WO2022153461A1 - Terminal device and wireless communication method - Google Patents

Terminal device and wireless communication method Download PDF

Info

Publication number
WO2022153461A1
WO2022153461A1 PCT/JP2021/001117 JP2021001117W WO2022153461A1 WO 2022153461 A1 WO2022153461 A1 WO 2022153461A1 JP 2021001117 W JP2021001117 W JP 2021001117W WO 2022153461 A1 WO2022153461 A1 WO 2022153461A1
Authority
WO
WIPO (PCT)
Prior art keywords
layers
base station
terminal device
band
information
Prior art date
Application number
PCT/JP2021/001117
Other languages
French (fr)
Japanese (ja)
Inventor
雅 伏木
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Priority to PCT/JP2021/001117 priority Critical patent/WO2022153461A1/en
Priority to JP2022574971A priority patent/JPWO2022153461A1/ja
Publication of WO2022153461A1 publication Critical patent/WO2022153461A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities

Definitions

  • the present invention relates to a terminal device and a wireless communication method.
  • NR New Radio
  • 5G Fifth Generation
  • LTE Long Term Evolution
  • eMBB enhanced Mobile Broad Band
  • URLLC Ultra-Reliable and Low Latency Communication
  • IoT Internet of Things
  • NR antenna technology for improving the throughput of wireless communication is adopted.
  • wireless communication using millimeter waves is feasible.
  • a technique (beamforming) for forming a beam having a relatively narrow beam width is known.
  • MIMO Multiple Input Multiple Output
  • MIMO Multiple Input Multiple Output
  • carrier aggregation which is called a component carrier (CC) and can expand the bandwidth by, for example, aggregating a plurality of frequency bands of 20 MHz.
  • CA Carrier Aggregation
  • CC component carrier
  • UECapacity Information terminal capability information
  • the base station device acquires information on the number of MIMO layers for each component carrier from the terminal device for all of the plurality of component carriers of carrier aggregation. That is, the terminal device needs to transmit a large amount of terminal capability information of the terminal device itself to the base station device. Therefore, the utilization efficiency of the wireless communication resource between the terminal device and the base station device may decrease.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a wireless communication technique for improving the utilization efficiency of wireless communication resources between a terminal device and a base station device.
  • the terminal device is a terminal device in a mobile communication system corresponding to carrier aggregation, and includes an acquisition unit for acquiring the number of layers for each of a plurality of component carriers and a first number of component carriers.
  • a transmission unit for transmitting the number of first layers of the first band and the number of second layers of the second band including the second number of component carriers less than the first number to the base station apparatus is provided.
  • the transmitter includes a third number of component carriers, which is less than the first number and more than the second number when each of the number of the first layer and the number of the second layer satisfies a predetermined condition. Transmission of the third layer number of the third band to the base station apparatus is omitted.
  • the wireless communication method is a wireless communication method used by a terminal device in a mobile communication system that supports carrier aggregation, and includes a step of acquiring the number of layers for each of a plurality of component carriers and a first number.
  • the number of third layers is less than the number of the first layer and more than the number of the second layer when each of the number of the first layer and the number of the second layer satisfies a predetermined condition. Transmission to the base station apparatus of the third layer number of the third band including the component carrier of the above is omitted.
  • the present invention it is possible to provide a wireless communication technique for improving the utilization efficiency of wireless communication resources between a terminal device and a base station device.
  • FIG. 1 is a configuration diagram showing an example of a schematic configuration of a mobile communication system according to an embodiment.
  • FIG. 2 is a configuration diagram showing an example of the hardware configuration of the terminal device and the base station device in one embodiment.
  • FIG. 3 is a configuration diagram showing an example of the functional block configuration of the terminal device according to the embodiment.
  • FIG. 4 is a configuration diagram showing an example of a functional block configuration of the base station apparatus in one embodiment.
  • FIG. 5 is a flowchart showing an example of MIMO layer setting processing at the time of carrier aggregation in the first embodiment.
  • FIG. 6 is a conceptual diagram showing an example of a transmission process of terminal capability information (“UECapacity Information”) in the first embodiment.
  • FIG. 7 is a flowchart showing an example of MIMO layer setting processing at the time of carrier aggregation in the second embodiment.
  • FIG. 8 is a flowchart showing an example of MIMO layer setting processing at the time of carrier aggregation in the third embodiment.
  • FIG. 9 is a conceptual diagram showing an example of a terminal capability information transmission process according to the third embodiment.
  • FIG. 10 is a conceptual diagram showing another example of the transmission processing of the terminal capability information in one embodiment.
  • FIG. 1 is a configuration diagram showing an example of a schematic configuration of a mobile communication system 100 according to an embodiment.
  • the mobile communication system 100 includes a terminal device 10-1 to a terminal device 10-m, a base station device 50-1 to a base station device 50-n, and a core network device 90. It is composed.
  • FIG. 1 illustrates terminal devices 10-1 to 10-m as terminal devices in the m range (m is an integer of 2 or more). In the following description, when these m-unit terminal devices are described without distinction, a part of the reference numerals is omitted and the term "terminal device 10" is simply referred to.
  • FIG. 1 illustrates base station devices 50-1 to 50-n as n base station devices (n is an integer of 2 or more). In the following description, when these n base station devices are described without distinction, a part of the reference numerals is omitted, and the term “base station device 50" is simply referred to.
  • the terminal device when the carrier aggregation (CA) is executed, the terminal device needs to transmit a lot of terminal capability information of the terminal device itself to the base station device. Therefore, the utilization efficiency of the wireless communication resource between the terminal device and the base station device may decrease.
  • CA carrier aggregation
  • the fallback CA (for example, when a maximum of M CCs can be used in the CA, is smaller than M).
  • M is an integer smaller than 5, for example.)
  • FIG. 10 is a conceptual diagram showing an example of a terminal capability information transmission process in one embodiment.
  • FIG. 10 shows from the terminal device to the base station device when the terminal device mounts eight antenna paths (8RF path) in the Intra band 4CC CA that can use up to four CCs in the Intra band CA.
  • It is a figure which shows an example of transmitting the terminal ability information with respect to.
  • the terminal device supports the same functions as the highest-level Intra band 4CC CA for the fallback CA (for example, Intra band 3CC CA and Intra band 2CC CA in FIG. 10)
  • the terminal capability of the fallback CA There is a method that makes it possible to omit the transmission of information.
  • the highest Intra band 4CC CA has CC # 0 (2x2), CC # 1 (2x2), CC # 2 (2x2) and CC # 2 (2x2) with the number of MIMO layers "2" in the frequency band. Since CC # 3 (2x2) is included, transmission of information regarding the number of MIMO layers of the fallback CA having the same CC (2x2) combination is omitted. That is, the terminal device can omit the transmission of information related to CC # 0 (2 ⁇ 2), CC # 1 (2 ⁇ 2), and CC # 2 (2 ⁇ 2) in the fallback CA (Intra band 3CC CA). Is. Further, in the fallback CA (Intra band 2CC CA), the terminal device can omit the transmission of information regarding CC # 0 (2 ⁇ 2) and CC # 1 (2 ⁇ 2).
  • the terminal device is CC # 0 (4 ⁇ 4), CC # in the Intra band 3CC CA.
  • Information about the number of MIMO layers of 1 (2x2) and CC # 2 (2x2) must be transmitted to the base station apparatus.
  • the Intra band 2CC CA includes CC # 0 (4 ⁇ 4) and CC # 1 (4 ⁇ 4), it can be said that the same functions as the highest-level Intra band 4CC CA are supported. Therefore, the terminal device must transmit information regarding the number of MIMO layers of CC # 0 (4 ⁇ 4) and CC # 1 (4 ⁇ 4) in the Intra band 2CC CA to the base station device.
  • transmission of some information regarding the number of MIMO layers of the fallback CA can be omitted. That is, it is not sufficient as a method for improving the utilization efficiency of wireless communication resources between the terminal device and the base station device.
  • the terminal device has a frequency band (first band) of the highest Intra band 4CC CA including four (first number) component carriers (CC). It is based on the number of first layers and the number of second layers in the lowest 1CC frequency band (second band) including one (second number) CC less than four (first number). Send to the station equipment. When the number of first layers and the number of second layers satisfy predetermined conditions, the number of terminal devices is less than 4 (first number) and more than 1 (second number), or 2 or more. Transmission of the frequency band (third band) of the fallback CA including three (third number) CCs to the base station apparatus of the third layer number is omitted.
  • the terminal device can largely omit the terminal capability information for transmitting to the base station device. Therefore, it is possible to improve the utilization efficiency of the wireless communication resource between the terminal device and the base station device.
  • the mobile communication system 100 is, for example, a mobile communication system for NR.
  • the present invention is applicable to any mobile communication system including at least a terminal device and a base station device, and is not limited to those targeting NR.
  • the present invention is also applicable to LTE and LTE-Advanced. It can also be applied to a mobile communication system that uses NR as a part of the mobile communication system.
  • LTE and LTE-Advanced are also referred to as E-UTRA (Evolved Universal Terrestrial Radio Access), but their meanings are the same.
  • the area (cover area) formed by the base station apparatus is called a cell
  • E-UTRA and NR are cellular communication systems constructed by a plurality of cells. Either TDD (Time Division Duplex) or FDD (Frequency Division Duplex) may be applied to the mobile communication system according to the present embodiment, and different methods may be applied to each cell.
  • the terminal device 10-1 to the terminal device 10-m are wirelessly connected to any one of the base station device 50-1 to the base station device 50-n, respectively. Further, each of the terminal devices 10-1 to the terminal device 10-m may be wirelessly connected to two or more of the base station devices 50-1 to the base station device 50-n at the same time.
  • E-UTRA or NR can be used for the base station apparatus 50-1 to the base station apparatus 50-n, respectively.
  • the base station apparatus 50-1 may use NR and the base station apparatus 50n may use E-UTRA, and vice versa.
  • the base station device in E-UTRA is called eNB (evolved NodeB), and the base station device in NR is called gNB (g-NodeB).
  • the term “base station device” when the term “base station device” is used, it means that both eNB and gNB are included. Further, the terminal device in E-UTRA and NR is referred to as UE (User Equipment).
  • the base station device gNB in the NR may be connected to the terminal device by using a part (BWP: Carrier bandwidth part) of the frequency band used by the base station device gNB.
  • BWP Carrier bandwidth part
  • Examples of the communication terminal 10 include portable information communication devices such as IoT devices, smartphones, mobile phones, personal digital assistants (PDAs), tablet terminals, portable game machines, portable music players, and wearable terminals.
  • the terminal device 10 may be connected to the base station device 50 in cell units, for example, and may be connected using a plurality of cells, for example, carrier aggregation.
  • the base station device to be initially connected is the master node (MN: MasterNode)
  • the base station device to be additionally connected is It is called a secondary node (SN: Secondary Node).
  • the base station devices are connected by a base station interface.
  • the base station device 50 and the core network device 90 are connected by a core interface.
  • the base station interface is used for exchanging control signals necessary for handover and cooperative operation between base station devices.
  • the core network device 90 has, for example, a base station device 50 under its control, and mainly handles load control between base station devices, call (paging) of the terminal device 10, and movement control such as location registration.
  • the NR defines AMF (Access and Mobility Management Function) for managing mobility and SMF (Session Management Function) for managing sessions as a function group of the control plane (C-plane) in the core network device 90.
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • C-plane control plane
  • E-UTRA defines MME (Mobility Management Entity) corresponding to AMF.
  • FIG. 1 shows an example in which the core network device 90 is composed of one device, but the present invention is not limited to this.
  • the core network device may include a server, a gateway, and the like, and may be composed of a plurality of devices.
  • the terminal device 10 and the base station device 50 transmit and receive RRC messages in the radio resource control (RRC: Radio Resource Control) layer, and proceed with session processing (also referred to as a connection sequence). As the session processing proceeds, the terminal device 10 changes from the idle state (RRC Idle) to the connected state (RRC Connected) to the base station device 50. The idle state corresponds to the standby state of the terminal device 10.
  • RRC Radio Resource Control
  • the terminal device 10 and the base station device 50 transmit and receive a MAC control element (MAC CE: MAC Control Element) in the medium access control (MAC: Medium Access Control) layer.
  • the RRC message is transmitted as an RRC PDU (Protocol Data Unit), and as the mapped logical channels, a common control channel (CCCH: Common Control Channel), an individual control channel (DCCH: Dedicated Control Channel), and a paging control channel (PCCH:). Paging Control Channel), Broadcast Control Channel (BCCH: Broadcast Control Channel), or Multicast Control Channel (MCCH: Multicast Control Channel) is used.
  • the MAC CE is transmitted as a MAC PDU (or MAC sub PDU).
  • a MAC subPDU is equivalent to a service data unit (SDU: Service Data Unit) in the MAC layer plus, for example, an 8-bit header, and a MAC PDU includes one or more MAC subPDUs.
  • SDU Service Data Unit
  • a physical broadcast channel (PBCH: Physical Broadcast Channel), a primary synchronization signal (PSS: Primary Synchronization Signal), a secondary synchronization signal (SSS: Secondary Synchronization Signal), and a physical random access channel (SSS: Secondary Synchronization Signal).
  • the PRACH Physical Random Access Channel
  • the physical downlink control channel (PDCCH: Physical Downlink Control Channel)
  • a physical uplink control channel (PUCCH: Physical Uplink Control Channel)
  • a physical downlink shared channel (PDSCH: Physical Downlink Shared Channel)
  • PUSCH Physical Uplink shared channel
  • PUSCH Physical uplink shared channel
  • PUSCH Physical uplink shared channel
  • PUSCH Physical uplink shared channel
  • PUSCH Physical uplink shared channel
  • the physical broadcast channel (PBCH) is transmitted from the base station device 50 to the terminal device 10 and is used to notify a common parameter (system information) in a cell under the base station device 50.
  • System information is further classified into a master information block (MIB: Master Information Block) and a system information block (SIB: System Information Block).
  • MIB Master Information Block
  • SIB System Information Block
  • the system information block is further subdivided into SIB1, SIB2, ..., And transmitted.
  • the system information includes information necessary for connecting to the cell.
  • the MIB includes information such as a system frame number and information indicating whether or not to camp on the cell.
  • SIB1 contains parameters for calculating cell quality (cell selection parameters), cell-common channel information (random access control information, PUCCH control information, PUSCH control information), scheduling information of other system information, and the like.
  • the physical broadcast channel (PBCH) is a synchronization signal block (SSB: Synchronization Signal Block (or SS / PBSH)), which is a set with a synchronization signal composed of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). Is transmitted periodically.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the system information notified by the physical notification channel (PBCH) or the like is also called “system notification information” or “notification information”.
  • PBCH physical notification channel
  • the terminal device 10 completes cell selection and / or cell reselection, and the terminal device 10 selects a cell for monitoring system notification information and paging information. It means to be in a state of being in a state of being.
  • the terminal device 10 establishes the above-mentioned RRC connection with the base station device 50 forming the camp-on cell.
  • the primary synchronization signal is used by the terminal device 10 to synchronize with the reception symbol timing and frequency of the downlink signal of the base station device 50.
  • the primary synchronization signal is a signal that the terminal device 10 first attempts to detect in a procedure for detecting a cell of the base station device 50 (hereinafter, also referred to as a “cell search procedure”).
  • As the primary synchronization signal (PSS) three types of signals "0" to "2" are repeatedly used based on the physical cell ID.
  • the physical cell ID is a physical cell identifier, and 504 IDs are used in E-UTRA and 1008 IDs are used in NR.
  • the secondary synchronization signal (SSS) is used by the terminal device 10 to detect the physical ID of the base station device 50.
  • the secondary synchronization signal (SSS) is a signal for the terminal device 10 to detect the physical cell ID in the cell search procedure.
  • SSS secondary synchronization signal
  • 168 signals from “0" to "167” are repeatedly used in E-UTRA
  • 336 signals from "0" to "335" are repeatedly used in NR based on the physical cell ID. ..
  • the physical random access channel (PRACH) is used by the terminal device 10 to transmit a random access preamble to the base station device 50.
  • the physical random access channel (PRACH) is generally used in a state where uplink synchronization has not been established between the terminal device 10 and the base station device 50, and is used for transmission timing adjustment information (timing advance) and uplink radio. Used for resource requests.
  • Information indicating a radio resource capable of transmitting a random access preamble is transmitted to a terminal using broadcast information or an RRC message.
  • the physical downlink control channel (PDCCH) is transmitted from the base station apparatus 50 to notify the terminal apparatus 10 of the downlink control information (DCI).
  • the downlink control information includes uplink radio resource information (uplink grant (UL grant)) that can be used by the terminal device 10 or downlink radio resource information (downlink grant (DL grant)).
  • the downlink grant is information indicating the scheduling of the physical downlink shared data channel (PDSCH).
  • the uplink grant is information indicating the scheduling of the physical uplink shared channel (PUSCH).
  • the physical downlink shared data channel (PDSCH) indicated by the physical downlink control channel (PDCCH) is a random access response and is a random access preamble.
  • Index information, transmission timing adjustment information, uplink grant, etc. are included.
  • FIG. 2 is a configuration diagram showing an example of the hardware configuration of the terminal device 10 and the base station device 50.
  • the terminal device 10 and the base station device 50 each include, for example, a processor 21, a memory 22, a storage device 23, a communication device 24, an input device 25, an output device 26, an antenna 27, and a sensor 29, respectively. Be prepared.
  • the processor 21 is configured to control the operation of each part of the terminal device 10 or the base station device 50.
  • the processor 21 includes, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and a SoC (System-on-a). -chip) and other integrated circuits are included.
  • the memory 22 and the storage device 23 are each configured to store programs, data, and the like.
  • the memory 22 is composed of, for example, a ROM (ReadOnlyMemory), an EPROM (ErasableProgrammableROM), an EEPROM (ElectricallyErasableProgrammableROM), and / or a RAM (RandomAccessMemory).
  • the storage device 23 is composed of, for example, storage such as an HDD (Hard Disk Drive), an SSD (Solid State Drive) and / or an eMMC (embedded MultiMediaCard).
  • the communication device 24 is configured to communicate via a wired and / or wireless network.
  • the communication device 24 includes, for example, a network card, a communication module, and the like. Further, the communication device 24 may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
  • RF Radio Frequency
  • BB BaseBand
  • the RF device for example, performs D / A (Digital to Analog) conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device to generate a wireless signal transmitted from the antenna 27. Generate. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A / D (Analog to Digital) conversion, etc. on the radio signal received from the antenna 27 and transmits it to the BB device.
  • the BB apparatus performs a process of converting a digital baseband signal into an IP packet and a process of converting an IP packet into a digital baseband signal.
  • the input device 25 is configured so that information can be input by a user operation.
  • the input device 25 includes, for example, a keyboard, a touch panel, a mouse, and / or a microphone.
  • the output device 26 is configured to output information.
  • the output device 26 includes, for example, a liquid crystal display, an EL (Electro Luminescence) display, a display device such as a plasma display, and / or a speaker.
  • a liquid crystal display for example, a liquid crystal display, an EL (Electro Luminescence) display, a display device such as a plasma display, and / or a speaker.
  • EL Electro Luminescence
  • the antenna 27 is configured to be able to radiate (radiate) and receive radio waves (electromagnetic waves) in one or a plurality of predetermined frequency bands.
  • the antenna 27 may be a directional antenna.
  • the gain of the directional antenna 27 differs depending on the orientation of the antenna.
  • the antenna 27 may have no directivity, that is, one having omnidirectionality.
  • the omnidirectional antenna 27 has approximately the same gain from all 360 degrees directions in the horizontal plane, in the vertical plane, or both in the horizontal plane and in the non-horizontal plane and in the vertical plane.
  • the number of antennas 27 is not limited to one.
  • the terminal device 10 and the base station device 50 may include a plurality of antennas. When the terminal device 10 and the base station device 50 include a plurality of antennas, they may be divided into, for example, a transmitting antenna and a receiving antenna. Further, when a plurality of antennas are divided into a transmitting antenna and a receiving antenna, at least one of them may include a plurality of antennas. When the terminal device 10 and the base station device 50 are provided with a plurality of transmission / reception antennas or transmission antennas, a beamforming technique described later can be used.
  • the sensor 29 included in the terminal device 10 includes a sensor that detects the position, orientation, and acceleration of the terminal device 10.
  • the sensor 29 included in the terminal device 10 includes, for example, at least one sensor such as a GPS (Global Positioning System) sensor, a gyro sensor, and an acceleration sensor.
  • the sensor 29 included in the base station device 50 may include, for example, a sensor that detects environmental information such as temperature, humidity, weather, or seismic intensity in the base station device 50.
  • FIG. 3 is a configuration diagram showing an example of a functional block configuration of the terminal device 10. Note that FIG. 3 is for showing the functional blocks required in the description of the present embodiment, and does not exclude that the terminal device 10 includes the functional blocks other than those shown in the drawings.
  • the terminal device 10 includes an acquisition unit 11, a reception unit 13, a determination unit 15, a transmission unit 17, and an access control unit 19 as functional blocks.
  • the acquisition unit 11 acquires the number of MIMO layers for each of a plurality of CCs (component carriers).
  • the acquisition unit 11 may acquire the number of MIMO layers for each of a plurality of CCs in advance from an external device, for example, the core network device 90 shown in FIG.
  • the receiving unit 13 receives various information from the base station device 50 shown in FIG. For example, the receiving unit 13 receives from the base station device 50 a "UECapacityEncury" for inquiring about the terminal capability information ("UECapacity Information") of the terminal device 10.
  • UECapacityEncury for inquiring about the terminal capability information
  • the determination unit 15 determines, for example, whether a specific number of MIMO layers satisfies a predetermined condition based on the number of MIMO layers for each of a plurality of CCs (component carriers) acquired by the acquisition unit 11. Details of the predetermined conditions will be described later.
  • the transmission unit 17 transmits various information to the base station device 50.
  • the transmission unit 13 transmits the terminal capability information of the terminal device 10 to the base station device 50 as a response to the "UECapacityEncurry".
  • the transmission unit 17 includes a frequency band (first band) of the highest Intra band 4CC CA including four (first number) component carriers (CC). ) And the number of MIMO layers in the lowest 1CC frequency band (second band) including one (second number) CC less than four (first number).
  • the terminal device is a base station device 50 having the number of MIMO layers in the frequency band (third band) of the fallback CA when the number of MIMO layers in the first band and the number of MIMO layers in the second band satisfy predetermined conditions. Omit transmission to.
  • the access control unit 19 controls access processing (for example, CA processing) for transmitting a radio signal from the terminal device 10 to the base station device 50.
  • the access control unit 19 controls access processing based on the information regarding the MIMO layer of each CC at the time of CA set by the base station apparatus 50.
  • the acquisition unit 11, the reception unit 13, and the transmission unit 17 may be realized by, for example, the communication device 24, or may be realized by the processor 21 executing the program stored in the storage device 23 in addition to the communication device 24. May be done.
  • the determination unit 15 and the access control unit 19 may be realized by the processor 21 executing the program stored in the storage device 23.
  • the program When executing a program, the program may be stored in a storage medium.
  • the storage medium in which the program is stored may be a computer-readable non-transitory storage medium (Non-transitory computer readable medium).
  • the non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB (Universal Serial Bus) memory or a CD-ROM (Compact Disc ROM).
  • FIG. 4 is a configuration diagram showing an example of a functional block configuration of the base station apparatus 50. Note that FIG. 4 is for showing the functional blocks required in the description of the present embodiment, and does not exclude that the base station apparatus 50 includes functional blocks other than those shown in the drawings.
  • the base station device 50 includes a receiving unit 51, a setting unit 53, a transmitting unit 55, and an access control unit 57 as functional blocks.
  • the receiving unit 51 receives the terminal capability information of the terminal device 10.
  • the setting unit 53 sets the MIMO layer of each CC at the time of CA based on the terminal capability information of the terminal device 10 received by the receiving unit 51.
  • the transmission unit 55 transmits "UECapacityEncurry" for inquiring the terminal capability information of the terminal device 10.
  • the transmission unit 55 transmits information regarding the MIMO layer of each CC at the time of CA set by the setting unit 53 to the terminal device 10 as “RRC Configuration”.
  • the access control unit 57 controls access processing (for example, CA processing) for transmitting a wireless signal from the base station device 50 to the terminal device 10.
  • the access control unit 57 controls the access process based on the information about the MIMO layer of each CC at the time of CA set by the base station apparatus 50 set by the setting unit 53.
  • the receiving unit 51 and the transmitting unit 55 may be realized by, for example, the communication device 24, or may be realized by the processor 21 executing the program stored in the storage device 23 in addition to the communication device 24. ..
  • the setting unit 53 and the access control unit 57 may be realized by the processor 21 executing the program stored in the storage device 23.
  • the program When executing a program, the program may be stored in a storage medium.
  • the storage medium in which the program is stored may be a non-temporary storage medium that can be read by a computer.
  • the non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB memory or a CD-ROM.
  • FIG. 5 is a flowchart showing an example of the MIMO layer setting process according to the first embodiment of the present invention.
  • the base station apparatus 50 transmits “UECapacityEncurry” to the terminal apparatus 10 (step S1).
  • the terminal device 10 determines whether or not a specific number of MIMO layers satisfies a predetermined condition based on the number of MIMO layers for each of a plurality of CCs (component carriers).
  • FIG. 6 is a conceptual diagram showing an example of a terminal capability information transmission process when the terminal device 10 implements eight antenna paths (8RF paths) in an Intra band 4CC CA in the first embodiment.
  • the terminal capability information transmitted from the terminal device 10 to the base station device 50 includes, for example, information about the MIMO layer of each CC regarding various CAs that can be executed.
  • the terminal device 10 transmits to the base station device 50.
  • Some of the terminal capability information to be provided is omitted.
  • the number of first layers is equal to or greater than the number of third layers in the frequency band (third band) of the fallback CA, and the number of second layers is each component carrier in the third band. Including that the number of layers is equal to or greater than the number of layers.
  • the number of first layers is based on CC # 0 (2x2), CC # 1 (2x2), CC # 2 (2x2) and CC # 3 (2x2).
  • the number of third layers (total number of MIMO layers) in the frequency band of Intraband 3CC CA is CC # 0 (4x4), CC # 1 (2x2), and CC # 2 (CC # 2). It is calculated as "8" based on 2 ⁇ 2). Therefore, the number of first layers "8" is equal to or greater than the number of third layers "8" in the frequency band of Intra band 3CC CA.
  • the number of second layers is calculated as "4" based on CC # 0 (4 ⁇ 4).
  • CC # 0 (4 ⁇ 4) of Intra band 3CC CA is “4”
  • CC # 1 (2 ⁇ 2) is “2”. It is “2" for CC # 2 (2x2). Therefore, the number of second layers "4" is equal to or greater than the number of layers ("4" or "2") of each component carrier in the third band. Therefore, since the "number of first layers" and the "number of second layers" satisfy the above-mentioned predetermined conditions as described above, the terminal device 10 transmits information regarding the number of third layers in the frequency band of the Intra band 3CC CA. It can be omitted.
  • the number of first layers is based on CC # 0 (2x2), CC # 1 (2x2), CC # 2 (2x2) and CC # 3 (2x2).
  • the number of third layers is "8" based on CC # 0 (4x4) and CC # 1 (4x4). Is calculated. Therefore, the number of first layers "8" is equal to or greater than the number of third layers "8" in the frequency band of Intra band 2CC CA.
  • the number of second layers is calculated as "4" based on CC # 0 (4 ⁇ 4).
  • CC # 0 (4 ⁇ 4) of Intra band 2CC CA is “4”
  • CC # 1 (4 ⁇ 4) is “4”. Therefore, the number of second layers "4" is equal to or greater than the number of layers "4" of each component carrier in the third band. Therefore, since the "number of first layers” and the "number of second layers" satisfy the above-mentioned predetermined conditions as described above, the terminal device 10 transmits information regarding the number of third layers in the frequency band of the Intra band 2CC CA. Can also be omitted.
  • the terminal device 10 transmits the terminal capability information to the base station device 50 as a response to the “UECapitalityEncurry”, which does not include the number of the third layers of the frequency band (third band) of the fallback CA (3rd band).
  • Step S5 the terminal capability information includes the number of first layers (CC # 0 (2 ⁇ 2), CC # 1 (2 ⁇ 2)) in the frequency band of the highest Intra band 4CC CA. Only CC # 2 (2x2) and CC # 3 (2x2)) and the number of second layers (CC # 0 (4x4)) in the lowest 1CC frequency band including a single CC. Is included.
  • the base station device 50 sets the MIMO layer of each CC at the time of CA based on the terminal capability information transmitted from the terminal device 10. (Step S7).
  • the base station apparatus 50 (setting unit 53 shown in FIG. 4) has the number of first layers (CC # 0 (2 ⁇ 2), CC) in the frequency band of the uppermost Intra band 4CC CA. # 1 (2x2), CC # 2 (2x2) and CC # 3 (2x2)), and the number of second layers (CC #) in the lowest 1CC frequency band containing a single CC.
  • the terminal device 10 receives (4 ⁇ 4, 2 ⁇ 2, 2 ⁇ 2) of the Intra band 3CC CA and (4 ⁇ 4, 4 ⁇ 4) of the Intra band 2CC CA. ) Is supported.
  • the base station apparatus 50 receives information regarding a higher CC (number of layers "4") of the Intra band CC CA from the terminal apparatus 10, the terminal apparatus 10 receives the CC (number of layers "4").
  • lower CCs number of layers "2"
  • the base station device 50 transmits information regarding the MIMO layer of each CC at the time of set CA to the terminal device 10 as "RRC Configuration" (step S9).
  • the terminal device 10 is the first layer of the frequency band (first band) of the uppermost Intra band 4CC CA including four (first number) component carriers (CC).
  • the number and the number of second layers of the lowest 1CC frequency band (second band) including one (second number) CC less than four (first number) are used as the base station device.
  • Send When the number of first layers and the number of second layers satisfy predetermined conditions, the number of terminal devices is less than 4 (first number) and more than 1 (second number), or 2 or more. Transmission of the frequency band (third band) of the fallback CA including three (third number) CCs to the base station apparatus of the third layer number is omitted. Therefore, the terminal device 10 can largely omit the terminal capability information for transmitting to the base station device 50. Therefore, it is possible to improve the utilization efficiency of the wireless communication resource between the terminal device 10 and the base station device 50.
  • the terminal device 10 voluntarily performs a part of the terminal ability information in that the terminal device 10 omits the transmission of a part of the terminal ability information based on the advance notification from the base station device 50. This is different from the first embodiment in which transmission is omitted. Hereinafter, the points different from the first embodiment will be particularly described.
  • FIG. 7 is a flowchart showing an example of MIMO layer setting processing at the time of carrier aggregation in the second embodiment. Since steps S13, S17 and S19 in FIG. 7 are the same processes as steps S3, S7 and S9 in FIG. 5, description thereof will be omitted.
  • the terminal device 10 receives advance notification from the base station device that transmission of at least a part of the terminal capability information (information on the number of layers for each of a plurality of component carriers) can be omitted. (Step S11).
  • the advance notice may be included in the "UECapacityEncurry" and transmitted to the terminal device 10.
  • the terminal device 10 When the terminal device 10 receives the advance notification, the transmission of information regarding the number of third layers in the frequency band of the fallback CA is omitted, and the terminal capability includes only the information regarding the number of first layers and the number of second layers. Information is transmitted to the base station apparatus 50.
  • the terminal capability information may include information (response information) indicating that information regarding the number of third layers in the frequency band of the fallback CA is omitted. (Step S15).
  • the terminal device 10 omits the transmission of a part of the terminal capability information based on the advance notification from the base station device 50, and provides the response information in response to the notification to the base. Send to the station equipment. Therefore, when the base station apparatus 50 receives the response information, it can be understood that a part of the terminal capability information transmitted from the terminal apparatus 10 is omitted. That is, in the base station device 50, the MIMO layer information that is not included in the terminal capability information is not the information about the MIMO layer that the terminal device 10 does not support, but the information about the MIMO layer whose transmission is omitted in the terminal device 10. It becomes possible to determine that there is.
  • the third embodiment defines the transmission processing of the terminal capability information when the terminal device 10 implements 12 antenna paths (12 RF paths) in the Intra band 4CC CA, and the terminal device 10 defines the Intra band 4CC. It is different from the first embodiment that defines the transmission process of terminal capability information when eight antenna paths (8 RF paths) are implemented in CA. Hereinafter, the points different from the first embodiment will be particularly described.
  • FIG. 8 is a flowchart showing an example of MIMO layer setting processing at the time of carrier aggregation in the third embodiment.
  • FIG. 9 is a conceptual diagram showing an example of a terminal capability information transmission process according to the third embodiment. Since steps S21 and S29 in FIG. 9 are the same processes as steps S1 and S9 in FIG. 5, description thereof will be omitted.
  • the terminal device 10 since the terminal device 10 implements 12 antenna paths (12RF paths) in the Intra band 4CC CA, the maximum number of MIMO layers is "12". Further, the number of first layers in the frequency band (first band) of the highest-level Intra band 4CC CA including four (first number) CCs is "8". Therefore, in the third embodiment, it is premised that the maximum number of MIMO layers and the number of first layers are different. Also in the third embodiment, when the “predetermined condition” is satisfied, a part of the terminal capability information transmitted from the terminal device 10 to the base station device 50 is omitted (steps S23 and S25).
  • the "predetermined condition" includes that the maximum number of MIMO layers is equal to or greater than the number of third layers, and the number of second layers is equal to or greater than the number of layers of each component carrier in the third band.
  • the maximum number of MIMO layers is "12".
  • the number of third layers (total number of MIMO layers) is calculated as "8” based on CC # 0 (4x4), CC # 1 (2x2) and CC # 2 (2x2). Therefore, the maximum number of MIMO layers "12" is equal to or greater than the number of third layers "8".
  • the number of second layers is calculated as "4" based on CC # 0 (4 ⁇ 4).
  • CC # 0 (4 ⁇ 4) of Intra band 3CC CA is “4”
  • CC # 1 (2 ⁇ 2) is “2”.
  • the terminal device 10 transmits information regarding the number of third layers in the frequency band of the Intra band 3CC CA. It can be omitted.
  • Intra band 2CC CA as the fallback CA
  • the terminal device 10 if the predetermined conditions are satisfied as in the case of Intra band 3CC CA, the terminal device 10 relates to the number of third layers in the frequency band of Intra band 2CC CA. Information transmission can be omitted.
  • the terminal capability information includes the number of first layers (CC # 0 (2 ⁇ 2), CC # 1 (2 ⁇ 2), CC #) in the frequency band of the highest Intra band 4CC CA. Only 2 (2x2) and CC # 3 (2x2)) and the number of second layers (CC # 0 (4x4)) in the lowest 1CC frequency band containing a single CC are included. Is done. Further, the terminal capability information may further include information regarding the maximum number of MIMO layers.
  • the base station device 50 sets the MIMO layer of each CC at the time of CA based on the terminal capability information transmitted from the terminal device 10. (Step S27). As shown in FIG. 8, for example, the base station apparatus 50 (setting unit 53 shown in FIG. 4) has the number of first layers (CC # 0 (2 ⁇ 2), CC) in the frequency band of the uppermost Intra band 4CC CA. # 1 (2x2), CC # 2 (2x2) and CC # 3 (2x2)), and the number of second layers (CC #) in the lowest 1CC frequency band containing a single CC. If only 0 (4x4)) is received, the terminal device 10 will have the Intra band 3CC CA (4x4, 4x4, 4x4), (4x4, 4x4, 2x2). And (4x4, 2x2, 2x2), and (4x4, 4x4) of Intra band 2CC CA are judged to be supported.
  • the base station apparatus 50 has the number of first layers (CC # 0 (2 ⁇ 2), CC) in the frequency band of the uppermost Intra
  • the terminal device 10 is a terminal. It is possible to omit the transmission of a part of the ability information.
  • each of the above embodiments is for facilitating the understanding of the present invention, and does not limit the interpretation of the present invention.
  • the present invention can be modified / improved without departing from the spirit of the present invention, and the present invention also includes an equivalent thereof.
  • the present invention can form various disclosures by appropriately combining the plurality of components disclosed in each of the above embodiments. For example, some components may be removed from all the components shown in the embodiments. Further, the components may be appropriately combined in different embodiments.

Abstract

A terminal device (10) in a mobile communication system that supports carrier aggregation comprises: an acquisition unit (11) that acquires the number of layers for each of a plurality of component carriers; and a transmission unit (17) that transmits, to a base station device, a first number of layers of a first band including a first number of component carriers and a second number of layers of a second band including a second number of component carriers, which is less than the first number, wherein when the first number of layers and the second number of layers satisfy a prescribed condition, the transmission unit (17) omits the transmission, to the base station device, of a third number of layers of a third band including a third number of component carriers, which is less than the first number and is more than the second number. Thus it is possible to provide wireless communication technology for improving the usage efficiency of wireless communication resources between the terminal device (10) and the base station device (50).

Description

端末装置及び無線通信方法Terminal device and wireless communication method
 本発明は、端末装置及び無線通信方法に関する。 The present invention relates to a terminal device and a wireless communication method.
 国際標準化団体である3GPP(Third Generation Partnership Project)において、第5世代(5G:Fifth Generation)のセルラー通信システムに向けた新しい無線アクセス技術であるNR(New Radio)の検討が行われている。NRは、第4世代のセルラー通信システムであるLTE(Long Term Evolution)-Advancedよりも、多種多様なサービスを実現可能とするための技術が検討されている。例えば、NRでは高速・大容量通信を実現するeMBB(enhanced Mobile Broad Band)、超高信頼・低遅延通信を実現するURLLC(Ultra-Reliable and Low Latency Communication)、及びIoT(Internet of Things)デバイスの多数同時接続を実現するmMTC(massive Machine Type Communication)といった、用途の異なる利用シナリオが実現要件として定められている。 The 3GPP (Third Generation Partnership Project), an international standardization organization, is studying NR (New Radio), which is a new wireless access technology for 5th generation (5G: Fifth Generation) cellular communication systems. For NR, a technique for realizing a wide variety of services is being studied, as compared with LTE (Long Term Evolution) -Advanced, which is a fourth-generation cellular communication system. For example, in NR, eMBB (enhanced Mobile Broad Band) that realizes high-speed and large-capacity communication, URLLC (Ultra-Reliable and Low Latency Communication) that realizes ultra-high reliability and low-delay communication, and IoT (Internet of Things) devices Usage scenarios with different uses, such as mMTC (massive Machine Type Communication) that realizes multiple simultaneous connections, are defined as realization requirements.
 ところで、NRにおいては、無線通信のスループット向上のためのアンテナ技術が採用されている。例えば、NRにおいては、ミリ波を用いた無線通信が実行可能である。ミリ波のような比較的高い周波数帯を用いて無線通信を実行すると、伝播ロス等が増大する。このような問題を防止するためにビーム幅が比較的狭いビームを形成する技術(ビームフォーミング)が知られている。また、NRにおいては、送信側及び受信側の双方でそれぞれ複数のアンテナを備え、送信データを複数のアンテナに分割し並列に伝送する技術であるMIMO(Multiple Input Multiple Output)が採用されている(非特許文献1を参照)。 By the way, in NR, antenna technology for improving the throughput of wireless communication is adopted. For example, in NR, wireless communication using millimeter waves is feasible. When wireless communication is executed using a relatively high frequency band such as millimeter waves, propagation loss and the like increase. In order to prevent such a problem, a technique (beamforming) for forming a beam having a relatively narrow beam width is known. Further, in NR, MIMO (Multiple Input Multiple Output), which is a technique in which transmission data is divided into a plurality of antennas and transmitted in parallel, is adopted, which is provided with a plurality of antennas on both the transmitting side and the receiving side. See Non-Patent Document 1).
 さらに、NRにおいては、コンポーネントキャリア(CC:Component Carrier)と呼ばれる、例えば20MHzの周波数帯域を複数アグリゲート(束ねる)することによって帯域幅の拡張が可能なキャリアアグリゲーション(CA: Carrier Aggregation)が採用されている。このキャリアアグリゲーションに関して、基地局装置においては、キャリアアグリゲーション実行時の各コンポーネントキャリアのMIMOレイヤを設定するために、端末装置から、端末装置自らの端末能力情報(「UECapabilityInformation」)として、複数のコンポーネントキャリアごとにMIMOレイヤ数に関する情報を取得している(非特許文献2を参照)。 Furthermore, in NR, carrier aggregation (CA: Carrier Aggregation), which is called a component carrier (CC) and can expand the bandwidth by, for example, aggregating a plurality of frequency bands of 20 MHz, is adopted. ing. Regarding this carrier aggregation, in the base station device, in order to set the MIMO layer of each component carrier at the time of carrier aggregation execution, a plurality of component carriers are used as terminal capability information (“UECapacity Information”) of the terminal device itself from the terminal device. Information on the number of MIMO layers is obtained for each (see Non-Patent Document 2).
 上記のとおり、NRにおいては、接続開始時に、基地局装置は、端末装置から、キャリアアグリゲーションの複数のコンポーネントキャリア全てに関して、当該コンポーネントキャリアごとのMIMOレイヤ数に関する情報を取得している。すなわち、端末装置は、基地局装置に対して、端末装置自らの多くの端末能力情報を送信する必要がある。したがって、端末装置と基地局装置との間の無線通信リソースの利用効率が低下するおそれがある。 As described above, in NR, at the start of connection, the base station device acquires information on the number of MIMO layers for each component carrier from the terminal device for all of the plurality of component carriers of carrier aggregation. That is, the terminal device needs to transmit a large amount of terminal capability information of the terminal device itself to the base station device. Therefore, the utilization efficiency of the wireless communication resource between the terminal device and the base station device may decrease.
 本発明はこのような事情に鑑みてなされたものであり、端末装置と基地局装置との間の無線通信リソースの利用効率を向上させるための無線通信技術を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a wireless communication technique for improving the utilization efficiency of wireless communication resources between a terminal device and a base station device.
 本発明の一側面に係る端末装置は、キャリアアグリゲーションに対応した移動通信システムにおける端末装置であって、複数のコンポーネントキャリアごとのレイヤ数を取得する取得部と、第1の個数のコンポーネントキャリアを含む第1バンドの第1レイヤ数と、第1の個数よりも少ない第2の個数のコンポーネントキャリアを含む第2バンドの第2レイヤ数と、を基地局装置に送信する送信部と、を備え、送信部は、第1レイヤ数及び第2レイヤ数のそれぞれが所定の条件を満たす場合に、第1の個数よりも少なく、且つ、第2の個数よりも多い第3の個数のコンポーネントキャリアを含む第3バンドの第3レイヤ数の基地局装置への送信を省略する。 The terminal device according to one aspect of the present invention is a terminal device in a mobile communication system corresponding to carrier aggregation, and includes an acquisition unit for acquiring the number of layers for each of a plurality of component carriers and a first number of component carriers. A transmission unit for transmitting the number of first layers of the first band and the number of second layers of the second band including the second number of component carriers less than the first number to the base station apparatus is provided. The transmitter includes a third number of component carriers, which is less than the first number and more than the second number when each of the number of the first layer and the number of the second layer satisfies a predetermined condition. Transmission of the third layer number of the third band to the base station apparatus is omitted.
 本発明の一側面に係る無線通信方法は、キャリアアグリゲーションに対応した移動通信システムにおける端末装置が用いる無線通信方法であって、複数のコンポーネントキャリアごとのレイヤ数を取得するステップと、第1の個数のコンポーネントキャリアを含む第1バンドの第1レイヤ数と、第1の個数よりも少ない第2の個数のコンポーネントキャリアを含む第2バンドの第2レイヤ数と、を基地局装置に送信するステップと、を備え、送信するステップは、第1レイヤ数及び第2レイヤ数のそれぞれが所定の条件を満たす場合に、第1の個数よりも少なく、且つ、第2の個数よりも多い第3の個数のコンポーネントキャリアを含む第3バンドの第3レイヤ数の基地局装置への送信を省略する。 The wireless communication method according to one aspect of the present invention is a wireless communication method used by a terminal device in a mobile communication system that supports carrier aggregation, and includes a step of acquiring the number of layers for each of a plurality of component carriers and a first number. The step of transmitting the number of first layers of the first band including the component carriers of the above and the number of second layers of the second band including the second number of component carriers less than the first number to the base station apparatus. The number of third layers is less than the number of the first layer and more than the number of the second layer when each of the number of the first layer and the number of the second layer satisfies a predetermined condition. Transmission to the base station apparatus of the third layer number of the third band including the component carrier of the above is omitted.
 本発明によれば、端末装置と基地局装置との間の無線通信リソースの利用効率を向上させるための無線通信技術を提供することができる。 According to the present invention, it is possible to provide a wireless communication technique for improving the utilization efficiency of wireless communication resources between a terminal device and a base station device.
図1は、一実施形態における移動通信システムの概略構成の一例を示す構成図である。FIG. 1 is a configuration diagram showing an example of a schematic configuration of a mobile communication system according to an embodiment. 図2は、一実施形態における端末装置及び基地局装置のハードウェア構成の一例を示す構成図である。FIG. 2 is a configuration diagram showing an example of the hardware configuration of the terminal device and the base station device in one embodiment. 図3は、一実施形態における端末装置の機能ブロック構成の一例を示す構成図である。FIG. 3 is a configuration diagram showing an example of the functional block configuration of the terminal device according to the embodiment. 図4は、一実施形態における基地局装置の機能ブロック構成の一例を示す構成図である。FIG. 4 is a configuration diagram showing an example of a functional block configuration of the base station apparatus in one embodiment. 図5は、第1実施形態におけるキャリアアグリゲーションの際のMIMOレイヤの設定処理の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of MIMO layer setting processing at the time of carrier aggregation in the first embodiment. 図6は、第1実施形態における、端末能力情報(「UECapabilityInformation」)の送信処理の一例を示す概念図である。FIG. 6 is a conceptual diagram showing an example of a transmission process of terminal capability information (“UECapacity Information”) in the first embodiment. 図7は、第2実施形態におけるキャリアアグリゲーションの際のMIMOレイヤの設定処理の一例を示すフローチャートである。FIG. 7 is a flowchart showing an example of MIMO layer setting processing at the time of carrier aggregation in the second embodiment. 図8は、第3実施形態におけるキャリアアグリゲーションの際のMIMOレイヤの設定処理の一例を示すフローチャートである。FIG. 8 is a flowchart showing an example of MIMO layer setting processing at the time of carrier aggregation in the third embodiment. 図9は、第3実施形態における、端末能力情報の送信処理の一例を示す概念図である。FIG. 9 is a conceptual diagram showing an example of a terminal capability information transmission process according to the third embodiment. 図10は、一実施形態における、端末能力情報の送信処理の他の一例を示す概念図である。FIG. 10 is a conceptual diagram showing another example of the transmission processing of the terminal capability information in one embodiment.
 以下に本発明の実施形態を説明する。以下の図面の記載において、同一または類似の部分には同一または類似の符号で表している。但し、図面は模式的なものである。従って、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。さらに、本発明の技術的範囲は、当該実施形態に限定して解するべきではない。 An embodiment of the present invention will be described below. In the description of the drawings below, the same or similar parts are represented by the same or similar reference numerals. However, the drawings are schematic. Therefore, the specific dimensions and the like should be determined in light of the following explanations. In addition, it goes without saying that the drawings include parts having different dimensional relationships and ratios from each other. Furthermore, the technical scope of the present invention should not be construed as limited to the embodiment.
 図1を参照しつつ、一実施形態における、キャリアアグリゲーション(CA: Carrier Aggregation)に対応した移動通信システムの概略構成について説明する。キャリアアグリゲーションCA処理とは、コンポーネントキャリア(CC)と呼ばれる、例えば20MHzの周波数帯域を複数アグリゲート(束ねる)することによって帯域幅の拡張が可能な処理をいう。図1は、一実施形態における移動通信システム100の概略構成の一例を示す構成図である。 With reference to FIG. 1, a schematic configuration of a mobile communication system corresponding to carrier aggregation (CA) in one embodiment will be described. Carrier aggregation CA processing refers to processing called component carrier (CC), in which the bandwidth can be expanded by aggregating a plurality of frequency bands of, for example, 20 MHz. FIG. 1 is a configuration diagram showing an example of a schematic configuration of a mobile communication system 100 according to an embodiment.
 図1に示すように、移動通信システム100は、端末装置10-1から端末装置10-mと、基地局装置50-1から基地局装置50-nと、コアネットワーク装置90と、を含んで構成される。なお、図1には、m台(mは2以上の整数)の端末装置として、端末装置10-1から端末装置10-mを図示している。以下の説明において、これらm台の端末装置を区別することなく説明する場合には、符号の一部を省略して、単に「端末装置10」という。また、図1には、n台(nは2以上の整数)の基地局装置として、基地局装置50-1から基地局装置50-nを図示している。以下の説明において、これらn台の基地局装置を区別することなく説明する場合には、符号の一部を省略して、単に「基地局装置50」という。 As shown in FIG. 1, the mobile communication system 100 includes a terminal device 10-1 to a terminal device 10-m, a base station device 50-1 to a base station device 50-n, and a core network device 90. It is composed. Note that FIG. 1 illustrates terminal devices 10-1 to 10-m as terminal devices in the m range (m is an integer of 2 or more). In the following description, when these m-unit terminal devices are described without distinction, a part of the reference numerals is omitted and the term "terminal device 10" is simply referred to. Further, FIG. 1 illustrates base station devices 50-1 to 50-n as n base station devices (n is an integer of 2 or more). In the following description, when these n base station devices are described without distinction, a part of the reference numerals is omitted, and the term "base station device 50" is simply referred to.
 ここで、本発明の第1実施形態における移動通信システム100の概要に関して説明する。上記したとおり、NRにおいては、キャリアアグリゲーション(CA)実行時に、端末装置は、基地局装置に対して端末装置自らの多くの端末能力情報を送信する必要がある。したがって、端末装置と基地局装置との間の無線通信リソースの利用効率が低下するおそれがある。 Here, the outline of the mobile communication system 100 according to the first embodiment of the present invention will be described. As described above, in NR, when the carrier aggregation (CA) is executed, the terminal device needs to transmit a lot of terminal capability information of the terminal device itself to the base station device. Therefore, the utilization efficiency of the wireless communication resource between the terminal device and the base station device may decrease.
 端末装置と基地局装置との間の無線通信リソースの利用効率を向上させるための手法として、例えば、フォールバックCA(例えば、CAにおいて最大M個のCCを使用可能な場合に、Mよりも小さい整数個であるN個のCCを使用するCAをいう。Mは、例えば5よりも小さい整数である。)に関する端末能力情報の一部の送信を省略する手法がある。 As a method for improving the utilization efficiency of wireless communication resources between the terminal device and the base station device, for example, the fallback CA (for example, when a maximum of M CCs can be used in the CA, is smaller than M). A CA that uses N CCs, which is an integer number. M is an integer smaller than 5, for example.) There is a method of omitting a part of transmission of terminal capability information.
 図10は、一実施形態における、端末能力情報の送信処理の一例を示す概念図である。特に、図10は、端末装置が、Intra band CAにおいて最大4個のCCを使用可能なIntra band 4CC CAで8本のアンテナパス(8RF path)を実装する場合に、端末装置から基地局装置に対して端末能力情報を送信する一例を示す図である。例えば、端末装置が、フォールバックCA(例えば図10におけるIntra band 3CC CA及びIntra band 2CC CA)については、最上位のIntra band 4CC CAと同一の機能をサポートする場合は、フォールバックCAの端末能力情報の送信を省略可能とする手法がある。最上位のIntra band 4CC CAには、周波数帯域において、いずれもMIMOレイヤ数「2」のCC#0(2×2)、CC#1(2×2)、CC#2(2×2)及びCC#3(2×2)が含まれているから、同一のCC(2×2)の組み合わせを有するフォールバックCAのMIMOレイヤ数に関する情報の送信を省略する。つまり、端末装置は、フォールバックCA(Intra band 3CC CA)では、CC#0(2×2)、CC#1(2×2)及びCC#2(2×2)に関する情報の送信を省略可能である。また、端末装置は、フォールバックCA(Intra band 2CC CA)では、CC#0(2×2)及びCC#1(2×2)に関する情報の送信を省略可能である。 FIG. 10 is a conceptual diagram showing an example of a terminal capability information transmission process in one embodiment. In particular, FIG. 10 shows from the terminal device to the base station device when the terminal device mounts eight antenna paths (8RF path) in the Intra band 4CC CA that can use up to four CCs in the Intra band CA. It is a figure which shows an example of transmitting the terminal ability information with respect to. For example, if the terminal device supports the same functions as the highest-level Intra band 4CC CA for the fallback CA (for example, Intra band 3CC CA and Intra band 2CC CA in FIG. 10), the terminal capability of the fallback CA There is a method that makes it possible to omit the transmission of information. The highest Intra band 4CC CA has CC # 0 (2x2), CC # 1 (2x2), CC # 2 (2x2) and CC # 2 (2x2) with the number of MIMO layers "2" in the frequency band. Since CC # 3 (2x2) is included, transmission of information regarding the number of MIMO layers of the fallback CA having the same CC (2x2) combination is omitted. That is, the terminal device can omit the transmission of information related to CC # 0 (2 × 2), CC # 1 (2 × 2), and CC # 2 (2 × 2) in the fallback CA (Intra band 3CC CA). Is. Further, in the fallback CA (Intra band 2CC CA), the terminal device can omit the transmission of information regarding CC # 0 (2 × 2) and CC # 1 (2 × 2).
 しかしながら、図10に示すように、Intra band 3CC CAに関して、例えばCC#0(4×4)、CC#1(2×2)及びCC#2(2×2)のMIMOレイヤ数に関する情報については、送信が必要である。つまり、図10の例では、Intra band 3CC CAにおいては、最上位のIntra band 4CC CAにおける各CCに共通するMIMOレイヤ数「2」とは異なるMIMOレイヤ数「4」であるCC#0(4×4)を含む。よって、Intra band 3CC CAにおいて、最上位のIntra band 4CC CAと同一の機能がサポートされているとは言えないため、端末装置は、Intra band 3CC CAにおけるCC#0(4×4)、CC#1(2×2)及びCC#2(2×2)のMIMOレイヤ数に関する情報を、基地局装置に送信しなければならない。同様に、Intra band 2CC CAにおいては、CC#0(4×4)及びCC#1(4×4)を含むため、最上位のIntra band 4CC CAと同一の機能がサポートされているとは言えないため、端末装置は、Intra band 2CC CAにおけるCC#0(4×4)及びCC#1(4×4)のMIMOレイヤ数に関する情報を、基地局装置に送信しなければならない。 However, as shown in FIG. 10, regarding the Intra band 3CC CA, for example, regarding the information regarding the number of MIMO layers of CC # 0 (4 × 4), CC # 1 (2 × 2) and CC # 2 (2 × 2). , Need to be sent. That is, in the example of FIG. 10, in the Intra band 3CC CA, CC # 0 (4), which is a MIMO layer number “4” different from the MIMO layer number “2” common to each CC in the highest Intra band 4CC CA. × 4) is included. Therefore, it cannot be said that the same function as the highest-level Intra band 4CC CA is supported in the Intra band 3CC CA, so that the terminal device is CC # 0 (4 × 4), CC # in the Intra band 3CC CA. Information about the number of MIMO layers of 1 (2x2) and CC # 2 (2x2) must be transmitted to the base station apparatus. Similarly, since the Intra band 2CC CA includes CC # 0 (4 × 4) and CC # 1 (4 × 4), it can be said that the same functions as the highest-level Intra band 4CC CA are supported. Therefore, the terminal device must transmit information regarding the number of MIMO layers of CC # 0 (4 × 4) and CC # 1 (4 × 4) in the Intra band 2CC CA to the base station device.
 上記の手法においては、フォールバックCAのMIMOレイヤ数に関する情報のうち一部の情報の送信を省略できるに過ぎない。つまり、端末装置と基地局装置との間の無線通信リソースの利用効率を向上させるための手法としては十分ではない。 In the above method, transmission of some information regarding the number of MIMO layers of the fallback CA can be omitted. That is, it is not sufficient as a method for improving the utilization efficiency of wireless communication resources between the terminal device and the base station device.
 そこで、本発明における実施形態における移動通信システムでは、端末装置は、4個(第1の個数)のコンポーネントキャリア(CC)を含む、最上位のIntra band 4CC CAの周波数帯域(第1バンド)の第1レイヤ数と、4個(第1の個数)よりも少ない1個(第2の個数)のCCを含む最下位の1CCの周波数帯域(第2バンド)の第2レイヤ数と、を基地局装置に送信する。端末装置は、第1レイヤ数及び第2レイヤ数が所定の条件を満たす場合に、4個(第1の個数)よりも少なく、かつ、1個(第2の個数)よりも多い2個又は3個(第3の個数)のCCを含むフォールバックCAの周波数帯域(第3バンド)の第3レイヤ数の基地局装置への送信を省略する。 Therefore, in the mobile communication system according to the embodiment of the present invention, the terminal device has a frequency band (first band) of the highest Intra band 4CC CA including four (first number) component carriers (CC). It is based on the number of first layers and the number of second layers in the lowest 1CC frequency band (second band) including one (second number) CC less than four (first number). Send to the station equipment. When the number of first layers and the number of second layers satisfy predetermined conditions, the number of terminal devices is less than 4 (first number) and more than 1 (second number), or 2 or more. Transmission of the frequency band (third band) of the fallback CA including three (third number) CCs to the base station apparatus of the third layer number is omitted.
 よって、端末装置は、基地局装置に対して送信するための端末能力情報を大幅に省略することが可能である。したがって、端末装置と基地局装置との間の無線通信リソースの利用効率を向上させることができる。 Therefore, the terminal device can largely omit the terminal capability information for transmitting to the base station device. Therefore, it is possible to improve the utilization efficiency of the wireless communication resource between the terminal device and the base station device.
 図1に戻り、移動通信システム100は、例えばNRを対象とする移動通信システムである。なお、本発明は、少なくとも端末装置と基地局装置とを備える移動通信システムであれば適用可能であり、NRを対象とするものに限定されない。例えば、本発明はLTEやLTE-Advancedに対しても適用可能である。また、移動通信システムの一部にNRを用いる移動通信システムにおいても適用可能である。以降において、LTEとLTE-AdvancedのことをE-UTRA(Evolved Universal Terrestrial Radio Access)ともいうが、その意味は同じである。基地局装置が形成するエリア(カバーエリア)をセルといい、E-UTRA及びNRは、複数セルにより構築されるセルラー通信システムである。本実施形態に係る移動通信システムは、TDD(Time Division Duplex)とFDD(Frequency Division Duplex)のどちらの方式を適用しても良く、セルごとに異なる方式が適用されてもよい。 Returning to FIG. 1, the mobile communication system 100 is, for example, a mobile communication system for NR. The present invention is applicable to any mobile communication system including at least a terminal device and a base station device, and is not limited to those targeting NR. For example, the present invention is also applicable to LTE and LTE-Advanced. It can also be applied to a mobile communication system that uses NR as a part of the mobile communication system. Hereinafter, LTE and LTE-Advanced are also referred to as E-UTRA (Evolved Universal Terrestrial Radio Access), but their meanings are the same. The area (cover area) formed by the base station apparatus is called a cell, and E-UTRA and NR are cellular communication systems constructed by a plurality of cells. Either TDD (Time Division Duplex) or FDD (Frequency Division Duplex) may be applied to the mobile communication system according to the present embodiment, and different methods may be applied to each cell.
 端末装置10-1から端末装置10-mは、それぞれ、基地局装置50-1から基地局装置50-nのいずれか1つと無線接続する。また、端末装置10-1から端末装置10-mのそれぞれは、基地局装置50-1から基地局装置50-nのうちの2つ以上と同時に無線接続してもよい。基地局装置50-1から基地局装置50-nは、それぞれ、E-UTRA、あるいはNRを用いることができる。例えば、基地局装置50-1がNRを使用し、基地局装置50-nがE-UTRAを使用してもよいし、その逆でもよい。E-UTRAにおける基地局装置をeNB(evolved NodeB)、NRにおける基地局装置をgNB(g-NodeB)という。 The terminal device 10-1 to the terminal device 10-m are wirelessly connected to any one of the base station device 50-1 to the base station device 50-n, respectively. Further, each of the terminal devices 10-1 to the terminal device 10-m may be wirelessly connected to two or more of the base station devices 50-1 to the base station device 50-n at the same time. E-UTRA or NR can be used for the base station apparatus 50-1 to the base station apparatus 50-n, respectively. For example, the base station apparatus 50-1 may use NR and the base station apparatus 50n may use E-UTRA, and vice versa. The base station device in E-UTRA is called eNB (evolved NodeB), and the base station device in NR is called gNB (g-NodeB).
 以降において、基地局装置と記載した場合はeNBとgNBとの両方を含む意味である。また、E-UTRA及びNRにおける端末装置をUE(User Equipment)という。NRにおける基地局装置gNBは、その使用する周波数帯域の一部(BWP: Carrier bandwidth part)を用いて端末装置と接続してもよい。以降において、セルと記載した場合はBWPを含むものとする。 In the following, when the term "base station device" is used, it means that both eNB and gNB are included. Further, the terminal device in E-UTRA and NR is referred to as UE (User Equipment). The base station device gNB in the NR may be connected to the terminal device by using a part (BWP: Carrier bandwidth part) of the frequency band used by the base station device gNB. Hereinafter, when the term “cell” is used, BWP is included.
 通信端末10は、例えば、IoTデバイス、スマートフォン、携帯電話機、携帯情報端末(PDA)、タブレット端末、携帯ゲーム機、携帯音楽プレーヤ、ウェアラブル端末等の携帯型情報通信機器が挙げられる。端末装置10は、例えば、基地局装置50とセル単位で接続され、複数のセルを用いた接続、例えばキャリアアグリゲーションされてもよい。端末装置10が複数の基地局装置を介して接続される場合、つまり、デュアルコネクティビティの場合、初期接続される基地局装置をマスターノード(MN: Master Node)、追加で接続される基地局装置をセカンダリノード(SN: Secondary Node)という。基地局装置間は、基地局インターフェースにより接続されている。また、基地局装置50とコアネットワーク装置90とは、コアインターフェースにより接続されている。基地局インターフェースは、ハンドオーバーや基地局装置間の連携動作に必要な制御信号をやり取りするためなどに使用される。 Examples of the communication terminal 10 include portable information communication devices such as IoT devices, smartphones, mobile phones, personal digital assistants (PDAs), tablet terminals, portable game machines, portable music players, and wearable terminals. The terminal device 10 may be connected to the base station device 50 in cell units, for example, and may be connected using a plurality of cells, for example, carrier aggregation. When the terminal device 10 is connected via a plurality of base station devices, that is, in the case of dual connectivity, the base station device to be initially connected is the master node (MN: MasterNode), and the base station device to be additionally connected is It is called a secondary node (SN: Secondary Node). The base station devices are connected by a base station interface. Further, the base station device 50 and the core network device 90 are connected by a core interface. The base station interface is used for exchanging control signals necessary for handover and cooperative operation between base station devices.
 コアネットワーク装置90は、例えば、基地局装置50を配下に持ち、基地局装置間の負荷制御や、端末装置10の呼び出し(ページング)、位置登録などの移動制御を主に取り扱う。NRでは、コアネットワーク装置90において、制御プレーン(C-plane)の機能群として、モビリティを管理するAMF(Access and Mobility Management Function)、セッションを管理するSMF(Session Management Function)とを規定している。E-UTRAでは、AMFに対応するMME(Mobility Management Entity)を規定している。 The core network device 90 has, for example, a base station device 50 under its control, and mainly handles load control between base station devices, call (paging) of the terminal device 10, and movement control such as location registration. The NR defines AMF (Access and Mobility Management Function) for managing mobility and SMF (Session Management Function) for managing sessions as a function group of the control plane (C-plane) in the core network device 90. .. E-UTRA defines MME (Mobility Management Entity) corresponding to AMF.
 なお、図1では、コアネットワーク装置90が1つの装置で構成される例を示したが、これに限定されるものではない。例えば、コアネットワーク装置は、サーバー、ゲートウェイ等を含み、複数の装置で構成されていてもよい。 Note that FIG. 1 shows an example in which the core network device 90 is composed of one device, but the present invention is not limited to this. For example, the core network device may include a server, a gateway, and the like, and may be composed of a plurality of devices.
 端末装置10と基地局装置50とは、無線リソース制御(RRC: Radio Resource Control)層において、RRCメッセージを送受信し、セッション処理(接続シーケンスともいう)を進める。セッション処理を進めると、端末装置10は、アイドル状態(RRC Idle)から、基地局装置50への接続状態(RRC Connected)に変わる。アイドル状態は、端末装置10の待ち受け状態に相当する。 The terminal device 10 and the base station device 50 transmit and receive RRC messages in the radio resource control (RRC: Radio Resource Control) layer, and proceed with session processing (also referred to as a connection sequence). As the session processing proceeds, the terminal device 10 changes from the idle state (RRC Idle) to the connected state (RRC Connected) to the base station device 50. The idle state corresponds to the standby state of the terminal device 10.
 また、端末装置10と基地局装置50は、媒体アクセス制御(MAC: Medium Access Control)層において、MAC制御要素(MAC CE: MAC Control Element)を送受信する。RRCメッセージは、RRC PDU(Protocol Data Unit)として送信され、マッピングされる論理チャネルとして、共通制御チャネル(CCCH: Common Control Channel)、個別制御チャネル(DCCH: Dedicated Control Channel)、ページング制御チャネル(PCCH: Paging Control Channel)、ブロードキャスト制御チャネル(BCCH: Broadcast Control Channel)、又は、マルチキャスト制御チャネル(MCCH: Multicast Control Channel)が用いられる。MAC CEは、MAC PDU(又は、MAC subPDU)として送信される。MAC subPDUは、MAC層におけるサービスデータユニット(SDU: Service Data Unit)に、例えば8ビットのヘッダーを加えたものに等しく、MAC PDUは、一つ以上のMAC subPDUを含む。 Further, the terminal device 10 and the base station device 50 transmit and receive a MAC control element (MAC CE: MAC Control Element) in the medium access control (MAC: Medium Access Control) layer. The RRC message is transmitted as an RRC PDU (Protocol Data Unit), and as the mapped logical channels, a common control channel (CCCH: Common Control Channel), an individual control channel (DCCH: Dedicated Control Channel), and a paging control channel (PCCH:). Paging Control Channel), Broadcast Control Channel (BCCH: Broadcast Control Channel), or Multicast Control Channel (MCCH: Multicast Control Channel) is used. The MAC CE is transmitted as a MAC PDU (or MAC sub PDU). A MAC subPDU is equivalent to a service data unit (SDU: Service Data Unit) in the MAC layer plus, for example, an 8-bit header, and a MAC PDU includes one or more MAC subPDUs.
 本実施形態に関わる物理チャネルおよび物理シグナルについて説明する。本発明の実施形態に関わる物理チャネルのうち、物理報知チャネル(PBCH: Physical Broadcast Channel)、プライマリ同期信号(PSS: Primary Synchronization Signal)、セカンダリ同期信号(SSS: Secondary Synchronization Signal)、物理ランダムアクセスチャネル(PRACH: Physical Random Access Channel)、及び物理下りリンク制御チャネル(PDCCH: Physical Downlink Control Channel)について以下に説明する。なお、実施形態に係る移動通信システムにおいて、他に物理上りリンク制御チャネル(PUCCH: Physical Uplink Control Channel)、物理下りリンク共有チャネル(PDSCH: Physical Downlink Shared Channel)、物理上りリンク共有チャネル(PUSCH: Physical Uplink Shared Channel)、スケジューリング参照信号(SRS: Scheduling Reference Signal)、復調参照信号(DMRS: Demodulation Reference Signal)が少なくとも存在するが、詳細な説明を省略する。 The physical channels and physical signals related to this embodiment will be described. Among the physical channels according to the embodiment of the present invention, a physical broadcast channel (PBCH: Physical Broadcast Channel), a primary synchronization signal (PSS: Primary Synchronization Signal), a secondary synchronization signal (SSS: Secondary Synchronization Signal), and a physical random access channel (SSS: Secondary Synchronization Signal). The PRACH: Physical Random Access Channel) and the physical downlink control channel (PDCCH: Physical Downlink Control Channel) will be described below. In the mobile communication system according to the embodiment, a physical uplink control channel (PUCCH: Physical Uplink Control Channel), a physical downlink shared channel (PDSCH: Physical Downlink Shared Channel), and a physical uplink shared channel (PUSCH: Physical) are also used. Uplink Shared Channel), scheduling reference signal (SRS: Scheduling Reference Signal), and demodulation reference signal (DMRS: Demodulation Reference Signal) exist at least, but detailed description will be omitted.
 <物理報知チャネル(PBCH)>
 物理報知チャネル(PBCH)は、基地局装置50から端末装置10に対して送信され、基地局装置50の配下のセルにおける共通パラメータ(システムインフォメーション)を通知するために使用される。システムインフォメーションは、更にマスターインフォメーションブロック(MIB: Master Information Block)とシステムインフォメーションブロック(SIB: System Information Block)に分類される。なお、システムインフォメーションブロックは、更にSIB1、SIB2、・・・のように細分化されて送信される。システムインフォメーションはセルに接続するために必要な情報が含まれており、例えばMIBにはシステムフレーム番号やセルへのキャンプオン可否を示す情報等が含まれている。また、SIB1には、セルの品質を計算するためのパラメータ(セル選択パラメータ)、セル共通のチャネル情報(ランダムアクセス制御情報、PUCCH制御情報、PUSCH制御情報)、その他のシステムインフォメーションのスケジューリング情報などが含まれている。また、物理報知チャネル(PBCH)は、同期信号ブロック(SSB: Synchronization Signal Block(あるいはSS/PBSH))として、プライマリ同期信号(PSS)及びセカンダリ同期信号(SSS)から構成される同期信号とセットとなって周期的に送信される。端末装置10は、同期信号ブロック(SSB)を受信することによって、セル識別子(セルID)情報や受信タイミングの取得に加え、当該セルの信号の品質を測定することができる。
<Physical notification channel (PBCH)>
The physical broadcast channel (PBCH) is transmitted from the base station device 50 to the terminal device 10 and is used to notify a common parameter (system information) in a cell under the base station device 50. System information is further classified into a master information block (MIB: Master Information Block) and a system information block (SIB: System Information Block). The system information block is further subdivided into SIB1, SIB2, ..., And transmitted. The system information includes information necessary for connecting to the cell. For example, the MIB includes information such as a system frame number and information indicating whether or not to camp on the cell. Further, SIB1 contains parameters for calculating cell quality (cell selection parameters), cell-common channel information (random access control information, PUCCH control information, PUSCH control information), scheduling information of other system information, and the like. include. The physical broadcast channel (PBCH) is a synchronization signal block (SSB: Synchronization Signal Block (or SS / PBSH)), which is a set with a synchronization signal composed of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). Is transmitted periodically. By receiving the synchronization signal block (SSB), the terminal device 10 can measure the signal quality of the cell in addition to acquiring the cell identifier (cell ID) information and the reception timing.
 物理報知チャネル(PBCH)等によって通知されるシステムインフォメーションは、「システム報知情報」又は「報知情報」とも呼ばれる。また、セルにキャンプオンするとは、端末装置10がセル選択(cell selection)及び/又はセル再選択(cell reselection)を完了し、当該端末装置10がシステム報知情報とページング情報をモニタするセルを選択した状態になることをいう。端末装置10は、キャンプオンしたセルを形成する基地局装置50との間で、前述したRRC接続を確立する。 The system information notified by the physical notification channel (PBCH) or the like is also called "system notification information" or "notification information". Further, when camping on a cell, the terminal device 10 completes cell selection and / or cell reselection, and the terminal device 10 selects a cell for monitoring system notification information and paging information. It means to be in a state of being in a state of being. The terminal device 10 establishes the above-mentioned RRC connection with the base station device 50 forming the camp-on cell.
 <プライマリ同期信号(PSS)>
 プライマリ同期信号(PSS)は、端末装置10が基地局装置50の下り信号の受信シンボルタイミング及び周波数に同期するために使用される。プライマリ同期信号(PSS)は、端末装置10が基地局装置50のセルを検出する手順(以下、「セルサーチ手順」ともいう)において、最初に検出を試みる信号である。プライマリ同期信号(PSS)は、物理セルIDに基づいて、「0」~「2」の3通りの信号が繰り返し利用される。なお、物理セルIDは、物理的なセルの識別子であり、E-UTRAでは504通りのIDが使用され、NRでは1008通りのIDが使用される。
<Primary Sync Signal (PSS)>
The primary synchronization signal (PSS) is used by the terminal device 10 to synchronize with the reception symbol timing and frequency of the downlink signal of the base station device 50. The primary synchronization signal (PSS) is a signal that the terminal device 10 first attempts to detect in a procedure for detecting a cell of the base station device 50 (hereinafter, also referred to as a “cell search procedure”). As the primary synchronization signal (PSS), three types of signals "0" to "2" are repeatedly used based on the physical cell ID. The physical cell ID is a physical cell identifier, and 504 IDs are used in E-UTRA and 1008 IDs are used in NR.
 <セカンダリ同期信号(SSS)>
 セカンダリ同期信号(SSS)は、端末装置10が基地局装置50の物理IDを検出するために使用される。具体的には、セカンダリ同期信号(SSS)は、端末装置10がセルサーチ手順において、物理セルIDを検出するための信号である。セカンダリ同期信号(SSS)は、物理セルIDに基づいて、E-UTRAでは「0」~「167」の168通り、NRでは「0」から「335」までの336通りの信号が繰り返し利用される。
<Secondary sync signal (SSS)>
The secondary synchronization signal (SSS) is used by the terminal device 10 to detect the physical ID of the base station device 50. Specifically, the secondary synchronization signal (SSS) is a signal for the terminal device 10 to detect the physical cell ID in the cell search procedure. As the secondary synchronization signal (SSS), 168 signals from "0" to "167" are repeatedly used in E-UTRA, and 336 signals from "0" to "335" are repeatedly used in NR based on the physical cell ID. ..
 <物理ランダムアクセスチャネル(PRACH)>
 物理ランダムアクセスチャネル(PRACH)は、端末装置10が、ランダムアクセスプリアンブルを基地局装置50に送信するために用いられる。物理ランダムアクセスチャネル(PRACH)は、一般的に端末装置10と基地局装置50との間で上りリンク同期が確立していない状態において使用され、送信タイミング調整情報(タイミングアドバンス)や上りリンクの無線リソース要求に用いられる。ランダムアクセスプリアンブルを送信可能な無線リソースを示す情報は、報知情報やRRCメッセージを用いて端末に送信される。
<Physical Random Access Channel (PRACH)>
The physical random access channel (PRACH) is used by the terminal device 10 to transmit a random access preamble to the base station device 50. The physical random access channel (PRACH) is generally used in a state where uplink synchronization has not been established between the terminal device 10 and the base station device 50, and is used for transmission timing adjustment information (timing advance) and uplink radio. Used for resource requests. Information indicating a radio resource capable of transmitting a random access preamble is transmitted to a terminal using broadcast information or an RRC message.
 <物理下りリンク制御チャネル(PDCCH)>
 物理下りリンク制御チャネル(PDCCH)は、端末装置10に対し、下りリンク制御情報(DCI: Downlink Control Information)を通知するために基地局装置50から送信される。下りリンク制御情報は、端末装置10が使用可能な上りリンクの無線リソース情報(上りリンクグラント(UL grant))、又は、下りリンクの無線リソース情報(下りリンクグラント(DL grant))を含む。下りリンクグラントは、物理下りリンク共有データチャネル(PDSCH)のスケジューリングを示す情報である。上りリンクグラントは、物理上りリンク共有チャネル(PUSCH)のスケジューリングを示す情報である。物理下りリンク制御チャネル(PDCCH)がランダムアクセスプリアンブルの応答として送信される場合、物理下りリンク制御チャネル(PDCCH)によって示される物理下りリンク共有データチャネル(PDSCH)はランダムアクセスレスポンスであり、ランダムアクセスプリアンブルのインデックス情報、送信タイミング調整情報、上りリンクグラントなどが含まれる。
<Physical downlink control channel (PDCCH)>
The physical downlink control channel (PDCCH) is transmitted from the base station apparatus 50 to notify the terminal apparatus 10 of the downlink control information (DCI). The downlink control information includes uplink radio resource information (uplink grant (UL grant)) that can be used by the terminal device 10 or downlink radio resource information (downlink grant (DL grant)). The downlink grant is information indicating the scheduling of the physical downlink shared data channel (PDSCH). The uplink grant is information indicating the scheduling of the physical uplink shared channel (PUSCH). When the physical downlink control channel (PDCCH) is sent in response to a random access preamble, the physical downlink shared data channel (PDSCH) indicated by the physical downlink control channel (PDCCH) is a random access response and is a random access preamble. Index information, transmission timing adjustment information, uplink grant, etc. are included.
 <ハードウェア構成>
 図2を参照しつつ、第1実施形態における端末装置及び基地局装置のハードウェア構成について説明する。図2は、端末装置10及び基地局装置50のハードウェア構成の一例を示す構成図である。
<Hardware configuration>
The hardware configuration of the terminal device and the base station device according to the first embodiment will be described with reference to FIG. FIG. 2 is a configuration diagram showing an example of the hardware configuration of the terminal device 10 and the base station device 50.
 図2に示すように、端末装置10及び基地局装置50は、それぞれ、例えば、プロセッサ21、メモリ22、記憶装置23、通信装置24、入力装置25、出力装置26、アンテナ27、及びセンサ29を備える。 As shown in FIG. 2, the terminal device 10 and the base station device 50 each include, for example, a processor 21, a memory 22, a storage device 23, a communication device 24, an input device 25, an output device 26, an antenna 27, and a sensor 29, respectively. Be prepared.
 プロセッサ21は、端末装置10又は基地局装置50の各部の動作を制御するように構成されている。プロセッサ21は、例えば、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)、SoC(System-on-a-chip)等の集積回路を含んで構成される。 The processor 21 is configured to control the operation of each part of the terminal device 10 or the base station device 50. The processor 21 includes, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and a SoC (System-on-a). -chip) and other integrated circuits are included.
 メモリ22及び記憶装置23は、それぞれ、プログラムやデータ等を記憶するように構成されている。メモリ22は、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)及び/又はRAM(Random Access Memory)等から構成される。記憶装置23は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)及び/又はeMMC(embedded Multi Media Card)等のストレージから構成される。 The memory 22 and the storage device 23 are each configured to store programs, data, and the like. The memory 22 is composed of, for example, a ROM (ReadOnlyMemory), an EPROM (ErasableProgrammableROM), an EEPROM (ElectricallyErasableProgrammableROM), and / or a RAM (RandomAccessMemory). The storage device 23 is composed of, for example, storage such as an HDD (Hard Disk Drive), an SSD (Solid State Drive) and / or an eMMC (embedded MultiMediaCard).
 通信装置24は、有線及び/又は無線ネットワークを介して通信を行うように構成されている。通信装置24は、例えば、ネットワークカード、通信モジュール等を含んで構成される。また、通信装置24には、アンプ、無線信号に関する処理を行うRF(Radio Frequency)装置と、ベースバンド信号処理を行うBB(BaseBand)装置とを含んで構成されていてもよい。 The communication device 24 is configured to communicate via a wired and / or wireless network. The communication device 24 includes, for example, a network card, a communication module, and the like. Further, the communication device 24 may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
 RF装置は、例えば、BB装置から受信したデジタルベースバンド信号に対して、D/A(Digital to Analog)変換、変調、周波数変換、電力増幅等を行うことで、アンテナ27から送信する無線信号を生成する。また、RF装置は、アンテナ27から受信した無線信号に対して、周波数変換、復調、A/D(Analog to Digital)変換等を行うことでデジタルベースバンド信号を生成してBB装置に送信する。BB装置は、デジタルベースバンド信号をIPパケットに変換する処理、及び、IPパケットをデジタルベースバンド信号に変換する処理を行う。 The RF device, for example, performs D / A (Digital to Analog) conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device to generate a wireless signal transmitted from the antenna 27. Generate. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A / D (Analog to Digital) conversion, etc. on the radio signal received from the antenna 27 and transmits it to the BB device. The BB apparatus performs a process of converting a digital baseband signal into an IP packet and a process of converting an IP packet into a digital baseband signal.
 入力装置25は、ユーザの操作により情報を入力できるように構成されている。入力装置25は、例えば、キーボード、タッチパネル、マウス、及び/又はマイク等を含んで構成される。 The input device 25 is configured so that information can be input by a user operation. The input device 25 includes, for example, a keyboard, a touch panel, a mouse, and / or a microphone.
 出力装置26は、情報を出力するように構成されている。出力装置26は、例えば液晶ディスプレイ、EL(Electro Luminescence)ディスプレイ、プラズマディスプレイ等の表示装置、及び/又はスピーカ等を含んで構成される。 The output device 26 is configured to output information. The output device 26 includes, for example, a liquid crystal display, an EL (Electro Luminescence) display, a display device such as a plasma display, and / or a speaker.
 アンテナ27は、1つ又は複数の所定の周波数帯で、電波(電磁波)を放射(輻射)及び受波できるように構成されている。アンテナ27は、指向性を有するアンテナであってもよい。指向性のアンテナ27は、アンテナの向きによって利得が異なる。なお、アンテナ27は、指向性のない、つまり、無指向性を有するものであってもよい。無指向性のアンテナ27は、水平面内、垂直面内、又は水平面ない及び垂直面内の両方において、360度全ての方向からの利得がほぼ同等である。 The antenna 27 is configured to be able to radiate (radiate) and receive radio waves (electromagnetic waves) in one or a plurality of predetermined frequency bands. The antenna 27 may be a directional antenna. The gain of the directional antenna 27 differs depending on the orientation of the antenna. The antenna 27 may have no directivity, that is, one having omnidirectionality. The omnidirectional antenna 27 has approximately the same gain from all 360 degrees directions in the horizontal plane, in the vertical plane, or both in the horizontal plane and in the non-horizontal plane and in the vertical plane.
 アンテナ27は、1本である場合に限定されるものではない。端末装置10及び基地局装置50は複数本のアンテナを備えていてもよい。端末装置10及び基地局装置50が複数本のアンテナを備える場合、例えば、送信用アンテナと受信用アンテナとに分けてもよい。また、複数本のアンテナを送信用アンテナと受信用アンテナとに分ける場合、少なくとも一方が複数本のアンテナを含んでいてもよい。なお、端末装置10及び基地局装置50が複数本の送受信用アンテナ又は送信用アンテナを備える場合、後述するビームフォーミングの技術を利用することができる。 The number of antennas 27 is not limited to one. The terminal device 10 and the base station device 50 may include a plurality of antennas. When the terminal device 10 and the base station device 50 include a plurality of antennas, they may be divided into, for example, a transmitting antenna and a receiving antenna. Further, when a plurality of antennas are divided into a transmitting antenna and a receiving antenna, at least one of them may include a plurality of antennas. When the terminal device 10 and the base station device 50 are provided with a plurality of transmission / reception antennas or transmission antennas, a beamforming technique described later can be used.
 端末装置10が備えるセンサ29は、端末装置10の位置、方位、及び加速度を検出するセンサを含む。端末装置10が備えるセンサ29は、例えば、GPS(Global Positioning System)センサ、ジャイロセンサ及び加速度センサの少なくとも一つのセンサを含む。他方で、基地局装置50が備えるセンサ29は、例えば、基地局装置50における温度、湿度、天候、又は震度等の環境情報を検出するセンサを含んでもよい。 The sensor 29 included in the terminal device 10 includes a sensor that detects the position, orientation, and acceleration of the terminal device 10. The sensor 29 included in the terminal device 10 includes, for example, at least one sensor such as a GPS (Global Positioning System) sensor, a gyro sensor, and an acceleration sensor. On the other hand, the sensor 29 included in the base station device 50 may include, for example, a sensor that detects environmental information such as temperature, humidity, weather, or seismic intensity in the base station device 50.
 <機能ブロック構成>
 (端末装置)
 図3を参照しつつ、第1実施形態における端末装置の機能ブロック構成について説明する。図3は、端末装置10の機能ブロック構成の一例を示す構成図である。なお、図3は、本実施形態の説明において必要な機能ブロックを示すためのものであり、端末装置10が図示以外の機能ブロックを備えることを排除するものではない。
<Functional block configuration>
(Terminal device)
The functional block configuration of the terminal device according to the first embodiment will be described with reference to FIG. FIG. 3 is a configuration diagram showing an example of a functional block configuration of the terminal device 10. Note that FIG. 3 is for showing the functional blocks required in the description of the present embodiment, and does not exclude that the terminal device 10 includes the functional blocks other than those shown in the drawings.
 端末装置10は、機能ブロックとして、取得部11と、受信部13と、判定部15と、送信部17と、アクセス制御部19と、を備える。 The terminal device 10 includes an acquisition unit 11, a reception unit 13, a determination unit 15, a transmission unit 17, and an access control unit 19 as functional blocks.
 取得部11は、複数のCC(コンポーネントキャリア)ごとのMIMOレイヤ数を取得する。取得部11は、外部装置、例えば、図1に示すコアネットワーク装置90等から、予め、複数のCCごとのMIMOレイヤ数を取得してもよい。 The acquisition unit 11 acquires the number of MIMO layers for each of a plurality of CCs (component carriers). The acquisition unit 11 may acquire the number of MIMO layers for each of a plurality of CCs in advance from an external device, for example, the core network device 90 shown in FIG.
 受信部13は、図1に示す基地局装置50からの各種情報を受信する。例えば、受信部13は、基地局装置50から、端末装置10の端末能力情報(「UECapabilityInformation」)を問い合わせるための「UECapabilityEnquriry」を受信する。 The receiving unit 13 receives various information from the base station device 50 shown in FIG. For example, the receiving unit 13 receives from the base station device 50 a "UECapacityEncury" for inquiring about the terminal capability information ("UECapacity Information") of the terminal device 10.
 判定部15は、例えば、取得部11が取得した、複数のCC(コンポーネントキャリア)ごとのMIMOレイヤ数に基づいて、特定のMIMOレイヤ数が所定の条件を満たすかを判定する。所定の条件の詳細については、後述する。 The determination unit 15 determines, for example, whether a specific number of MIMO layers satisfies a predetermined condition based on the number of MIMO layers for each of a plurality of CCs (component carriers) acquired by the acquisition unit 11. Details of the predetermined conditions will be described later.
 送信部17は、基地局装置50に対して各種情報を送信する。例えば、送信部13は、「UECapabilityEnquriry」への回答として、基地局装置50に対して端末装置10の端末能力情報を送信する。 The transmission unit 17 transmits various information to the base station device 50. For example, the transmission unit 13 transmits the terminal capability information of the terminal device 10 to the base station device 50 as a response to the "UECapacityEncurry".
 送信部17は、例えば、後述する図6及び図9に示すように、4個(第1の個数)のコンポーネントキャリア(CC)を含む、最上位のIntra band 4CC CAの周波数帯域(第1バンド)のMIMOレイヤ数と、4個(第1の個数)よりも少ない1個(第2の個数)のCCを含む最下位の1CCの周波数帯域(第2バンド)のMIMOレイヤ数と、を基地局装置に送信する。また、端末装置は、第1バンドのMIMOレイヤ数及び第2バンドのMIMOレイヤ数が所定の条件を満たす場合に、フォールバックCAの周波数帯域(第3バンド)のMIMOレイヤ数の基地局装置50への送信を省略する。 For example, as shown in FIGS. 6 and 9 described later, the transmission unit 17 includes a frequency band (first band) of the highest Intra band 4CC CA including four (first number) component carriers (CC). ) And the number of MIMO layers in the lowest 1CC frequency band (second band) including one (second number) CC less than four (first number). Send to the station equipment. Further, the terminal device is a base station device 50 having the number of MIMO layers in the frequency band (third band) of the fallback CA when the number of MIMO layers in the first band and the number of MIMO layers in the second band satisfy predetermined conditions. Omit transmission to.
 アクセス制御部19は、端末装置10から基地局装置50に対して無線信号を送信するためのアクセス処理(例えば、CA処理)を制御する。アクセス制御部19は、基地局装置50が設定したCA時の各CCのMIMOレイヤに関する情報に基づいて、アクセス処理を制御する。 The access control unit 19 controls access processing (for example, CA processing) for transmitting a radio signal from the terminal device 10 to the base station device 50. The access control unit 19 controls access processing based on the information regarding the MIMO layer of each CC at the time of CA set by the base station apparatus 50.
 なお、取得部11、受信部13及び送信部17は、例えば通信装置24により実現されてもよいし、通信装置24に加えてプロセッサ21が記憶装置23に記憶されたプログラムを実行することにより実現されてもよい。判定部15及びアクセス制御部19は、プロセッサ21が、記憶装置23に記憶されたプログラムを実行することにより実現されてもよい。プログラムを実行する場合、当該プログラムは、記憶媒体に格納されていてもよい。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体(Non-transitory computer readable medium)であってもよい。非一時的な記憶媒体は、特に限定されないが、例えば、USB(Universal Serial Bus)メモリ、又はCD-ROM(Compact Disc ROM)等の記憶媒体であってもよい。 The acquisition unit 11, the reception unit 13, and the transmission unit 17 may be realized by, for example, the communication device 24, or may be realized by the processor 21 executing the program stored in the storage device 23 in addition to the communication device 24. May be done. The determination unit 15 and the access control unit 19 may be realized by the processor 21 executing the program stored in the storage device 23. When executing a program, the program may be stored in a storage medium. The storage medium in which the program is stored may be a computer-readable non-transitory storage medium (Non-transitory computer readable medium). The non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB (Universal Serial Bus) memory or a CD-ROM (Compact Disc ROM).
 (基地局装置)
 図4を参照しつつ、第1実施形態における基地局装置の機能ブロック構成について説明する。図4は、基地局装置50の機能ブロック構成の一例を示す構成図である。なお、図4は、本実施形態の説明において必要な機能ブロックを示すためのものであり、基地局装置50が図示以外の機能ブロックを備えることを排除するものではない。
(Base station equipment)
The functional block configuration of the base station apparatus according to the first embodiment will be described with reference to FIG. FIG. 4 is a configuration diagram showing an example of a functional block configuration of the base station apparatus 50. Note that FIG. 4 is for showing the functional blocks required in the description of the present embodiment, and does not exclude that the base station apparatus 50 includes functional blocks other than those shown in the drawings.
 基地局装置50は、機能ブロックとして、受信部51と、設定部53と、送信部55と、アクセス制御部57と、を備える。 The base station device 50 includes a receiving unit 51, a setting unit 53, a transmitting unit 55, and an access control unit 57 as functional blocks.
 受信部51は、端末装置10の端末能力情報を受信する。 The receiving unit 51 receives the terminal capability information of the terminal device 10.
 設定部53は、受信部51が受信した、端末装置10の端末能力情報に基づいて、CA時の各CCのMIMOレイヤを設定する。 The setting unit 53 sets the MIMO layer of each CC at the time of CA based on the terminal capability information of the terminal device 10 received by the receiving unit 51.
 送信部55は、端末装置10の端末能力情報を問い合わせるための「UECapabilityEnquriry」を送信する。送信部55は、設定部53が設定したCA時の各CCのMIMOレイヤに関する情報を、「RRCReconfiguration」として端末装置10に送信する。 The transmission unit 55 transmits "UECapacityEncurry" for inquiring the terminal capability information of the terminal device 10. The transmission unit 55 transmits information regarding the MIMO layer of each CC at the time of CA set by the setting unit 53 to the terminal device 10 as “RRC Configuration”.
 アクセス制御部57は、基地局装置50から端末装置10に対して無線信号を送信するためのアクセス処理(例えばCA処理)を制御する。アクセス制御部57は、設定部53が設定した、基地局装置50が設定したCA時の各CCのMIMOレイヤに関する情報に基づいて、アクセス処理を制御する。 The access control unit 57 controls access processing (for example, CA processing) for transmitting a wireless signal from the base station device 50 to the terminal device 10. The access control unit 57 controls the access process based on the information about the MIMO layer of each CC at the time of CA set by the base station apparatus 50 set by the setting unit 53.
 なお、受信部51及び送信部55は、例えば通信装置24により実現されてもよいし、通信装置24に加えてプロセッサ21が記憶装置23に記憶されたプログラムを実行することにより実現されてもよい。設定部53及びアクセス制御部57は、プロセッサ21が、記憶装置23に記憶されたプログラムを実行することにより実現されてもよい。プログラムを実行する場合、当該プログラムは、記憶媒体に格納されていてもよい。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体であってもよい。非一時的な記憶媒体は、特に限定されないが、例えば、USBメモリ、又はCD-ROM等の記憶媒体であってもよい。 The receiving unit 51 and the transmitting unit 55 may be realized by, for example, the communication device 24, or may be realized by the processor 21 executing the program stored in the storage device 23 in addition to the communication device 24. .. The setting unit 53 and the access control unit 57 may be realized by the processor 21 executing the program stored in the storage device 23. When executing a program, the program may be stored in a storage medium. The storage medium in which the program is stored may be a non-temporary storage medium that can be read by a computer. The non-temporary storage medium is not particularly limited, but may be, for example, a storage medium such as a USB memory or a CD-ROM.
 <MIMOレイヤの設定処理>
 (第1実施形態)
 図5及び図6を参照して、第1実施形態に係るMIMOレイヤの設定処理の一例を説明する。図5は、本発明の第1実施形態に係るMIMOレイヤの設定処理の一例を示すフローチャートである。図5に示すように、基地局装置50は、「UECapabilityEnquriry」を端末装置10に送信する(ステップS1)。端末装置10は、複数のCC(コンポーネントキャリア)ごとのMIMOレイヤ数に基づいて、特定のMIMOレイヤ数が所定の条件を満たすかを判定する。
<MIMO layer setting process>
(First Embodiment)
An example of the MIMO layer setting process according to the first embodiment will be described with reference to FIGS. 5 and 6. FIG. 5 is a flowchart showing an example of the MIMO layer setting process according to the first embodiment of the present invention. As shown in FIG. 5, the base station apparatus 50 transmits “UECapacityEncurry” to the terminal apparatus 10 (step S1). The terminal device 10 determines whether or not a specific number of MIMO layers satisfies a predetermined condition based on the number of MIMO layers for each of a plurality of CCs (component carriers).
 図6は、第1実施形態における、端末装置10がIntra band 4CC CAで8本のアンテナパス(8RF path)を実装する場合の、端末能力情報の送信処理の一例を示す概念図である。端末装置10から基地局装置50に送信される端末能力情報には、例えば、実行可能性がある各種CAに関する各CCのMIMOレイヤに関する情報が含まれる。ここで、4個(第1の個数)のCCを含む、最上位のIntra band 4CC CAの周波数帯域(第1バンド)の第1レイヤ数、及び、4個(第1の個数)よりも少ない1個(第2の個数)のCCを含む最下位の1CCの周波数帯域(第2バンド)の第2レイヤ数が「所定の条件」を満たす場合は、端末装置10から基地局装置50に送信される端末能力情報の一部が省略である。 FIG. 6 is a conceptual diagram showing an example of a terminal capability information transmission process when the terminal device 10 implements eight antenna paths (8RF paths) in an Intra band 4CC CA in the first embodiment. The terminal capability information transmitted from the terminal device 10 to the base station device 50 includes, for example, information about the MIMO layer of each CC regarding various CAs that can be executed. Here, the number of first layers in the frequency band (first band) of the highest Intra band 4CC CA including 4 (first number) CCs, and less than 4 (first number). When the number of second layers in the frequency band (second band) of the lowest 1CC including one (second number) CC satisfies the "predetermined condition", the terminal device 10 transmits to the base station device 50. Some of the terminal capability information to be provided is omitted.
 例えば、「所定の条件」は、第1レイヤ数は、フォールバックCAの周波数帯域(第3バンド)の第3レイヤ数以上であり、かつ、第2レイヤ数は当該第3バンドにおける各コンポーネントキャリアのレイヤ数以上であることを含む。 For example, in the "predetermined condition", the number of first layers is equal to or greater than the number of third layers in the frequency band (third band) of the fallback CA, and the number of second layers is each component carrier in the third band. Including that the number of layers is equal to or greater than the number of layers.
 まず、フォールバックCAとしてIntra band 3CC CAの場合について、図6を参照して説明する。第1レイヤ数(総MIMOレイヤ数)は、CC#0(2×2)、CC#1(2×2)、CC#2(2×2)及びCC#3(2×2)に基づいて「8」と算出され、Intra band 3CC CAの周波数帯域の第3レイヤ数(総MIMOレイヤ数)は、CC#0(4×4)、CC#1(2×2)、及びCC#2(2×2)に基づいて「8」と算出される。よって、第1レイヤ数「8」は、Intra band 3CC CAの周波数帯域の第3レイヤ数「8」以上である。また、第2レイヤ数は、CC#0(4×4)に基づいて「4」と算出される。第3バンドにおける各コンポーネントキャリアのレイヤ数に関しては、Intra band 3CC CAのCC#0(4×4)については「4」であり、CC#1(2×2)については「2」であり、CC#2(2×2)については「2」である。よって、第2レイヤ数「4」は、第3バンドにおける各コンポーネントキャリアのレイヤ数(「4」又は「2」)以上である。したがって、上記のように「第1レイヤ数」及び「第2レイヤ数」が上記所定の条件を満たすため、端末装置10は、Intra band 3CC CAの周波数帯域の第3レイヤ数に関する情報の送信を省略可能である。 First, the case of Intra band 3CC CA as the fallback CA will be described with reference to FIG. The number of first layers (total number of MIMO layers) is based on CC # 0 (2x2), CC # 1 (2x2), CC # 2 (2x2) and CC # 3 (2x2). Calculated as "8", the number of third layers (total number of MIMO layers) in the frequency band of Intraband 3CC CA is CC # 0 (4x4), CC # 1 (2x2), and CC # 2 (CC # 2). It is calculated as "8" based on 2 × 2). Therefore, the number of first layers "8" is equal to or greater than the number of third layers "8" in the frequency band of Intra band 3CC CA. Further, the number of second layers is calculated as "4" based on CC # 0 (4 × 4). Regarding the number of layers of each component carrier in the third band, CC # 0 (4 × 4) of Intra band 3CC CA is “4”, and CC # 1 (2 × 2) is “2”. It is "2" for CC # 2 (2x2). Therefore, the number of second layers "4" is equal to or greater than the number of layers ("4" or "2") of each component carrier in the third band. Therefore, since the "number of first layers" and the "number of second layers" satisfy the above-mentioned predetermined conditions as described above, the terminal device 10 transmits information regarding the number of third layers in the frequency band of the Intra band 3CC CA. It can be omitted.
 次に、フォールバックCAとしてIntra band 2CC CAの場合について、図6を参照して説明する。第1レイヤ数(総MIMOレイヤ数)は、CC#0(2×2)、CC#1(2×2)、CC#2(2×2)及びCC#3(2×2)に基づいて「8」と算出され、Intra band 2CC CAの周波数帯域の第3レイヤ数(総MIMOレイヤ数)は、CC#0(4×4)及びCC#1(4×4)に基づいて「8」と算出される。よって、第1レイヤ数「8」は、Intra band 2CC CAの周波数帯域の第3レイヤ数「8」以上である。また、第2レイヤ数は、CC#0(4×4)に基づいて「4」と算出される。第3バンドにおける各コンポーネントキャリアのレイヤ数に関しては、Intra band 2CC CAのCC#0(4×4)については「4」であり、CC#1(4×4)については「4」である。よって、第2レイヤ数「4」は、第3バンドにおける各コンポーネントキャリアのレイヤ数「4」以上である。したがって、上記のように「第1レイヤ数」及び「第2レイヤ数」が上記所定の条件を満たすため、端末装置10は、Intra band 2CC CAの周波数帯域の第3レイヤ数に関する情報の送信についても省略可能である。 Next, the case of Intra band 2CC CA as the fallback CA will be described with reference to FIG. The number of first layers (total number of MIMO layers) is based on CC # 0 (2x2), CC # 1 (2x2), CC # 2 (2x2) and CC # 3 (2x2). Calculated as "8", the number of third layers (total number of MIMO layers) in the frequency band of Intraband 2CC CA is "8" based on CC # 0 (4x4) and CC # 1 (4x4). Is calculated. Therefore, the number of first layers "8" is equal to or greater than the number of third layers "8" in the frequency band of Intra band 2CC CA. Further, the number of second layers is calculated as "4" based on CC # 0 (4 × 4). Regarding the number of layers of each component carrier in the third band, CC # 0 (4 × 4) of Intra band 2CC CA is “4”, and CC # 1 (4 × 4) is “4”. Therefore, the number of second layers "4" is equal to or greater than the number of layers "4" of each component carrier in the third band. Therefore, since the "number of first layers" and the "number of second layers" satisfy the above-mentioned predetermined conditions as described above, the terminal device 10 transmits information regarding the number of third layers in the frequency band of the Intra band 2CC CA. Can also be omitted.
 図5に戻り、端末装置10は、「UECapabilityEnquriry」に対する回答として、上記フォールバックCAの周波数帯域(第3バンド)の第3レイヤ数は含まない、端末能力情報を基地局装置50に送信する(ステップS5)。つまり、図5に示すように、当該端末能力情報には、最上位のIntra band 4CC CAの周波数帯域の第1レイヤ数(CC#0(2×2)、CC#1(2×2)、CC#2(2×2)及びCC#3(2×2))、及び、単一のCCを含む最下位の1CCの周波数帯域の第2レイヤ数(CC#0(4×4))のみが含まれる。 Returning to FIG. 5, the terminal device 10 transmits the terminal capability information to the base station device 50 as a response to the “UECapitalityEncurry”, which does not include the number of the third layers of the frequency band (third band) of the fallback CA (3rd band). Step S5). That is, as shown in FIG. 5, the terminal capability information includes the number of first layers (CC # 0 (2 × 2), CC # 1 (2 × 2)) in the frequency band of the highest Intra band 4CC CA. Only CC # 2 (2x2) and CC # 3 (2x2)) and the number of second layers (CC # 0 (4x4)) in the lowest 1CC frequency band including a single CC. Is included.
 基地局装置50は、端末装置10から送信された端末能力情報に基づいて、CA時の各CCのMIMOレイヤを設定する。(ステップS7)。図6に示すように、例えば、基地局装置50(図4に示す設定部53)は、最上位のIntra band 4CC CAの周波数帯域の第1レイヤ数(CC#0(2×2)、CC#1(2×2)、CC#2(2×2)及びCC#3(2×2))、及び、単一のCCを含む最下位の1CCの周波数帯域の第2レイヤ数(CC#0(4×4))のみを受信すれば、端末装置10が、Intra band 3CC CAの(4×4,2×2,2×2)及びIntra band 2CC CAの(4×4,4×4)をサポートしていると判断する。この点に関して、基地局装置50は、端末装置10から、Intra band CC CAの高位のCC(レイヤ数「4」)に関する情報を受信すると、当該端末装置10は、当該CC(レイヤ数「4」)、及び、より下位のCC(レイヤ数「2」)については当然にサポートすると判断可能である。 The base station device 50 sets the MIMO layer of each CC at the time of CA based on the terminal capability information transmitted from the terminal device 10. (Step S7). As shown in FIG. 6, for example, the base station apparatus 50 (setting unit 53 shown in FIG. 4) has the number of first layers (CC # 0 (2 × 2), CC) in the frequency band of the uppermost Intra band 4CC CA. # 1 (2x2), CC # 2 (2x2) and CC # 3 (2x2)), and the number of second layers (CC #) in the lowest 1CC frequency band containing a single CC. If only 0 (4 × 4)) is received, the terminal device 10 receives (4 × 4, 2 × 2, 2 × 2) of the Intra band 3CC CA and (4 × 4, 4 × 4) of the Intra band 2CC CA. ) Is supported. In this regard, when the base station apparatus 50 receives information regarding a higher CC (number of layers "4") of the Intra band CC CA from the terminal apparatus 10, the terminal apparatus 10 receives the CC (number of layers "4"). ) And lower CCs (number of layers "2") can be judged to be supported as a matter of course.
 基地局装置50は、設定したCA時の各CCのMIMOレイヤに関する情報を、「RRCReconfiguration」として端末装置10に送信する(ステップS9)。 The base station device 50 transmits information regarding the MIMO layer of each CC at the time of set CA to the terminal device 10 as "RRC Configuration" (step S9).
 以上、実施形態1によれば、端末装置10は、4個(第1の個数)のコンポーネントキャリア(CC)を含む、最上位のIntra band 4CC CAの周波数帯域(第1バンド)の第1レイヤ数と、4個(第1の個数)よりも少ない1個(第2の個数)のCCを含む最下位の1CCの周波数帯域(第2バンド)の第2レイヤ数と、を基地局装置に送信する。端末装置は、第1レイヤ数及び第2レイヤ数が所定の条件を満たす場合に、4個(第1の個数)よりも少なく、且つ、1個(第2の個数)よりも多い2個又は3個(第3の個数)のCCを含むフォールバックCAの周波数帯域(第3バンド)の第3レイヤ数の基地局装置への送信を省略する。よって、端末装置10は、基地局装置50に対して送信するための端末能力情報を大幅に省略することが可能である。したがって、端末装置10と基地局装置50との間の無線通信リソースの利用効率を向上させることができる。 As described above, according to the first embodiment, the terminal device 10 is the first layer of the frequency band (first band) of the uppermost Intra band 4CC CA including four (first number) component carriers (CC). The number and the number of second layers of the lowest 1CC frequency band (second band) including one (second number) CC less than four (first number) are used as the base station device. Send. When the number of first layers and the number of second layers satisfy predetermined conditions, the number of terminal devices is less than 4 (first number) and more than 1 (second number), or 2 or more. Transmission of the frequency band (third band) of the fallback CA including three (third number) CCs to the base station apparatus of the third layer number is omitted. Therefore, the terminal device 10 can largely omit the terminal capability information for transmitting to the base station device 50. Therefore, it is possible to improve the utilization efficiency of the wireless communication resource between the terminal device 10 and the base station device 50.
 (第2実施形態)
 第2実施形態は、端末装置10が、基地局装置50からの事前通知に基づいて端末能力情報の一部の送信を省略する点で、端末装置10が自発的に端末能力情報の一部の送信を省略する第1実施形態とは異なる。以下、第1実施形態とは異なる点について特に説明する。
(Second Embodiment)
In the second embodiment, the terminal device 10 voluntarily performs a part of the terminal ability information in that the terminal device 10 omits the transmission of a part of the terminal ability information based on the advance notification from the base station device 50. This is different from the first embodiment in which transmission is omitted. Hereinafter, the points different from the first embodiment will be particularly described.
 図7を参照して、第2実施形態に係るMIMOレイヤの設定処理の一例を説明する。図7は、第2実施形態におけるキャリアアグリゲーションの際のMIMOレイヤの設定処理の一例を示すフローチャートである。なお、図7におけるステップS13、S17及びS19は、図5におけるステップS3、S7及びS9と同様の処理であるため、説明を省略する。 An example of the MIMO layer setting process according to the second embodiment will be described with reference to FIG. 7. FIG. 7 is a flowchart showing an example of MIMO layer setting processing at the time of carrier aggregation in the second embodiment. Since steps S13, S17 and S19 in FIG. 7 are the same processes as steps S3, S7 and S9 in FIG. 5, description thereof will be omitted.
 図7に示すように、端末装置10は、基地局装置から、端末能力情報(複数のコンポーネントキャリアごとのレイヤ数に関する情報)の少なくとも一部の送信を省略可能である旨の事前通知を受信する(ステップS11)。事前通知は、「UECapabilityEnquriry」に含まれて端末装置10に送信されてもよい。 As shown in FIG. 7, the terminal device 10 receives advance notification from the base station device that transmission of at least a part of the terminal capability information (information on the number of layers for each of a plurality of component carriers) can be omitted. (Step S11). The advance notice may be included in the "UECapacityEncurry" and transmitted to the terminal device 10.
 端末装置10は、事前通知を受信する場合には、フォールバックCAの周波数帯域の第3レイヤ数に関する情報の送信は省略され、第1レイヤ数及び第2レイヤ数に関する情報のみが含まれる端末能力情報を基地局装置50に送信する。端末能力情報として、当該端末能力情報には、フォールバックCAの周波数帯域の第3レイヤ数に関する情報が省略されている旨を示す情報(応答情報)が含まれてもよい。(ステップS15)。 When the terminal device 10 receives the advance notification, the transmission of information regarding the number of third layers in the frequency band of the fallback CA is omitted, and the terminal capability includes only the information regarding the number of first layers and the number of second layers. Information is transmitted to the base station apparatus 50. As the terminal capability information, the terminal capability information may include information (response information) indicating that information regarding the number of third layers in the frequency band of the fallback CA is omitted. (Step S15).
 以上、第2実施形態によれば、端末装置10は、基地局装置50からの事前通知に基づいて、端末能力情報の一部の送信を省略するとともに、当該通知に応じた応答情報を当該基地局装置へ送信する。よって、基地局装置50が当該応答情報を受信すると、端末装置10から送信される端末能力情報の一部が省略されていることを把握することができる。つまり、基地局装置50において、端末能力情報に含まれていないMIMOレイヤ情報が、端末装置10がサポートしていないMIMOレイヤに関する情報ではなく、端末装置10において送信が省略されたMIMOレイヤに関する情報であることを判定可能となる。 As described above, according to the second embodiment, the terminal device 10 omits the transmission of a part of the terminal capability information based on the advance notification from the base station device 50, and provides the response information in response to the notification to the base. Send to the station equipment. Therefore, when the base station apparatus 50 receives the response information, it can be understood that a part of the terminal capability information transmitted from the terminal apparatus 10 is omitted. That is, in the base station device 50, the MIMO layer information that is not included in the terminal capability information is not the information about the MIMO layer that the terminal device 10 does not support, but the information about the MIMO layer whose transmission is omitted in the terminal device 10. It becomes possible to determine that there is.
 (第3実施形態)
 第3実施形態は、端末装置10がIntra band 4CC CAで12本のアンテナパス(12RF path)を実装している場合の端末能力情報の送信処理を規定する点で、端末装置10がIntra band 4CC CAで8本のアンテナパス(8RF path)を実装している場合の端末能力情報の送信処理を規定する第1実施形態とは異なる。以下、実施形態1とは異なる点について特に説明する。
(Third Embodiment)
The third embodiment defines the transmission processing of the terminal capability information when the terminal device 10 implements 12 antenna paths (12 RF paths) in the Intra band 4CC CA, and the terminal device 10 defines the Intra band 4CC. It is different from the first embodiment that defines the transmission process of terminal capability information when eight antenna paths (8 RF paths) are implemented in CA. Hereinafter, the points different from the first embodiment will be particularly described.
 図8及び図9を参照して第3実施形態に係るMIMOレイヤの設定処理の一例を説明する。図8は、第3実施形態におけるキャリアアグリゲーションの際のMIMOレイヤの設定処理の一例を示すフローチャートである。図9は、第3実施形態における、端末能力情報の送信処理の一例を示す概念図である。なお、図9におけるステップS21及びS29は、図5におけるステップS1及びS9と同様の処理であるため、説明を省略する。 An example of the MIMO layer setting process according to the third embodiment will be described with reference to FIGS. 8 and 9. FIG. 8 is a flowchart showing an example of MIMO layer setting processing at the time of carrier aggregation in the third embodiment. FIG. 9 is a conceptual diagram showing an example of a terminal capability information transmission process according to the third embodiment. Since steps S21 and S29 in FIG. 9 are the same processes as steps S1 and S9 in FIG. 5, description thereof will be omitted.
 図8及び図9に示すように、端末装置10がIntra band 4CC CAで12本のアンテナパス(12RF path)を実装しているため、最大MIMOレイヤ数は「12」である。また、4個(第1の個数)のCCを含む、最上位のIntra band 4CC CAの周波数帯域(第1バンド)の第1レイヤ数は「8」である。よって、第3実施形態においては、最大MIMOレイヤ数と第1レイヤ数とは異なることが前提である。第3実施形態においても、「所定の条件」を満たす場合は、端末装置10から基地局装置50に送信される端末能力情報の一部が省略である(ステップS23及びS25)。 As shown in FIGS. 8 and 9, since the terminal device 10 implements 12 antenna paths (12RF paths) in the Intra band 4CC CA, the maximum number of MIMO layers is "12". Further, the number of first layers in the frequency band (first band) of the highest-level Intra band 4CC CA including four (first number) CCs is "8". Therefore, in the third embodiment, it is premised that the maximum number of MIMO layers and the number of first layers are different. Also in the third embodiment, when the “predetermined condition” is satisfied, a part of the terminal capability information transmitted from the terminal device 10 to the base station device 50 is omitted (steps S23 and S25).
 例えば、「所定の条件」は、最大MIMOレイヤ数は第3レイヤ数以上であり、かつ、第2レイヤ数は第3バンドにおける各コンポーネントキャリアのレイヤ数以上であることを含む。 For example, the "predetermined condition" includes that the maximum number of MIMO layers is equal to or greater than the number of third layers, and the number of second layers is equal to or greater than the number of layers of each component carrier in the third band.
 まず、フォールバックCAとしてIntra band 3CC CAの場合について、図9を参照して説明する。上記したとおり、最大MIMOレイヤ数は「12」である。第3レイヤ数(総MIMOレイヤ数)は、CC#0(4×4)、CC#1(2×2)及びCC#2(2×2)に基づいて「8」と算出される。よって、最大MIMOレイヤ数「12」は、第3レイヤ数「8」以上である。また、第2レイヤ数は、CC#0(4×4)に基づいて「4」と算出される。第3バンドにおける各コンポーネントキャリアのレイヤ数に関しては、Intra band 3CC CAのCC#0(4×4)については「4」であり、CC#1(2×2)については「2」であり、CC#2(2×2)については「2」である。よって、第2レイヤ数「4」は、第3バンドにおける各コンポーネントキャリアのレイヤ数(「4」又は「2」)以上である。したがって、上記のように「最大MIMOレイヤ数」及び「第2レイヤ数」が上記所定の条件を満たすため、端末装置10は、Intra band 3CC CAの周波数帯域の第3レイヤ数に関する情報の送信を省略可能である。 First, the case of Intra band 3CC CA as the fallback CA will be described with reference to FIG. As described above, the maximum number of MIMO layers is "12". The number of third layers (total number of MIMO layers) is calculated as "8" based on CC # 0 (4x4), CC # 1 (2x2) and CC # 2 (2x2). Therefore, the maximum number of MIMO layers "12" is equal to or greater than the number of third layers "8". Further, the number of second layers is calculated as "4" based on CC # 0 (4 × 4). Regarding the number of layers of each component carrier in the third band, CC # 0 (4 × 4) of Intra band 3CC CA is “4”, and CC # 1 (2 × 2) is “2”. It is "2" for CC # 2 (2x2). Therefore, the number of second layers "4" is equal to or greater than the number of layers ("4" or "2") of each component carrier in the third band. Therefore, since the "maximum number of MIMO layers" and the "number of second layers" satisfy the above-mentioned predetermined conditions as described above, the terminal device 10 transmits information regarding the number of third layers in the frequency band of the Intra band 3CC CA. It can be omitted.
 なお、フォールバックCAとしてIntra band 2CC CAの場合についても、Intra band 3CC CAの場合と同様に所定の条件を満たす場合は、端末装置10は、Intra band 2CC CAの周波数帯域の第3レイヤ数に関する情報の送信を省略可能である。 In the case of Intra band 2CC CA as the fallback CA, if the predetermined conditions are satisfied as in the case of Intra band 3CC CA, the terminal device 10 relates to the number of third layers in the frequency band of Intra band 2CC CA. Information transmission can be omitted.
 図8に示すように、当該端末能力情報には、最上位のIntra band 4CC CAの周波数帯域の第1レイヤ数(CC#0(2×2)、CC#1(2×2)、CC#2(2×2)及びCC#3(2×2))、及び、単一のCCを含む最下位の1CCの周波数帯域の第2レイヤ数(CC#0(4×4))のみが含まれる。また当該端末能力情報は、最大MIMOレイヤ数に関する情報をさらに含んでもよい。 As shown in FIG. 8, the terminal capability information includes the number of first layers (CC # 0 (2 × 2), CC # 1 (2 × 2), CC #) in the frequency band of the highest Intra band 4CC CA. Only 2 (2x2) and CC # 3 (2x2)) and the number of second layers (CC # 0 (4x4)) in the lowest 1CC frequency band containing a single CC are included. Is done. Further, the terminal capability information may further include information regarding the maximum number of MIMO layers.
 基地局装置50は、端末装置10から送信された端末能力情報に基づいて、CA時の各CCのMIMOレイヤを設定する。(ステップS27)。図8に示すように、例えば、基地局装置50(図4に示す設定部53)は、最上位のIntra band 4CC CAの周波数帯域の第1レイヤ数(CC#0(2×2)、CC#1(2×2)、CC#2(2×2)及びCC#3(2×2))、及び、単一のCCを含む最下位の1CCの周波数帯域の第2レイヤ数(CC#0(4×4))のみを受信すれば、端末装置10が、Intra band 3CC CAの(4×4,4×4,4×4)、(4×4,4×4,2×2)及び(4×4,2×2,2×2)、並びに、Intra band 2CC CAの(4×4,4×4)をサポートしていると判断する。 The base station device 50 sets the MIMO layer of each CC at the time of CA based on the terminal capability information transmitted from the terminal device 10. (Step S27). As shown in FIG. 8, for example, the base station apparatus 50 (setting unit 53 shown in FIG. 4) has the number of first layers (CC # 0 (2 × 2), CC) in the frequency band of the uppermost Intra band 4CC CA. # 1 (2x2), CC # 2 (2x2) and CC # 3 (2x2)), and the number of second layers (CC #) in the lowest 1CC frequency band containing a single CC. If only 0 (4x4)) is received, the terminal device 10 will have the Intra band 3CC CA (4x4, 4x4, 4x4), (4x4, 4x4, 2x2). And (4x4, 2x2, 2x2), and (4x4, 4x4) of Intra band 2CC CA are judged to be supported.
 以上、第3実施形態によれば、各バンドにおいてCAで使用可能な最大レイヤ数と、第1レイヤ数とが異なる場合であっても所定の条件を満たす場合には、端末装置10は、端末能力情報の一部の送信を省略可能である。 As described above, according to the third embodiment, even if the maximum number of layers that can be used in CA in each band and the number of first layers are different, if a predetermined condition is satisfied, the terminal device 10 is a terminal. It is possible to omit the transmission of a part of the ability information.
 上記各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するものではない。本発明はその趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。また、本発明は、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の開示を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素は削除してもよい。さらに、異なる実施形態に構成要素を適宜組み合わせてもよい。 Each of the above embodiments is for facilitating the understanding of the present invention, and does not limit the interpretation of the present invention. The present invention can be modified / improved without departing from the spirit of the present invention, and the present invention also includes an equivalent thereof. In addition, the present invention can form various disclosures by appropriately combining the plurality of components disclosed in each of the above embodiments. For example, some components may be removed from all the components shown in the embodiments. Further, the components may be appropriately combined in different embodiments.
 10(10-1…10-m)…端末装置、11…取得部、13,51…受信部、15…判定部、17,55…送信部、19,57…アクセス制御部、21…プロセッサ、22…メモリ、23…記憶装置、24…通信装置、25…入力装置、26…出力装置、27…アンテナ、29…センサ、50(50-1…50-n)…基地局装置、53…設定部、90…コアネットワーク装置、100…移動通信システム 10 (10-1 ... 10-m) ... Terminal device, 11 ... Acquisition unit, 13, 51 ... Reception unit, 15 ... Judgment unit, 17, 55 ... Transmission unit, 19, 57 ... Access control unit, 21 ... Processor, 22 ... Memory, 23 ... Storage device, 24 ... Communication device, 25 ... Input device, 26 ... Output device, 27 ... Antenna, 29 ... Sensor, 50 (50-1 ... 50-n) ... Base station device, 53 ... Setting Department, 90 ... Core network device, 100 ... Mobile communication system

Claims (6)

  1.  キャリアアグリゲーションに対応した移動通信システムにおける端末装置であって、
     複数のコンポーネントキャリアごとのレイヤ数を取得する取得部と、
     第1の個数のコンポーネントキャリアを含む第1バンドの第1レイヤ数と、前記第1の個数よりも少ない第2の個数のコンポーネントキャリアを含む第2バンドの第2レイヤ数と、を基地局装置に送信する送信部と、を備え、
     前記送信部は、前記第1レイヤ数及び前記第2レイヤ数が所定の条件を満たす場合に、前記第1の個数よりも少なく、且つ、前記第2の個数よりも多い第3の個数のコンポーネントキャリアを含む第3バンドの第3レイヤ数の前記基地局装置への送信を省略する、
    端末装置。
    A terminal device in a mobile communication system that supports carrier aggregation.
    An acquisition unit that acquires the number of layers for each of multiple component carriers,
    The base station apparatus includes the number of first layers of the first band including the first number of component carriers and the number of second layers of the second band including the second number of component carriers less than the first number. Equipped with a transmitter to send to
    The transmitter has a third number of components that is less than the first number and greater than the second number when the number of the first layer and the number of the second layer satisfy a predetermined condition. The transmission of the number of third layers of the third band including the carrier to the base station apparatus is omitted.
    Terminal device.
  2.  前記所定の条件は、
     前記第1レイヤ数は前記第3レイヤ数以上であり、かつ、
     前記第2レイヤ数は前記第3バンドにおける各コンポーネントキャリアのレイヤ数以上であることを含む、
    請求項1に記載の端末装置。
    The predetermined conditions are
    The number of the first layers is equal to or greater than the number of the third layers, and
    The number of the second layers includes the number of layers of each component carrier in the third band or more.
    The terminal device according to claim 1.
  3.  前記第2バンドは、単一のコンポーネントキャリアを含む、
    請求項1又は請求項2に記載の端末装置。
    The second band comprises a single component carrier.
    The terminal device according to claim 1 or 2.
  4.  前記基地局装置から、前記複数のコンポーネントキャリアごとのレイヤ数の少なくとも一部の送信を省略可能である旨の通知を受信する受信部を更に備え、
     前記送信部は、前記通知を受信する場合に、前記第3レイヤ数の前記基地局装置への送信を省略するとともに、当該通知に応じた応答情報を当該基地局装置へ送信する、
    請求項1から請求項3のいずれか一項に記載の端末装置。
    Further, a receiving unit for receiving a notification from the base station apparatus that transmission of at least a part of the number of layers for each of the plurality of component carriers can be omitted is provided.
    When receiving the notification, the transmission unit omits transmission of the third layer number to the base station device and transmits response information in response to the notification to the base station device.
    The terminal device according to any one of claims 1 to 3.
  5.  前記送信部は、各バンドにおいて前記キャリアアグリゲーションで使用可能な最大レイヤ数と、前記第1レイヤ数とが異なる場合であって、前記最大レイヤ数は前記第3レイヤ数以上であり、かつ、前記第2レイヤ数は前記第3バンドにおける各コンポーネントキャリアのレイヤ数以上であるときに、前記第3レイヤ数の前記基地局装置への送信を省略する、
    請求項1から請求項4のいずれか一項に記載の端末装置。
    When the maximum number of layers that can be used in the carrier aggregation in each band and the number of the first layers are different from each other, the maximum number of layers is equal to or greater than the number of the third layers, and the transmission unit has the same number of layers. When the number of second layers is equal to or greater than the number of layers of each component carrier in the third band, transmission of the number of third layers to the base station apparatus is omitted.
    The terminal device according to any one of claims 1 to 4.
  6.  キャリアアグリゲーションに対応した移動通信システムにおける端末装置が用いる無線通信方法であって、
     複数のコンポーネントキャリアごとのレイヤ数を取得するステップと、
     第1の個数のコンポーネントキャリアを含む第1バンドの第1レイヤ数と、前記第1の個数よりも少ない第2の個数のコンポーネントキャリアを含む第2バンドの第2レイヤ数と、を基地局装置に送信するステップと、を備え、
     前記送信するステップは、前記第1レイヤ数及び前記第2レイヤ数が所定の条件を満たす場合に、前記第1の個数よりも少なく、且つ、前記第2の個数よりも多い第3の個数のコンポーネントキャリアを含む第3バンドの第3レイヤ数の前記基地局装置への送信を省略する、
    無線通信方法。
    A wireless communication method used by terminal devices in mobile communication systems that support carrier aggregation.
    Steps to get the number of layers for each of multiple component carriers,
    The base station apparatus includes the number of first layers of the first band including the first number of component carriers and the number of second layers of the second band including the second number of component carriers less than the first number. With steps to send to,
    When the number of the first layer and the number of the second layer satisfy a predetermined condition, the transmission step is a third number less than the first number and more than the second number. The transmission of the third layer number of the third band including the component carrier to the base station apparatus is omitted.
    Wireless communication method.
PCT/JP2021/001117 2021-01-14 2021-01-14 Terminal device and wireless communication method WO2022153461A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/001117 WO2022153461A1 (en) 2021-01-14 2021-01-14 Terminal device and wireless communication method
JP2022574971A JPWO2022153461A1 (en) 2021-01-14 2021-01-14

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001117 WO2022153461A1 (en) 2021-01-14 2021-01-14 Terminal device and wireless communication method

Publications (1)

Publication Number Publication Date
WO2022153461A1 true WO2022153461A1 (en) 2022-07-21

Family

ID=82448070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001117 WO2022153461A1 (en) 2021-01-14 2021-01-14 Terminal device and wireless communication method

Country Status (2)

Country Link
JP (1) JPWO2022153461A1 (en)
WO (1) WO2022153461A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019092046A (en) * 2017-11-14 2019-06-13 株式会社Nttドコモ User equipment, base station, information notification method, and information reception method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019092046A (en) * 2017-11-14 2019-06-13 株式会社Nttドコモ User equipment, base station, information notification method, and information reception method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Overhead reduction for CA band combination signalling", 3GPP DRAFT; R2-141131, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Valencia, Spain; 20140331 - 20140404, 22 March 2014 (2014-03-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050792387 *

Also Published As

Publication number Publication date
JPWO2022153461A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
US9521536B2 (en) Device discovery of second user equipments in a second network for D2D communication
CN112166563A (en) Beam indication for 5G new radio
CN106376082B (en) Electronic device for wireless communication and wireless communication method
CN111727641B (en) UE, network node and method for handling group paging in a wireless communication network
US10827497B2 (en) Apparatus and method for beam selection in downlink transmission
CN112335305B (en) Monitoring and sending method of downlink signal, parameter configuration method and device
US9877351B2 (en) Mobile communication system, user terminal, and base station
US20210360548A1 (en) Service area for time synchronization
US20220400470A1 (en) Terminal device, base station apparatus, and communication method
JP2015065560A (en) User terminal, base station and server device
US20220030563A1 (en) Downlink quality improvement method and apparatus
WO2022153461A1 (en) Terminal device and wireless communication method
WO2022022340A1 (en) Communication method and apparatus
WO2022176098A1 (en) Terminal, base station, communication method, and program
US20210336735A1 (en) Electronic device, wireless communication method and computer readable medium
JP7394856B2 (en) Terminal device, base station device, and wireless communication method
CN116980904A (en) Information processing method, network side equipment and terminal
WO2023053264A1 (en) Terminal device and wireless communication method
WO2024047709A1 (en) Terminal device and wireless communication method
WO2023203723A1 (en) Terminal device and wireless communication method
WO2021156994A1 (en) Terminal device, base station device, and wireless communication method
WO2023053449A1 (en) Terminal device, base station device, and wireless communication method
WO2022215151A1 (en) Terminal device, base station device, and wireless communication method
WO2023199433A1 (en) Terminal device, base station device, and wireless communication method
WO2024029095A1 (en) Terminal device, base station device, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022574971

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919354

Country of ref document: EP

Kind code of ref document: A1