WO2022176047A1 - 電柱位置特定方法及び架空光ファイバケーブルの状態推定方法 - Google Patents

電柱位置特定方法及び架空光ファイバケーブルの状態推定方法 Download PDF

Info

Publication number
WO2022176047A1
WO2022176047A1 PCT/JP2021/005852 JP2021005852W WO2022176047A1 WO 2022176047 A1 WO2022176047 A1 WO 2022176047A1 JP 2021005852 W JP2021005852 W JP 2021005852W WO 2022176047 A1 WO2022176047 A1 WO 2022176047A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
vibration
utility pole
vibration distribution
fiber cable
Prior art date
Application number
PCT/JP2021/005852
Other languages
English (en)
French (fr)
Inventor
達也 岡本
大輔 飯田
優介 古敷谷
奈月 本田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023500173A priority Critical patent/JP7491458B2/ja
Priority to CN202180093496.XA priority patent/CN116917703A/zh
Priority to PCT/JP2021/005852 priority patent/WO2022176047A1/ja
Priority to US18/275,726 priority patent/US20240118126A1/en
Priority to EP21926487.6A priority patent/EP4296633A1/en
Publication of WO2022176047A1 publication Critical patent/WO2022176047A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/48Overhead installation
    • G02B6/483Installation of aerial type

Definitions

  • the present invention relates to a method for identifying the position of a utility pole and a method for estimating the state of an overhead optical fiber cable using an optical fiber vibration distribution measurement method.
  • Non-Patent Document 1 A method of intentionally applying vibration to an optical fiber cable has been proposed in order to compare the installation position (see, for example, Non-Patent Document 1 and Non-Patent Document 2).
  • the methods described in Non-Patent Literature 1 and Non-Patent Literature 2 apply vibration to an optical fiber cable or the like, and measure the temporal change of scattered light at a specific position by a light pulse test method.
  • an object of the present disclosure is to provide a method for remotely identifying the position of a utility pole and estimating the state of an overhead optical fiber cable.
  • an optical fiber vibration distribution measurement method (DAS: Distributed Acoustic Sensing) is used to identify the utility pole position from the vibration distribution pattern with respect to the optical fiber distance. , to estimate the condition of the aerial fiber optic cable.
  • DAS Distributed Acoustic Sensing
  • the utility pole position identification method of the present disclosure is based on the vibration distribution pattern obtained by sequentially accumulating the amount of strain with respect to the distance of the optical fiber measured by the optical fiber vibration distribution measurement method. It is characterized by specifying that
  • the method for estimating the state of an aerial optical fiber cable of the present disclosure is based on a vibration distribution pattern obtained by sequentially accumulating the amount of strain with respect to the optical fiber distance in the utility pole span measured by the optical fiber vibration distribution measurement method. propagates along the optical fiber and the amplitude of the vibration is uniform, it is determined that the optical fiber cable is normal.
  • the method for estimating the state of an aerial optical fiber cable of the present disclosure is based on a vibration distribution pattern obtained by sequentially accumulating the amount of strain with respect to the optical fiber distance in the utility pole span measured by the optical fiber vibration distribution measurement method. is propagated along the optical fiber and the amplitude of the vibration is not uniform, it is determined that the optical fiber cable has a load due to deposits.
  • the method for estimating the state of an aerial optical fiber cable of the present disclosure is based on a vibration distribution pattern obtained by sequentially accumulating the amount of strain with respect to the optical fiber distance in the utility pole span measured by the optical fiber vibration distribution measurement method. is stopped or reduced in the middle of the optical fiber, it is determined that an obstacle on the ground is in contact with the optical fiber cable.
  • FIG. 4 is a diagram showing a vibration distribution pattern of an optical fiber
  • FIG. 4 is a diagram showing a vibration distribution pattern of an optical fiber
  • FIG. 4 is a diagram showing a vibration distribution pattern of an optical fiber
  • FIG. 4 is a diagram showing a vibration distribution pattern of an optical fiber
  • FIG. 1 is a schematic diagram showing how a DAS is used to specify the position of a utility pole from the vibration distribution pattern with respect to the optical fiber distance, and how an aerial optical fiber cable is installed.
  • An optical signal is input to an optical cable from an optical fiber vibration distribution measuring device installed in a communication building.
  • An optical signal propagates from an optical fiber cable laid underground to an optical fiber cable laid overhead. Rayleigh scattering is induced in the optical fiber while propagating, and part of the Rayleigh scattered light scattered toward the optical fiber vibration distribution measuring apparatus returns as backscattered light.
  • OTDR Optical Time Domain Reflectometer
  • OFDR Optical Frequency Domain Reflectometer
  • the vibration frequency of an overhead optical fiber cable is 10 Hz or less and the wavelength is about 2 m.
  • the measurement performance required for the backscattered light measuring means is a sampling frequency of 20 Hz or more and a spatial resolution of about 1 m.
  • C-OTDR Coherent OTDR
  • OFDR Optical Frequency Domain Reflectometer
  • the DAS of this embodiment uses an OFDR (Optical Frequency Domain Reflectometer) as backscattered light measuring means to measure the backscattered light waveform with respect to the distance Z of the optical fiber cable.
  • OFDR Optical Frequency Domain Reflectometer
  • FIG. 2 first, the backscattered light intensity with respect to the distance of the optical fiber cable, which is the "reference measurement”, is acquired, and the "first measurement”, “second measurement”, ... " The backscattered light waveforms for the n-th measurement are sequentially acquired.
  • the waveforms at the distance between Z1 and Z2 are subjected to spectrum analysis (Fourier transform) and the spectrum shift is calculated to obtain the spectrum waveforms shown in FIG.
  • the spectrum obtained during the reference measurement is used as a reference waveform, the cross-correlation with the spectrum at each time is calculated, and the spectral shift that gives the cross-correlation peak is calculated.
  • spectral shifts are calculated in the order of "reference measurement”, "first measurement”, and "second measurement”.
  • the spectral shift ⁇ is represented by the following equation by modifying the equation (8) of Non-Patent Document 3.
  • ⁇ 0.78* ⁇ * ⁇ 0 (1)
  • is the amount of distortion
  • ⁇ 0 is the center frequency of the probe light.
  • the amount of spectral shift with respect to distance is represented by black and white shading, and by accumulating sequentially for each time, the vibration distribution pattern of the optical fiber as shown in Fig. 4 can be obtained.
  • a portion with positive strain indicates that the optical fiber is stretched, and a portion with negative strain indicates that the optical fiber is compressed.
  • positive distortion portions are represented by white and negative distortion portions are represented by black. It may also be represented by shades of different colors.
  • An overhead optical fiber cable can be regarded as a string that vibrates uniquely for each utility pole span.
  • the wind-induced vibration propagates through the utility pole span over time, and the amplitude and propagation speed of the vibration differ from one utility pole span to another. Therefore, it was found that each utility pole span has a different vibration pattern. Conversely, it can be determined that the boundary area of the vibration pattern in FIG. 4 is the utility pole position.
  • FIGS. 5, 6, and 7 show examples of optical fiber vibration distribution patterns in which the amount of strain with respect to the optical fiber distance within the utility pole span measured by the DAS is sequentially accumulated for each time.
  • An overhead optical fiber cable can be regarded as a string that vibrates for each utility pole span, and by measuring the vibration pattern, it is possible to estimate the laying state of the optical fiber cable.
  • Fig. 5 shows the vibration pattern when the optical fiber cable is normal.
  • the wind-induced vibration propagates along the overhead fiber optic cable and within the utility pole span over time, where the amplitude of the vibration is uniform within the utility pole span.
  • Fig. 6 shows the vibration pattern when there is a load due to the attached matter on the optical fiber cable.
  • wind-generated vibrations propagate along the overhead fiber optic cable and within the utility pole span over time.
  • the amplitude of vibration is large at the load point of the deposit. That is, it can be seen that the amplitude of vibration is not uniform within the utility pole span.
  • Fig. 7 shows the vibration pattern when an obstacle on the ground, such as a tree, is in contact with the optical fiber cable. It can be seen from FIG. 7 that the wind-generated vibration propagates between the utility pole and the ground obstacle, but the vibration stops or reduces at the ground obstacle. That is, the vibration stops or reduces partway through the pole span and does not propagate along the fiber optic cable.
  • FIG. 8 shows a flow chart for judging whether the optical fiber cable is normal or abnormal.
  • DAS Distributed Acoustic Sensor
  • the optical fiber cable is normal (S15 ).
  • Vibration propagates along the overhead optical fiber cable within the utility pole span (Yes in S13), and when the amplitude of the vibration is not uniform within the utility pole span (No in S14), the optical fiber cable is loaded with deposits. (S16). Furthermore, it is possible to specify that there is a deposit at the point of discontinuity in the vibration amplitude.
  • the optical fiber cable When the vibration propagates between the utility pole and the ground obstacle, but stops or shrinks in the middle of the utility pole span and does not propagate along the optical fiber cable (No in S13), the optical fiber cable is on the ground. It is estimated that it is in contact with an obstacle (S17). Furthermore, it can be determined that the fiber optic cable is in contact with the ground obstacle at the point of vibration stoppage or reduction.
  • the position of the utility pole can be remotely specified, It is possible to estimate the state of the overhead optical fiber cable and identify the location of the fault.
  • DAS Distributed Acoustic Sensor
  • This disclosure can be applied to the information and communications industry.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Locating Faults (AREA)

Abstract

本開示は、本開示は、遠隔で電柱位置を特定したり、架空光ファイバケーブルの状態を推定したりする方法を提供することを目的とする。 本開示は、光ファイバ振動分布測定方法で測定した光ファイバの距離に対する歪量を時間ごとに順次積み上げた振動分布パターンから、振動分布の境界領域が電柱位置であると特定する電柱位置特定方法である。

Description

電柱位置特定方法及び架空光ファイバケーブルの状態推定方法
 本発明は、光ファイバ振動分布測定法を利用した電柱位置特定方法及び架空光ファイバケーブルの状態推定方法に関する。
 従来、架空光ファイバケーブルの故障リスクを最小限にするために、架空光ファイバケーブルの状態は目視によって把握していた。つまり、作業員を現地に派遣して、重量物が光ファイバケーブルにぶら下がっているのか、樹木等が光ファイバケーブルに接触しているのかを把握していた。このような目視に頼るには、人的稼働が避けられない。
 光ファイバケーブルの故障を探索するために、光パルス試験法がある。光パルス試験法では、損失の発生している距離を特定できたとしても、設備位置と対照できなければ、故障位置を特定することができない。
 設備位置を対照するために、光ファイバケーブルに意図的に振動を付与する方法が提案されている(例えば、非特許文献1、非特許文献2参照。)。非特許文献1及び非特許文献2に記載の方法は、光ファイバケーブル等に振動を付与し、光パルス試験法で特定の位置での散乱光の時間変化を測定するものである。
飯田 大輔他、2019年信学会総合大会、 B-13-10. Tiejun J. Xia et al.、in Proc OFC2020、 Th3A.5.
 しかしながら、非特許文献1、2に記載の方法でも、現地に作業員を派遣して、振動を付与しなければならない。従って、人的稼働が避けられない。
 このため、現地に作業員を派遣することなく、電柱位置を特定したり、架空光ファイバケーブルの状態を推定したりすることが課題となった。
 そこで、本開示は、遠隔で電柱位置を特定したり、架空光ファイバケーブルの状態を推定したりする方法を提供することを目的とする。
 本開示の電柱位置特定方法及び架空光ファイバケーブルの状態推定方法では、光ファイバ振動分布測定方法(DAS:Distributed Acoustic Sensing)を利用して、光ファイバ距離に対する振動分布パターンから電柱位置を特定したり、架空光ファイバケーブルの状態を推定する。
 具体的には、本開示の電柱位置特定方法は、光ファイバ振動分布測定方法で測定した光ファイバの距離に対する歪量を時間ごとに順次積み上げた振動分布パターンから、振動分布の境界領域が電柱位置であると特定することを特徴とする。
 具体的には、本開示の架空光ファイバケーブルの状態推定方法は、光ファイバ振動分布測定方法で測定した電柱スパン内の光ファイバ距離に対する歪量を時間ごとに順次積み上げた振動分布パターンから、振動が光ファイバに沿って伝搬し、かつ振動の振幅が一様であれば、光ファイバケーブルが正常であると判断することを特徴とする。
 具体的には、本開示の架空光ファイバケーブルの状態推定方法は、光ファイバ振動分布測定方法で測定した電柱スパン内の光ファイバ距離に対する歪量を時間ごとに順次積み上げた振動分布パターンから、振動が光ファイバに沿って伝搬し、かつ振動の振幅が一様でなければ、光ファイバケーブルに付着物による荷重があると判断することを特徴とする。
 具体的には、本開示の架空光ファイバケーブルの状態推定方法は、光ファイバ振動分布測定方法で測定した電柱スパン内の光ファイバ距離に対する歪量を時間ごとに順次積み上げた振動分布パターンから、振動が光ファイバの途中で停止又は縮小していれば、光ファイバケーブルに地上障害物が接触していると判断することを特徴とする。
 本開示によれば、遠隔で電柱位置を特定したり、架空光ファイバケーブルの状態を推定したりする方法を提供することができる。
架空光ファイバケーブルの架設状態を示す模式図である。 DASの測定原理を説明する図である。 DASの測定原理を説明する図である。 光ファイバの振動分布パターンを示す図である。 光ファイバの振動分布パターンを示す図である。 光ファイバの振動分布パターンを示す図である。 光ファイバの振動分布パターンを示す図である。 光ファイバケーブルの正常、異常を判断するフローチャート
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(実施形態1)
 光ファイバ振動分布測定方法(DAS:Distributed Acoustic Sensor)を利用した電柱位置特定方法を説明する。DASを利用して、光ファイバ距離に対する振動分布パターンから電柱位置を特定したり、架空光ファイバケーブルの架設状態を示す模式図を図1に示す。通信ビルに設置された光ファイバ振動分布測定装置から、光信号を光ケーブルに入力する。光信号は、地下に敷設された光ファイバケーブルから架空に敷設された光ファイバケーブルを伝搬する。伝搬しながら光ファイバ内でレイリー散乱を誘導し、そのうち、光ファイバ振動分布測定装置側に散乱したレイリー散乱光の一部が後方散乱光として戻ってくる。
 後方散乱光の測定手段としては、公知のOTDR(Optical Time Domain Reflectometer)やOFDR(Optical Frequency Domain Reflectometer)が適用できる。架空光ファイバケーブルの振動周波数は10Hz以下で、波長は2m程度であることが分かっている。後方散乱光の測定手段に要求される測定性能は、サンプリング周波数が20Hz以上で、空間分解能が1m程度となる。この要求条件を満たすのは、現状では、C-OTDR(Coherent OTDR)又はOFDRである。
 DASの測定原理を図2及び図3で説明する。本実施形態のDASは、後方散乱光測定手段としてOFDR(Optical Frequency Domain Reflectometer)を利用して、光ファイバケーブルの距離Zに対する後方散乱光波形を測定する。図2に示すように、最初に、「参照測定」となる光ファイバケーブルの距離に対する後方散乱光強度を取得し、時間を追って、「1回目の測定」、「2回目の測定」・・「n回目の測定」となる後方散乱光波形を順次取得する。
 これらの波形の例えば、Z1とZ2の距離にある波形(図2の実線部分)をスペクトル解析(フーリエ変換)し、スペクトルシフトを算出すると、図3のスペクトル波形を得る。参照測定の際に得られたスペクトルを参照波形とし、各時刻におけるスペクトルとの相互相関を計算し、相互相関ピークを与えるスペクトルシフトを算出する。このようにして、図3に示すように、「参照測定」、「1回目の測定」、「2回目の測定」の順にスペクトルシフトが算出される。なお、スペクトルシフトΔνは非特許文献3の(8)式を変形して、次式で表される。
 Δν=-0.78*ε*ν   (1)
ここで、εは歪量、νはプローブ光の中心周波数を表す。
 距離に対するスペクトルシフトの量を白黒の濃淡で表し、時間ごとに順次積み上げると図4のような光ファイバの振動分布パターンが得られる。歪がプラスの部分は光ファイバが延伸されており、歪がマイナスの部分は光ファイバが圧縮されていることを示す。図4では、歪がプラス部分を白、歪がマイナス部分を黒で表しているが、白黒の濃淡は一例であって、歪がプラス部分を青の濃淡、歪がマイナス部分を赤の濃淡のように色彩を変えた濃淡で表してもよい。
 架空光ファイバケーブルは電柱スパンごとに固有に振動する弦とみなすことができる。図4から、風で発生した振動が、時間と共に電柱スパン内を伝搬し、その振動の振幅の大きさや伝搬速度が電柱スパンごとに異なる。このため、電柱スパンごとに異なる振動パターンを有することが分かった。逆にいえば、図4の振動パターンの境界領域が電柱位置であると判断できる。
(実施形態2)
 光ファイバ振動分布測定方法(DAS)を利用した架空光ファイバケーブルの状態推定方法を説明する。DASで測定した電柱スパン内の光ファイバ距離に対する歪量を時間ごとに順次積み上げた光ファイバの振動分布パターンの例を図5、図6及び図7に示す。架空光ファイバケーブルは、電柱スパンごとに振動する弦とみなすことができ、振動パターンを測定することで、光ファイバケーブルの敷設状態を推定することができる。
 図5は、光ファイバケーブルが正常な場合の振動パターンである。図5では、風で発生した振動が架空光ファイバケーブルに沿って、時間と共に電柱スパン内を伝搬し、電柱スパン内では振動の振幅が一様であることが分かる。
 図6は、光ファイバケーブルへ付着物による荷重がある場合の振動パターンである。図6では、風で発生した振動が架空光ファイバケーブルに沿って、時間と共に電柱スパン内を伝搬する。しかし、付着物の荷重点で振動の振幅が大きくなっている。即ち、電柱スパン内で振動の振幅が一様でないことが分かる。
 図7は、光ファイバケーブルに地上障害物、例えば樹木が接触している場合の振動パターンである。図7では、風で発生した振動が電柱と地上障害物との間を伝搬するものの、地上障害物で振動が停止又は縮小していることが分かる。即ち、振動が電柱スパン内の途中で停止又は縮小して、光ファイバケーブルに沿って伝搬していない
 これらの現象から、光ファイバの振動分布パターンを観測すれば、光ファイバケーブルの正常、異常を判断できる。光ファイバケーブルの正常、異常を判断するフローチャートを図8に示す。図8において、実施形態1で説明したように、光ファイバ振動分布測定方法(DAS:Distributed Acoustic Sensor)を利用して、光ファイバ距離に対する振動分布パターンを測定する。最初に、振動パターンの境界領域から電柱位置を特定する(S11)。次に、架空光ファイバケーブルのどの電柱スパンの状態を推定するかを決定する(S12)。
 振動が架空光ファイバケーブルに沿って、電柱スパン内を伝搬し(S13のYes)、電柱スパン内で振動の振幅が一様であれば(S14のYes)、光ファイバケーブルは正常である(S15)と推定する。
 振動が架空光ファイバケーブルに沿って、電柱スパン内を伝搬し(S13のYes)、電柱スパン内で振動の振幅が一様でないときは(S14のNo)、光ファイバケーブルには付着物による荷重がある(S16)と推定する。さらには、振動の振幅の不連続点に付着物があると特定することができる。
 振動が電柱と地上障害物との間で伝搬するものの、電柱スパン内の途中で停止又は縮小して、光ファイバケーブルに沿って伝搬していないときは(S13のNo)、光ファイバケーブルが地上障害物に接触している(S17)と推定する。さらには、振動の停止点又は縮小点で光ファイバケーブルが地上障害物に接触していると特定することができる。
 以上説明したように、本開示によれば、通信ビルに設置した光ファイバ振動分布測定方法(DAS:Distributed Acoustic Sensor)を利用して算出した振動分布パターンから、遠隔で電柱位置を特定したり、架空光ファイバケーブルの状態を推定したり、障害位置を特定したりすることができる。
 本開示は情報通信産業に適用することができる。

Claims (4)

  1.  光ファイバ振動分布測定方法で測定した光ファイバの距離に対する歪量を時間ごとに順次積み上げた振動分布パターンから、振動分布の境界領域が電柱位置であると特定する電柱位置特定方法。
  2.  光ファイバ振動分布測定方法で測定した電柱スパン内の光ファイバ距離に対する歪量を時間ごとに順次積み上げた振動分布パターンから、振動が光ファイバに沿って伝搬し、かつ振動の振幅が一様であれば、光ファイバケーブルが正常であると判断する架空光ファイバケーブルの状態推定方法。
  3.  光ファイバ振動分布測定方法で測定した電柱スパン内の光ファイバ距離に対する歪量を時間ごとに順次積み上げた振動分布パターンから、振動が光ファイバに沿って伝搬し、かつ振動の振幅が一様でなければ、光ファイバケーブルに付着物による荷重があると判断する架空光ファイバケーブルの状態推定方法。
  4.  光ファイバ振動分布測定方法で測定した電柱スパン内の光ファイバ距離に対する歪量を時間ごとに順次積み上げた振動分布パターンから、振動が光ファイバの途中で停止又は縮小していれば、光ファイバケーブルに地上障害物が接触していると判断する架空光ファイバケーブルの状態推定方法。
PCT/JP2021/005852 2021-02-17 2021-02-17 電柱位置特定方法及び架空光ファイバケーブルの状態推定方法 WO2022176047A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023500173A JP7491458B2 (ja) 2021-02-17 電柱位置特定方法及び架空光ファイバケーブルの状態推定方法
CN202180093496.XA CN116917703A (zh) 2021-02-17 2021-02-17 电线杆位置确定方法和架空光缆的状态推定方法
PCT/JP2021/005852 WO2022176047A1 (ja) 2021-02-17 2021-02-17 電柱位置特定方法及び架空光ファイバケーブルの状態推定方法
US18/275,726 US20240118126A1 (en) 2021-02-17 2021-02-17 Positioning method of electric pole and estimating method of the state of overhead optical fiber cable
EP21926487.6A EP4296633A1 (en) 2021-02-17 2021-02-17 Utility pole position specification method and aerial fiber optic cable state estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/005852 WO2022176047A1 (ja) 2021-02-17 2021-02-17 電柱位置特定方法及び架空光ファイバケーブルの状態推定方法

Publications (1)

Publication Number Publication Date
WO2022176047A1 true WO2022176047A1 (ja) 2022-08-25

Family

ID=82930306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005852 WO2022176047A1 (ja) 2021-02-17 2021-02-17 電柱位置特定方法及び架空光ファイバケーブルの状態推定方法

Country Status (4)

Country Link
US (1) US20240118126A1 (ja)
EP (1) EP4296633A1 (ja)
CN (1) CN116917703A (ja)
WO (1) WO2022176047A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057492A1 (ja) * 2022-09-15 2024-03-21 日本電信電話株式会社 振動分布波形から電柱位置を特定する方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190284931A1 (en) * 2018-03-13 2019-09-19 Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ Method and system for monitoring a material and/or a device in a bore hole using a fiber optic measuring cable
WO2020044660A1 (ja) * 2018-08-30 2020-03-05 日本電気株式会社 状態特定システム、状態特定装置、状態特定方法、及び非一時的なコンピュータ可読媒体
WO2020044648A1 (ja) * 2018-08-30 2020-03-05 日本電気株式会社 電柱位置特定システム、電柱位置特定装置、電柱位置特定方法、及び非一時的なコンピュータ可読媒体
CN111442788A (zh) * 2020-04-03 2020-07-24 南京晓庄学院 一种架空输电线路健康监测方法及系统
CN211234916U (zh) * 2019-12-17 2020-08-11 国网新疆电力有限公司昌吉供电公司 一种基于das与otdr的光缆状态监测系统
JP2020134142A (ja) * 2019-02-12 2020-08-31 日本電信電話株式会社 架空光ファイバケーブル検査方法、架空光ファイバケーブル検査装置及びプログラム
US20200370950A1 (en) * 2019-05-22 2020-11-26 Nec Laboratories America, Inc Rayleigh fading mitigation via short pulse coherent distributed acoustic sensing with multi-location beating-term combination

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190284931A1 (en) * 2018-03-13 2019-09-19 Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ Method and system for monitoring a material and/or a device in a bore hole using a fiber optic measuring cable
WO2020044660A1 (ja) * 2018-08-30 2020-03-05 日本電気株式会社 状態特定システム、状態特定装置、状態特定方法、及び非一時的なコンピュータ可読媒体
WO2020044648A1 (ja) * 2018-08-30 2020-03-05 日本電気株式会社 電柱位置特定システム、電柱位置特定装置、電柱位置特定方法、及び非一時的なコンピュータ可読媒体
JP2020134142A (ja) * 2019-02-12 2020-08-31 日本電信電話株式会社 架空光ファイバケーブル検査方法、架空光ファイバケーブル検査装置及びプログラム
US20200370950A1 (en) * 2019-05-22 2020-11-26 Nec Laboratories America, Inc Rayleigh fading mitigation via short pulse coherent distributed acoustic sensing with multi-location beating-term combination
CN211234916U (zh) * 2019-12-17 2020-08-11 国网新疆电力有限公司昌吉供电公司 一种基于das与otdr的光缆状态监测系统
CN111442788A (zh) * 2020-04-03 2020-07-24 南京晓庄学院 一种架空输电线路健康监测方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAISUKE IIDA ET AL., IEICE GENERAL CONFERENCE, 2019, pages B-13 - 10
TIEJUN J. XIA ET AL., PROC OFC2020

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057492A1 (ja) * 2022-09-15 2024-03-21 日本電信電話株式会社 振動分布波形から電柱位置を特定する方法

Also Published As

Publication number Publication date
JPWO2022176047A1 (ja) 2022-08-25
US20240118126A1 (en) 2024-04-11
CN116917703A (zh) 2023-10-20
EP4296633A1 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
JP6774451B2 (ja) 光ファイバケーブル監視方法および光ファイバケーブル監視システム
CN106461495B (zh) 纤维光学分布式感测
US20190197846A1 (en) Method and system for distributed acoustic sensing
CA2567551A1 (en) Fibre optic sensor method and apparatus
JP5512462B2 (ja) 光ファイバおよび光ファイバ線路の曲げ損失の長手方向分布の測定方法、光線路の試験方法および光ファイバの製造方法
CN107452177B (zh) 一种通信光缆安全预警系统
WO2022176047A1 (ja) 電柱位置特定方法及び架空光ファイバケーブルの状態推定方法
EP3926320B1 (en) Aerial optical fiber cable inspection method, aerial optical fiber cable inspection device, and program
CN111006849A (zh) 一种判断油气管道伴行光缆敷设状态的方法及系统
Iida et al. Advances in distributed vibration sensing for optical communication fiber state visualization
RU2362271C1 (ru) Волоконно-оптическая система передачи с обнаружением попыток нсд
Okamoto et al. Deployment condition visualization of aerial optical fiber cable by distributed vibration sensing based on optical frequency domain reflectometry
CN111239842A (zh) 一种基于分布式光纤传感技术的雨水入侵光缆监测系统及方法
JP7491458B2 (ja) 電柱位置特定方法及び架空光ファイバケーブルの状態推定方法
WO2022044174A1 (ja) 振動分布測定装置及びその方法
KR102197696B1 (ko) 광섬유 기반 하이브리드 신경망 센서를 이용한 시설물 건전도 모니터링 시스템 및 그 방법
Okamoto et al. Identification of sagging aerial cable section by distributed vibration sensing based on OFDR
JP2002081061A (ja) グラウンドアンカーの荷重管理方法
EP3920435B1 (en) Optical fiber route search method, optical fiber route search device and program
JPH11325822A (ja) ひび割れ監視装置
WO2024057492A1 (ja) 振動分布波形から電柱位置を特定する方法
WO2023100312A1 (ja) 積雪量推定システム及び積雪量推定方法
WO2023053323A1 (ja) 光ファイバ設備の位置を特定する装置及び方法
Okamoto et al. Distributed vibration sensing of seismic event by optical frequency domain reflectometry
Morikawa et al. New advances in flexible riser monitoring techniques using optical fiber sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926487

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500173

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18275726

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180093496.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021926487

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021926487

Country of ref document: EP

Effective date: 20230918