WO2022176050A1 - Air-conditioning device - Google Patents

Air-conditioning device Download PDF

Info

Publication number
WO2022176050A1
WO2022176050A1 PCT/JP2021/005858 JP2021005858W WO2022176050A1 WO 2022176050 A1 WO2022176050 A1 WO 2022176050A1 JP 2021005858 W JP2021005858 W JP 2021005858W WO 2022176050 A1 WO2022176050 A1 WO 2022176050A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
degree
expansion valve
control device
value
Prior art date
Application number
PCT/JP2021/005858
Other languages
French (fr)
Japanese (ja)
Inventor
龍一 永田
雄亮 田代
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/005858 priority Critical patent/WO2022176050A1/en
Priority to EP21926490.0A priority patent/EP4296593A4/en
Priority to US18/261,406 priority patent/US20240068699A1/en
Priority to JP2023500176A priority patent/JP7466754B2/en
Publication of WO2022176050A1 publication Critical patent/WO2022176050A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • F25B41/347Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids with the valve member being opened and closed cyclically, e.g. with pulse width modulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors

Definitions

  • the present disclosure relates to an air conditioner.
  • the frequency of the compressor should be lowered to operate the air conditioner.
  • the pressure difference between high and low pressures in the refrigerant circuit is reduced, and the temperature and degree of superheat of the discharged refrigerant are lowered.
  • the degree of superheat of the discharged refrigerant is low, the temperature and the degree of superheat of the suctioned refrigerant also decrease, and the state of the refrigerant sucked into the compressor tends to be in a two-phase state of liquid and gas.
  • the electronic expansion valve should be throttled. Met.
  • Patent Document 1 In International Publication No. 2013/103061 (Patent Document 1), in order to stabilize air conditioning control, an electronic expansion valve attached with characteristic data associated with manufacturing variations written in a barcode and an air conditioner equipped with the same. disclosed.
  • Patent Document 1 In the electronic expansion valve described in International Publication No. 2013/103061 (Patent Document 1), in order to correct manufacturing variations in the valve opening point, the valve opening point of each electronic expansion valve is measured in advance, and the bar The code contains the data. Then, when the air conditioner is manufactured, it is necessary to read the bar code and reflect the data in the electronic expansion valve control program. As a result, the number of manufacturing steps for the air conditioner is increased.
  • the present disclosure has been made to solve the above problems, and aims to disclose an air conditioner that can realize low-capacity operation while avoiding complication of the manufacturing process.
  • An air conditioner includes a refrigerant circuit and a control device.
  • the refrigerant circuit is configured such that refrigerant circulates through the compressor, the condenser, the expansion valve, and the evaporator.
  • the expansion valve is configured such that the degree of opening is variable between a lower limit opening degree and an upper limit opening degree.
  • the control device controls the expansion valve such that the first degree of opening and the second degree of opening, which is smaller than the first degree of opening, are alternately repeated within the range of the degree of opening equal to or less than 1/4 of the upper limit degree of opening. configured to
  • the air conditioner of the present disclosure repeats the increase and decrease of the opening of the expansion valve within a range of 1/4 of the upper limit opening or less. As a result, it is possible to realize an air conditioner capable of low-capacity operation while avoiding complication of the manufacturing process.
  • FIG. 1 is a diagram showing the configuration of an air conditioner according to Embodiment 1.
  • FIG. 3 is a block diagram showing the configuration of a control device and LEV;
  • FIG. FIG. 4 is a waveform diagram for explaining changes in the degree of opening of an electronic expansion valve;
  • 4 is a diagram for explaining the relationship between the Cv value of the LEV 111 and the number of pulses indicating the degree of opening;
  • FIG. FIG. 5 is a diagram for explaining the positions of CvA and CvB in FIG. 3 at the opening degree shown in FIG. 4; 4 is a flowchart for explaining control of operation mode switching executed in the air conditioning system of Embodiment 1.
  • FIG. FIG. 7 is a flow chart showing an example of the processing contents of step S3 of FIG. 6;
  • FIG. 10 is a flow chart for explaining processing executed in the second embodiment;
  • FIG. FIG. 10 is a diagram showing an example of a map M1 used in Embodiment 2;
  • FIG. 10 is a diagram showing another map M1A used in Embodiment 2;
  • FIG. FIG. 4 is a diagram showing the relationship between the operating frequency of the compressor and the desired Cv value;
  • FIG. 12 is a diagram for explaining time ratio control executed in the third embodiment;
  • FIG. 14 is a flowchart for explaining control of operation mode switching executed in the air conditioning system of Embodiment 4.
  • FIG. FIG. 14 is a flowchart for explaining the process of step S3B in FIG. 13;
  • FIG. FIG. 12 is a diagram showing an example of a map M2 used in Embodiment 4;
  • FIG. 1 is a diagram showing the configuration of an air conditioner according to Embodiment 1.
  • the air conditioner 1 includes a compressor 10, an indoor heat exchanger 20, an electronic expansion valve (LEV: Linear Expansion Valve) 111, an outdoor heat exchanger 40, and pipes 90, 92, 94, 96, 97, 99. and a refrigerant circuit 150 including the four-way valve 100 .
  • the four-way valve 100 has ports EH.
  • the pipe 90 is connected between the port H of the four-way valve 100 and the port P1 of the indoor heat exchanger 20.
  • Piping 92 is connected between port P4 of indoor heat exchanger 20 and LEV 111 .
  • a pipe 94 is connected between the LEV 111 and the port P3 of the outdoor heat exchanger 40 .
  • the pipe 96 is connected between the port P2 of the outdoor heat exchanger 40 and the port F of the four-way valve 100 .
  • a pipe 97 is connected between the suction port of the compressor 10 and the port E of the four-way valve 100 .
  • a pipe 99 is connected between the outlet of the compressor 10 and the port G of the four-way valve 100 .
  • the compressor 10, the LEV 111, the outdoor heat exchanger 40, the pipes 94, 96, 97, 99, and the four-way valve 100 are housed in the outdoor unit 2.
  • the indoor heat exchanger 20 is housed in the indoor unit 3 .
  • the outdoor unit 2 and the indoor unit 3 are connected by pipes 90 and 92 .
  • the air conditioner 1 further includes temperature sensors 101 to 103, 106, 107 and a control device 200.
  • a temperature sensor 101 is arranged in the middle of the pipe 99 and measures the discharge temperature TH.
  • a temperature sensor 102 is arranged near the indoor heat exchanger 20 to measure the indoor temperature Tr.
  • the temperature sensor 103 is arranged near the outdoor heat exchanger 40 and measures the outdoor temperature Te.
  • the temperature sensor 106 is arranged in the refrigerant pipe of the indoor heat exchanger 20 and measures the temperature T1 of the two-phase region refrigerant.
  • the temperature sensor 107 is arranged in the refrigerant pipe of the outdoor heat exchanger 40 and measures the temperature T2 of the two-phase region refrigerant.
  • the control device 200 controls the compressor 10, the four-way valve 100, and the LEV 111 according to the operation command signal given by the user and the outputs of various sensors.
  • the compressor 10 is configured to change the operating frequency according to a control signal received from the control device 200 .
  • the compressor 10 incorporates an inverter-controlled drive motor whose rotational speed is variable, and the rotational speed of the drive motor changes when the operating frequency is changed.
  • the output of the compressor 10 is adjusted.
  • Various types such as rotary type, reciprocating type, scroll type, and screw type can be adopted for the compressor 10 .
  • the four-way valve 100 is controlled by a control signal received from the control device 200 so as to be in either the cooling operation state or the heating operation state.
  • the cooling operation state is a state in which the port E and the port H are in communication, and the port F and the port G are in communication. In the heating operation state, the port E and the port F communicate, and the port H and the port G communicate.
  • the opening of the LEV 111 is controlled by a control signal received from the control device 200 so as to adjust the SH (superheat: degree of heating) of the refrigerant at the outlet of the evaporator.
  • FIG. 2 is a block diagram showing the configuration of the control device and LEV.
  • the control device 200 includes a CPU (Central Processing Unit) 201, a memory 202 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input/output buffer (not shown), etc. composed of
  • the CPU 201 expands a program stored in the ROM into the RAM or the like and executes it.
  • the program stored in the ROM is a program in which processing procedures of the control device 200 are described.
  • the control device 200 controls each device in the air conditioner 1 according to these programs. This control is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
  • the controller 200 is configured to control the motor drive circuit 203 based on the outdoor temperature Te, the indoor temperature Tr, the discharge temperature TH, and the temperatures T1 and T2 of the two-phase refrigerant.
  • the LEV 111 is provided with a stepping motor 112 and a valve body 113 in which the rotation of the stepping motor 112 changes the position of the needle and changes the degree of opening.
  • the stepping motor 112 is driven by a motor drive circuit 203 .
  • the control device 200 outputs the number of pulses to the motor drive circuit 203 as a command value indicating the degree of opening of the valve body 113 .
  • Gas refrigerant discharged from the compressor 10 flows into the indoor heat exchanger 20 through the pipe 90 .
  • the gas refrigerant flowing into the indoor heat exchanger 20 exchanges heat with the air flowing on the fin side of the indoor heat exchanger 20 to become liquid refrigerant.
  • the liquefied refrigerant flows into the LEV 111 through the pipe 92 and adiabatically expands.
  • the gas-liquid two-phase refrigerant adiabatically expanded in the LEV 111 flows through the pipe 94 into the outdoor heat exchanger 40 .
  • the gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 40 exchanges heat with the air flowing on the fin side of the outdoor heat exchanger 40 to become a gas refrigerant.
  • the gasified refrigerant returns to the compressor 10 through the pipe 96 , the four-way valve 100 and the pipe 97 .
  • the controller 200 lowers the operating frequency of the compressor 10 until the air conditioning capacity matches the air conditioning load.
  • the refrigerant circulation amount of the refrigerant circuit 150 is lowered.
  • the pressure difference generated in the compressor 10 decreases, and the temperature difference between the refrigerant temperature and the air temperature in the indoor heat exchanger 20 and the outdoor heat exchanger 40 decreases.
  • the temperature difference becomes smaller, heat exchange becomes more difficult and the discharge temperature becomes less likely to rise, resulting in a decrease in the degree of superheat of the discharged refrigerant.
  • control device 200 controls the LEV 111 to secure the throttling pressure difference.
  • the LEV 111 when the opening of the LEV 111 decreases to a certain opening close to the lower limit at which stable use is possible and the degree of superheat of the discharged refrigerant is insufficient, the LEV 111 is intentionally fully closed or completely closed. A close second opening degree is set, and then the opening degree is increased to the first opening degree, which is repeated.
  • FIG. 3 is a waveform diagram for explaining changes in the degree of opening of the electronic expansion valve.
  • the horizontal axis indicates time
  • the vertical axis indicates the Cv value corresponding to the degree of opening of the electronic expansion valve.
  • the Cv value indicates the capacity coefficient of the valve.
  • the control device 200 adjusts the periods tA and tB in FIG. 3 so that the Cv value of the LEV 111 becomes the desired Cv value in order to achieve the desired degree of superheat of the discharged refrigerant when the air conditioning load is small.
  • the Cv value changes according to the time ratio (tA/tC or tB/tC), so the controller 200 changes the time ratio to obtain the desired Cv value.
  • FIG. 4 is a diagram for explaining the relationship between the Cv value of the LEV 111 and the number of pulses indicating the degree of opening.
  • the control device 200 outputs the number of pulses corresponding to the opening of the valve to the motor drive circuit 203 as a command value.
  • the number of pulses can vary from 0 to n.
  • Cvmin be the Cv value of the opening indicated by the command value
  • Cvmax be the Cv value of the opening indicated by the command value 500, which is the maximum number of pulses. It can be a value. If Cvmin ⁇ Cvmax, Cvmin and Cvmax can be determined appropriately.
  • FIG. 5 is a diagram for explaining the positions of CvA and CvB in FIG. 3 at the opening shown in FIG.
  • both the command value A corresponding to CvA and the command value B corresponding to CvB are less than 1/4 (eg 125) of the pulse number n (eg 500) corresponding to the maximum controllable opening. It is shown to be the number of pulses.
  • the command values A and B have a relationship of 0 ⁇ B ⁇ A ⁇ n ⁇ 1/4. Also, if the cycle tC in FIG. 3 is too long, CvC as an average value cannot be achieved, so it is desirable that the cycle tC is one minute or less.
  • FIG. 6 is a flow chart for explaining the operation mode switching control executed in the air conditioning system of the first embodiment.
  • step S1 the control device 200 determines whether the magnitude of the difference between the room temperature Tr and the set temperature Tset is smaller than the determination value Tth1.
  • the magnitude of the air conditioning load is determined based on this.
  • the control device 200 determines in step S2 whether or not the degree of superheat of the discharged refrigerant (hereinafter referred to as discharge SH) is smaller than the determination value Tth2. . Thereby, the state of the refrigerant circuit 150 is determined.
  • control device 200 If discharge SH ⁇ Tth2 (YES in S2), in step S3, control device 200 repeatedly outputs command values A and B as described with reference to FIGS.
  • step S4 normal control is performed to designate the opening of the LEV 111 with one command value. is executed.
  • the time ratio tA/tC may be a fixed value (for example, 50%), but by changing the time ratio, the average opening of the LEV 111 can be changed with finer precision.
  • FIG. 7 is a flowchart showing an example of the processing contents of step S3 in FIG. First, in step S11, the control device 200 determines whether or not the ejection SH is smaller than the determination value Tth2.
  • step S12 the control device 200 reduces the time tA, which is the first opening degree CvA with the high LEV opening degree, and reduces the time ratio tA/tC. Then, the process of step S11 is executed again.
  • step S12 If the initial value of the time ratio in step S12 is set to 100%, the time ratio is adjusted so that the discharge SH becomes the desired value, and after the time ratio is adjusted (YES in S11), the adjusted time ratio is fixed. , the LEV opening degree H/L repetitive operation is executed for a certain period of time (S13).
  • the LEV 111 can be controlled to the corresponding aperture state. For this reason, it becomes easier to perform low-capacity operation in which the operating frequency of the compressor is lowered.
  • Embodiment 2 In Embodiment 1, as shown in FIG. 7, an appropriate time ratio is determined by changing the time ratio while detecting the value of the ejection SH.
  • the memory 202 of the control device 200 stores the Cv value of the expansion valve for increasing the discharge SH to a specified value or more according to the indoor and outdoor temperatures.
  • a refrigeration cycle apparatus characterized by adjusting the time ratio of the opening of the LEV 111 within a certain period of time to obtain a desired Cv value (CvC) will be described.
  • FIG. 8 is a flowchart for explaining the processing executed in the second embodiment.
  • FIG. 8 shows the process of step S3A executed in the second embodiment instead of step S3 shown in FIG.
  • step S21 the control device 200 acquires the outdoor temperature Te from the temperature sensor 103 and acquires the indoor temperature Tr from the temperature sensor 102. Then, in step S22, the control device 200 determines the Cv value from the map M1 pre-stored in the memory 202, and calculates the time ratio corresponding to the determined Cv value in step S23.
  • FIG. 9 is a diagram showing an example of the map M1 used in the second embodiment.
  • Cv values corresponding to expansion valve opening degrees corresponding to combinations of indoor and outdoor temperatures are stored as a table in memory 202 incorporated in control device 200 .
  • Control device 200 measures indoor and outdoor air temperatures Tr and Te with temperature sensors 102 and 103 such as thermistors, calculates a time ratio for realizing a Cv value according to the air temperature, and controls LEV 111 .
  • FIG. 10 shows another map M1A used in the second embodiment.
  • the higher the outdoor temperature and the lower the indoor temperature upper left in FIG. 9
  • the lower the outdoor temperature and the higher the indoor temperature lower right in FIG. 9
  • the larger the Cv value. Therefore, in order to decrease the Cv value, the time tB in FIG. 3 should be lengthened, and the time ratio (tB/tC in FIG. 3) should be increased. Therefore, in the map M1A of FIG. 10, the higher the outdoor temperature and the lower the indoor temperature (in the upper left direction in FIG. 10), the larger the time ratio RB ( tB/tC). lower right direction) The time ratio RB becomes smaller.
  • the LEV 111 by controlling the LEV 111 with a time ratio, it is possible to achieve a Cv value with a small degree of opening, which is difficult to control, on a time average basis, and to ensure the discharge SH. Furthermore, by storing the desired Cv value that changes depending on the indoor and outdoor air temperature in the memory 202 in advance as a table, in the actual product, the time ratio can be immediately determined simply by measuring the indoor and outdoor temperatures with the temperature sensors 102 and 103. Therefore, faster control can be realized.
  • Embodiment 3 the opening degree of the LEV 111 is adjusted within a certain period of time to obtain a desired Cv value (CvC) by adjusting the time ratio (tB/tC in FIG. 3) according to the operating frequency of the compressor 10. Characterized by
  • FIG. 11 is a diagram showing the relationship between the operating frequency of the compressor and the desired Cv value.
  • increasing the operating frequency also increases the desired Cv value, as shown in FIG.
  • the desired Cv value is realized by changing the time ratio shown in FIG. 3 at frequencies where a small Cv value is required.
  • FIG. 12 is a diagram for explaining the time ratio control executed in the third embodiment.
  • the time ratio (tB/tC) of the expansion valve opening degree corresponding to each operating frequency of compressor 10 is stored as a table in memory 202 built in controller 200 .
  • the control device 200 calls the time ratio corresponding to the operating frequency from the memory 202 and performs control.
  • the time ratio is set to tA/tC, and the time ratio is 100%, indicating a state of continuous large opening, but in FIG. 12, the time ratio is set to tB/tC, so the time ratio is 0 %, the degree of opening is large and continuous.
  • the opening command value is controlled so that the opening of the LEV 111 is repeated between the first opening and the second opening at a certain time ratio.
  • the Cv value in the region smaller than the minimum Cv value that can be stably controlled can be realized by time average, and the ejection SH can be ensured.
  • the desired Cv value that varies depending on the operating frequency as a table better control can be realized in the actual product simply by reading the time ratio according to the frequency.
  • Embodiment 4 is characterized in that the LEV 111 is controlled based on the indoor air temperature, the outdoor air temperature, and the time ratio according to the operating frequency by combining the first to third embodiments.
  • FIG. 13 is a flow chart for explaining the operation mode switching control executed in the air conditioning system of the fourth embodiment.
  • step S2A is added after step S2, and step S3B is executed instead of step S3.
  • step S1 the control device 200 determines whether the magnitude of the difference between the room temperature Tr and the set temperature Tset is smaller than the determination value Tth1.
  • the magnitude of the air conditioning load is determined based on this.
  • control device 200 determines in step S2 whether or not the discharge SH is smaller than the determination value Tth2. Thereby, the state of the refrigerant circuit 150 is determined.
  • step S2A the control device 200 determines whether or not the operating frequency f of the compressor 10 is lower than the determination value fth. Thus, it is determined whether or not the frequency range is from fmin to fth in which the time ratio control as shown in FIG. 12 is introduced.
  • FIG. 14 is a flowchart for explaining the process of step S3B in FIG.
  • the control device 200 acquires the outdoor temperature Te from the temperature sensor 103, acquires the indoor temperature Tr from the temperature sensor 102, and further acquires the operating frequency f from the control processing routine of the compressor 10.
  • the control device 200 determines the Cv value from the map M2 pre-stored in the memory 202, and calculates the time ratio corresponding to the determined Cv value in step S33.
  • FIG. 15 is a diagram showing an example of the map M2 used in the fourth embodiment.
  • Cv values corresponding to expansion valve opening degrees corresponding to combinations of indoor/outdoor temperatures and operating frequencies are stored as a table in memory 202 incorporated in controller 200 .
  • Control device 200 calculates a time ratio for realizing a Cv value according to air temperatures Tr, Te and operating frequency f, and controls LEV 111 .
  • the time ratio according to the air temperature may be directly stored instead of the Cv value.
  • the memory 202 stores the Cv value or the time ratio of the expansion valve opening according to the air temperatures Tr, Te and the operating frequency f as a table.
  • the controller 200 calls up the Cv value or the time ratio corresponding to the air temperatures Tr and Te during operation and the operating frequency f from the memory 202 and controls the LEV 111 .
  • the opening command value is controlled such that the opening of the LEV 111 is repeated between the first opening and the second opening at a certain time ratio.
  • the Cv value in the region smaller than the minimum Cv value that can be stably controlled can be realized by time average, and the ejection SH can be ensured.
  • better control can be achieved.
  • Air conditioner 1 of the present embodiment includes refrigerant circuit 150 and control device 200 .
  • Refrigerant circuit 150 is configured such that refrigerant circulates through compressor 10 , condensers 40 and 20 , LEV 111 , and evaporators 20 and 40 .
  • the opening degree of the LEV 111 is variable between the lower limit opening degree and the upper limit opening degree.
  • the control device 200 causes the LEV 111 to alternately repeat the first degree of opening CvA and the second degree of opening CvB smaller than the first degree of opening CvA within a range equal to or less than 1/4 of the upper limit degree of opening. configured to control.
  • the control device 200 designates a plurality of opening degrees between the lower limit opening degree Cvmin and the upper limit opening degree Cvmax by command values from 0 to n.
  • the control device 200 outputs command values so as to alternately repeat a first command value A and a second command value B smaller than the first command value A within a range of command values equal to or less than 1/4 of n. configured as
  • the air conditioner 1 includes an outdoor unit 2 housing one of the condensers 40, 20 and the evaporators 20, 40 and a compressor, and any one of the condensers 40, 20 and the evaporators 20, 40 It further includes an indoor unit 3 that accommodates the other.
  • the low-capacity operating condition including the first condition that the difference between the temperature Tr of the air sucked into the indoor unit 3 and the set temperature Tset is smaller than the threshold value Tth1 is satisfied ( FIG. 6 , S1 YES)
  • the LEV 111 is controlled to alternately repeat the first opening degree CvB and the second opening degree CvA.
  • the low-capacity operating condition satisfies the first condition and the second condition that the value of the degree of superheat of the refrigerant discharged from the compressor 10 is equal to or less than the specified value Tth2 (FIG. 6, in S2 YES).
  • control device 200 controls the first opening and Adjust the time ratio with the second degree of opening.
  • the control device 200 includes an arithmetic processing unit 201 and a memory 202.
  • the memory 202 uses the indoor temperature and the outdoor temperature as input data, and corresponds to the time ratio or the time ratio between the first opening and the second opening in the cycle in which the first opening and the second opening are alternately repeated.
  • a map as shown in FIG. 9 is stored in which the capacity coefficient (Cv value) of the LEV 111 to be measured is output data.
  • Arithmetic processing unit 201 controls LEV 111 using a map.
  • the control device 200 includes an arithmetic processing unit 201 and a memory 202.
  • the memory 202 uses the operating frequency of the compressor 10 as input data, and corresponds to the time ratio or the time ratio between the first opening and the second opening in the cycle in which the first opening and the second opening are alternately repeated.
  • a map is stored in which the capacity coefficient (Cv value) of the expansion valve is used as output data.
  • Arithmetic processing unit 201 controls LEV 111 using a map.
  • the control device 200 includes an arithmetic processing unit 201 and a memory 202.
  • the memory 202 uses the room temperature, the outside air temperature, and the operating frequency of the compressor as input data, and stores the first opening degree and the second opening degree in a cycle in which the first opening degree and the second opening degree are alternately repeated.
  • a map such as that shown in FIG. 15 is stored in which output data is the time ratio or the capacity coefficient of the expansion valve corresponding to the time ratio.
  • Arithmetic processing unit 201 controls LEV 111 using a map.

Abstract

An air-conditioning device (1) comprises a refrigerant circuit (150) and a control device (200). The refrigerant circuit (150) is configured so as to circulate a refrigerant through a compressor (10), a condenser (40, 20), an LEV (111), and an evaporator (20, 40). The LEV (111) is configured so as to have a variable opening degree between a lower limit opening degree and an upper limit opening degree. The control device (200) is configured so as to control the LEV (111) to alternate between a first opening degree (CvA) and a second opening degree (CvB) smaller than the first opening degree (CvA) within a range of one-quarter of the upper limit opening degree or less.

Description

空気調和装置air conditioner
 本開示は、空気調和装置に関する。 The present disclosure relates to an air conditioner.
 近年、ZEH(ネット・ゼロ・エネルギー・ハウス)を目指して住宅の高気密および高断熱化が進んでいる。高断熱化が進んだ住宅では、真夏および真冬の空調稼働時は従来通り畳数に応じた定格能力が必要となる一方で、室温安定時の空調負荷は極めて小さくなる。 In recent years, with the aim of becoming a ZEH (Net Zero Energy House), homes are becoming highly airtight and highly insulated. In homes with advanced thermal insulation, the rated capacity corresponding to the number of tatami mats is required when air conditioning is in operation in midsummer and midwinter, but the air conditioning load is extremely small when the room temperature is stable.
 空調負荷が極めて小さい状態での安定した空調を実現するには、圧縮機の周波数を低くして空気調和装置を運転すればよい。しかし、圧縮機周波数を低くすると冷媒回路中の高低圧差が小さくなり吐出冷媒の温度および過熱度が低くなる。吐出冷媒の過熱度が低いと吸入冷媒の温度および過熱度も低下し、圧縮機に吸入される冷媒の状態は液とガスの二相状態となりやすい。このような状態は圧縮機の故障につながるおそれがある。通常、吸入冷媒の状態を二相からガス単相にしたい場合は電子膨張弁を絞ればよいが、電子膨張弁の製造ばらつきによって、特に低開度において精度良く電子膨張弁を制御することは困難であった。  In order to achieve stable air conditioning with an extremely low air conditioning load, the frequency of the compressor should be lowered to operate the air conditioner. However, when the compressor frequency is lowered, the pressure difference between high and low pressures in the refrigerant circuit is reduced, and the temperature and degree of superheat of the discharged refrigerant are lowered. When the degree of superheat of the discharged refrigerant is low, the temperature and the degree of superheat of the suctioned refrigerant also decrease, and the state of the refrigerant sucked into the compressor tends to be in a two-phase state of liquid and gas. Such a condition can lead to compressor failure. Normally, if you want to change the state of the sucked refrigerant from two-phase to gas single-phase, the electronic expansion valve should be throttled. Met.
 国際公開第2013/103061号(特許文献1)には、空調制御を安定させるために、製造ばらつきに伴う特性データをバーコードに記載して添付する電子膨張弁およびそれを備えた空気調和装置が開示されている。 In International Publication No. 2013/103061 (Patent Document 1), in order to stabilize air conditioning control, an electronic expansion valve attached with characteristic data associated with manufacturing variations written in a barcode and an air conditioner equipped with the same. disclosed.
国際公開第2013/103061号WO2013/103061
 国際公開第2013/103061号(特許文献1)に記載された電子膨張弁では、開弁点の製造ばらつきを補正するために、予め1台ずつ電子膨張弁の開弁点を測定して、バーコードにデータを記載している。そして、空気調和装置の製造時にバーコードを読み込んで電子膨張弁の制御プログラムにデータを反映させる必要がある。このため、空気調和装置の製造工程が増加してしまう。 In the electronic expansion valve described in International Publication No. 2013/103061 (Patent Document 1), in order to correct manufacturing variations in the valve opening point, the valve opening point of each electronic expansion valve is measured in advance, and the bar The code contains the data. Then, when the air conditioner is manufactured, it is necessary to read the bar code and reflect the data in the electronic expansion valve control program. As a result, the number of manufacturing steps for the air conditioner is increased.
 本開示は、上記のような課題を解決するためになされたものであって、製造工程の複雑化を回避しつつ、低容量運転を実現できる空気調和装置を開示することを目的とする。 The present disclosure has been made to solve the above problems, and aims to disclose an air conditioner that can realize low-capacity operation while avoiding complication of the manufacturing process.
 本開示は、空気調和装置に関する。空気調和装置は、冷媒回路と制御装置とを備える。冷媒回路は、圧縮機と、凝縮器と、膨張弁と、蒸発器とに冷媒が循環するように構成される。膨張弁は、下限開度から上限開度までの間で開度が可変に構成される。制御装置は、上限開度の4分の1の開度以下の範囲内において、第1開度と第1開度よりも小さい第2開度とを交互に繰り返すように膨張弁を制御するように構成される。 The present disclosure relates to an air conditioner. An air conditioner includes a refrigerant circuit and a control device. The refrigerant circuit is configured such that refrigerant circulates through the compressor, the condenser, the expansion valve, and the evaporator. The expansion valve is configured such that the degree of opening is variable between a lower limit opening degree and an upper limit opening degree. The control device controls the expansion valve such that the first degree of opening and the second degree of opening, which is smaller than the first degree of opening, are alternately repeated within the range of the degree of opening equal to or less than 1/4 of the upper limit degree of opening. configured to
 本開示の空気調和装置は、上限開度の4分の1の開度以下の範囲内において、膨張弁の開度の増減を繰り返す。これにより、製造工程の複雑化を回避しつつ、低容量運転ができる空気調和装置が実現できる。 The air conditioner of the present disclosure repeats the increase and decrease of the opening of the expansion valve within a range of 1/4 of the upper limit opening or less. As a result, it is possible to realize an air conditioner capable of low-capacity operation while avoiding complication of the manufacturing process.
実施の形態1に係る空気調和装置の構成を示す図である。1 is a diagram showing the configuration of an air conditioner according to Embodiment 1. FIG. 制御装置およびLEVの構成を示すブロック図である。3 is a block diagram showing the configuration of a control device and LEV; FIG. 電子膨張弁の開度の変化を説明するための波形図である。FIG. 4 is a waveform diagram for explaining changes in the degree of opening of an electronic expansion valve; LEV111のCv値と開度を示すパルス数との関係を説明するための図である。4 is a diagram for explaining the relationship between the Cv value of the LEV 111 and the number of pulses indicating the degree of opening; FIG. 図4に示した開度において、図3のCvAおよびCvBの位置を説明するための図である。FIG. 5 is a diagram for explaining the positions of CvA and CvB in FIG. 3 at the opening degree shown in FIG. 4; 実施の形態1の空気調和システムで実行される運転モード切替の制御を説明するためのフローチャートである。4 is a flowchart for explaining control of operation mode switching executed in the air conditioning system of Embodiment 1. FIG. 図6のステップS3の処理内容の一例を示すフローチャートである。FIG. 7 is a flow chart showing an example of the processing contents of step S3 of FIG. 6; FIG. 実施の形態2において実行される処理を説明するためのフローチャートである。FIG. 10 is a flow chart for explaining processing executed in the second embodiment; FIG. 実施の形態2で用いられるマップM1の一例を示す図である。FIG. 10 is a diagram showing an example of a map M1 used in Embodiment 2; FIG. 実施の形態2で用いられる他のマップM1Aを示す図である。FIG. 10 is a diagram showing another map M1A used in Embodiment 2; FIG. 圧縮機の運転周波数と所望のCv値との関係を示す図である。FIG. 4 is a diagram showing the relationship between the operating frequency of the compressor and the desired Cv value; 実施の形態3で実行される時間比の制御を説明するための図である。FIG. 12 is a diagram for explaining time ratio control executed in the third embodiment; FIG. 実施の形態4の空気調和システムで実行される運転モード切替の制御を説明するためのフローチャートである。14 is a flowchart for explaining control of operation mode switching executed in the air conditioning system of Embodiment 4. FIG. 図13におけるステップS3Bの処理を説明するためのフローチャートである。FIG. 14 is a flowchart for explaining the process of step S3B in FIG. 13; FIG. 実施の形態4で用いられるマップM2の一例を示す図である。FIG. 12 is a diagram showing an example of a map M2 used in Embodiment 4; FIG.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、以下の図は各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. A plurality of embodiments will be described below, but appropriate combinations of the configurations described in the respective embodiments have been planned since the filing of the application. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated. In the following figures, the size relationship of each component may differ from the actual size.
 実施の形態1.
 図1は、実施の形態1に係る空気調和装置の構成を示す図である。空気調和装置1は、圧縮機10と、室内熱交換器20と、電子膨張弁(LEV:Linear Expansion Valve)111と、室外熱交換器40と、配管90,92,94,96,97,99と、四方弁100とを含む冷媒回路150を備える。四方弁100は、ポートE~Hを有する。
Embodiment 1.
FIG. 1 is a diagram showing the configuration of an air conditioner according to Embodiment 1. FIG. The air conditioner 1 includes a compressor 10, an indoor heat exchanger 20, an electronic expansion valve (LEV: Linear Expansion Valve) 111, an outdoor heat exchanger 40, and pipes 90, 92, 94, 96, 97, 99. and a refrigerant circuit 150 including the four-way valve 100 . The four-way valve 100 has ports EH.
 配管90は、四方弁100のポートHと室内熱交換器20のポートP1との間に接続される。配管92は、室内熱交換器20のポートP4とLEV111との間に接続される。配管94は、LEV111と室外熱交換器40のポートP3との間に接続される。 The pipe 90 is connected between the port H of the four-way valve 100 and the port P1 of the indoor heat exchanger 20. Piping 92 is connected between port P4 of indoor heat exchanger 20 and LEV 111 . A pipe 94 is connected between the LEV 111 and the port P3 of the outdoor heat exchanger 40 .
 配管96は、室外熱交換器40のポートのP2と四方弁100のポートFとの間に接続される。配管97は、圧縮機10の吸入口と四方弁100のポートEとの間に接続される。配管99は、圧縮機10の吐出口と四方弁100のポートGとの間に接続される。 The pipe 96 is connected between the port P2 of the outdoor heat exchanger 40 and the port F of the four-way valve 100 . A pipe 97 is connected between the suction port of the compressor 10 and the port E of the four-way valve 100 . A pipe 99 is connected between the outlet of the compressor 10 and the port G of the four-way valve 100 .
 圧縮機10と、LEV111と、室外熱交換器40と、配管94,96,97,99と、四方弁100とは、室外機2に収容されている。室内熱交換器20は、室内機3に収容されている。室外機2と室内機3は、配管90,92によって接続されている。 The compressor 10, the LEV 111, the outdoor heat exchanger 40, the pipes 94, 96, 97, 99, and the four-way valve 100 are housed in the outdoor unit 2. The indoor heat exchanger 20 is housed in the indoor unit 3 . The outdoor unit 2 and the indoor unit 3 are connected by pipes 90 and 92 .
 空気調和装置1は、温度センサ101~103、106,107と、制御装置200とをさらに含む。温度センサ101は、配管99の途中に配置され、吐出温度THを計測する。温度センサ102は、室内熱交換器20の付近に配置され、室内温度Trを計測する。温度センサ103は、室外熱交換器40の付近に配置され、室外温度Teを計測する。温度センサ106は、室内熱交換器20の冷媒配管の途中に配置され、二相域冷媒の温度T1を計測する。温度センサ107は、室外熱交換器40の冷媒配管の途中に配置され、二相域冷媒の温度T2を計測する。制御装置200は、ユーザーから与えられる運転指令信号と各種センサの出力とに応じて、圧縮機10と、四方弁100と、LEV111とを制御する。 The air conditioner 1 further includes temperature sensors 101 to 103, 106, 107 and a control device 200. A temperature sensor 101 is arranged in the middle of the pipe 99 and measures the discharge temperature TH. A temperature sensor 102 is arranged near the indoor heat exchanger 20 to measure the indoor temperature Tr. The temperature sensor 103 is arranged near the outdoor heat exchanger 40 and measures the outdoor temperature Te. The temperature sensor 106 is arranged in the refrigerant pipe of the indoor heat exchanger 20 and measures the temperature T1 of the two-phase region refrigerant. The temperature sensor 107 is arranged in the refrigerant pipe of the outdoor heat exchanger 40 and measures the temperature T2 of the two-phase region refrigerant. The control device 200 controls the compressor 10, the four-way valve 100, and the LEV 111 according to the operation command signal given by the user and the outputs of various sensors.
 圧縮機10は、制御装置200から受ける制御信号によって運転周波数を変更するように構成される。具体的には、圧縮機10は、インバータ制御された回転速度が可変の駆動モータを内蔵しており、運転周波数が変更されると駆動モータの回転速度が変化する。圧縮機10の運転周波数を変更することにより圧縮機10の出力が調整される。圧縮機10には種々のタイプ、たとえば、ロータリータイプ、往復タイプ、スクロールタイプ、スクリュータイプ等のものを採用することができる。 The compressor 10 is configured to change the operating frequency according to a control signal received from the control device 200 . Specifically, the compressor 10 incorporates an inverter-controlled drive motor whose rotational speed is variable, and the rotational speed of the drive motor changes when the operating frequency is changed. By changing the operating frequency of the compressor 10, the output of the compressor 10 is adjusted. Various types such as rotary type, reciprocating type, scroll type, and screw type can be adopted for the compressor 10 .
 四方弁100は、制御装置200から受ける制御信号によって冷房運転状態および暖房運転状態のいずれかになるように制御される。冷房運転状態は、ポートEとポートHとが連通し、ポートFとポートGとが連通する状態である。暖房運転状態は、ポートEとポートFとが連通し、ポートHとポートGとが連通する状態である。冷房運転状態で圧縮機10を運転することによって、実線矢印に示す向きに冷媒が冷媒回路中を循環する。また、暖房運転状態で圧縮機10を運転することによって、破線矢印に示す向きに冷媒が冷媒回路中を循環する。 The four-way valve 100 is controlled by a control signal received from the control device 200 so as to be in either the cooling operation state or the heating operation state. The cooling operation state is a state in which the port E and the port H are in communication, and the port F and the port G are in communication. In the heating operation state, the port E and the port F communicate, and the port H and the port G communicate. By operating the compressor 10 in the cooling operation state, the refrigerant circulates in the refrigerant circuit in the direction indicated by the solid line arrow. Further, by operating the compressor 10 in the heating operation state, the refrigerant circulates in the refrigerant circuit in the direction indicated by the dashed arrow.
 LEV111は、制御装置200から受ける制御信号によって、蒸発器出口部の冷媒のSH(スーパーヒート:加熱度)を調整するように開度が制御される。 The opening of the LEV 111 is controlled by a control signal received from the control device 200 so as to adjust the SH (superheat: degree of heating) of the refrigerant at the outlet of the evaporator.
 図2は、制御装置およびLEVの構成を示すブロック図である。図2に示すように、制御装置200は、CPU(Central Processing Unit)201と、メモリ202(ROM(Read Only Memory)およびRAM(Random Access Memory))と、入出力バッファ(図示せず)等を含んで構成される。CPU201は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置200の処理手順が記されたプログラムである。制御装置200は、これらのプログラムに従って、空気調和装置1における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 FIG. 2 is a block diagram showing the configuration of the control device and LEV. As shown in FIG. 2, the control device 200 includes a CPU (Central Processing Unit) 201, a memory 202 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input/output buffer (not shown), etc. composed of The CPU 201 expands a program stored in the ROM into the RAM or the like and executes it. The program stored in the ROM is a program in which processing procedures of the control device 200 are described. The control device 200 controls each device in the air conditioner 1 according to these programs. This control is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
 制御装置200は、室外温度Te、室内温度Tr、吐出温度TH、二相域冷媒の温度T1,T2に基づいて、モータ駆動回路203を制御するように構成される。 The controller 200 is configured to control the motor drive circuit 203 based on the outdoor temperature Te, the indoor temperature Tr, the discharge temperature TH, and the temperatures T1 and T2 of the two-phase refrigerant.
 LEV111は、ステッピングモータ112と、ステッピングモータ112の回転によってニードル位置が変化し開度が変化する弁本体113とを備える。ステッピングモータ112は、モータ駆動回路203によって駆動される。制御装置200は、弁本体113の開度を示す指令値として、パルス数をモータ駆動回路203に出力する。 The LEV 111 is provided with a stepping motor 112 and a valve body 113 in which the rotation of the stepping motor 112 changes the position of the needle and changes the degree of opening. The stepping motor 112 is driven by a motor drive circuit 203 . The control device 200 outputs the number of pulses to the motor drive circuit 203 as a command value indicating the degree of opening of the valve body 113 .
 再び図1を参照して、破線矢印で示した暖房運転時の冷媒の流れについて説明する。圧縮機10から吐出されたガス冷媒は、配管90を通り室内熱交換器20へ流入する。室内熱交換器20に流入したガス冷媒は室内熱交換器20のフィン側を流れる空気と熱交換し液冷媒となる。液化した冷媒は、配管92を通りLEV111へ流入し断熱膨張する。  Referring to FIG. 1 again, the flow of the refrigerant during the heating operation indicated by the dashed arrow will be described. Gas refrigerant discharged from the compressor 10 flows into the indoor heat exchanger 20 through the pipe 90 . The gas refrigerant flowing into the indoor heat exchanger 20 exchanges heat with the air flowing on the fin side of the indoor heat exchanger 20 to become liquid refrigerant. The liquefied refrigerant flows into the LEV 111 through the pipe 92 and adiabatically expands.
 LEV111において断熱膨張した気液二相冷媒は、配管94を通り室外熱交換器40へ流入する。室外熱交換器40に流入した気液二相冷媒は、室外熱交換器40のフィン側を流れる空気と熱交換しガス冷媒となる。ガス化した冷媒は配管96、四方弁100、配管97を通り圧縮機10へ戻る。 The gas-liquid two-phase refrigerant adiabatically expanded in the LEV 111 flows through the pipe 94 into the outdoor heat exchanger 40 . The gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 40 exchanges heat with the air flowing on the fin side of the outdoor heat exchanger 40 to become a gas refrigerant. The gasified refrigerant returns to the compressor 10 through the pipe 96 , the four-way valve 100 and the pipe 97 .
 ここで、たとえば、空調負荷が下がり、圧縮機10の運転周波数が低下した場合について説明する。 Here, for example, a case where the air conditioning load is reduced and the operating frequency of the compressor 10 is reduced will be described.
 空調負荷が小さい場合には、制御装置200は、空調能力が空調負荷に一致するまで圧縮機10の運転周波数を下げていく。圧縮機10の運転周波数が低下すると、冷媒回路150の冷媒循環量は低下する。冷媒循環量が低下すると、空調能力(=冷媒循環量×室内機エンタルピ差)は低下する。 When the air conditioning load is small, the controller 200 lowers the operating frequency of the compressor 10 until the air conditioning capacity matches the air conditioning load. When the operating frequency of the compressor 10 is lowered, the refrigerant circulation amount of the refrigerant circuit 150 is lowered. When the refrigerant circulation amount decreases, the air conditioning capacity (=refrigerant circulation amount×indoor unit enthalpy difference) decreases.
 また、圧縮機10の運転周波数が低下すると圧縮機10で発生する圧力差が小さくなり、室内熱交換器20および室外熱交換器40において冷媒温度と空気温度との温度差が小さくなる。温度差が小さくなると熱交換しにくくなり吐出温度が上がりにくくなる結果、吐出冷媒の過熱度は低下する。 Also, when the operating frequency of the compressor 10 decreases, the pressure difference generated in the compressor 10 decreases, and the temperature difference between the refrigerant temperature and the air temperature in the indoor heat exchanger 20 and the outdoor heat exchanger 40 decreases. As the temperature difference becomes smaller, heat exchange becomes more difficult and the discharge temperature becomes less likely to rise, resulting in a decrease in the degree of superheat of the discharged refrigerant.
 そこで、制御装置200は、温度差を確保するために、LEV111を絞り圧力差を確保する制御を行なう。 Therefore, in order to secure the temperature difference, the control device 200 controls the LEV 111 to secure the throttling pressure difference.
 しかし、空調能力1kW以下の低出力を精度良く実現するため、圧縮機10の周波数を下げて運転する場合、LEV111の開度を小さい開度に精度良く制御することが必要となる。この場合、制御装置200からモータ駆動回路203に送信する開度を指令するパルス数を小さくする必要がある。ここで、電子膨張弁が閉弁した状態から開弁した状態に移行する開弁点は、電子膨張弁ごとにばらつくことが問題となる。このような開弁点のばらつきは、ステッピングモータの取り付け方、弁体の寸法および弁座の寸法にばらつきがあるために生じる。したがって、パルス数の少ない領域での使用は、開弁点の製造ばらつきによって意図しない閉弁状態を招くおそれがあり、推奨されていない。 However, in order to accurately achieve a low air conditioning capacity of 1 kW or less, when operating the compressor 10 at a reduced frequency, it is necessary to accurately control the opening of the LEV 111 to a small opening. In this case, it is necessary to reduce the number of pulses for commanding the opening, which is transmitted from the control device 200 to the motor drive circuit 203 . Here, there is a problem that the valve opening point at which the electronic expansion valve shifts from the closed state to the open state varies from electronic expansion valve to electronic expansion valve. Such variations in the valve opening point are caused by variations in the mounting method of the stepping motor, the dimensions of the valve body, and the dimensions of the valve seat. Therefore, use in a region where the number of pulses is small may lead to an unintended valve closing state due to manufacturing variations in valve opening point, and is not recommended.
 このため、国際公開2013/103061号には、膨張弁の特性を個別に予め計測し、開弁点のデータをバーコードで提供することが示されている。しかしながら、膨張弁の特性を個別に予め計測したり、空気調和機の制御装置に、膨張弁の特性を登録したりすることによって、製造工程が増加してしまう。 For this reason, International Publication No. 2013/103061 indicates that the characteristics of the expansion valve are individually measured in advance and the valve opening point data is provided as a barcode. However, by individually measuring the characteristics of the expansion valves in advance or registering the characteristics of the expansion valves in the control device of the air conditioner, the number of manufacturing processes increases.
 そこで、本実施の形態では、LEV111の開度が安定した使用ができる下限に近いある開度まで下がり、吐出冷媒の過熱度が不足していた場合、意図的にLEV111を全閉または全閉に近い第2開度とし、その後、開度を増加させ第1開度とすることを繰り返す。 Therefore, in the present embodiment, when the opening of the LEV 111 decreases to a certain opening close to the lower limit at which stable use is possible and the degree of superheat of the discharged refrigerant is insufficient, the LEV 111 is intentionally fully closed or completely closed. A close second opening degree is set, and then the opening degree is increased to the first opening degree, which is repeated.
 図3は、電子膨張弁の開度の変化を説明するための波形図である。図3において横軸は時間、縦軸は、電子膨張弁の開度に相当するCv値を示す。なお、Cv値は、バルブの容量係数を示す。 FIG. 3 is a waveform diagram for explaining changes in the degree of opening of the electronic expansion valve. In FIG. 3, the horizontal axis indicates time, and the vertical axis indicates the Cv value corresponding to the degree of opening of the electronic expansion valve. The Cv value indicates the capacity coefficient of the valve.
 周期tCで、LEV111の開度を第1開度(Cv値=CvA)に設定する期間と第2開度(Cv値=CvB)に設定する期間とをある時間比で繰り返す場合、その時間比に応じて第1開度と第2開度の間における任意の平均開度(Cv値=CvC)を実現できる。 When the period of setting the opening of the LEV 111 to the first degree of opening (Cv value=CvA) and the period of setting the degree of opening of the LEV 111 to the second degree of opening (Cv value=CvB) are repeated at a certain time ratio in the cycle tC, the time ratio An arbitrary average opening (Cv value=CvC) between the first opening and the second opening can be realized according to .
 制御装置200は、空調負荷が小さい状態において、吐出冷媒の所望の過熱度を実現するために、LEV111のCv値が所望のCv値になるように、図3の期間tA,tBを調整する。言い換えると、Cv値は、時間比(tA/tCまたはtB/tC)に応じて変化するので、制御装置200は、時間比を変化させて所望のCv値を得る。 The control device 200 adjusts the periods tA and tB in FIG. 3 so that the Cv value of the LEV 111 becomes the desired Cv value in order to achieve the desired degree of superheat of the discharged refrigerant when the air conditioning load is small. In other words, the Cv value changes according to the time ratio (tA/tC or tB/tC), so the controller 200 changes the time ratio to obtain the desired Cv value.
 図4は、LEV111のCv値と開度を示すパルス数との関係を説明するための図である。制御装置200は、モータ駆動回路203に、弁の開度に対応するパルス数を指令値として出力している。パルス数は0からnの間で変化させることができる。nの数は、電子膨張弁の仕様などによって異なるが、たとえば図4の例ではn=500であり、1/4×n=125である。指令値0が示す開度のCv値をCvminとし、最大パルス数である指令値500が示す開度のCv値をCvmaxとすると、Cvminは、ゼロであっても良いがゼロに近いゼロより大きい値であっても良い。Cvmin<Cvmaxであれば、Cvmin、Cvmaxは適宜定めることができる。 FIG. 4 is a diagram for explaining the relationship between the Cv value of the LEV 111 and the number of pulses indicating the degree of opening. The control device 200 outputs the number of pulses corresponding to the opening of the valve to the motor drive circuit 203 as a command value. The number of pulses can vary from 0 to n. The number of n varies depending on the specifications of the electronic expansion valve, etc. For example, in the example of FIG. 4, n=500 and 1/4×n=125. Let Cvmin be the Cv value of the opening indicated by the command value 0, and let Cvmax be the Cv value of the opening indicated by the command value 500, which is the maximum number of pulses. It can be a value. If Cvmin<Cvmax, Cvmin and Cvmax can be determined appropriately.
 図5は、図4に示した開度において、図3のCvAおよびCvBの位置を説明するための図である。図5では、CvAに対応する指令値AもCvBに対応する指令値Bも、いずれも制御可能な最大開度に対応するパルス数n(たとえば500)の4分の1(たとえば125)以下のパルス数であることが示される。 FIG. 5 is a diagram for explaining the positions of CvA and CvB in FIG. 3 at the opening shown in FIG. In FIG. 5, both the command value A corresponding to CvA and the command value B corresponding to CvB are less than 1/4 (eg 125) of the pulse number n (eg 500) corresponding to the maximum controllable opening. It is shown to be the number of pulses.
 図3に示すようにパルスを制御して実現するCv値=CvCに対応する膨張弁の開度は、空調負荷が極めて小さい場合に用いられるものであり、膨張弁の閉弁点のばらつきにより意図しないで閉弁状態となってしまうおそれがある場合に用いられるものである。このため、パルス数A,Bがnの1/4より大きい場合には、そのようなCv値は実現できない。 As shown in FIG. 3, the opening degree of the expansion valve corresponding to the Cv value=CvC realized by controlling the pulse is used when the air conditioning load is extremely small. This is used when there is a risk that the valve will be closed without doing so. Therefore, such a Cv value cannot be realized when the number of pulses A and B is greater than 1/4 of n.
 たとえば、パルス数Bをゼロとし、パルス数Aを500として、図3のtAをtBに対して極めて短くすることも考えられるが、膨張弁の応答速度、および膨張弁の開度の変化に応じてCv値が変化する応答速度は遅いため、精度良く所望のCv値を実現することが難しくなる。 For example, it is conceivable to set the pulse number B to zero, the pulse number A to 500, and make tA in FIG. 3 extremely shorter than tB. Since the response speed at which the Cv value changes is slow, it becomes difficult to achieve a desired Cv value with high accuracy.
 したがって、本実施の形態では、指令値A,Bについて、0≦B<A≦n×1/4の関係としている。また、図3における周期tCもあまり長いと平均値としてのCvCを実現できないので、周期tCは1分以内とすることが望ましい。 Therefore, in the present embodiment, the command values A and B have a relationship of 0≦B<A≦n×1/4. Also, if the cycle tC in FIG. 3 is too long, CvC as an average value cannot be achieved, so it is desirable that the cycle tC is one minute or less.
 図6は、実施の形態1の空気調和システムで実行される運転モード切替の制御を説明するためのフローチャートである。 FIG. 6 is a flow chart for explaining the operation mode switching control executed in the air conditioning system of the first embodiment.
 制御装置200は、ステップS1において、室内温度Trと設定温度Tsetの差の大きさが判定値Tth1より小さいか否かを判断する。これによる空調負荷の大小が判断される。 In step S1, the control device 200 determines whether the magnitude of the difference between the room temperature Tr and the set temperature Tset is smaller than the determination value Tth1. The magnitude of the air conditioning load is determined based on this.
 |t-Tset|<Tth1の場合(S1でYES)、制御装置200は、ステップS2において、吐出冷媒の過熱度(以下、吐出SHと記載する)が判定値Tth2より小さいか否かを判断する。これにより冷媒回路150の状態が判定される。 If |t−Tset|<Tth1 (YES in S1), the control device 200 determines in step S2 whether or not the degree of superheat of the discharged refrigerant (hereinafter referred to as discharge SH) is smaller than the determination value Tth2. . Thereby, the state of the refrigerant circuit 150 is determined.
 吐出SH<Tth2の場合(S2でYES)、ステップS3において、制御装置200は、図3~5で説明したように、指令値A,Bを繰り返して出力することによって、LEV111の開度がH(第1開度、Cv値=CvA)とL(第2開度、Cv値=CvB)を定期的に繰り返すようにLEV111を制御する。これにより平均値としてCv値=CvCの開度が実現される。 If discharge SH<Tth2 (YES in S2), in step S3, control device 200 repeatedly outputs command values A and B as described with reference to FIGS. The LEV 111 is controlled to periodically repeat (first degree of opening, Cv value=CvA) and L (second degree of opening, Cv value=CvB). As a result, an opening degree of Cv value=CvC is realized as an average value.
 一方、|t-Tset|≧Tth1の場合(S1でNO)または吐出SH≧Tth2の場合(S2でNO)には、ステップS4において、LEV111の開度を1つの指令値で指定する通常の制御が実行される。 On the other hand, if |t−Tset|≧Tth1 (NO at S1) or discharge SH≧Tth2 (NO at S2), in step S4, normal control is performed to designate the opening of the LEV 111 with one command value. is executed.
 ここで、図3において、時間比tA/tCは固定値(たとえば50%)でも良いが、時間比を変化させることによって、より細かい精度でLEV111の平均開度を変化させることができる。 Here, in FIG. 3, the time ratio tA/tC may be a fixed value (for example, 50%), but by changing the time ratio, the average opening of the LEV 111 can be changed with finer precision.
 図7は、図6のステップS3の処理内容の一例を示すフローチャートである。まずステップS11において、制御装置200は、吐出SHが判定値Tth2より小さいか否かを判断する。 FIG. 7 is a flowchart showing an example of the processing contents of step S3 in FIG. First, in step S11, the control device 200 determines whether or not the ejection SH is smaller than the determination value Tth2.
 吐出SH<Tth2の場合(S11でYES)、ステップS12において、制御装置200は、LEV開度が高い第1開度CvAである時間tAの時間を減少させ、時間比tA/tCを減少させる。そして再びステップS11の処理を実行する。 If discharge SH<Tth2 (YES in S11), in step S12, the control device 200 reduces the time tA, which is the first opening degree CvA with the high LEV opening degree, and reduces the time ratio tA/tC. Then, the process of step S11 is executed again.
 ステップS12における時間比の初期値を100%としておけば、吐出SHが所望の値になるように時間比が調整され、時間比調整後に(S11でYES)調整された時間比に固定された状態で一定時間のLEV開度H/L繰り返し運転が実行される(S13)。 If the initial value of the time ratio in step S12 is set to 100%, the time ratio is adjusted so that the discharge SH becomes the desired value, and after the time ratio is adjusted (YES in S11), the adjusted time ratio is fixed. , the LEV opening degree H/L repetitive operation is executed for a certain period of time (S13).
 以上説明したように、実施の形態1では、製造ばらつきによって、パルス指令値とLEV111の開度またはCv値との対応が取りにくい低開度領域(上限開度の1/4以下の領域)に相当する絞り状態にLEV111を制御することができる。このため、圧縮機の運転周波数を低くした低容量運転を行ないやすくなる。 As described above, in the first embodiment, due to manufacturing variations, it is difficult to establish a correspondence between the pulse command value and the opening of the LEV 111 or the Cv value. The LEV 111 can be controlled to the corresponding aperture state. For this reason, it becomes easier to perform low-capacity operation in which the operating frequency of the compressor is lowered.
 実施の形態2.
 実施の形態1では、図7に示すように、適切な時間比を吐出SHの値を検出しながら時間比を変化させていき、適切な時間比を決定した。
Embodiment 2.
In Embodiment 1, as shown in FIG. 7, an appropriate time ratio is determined by changing the time ratio while detecting the value of the ejection SH.
 実施の形態2では、制御装置200のメモリ202に室内外温度に応じて吐出SHを規定値以上にするための膨張弁のCv値が記憶されており、室内外温度を計測しその温度に応じてLEV111の開度をある時間内で時間比を調整し所望のCv値(CvC)を得ることを特徴とする冷凍サイクル装置について説明する。 In the second embodiment, the memory 202 of the control device 200 stores the Cv value of the expansion valve for increasing the discharge SH to a specified value or more according to the indoor and outdoor temperatures. A refrigeration cycle apparatus characterized by adjusting the time ratio of the opening of the LEV 111 within a certain period of time to obtain a desired Cv value (CvC) will be described.
 なお、冷凍サイクル装置内の冷媒の流れおよび状態については、実施の形態1と同様であるので、説明は繰り返さない。 The flow and state of the refrigerant in the refrigeration cycle device are the same as in Embodiment 1, so the description will not be repeated.
 図8は、実施の形態2において実行される処理を説明するためのフローチャートである。図7に示したステップS3に代えて、実施の形態2で実行されるステップS3Aの処理が図8に示される。 FIG. 8 is a flowchart for explaining the processing executed in the second embodiment. FIG. 8 shows the process of step S3A executed in the second embodiment instead of step S3 shown in FIG.
 まずステップS21において、制御装置200は、温度センサ103から室外温度Teを取得し、温度センサ102から室内温度Trを取得する。そしてステップS22において、制御装置200は、メモリ202に予め記憶されているマップM1からCv値を決定し、ステップS23において決定されたCv値に対応する時間比を算出する。 First, in step S21, the control device 200 acquires the outdoor temperature Te from the temperature sensor 103 and acquires the indoor temperature Tr from the temperature sensor 102. Then, in step S22, the control device 200 determines the Cv value from the map M1 pre-stored in the memory 202, and calculates the time ratio corresponding to the determined Cv value in step S23.
 図9は、実施の形態2で用いられるマップM1の一例を示す図である。図9に示すように、各室内外温度の組み合わせに対応した膨張弁開度に対応するCv値は、テーブルとして制御装置200に内蔵されているメモリ202内に記憶されている。制御装置200は、室内外の空気温度Tr,Teをサーミスタなどの温度センサ102,103で計測し、その空気温度に応じたCv値を実現する時間比を算出してLEV111の制御を行なう。 FIG. 9 is a diagram showing an example of the map M1 used in the second embodiment. As shown in FIG. 9, Cv values corresponding to expansion valve opening degrees corresponding to combinations of indoor and outdoor temperatures are stored as a table in memory 202 incorporated in control device 200 . Control device 200 measures indoor and outdoor air temperatures Tr and Te with temperature sensors 102 and 103 such as thermistors, calculates a time ratio for realizing a Cv value according to the air temperature, and controls LEV 111 .
 なお,図9では、マップにはCv値が記憶されているが、Cv値に代えて空気温度に応じた時間比を直接記憶させておいても良い。図10は、実施の形態2で用いられる他のマップM1Aを示す図である。図9において、室外温度が高く室内温度が低くなるほど(図9の左上方向)Cv値は小さくなり、室外温度が低く室内温度が高くなるほど(図9の右下方向)Cv値は大きくなる。よって、Cv値を小さくするには図3の時間tBを長くすればよく、時間比(図3中のtB/tC)を大きくすれ良い。したがって、図10のマップM1Aでは、室外温度が高く室内温度が低くなるほど(図10の左上方向)時間比RB(=tB/tC)は大きくなり、室外温度が低く室内温度が高くなるほど(図10の右下方向)時間比RBは小さくなる。 Although the Cv value is stored in the map in FIG. 9, the time ratio according to the air temperature may be directly stored instead of the Cv value. FIG. 10 shows another map M1A used in the second embodiment. In FIG. 9, the higher the outdoor temperature and the lower the indoor temperature (upper left in FIG. 9), the smaller the Cv value, and the lower the outdoor temperature and the higher the indoor temperature (lower right in FIG. 9), the larger the Cv value. Therefore, in order to decrease the Cv value, the time tB in FIG. 3 should be lengthened, and the time ratio (tB/tC in FIG. 3) should be increased. Therefore, in the map M1A of FIG. 10, the higher the outdoor temperature and the lower the indoor temperature (in the upper left direction in FIG. 10), the larger the time ratio RB (=tB/tC). lower right direction) The time ratio RB becomes smaller.
 実施の形態2では、実施の形態1と同様に、時間比をもってLEV111を制御することで、制御が難しい小さい開度のCv値を時間平均で実現でき、吐出SHを確保することができる。さらに、室内外の空気温度によって変化する所望のCv値を予めテーブルとしてメモリ202に記憶しておくことで、実製品では温度センサ102,103で室内外温度を計測するだけで直ちに時間比を決定できるので、より速い制御が実現可能となる。 In the second embodiment, as in the first embodiment, by controlling the LEV 111 with a time ratio, it is possible to achieve a Cv value with a small degree of opening, which is difficult to control, on a time average basis, and to ensure the discharge SH. Furthermore, by storing the desired Cv value that changes depending on the indoor and outdoor air temperature in the memory 202 in advance as a table, in the actual product, the time ratio can be immediately determined simply by measuring the indoor and outdoor temperatures with the temperature sensors 102 and 103. Therefore, faster control can be realized.
 実施の形態3.
 実施の形態3では、圧縮機10の運転周波数に応じて、LEV111の開度をある時間内で時間比(図3中のtB/tC)を調整し所望のCv値(CvC)を得ることを特徴とする。
Embodiment 3.
In the third embodiment, the opening degree of the LEV 111 is adjusted within a certain period of time to obtain a desired Cv value (CvC) by adjusting the time ratio (tB/tC in FIG. 3) according to the operating frequency of the compressor 10. Characterized by
 一般的な制御において、冷凍サイクル装置内の冷媒の流れおよび冷媒の状態については、実施の形態1と同様であるので、説明は繰り返さない。 In general control, the refrigerant flow and the refrigerant state in the refrigeration cycle device are the same as in Embodiment 1, so the description will not be repeated.
 図11は、圧縮機の運転周波数と所望のCv値との関係を示す図である。一般に、運転周波数を増加させると、所望のCv値も図11に示すように増加する。しかし、実施の形態1でも説明したように、Cv値が小さい状態の膨張弁は、開度を制御することが難しい。したがって、実施の形態3では、小さいCv値が要求される周波数においては、図3に示した時間比を変化させて所望のCv値を実現する。 FIG. 11 is a diagram showing the relationship between the operating frequency of the compressor and the desired Cv value. In general, increasing the operating frequency also increases the desired Cv value, as shown in FIG. However, as explained in the first embodiment, it is difficult to control the degree of opening of the expansion valve with a small Cv value. Therefore, in the third embodiment, the desired Cv value is realized by changing the time ratio shown in FIG. 3 at frequencies where a small Cv value is required.
 図12は、実施の形態3で実行される時間比の制御を説明するための図である。実施の形態3では、圧縮機10の各運転周波数に応じた膨張弁開度の時間比(tB/tC)は、テーブルとして制御装置200に内蔵されているメモリ202内に記憶されている。制御装置200は、運転周波数に応じた時間比をメモリ202から呼び出して制御を行なう。 FIG. 12 is a diagram for explaining the time ratio control executed in the third embodiment. In Embodiment 3, the time ratio (tB/tC) of the expansion valve opening degree corresponding to each operating frequency of compressor 10 is stored as a table in memory 202 built in controller 200 . The control device 200 calls the time ratio corresponding to the operating frequency from the memory 202 and performs control.
 なお、実施の形態1では、時間比は、tA/tCとしており、時間比が100%で開度大連続状態であるが、図12では、時間比はtB/tCとしているので時間比が0%で開度大連続状態となる。 In Embodiment 1, the time ratio is set to tA/tC, and the time ratio is 100%, indicating a state of continuous large opening, but in FIG. 12, the time ratio is set to tB/tC, so the time ratio is 0 %, the degree of opening is large and continuous.
 したがって、図12では、運転周波数がfth~fmaxの間は、通常の制御のように1つの開度指令値でLEV111が連続運転され、運転周波数がfth以下になると第1開度(CvAに相当)と第2開度(CvBに相当)とを繰り返す運転となる。そして運転周波数がfthからfminに向かって低下するにしたがって、時間比tB/tCは増加しCv値は小さくなっていく。 Therefore, in FIG. 12, when the operating frequency is between fth and fmax, the LEV 111 is continuously operated with one opening command value as in normal control. ) and the second degree of opening (corresponding to CvB) are repeated. As the operating frequency decreases from fth to fmin, the time ratio tB/tC increases and the Cv value decreases.
 実施の形態3によれば、実施の形態1と同様に、ある時間比でLEV111の開度を第1開度と第2開度の間で繰り返すように開度指令値を制御する。これによって、安定して制御できる最小のCv値より小さい領域のCv値を時間平均で実現でき、吐出SHを確保することができる。さらに、運転周波数によって変化する所望のCv値を予めテーブルとして記憶しておくことで、実製品ではその周波数に応じて時間比を読み込むだけでより良い制御が実現可能となる。 According to Embodiment 3, similarly to Embodiment 1, the opening command value is controlled so that the opening of the LEV 111 is repeated between the first opening and the second opening at a certain time ratio. As a result, the Cv value in the region smaller than the minimum Cv value that can be stably controlled can be realized by time average, and the ejection SH can be ensured. Furthermore, by storing in advance the desired Cv value that varies depending on the operating frequency as a table, better control can be realized in the actual product simply by reading the time ratio according to the frequency.
 実施の形態4.
 実施の形態4では、実施の形態1~3を組み合わせることによって、室内空気温度、室外空気温度および運転周波数に応じた時間比に基づいて、LEV111を制御することを特徴とする。
Embodiment 4.
The fourth embodiment is characterized in that the LEV 111 is controlled based on the indoor air temperature, the outdoor air temperature, and the time ratio according to the operating frequency by combining the first to third embodiments.
 一般的な冷凍サイクル装置内の冷媒の流れおよび冷媒状態については、実施の形態1と同様であるので、説明は繰り返さない。 The refrigerant flow and refrigerant state in a general refrigeration cycle device are the same as in Embodiment 1, so the description will not be repeated.
 図13は、実施の形態4の空気調和システムで実行される運転モード切替の制御を説明するためのフローチャートである。図13のフローチャートは、図6のフローチャートにおいて、ステップS2の後にステップS2Aが追加され、ステップS3に代えてステップS3Bが実行される。 FIG. 13 is a flow chart for explaining the operation mode switching control executed in the air conditioning system of the fourth embodiment. In the flowchart of FIG. 13, in the flowchart of FIG. 6, step S2A is added after step S2, and step S3B is executed instead of step S3.
 まず、制御装置200は、ステップS1において、室内温度Trと設定温度Tsetの差の大きさが判定値Tth1より小さいか否かを判断する。これによる空調負荷の大小が判断される。 First, in step S1, the control device 200 determines whether the magnitude of the difference between the room temperature Tr and the set temperature Tset is smaller than the determination value Tth1. The magnitude of the air conditioning load is determined based on this.
 |t-Tset|<Tth1の場合(S1でYES)、制御装置200は、ステップS2において、吐出SHが判定値Tth2より小さいか否かを判断する。これにより冷媒回路150の状態が判定される。 If |t−Tset|<Tth1 (YES in S1), the control device 200 determines in step S2 whether or not the discharge SH is smaller than the determination value Tth2. Thereby, the state of the refrigerant circuit 150 is determined.
 吐出SH<Tth2の場合(S2でYES)、ステップS2Aにおいて、制御装置200は、圧縮機10の運転周波数fが判定値fthより低いか否かを判断する。これにより、図12に示したような時間比制御を導入する周波数範囲fmin~fthであるか否かが判断される。 If the discharge SH<Tth2 (YES in S2), in step S2A, the control device 200 determines whether or not the operating frequency f of the compressor 10 is lower than the determination value fth. Thus, it is determined whether or not the frequency range is from fmin to fth in which the time ratio control as shown in FIG. 12 is introduced.
 f<fthの場合(S2AでYES)、ステップS3Bにおいて、制御装置200は、指令値A,Bを繰り返して出力することによって、LEV111の開度がH(第1開度、Cv値=CvA)とL(第2開度、Cv値=CvB)を定期的に繰り返すようにLEV111を制御する。これにより平均値としてCv値=CvCの開度が実現される。 If f<fth (YES in S2A), in step S3B, the controller 200 repeatedly outputs the command values A and B so that the opening of the LEV 111 is H (first opening, Cv value=CvA). and L (second opening, Cv value=CvB) are periodically repeated. As a result, an opening degree of Cv value=CvC is realized as an average value.
 一方、|t-Tset|≧Tth1の場合(S1でNO)または吐出SH≧Tth2の場合(S2でNO)またはf≧fthの場合(S2AでNO)は、ステップS4において、LEV111の開度を1つの指令値で指定する通常の制御が実行される。 On the other hand, if |t−Tset|≧Tth1 (NO at S1), or if ejection SH≧Tth2 (NO at S2), or if f≧fth (NO at S2A), the opening degree of the LEV 111 is adjusted in step S4. Normal control specified by one command value is executed.
 図14は、図13におけるステップS3Bの処理を説明するためのフローチャートである。まずステップS31において、制御装置200は、温度センサ103から室外温度Teを取得し、温度センサ102から室内温度Trを取得し、さらに圧縮機10の制御処理ルーチンから運転周波数fを取得する。そしてステップS32において、制御装置200は、メモリ202に予め記憶されているマップM2からCv値を決定し、ステップS33において決定されたCv値に対応する時間比を算出する。 FIG. 14 is a flowchart for explaining the process of step S3B in FIG. First, in step S31, the control device 200 acquires the outdoor temperature Te from the temperature sensor 103, acquires the indoor temperature Tr from the temperature sensor 102, and further acquires the operating frequency f from the control processing routine of the compressor 10. FIG. Then, in step S32, the control device 200 determines the Cv value from the map M2 pre-stored in the memory 202, and calculates the time ratio corresponding to the determined Cv value in step S33.
 図15は、実施の形態4で用いられるマップM2の一例を示す図である。図15に示すように、各室内外温度および運転周波数の組み合わせに対応した膨張弁開度に対応するCv値は、テーブルとして制御装置200に内蔵されているメモリ202内に記憶されている。制御装置200は、空気温度Tr,Teおよび運転周波数fに応じたCv値を実現する時間比を算出してLEV111の制御を行なう。 FIG. 15 is a diagram showing an example of the map M2 used in the fourth embodiment. As shown in FIG. 15, Cv values corresponding to expansion valve opening degrees corresponding to combinations of indoor/outdoor temperatures and operating frequencies are stored as a table in memory 202 incorporated in controller 200 . Control device 200 calculates a time ratio for realizing a Cv value according to air temperatures Tr, Te and operating frequency f, and controls LEV 111 .
 なお,図15では、マップにはCv値が記憶されているが、Cv値に代えて空気温度に応じた時間比を直接記憶させておいても良い。 Although the Cv value is stored in the map in FIG. 15, the time ratio according to the air temperature may be directly stored instead of the Cv value.
 以上説明したように、実施の形態4では、空気温度Tr,Teおよび運転周波数fに応じた膨張弁の開度のCv値または時間比がテーブルとしてメモリ202内に記憶されている。制御装置200は、運転中の空気温度Tr,Teおよび運転周波数fに応じたCv値または時間比をメモリ202から呼び出してLEV111の制御を行う。 As described above, in the fourth embodiment, the memory 202 stores the Cv value or the time ratio of the expansion valve opening according to the air temperatures Tr, Te and the operating frequency f as a table. The controller 200 calls up the Cv value or the time ratio corresponding to the air temperatures Tr and Te during operation and the operating frequency f from the memory 202 and controls the LEV 111 .
 実施の形態4によれば、実施の形態1と同様に、ある時間比でLEV111の開度を第1開度と第2開度の間で繰り返すように開度指令値を制御する。これによって、安定して制御できる最小のCv値より小さい領域のCv値を時間平均で実現でき、吐出SHを確保することができる。さらに、実施の形態2と実施の形態3を組み合わせることでより良い制御が実現可能となる。 According to Embodiment 4, similarly to Embodiment 1, the opening command value is controlled such that the opening of the LEV 111 is repeated between the first opening and the second opening at a certain time ratio. As a result, the Cv value in the region smaller than the minimum Cv value that can be stably controlled can be realized by time average, and the ejection SH can be ensured. Furthermore, by combining the second embodiment and the third embodiment, better control can be achieved.
 (まとめ)
 本実施の形態の空気調和装置1は、冷媒回路150と制御装置200とを備える。冷媒回路150は、圧縮機10と、凝縮器40,20と、LEV111と、蒸発器20,40とに冷媒が循環するように構成される。LEV111は、下限開度から上限開度までの間で開度が可変に構成される。制御装置200は、上限開度の4分の1の開度以下の範囲内において、第1開度CvAと第1開度CvAよりも小さい第2開度CvBとを交互に繰り返すようにLEV111を制御するように構成される。
(summary)
Air conditioner 1 of the present embodiment includes refrigerant circuit 150 and control device 200 . Refrigerant circuit 150 is configured such that refrigerant circulates through compressor 10 , condensers 40 and 20 , LEV 111 , and evaporators 20 and 40 . The opening degree of the LEV 111 is variable between the lower limit opening degree and the upper limit opening degree. The control device 200 causes the LEV 111 to alternately repeat the first degree of opening CvA and the second degree of opening CvB smaller than the first degree of opening CvA within a range equal to or less than 1/4 of the upper limit degree of opening. configured to control.
 好ましくは、nを自然数とすると、制御装置200は、下限開度Cvminから上限開度Cvmaxまでの間の複数開度を0からnの指令値によって指定する。制御装置200は、nの4分の1以下の指令値の範囲において、第1指令値Aと第1指令値Aよりも小さい第2指令値Bとを交互に繰り返すように指令値を出力するように構成される。 Preferably, if n is a natural number, the control device 200 designates a plurality of opening degrees between the lower limit opening degree Cvmin and the upper limit opening degree Cvmax by command values from 0 to n. The control device 200 outputs command values so as to alternately repeat a first command value A and a second command value B smaller than the first command value A within a range of command values equal to or less than 1/4 of n. configured as
 好ましくは、空気調和装置1は、凝縮器40,20および蒸発器20,40のいずれか一方と圧縮機とを収容する室外機2と、凝縮器40,20および蒸発器20,40のいずれか他方を収容する室内機3とをさらに備える。制御装置200は、室内機3に吸い込まれる空気の温度Trと設定温度Tsetとの差の大きさが閾値Tth1よりも小さいという第1条件を含む低容量運転条件が成立する場合(図6、S1でYES)に、第1開度CvBと第2開度CvAとを交互に繰り返すようにLEV111を制御する。 Preferably, the air conditioner 1 includes an outdoor unit 2 housing one of the condensers 40, 20 and the evaporators 20, 40 and a compressor, and any one of the condensers 40, 20 and the evaporators 20, 40 It further includes an indoor unit 3 that accommodates the other. When the low-capacity operating condition including the first condition that the difference between the temperature Tr of the air sucked into the indoor unit 3 and the set temperature Tset is smaller than the threshold value Tth1 is satisfied ( FIG. 6 , S1 YES), the LEV 111 is controlled to alternately repeat the first opening degree CvB and the second opening degree CvA.
 より好ましくは、低容量運転条件は、第1条件を満たし、かつ、圧縮機10が吐出する冷媒の過熱度の値が規定値以下Tth2であるという第2条件を満たす場合(図6、S2でYES)に成立する。 More preferably, the low-capacity operating condition satisfies the first condition and the second condition that the value of the degree of superheat of the refrigerant discharged from the compressor 10 is equal to or less than the specified value Tth2 (FIG. 6, in S2 YES).
 さらに好ましくは、図7に示すように、制御装置200は、過熱度の値を規定値Tth2に近づけるように、第1開度と第2開度とを交互に繰り返す周期における第1開度と第2開度との時間比を調整する。 More preferably, as shown in FIG. 7, the control device 200 controls the first opening and Adjust the time ratio with the second degree of opening.
 好ましくは、制御装置200は、演算処理部201とメモリ202とを備える。メモリ202は、室内温度と、外気温度とを入力データとし、第1開度と第2開度とを交互に繰り返す周期における第1開度と第2開度との時間比または時間比に対応するLEV111の容量係数(Cv値)を出力データとする図9に示すようなマップを記憶する。演算処理部201は、マップを用いてLEV111を制御する。 Preferably, the control device 200 includes an arithmetic processing unit 201 and a memory 202. The memory 202 uses the indoor temperature and the outdoor temperature as input data, and corresponds to the time ratio or the time ratio between the first opening and the second opening in the cycle in which the first opening and the second opening are alternately repeated. A map as shown in FIG. 9 is stored in which the capacity coefficient (Cv value) of the LEV 111 to be measured is output data. Arithmetic processing unit 201 controls LEV 111 using a map.
 好ましくは、制御装置200は、演算処理部201とメモリ202とを備える。メモリ202は、圧縮機10の運転周波数を入力データとし、第1開度と第2開度とを交互に繰り返す周期における第1開度と第2開度との時間比または時間比に対応する膨張弁の容量係数(Cv値)を出力データとするマップを記憶する。演算処理部201は、マップを用いてLEV111を制御する。 Preferably, the control device 200 includes an arithmetic processing unit 201 and a memory 202. The memory 202 uses the operating frequency of the compressor 10 as input data, and corresponds to the time ratio or the time ratio between the first opening and the second opening in the cycle in which the first opening and the second opening are alternately repeated. A map is stored in which the capacity coefficient (Cv value) of the expansion valve is used as output data. Arithmetic processing unit 201 controls LEV 111 using a map.
 好ましくは、制御装置200は、演算処理部201とメモリ202とを備える。メモリ202は、室内温度と、外気温度と、圧縮機の運転周波数とを入力データとし、第1開度と第2開度とを交互に繰り返す周期における第1開度と第2開度との時間比または時間比に対応する膨張弁の容量係数を出力データとする図15に示すようなマップを記憶する。演算処理部201は、マップを用いてLEV111を制御する。 Preferably, the control device 200 includes an arithmetic processing unit 201 and a memory 202. The memory 202 uses the room temperature, the outside air temperature, and the operating frequency of the compressor as input data, and stores the first opening degree and the second opening degree in a cycle in which the first opening degree and the second opening degree are alternately repeated. A map such as that shown in FIG. 15 is stored in which output data is the time ratio or the capacity coefficient of the expansion valve corresponding to the time ratio. Arithmetic processing unit 201 controls LEV 111 using a map.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of the claims rather than the above-described description of the embodiments, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 1 空気調和装置、2 室外機、3 室内機、10 圧縮機、20,40 熱交換器、90,92,94,96,97,99 配管、100 四方弁、101,102,103,106,107 温度センサ、111 LEV、112 ステッピングモータ、113 弁本体、150 冷媒回路、200 制御装置、201 演算処理部、202 メモリ、203 モータ駆動回路、E,F,G,H,P1,P3,P4 ポート。 1 air conditioner, 2 outdoor unit, 3 indoor unit, 10 compressor, 20, 40 heat exchanger, 90, 92, 94, 96, 97, 99 piping, 100 four-way valve, 101, 102, 103, 106, 107 Temperature sensor, 111 LEV, 112 stepping motor, 113 valve body, 150 refrigerant circuit, 200 control device, 201 arithmetic processing unit, 202 memory, 203 motor drive circuit, E, F, G, H, P1, P3, P4 ports.

Claims (8)

  1.  圧縮機と、凝縮器と、膨張弁と、蒸発器とに冷媒が循環するように構成された冷媒回路と、
     前記膨張弁を制御する制御装置とを備え、
     前記膨張弁は、下限開度から上限開度までの間で開度が可変に構成され、
     前記制御装置は、前記上限開度の4分の1の開度以下の範囲内において、第1開度と前記第1開度よりも小さい第2開度とを交互に繰り返すように前記膨張弁を制御するように構成される、空気調和装置。
    a refrigerant circuit configured to circulate refrigerant through a compressor, a condenser, an expansion valve, and an evaporator;
    a control device that controls the expansion valve;
    The expansion valve has a variable opening between a lower limit opening and an upper limit opening,
    The control device controls the expansion valve so as to alternately repeat a first degree of opening and a second degree of opening smaller than the first degree of opening within a range of a quarter of the opening degree of the upper limit or less. An air conditioner configured to control the
  2.  nを自然数とすると、前記制御装置は、前記下限開度から前記上限開度までの間の複数開度を0からnの指令値によって指定し、
     前記制御装置は、nの4分の1以下の前記指令値の範囲において、第1指令値と前記第1指令値よりも小さい第2指令値とを交互に繰り返すように前記指令値を出力する、請求項1に記載の空気調和装置。
    where n is a natural number, the control device designates a plurality of opening degrees between the lower limit opening degree and the upper limit opening degree by command values from 0 to n,
    The control device outputs the command value so as to alternately repeat a first command value and a second command value smaller than the first command value within a range of the command value equal to or less than 1/4 of n. , The air conditioner according to claim 1.
  3.  前記空気調和装置は、
     前記凝縮器および前記蒸発器のいずれか一方と前記圧縮機とを収容する室外機と、
     前記凝縮器および前記蒸発器のいずれか他方を収容する室内機とをさらに備え、
     前記制御装置は、前記室内機に吸い込まれる空気の温度と設定温度との差の大きさが閾値よりも小さいという第1条件を含む低容量運転条件が成立する場合に、前記第1開度と前記第2開度とを交互に繰り返すように前記膨張弁を制御する、請求項1に記載の空気調和装置。
    The air conditioner is
    an outdoor unit housing one of the condenser and the evaporator and the compressor;
    and an indoor unit housing the other of the condenser and the evaporator,
    When a low-capacity operating condition including a first condition that a difference between the temperature of the air sucked into the indoor unit and a set temperature is smaller than a threshold is satisfied, the controller controls the first opening and the The air conditioner according to claim 1, wherein said expansion valve is controlled so as to alternately repeat said second degree of opening.
  4.  前記低容量運転条件は、前記第1条件を満たし、かつ、前記圧縮機が吐出する前記冷媒の過熱度の値が規定値以下であるという第2条件を満たす場合に成立する、請求項3に記載の空気調和装置。 4. The low-capacity operating condition according to claim 3, wherein the low-capacity operating condition is satisfied when the first condition is satisfied and the second condition is satisfied that the value of the degree of superheat of the refrigerant discharged from the compressor is equal to or less than a specified value. An air conditioner as described.
  5.  前記制御装置は、前記過熱度の値を前記規定値に近づけるように、前記第1開度と前記第2開度とを交互に繰り返す周期における前記第1開度と前記第2開度との時間比を調整する、請求項4に記載の空気調和装置。 The control device adjusts the first opening degree and the second opening degree in a cycle in which the first opening degree and the second opening degree are alternately repeated so that the value of the degree of superheat approaches the specified value. 5. The air conditioner according to claim 4, wherein the time ratio is adjusted.
  6.  前記制御装置は、
     演算処理部とメモリとを備え、
     前記メモリは、室内温度と、外気温度とを入力データとし、前記第1開度と前記第2開度とを交互に繰り返す周期における前記第1開度と前記第2開度との時間比または前記時間比に対応する前記膨張弁の容量係数を出力データとするマップを記憶し、
     前記演算処理部は、前記マップを用いて前記膨張弁を制御する、請求項1に記載の空気調和装置。
    The control device is
    comprising an arithmetic processing unit and a memory,
    The memory uses indoor temperature and outdoor temperature as input data, and the time ratio between the first opening and the second opening in a cycle in which the first opening and the second opening are alternately repeated, or storing a map whose output data is the capacity coefficient of the expansion valve corresponding to the time ratio;
    The air conditioner according to claim 1, wherein said arithmetic processing unit controls said expansion valve using said map.
  7.  前記制御装置は、
     演算処理部とメモリとを備え、
     前記メモリは、前記圧縮機の運転周波数を入力データとし、前記第1開度と前記第2開度とを交互に繰り返す周期における前記第1開度と前記第2開度との時間比または前記時間比に対応する前記膨張弁の容量係数を出力データとするマップを記憶し、
     前記演算処理部は、前記マップを用いて前記膨張弁を制御する、請求項1に記載の空気調和装置。
    The control device is
    comprising an arithmetic processing unit and a memory,
    The memory uses the operating frequency of the compressor as input data, and the time ratio between the first opening and the second opening in a cycle in which the first opening and the second opening are alternately repeated, or the storing a map having as output data the capacity coefficient of the expansion valve corresponding to the time ratio;
    The air conditioner according to claim 1, wherein said arithmetic processing unit controls said expansion valve using said map.
  8.  前記制御装置は、
     演算処理部とメモリとを備え、
     前記メモリは、室内温度と、外気温度と、前記圧縮機の運転周波数とを入力データとし、前記第1開度と前記第2開度とを交互に繰り返す周期における前記第1開度と前記第2開度との時間比または前記時間比に対応する前記膨張弁の容量係数を出力データとするマップを記憶し、
     前記演算処理部は、前記マップを用いて前記膨張弁を制御する、請求項1に記載の空気調和装置。
    The control device is
    comprising an arithmetic processing unit and a memory,
    The memory receives the indoor temperature, the outdoor temperature, and the operating frequency of the compressor as input data, and stores the first opening and the second opening in a cycle in which the first opening and the second opening are alternately repeated. Storing a map whose output data is a time ratio with two degrees of opening or a capacity coefficient of the expansion valve corresponding to the time ratio;
    The air conditioner according to claim 1, wherein said arithmetic processing unit controls said expansion valve using said map.
PCT/JP2021/005858 2021-02-17 2021-02-17 Air-conditioning device WO2022176050A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/005858 WO2022176050A1 (en) 2021-02-17 2021-02-17 Air-conditioning device
EP21926490.0A EP4296593A4 (en) 2021-02-17 2021-02-17 Air-conditioning device
US18/261,406 US20240068699A1 (en) 2021-02-17 2021-02-17 Air conditioning apparatus
JP2023500176A JP7466754B2 (en) 2021-02-17 2021-02-17 Air Conditioning Equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/005858 WO2022176050A1 (en) 2021-02-17 2021-02-17 Air-conditioning device

Publications (1)

Publication Number Publication Date
WO2022176050A1 true WO2022176050A1 (en) 2022-08-25

Family

ID=82930312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005858 WO2022176050A1 (en) 2021-02-17 2021-02-17 Air-conditioning device

Country Status (4)

Country Link
US (1) US20240068699A1 (en)
EP (1) EP4296593A4 (en)
JP (1) JP7466754B2 (en)
WO (1) WO2022176050A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133618A (en) * 1991-11-12 1993-05-28 Hitachi Ltd Air conditioner
JPH11211286A (en) * 1998-01-23 1999-08-06 Hitachi Ltd Air conditioner
JP2009243847A (en) * 2008-03-31 2009-10-22 Mitsubishi Heavy Ind Ltd Multiple air conditioner
WO2013103061A1 (en) 2012-01-04 2013-07-11 ダイキン工業 株式会社 Electronic expansion valve and air conditioner provided with electronic expansion valve
JP2017194244A (en) * 2016-04-22 2017-10-26 株式会社大気社 Cooler

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10480838B2 (en) * 2015-03-02 2019-11-19 Mitsubishi Electric Corporation Control device for refrigeration cycle apparatus, and control method for refrigeration cycle apparatus, and refrigeration cycle apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133618A (en) * 1991-11-12 1993-05-28 Hitachi Ltd Air conditioner
JPH11211286A (en) * 1998-01-23 1999-08-06 Hitachi Ltd Air conditioner
JP2009243847A (en) * 2008-03-31 2009-10-22 Mitsubishi Heavy Ind Ltd Multiple air conditioner
WO2013103061A1 (en) 2012-01-04 2013-07-11 ダイキン工業 株式会社 Electronic expansion valve and air conditioner provided with electronic expansion valve
JP2017194244A (en) * 2016-04-22 2017-10-26 株式会社大気社 Cooler

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4296593A4

Also Published As

Publication number Publication date
JPWO2022176050A1 (en) 2022-08-25
EP4296593A1 (en) 2023-12-27
JP7466754B2 (en) 2024-04-12
US20240068699A1 (en) 2024-02-29
EP4296593A4 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
JP6642379B2 (en) air conditioner
EP2351973B1 (en) Refrigeration cycle device
US8522568B2 (en) Refrigeration system
EP2375188B1 (en) Air conditioner
KR20130018917A (en) Control device for an air-conditioning device and air-conditioning device provided therewith
CN100363689C (en) Multi air conditioning system and method for operating the same
KR20030097179A (en) Heat-Pump Air Conditioner&#39;s Operating Method
US20040093881A1 (en) Air conditioner and method of controlling the same
JP5034066B2 (en) Air conditioner
JP2001280669A (en) Refrigerating cycle device
AU2015364901A1 (en) Air conditioning apparatus
CN111750501B (en) Air conditioner and control method
WO2022176050A1 (en) Air-conditioning device
JP2008534912A (en) Single expansion device used in heat pump
KR101485848B1 (en) Control method of multi system air conditioner
JP6890706B1 (en) Air conditioning system and control method
JP2018146169A (en) air conditioner
CN113614469B (en) Air conditioner
JP6844663B2 (en) Water amount adjustment device
JPH07332795A (en) Multiroom type air-conditioning system
KR100706207B1 (en) Method fot controlling operation of a multi air conditioner system
JP7301173B2 (en) air conditioner
JP6507598B2 (en) Air conditioning system
JP6271011B2 (en) Refrigeration air conditioner
WO2023105605A1 (en) Refrigeration cycle device and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500176

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18261406

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021926490

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021926490

Country of ref document: EP

Effective date: 20230918