminal 10 (step S15). The RRC message containing RRC setup is also called message 4 (Msg4). Subsequently, the terminal 10 transmits an RRC message including RRC setup complete (RRC Setup Complete) to the base station 20 (step S16). The RRC message containing the RRC setup complete is also called message 5 (Msg5). When the transmission of message 5 is completed, an RRC connection is established, and terminal 10 in the idle state transitions to the connected state.
 端末10は、ネットワークスライスへの登録を希望する場合、登録を要求するネットワークスライスを一意に識別するIDを含む登録要求(Registration Request)を、RRCセットアップコンプリート(RRC Setup Complete)メッセージに相乗り(piggyback)させて基地局20に送信する。登録要求(Registration Request)は、RRCレイヤの上位レイヤであるNAS(Non-Access Stratum)メッセージとして通知される。ネットワークスライスを一意に識別するIDは、S-NSSAI(Single Network Slice Selection Assistance Information(単一ネットワークスライス選択アシスト情報))と呼ばれる。また、複数のS-NSSAIをリスト化したものはNSSAI(Network Slice Selection Assistance Information)と呼称される。以降、S-NSSAIはNSSAIを含むものとして説明する。 When the terminal 10 wishes to register with a network slice, the terminal 10 sends a registration request (Registration Request) including an ID that uniquely identifies the network slice that requests registration to an RRC Setup Complete (RRC Setup Complete) message. and transmit it to the base station 20. A registration request (Registration Request) is notified as a NAS (Non-Access Stratum) message, which is an upper layer of the RRC layer. An ID that uniquely identifies a network slice is called S-NSSAI (Single Network Slice Selection Assistance Information). A list of multiple S-NSSAIs is called NSSAI (Network Slice Selection Assistance Information). Hereinafter, S-NSSAI will be described as including NSSAI.
 基地局20は、S-NSSAIを含む登録要求(Registration Request)がメッセージ5で通知された場合、端末情報を登録するコアネットワーク30(AMF)を選択し、選択したコアネットワーク30へ登録要求(Registration Request)を転送する。コアネットワーク30(AMF)は、当該登録要求を受信した基地局20(またはセル)がサポートしているネットワークスライスと、コアネットワーク30がサポートしているネットワークスライスとに基づいて、要求されたネットワークスライスでの登録を受け付けることが可能か否かを判定し、判定結果を基地局20に通知する。基地局20は、RRC再設定メッセージ(RRC Reconfiguration)またはNASメッセージである下りリンク情報転送メッセージ(DL Information Transfer)に、要求されたS-NSSAIをサポートしていることを示す情報(Allowed NSSAI)または要求されたS-NSSAIをサポートしていないことを示す情報(Rejected NSSAI)を含めて端末10に送信する(ステップS17)。 When the registration request including S-NSSAI is notified by message 5, the base station 20 selects the core network 30 (AMF) for registering the terminal information, and sends the registration request to the selected core network 30. Request). The core network 30 (AMF) registers the requested network slice based on the network slice supported by the base station 20 (or cell) that received the registration request and the network slice supported by the core network 30. It determines whether or not it is possible to accept registration at the base station 20, and notifies the base station 20 of the determination result. The base station 20 includes information (Allowed NSSAI) or It includes information indicating that the requested S-NSSAI is not supported (Rejected NSSAI) and transmits it to the terminal 10 (step S17).
 図4は、3GPP仕様に規定されている、S-NSSAIの構成を説明する図である。図4Aは、S-NSSAIのビット構成を示す。S-NSSAIは、ネットワークスライスのタイプを示すSST(Slice/Service Type)と、同一のSSTに属するネットワークスライスを区別するための情報であるSD(Slice Differentiator(スライス差別要因))から構成される。例えば、SSTは8ビットで構成され、SDは24ビットで構成されてもよい。なお、SDはオプション情報であるため、必ずしもS-NSSAIに含まれていなくてもよい。すなわち、S-NSSAIは8ビット、または32ビットから構成される情報ビットである。 FIG. 4 is a diagram explaining the structure of the S-NSSAI defined in the 3GPP specifications. FIG. 4A shows the bit structure of the S-NSSAI. S-NSSAI is composed of SST (Slice/Service Type) indicating the type of network slice and SD (Slice Differentiator) which is information for distinguishing network slices belonging to the same SST. For example, SST may consist of 8 bits and SD may consist of 24 bits. Since SD is optional information, it does not necessarily have to be included in S-NSSAI. That is, S-NSSAI is an information bit consisting of 8 bits or 32 bits.
 図4Bは、SST値(SST Value)の定義である。SST値=1、2、3及び4は、それぞれ、ネットワークスライスが提供するサービスタイプ(またはスライスタイプ)がeMBB、URLLC、MIoT及びV2X(Vehicle-to-Everything)であることを示す。なお、今後SST値の定義は図4Bに限定されず、新たなSST値が追加されることもあり得る。 FIG. 4B is the definition of the SST Value. SST values = 1, 2, 3 and 4 indicate that the service types (or slice types) provided by the network slices are eMBB, URLLC, MIoT and V2X (Vehicle-to-Everything), respectively. It should be noted that the definition of the SST value will not be limited to that in FIG. 4B in the future, and new SST values may be added.
 以上説明した従来の処理手順によれば、端末10は、所定のネットワークスライスへの登録を希望する場合、セルの選択または再選択によりキャンプオンしたセルでランダムアクセス手順を実行し、ネットワークへの登録処理を行わない限り、所定のネットワークスライスがサポートされているのか否かを知ることができない。仮に、端末10が登録を希望するネットワークスライスをネットワークがサポートしていなかった場合、ランダムアクセス手順及びネットワークへの登録処理(つまり図3のステップS12~ステップS17の処理手順)は無駄になってしまう。 According to the conventional processing procedure described above, when the terminal 10 desires to be registered in a predetermined network slice, the terminal 10 executes the random access procedure in the cell camped on by cell selection or reselection, and registers in the network. Without processing, it is impossible to know whether a given network slice is supported or not. If the network does not support the network slice that the terminal 10 wishes to register, the random access procedure and the network registration process (that is, the process procedure of steps S12 to S17 in FIG. 3) will be wasted. .
 そこで、本実施形態では、各基地局20が送信するシステム情報の中に、各基地局20により形成されるセルCで提供可能なネットワークスライスを示すスライス情報とともに、ネットワークスライスの実現方法(実行方法、提供方法、サポートタイプなどと呼称してもよい)を示すスライス付加情報を含めておき、端末10は、セルの選択または再選択の際に、端末10がサポート(具備)する実現方法で、端末10がサポートするネットワークスライスを提供可能なセル(当該セルに対応した周波数)を優先してキャンプオンすることとする。 Therefore, in the present embodiment, in the system information transmitted by each base station 20, slice information indicating network slices that can be provided in the cell C formed by each base station 20 and a network slice realization method (execution method) are provided. , provision method, support type, etc.), and the terminal 10, when selecting or reselecting a cell, uses an implementation method that the terminal 10 supports (provides), A cell (frequency corresponding to the cell) capable of providing network slices supported by the terminal 10 is preferentially camped on.
 図5は、システム情報に含まれる、スライス情報及びスライス付加情報の内容を例示した図である。
 スライス情報は、スライスのサービスタイプ(Slice/service type)の種別をあらわすスライス種別情報や、スライス種別情報とスライス付加情報(後述)との対応関係を一意に示す符号化して割り当てられたユニークなスライス識別情報、などを含めてもよい。なお、スライス情報及びスライス付加情報を含むシステム情報は、周期的にスケジュールされるシステム情報として基地局20より送信されてもよいし、端末10からのリクエストに応じて送信されるシステム情報(オンデマンドシステム情報)として基地局20より送信されてもよい。
FIG. 5 is a diagram exemplifying the contents of slice information and slice additional information included in system information.
Slice information includes slice type information that indicates the service type (Slice/service type) of the slice, and a unique slice that is coded and assigned that uniquely indicates the correspondence relationship between the slice type information and slice additional information (described later). identification information, etc., may be included. The system information including slice information and slice additional information may be transmitted from the base station 20 as periodically scheduled system information, or system information transmitted in response to a request from the terminal 10 (on-demand system information). system information) may be transmitted from the base station 20.
 スライス付加情報は、スライスの実現(実行)に必要な端末10のサポート機能(すなわち、スライスに対応するサービスの要求条件を満たすために最低限必要とされる端末能力情報)を示すサポート機能情報、また、スライスの実現に所定の周波数のサポートが必要である場合に、その周波数または複数周波数のコンビネーション情報をあらわす周波数情報、その他の追加情報(例えばサポート機能情報の詳細な内容)などを含めてもよい。スライス付加情報は、スライスを実行するための実行条件(要求条件)であると言い換えてもよい。
 サポート機能情報に示される「Packet duplication(2CC)」や「Packet duplication(4CC)」は、複数の周波数(セル)を用いてURLLC(スライス)を実現する技術である。一方、「IIoT enhancement」は、単一の周波数(セル)における送信優先制御等を用いてURLLC(スライス)を実現する技術である。
Slice additional information is support function information indicating the support function of the terminal 10 required for realizing (executing) the slice (that is, the terminal capability information minimum required to satisfy the requirements of the service corresponding to the slice); In addition, if support for a predetermined frequency is required to realize a slice, frequency information representing the frequency or combination information of multiple frequencies, other additional information (for example, detailed content of support function information), etc. may be included. good. In other words, the slice additional information is an execution condition (requirement condition) for executing the slice.
"Packet duplication (2CC)" and "Packet duplication (4CC)" indicated in the support function information are techniques for realizing URLLC (slice) using a plurality of frequencies (cells). On the other hand, "IIoT enhancement" is a technology that implements URLLC (slice) using transmission priority control and the like in a single frequency (cell).
 なお、「Packet duplication(2CC)」、「Packet duplication(4CC)」は、それぞれ、CAまたはDCを用いることにより、2つのCC(2つのセル)、4つのCC(4つのセル)を用いて複製したパケットを異なる伝送経路により伝達することで、パケットの到達確率(信頼性)を向上させる技術のことを意味する。 "Packet duplication (2CC)" and "Packet duplication (4CC)" are duplicated using 2 CCs (2 cells) and 4 CCs (4 cells) by using CA or DC, respectively. It means a technology to improve the arrival probability (reliability) of packets by transmitting the packets through different transmission routes.
 また、周波数情報に示される「X」や「Y」は、使用するバンド番号を示しており、3GPPにおいて規定されたバンド番号が設定される。例えば、Xが1であればバンド1、Xが40であればバンド40を使用することを意味する。また、例えば「Packet duplication(2CC)」に対応する「CA#X」であれば、バンドXの中の周波数を2つ(2つのセル)を使ってキャリアアグリゲーション(CA)を行うことを意味する。同様に、「Packet duplication(4CC)」に対応する「CA#X-Y」は、バンドXの中の周波数を2つ、バンドYの中の周波数を2つ(すなわち、合計4つのセル)を使ってキャリアアグリゲーション(CA)を行うことを意味し、「Packet duplication(4CC)」に対応する「DC#X-Y」は、バンドXの中の周波数を2つ、バンドYの中の周波数を2つ(すなわち、合計4つのセル)を使ってデュアルコネクティビティ(DC)を行うことを意味する。 Also, "X" and "Y" indicated in the frequency information indicate the band number to be used, and the band number specified by 3GPP is set. For example, if X is 1, band 1 is used, and if X is 40, band 40 is used. Also, for example, "CA#X" corresponding to "Packet duplication (2CC)" means performing carrier aggregation (CA) using two frequencies (two cells) in band X. . Similarly, "CA#X-Y" corresponding to "Packet duplication (4CC)" uses two frequencies in band X and two frequencies in band Y (that is, a total of four cells). "DC#XY", which means performing carrier aggregation (CA) using "Packet duplication (4CC)", has two frequencies in band X and frequencies in band Y. It means performing dual connectivity (DC) using two (that is, four cells in total).
 <ハードウェア構成>
 図6は、端末10及び基地局20のハードウェア構成の一例を示す図である。端末10及び基地局20は、プロセッサ11、メモリ12、記憶装置13、有線または無線通信を行う通信装置14、入力操作を受け付ける入力装置15、情報の出力を行う出力装置16及びアンテナ17を有する。
<Hardware configuration>
FIG. 6 is a diagram showing an example of hardware configurations of the terminal 10 and the base station 20. As shown in FIG. The terminal 10 and the base station 20 have a processor 11, a memory 12, a storage device 13, a communication device 14 for wired or wireless communication, an input device 15 for receiving input operations, an output device 16 for outputting information, and an antenna 17.
 プロセッサ11は、例えば、CPU(Central Processing Unit)であり、端末10または基地局20を制御する。 The processor 11 is, for example, a CPU (Central Processing Unit) and controls the terminal 10 or the base station 20.
 メモリ12は、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)及び/またはRAM(Random Access Memory)等から構成される。 The memory 12 is composed of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM) and/or RAM (Random Access Memory).
 記憶装置13は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)及び/またはeMMC(embedded Multi Media Card)等のストレージから構成される。 The storage device 13 is composed of storage such as HDD (Hard Disk Drive), SSD (Solid State Drive) and/or eMMC (embedded Multi Media Card), for example.
 通信装置14は、有線及び/または無線ネットワークを介して通信を行う装置であり、例えば、ネットワークカード、通信モジュールなどである。また、通信装置14には、アンプ、無線信号に関する処理を行うRF(Radio Frequency)装置と、ベースバンド信号処理を行うBB(BaseBand)装置とを含んでいてもよい。 The communication device 14 is a device that communicates via a wired and/or wireless network, such as a network card or a communication module. Further, the communication device 14 may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
 RF装置は、例えば、BB装置から受信したデジタルベースバンド信号に対して、D/A変換、変調、周波数変換、電力増幅等を行うことで、アンテナ17から送信する無線信号を生成する。また、RF装置は、アンテナ17から受信した無線信号に対して、周波数変換、復調、A/D変換等を行うことでデジタルベースバンド信号を生成してBB装置に送信する。BB装置は、デジタルベースバンド信号をパケットに変換する処理、及び、パケットをデジタルベースバンド信号に変換する処理を行う。 For example, the RF device generates a radio signal to be transmitted from the antenna 17 by performing D/A conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A/D conversion, etc. on the radio signal received from the antenna 17, and transmits the digital baseband signal to the BB device. The BB device performs a process of converting a digital baseband signal into a packet and a process of converting the packet into a digital baseband signal.
 入力装置15は、例えば、キーボード、タッチパネル、マウス及び/またはマイク等である。出力装置16は、例えば、ディスプレイ及び/またはスピーカ等である。 The input device 15 is, for example, a keyboard, touch panel, mouse and/or microphone. The output device 16 is, for example, a display and/or a speaker.
 <機能ブロック構成>
 (端末)
 図7は、端末10の機能ブロック構成例を示す図である。端末10は、記憶部100と、受信部101と、送信部102と、取得部103と、制御部104とを含む。なお、図6は、本実施形態において必要な機能ブロックを示すものである。記憶部100は、端末10が備えるメモリ12及び/または記憶装置13を用いて実現されてもよい。受信部101と、送信部102とは、例えば通信装置14により実現されてもよいし、通信装置14に加えてプロセッサ11が記憶装置13に記憶されたプログラムを実行することにより実現されてもよい。取得部103と、制御部104とは、端末10のプロセッサ11が、記憶装置13に記憶されたプログラムを実行することにより実現されてもよい。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体(Non-transitory computer readable medium)であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリまたはCD-ROM等の記憶媒体であってもよい。
<Functional block configuration>
(terminal)
FIG. 7 is a diagram showing a functional block configuration example of the terminal 10. As shown in FIG. Terminal 10 includes a storage unit 100 , a reception unit 101 , a transmission unit 102 , an acquisition unit 103 and a control unit 104 . Note that FIG. 6 shows functional blocks required in this embodiment. Storage unit 100 may be implemented using memory 12 and/or storage device 13 provided in terminal 10 . The receiving unit 101 and the transmitting unit 102 may be implemented by the communication device 14, for example, or may be implemented by the processor 11 executing a program stored in the storage device 13 in addition to the communication device 14. . Acquisition unit 103 and control unit 104 may be implemented by processor 11 of terminal 10 executing a program stored in storage device 13 . Also, the program can be stored in a storage medium. The storage medium storing the program may be a non-transitory computer readable medium. Non-temporary storage media are not particularly limited, but may be storage media such as USB memory or CD-ROM, for example.
 記憶部100は、端末10自身がサポートする1以上のネットワークスライスを示すスライス情報や、端末10自身がサポートするネットワークスライスの実現方法を示すスライス付加情報などを、端末能力情報として記憶する。 The storage unit 100 stores, as terminal capability information, slice information indicating one or more network slices supported by the terminal 10 itself, slice additional information indicating a method of implementing the network slices supported by the terminal 10 itself, and the like.
 受信部101は、基地局20から下りリンク(Down Link)の信号を受信する。送信部102は、上りリンク(UP Link)の信号を生成して基地局20に送信する。また、本実施形態では、送信部102は、RRCメッセージ(例えば、RRCセットアップコンプリートを含むメッセージ5など)を利用して、S-NSSAIの代わりに、またはS-NSSAIに加えて、実現(実行、サポート)可能なスライスを示す一つまたは複数のスライス識別情報を基地局20に送信することによって、端末10が実現可能なスライスを基地局20に通知する。 The receiving unit 101 receives downlink signals from the base station 20 . The transmitting unit 102 generates an uplink (UP Link) signal and transmits it to the base station 20 . Also, in the present embodiment, the transmitting unit 102 utilizes an RRC message (eg, message 5 including RRC setup complete) instead of or in addition to S-NSSAI to implement (execute, Terminal 10 notifies base station 20 of the slices that terminal 10 can implement by transmitting to base station 20 one or more pieces of slice identification information indicating slices that can be supported.
 取得部103は、セルで提供可能なネットワークスライスを示すスライス情報とともに、ネットワークスライスの実現方法を示すスライス付加情報を取得する(図5参照)。「セルで提供可能なネットワークスライス」は、「セルでサポートするネットワークスライス」、「セルを含むエリアにて登録可能なネットワークスライス」、「基地局20(またはネットワーク)で提供可能なネットワークスライス」、「基地局20(またはネットワーク)でサポートするネットワークスライス」または「基地局20(またはネットワーク)を含むエリアにて登録可能なネットワークスライス」などと読み替えてもよい。取得部103は、基地局20から受信したシステム情報からスライス情報及びスライス付加情報を取得する。 The acquisition unit 103 acquires slice additional information indicating a network slice realization method together with slice information indicating a network slice that can be provided by a cell (see FIG. 5). "Network slices that can be provided by cells" include "network slices supported by cells", "network slices that can be registered in an area including cells", "network slices that can be provided by the base station 20 (or network)", It may be read as "a network slice supported by the base station 20 (or network)" or "a network slice that can be registered in an area including the base station 20 (or network)". Acquisition section 103 acquires slice information and slice additional information from the system information received from base station 20 .
 制御部104は、取得部103で取得されたスライス情報及びスライス付加情報とともに、記憶部100に記憶されている端末能力情報に基づいて、キャンプオンするセルの選択(セル選択)または再選択(セル再選択)を行う。具体的に説明すると、まず、制御部104は、取得部103で取得されたスライス情報及びスライス付加情報に基づき、各セル(またはセルのキャリア周波数)がサポートするネットワークスライス及びスライスの実現方法をチェックする。そして、制御部104は、記憶部100に記憶されている端末能力情報を参照し、自端末10が、チェックしたスライス及びスライスの実現方法をサポートしている否かを判断する。 Control unit 104 selects a cell to camp on (cell selection) or reselects (cell reselect). Specifically, first, based on the slice information and slice additional information acquired by the acquisition unit 103, the control unit 104 checks the network slice supported by each cell (or the carrier frequency of the cell) and the implementation method of the slice. do. Then, control section 104 refers to the terminal capability information stored in storage section 100 and determines whether or not own terminal 10 supports the checked slice and slice realization method.
 制御部104は、チェック結果に基づき、端末10がサポートする実現方法でネットワークスライスを提供可能なセルを特定する。そして、制御部104は、特定したセルを適切セルであるとみなし、当該適切セルの中から、キャンプオンするセルの選択または再選択を行う。
 一例として、制御部104は、チェックしたスライス及びスライスの実現方法をサポートしているセルの周波数の優先度(以下、周波数優先度)を上げることで、セルの選択または再選択を行う。なお、セルの周波数優先度は、システム情報として通知され、優先度情報として記憶部100またはSIMカード等に設定されている。
Based on the check result, the control unit 104 identifies a cell that can provide a network slice by the implementation method supported by the terminal 10 . Then, the control unit 104 regards the specified cell as a suitable cell, and selects or reselects a cell to camp on from among the suitable cells.
As an example, the control unit 104 selects or reselects a cell by increasing the frequency priority (hereinafter referred to as frequency priority) of a cell that supports the checked slice and slice implementation method. Note that the frequency priority of the cell is notified as system information and set in the storage unit 100, SIM card, or the like as priority information.
 図8A及び図8Bは、セルの周波数優先度の変更/非変更動作を説明するための説明図である。
 前提として、端末10は、「eMBB」(スライス)、「URLLC」(スライス)を実現する方法を少なくともサポートしている。また、端末10は、利用可能な周波数として、周波数Frequency#0(F#0)、Frequency#1(F#1)、Frequency#2(F#2)を少なくともサポートしている。端末10は、周波数F#1およびF#2を同時に利用する機能(CA、および/または、DC)をサポートし、かつ、周波数F#1およびF#2を用いたPacket duplicationを少なくともサポートする場合を想定する。
8A and 8B are explanatory diagrams for explaining the operation of changing/not changing the frequency priority of cells.
As a premise, the terminal 10 supports at least a method of realizing "eMBB" (slice) and "URLLC" (slice). In addition, the terminal 10 supports at least frequency #0 (F#0), frequency #1 (F#1), and frequency #2 (F#2) as usable frequencies. When terminal 10 supports a function (CA and/or DC) that simultaneously uses frequencies F#1 and F#2 and at least supports packet duplication using frequencies F#1 and F#2 assume.
 例えば、図8Aに示すように、端末10が優先的(意図的)に利用を試みるスライスがURLLCである場合(Intended Slice = URLLCの場合)であって、システム情報より取得したスライス情報及びスライス付加情報に基づいて、端末10がサポートする複数の周波数(F#1,#2)を用いたPacket duplication(「Packet duplication(2CC)」)によって「URLLC」(スライス)が実現可能であると判断した場合、制御部104は、サポート機能情報「Packet duplication(2CC)」に関する(対応する)周波数情報である各周波数(F#1,#2)の優先度が、「eMBB」に関する周波数(F#0)の優先度よりも高くなるように、優先度情報に示される周波数優先度を変更する。 For example, as shown in FIG. 8A, when the slice that the terminal 10 preferentially (intentionally) attempts to use is URLLC (Intended Slice = URLLC), slice information and slice addition obtained from system information Based on the information, it was determined that "URLLC" (slicing) can be realized by packet duplication ("Packet duplication (2CC)") using multiple frequencies (F#1, #2) supported by terminal 10 In this case, the control unit 104 sets the priority of each frequency (F#1, #2) as (corresponding) frequency information related to the support function information "Packet duplication (2CC)" to the frequency (F#0 ), the frequency priority indicated in the priority information is changed so as to be higher than the priority of .
 一方、図8Bに示すように、端末10が優先的(意図的)に利用を試みるスライスがURLLCであって、サポート機能情報「Packet duplication(2CC)」に関する周波数情報で示されるいずれかの周波数(ここでは、F#1)にすでにキャンプオンしている場合には、制御部104は、優先度情報に示される周波数優先度を変更しなくてもよい。
 制御部104は、このようにしてセルの周波数優先度を変更等すると、変更等した後のセルの周波数優先度に従い、セルの選択または再選択を行うことができる。
On the other hand, as shown in FIG. 8B , the slice that the terminal 10 preferentially (intentionally) tries to use is URLLC, and any frequency indicated by the frequency information related to the support function information “Packet duplication (2CC)” ( Here, when camped on F#1), the control unit 104 does not need to change the frequency priority indicated in the priority information.
After changing the frequency priority of the cell in this way, the control unit 104 can select or reselect the cell according to the changed frequency priority of the cell.
 (基地局)
 図9は、基地局20の機能ブロック構成の一例を示す図である。基地局20は、記憶部200と、受信部201と、送信部202とを含む。なお、図9は、本実施形態において必要な機能ブロックを示すものである。記憶部200は、基地局20が備えるメモリ12及び/または記憶装置13を用いて実現されてもよい。受信部201と、送信部202とは、例えば通信装置14により実現されてもよいし、通信装置14に加えてプロセッサ11が記憶装置13に記憶されたプログラムを実行することにより実現されてもよい。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリまたはCD-ROM等の記憶媒体であってもよい。
(base station)
FIG. 9 is a diagram showing an example of the functional block configuration of the base station 20. As shown in FIG. Base station 20 includes storage section 200 , receiving section 201 and transmitting section 202 . Note that FIG. 9 shows functional blocks required in this embodiment. Storage unit 200 may be implemented using memory 12 and/or storage device 13 provided in base station 20 . The receiving unit 201 and the transmitting unit 202 may be implemented by the communication device 14, for example, or may be implemented by the processor 11 executing a program stored in the storage device 13 in addition to the communication device 14. . Also, the program can be stored in a storage medium. The storage medium storing the program may be a computer-readable non-temporary storage medium. Non-temporary storage media are not particularly limited, but may be storage media such as USB memory or CD-ROM, for example.
 受信部201は、端末10から上りリンクの信号を受信する。送信部202は、下りリンクの信号を生成して端末10に送信する。また、送信部202は、スライス情報及びスライス付加情報を含むシステム情報を送信する。また、受信部201及び送信部202は、端末10との間でランダムアクセス手順及びRRCコネクション確立処理(例えば、所望のスライス情報を含むRRC Setup Completeメッセージの受信など)、ならびにその他のRRCメッセージの送受信と対応する処理を行う。また、受信部201及び送信部202は、コアネットワーク30との間でメッセージ(NASメッセージ)の送受信を行う。 The receiving unit 201 receives uplink signals from the terminal 10 . The transmitting unit 202 generates a downlink signal and transmits it to the terminal 10 . Also, the transmitting unit 202 transmits system information including slice information and slice additional information. In addition, the receiving unit 201 and the transmitting unit 202 perform random access procedures and RRC connection establishment processing with the terminal 10 (for example, reception of an RRC Setup Complete message containing desired slice information), and transmission and reception of other RRC messages. and perform the corresponding processing. Also, the receiving unit 201 and the transmitting unit 202 transmit and receive messages (NAS messages) to and from the core network 30 .
 また、送信部202は、セルで提供可能なネットワークスライスを示すスライス情報とともに、ネットワークスライスの実現方法を示すスライス付加情報をシステム情報に含めて送信する。送信部202は、システム情報として、在圏セルの情報を含むSIB1(System Information Block Type1)、セル再選択情報を含むSIB2(System Information Block Type2)、周辺セル情報を含むSIB4(System Information Block Type4)の全て、またはいずれかを用いてスライス情報及びスライス付加情報を含めて送信する。また、送信部202は、スライス情報とスライス付加情報をそれぞれ別のシステム情報に含めて送信してもよいし、そのいずれかをオンデマンドシステム情報として送信してもよい。例えば、送信部202は、スライス情報を通常のシステム情報として送信し、スライス付加情報を端末10からのリクエストに応じて、オンデマンドシステム情報として任意のタイミングで送信してもよい。また、受信部201は、端末10に対し、スライス情報及びスライス付加情報に基づいて、端末10がサポートする実現方法でネットワークスライスを提供可能なセルの中から、キャンプオンするセルの選択または再選択を実行させ、端末10が利用するネットワークスライスの情報を端末10から受信する。基地局20は、一つのセルにおいて、ネットワークスライスを複数の実現方法でサポートしてもよい。基地局20は、システム情報にどの実現方法を優先させるかについて、明示的、あるいは暗黙的に端末10に通知してもよい。暗黙的に通知する場合、基地局20は、システム情報に設定されるスライスの設定順に基づいて優先度を通知するようにしてもよい(例えば、端末10は、リスト形式で通知される場合、リストの降順(昇順)で優先度が低くなるとみなす)。端末10は、明示的、あるいは暗黙的に通知された優先度に従ってセルを選択または再選択するようにしてもよい。 In addition, the transmission unit 202 transmits slice information indicating network slices that can be provided in a cell and slice additional information indicating a method of realizing network slices in the system information. Transmitter 202 includes, as system information, SIB1 (System Information Block Type1) containing information on serving cells, SIB2 (System Information Block Type2) containing cell reselection information, and SIB4 (System Information Block Type4) containing peripheral cell information. Slice information and slice additional information are transmitted using all or one of them. Further, the transmitting unit 202 may include the slice information and the additional slice information in separate system information and transmit them, or may transmit either of them as the on-demand system information. For example, the transmitting unit 202 may transmit the slice information as normal system information, and transmit the slice additional information as on-demand system information at any timing in response to a request from the terminal 10 . In addition, the receiving unit 201 selects or reselects a cell to camp on from among the cells that can provide network slices by the implementation method supported by the terminal 10, based on the slice information and the slice additional information for the terminal 10. to receive from the terminal 10 the information of the network slice that the terminal 10 uses. A base station 20 may support network slicing in multiple implementations in a single cell. The base station 20 may explicitly or implicitly notify the terminal 10 of which implementation method is prioritized in the system information. In the case of implicit notification, the base station 20 may notify the priority based on the setting order of slices set in the system information (for example, when the terminal 10 is notified in a list format, the list descending order (ascending order) is considered to have lower priority). The terminal 10 may select or reselect a cell according to the explicitly or implicitly notified priority.
 <処理手順>
 続いて、本実施形態に係る無線通信システム1が行う処理手順について具体的に説明する。
<Processing procedure>
Next, the processing procedure performed by the wireless communication system 1 according to this embodiment will be specifically described.
 図10は、端末10がセルの選択または再選択を行う際の処理手順の一例を示すフローチャートである。 FIG. 10 is a flowchart showing an example of a processing procedure when the terminal 10 selects or reselects a cell.
 ステップS100で、取得部103は、端末10自身の周辺セルをサーチし、検出されたセルにおいてスライス情報及びスライス付加情報を含むシステム情報を受信することでスライス情報及びスライス付加情報とともに、キャンプオンに必要な情報を取得する。 In step S100, the acquiring unit 103 searches for neighboring cells of the terminal 10 itself, receives system information including slice information and slice additional information in the detected cell, and receives slice information and slice additional information at camp-on. Get the information you need.
 ステップS101で、制御部104は、セルの選択または再選択を行う際、端末10自身がサポートする実現方法でネットワークスライスを提供可能な適切セルの有無を、端末10が保持する端末能力情報と、取得したシステム情報とに基づいて判定する。前述したように、端末能力情報は、端末10自身がサポートするネットワークスライスを示すスライス情報と、端末10自身がサポートするネットワークスライスの実現方法を示すスライス付加情報とを含む。端末能力情報は、予め記憶部100に格納されていてもよいし、SIM(Subscriber Identity Module)に格納されていてもよい。制御部104は、当該セルが発見された場合はステップS102の処理手順に進み、発見されない場合は、ステップS103の処理手順に進む。なお、ステップS101の処理手順における「適切セル」は、セル選択の際には、所定の基準(Cell Selection Criteria)を満たすセルCを意味することとしてもよい。また、「適切セル」は、セルの再選択の際には、所定の基準(Cell Reselection Criteria)に従って発見された、現在キャンプオンしているセルCよりも適切なセルC(more suitable cell)を意味することとしてもよい。 In step S101, when selecting or reselecting a cell, the control unit 104 determines whether or not there is an appropriate cell capable of providing a network slice by an implementation method supported by the terminal 10 itself, terminal capability information held by the terminal 10, The determination is made based on the obtained system information. As described above, the terminal capability information includes slice information indicating network slices supported by the terminal 10 itself, and additional slice information indicating a method of implementing the network slices supported by the terminal 10 itself. The terminal capability information may be stored in the storage unit 100 in advance, or may be stored in a SIM (Subscriber Identity Module). The control unit 104 proceeds to the processing procedure of step S102 if the cell is found, and proceeds to the processing procedure of step S103 if not found. Note that the "appropriate cell" in the procedure of step S101 may mean the cell C that satisfies a predetermined criterion (Cell Selection Criteria) when selecting a cell. In addition, when reselecting a cell, the "suitable cell" is a cell C (more suitable cell) that is found according to a predetermined criterion (Cell Reselection Criteria) and is more suitable than the currently camped-on cell C. It can mean.
 端末10は、ネットワークスライスを複数の実現方法でサポートすることが可能であってもよい。例えば、端末10は、スライス/サービスタイプが「URLLC」であるスライスを、「Packet duplication(2CC)」や「IIoT enhancement」など、複数の実現方法でサポートすることが想定される。 The terminal 10 may be capable of supporting network slicing in multiple implementations. For example, it is assumed that the terminal 10 supports a slice whose slice/service type is 'URLLC' by a plurality of implementation methods such as 'Packet duplication (2CC)' and 'IIoT enhancement'.
 この場合、端末10は、ユーザの指示またはオペレータ(PLMN)の契約などに従い、例えば、「IIoT enhancement」よりも、「Packet duplication(2CC)」をサポートするセルを、キャンプオンするセルとして優先的に選択するようにしてもよい。 In this case, the terminal 10 preferentially, for example, prefers a cell that supports "packet duplication (2CC)" over "IIoT enhancement" as a cell to camp on, according to a user's instruction or an operator's (PLMN) contract. You may make it select.
 また、ステップS100の処理手順とステップS101の処理手順において、端末10は、所定の基準を満たすセルであると判定した後で、サポートする実現方法でネットワークスライスを提供可能かどうかの判定を行うようにしてもよい。さらに、所定の基準を満たすか否かに関わらず、サポートする実現方法でネットワークスライスを提供可能かどうかの判定を行ってもよい。また、端末10は、在圏(キャンプ)しているセル、あるいは、測定したセルの品質がある閾値以上である場合にのみ、サポートする実現方法でネットワークスライスを提供可能かどうかの判定を行うようにしてもよい。すなわち、在圏しているセル、あるいは、測定したセルの品質が閾値未満(または以下)である場合、端末10は、スライス情報を考慮しない通常のセル選択またはセル再選択手順を適用してもよい。基地局20は、セル選択またはセル再選択に関わる閾値をスライス付加情報の一部としてスライス毎にシステム情報で通知してもよい。 Further, in the processing procedure of step S100 and the processing procedure of step S101, after determining that the cell satisfies a predetermined criterion, the terminal 10 determines whether a network slice can be provided by a supported implementation method. can be Additionally, a determination may be made whether a supported implementation can provide a network slice regardless of whether it meets predetermined criteria. In addition, the terminal 10 determines whether the network slice can be provided by the supported implementation method only when the quality of the cell in which the terminal 10 is located (camped) or the measured cell quality is equal to or higher than a certain threshold. can be That is, if the serving cell or the measured cell quality is less than (or below) the threshold, the terminal 10 may apply a normal cell selection or cell reselection procedure that does not consider slice information. good. The base station 20 may notify the threshold associated with cell selection or cell reselection in system information for each slice as part of slice additional information.
 ステップS102で、端末10の制御部104は、ステップS101にて発見されたセルにキャンプオンし、ステップS100の処理手順に戻ることで、キャンプオンしたセルよりも適切なセルが存在しないかをサーチする。 In step S102, the control unit 104 of the terminal 10 camps on the cell discovered in step S101, and returns to the processing procedure of step S100 to search for a more suitable cell than the camped-on cell. do.
 ステップS103で、端末10の制御部104は、セルの選択または再選択処理を終了する場合(例えば端末10の電源を切る場合等)(ステップS103-YES)、図10に示す処理手順を終了する。終了しない場合(ステップS103-NO)はステップS100の処理手順に戻る。 In step S103, when the control unit 104 of the terminal 10 ends the cell selection or reselection process (for example, when turning off the power of the terminal 10) (step S103-YES), the processing procedure shown in FIG. 10 ends. . If not finished (step S103-NO), the procedure returns to step S100.
 以上説明したように、本実施形態によれば、端末が利用を試みるネットワークスライスの実現方法を考慮したセルの選択または再選択を行うことが可能となる。これにより、端末は、利用を試みるネットワークスライスの提供を高速かつ適切に受けることが可能となる。
 続いて、ステップS100の処理手順について、複数の変形例を説明する。以下に示す変形例は任意に組み合わせることが可能である。
As described above, according to the present embodiment, it is possible to select or reselect a cell in consideration of the implementation method of a network slice that a terminal attempts to use. As a result, the terminal can quickly and appropriately receive the network slice to be used.
Next, a plurality of modifications of the processing procedure of step S100 will be described. Modifications shown below can be combined arbitrarily.
 (変形例1)
 セルの周波数優先度を変更する代わりに、セルの優先度を変更してもよい。
 例えば、端末10が複数のスライス及びスライスの実現方法をサポートしている状態で、セルの選択または再選択を行う際、端末10は、優先度が最も高く設定されているスライス及びスライスの実現方法をサポートするセルを、キャンプオンするセルとして選択してもよい。なお、セルの優先度は、優先度情報として記憶部100またはSIMカード等に設定してもよい。
(Modification 1)
Instead of changing the frequency priority of cells, the priority of cells may be changed.
For example, when the terminal 10 supports a plurality of slices and slice realization methods, when selecting or reselecting a cell, the terminal 10 selects the slice with the highest priority and the slice realization method. , may be selected as the cell to camp on. Note that the cell priority may be set in the storage unit 100, the SIM card, or the like as priority information.
 (変形例2)
 取得部103は、ブロードキャストされるシステム情報ではなく、基地局20から各端末10に個別に通知されるRRCメッセージ(例えばRRC Reconfiguration、RRC Release等)を利用することで、予め周辺のセルに関するスライス情報及びスライス付加情報の少なくともいずれか一方を取得することとしてもよい。例えば、スライス情報はシステム情報から取得する一方、スライス付加情報はRRCメッセージ(RRC Release等)から取得してもよい。この場合、制御部104は、個別に通知されたRRCメッセージに含まれるスライス付加情報に基づき、セルの周波数優先度を変更すればよい。スライス情報及びスライス付加情報をシステム情報から取得している場合に、基地局20からRRCメッセージで別のスライス情報及びスライス付加情報が通知された場合、制御部104は、RRCメッセージで通知された別のスライス情報及びスライス付加情報を優先して使用してもよい。また、基地局20は、RRCメッセージで通知される別のスライス情報及びスライス付加情報に対して有効時間を設定してもよい。有効時間が設定された場合、制御部104は、有効時間中はRRCメッセージで通知された別のスライス情報及びスライス付加情報を使用し、有効時間が満了した後は在圏セルのシステム情報からスライス情報及びスライス付加情報を再取得して使用してもよい。
(Modification 2)
Acquisition section 103 uses an RRC message (for example, RRC Reconfiguration, RRC Release, etc.) individually notified from base station 20 to each terminal 10 instead of broadcasted system information, thereby obtaining slice information related to neighboring cells in advance. and slice additional information. For example, slice information may be obtained from system information, while slice additional information may be obtained from an RRC message (RRC Release, etc.). In this case, the control section 104 may change the frequency priority of the cell based on the additional slice information included in the individually notified RRC message. When the slice information and the additional slice information are obtained from the system information, and the base station 20 notifies another slice information and additional slice information in the RRC message, the control unit 104 receives the other information notified in the RRC message. slice information and slice additional information may be preferentially used. Also, the base station 20 may set valid time for other slice information and slice additional information notified by the RRC message. When the valid time is set, the control unit 104 uses other slice information and slice additional information notified by the RRC message during the valid time, and slices from the system information of the serving cell after the valid time expires. Information and slice additional information may be reacquired and used.
 このように、スライス付加情報を各端末10に個別に通知することで、通信トラフィックなどを考慮した、より適切なスライスの提供が可能となる。 In this way, by notifying each terminal 10 of slice additional information individually, it is possible to provide more appropriate slices in consideration of communication traffic and the like.
 なお、スライス情報は、サポートするスライスに対応するビットを立てるビットマップ形式で提供されてもよいし、サポートするスライスが列挙されたリスト形式で提供されてもよいし、SST値が通知されてもよい。また、スライス付加情報は、例えば、サポートするスライスごとに、スライスの実現方法が登録されたリスト形式で提供されてもよい(図5参照)。 The slice information may be provided in a bitmap format in which bits corresponding to the slices to be supported are set, may be provided in a list format in which the slices to be supported are listed, or may be notified of the SST value. good. Also, the slice additional information may be provided in the form of a list in which the slice realization method is registered for each supported slice, for example (see FIG. 5).
 (変形例3)
 基地局20は、スライス付加情報については、例えばアップリンク(UL)とダウンリンク(DL)でスライスに対応するターゲット品質が異なる場合を考慮し、アップリンクの周波数情報と、ダウンリンクの周波数情報を分けてシステム情報またはRRCメッセージに設定してもよい。
(Modification 3)
Regarding slice additional information, the base station 20 considers the case where the target quality corresponding to a slice differs between uplink (UL) and downlink (DL), for example, and combines uplink frequency information and downlink frequency information. It may be set separately in the system information or RRC message.
 例えば、スライスである「URLLC」を「Packet duplication(2CC)」で実現する場合、アップリンク(UL)については、「UL:CA#X1,CA#Y1」といった周波数情報を設定する一方、ダウンリンク(DL)については、「DL:CA#X2,CA#Y2」(X1≠X2,Y1≠Y2)といった周波数情報を設定することもできる。 For example, when the slice "URLLC" is realized by "Packet duplication (2CC)", frequency information such as "UL: CA#X1, CA#Y1" is set for the uplink (UL), while the downlink For (DL), frequency information such as "DL: CA#X2, CA#Y2" (X1≠X2, Y1≠Y2) can also be set.
 制御部104は、アップリンクとダウンリンクで異なる周波数情報が設定されたスライス付加情報と、スライスを用いるサービスがアップリンクとダウンリンクのどちらに対応したサービスであるかという判断結果とに基づき、セルの周波数優先度を変更等すればよい。 Control unit 104, based on the slice additional information in which different frequency information is set for uplink and downlink, and the determination result as to whether the service using slices corresponds to uplink or downlink, the cell It is sufficient to change the frequency priority of .
 (変形例4)
 端末10から基地局20に送信されるバンドコンビネーション情報に、端末10がサポートするネットワークスライスの実現方法に関わる周波数情報をリンクさせることで、スライス付加情報の情報量を削減してもよい。「バンドコンビネーション情報」は、端末10が対応している周波数(バンド)の組み合わせを示す情報であり、例えば、「UE Capability Informationメッセージ」などのRRCメッセージに含めて基地局20へ送信される。
(Modification 4)
The information amount of slice additional information may be reduced by linking frequency information related to a method of implementing network slices supported by the terminal 10 to the band combination information transmitted from the terminal 10 to the base station 20 . “Band combination information” is information indicating a combination of frequencies (bands) supported by the terminal 10 , and is transmitted to the base station 20 by being included in an RRC message such as a “UE Capability Information message”, for example.
 端末10は、例えば、バンドコンビネーション情報に含まれる複数の周波数(バンド)の中で、ネットワークスライスの実現方法に関わる周波数情報に対応するバンド(例えば、バンド「F#1」、「F#2」など)やバンドコンビネーションのそれぞれに対し、スライスに応じたフラグ情報(またはSST)を付加し、「UE Capability Informationメッセージ」として基地局20に送信する。これにより、端末10から基地局20に送信すべきスライス付加情報の情報量を効率的に削減することが可能となる。また、基地局20は、RRCメッセージによってスライス付加情報として周波数情報を通知する場合に、端末10から送信されたバンドコンビネーション情報に対応する番号を周波数情報の代わりに設定することで情報量を削減してもよい。例えば、端末10がバンドコンビネーション「CA#X1」をバンドコンビネーション情報リストのn番目に含めて送信している場合、周波数情報として「CA#X1」を通知する代わりに「n」を通知する。 For example, among a plurality of frequencies (bands) included in the band combination information, the terminal 10 uses bands (for example, bands “F#1” and “F#2”) corresponding to frequency information related to a network slice implementation method. etc.) and band combination, flag information (or SST) corresponding to the slice is added and transmitted to the base station 20 as a "UE Capability Information message". This makes it possible to efficiently reduce the amount of slice additional information to be transmitted from the terminal 10 to the base station 20 . Also, when the base station 20 notifies the frequency information as the slice additional information by the RRC message, the number corresponding to the band combination information transmitted from the terminal 10 is set instead of the frequency information, thereby reducing the amount of information. may For example, when the terminal 10 includes the band combination "CA#X1" at the n-th position in the band combination information list and transmits it, instead of notifying "CA#X1" as the frequency information, it notifies "n".
 <まとめ>
 以上説明した実施形態によれば、端末10は、システム情報等に含まれるスライス情報及びスライス付加情報に基づいて、端末10自身がサポートする実現方法でネットワークスライスを提供可能なセルにキャンプオンするようにした。これにより、ネットワークスライスの実現方法を考慮してセルの選択または再選択を行うことを可能とする技術を提供することが可能になる。
<Summary>
According to the embodiments described above, the terminal 10 camps on a cell capable of providing a network slice by a method supported by the terminal 10 itself, based on slice information and slice additional information included in system information and the like. made it This makes it possible to provide a technique that enables selection or reselection of cells in consideration of the implementation method of network slicing.
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態で説明したフローチャート、シーケンス、実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、変形例などで示した構成同士を部分的に置換しまたは組み合わせることが可能である。 The embodiments described above are for facilitating understanding of the present invention, and are not for limiting interpretation of the present invention. Flowcharts, sequences, elements included in the embodiments, their arrangement, materials, conditions, shapes, sizes, and the like described in the embodiments are not limited to those illustrated and can be changed as appropriate. Moreover, it is possible to partially replace or combine the configurations shown in the modified examples and the like.
 1…無線通信システム、10…端末、11…プロセッサ、12…メモリ、13…記憶装置、14…通信装置、15…入力装置、16…出力装置、17…アンテナ、20…基地局、30…コアネットワーク、100…記憶部、101…受信部、102…送信部、103…取得部、104…制御部、200…記憶部、201…受信部、202…送信部 Reference Signs List 1 wireless communication system 10 terminal 11 processor 12 memory 13 storage device 14 communication device 15 input device 16 output device 17 antenna 20 base station 30 core Network 100 Storage unit 101 Reception unit 102 Transmission unit 103 Acquisition unit 104 Control unit 200 Storage unit 201 Reception unit 202 Transmission unit

Claims (8)

  1.  端末であって、
     セルで提供可能なネットワークスライスを示すスライス情報、及び前記ネットワークスライスの実現方法を示すスライス付加情報を取得する取得部と、
     前記スライス情報と、前記スライス付加情報と、前記端末がサポートするネットワークスライスの実現方法とに基づいて、前記ネットワークスライスを提供可能なセルの中から、キャンプオンするセルの選択または再選択を行う制御部と、
     を有する端末。
    a terminal,
    an acquisition unit that acquires slice information indicating a network slice that can be provided by a cell and slice additional information indicating a method for realizing the network slice;
    Control for selecting or reselecting a cell to camp on from among cells capable of providing the network slice, based on the slice information, the slice additional information, and the network slice implementation method supported by the terminal. Department and
    terminal with
  2.  前記スライス情報は、前記ネットワークスライスの種別を示すスライス種別情報を含み、
     前記スライス付加情報は、前記ネットワークスライスの実現に必要な前記端末のサポート機能を示すサポート機能情報を含む、
     請求項1に記載の端末。
    The slice information includes slice type information indicating a type of the network slice,
    The slice additional information includes support function information indicating support functions of the terminal necessary for realizing the network slice,
    A terminal according to claim 1 .
  3.  前記スライス付加情報は、更に、前記サポート機能情報に関連した1または複数の周波数の組み合わせを示す周波数情報を含む、
     請求項2に記載の端末。
    The slice additional information further includes frequency information indicating a combination of one or more frequencies associated with the support function information,
    A terminal according to claim 2.
  4.  前記制御部は、前記スライス情報と、前記スライス付加情報に含まれる前記周波数情報と、前記端末のサポートする周波数とに基づいて、前記周波数情報に対応するセルの周波数優先度を示す優先度情報を設定し、
     前記優先度情報に基づいて、前記セルの選択または再選択を行う、
     請求項3に記載の端末。
    The control unit generates priority information indicating a frequency priority of a cell corresponding to the frequency information based on the slice information, the frequency information included in the slice additional information, and the frequencies supported by the terminal. Set,
    Selecting or reselecting the cell based on the priority information;
    A terminal according to claim 3.
  5.  端末と通信を行う基地局であって、
     セルで提供可能なネットワークスライスを示すスライス情報、及び前記ネットワークスライスの実現方法を示すスライス付加情報を、システム情報に含めて送信する送信部と、
     前記端末に対し、前記スライス情報と、前記スライス付加情報と、前記端末がサポートするネットワークスライスの実現方法とに基づいて、前記ネットワークスライスを提供可能なセルの中から、キャンプオンするセルの選択または再選択を実行させ、前記スライス情報に対応した前記端末が利用を試みるネットワークスライスの識別情報を前記端末から受信する受信部と、
     を有する基地局。
    A base station that communicates with a terminal,
    a transmission unit that includes slice information indicating a network slice that can be provided by a cell and slice additional information indicating a method of realizing the network slice in system information and transmits the slice information;
    For the terminal, based on the slice information, the slice additional information, and a network slice implementation method supported by the terminal, from among the cells that can provide the network slice, select a cell to camp on or a receiving unit that executes reselection and receives, from the terminal, identification information of a network slice that the terminal corresponding to the slice information attempts to use;
    A base station with
  6.  前記送信部は、前記スライス付加情報を、前記システム情報とは異なる、RRCメッセージに含めて前記端末に個別に送信する、
     請求項5に記載の基地局。
    The transmission unit includes the slice additional information in an RRC message that is different from the system information and individually transmits the terminal to the terminal.
    A base station according to claim 5 .
  7.  端末が行う通信方法であって、
     セルで提供可能なネットワークスライスを示すスライス情報、及び前記ネットワークスライスの実現方法を示すスライス付加情報を取得するステップと、
     前記スライス情報と、前記スライス付加情報と、前記端末がサポートするネットワークスライスの実現方法とに基づいて、前記ネットワークスライスを提供可能なセルの中から、キャンプオンするセルの選択または再選択を行うステップと、
     を含む通信方法。
    A communication method performed by a terminal,
    acquiring slice information indicating network slices that can be provided by a cell and slice additional information indicating a method of realizing the network slices;
    A step of selecting or reselecting a cell to camp on from among cells capable of providing the network slice based on the slice information, the slice additional information, and a network slice implementation method supported by the terminal. When,
    communication methods, including
  8.  コンピュータに、
     セルで提供可能なネットワークスライスを示すスライス情報、及び前記ネットワークスライスの実現方法を示すスライス付加情報を取得するステップと、
     前記スライス情報と、前記スライス付加情報と、前記コンピュータがサポートするネットワークスライスの実現方法とに基づいて、前記ネットワークスライスを提供可能なセルの中から、キャンプオンするセルの選択または再選択を行うステップと、
     を実行させるためのプログラム。
    to the computer,
    acquiring slice information indicating network slices that can be provided by a cell and slice additional information indicating a method of realizing the network slices;
    A step of selecting or reselecting a cell to camp on from cells capable of providing the network slice based on the slice information, the slice additional information, and the network slice implementation method supported by the computer. When,
    program to run the
PCT/JP2021/006091 2021-02-18 2021-02-18 Terminal, base station, communication method, and program WO2022176098A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/006091 WO2022176098A1 (en) 2021-02-18 2021-02-18 Terminal, base station, communication method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/006091 WO2022176098A1 (en) 2021-02-18 2021-02-18 Terminal, base station, communication method, and program

Publications (1)

Publication Number Publication Date
WO2022176098A1 true WO2022176098A1 (en) 2022-08-25

Family

ID=82930362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006091 WO2022176098A1 (en) 2021-02-18 2021-02-18 Terminal, base station, communication method, and program

Country Status (1)

Country Link
WO (1) WO2022176098A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230422122A1 (en) * 2021-05-08 2023-12-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Cell reselection method and apparatus based on slice, and device and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128020A1 (en) * 2017-01-05 2018-07-12 日本電気株式会社 Base station, wireless terminal, methods therefor, and non-temporary computer-readable medium
US20190357068A1 (en) * 2017-02-13 2019-11-21 Intel IP Corporation Reporting a number of effective frequencies for radio resource management purposes
US20200120547A1 (en) * 2017-06-16 2020-04-16 Huawei Technologies Co., Ltd. Cell reselection method and related device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128020A1 (en) * 2017-01-05 2018-07-12 日本電気株式会社 Base station, wireless terminal, methods therefor, and non-temporary computer-readable medium
US20190357068A1 (en) * 2017-02-13 2019-11-21 Intel IP Corporation Reporting a number of effective frequencies for radio resource management purposes
US20200120547A1 (en) * 2017-06-16 2020-04-16 Huawei Technologies Co., Ltd. Cell reselection method and related device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230422122A1 (en) * 2021-05-08 2023-12-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Cell reselection method and apparatus based on slice, and device and storage medium

Similar Documents

Publication Publication Date Title
US11910256B2 (en) Method and device for effectively performing standby mode operation in next generation mobile communication system
US11558795B2 (en) Method and apparatus for controlling packet duplication by considering dual connectivity in next-generation mobile communication system
JP7147830B2 (en) Wireless terminal and method
US20160302118A1 (en) Device, system and method of cell specific probability load balancing
CN113261315A (en) User device, network node and communication system
US20230199709A1 (en) Information processing method, terminal device, and network device
WO2022176098A1 (en) Terminal, base station, communication method, and program
CN115362711A (en) Network-guided WD cell reselection method
WO2022054267A1 (en) Terminal, base station, communication method, and program
CN113273252A (en) Network node and user device
JP7394856B2 (en) Terminal device, base station device, and wireless communication method
JP7469569B2 (en) COMMUNICATION CONTROL METHOD, USER EQUIPMENT, CORE NETWORK DEVICE, MOBILE COMMUNICATION SYSTEM, CHIP SET, AND PROGRAM
WO2023008410A1 (en) Communication control method and base station
WO2022029902A1 (en) User terminal and wireless communication method
WO2023008411A1 (en) Communication control method and user device
JP7431816B2 (en) Cell reselection method and user equipment
WO2023153360A1 (en) Cell re-selection method
WO2023204171A1 (en) Slice support existence confirmation method and user device
WO2022153461A1 (en) Terminal device and wireless communication method
US11678210B2 (en) Method and apparatus for performing communication in wireless communication system
WO2022230703A1 (en) User device, base station, and cell reselection method
WO2021156984A1 (en) Terminal device and wireless communication method
WO2023013635A1 (en) Communication control method
WO2023068260A1 (en) Cell reselection method and user equipment
JP2024516319A (en) Slice-based cell reselection method, apparatus, device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926534

Country of ref document: EP

Kind code of ref document: A1