WO2022176018A1 - Light sensing device and light sensing method - Google Patents

Light sensing device and light sensing method Download PDF

Info

Publication number
WO2022176018A1
WO2022176018A1 PCT/JP2021/005726 JP2021005726W WO2022176018A1 WO 2022176018 A1 WO2022176018 A1 WO 2022176018A1 JP 2021005726 W JP2021005726 W JP 2021005726W WO 2022176018 A1 WO2022176018 A1 WO 2022176018A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal light
optical
propagation distance
communication device
transmission
Prior art date
Application number
PCT/JP2021/005726
Other languages
French (fr)
Japanese (ja)
Inventor
秀 山口
雅弘 中川
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/005726 priority Critical patent/WO2022176018A1/en
Publication of WO2022176018A1 publication Critical patent/WO2022176018A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre

Definitions

  • the present invention relates to an optical sensing device and an optical sensing method for measuring environmental conditions such as temperature and pressure using signal light transmitted through an optical fiber.
  • Non-Patent Document 1 Optical sensing technology using optical fibers has been proposed, and in recent years there has been a demand for highly accurate delay measurement technology.
  • this type of optical sensing technology there is an optical fiber sensor system described in Patent Document 1, for example. This system utilizes the properties of optical fibers to reflect a specific wavelength by periodically changing the refractive index of the optical fiber. ) (Non-Patent Document 1).
  • Non-Patent Document 2 proposes a technique for monitoring the network state in detail.
  • Non-Patent Document 3 discloses another technique related to optical sensing.
  • Optical sensing technology usually requires an ASE (Amplified Spontaneous Emission) light source, which is a broadband light source, and a spectrum analyzer, so the optical sensing device is expensive.
  • ASE Ampton-Suppression
  • the broadband light source is inserted into the optical fiber, the optical fiber is exclusively used for optical sensing and cannot be used for communication.
  • the present invention has been made in view of such circumstances, and aims to enable optical sensing of environmental conditions that facilitate data analysis at low cost and to enable the use of optical fibers for communication purposes. Make it an issue.
  • the optical sensing device of the present invention is inserted and connected in the middle of an optical transmission line that is connected back and forth to a communication device that transmits and receives signal light of a specific wavelength or a plurality of different wavelengths including the specific wavelength.
  • an optical circulator which is cascade-connected to the optical circulator by an optical fiber, and in the case of environmental conditions set in advance, reflects signal light of a specific wavelength from the optical circulator and emits signal light of a wavelength other than the specific wavelength;
  • FBGs Fiber Bragg Gratings
  • a DB Data Base
  • the round-trip propagation distance of the signal light transmitted and received by the communication device is associated with each of the plurality of FBGs, and information on the set environmental conditions for each of the FBGs is associated and stored;
  • a delay measuring unit for measuring a delay time between transmission and reception from a difference in transmission and reception times of signal light transmitted and received by the communication device after being reflected by any one of the plurality of FBGs via the optical circulator; an identifying unit that obtains a measured propagation distance between transmission and reception of signal light based on
  • the optical fiber can be used for optical sensing under environmental conditions that facilitate data analysis at low cost, and can also be used for communication purposes.
  • FIG. 1 is a block diagram showing the configuration of a communication network using optical sensing devices according to an embodiment of the present invention
  • FIG. It is a figure which shows the storage information of DB of the optical sensing apparatus which concerns on this embodiment.
  • 4 is a flow chart for explaining a light sensing operation by the light sensing device according to the embodiment
  • FIG. 4 is a block diagram showing the configuration of a communication network using the optical sensing device according to Modification 1 of the embodiment of the present invention
  • 8 is a diagram showing information stored in a DB of the optical sensing device according to Modification 1
  • FIG. FIG. 10 is a block diagram showing the configuration of a communication network using the optical sensing device according to Modification 2 of the embodiment of the present invention
  • FIG. 11 is a block diagram showing the configuration of a communication network using a light sensing device according to Modification 3 of the embodiment of the present invention
  • 1 is a block diagram showing the configuration of a communication network according to Example 1
  • FIG. FIG. 11 is a block diagram showing a configuration for monitoring the state of communication equipment according to the second embodiment
  • FIG. 11 is a block diagram showing a configuration for monitoring the state of equipment in a no-entry area according to Embodiment 3;
  • FIG. 1 is a block diagram showing the configuration of a communication network using optical sensing devices according to an embodiment of the present invention.
  • the communication device 11 has a transmission port 1p1 for transmitting signal light and a reception port 1p2 for receiving signal light, and an optical fiber 12 that makes a round trip over a predetermined distance is connected.
  • the communication device 11 transmits and receives signal light of a plurality of different wavelengths including a specific wavelength (for example, wavelength ⁇ 1). In some cases, signal light with only a specific wavelength is transmitted and received.
  • the wavelength ⁇ 1 is also simply referred to as ⁇ 1.
  • the optical fiber 12 constitutes an optical transmission line described in the claims.
  • the optical sensing device 20 includes an optical circulator 21, a plurality of FBGs 22a, 22b, .
  • the delay measuring unit 24 , the environmental condition identifying unit 25 and the DB 26 may be provided inside the communication device 11 .
  • the environmental condition specifying unit 25 constitutes the specifying unit described in the claims.
  • the optical circulator 21 is inserted and connected to the middle of the optical fiber 12 .
  • a plurality of FBGs 22a to 22k are cascade-connected to the optical circulator 21 by optical fibers. That is, the first-stage FBG 22a is connected to the optical circulator 21, and the second-stage FBG 22b, .
  • the optical circulator 21 transmits the signal light transmitted from the transmission port 1p1 of the communication device 11 and passed through the optical fiber 12 only in the clockwise direction indicated by the arrow 21a.
  • This optical circulator 21 passes the signal light input from the optical fiber 12 on the side of the transmission port 1p1 through the first-stage FBG 22a in the direction of the last k-th stage FBG 22k (forward direction), as indicated by the arrow Y1. Y1).
  • a direction opposite to the forward direction Y1 is referred to as a backward direction Y2.
  • the optical circulator 21 also outputs the signal light reflected by any of the FBGs 22a to 22k and traveling in the backward direction Y2 through the optical fiber 12 to the reciprocating end 12a side.
  • the FBGs 22a to 22k perform optical sensing by reflecting only the specific wavelength ⁇ 1 and transmitting wavelengths other than the specific wavelength ⁇ 1 when preset environmental conditions (eg, temperature x°C) are reached. Further, when the temperature of the FBGs 22a to 22k changes to a temperature other than the temperature x° C. (for example, y° C.) due to a change in the ambient temperature, the FBGs 22a to 22k reflect only a specific wavelength (for example, a wavelength ⁇ 2) different from the specific wavelength ⁇ 1. Sensing light that passes through the wavelength of
  • the FBGs 22a to 22k are arranged close to each other, and are set so as to reflect the signal light of the wavelength from the optical circulator 21 under different environmental conditions.
  • the optical circulator 21 reflects the signal light of wavelength ⁇ 1 in the forward direction Y1
  • the FBG 22b reflects the signal light of ⁇ 1 at 21° C.
  • the FBG 22k It is set to reflect the signal light of ⁇ 1 at 25°C.
  • These reflected signal lights are transmitted to the optical circulator 21 in the backward direction Y2.
  • the FBGs 22a to 22k transmit the signal light of wavelength ⁇ 1 traveling in the forward direction Y1 at temperatures other than the set temperature.
  • the interval between each of the FBGs 22a to 22k is d [m], as representatively shown between the FBGs 22a and 22b.
  • the delay time when the signal light travels back and forth between the FBGs 22a and 22b is (d ⁇ 2) ⁇ (c/n) [seconds].
  • c is the speed of light
  • n is the refractive index of the core of the optical fiber.
  • the communication device 11 receives the signal light returned via the reciprocating end 12a of the optical fiber 12 at the reception port 1p2. This received signal light is reflected by any one of the FBGs 22 a to 22 k and transmitted from the optical circulator 21 toward the reciprocating end 12 a of the optical fiber 12 .
  • the DB 26 associates the round-trip propagation distance from the transmission port 1p1 of the communication device 11 to the reception port 1p2 via the round-trip end 12a of the optical fiber 12 for each of the FBGs 22a to 22k.
  • the round-trip propagation distance means that the signal light transmitted from the transmission port 1p1 passes through the optical fiber 12 and the optical circulator 21, is reflected by any one of the FBGs 22a to 22k, returns to the optical circulator 21, and further This is the distance from the reciprocating end 12a of the optical fiber 12 to the reception port 1p2.
  • the round-trip propagation distance La between the transmitting/receiving ports 1p1 and 1p2 reflected by the first-stage FBG 22a as the reflection position is stored in association with the FBG 22a.
  • the round-trip propagation distance Lb between the transmission/reception ports 1p1 and 1p2 reflected by the FBG 22b at the k-th stage is stored in association with the FBG 22b, and the round-trip propagation distance Lk between the transmission/reception ports 1p1 and 1p2 reflected by the k-th FBG 22k is stored in the FBG 22k. are associated and stored.
  • each FBG 22a to 22k is associated with a temperature as a set environmental condition.
  • a temperature of 20°C is associated with the FBG 22a
  • a temperature of 21°C is associated with the FBG 22b
  • a temperature of 25°C is associated with the FBG 22k.
  • the delay measurement unit 24 measures the delay time between transmission and reception, which is the difference between the transmission and reception times at the transmission port 1p1 and the reception port 1p2 of the communication device 11.
  • a measured propagation distance for example, a measured propagation distance La
  • the reflection wavelengths of the FBGs 22a to 22k also change when the external pressure applied to the FBGs changes, in the same way that the reflection wavelengths change when the temperature around the FBGs changes. Therefore, like the temperature of the environmental conditions, the pressure and the like, which are the environmental conditions around the FBGs 22a to 22k, can also be specified.
  • the light sensing operation of the light sensing device 20 will be described with reference to the flowchart of FIG.
  • the DB 26 stores information on the reflection position, the round-trip propagation distance, and the temperature as the set environmental condition shown in FIG.
  • the FBG 22a reflects the signal light of wavelength ⁇ 1 when the environmental temperature is 20°C
  • the FBG 22b reflects the signal light of ⁇ 1 when the temperature is 21°C
  • the FBG 22k reflects the signal light of ⁇ 1 when the temperature is 25°C.
  • step S1 shown in FIG. 3 it is assumed that a signal light having a wavelength ⁇ 1 is transmitted from the transmission port 1p1 of the communication device 11 to the optical fiber 12.
  • step S2 when the transmitted signal light is input to the optical circulator 21 via the optical fiber 12, the optical circulator 21 outputs the signal light in the outward direction Y1.
  • step S3 the signal light in the forward direction Y1 is reflected in the backward direction Y2 by any one of the FBGs 22a to 22k as reflection position elements. For example, if the temperature of the environmental condition is 21°C, the signal light is reflected by the FBG 22b that reflects the signal light at 21°C. The optical signal reflected in this manner is transmitted in the backward direction Y 2 and input to the optical circulator 21 .
  • step S ⁇ b>4 the optical circulator 21 outputs the input signal light toward the reciprocating end 12 a of the optical fiber 12 .
  • step S5 the output signal light passes through the reciprocating end 12a of the optical fiber 12 and is received by the communication device 11 via the reception port 1p2.
  • step S6 the delay measurement unit 24 measures the delay time between transmission and reception of the signal light from the difference between the transmission and reception times at the transmission port 1p1 and the reception port 1p2 of the communication device 11.
  • step S7 the environmental condition specifying unit 25 obtains the measured propagation distance between signal light transmission and reception based on the measured delay time, and determines the round-trip propagation distances La to Lk in the DB 26 that match the obtained measured propagation distances. Search for. For example, assume that the measured propagation distance Lb is obtained, and the round-trip propagation distance Lb in the DB 26 that matches the measured propagation distance Lb is searched.
  • step S8 the specifying unit 25 detects the FBG 22b as the reflection position element associated with the retrieved round-trip propagation distance Lb.
  • the administrator of the NW 10 can grasp that the temperature of the locations where the FBGs 22a to 22k are arranged is 21.degree.
  • the optical sensing device 20 includes an optical circulator 21, a plurality of FBGs 22a to 22k, a delay measuring section 24, an environmental condition identifying section 25, and a DB 26.
  • the optical circulator 21 is inserted and connected in the middle of the optical fiber 12 that is connected back and forth to the communication device 11 that transmits and receives signal light of a specific wavelength (for example, a specific wavelength ⁇ 1) or a plurality of different wavelengths including the specific wavelength.
  • the FBGs 22a to 22k are cascade-connected to the optical circulator 21 by optical fibers, and reflect the signal light of the specific wavelength ⁇ 1 from the optical circulator 21 when the environmental conditions are set in advance, Optical sensing is performed by transmitting signal light.
  • the FBGs 22a to 22k have different set environment conditions.
  • the round-trip propagation distance of the signal light transmitted and received by the communication device 11 via the optical fiber 12 after being reflected by any one of the plurality of FBGs 22a to 22k via the optical circulator 21 is stored in the plurality of FBGs 22a to 22k. 22k, and the information of the setting environment conditions for each of the FBGs 22a to 22k is stored in correspondence.
  • the delay measuring unit 24 measures the delay time between transmission and reception from the difference in the transmission and reception times of the signal light transmitted and received by the communication device 11 after being reflected by any one of the plurality of FBGs 22a to 22k via the optical circulator 21.
  • the specifying unit 25 obtains the measured propagation distance between transmission and reception of the signal light based on the measured delay time, and FBGs 22a to 22k associated with the round-trip propagation distance in the DB 26 that matches the obtained measured propagation distance. It was configured to specify
  • a plurality of FBGs 22a to 22k for performing optical sensing are cascade-connected to an optical circulator 21 inserted and connected in the middle of an optical fiber that is reciprocally connected to the communication device 11.
  • FIG. Assume that the signal light of wavelength ⁇ 1, for example, transmitted from the communication device 11 to the optical fiber is transmitted to the FBGs 22a to 22k via the optical circulator 21.
  • FIG. At this time, it is assumed that the temperature of the environmental condition is the same as the temperature of the environmental condition (for example, 20° C.) for reflecting the signal light of ⁇ 1 in the FBG 22 a closest to the optical circulator 21 .
  • the signal light of wavelengths other than ⁇ 1 is transmitted through the FBG 22a, and the signal light of ⁇ 1 is reflected.
  • This reflected signal light is transmitted to the reciprocating end of the optical fiber by the optical circulator 21 and received by the communication device 11 .
  • the delay measurement unit 24 measures the delay time between transmission and reception of the signal light of ⁇ 1 from the difference between the transmission and reception times in the communication device 11 .
  • the specifying unit 25 obtains the measured propagation distance between signal light transmission and reception based on the measured delay time, and searches the DB 26 for a round-trip propagation distance La that matches the obtained measured propagation distance. Further, the identifying unit 25 detects the FBG 22a associated with the searched round-trip propagation distance La. By this detection, the temperature of 20 degrees can be identified as the environmental condition associated with the FBG 22a.
  • the optical sensing device 20 with this configuration is configured by connecting a plurality of general-purpose FBGs 22a to 22k via optical fibers to an optical fiber 12 used for communication via an optical circulator 21, which is a general-purpose component. Since the optical circulator 21 and the FBGs 22a to 22k are general-purpose products, they can be constructed at low cost. Since the optical sensing device 20 is configured by branching and connecting to the optical fiber 12 as an optical transmission line, the optical fiber 12 is not exclusively used for optical sensing, and packet loss of signal light does not occur. It can also be used for communication purposes.
  • the optical sensing can be performed by measuring only the transmission/reception delay time from the transmission/reception time in the communication device 11, the amount of measured data does not become enormous even if the sensing is performed for a long period of time. Since it is not necessary, analysis time is eliminated.
  • optical sensing device 20 of the present embodiment it is possible to perform optical sensing under environmental conditions that facilitate data analysis at low cost using an optical fiber, and it can also be used for communication purposes.
  • FIG. 4 is a block diagram showing the configuration of a communication network using the optical sensing device according to Modification 1 of the embodiment of the present invention.
  • the optical sensing device 20A of Modification 1 shown in FIG. 4 further includes a fiber mirror 22m that reflects signal light of all wavelengths in addition to the optical sensing device 20 of the above-described embodiment (FIG. 1).
  • the DB 26 additionally stores information on the fiber mirror 22m as the reflection position element, information on the round-trip propagation distance Lm, and abnormal state as specific information.
  • the fiber mirror 22m is connected to the k-th stage (end) FBG 22k as the last stage of cascade connection.
  • the signal light reflected by the fiber mirror 22m passes through each of the FBGs 22k to 22a toward the backward direction Y2 and is input to the optical circulator 21.
  • the round-trip propagation distance Lm between the transmitting/receiving ports 1p1 and 1p2 reflected by the last-stage fiber mirror 22m is associated with the fiber mirror 22m. Anomalies are associated.
  • the abnormal state indicates temperature abnormality when the temperature as an environmental condition is out of the temperature range associated with each of the FBGs 22a to 22k, or functional abnormality of the FBGs 22a to 22k.
  • the delay measuring unit 24 measures the difference between the transmission and reception times at the transmission port 1p1 and the reception port 1p2 of the communication device 11, including the delay time of the signal light reflected by one of the FBGs 22a to 22k or the fiber mirror 22m. Measure the delay time between
  • the specifying unit 25 obtains the measured propagation distance (for example, the measured propagation distance La) between transmission and reception of the signal light based on the measured delay time, and determines the round-trip propagation distance La in the DB 26 that matches the obtained measured propagation distance La. Search for When detecting the fiber mirror 22m associated with the round-trip propagation distance Lm, the identifying unit 25 identifies the abnormal state associated with the fiber mirror 22m.
  • the measured propagation distance for example, the measured propagation distance La
  • the identifying unit 25 identifies the abnormal state associated with the fiber mirror 22m.
  • the FBG 22k at the end of the plurality of FBGs 22a to 22k cascade-connected to the optical circulator 21 is cascade-connected to a fiber mirror 22m that reflects all wavelengths. Furthermore, in addition to the information stored in the DB 26, the round-trip propagation distance of the signal light transmitted and received by the communication device 11 after being reflected by the fiber mirror 22m is associated with the fiber mirror 22m, and the specific information of the fiber mirror 22m is associated and stored. .
  • the delay measurement unit 24 measures the delay time between transmission and reception from the difference in the transmission and reception times of the signal light transmitted and received by the communication device 11 after being reflected by the fiber mirror 22m.
  • the identifying unit 25 obtains the measured propagation distance between transmission and reception of the signal light based on the measured delay time, and selects the fiber mirror 22m associated with the round-trip propagation distance in the DB 26 that matches the obtained measured propagation distance. It has a specific configuration.
  • the communication device 11 when the signal light transmitted from the communication device 11 passes through all the FBGs 22a to 22k, after being reflected by the fiber mirror 22m, the communication device 11 passes through the optical circulator 21 and the optical fiber 12 as the optical transmission line. received at.
  • the delay measurement unit 24 measures the transmission/reception delay time associated with the reflection at the fiber mirror 22m.
  • the specifying unit 25 searches for the round-trip propagation distance Lm related to the fiber mirror 22m in the DB 26 that matches the measured propagation distance between transmission and reception based on the measured delay time, and associates it with this round-trip propagation distance Lm. detected the fiber mirror 22m.
  • the identifying unit 25 can identify the abnormal state as the specific information associated with the detected fiber mirror 22m.
  • This optical sensing device 20A can also perform optical sensing under environmental conditions that facilitate data analysis at low cost using an optical fiber, and can also be used for communication purposes.
  • FIG. 6 is a block diagram showing the configuration of a communication network using the optical sensing device according to Modification 2 of the embodiment of the present invention.
  • the optical sensing device 20B of Modification 2 shown in FIG. 6 differs from the optical sensing device 20 of the above-described embodiment (FIG. 1) in that the communication device 11 (FIG. Instead of 1), it is inserted and connected in the middle of the optical fiber 12 between the communication devices 11a and 11b (also called between the communication devices 11a and 11b).
  • the communication device 11 a transmits to the optical fiber 12 signal lights of a plurality of different wavelengths including the above-described specific wavelength ⁇ 1.
  • the communication device 11 b receives the transmitted signal light via the optical fiber 12 .
  • the communication device 11a constitutes the first communication device described in the claims, and the communication device 11b constitutes the second communication device described in the claims.
  • the delay measuring unit 24 and the environmental condition specifying unit 25 of the optical sensing device 20B perform the processing described later, and the information described later is stored in the DB 26.
  • the DB 26 stores a plurality of propagation distances of signal light received by the communication device 11b after the signal light transmitted from the communication device 11a is reflected by any one of the plurality of FBGs 22a to 22k via the optical circulator 21. are associated with each of the FBGs 22a to 22k, and set environmental conditions (temperatures) for each of the FBGs 22a to 22k are associated and stored.
  • the delay measurement unit 24 measures the delay time between transmission and reception from the difference in the transmission and reception times of the signal light transmitted and received between the communication devices 11a and 11b.
  • the specifying unit 25 obtains the measured propagation distance between transmission and reception of the signal light based on the measured delay time, and selects the FBGs 22a to 22k associated with the propagation distance in the DB 26 that matches the obtained measured propagation distance. Identify.
  • a temperature of 21°C is set as the set environmental condition in the FBG 22b, and the temperature of the environmental condition is 21°C.
  • the signal light transmitted in the forward direction Y1 is reflected by the FBG 22b, transmitted in the backward direction Y2, and input to the optical circulator 21.
  • FIG. The optical circulator 21 transmits the input signal light through the optical fiber 12 toward the communication device 11b. This optical signal is received by the communication device 11b.
  • the delay measurement unit 24 measures the delay time between transmission and reception from the difference between the transmission and reception times of the signal light transmitted and received between the communication devices 11a and 11b.
  • the light of the above-described embodiment is Similar to the sensing device 20 (FIG. 1), it is possible to perform optical sensing of environmental conditions that facilitate data analysis at a low cost, and it can also be used for communication applications.
  • FIG. 7 is a block diagram showing the configuration of a communication network using a light sensing device according to Modification 3 of the embodiment of the present invention.
  • the optical sensing device 20C of Modified Example 3 shown in FIG. 7 differs from the optical sensing device 20B of Modified Example 2 (FIG. 6) described above in that a fiber for reflecting signal light of all wavelengths is provided behind the FBGs 22a to 22k. The reason is that the mirrors 22m are further connected in cascade. Furthermore, the following information is additionally stored in the DB 26.
  • the propagation distance between the communication devices 11a and 11b, including the reflection path at the last-stage fiber mirror 22m, is associated with the fiber mirror 22m, and the above-described abnormal state as specific information is associated with the fiber mirror 22m. I remembered.
  • the delay measurement unit 24 measures the delay time between transmission and reception, which is the difference between the transmission and reception times of the communication devices 11a and 11b, including the delay time of the signal light reflected by one of the FBGs 22a to 22k or the fiber mirror 22m. do.
  • the specifying unit 25 obtains the measured propagation distance between transmission and reception of the signal light based on the measured delay time, and searches the DB 26 for the propagation distance that matches the obtained measured propagation distance.
  • the propagation distance related to the reflection at the fiber mirror 22m is retrieved.
  • the identifying unit 25 detects the fiber mirror 22m associated with the found propagation distance, and identifies the abnormal state associated with the detected fiber mirror 22m.
  • the identifying unit 25 of the optical sensing device 20C can identify the abnormal state as the specific information associated with the detected fiber mirror 22m. Therefore, as in the second modification, the optical fiber can be used for optical sensing under environmental conditions that facilitate data analysis at low cost, and can be used for communication purposes.
  • FIG. 8 is a block diagram showing the configuration of the communication network 10A according to the first embodiment.
  • a communication network 10A of the first embodiment shown in FIG. 8 uses a light sensing device 20C1 as an application example of the light sensing device 20C (FIG. 7) of the third modification described above.
  • the communication network 10A connects the optical fiber 12 connected between the communication device 11a in the communication station 61 and the communication device 11b in the station 62 via three optical circulators 21 to three optical sensing means. 1, 2 and 3 are connected. It is assumed that the office buildings 61 and 62 are separated from each other.
  • the delay measurement unit 24, the environmental condition identification unit 25, and the DB 26 of the optical sensing device 20C1 are arranged in the office building 62.
  • Each of the optical sensing means 1 to 3 is arranged on the optical fiber 12 between the communication devices 11a and 11b at a predetermined interval, and comprises a plurality of cascade-connected FBGs 22a to 22k and a fiber mirror 22m. It is
  • the signal light transmitted from the communication device 11a is sent to any one of the FBGs 22a to 22k of the optical sensing means 1 to 3 via the optical circulators 21 or
  • the propagation distance of the signal light received by the communication device 11b after being reflected by the combination of the fiber mirrors 22m is associated with each of the FBGs 22a to 22k or the fiber mirror 22m, and the set environmental conditions (eg temperature) for each of the FBGs 22a to 22k are associated. I have attached it and memorized it.
  • the fiber mirror 22m is stored in association with the above-described abnormal state as specific information.
  • the propagation distance of the signal light received by the communication device 11b after being reflected by the combination of the FBG 22a of the optical sensing means 1, the FBG 22b of the optical sensing means 2, and the fiber mirror 22m of the optical sensing means 3 is stored in each FBG 22a.
  • FBG 22b or fiber mirror 22m, and the temperature of each FBG 22a and FBG 22b is stored in association with each other.
  • the delay measurement unit 24 measures the difference in transmission/reception time between the communication devices 11a and 11b, including the delay time of the signal light reflected by one of the FBGs 22a to 22k or the fiber mirror 22m in each of the optical sensing means 1 to 3. Measure the delay time between certain transmissions and receptions.
  • the specifying unit 25 obtains the measured propagation distance between transmission and reception of the signal light based on the measured delay time, and searches the DB 26 for the propagation distance that matches the obtained measured propagation distance.
  • propagation distances related to reflection at the FBG 22a of the optical sensing means 1, reflection at the FBG 22b of the optical sensing means 2, and reflection at the fiber mirror 22m of the optical sensing means 3 are retrieved.
  • the identifying unit 25 detects the FBG 22a of the optical sensing means 1, the FBG 22b of the optical sensing means 2, and the fiber mirror 22m of the optical sensing means 3 associated with the retrieved propagation distance.
  • the identification unit 25 detects the temperature of the FBG 22a of the optical sensing means 1 (eg, 20° C.), the temperature of the FBG 22b of the optical sensing means 2 (eg, 21° C.), and the state associated with the fiber mirror 22m of the optical sensing means 3. Identify anomalies.
  • the administrator of the office building 62 or the like can determine that the temperature at the location where the FBG 22a of the optical sensing means 1 is arranged is 20°C and the temperature at the location where the FBG 22b of the optical sensing means 2 is arranged is 21°C. I can recognize that. Furthermore, it can be recognized that the location where the fiber mirror 22m of the optical sensing means 3 is arranged is in an abnormal state.
  • FIG. 9 is a block diagram showing a configuration for monitoring the state of communication equipment according to the second embodiment.
  • the optical sensing device as an application example of the optical sensing device 20C (FIG. 7) of the modified example 3 described above is installed in the communication racks 41, 42, 43 related to communication such as the Internet. 20C2 is used.
  • Each of the communication racks 41 to 43 has a vertically long rectangular parallelepiped shape, and the side indicated by the arrow Y21 is an air conditioner (not shown) inside the rack that sucks outside air from an air supply port (not shown) to the internal equipment. It is a cold aisle (cold aisle Y21) for cooling. The side indicated by the arrow Y22 is the hot aisle (hot aisle Y22) where the air conditioner exhausts heat from the plurality of exhaust ports 45. As shown in FIG.
  • optical sensing means 1a are connected via optical circulators 21 to an optical fiber (not shown) between the communication device 11a arranged on the communication rack 41 and the communication device 11b arranged on the communication rack 43.
  • 1b, 2a (arrow 2a), 2b, 3 are connected.
  • the optical sensing means 1b and 2b represent a plurality of FBGs 22a to 22k and a fiber mirror 22m cascade-connected to the optical circulator 21 arranged on the hot aisle Y22 side.
  • the optical sensing means 1a and 2a are arranged on the cold aisle Y21 side in the same way as on the hot aisle Y22 side by arrows 1a and 2a alone.
  • the optical sensing means 3 also shows a plurality of FBGs 22a-22k and a fiber mirror 22m cascaded to the optical circulator 21 disposed on the side of the communication rack 43 between the cold aisle Y21 and the hot aisle Y22.
  • the optical sensing means 1a, 1b, 2a, 2b, and 3 are referred to as optical sensing means 1a-3.
  • the signal light transmitted from the communication device 11a is sent to any one of the FBGs 22a to 22k of the optical sensing means 1a to 3 via the optical circulators 21, or
  • the propagation distance of the signal light received by the communication device 11b after being reflected by the combination of the fiber mirrors 22m is associated with each of the FBGs 22a to 22k or the fiber mirror 22m, and the set environmental conditions (eg temperature) for each of the FBGs 22a to 22k are associated. I have attached it and memorized it.
  • the fiber mirror 22m is stored in association with the above-described abnormal state (temperature abnormality) as specific information.
  • the DB 26 includes reflections from the FBG 22a (not shown) of the light sensing means 1a, reflections from the FBG 22a of the light sensing means 1b, reflection from the FBGs 22b (not shown) of the light sensing means 2a, and light sensing means 2b.
  • the propagation distance of the signal light received by the communication device 11b after being reflected by the combination of the FBG 22b of the optical sensing means 3 and the FBG 22b of the optical sensing means 3 is associated with the FBG 22a and the FBG 22b, and the temperature of each of the FBG 22a and the FBG 22b is associated. I have attached it and memorized it.
  • the delay measurement unit 24 is the difference in the transmission and reception times between the communication devices 11a and 11b, including the delay time of the signal light reflected by one of the FBGs 22a to 22k in each of the optical sensing means 1a to 3 or the fiber mirror 22m. Measure the delay time between certain transmissions and receptions.
  • the specifying unit 25 obtains the measured propagation distance between transmission and reception of the signal light based on the measured delay time, and searches the DB 26 for the propagation distance that matches the obtained measured propagation distance.
  • reflection at the FBG 22a (not shown) of the optical sensing means 1a reflection at the FBG 22a of the optical sensing means 1b
  • reflection at the FBG 22b (not shown) of the optical sensing means 2a reflection at the FBG 22b (not shown) of the optical sensing means 2a
  • reflection at the FBG 22b (not shown) of the optical sensing means 2b Suppose that the propagation distance related to the reflection at the FBG 22b and the reflection at the FBG 22b of the light sensing means 3 is retrieved.
  • the identifying unit 25 determines the FBG 22a (not shown) of the optical sensing means 1a, the FBG 22a of the optical sensing means 1b, the FBG 22b (not shown) of the optical sensing means 2a, and the FBG 22b of the optical sensing means 2a, which are associated with the searched propagation distance.
  • the FBG 22b of the optical sensing means 2b and the FBG 22b of the optical sensing means 3 are detected.
  • the identifying unit 25 detects the temperature of the FBG 22a (not shown) of the optical sensing means 1a (eg, 20° C.), the temperature of the FBG 22a of the optical sensing means 1b (eg, 30° C.), and the FBG 22b of the optical sensing means 2a. (not shown) (for example, 21° C.), the temperature of the FBG 22b of the optical sensing means 2b (for example, 31° C.), and the temperature of the FBG 22b of the optical sensing means 3 (for example, 25° C.).
  • the administrators of the communication racks 41 to 43 can recognize that the temperature on the cold aisle Y21 side is 20°C to 21°C and the temperature on the hot aisle Y22 side is 30°C to 31°C.
  • the specifying unit 25 is reflected by the FBG 22a (not shown) of the optical sensing means 1a, reflected by the fiber mirror 22m of the optical sensing means 1b, reflected by the FBG 22b (not shown) of the optical sensing means 2a, light
  • the propagation distance related to the reflection at the fiber mirror 22m of the sensing means 2b and the reflection at the FBG 22k of the optical sensing means 3 is retrieved.
  • the identification unit 25 identifies the abnormal state associated with the fiber mirror 22m of the optical sensing means 1b, 2b, so that the administrator or the like can confirm that the temperature on the hot aisle Y22 side of the communication racks 41 to 43 is abnormal. can recognize something.
  • FIG. 10 is a block diagram showing a configuration for monitoring the state of equipment in a no-entry area according to the third embodiment.
  • the no-entry area equipment of the third embodiment shown in FIG. It uses the optical sensing device 20A1.
  • the delay measurement unit 24, the environmental condition identification unit 25 and the DB 26 of the optical sensing device 20A1 are arranged in the management station 30. Also, the FBGs 22a to 22k including the optical circulator 21 of the optical sensing device 20A1 and the fiber mirror 22m are arranged in a no-entry area as will be described later.
  • a no-entry area has, for example, a vast area, and pillars 71, 72, 73, 74, 75, and 76 are fixed to the ground of the area in a hexagonal shape.
  • the optical fiber 12 is wound around and stretched vertically on each of the posts 71 to 76 .
  • One end of the optical fiber 12 is connected to a transmission port (not shown) of the communication device 11a connected to the control station 30, and the other end is connected to a reception port (not shown). That is, the optical fiber 12 that goes around the supports 71 to 76 is connected to the transmission/reception port of the communication device 11a.
  • This circular connection of the optical fiber 12 is similar to the round-trip connection of the optical fiber 12 to the transmission/reception ports 1p1 and 1p2 of the communication device 11 shown in FIG.
  • the optical circulators 21 arranged on the supports 71, 73, and 75 are inserted and connected to the optical fibers 12 that go around the supports 71 to 76 shown in FIG.
  • a plurality of FBGs 22a to 22k and a fiber mirror 22m as optical sensing means 1 are cascade-connected to the optical circulator 21 of the post 71.
  • FIG. A plurality of FBGs 22a to 22k and a fiber mirror 22m as the optical sensing means 2 are cascade-connected to the optical circulator 21 of the post 73.
  • FIG. A plurality of FBGs 22a to 22k and a fiber mirror 22m as optical sensing means 3 are cascade-connected to the optical circulator 21 of the post 75.
  • the optical circulator 21 of the support 71 is connected to the communication device 11a provided on the support 71 via an optical fiber 12.
  • the optical circulator 21 of the support 73 is connected to the communication device 11b provided on the support 73 via the optical fiber 12 .
  • the optical circulator 21 of the support 75 is connected to the communication device 11 c provided on the support 75 via the optical fiber 12 .
  • a camera 32a that can rotate in the direction of arrow Y11 or in the opposite direction is arranged at the upper end of the column 71 and connected to the optical fiber 12.
  • a camera 32 b that can rotate in the direction of arrow Y 12 or in the opposite direction is provided at the upper end of the support 73 and connected to the optical fiber 12 .
  • a camera 32 c rotatable in the direction of arrow Y 13 or in the opposite direction is arranged at the upper end of the support 75 and connected to the optical fiber 12 .
  • Each of the cameras 32a to 32c can be freely rotated under the control of the control unit 32 provided in the management station 30.
  • the pressure which is the environmental condition around the FBG, is set as the set environmental condition.
  • the FBG 22a is set to a pressure P1 as a set environmental condition
  • the FBG 22b is set to a pressure P2 higher than the pressure P1
  • the FBG 22k is set to a pressure P3 higher than the pressure P2.
  • the FBG 22a reflects signal light with a specific wavelength ⁇ 1 from the optical circulator 21 and transmits signal light with other wavelengths when pressure P1 is applied from the surroundings.
  • the FBG 22b reflects the specific wavelength ⁇ 1 when pressure P2 is applied, and transmits signal light of other wavelengths.
  • the FBG 22k reflects the specific wavelength ⁇ 1 when pressure P3 is applied, and transmits signal light of other wavelengths.
  • a pressure P4 larger than the pressure P3 is applied to each of the FBGs 22a to 22k, the specific wavelength ⁇ 1 is transmitted. This transmitted specific wavelength ⁇ 1 is reflected by the fiber mirror 22 m and transmitted to the optical circulator 21 .
  • the signal light transmitted from the communication device 11a to the optical fiber 12 is reflected by any of the FBGs 22a to 22k of the optical sensing means 1 to 3, circulates the posts 71 to 76, and is received by the communication device 11a.
  • Each propagation distance up to the point of reflection is stored in association with one of the reflected FBGs 22a to 22k.
  • each FBG 22a to 22k is associated with pressure as a set environmental condition.
  • the pressure P1 is associated with the FBG 22a
  • the pressure P2 is associated with the FBG 22b
  • the pressure P3 is associated with the FBG 22k.
  • the fiber mirror 22m is associated with the above-described abnormal state (abnormal pressure) as specific information.
  • the delay measurement unit 24 measures the difference between the transmission and reception times in the communication device 11a, including the delay time of the signal light reflected by one of the FBGs 22a to 22k or the fiber mirror 22m in each of the optical sensing means 1 to 3. Measure the delay time between
  • the specifying unit 25 obtains the measured propagation distance between transmission and reception of the signal light based on the measured delay time, and searches the DB 26 for the propagation distance that matches the obtained measured propagation distance.
  • the propagation distance related to the reflection at the FBG 22a of each of the optical sensing means 1-3 is retrieved.
  • the specifying unit 25 detects the FBGs 22a of the optical sensing means 1 to 3 associated with the searched propagation distance.
  • the identifying unit 25 identifies the detected pressure P1 of the FBG 22a of each of the optical sensing means 1-3. By this identification, the manager or the like of the management station 30 can recognize that there is no intruder in the intrusion prohibited area.
  • the specifying unit 25 searches for the propagation distance related to the reflection of the signal light of the specific wavelength ⁇ 1 at the fiber mirror 22m of the optical sensing means 2, and specifies the abnormal condition associated with the searched propagation distance.
  • the camera 32b of the post 73 is directed toward the fiber mirror 22m by the control of the control unit 32 according to this specification.
  • signal light with a specific wavelength ⁇ 1 is transmitted from the communication device 11b or the communication device 11c to the optical fiber 12 counterclockwise and clockwise, and is reflected by the FBGs 22a to 22k and the fiber mirror 22m of the optical sensing means 1 to 3.
  • the received signal light is received by the communication device 11a.
  • the delay time between transmission and reception may be measured, and environmental conditions and abnormal states may be specified by the specifying unit 25 in the same manner as in Modification 3 above.
  • An optical circulator interposed and connected in the middle of an optical transmission line that is connected back and forth to a communication device that transmits and receives signal light of a specific wavelength or a plurality of different wavelengths including the specific wavelength, and an optical circulator that is dependent on the optical circulator.
  • optical sensing is performed by reflecting signal light with a specific wavelength from the optical circulator and transmitting signal light with a wavelength other than the specific wavelength.
  • FBGs Fiber Bragg Gratings
  • a DB data base in which a distance is associated with each of the plurality of FBGs and information on the set environmental conditions for each of the FBGs is associated and stored; a delay measuring unit for measuring a delay time between transmission and reception from a difference in transmission and reception times of signal light transmitted and received by the communication device after being reflected by one; an identifying unit that obtains a measured propagation distance and identifies an FBG associated with the round-trip propagation distance in the DB that matches the obtained measured propagation distance.
  • the optical sensing device of the present invention is constructed by connecting a plurality of FBGs, which are general-purpose components, cascaded with optical fibers via optical circulators, which are general-purpose components, to an optical transmission line using optical fibers for communication purposes. Since the optical circulator and FBG are general-purpose products, they can be configured at low cost. Since the optical sensing device is branch-connected to an optical transmission line, the optical fiber is not exclusively used for optical sensing, and packet loss of signal light does not occur, so it can be used for communication purposes.
  • optical sensing can be performed by measuring only the transmission/reception delay time from the transmission/reception time of the communication device, so the amount of measurement data does not become enormous even if the measurement is performed for a long time, and a dedicated program is required for data analysis. Therefore, the analysis time is not required.
  • the optical fiber can be used for optical sensing under environmental conditions that facilitate data analysis at low cost, and can also be used for communication purposes.
  • a fiber mirror that reflects all wavelengths is cascade-connected to the last FBG in the plurality of FBGs, and in addition to the information stored in the DB, a signal that is transmitted and received by the communication device after being reflected by the fiber mirror
  • a round-trip propagation distance of light is associated with the fiber mirror, and specific information of the fiber mirror is associated and stored.
  • the delay time between transmission and reception is measured from the difference between the transmission and reception
  • the specifying unit obtains the measured propagation distance between transmission and reception of the signal light based on the measured delay time, and
  • the optical sensing device according to (1) above, wherein the fiber mirror and the specific information associated with the round-trip propagation distance in the DB are specified.
  • the delay measurement unit measures the transmission/reception delay time associated with the reflection on the fiber mirror.
  • the specifying unit searches for the round-trip propagation distance related to the fiber mirror in the DB that matches the measured propagation distance between transmission and reception based on the measured delay time, and searches the fiber mirror associated with this round-trip propagation distance.
  • the identification unit can identify, for example, the above-described abnormal condition as identification information associated with the detected fiber mirror. Therefore, as in (1) above, the optical fiber can be used for optical sensing under environmental conditions that facilitate data analysis at low cost, and can also be used for communication purposes.
  • a plurality of FBGs having different set environmental conditions for performing optical sensing that transmits light; and the signal light transmitted from the first communication device is reflected by any one of the plurality of FBGs via the optical circulator a DB in which a propagation distance of the signal light to be received later by the second communication device is associated with each of the plurality of FBGs and a set environmental condition for each of the FBGs is associated and stored; a delay measurement unit for measuring a delay time between transmission and reception from the difference in transmission and reception times of signal light transmitted from and received by the second communication device; an identifying unit that obtains a measured propagation distance and identifies an FBG associated with the propagation distance in the DB that matches the obtained measured propagation distance.
  • a fiber mirror that reflects all wavelengths is subordinately connected to the last FBG in the plurality of FBGs, and in addition to the information stored in the DB, transmitted from the first communication device and reflected by the fiber mirror
  • the propagation distance of the signal light received later by the second communication device is associated with the fiber mirror, and the specific information of the fiber mirror is associated and stored, and the delay measurement unit measures the transmission and reception after being reflected by the fiber mirror.
  • the delay time between transmission and reception is measured from the difference between the transmission and reception times of the signal light, and the specifying unit obtains the measured propagation distance between transmission and reception of the signal light based on the measured delay time.
  • the optical sensing device according to (3) above, wherein the fiber mirror associated with the propagation distance in the DB that matches the measured propagation distance is specified.
  • the delay measurement unit measures the transmission/reception delay time associated with the reflection on the fiber mirror.
  • the identification unit searches for the propagation distance related to the fiber mirror in the DB that matches the measured propagation distance between transmission and reception based on the measured delay time, and detects the fiber mirror associated with this propagation distance. do. Furthermore, the identification unit can identify, for example, the above-described abnormal condition as identification information associated with the detected fiber mirror. Therefore, as in (3) above, the optical fiber can be used for optical sensing under environmental conditions that facilitate data analysis at low cost, and can be used for communication purposes.
  • communication network 11 communication device 12 optical fiber 20, 20A, 20B, 20C optical sensing device 21 optical circulator 22a to 22k FBG 22m fiber mirror 24 delay measurement unit 25 environmental condition identification unit (identification unit) 26 DBs

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)

Abstract

This light sensing device (20) comprises: a light circulator (21) that is connected in an interposed manner in the middle of an optical fiber (12) connected in a reciprocating manner to a communication device (11) that transmits and receives signal light including a specific wavelength (λ1); and FBGs (22a to 22k) that are connected in a subordinate manner to the light circulator (21) and reflect only the signal light of the specific wavelength (λ1) when an environmental condition is a set environmental condition. The light sensing device (20) comprises: a delay measuring unit (24) that measures a delay time period between transmission and reception from the difference between transmission and reception times of the signal light at the communication device (11) after the reflection by any one of the FBGs (22a to 22k); and a specifying unit (25) that specifies an FBG (22a to 22k) having a reciprocating transmission distance in a DB (26) that matches a measured transmission distance between the transmission and reception of the signal light derived on the basis of the measured delay time period.

Description

光センシング装置及び光センシング方法Optical sensing device and optical sensing method
 本発明は、光ファイバを伝送する信号光によって温度や圧力等の環境条件を測定する光センシング装置及び光センシング方法に関する。 The present invention relates to an optical sensing device and an optical sensing method for measuring environmental conditions such as temperature and pressure using signal light transmitted through an optical fiber.
 光ファイバを用いた光センシング技術が提案されており、近年では、高精度な遅延測定技術が求められている。この種の光センシング技術として、例えば特許文献1に記載する光ファイバセンサシステムがある。このシステムは、光ファイバの特性を利用し、光ファイバに周期的な屈折率変化を与えることで特定波長を反射し、この反射波長が光ファイバの温度等の環境条件により変わるFBG(Fiber Bragg Gratings)(非特許文献1)を用いた光ファイバセンサを活用したものである。 Optical sensing technology using optical fibers has been proposed, and in recent years there has been a demand for highly accurate delay measurement technology. As this type of optical sensing technology, there is an optical fiber sensor system described in Patent Document 1, for example. This system utilizes the properties of optical fibers to reflect a specific wavelength by periodically changing the refractive index of the optical fiber. ) (Non-Patent Document 1).
 また、近年e-sportsや自動運転等で低遅延サービスが求められ、ネットワーク内の正確な遅延量や遅延ゆらぎの把握と、その情報に基づく最適パスの選択といったネットワーク制御が求められるようになってきた。そのネットワーク状態を詳細に監視する技術が非特許文献2に提案されている。この他の光センシングに係る技術として非特許文献3に記載のものがある。 In addition, in recent years, low-delay services such as e-sports and autonomous driving have been required, and network control such as grasping the accurate amount of delay and delay fluctuation in the network and selecting the optimum path based on that information has become necessary. rice field. Non-Patent Document 2 proposes a technique for monitoring the network state in detail. Non-Patent Document 3 discloses another technique related to optical sensing.
特開2000-352524号公報JP-A-2000-352524
 しかし、上述した従来の光センシング技術には次のような問題があった。光センシング技術として、通常、広帯域光源であるASE(Amplified Spontaneous Emission)光源と、スペクトラムアナライザが必要であるため、光センシング装置が高価となっていた。また、広帯域光源を光ファイバ内に挿入するので、光ファイバを光センシングのために専有してしまい、通信用途に利用できなかった。 However, the conventional optical sensing technology mentioned above has the following problems. Optical sensing technology usually requires an ASE (Amplified Spontaneous Emission) light source, which is a broadband light source, and a spectrum analyzer, so the optical sensing device is expensive. In addition, since the broadband light source is inserted into the optical fiber, the optical fiber is exclusively used for optical sensing and cannot be used for communication.
 更に、通信用スイッチ間にFBGやLPFG(Long Period Fiber Grating)を利用し、パケットロス率とファイバセンシング情報とに相関を持たせてセンシングする方式もある。しかし、この方式では、パケットロスがあるため、通信用途には不向きであった。更には、短い測定間隔で長時間センシングによる観測を行うと測定データ量が膨大になり、このデータ解析に専用プログラムが必要となって解析時間が掛かってしまう。 Furthermore, there is also a method of sensing by correlating the packet loss rate and fiber sensing information by using FBG or LPFG (Long Period Fiber Grating) between communication switches. However, this method is not suitable for communication applications because of packet loss. Furthermore, if observation is performed by sensing for a long period of time at short measurement intervals, the amount of measurement data becomes enormous, and a dedicated program is required for this data analysis, resulting in a long analysis time.
 本発明は、このような事情に鑑みてなされたものであり、光ファイバを低コストでデータ解析が容易となる環境条件の光センシングを行うことができ、通信用途にも利用可能とすることを課題とする。 The present invention has been made in view of such circumstances, and aims to enable optical sensing of environmental conditions that facilitate data analysis at low cost and to enable the use of optical fibers for communication purposes. Make it an issue.
 上記課題を解決するため、本発明の光センシング装置は、特定波長又は特定波長を含む複数の異なる波長の信号光を送受信する通信装置に往復接続された光伝送路の途中に介挿接続された光サーキュレータと、前記光サーキュレータに光ファイバで従属接続され、環境条件が予め設定された設定環境条件の場合に、当該光サーキュレータからの特定波長の信号光を反射し、特定波長以外の信号光を透過する光センシングを行う、当該設定環境条件が各々異なる複数のFBG(Fiber Bragg Gratings)と、前記光サーキュレータを介し、前記複数のFBGの何れか1つで反射後に、光伝送路を経由して前記通信装置で送受信される信号光の往復伝搬距離が、当該複数のFBG毎に対応付けられると共に、当該FBG毎の設定環境条件の情報が対応付けられて記憶されたDB(Data Base)と、前記光サーキュレータを介し、前記複数のFBGの何れか1つで反射後に前記通信装置で送受信される信号光の送受信時刻の差分から、送受信間の遅延時間を測定する遅延測定部と、前記測定された遅延時間を基に信号光の送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致する前記DB内の往復伝搬距離に対応付けられたFBGを特定する特定部とを備えることを特徴とする。 In order to solve the above problems, the optical sensing device of the present invention is inserted and connected in the middle of an optical transmission line that is connected back and forth to a communication device that transmits and receives signal light of a specific wavelength or a plurality of different wavelengths including the specific wavelength. an optical circulator, which is cascade-connected to the optical circulator by an optical fiber, and in the case of environmental conditions set in advance, reflects signal light of a specific wavelength from the optical circulator and emits signal light of a wavelength other than the specific wavelength; Through a plurality of FBGs (Fiber Bragg Gratings) each having different set environmental conditions for sensing transmitted light, and the optical circulator, after being reflected by any one of the plurality of FBGs, through an optical transmission line A DB (Data Base) in which the round-trip propagation distance of the signal light transmitted and received by the communication device is associated with each of the plurality of FBGs, and information on the set environmental conditions for each of the FBGs is associated and stored; a delay measuring unit for measuring a delay time between transmission and reception from a difference in transmission and reception times of signal light transmitted and received by the communication device after being reflected by any one of the plurality of FBGs via the optical circulator; an identifying unit that obtains a measured propagation distance between transmission and reception of signal light based on the delay time obtained, and identifies an FBG associated with the round-trip propagation distance in the DB that matches the obtained measured propagation distance. characterized by
 本発明によれば、光ファイバを低コストでデータ解析が容易となる環境条件の光センシングを行うことができ、通信用途にも利用可能とすることができる。 According to the present invention, the optical fiber can be used for optical sensing under environmental conditions that facilitate data analysis at low cost, and can also be used for communication purposes.
本発明の実施形態に係る光センシング装置を用いた通信ネットワークの構成を示すブロック図である。1 is a block diagram showing the configuration of a communication network using optical sensing devices according to an embodiment of the present invention; FIG. 本実施形態に係る光センシング装置のDBの記憶情報を示す図である。It is a figure which shows the storage information of DB of the optical sensing apparatus which concerns on this embodiment. 本実施形態に係る光センシング装置による光センシング動作を説明するためのフローチャートである。4 is a flow chart for explaining a light sensing operation by the light sensing device according to the embodiment; 本発明の実施形態の変形例1に係る光センシング装置を用いた通信ネットワークの構成を示すブロック図である。FIG. 4 is a block diagram showing the configuration of a communication network using the optical sensing device according to Modification 1 of the embodiment of the present invention; 変形例1に係る光センシング装置のDBの記憶情報を示す図である。8 is a diagram showing information stored in a DB of the optical sensing device according to Modification 1; FIG. 本発明の実施形態の変形例2に係る光センシング装置を用いた通信ネットワークの構成を示すブロック図である。FIG. 10 is a block diagram showing the configuration of a communication network using the optical sensing device according to Modification 2 of the embodiment of the present invention; 本発明の実施形態の変形例3に係る光センシング装置を用いた通信ネットワークの構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of a communication network using a light sensing device according to Modification 3 of the embodiment of the present invention; 実施例1に係る通信ネットワークの構成を示すブロック図である。1 is a block diagram showing the configuration of a communication network according to Example 1; FIG. 実施例2に係る通信設備の状態監視を行う構成を示すブロック図である。FIG. 11 is a block diagram showing a configuration for monitoring the state of communication equipment according to the second embodiment; 実施例3に係る侵入禁止エリア設備の状態監視を行う構成を示すブロック図である。FIG. 11 is a block diagram showing a configuration for monitoring the state of equipment in a no-entry area according to Embodiment 3;
 以下、本発明の実施形態を、図面を参照して説明する。但し、本明細書の全図において機能が対応する構成部分には同一符号を付し、その説明を適宜省略する。
<実施形態の構成>
 図1は、本発明の実施形態に係る光センシング装置を用いた通信ネットワークの構成を示すブロック図である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, in all the drawings of this specification, the same reference numerals are given to components having corresponding functions, and descriptions thereof will be omitted as appropriate.
<Configuration of Embodiment>
FIG. 1 is a block diagram showing the configuration of a communication network using optical sensing devices according to an embodiment of the present invention.
 図1に示す通信ネットワーク(NWともいう)10は、光ファイバ12へ信号光の送受信を行う通信装置11と、光ファイバ12の途中に接続された光センシング装置20とを備えて構成されている。通信装置11は、信号光を送信する送信ポート1p1と、信号光を受信する受信ポート1p2とに、所定距離を往復する光ファイバ12が接続されている。但し、通信装置11は、特定波長(例えば波長λ1)を含む複数の異なる波長の信号光を送受信する。特定波長のみの信号光を送受信する場合もある。なお、波長λ1は、単にλ1とも称す。また、光ファイバ12は、請求項記載の光伝送路を構成する。 A communication network (also referred to as NW) 10 shown in FIG. . The communication device 11 has a transmission port 1p1 for transmitting signal light and a reception port 1p2 for receiving signal light, and an optical fiber 12 that makes a round trip over a predetermined distance is connected. However, the communication device 11 transmits and receives signal light of a plurality of different wavelengths including a specific wavelength (for example, wavelength λ1). In some cases, signal light with only a specific wavelength is transmitted and received. Note that the wavelength λ1 is also simply referred to as λ1. Also, the optical fiber 12 constitutes an optical transmission line described in the claims.
 光センシング装置20は、光サーキュレータ21と、複数のFBG22a,22b,…,22kと、遅延測定部24と、環境条件特定部25と、DB(Data Base)26とを備えて構成されている。但し、遅延測定部24、環境条件特定部25及びDB26は、通信装置11の中に備えてもよい。環境条件特定部25は、請求項記載の特定部を構成する。 The optical sensing device 20 includes an optical circulator 21, a plurality of FBGs 22a, 22b, . However, the delay measuring unit 24 , the environmental condition identifying unit 25 and the DB 26 may be provided inside the communication device 11 . The environmental condition specifying unit 25 constitutes the specifying unit described in the claims.
 光サーキュレータ21は、光ファイバ12の途中に介挿されて接続されている。複数のFBG22a~22kは、光サーキュレータ21に光ファイバで従属接続されている。つまり、光サーキュレータ21に1段目のFBG22aが接続され、このFBG22aに2段目のFBG22b,…,k段目のFBG22kと順に従属接続されている。 The optical circulator 21 is inserted and connected to the middle of the optical fiber 12 . A plurality of FBGs 22a to 22k are cascade-connected to the optical circulator 21 by optical fibers. That is, the first-stage FBG 22a is connected to the optical circulator 21, and the second-stage FBG 22b, .
 光サーキュレータ21は、通信装置11の送信ポート1p1から送信され、光ファイバ12を経由してきた信号光を、矢印21aで示す右回り方向のみに伝送する。この光サーキュレータ21は、送信ポート1p1側の光ファイバ12から入力された信号光を、矢印Y1で示すように、1段目のFBG22aを介して末尾であるk段目のFBG22kの方向(往路方向Y1という)へ向かって出力する。往路方向Y1の逆方向を復路方向Y2という。また、光サーキュレータ21は、FBG22a~22kの何れかで反射されて復路方向Y2に向かう信号光を、光ファイバ12を介して往復端12a側へ出力する。 The optical circulator 21 transmits the signal light transmitted from the transmission port 1p1 of the communication device 11 and passed through the optical fiber 12 only in the clockwise direction indicated by the arrow 21a. This optical circulator 21 passes the signal light input from the optical fiber 12 on the side of the transmission port 1p1 through the first-stage FBG 22a in the direction of the last k-th stage FBG 22k (forward direction), as indicated by the arrow Y1. Y1). A direction opposite to the forward direction Y1 is referred to as a backward direction Y2. The optical circulator 21 also outputs the signal light reflected by any of the FBGs 22a to 22k and traveling in the backward direction Y2 through the optical fiber 12 to the reciprocating end 12a side.
 FBG22a~22kは、予め設定された設定環境条件(例えば温度x℃)になると、特定波長λ1のみを反射し、特定波長λ1以外の波長を透過する光センシングを行う。また、FBG22a~22kは、周辺温度の変化によりFBGが温度x℃以外の温度(例えばy℃)になると、特定波長λ1と異なる特定波長(例えば波長λ2)のみを反射し、この特定波長λ2以外の波長を透過する光センシングを行う。 The FBGs 22a to 22k perform optical sensing by reflecting only the specific wavelength λ1 and transmitting wavelengths other than the specific wavelength λ1 when preset environmental conditions (eg, temperature x°C) are reached. Further, when the temperature of the FBGs 22a to 22k changes to a temperature other than the temperature x° C. (for example, y° C.) due to a change in the ambient temperature, the FBGs 22a to 22k reflect only a specific wavelength (for example, a wavelength λ2) different from the specific wavelength λ1. Sensing light that passes through the wavelength of
 本例では、FBG22a~22kは、互いに近傍に配置されており、各々が異なる環境条件の場合に光サーキュレータ21からの波長の信号光を反射するように設定されている。例えば、FBG22aが設定環境条件としての20℃の温度の場合に、光サーキュレータ21から往路方向Y1に向かう波長λ1の信号光を反射し、FBG22bが21℃でλ1の信号光を反射し、FBG22kが25℃でλ1の信号光を反射するように設定されている。それら反射された信号光は復路方向Y2で光サーキュレータ21へ伝送される。また、FBG22a~22kは、設定温度以外の温度では往路方向Y1に向かう波長λ1の信号光を透過する。 In this example, the FBGs 22a to 22k are arranged close to each other, and are set so as to reflect the signal light of the wavelength from the optical circulator 21 under different environmental conditions. For example, when the temperature of the FBG 22a is 20° C. as the set environmental condition, the optical circulator 21 reflects the signal light of wavelength λ1 in the forward direction Y1, the FBG 22b reflects the signal light of λ1 at 21° C., and the FBG 22k It is set to reflect the signal light of λ1 at 25°C. These reflected signal lights are transmitted to the optical circulator 21 in the backward direction Y2. Further, the FBGs 22a to 22k transmit the signal light of wavelength λ1 traveling in the forward direction Y1 at temperatures other than the set temperature.
 また、FBG22a~22kの各々の間隔は、FBG22a,22b間に代表して示すように、d[m]となっている。FBG22a,22b間を信号光が往復する際の遅延時間は、(d×2)÷(c/n)[秒]となる。但し、cは光速、nは光ファイバのコアの屈折率であるとする。 Also, the interval between each of the FBGs 22a to 22k is d [m], as representatively shown between the FBGs 22a and 22b. The delay time when the signal light travels back and forth between the FBGs 22a and 22b is (d×2)÷(c/n) [seconds]. However, c is the speed of light, and n is the refractive index of the core of the optical fiber.
 通信装置11は、光ファイバ12の往復端12aを経由して戻ってきた信号光を受信ポート1p2で受信する。この受信される信号光は、FBG22a~22kの何れか1つで反射され、光サーキュレータ21から光ファイバ12の往復端12aへ向かって伝送されたものである。 The communication device 11 receives the signal light returned via the reciprocating end 12a of the optical fiber 12 at the reception port 1p2. This received signal light is reflected by any one of the FBGs 22 a to 22 k and transmitted from the optical circulator 21 toward the reciprocating end 12 a of the optical fiber 12 .
 DB26は、通信装置11の送信ポート1p1から送信された信号光が、光ファイバ12の往復端12aを経由して受信ポート1p2で受信されるまでの往復伝搬距離を、FBG22a~22k毎に対応付けて記憶している。但し、往復伝搬距離とは、送信ポート1p1から送信された信号光が、光ファイバ12及び光サーキュレータ21を経由してFBG22a~22kの何れか1つで反射されて光サーキュレータ21に戻り、更に、光ファイバ12の往復端12aを経由して受信ポート1p2で受信されるまでの距離である。 The DB 26 associates the round-trip propagation distance from the transmission port 1p1 of the communication device 11 to the reception port 1p2 via the round-trip end 12a of the optical fiber 12 for each of the FBGs 22a to 22k. I remember. However, the round-trip propagation distance means that the signal light transmitted from the transmission port 1p1 passes through the optical fiber 12 and the optical circulator 21, is reflected by any one of the FBGs 22a to 22k, returns to the optical circulator 21, and further This is the distance from the reciprocating end 12a of the optical fiber 12 to the reception port 1p2.
 即ち、DB26には、図2に示すように、反射位置としての1段目のFBG22aで反射された送受信ポート1p1,1p2間の往復伝搬距離LaがFBG22aに対応付けられて記憶され、2段目のFBG22bで反射される送受信ポート1p1,1p2間の往復伝搬距離LbがFBG22bに対応付けられて記憶され、k段目のFBG22kで反射される送受信ポート1p1,1p2間の往復伝搬距離LkがFBG22kに対応付けられて記憶されている。 That is, in the DB 26, as shown in FIG. 2, the round-trip propagation distance La between the transmitting/receiving ports 1p1 and 1p2 reflected by the first-stage FBG 22a as the reflection position is stored in association with the FBG 22a. The round-trip propagation distance Lb between the transmission/reception ports 1p1 and 1p2 reflected by the FBG 22b at the k-th stage is stored in association with the FBG 22b, and the round-trip propagation distance Lk between the transmission/reception ports 1p1 and 1p2 reflected by the k-th FBG 22k is stored in the FBG 22k. are associated and stored.
 更に、DB26には、各FBG22a~22kに設定環境条件としての温度が対応付けられている。FBG22aには温度の20℃が対応付けられ、FBG22bには21℃が、FBG22kには25℃が対応付けられている。 Furthermore, in the DB 26, each FBG 22a to 22k is associated with a temperature as a set environmental condition. A temperature of 20°C is associated with the FBG 22a, a temperature of 21°C is associated with the FBG 22b, and a temperature of 25°C is associated with the FBG 22k.
 図1に戻って、遅延測定部24は、通信装置11の送信ポート1p1及び受信ポート1p2での送受信時刻の差分である送受信間の遅延時間を測定する。 Returning to FIG. 1, the delay measurement unit 24 measures the delay time between transmission and reception, which is the difference between the transmission and reception times at the transmission port 1p1 and the reception port 1p2 of the communication device 11.
 環境条件特定部(特定部ともいう)25は、上記測定された遅延時間に基づき信号光の送受信間の計測伝搬距離(例えば計測伝搬距離La)を求め、この求められた計測伝搬距離Laと一致するDB26内の往復伝搬距離Laを検索する。特定部25は、その検索された往復伝搬距離Laに対応付けられたFBG22aを検出し、この検出されたFBG22aに対応付けられた設定環境条件としての温度=20℃を特定する。 An environmental condition specifying unit (also referred to as a specifying unit) 25 obtains a measured propagation distance (for example, a measured propagation distance La) between transmission and reception of signal light based on the measured delay time, and matches the obtained measured propagation distance La. Search the DB 26 for the round-trip propagation distance La. The identifying unit 25 detects the FBG 22a associated with the searched round-trip propagation distance La, and identifies temperature=20° C. as the set environmental condition associated with the detected FBG 22a.
 但し、各FBG22a~22kは、上述したFBG周囲の温度変化時に反射波長が変わるのと同様に、FBGに外部から掛る圧力が変化した場合も、反射波長が変化する。このため、環境条件の温度と同様に、FBG22a~22k周辺の環境条件である圧力等も特定できる。 However, the reflection wavelengths of the FBGs 22a to 22k also change when the external pressure applied to the FBGs changes, in the same way that the reflection wavelengths change when the temperature around the FBGs changes. Therefore, like the temperature of the environmental conditions, the pressure and the like, which are the environmental conditions around the FBGs 22a to 22k, can also be specified.
<実施形態の動作>
 次に、本実施形態に係る光センシング装置20による光センシング動作を、図3のフローチャートを参照して説明する。但し、DB26には、図2に示す反射位置、往復伝搬距離、設定環境条件としての温度の各情報が記憶されているとする。また、FBG22aは環境条件の温度が20℃の場合に波長λ1の信号光を反射し、FBG22bは21℃の場合にλ1の信号光を反射し、FBG22kは25℃の場合にλ1の信号光を反射するように設定されているとする。
<Operation of Embodiment>
Next, the light sensing operation of the light sensing device 20 according to this embodiment will be described with reference to the flowchart of FIG. However, it is assumed that the DB 26 stores information on the reflection position, the round-trip propagation distance, and the temperature as the set environmental condition shown in FIG. The FBG 22a reflects the signal light of wavelength λ1 when the environmental temperature is 20°C, the FBG 22b reflects the signal light of λ1 when the temperature is 21°C, and the FBG 22k reflects the signal light of λ1 when the temperature is 25°C. Suppose it is set to be reflective.
 図3に示すステップS1において、通信装置11の送信ポート1p1から波長λ1の信号光が光ファイバ12へ送信されたとする。  In step S1 shown in FIG. 3, it is assumed that a signal light having a wavelength λ1 is transmitted from the transmission port 1p1 of the communication device 11 to the optical fiber 12.
 ステップS2において、その送信された信号光が光ファイバ12を経由して光サーキュレータ21に入力されると、光サーキュレータ21が信号光を往路方向Y1へ出力する。 In step S2, when the transmitted signal light is input to the optical circulator 21 via the optical fiber 12, the optical circulator 21 outputs the signal light in the outward direction Y1.
 ステップS3において、その往路方向Y1の信号光は、反射位置要素としてのFBG22a~22kの何れか1つで復路方向Y2へ反射される。例えば、環境条件の温度が21℃であれば、21℃で信号光を反射するFBG22bで反射される。このように反射された光信号は、復路方向Y2に伝送されて光サーキュレータ21に入力される。 In step S3, the signal light in the forward direction Y1 is reflected in the backward direction Y2 by any one of the FBGs 22a to 22k as reflection position elements. For example, if the temperature of the environmental condition is 21°C, the signal light is reflected by the FBG 22b that reflects the signal light at 21°C. The optical signal reflected in this manner is transmitted in the backward direction Y 2 and input to the optical circulator 21 .
 ステップS4において、光サーキュレータ21は、入力された信号光を、光ファイバ12の往復端12aへ向かって出力する。 In step S<b>4 , the optical circulator 21 outputs the input signal light toward the reciprocating end 12 a of the optical fiber 12 .
 ステップS5において、その出力された信号光は、光ファイバ12の往復端12aを経由し、受信ポート1p2を介して通信装置11で受信される。 In step S5, the output signal light passes through the reciprocating end 12a of the optical fiber 12 and is received by the communication device 11 via the reception port 1p2.
 ステップS6において、遅延測定部24は、通信装置11の送信ポート1p1及び受信ポート1p2での送受信時刻の差分から、信号光の送受信間の遅延時間を測定する。 In step S6, the delay measurement unit 24 measures the delay time between transmission and reception of the signal light from the difference between the transmission and reception times at the transmission port 1p1 and the reception port 1p2 of the communication device 11.
 ステップS7において、環境条件特定部25は、その測定された遅延時間に基づき信号光送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致するDB26内の往復伝搬距離La~Lkを検索する。例えば、計測伝搬距離Lbが求められ、この計測伝搬距離Lbと一致するDB26内の往復伝搬距離Lbが検索されたとする。 In step S7, the environmental condition specifying unit 25 obtains the measured propagation distance between signal light transmission and reception based on the measured delay time, and determines the round-trip propagation distances La to Lk in the DB 26 that match the obtained measured propagation distances. Search for. For example, assume that the measured propagation distance Lb is obtained, and the round-trip propagation distance Lb in the DB 26 that matches the measured propagation distance Lb is searched.
 ステップS8において、特定部25は、その検索された往復伝搬距離Lbに対応付けられた反射位置要素としてのFBG22bを検出する。 In step S8, the specifying unit 25 detects the FBG 22b as the reflection position element associated with the retrieved round-trip propagation distance Lb.
 ステップS9において、特定部25は、その検出されたFBG22bに環境条件として対応付けられた例えば温度=21℃を特定する。この特定によって、例えばNW10の管理者等は、FBG22a~22kが配置された場所の温度が21℃であることが把握できる。 In step S9, the identifying unit 25 identifies, for example, temperature = 21°C associated with the detected FBG 22b as an environmental condition. By this identification, for example, the administrator of the NW 10 can grasp that the temperature of the locations where the FBGs 22a to 22k are arranged is 21.degree.
<実施形態の効果>
 本発明の実施形態に係る光センシング装置20の効果について説明する。
<Effects of Embodiment>
Effects of the optical sensing device 20 according to the embodiment of the present invention will be described.
 光センシング装置20は、光サーキュレータ21と、複数のFBG22a~22kと、遅延測定部24と、環境条件特定部25と、DB26とを備えて構成されている。
 光サーキュレータ21は、特定波長(例えば特定波長λ1)又は特定波長を含む複数の異なる波長の信号光を送受信する通信装置11に往復接続された光ファイバ12の途中において介挿接続されている。
The optical sensing device 20 includes an optical circulator 21, a plurality of FBGs 22a to 22k, a delay measuring section 24, an environmental condition identifying section 25, and a DB 26.
The optical circulator 21 is inserted and connected in the middle of the optical fiber 12 that is connected back and forth to the communication device 11 that transmits and receives signal light of a specific wavelength (for example, a specific wavelength λ1) or a plurality of different wavelengths including the specific wavelength.
 FBG22a~22kは、光サーキュレータ21に光ファイバで従属接続され、環境条件が予め設定された設定環境条件の場合に、光サーキュレータ21からの特定波長λ1の信号光を反射し、特定波長λ1以外の信号光を透過する光センシングを行う。このFBG22a~22kは、設定環境条件が各々異なっている。 The FBGs 22a to 22k are cascade-connected to the optical circulator 21 by optical fibers, and reflect the signal light of the specific wavelength λ1 from the optical circulator 21 when the environmental conditions are set in advance, Optical sensing is performed by transmitting signal light. The FBGs 22a to 22k have different set environment conditions.
 DB26には、光サーキュレータ21を介し、複数のFBG22a~22kの何れか1つで反射後に、光ファイバ12を経由して通信装置11で送受信される信号光の往復伝搬距離が、複数のFBG22a~22k毎に対応付けられると共に、FBG22a~22k毎の設定環境条件の情報が対応付けられて記憶されている。 In the DB 26, the round-trip propagation distance of the signal light transmitted and received by the communication device 11 via the optical fiber 12 after being reflected by any one of the plurality of FBGs 22a to 22k via the optical circulator 21 is stored in the plurality of FBGs 22a to 22k. 22k, and the information of the setting environment conditions for each of the FBGs 22a to 22k is stored in correspondence.
 遅延測定部24は、光サーキュレータ21を介し、複数のFBG22a~22kの何れか1つで反射後に通信装置11で送受信される信号光の送受信時刻の差分から、送受信間の遅延時間を測定する。
 特定部25は、その測定された遅延時間を基に信号光の送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致するDB26内の往復伝搬距離に対応付けられたFBG22a~22kを特定する構成とした。
The delay measuring unit 24 measures the delay time between transmission and reception from the difference in the transmission and reception times of the signal light transmitted and received by the communication device 11 after being reflected by any one of the plurality of FBGs 22a to 22k via the optical circulator 21.
The specifying unit 25 obtains the measured propagation distance between transmission and reception of the signal light based on the measured delay time, and FBGs 22a to 22k associated with the round-trip propagation distance in the DB 26 that matches the obtained measured propagation distance. It was configured to specify
 この構成によれば、次のような作用効果を得ることができる。通信装置11に往復接続されている光ファイバの途中に介挿接続された光サーキュレータ21に、光センシングを行う複数のFBG22a~22kが従属接続されている。通信装置11から光ファイバへ送信された例えば波長λ1の信号光が、光サーキュレータ21を介してFBG22a~22kへ伝送されたとする。この際に、環境条件の温度が光サーキュレータ21に最も近いFBG22aにおけるλ1の信号光を反射するための設定環境条件の温度(例えば20℃)と同じであるとする。この場合、FBG22aではλ1以外の波長の信号光が透過され、λ1の信号光が反射される。この反射された信号光は、光サーキュレータ21で光ファイバの往復端へ伝送され、通信装置11で受信される。 According to this configuration, the following effects can be obtained. A plurality of FBGs 22a to 22k for performing optical sensing are cascade-connected to an optical circulator 21 inserted and connected in the middle of an optical fiber that is reciprocally connected to the communication device 11. FIG. Assume that the signal light of wavelength λ1, for example, transmitted from the communication device 11 to the optical fiber is transmitted to the FBGs 22a to 22k via the optical circulator 21. FIG. At this time, it is assumed that the temperature of the environmental condition is the same as the temperature of the environmental condition (for example, 20° C.) for reflecting the signal light of λ1 in the FBG 22 a closest to the optical circulator 21 . In this case, the signal light of wavelengths other than λ1 is transmitted through the FBG 22a, and the signal light of λ1 is reflected. This reflected signal light is transmitted to the reciprocating end of the optical fiber by the optical circulator 21 and received by the communication device 11 .
 遅延測定部24は、通信装置11での送受信時刻の差分から、λ1の信号光の送受信間の遅延時間を測定する。特定部25は、その測定された遅延時間に基づき信号光送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致するDB26内の往復伝搬距離Laを検索する。更に、特定部25は、その検索された往復伝搬距離Laに対応付けられたFBG22aを検出する。この検出によって、FBG22aに対応付けられた環境条件としての温度20度が特定できる。 The delay measurement unit 24 measures the delay time between transmission and reception of the signal light of λ1 from the difference between the transmission and reception times in the communication device 11 . The specifying unit 25 obtains the measured propagation distance between signal light transmission and reception based on the measured delay time, and searches the DB 26 for a round-trip propagation distance La that matches the obtained measured propagation distance. Further, the identifying unit 25 detects the FBG 22a associated with the searched round-trip propagation distance La. By this detection, the temperature of 20 degrees can be identified as the environmental condition associated with the FBG 22a.
 この構成の光センシング装置20は、通信用途に利用する光ファイバ12に、汎用部品である光サーキュレータ21を介して複数の汎用部品のFBG22a~22kを光ファイバで従属接続して構成されている。光サーキュレータ21及びFBG22a~22kは汎用品であるため低コストで構成できる。光センシング装置20は、光伝送路としての光ファイバ12に分岐接続して構成されているので、光ファイバ12を光センシングのために専有することが無く、信号光のパケットロスも生じないので、通信用途にも利用できる。また、通信装置11での送受信時刻から送受信の遅延時間のみを測定して光センシングが行えるので、長時間センシングしても測定データ量が膨大になることは無く、また、データ解析に専用プログラムが必要になることも無いので、解析時間が掛かることが無くなる。 The optical sensing device 20 with this configuration is configured by connecting a plurality of general-purpose FBGs 22a to 22k via optical fibers to an optical fiber 12 used for communication via an optical circulator 21, which is a general-purpose component. Since the optical circulator 21 and the FBGs 22a to 22k are general-purpose products, they can be constructed at low cost. Since the optical sensing device 20 is configured by branching and connecting to the optical fiber 12 as an optical transmission line, the optical fiber 12 is not exclusively used for optical sensing, and packet loss of signal light does not occur. It can also be used for communication purposes. In addition, since the optical sensing can be performed by measuring only the transmission/reception delay time from the transmission/reception time in the communication device 11, the amount of measured data does not become enormous even if the sensing is performed for a long period of time. Since it is not necessary, analysis time is eliminated.
 従って、本実施形態の光センシング装置20によれば、光ファイバを低コストでデータ解析が容易となる環境条件の光センシングを行うことができ、通信用途にも利用できる。 Therefore, according to the optical sensing device 20 of the present embodiment, it is possible to perform optical sensing under environmental conditions that facilitate data analysis at low cost using an optical fiber, and it can also be used for communication purposes.
<実施形態の変形例1>
 図4は、本発明の実施形態の変形例1に係る光センシング装置を用いた通信ネットワークの構成を示すブロック図である。
<Modification 1 of Embodiment>
FIG. 4 is a block diagram showing the configuration of a communication network using the optical sensing device according to Modification 1 of the embodiment of the present invention.
 図4に示す変形例1の光センシング装置20Aは、上述した実施形態の光センシング装置20(図1)に、全ての波長の信号光を反射するファイバミラー22mを更に備えた。また、DB26に、図5に示すように、反射位置要素としてのファイバミラー22mと、往復伝搬距離Lmとの情報、特定情報としての状態異常を追加して記憶した。 The optical sensing device 20A of Modification 1 shown in FIG. 4 further includes a fiber mirror 22m that reflects signal light of all wavelengths in addition to the optical sensing device 20 of the above-described embodiment (FIG. 1). In addition, as shown in FIG. 5, the DB 26 additionally stores information on the fiber mirror 22m as the reflection position element, information on the round-trip propagation distance Lm, and abnormal state as specific information.
 ファイバミラー22mは、k段目(末尾)のFBG22kに従属接続の最後段として接続されている。ファイバミラー22mで反射された信号光は、復路方向Y2へ向かって各FBG22k~22aを透過し、光サーキュレータ21へ入力される。 The fiber mirror 22m is connected to the k-th stage (end) FBG 22k as the last stage of cascade connection. The signal light reflected by the fiber mirror 22m passes through each of the FBGs 22k to 22a toward the backward direction Y2 and is input to the optical circulator 21. FIG.
 DB26には、図5に示すように、最後段のファイバミラー22mで反射される送受信ポート1p1,1p2間の往復伝搬距離Lmがファイバミラー22mに対応付けられ、ファイバミラー22mに特定情報としての状態異常が対応付けられている。状態異常は、環境条件としての温度が、各FBG22a~22kに対応付けられた温度範囲から外れた場合の温度異常、又はFBG22a~22kの機能異常を示すものである。 In the DB 26, as shown in FIG. 5, the round-trip propagation distance Lm between the transmitting/receiving ports 1p1 and 1p2 reflected by the last-stage fiber mirror 22m is associated with the fiber mirror 22m. Anomalies are associated. The abnormal state indicates temperature abnormality when the temperature as an environmental condition is out of the temperature range associated with each of the FBGs 22a to 22k, or functional abnormality of the FBGs 22a to 22k.
 遅延測定部24は、FBG22a~22kの何れか1つ又はファイバミラー22mで反射された信号光の遅延時間を含む、通信装置11の送信ポート1p1及び受信ポート1p2での送受信時刻の差分である送受信間の遅延時間を測定する。 The delay measuring unit 24 measures the difference between the transmission and reception times at the transmission port 1p1 and the reception port 1p2 of the communication device 11, including the delay time of the signal light reflected by one of the FBGs 22a to 22k or the fiber mirror 22m. Measure the delay time between
 特定部25は、上記測定された遅延時間に基づき信号光の送受信間の計測伝搬距離(例えば計測伝搬距離La)を求め、この求められた計測伝搬距離Laと一致するDB26内の往復伝搬距離Laを検索する。特定部25は、往復伝搬距離Lmに対応付けられたファイバミラー22mを検出した場合、ファイバミラー22mに対応付けられた状態異常を特定する。 The specifying unit 25 obtains the measured propagation distance (for example, the measured propagation distance La) between transmission and reception of the signal light based on the measured delay time, and determines the round-trip propagation distance La in the DB 26 that matches the obtained measured propagation distance La. Search for When detecting the fiber mirror 22m associated with the round-trip propagation distance Lm, the identifying unit 25 identifies the abnormal state associated with the fiber mirror 22m.
 このような変形例1の光センシング装置20Aによる効果について説明する。
 光センシング装置20Aは、光サーキュレータ21に従属接続された複数のFBG22a~22kにおける末尾のFBG22kに、全波長を反射するファイバミラー22mを従属接続した。更に、DB26に記憶された情報に加え、ファイバミラー22mで反射後に通信装置11で送受信される信号光の往復伝搬距離をファイバミラー22mに対応付けると共に、ファイバミラー22mの特定情報を対応付けて記憶した。
Effects of the optical sensing device 20A of Modification 1 will be described.
In the optical sensing device 20A, the FBG 22k at the end of the plurality of FBGs 22a to 22k cascade-connected to the optical circulator 21 is cascade-connected to a fiber mirror 22m that reflects all wavelengths. Furthermore, in addition to the information stored in the DB 26, the round-trip propagation distance of the signal light transmitted and received by the communication device 11 after being reflected by the fiber mirror 22m is associated with the fiber mirror 22m, and the specific information of the fiber mirror 22m is associated and stored. .
 遅延測定部24は、ファイバミラー22mで反射後に通信装置11で送受信される信号光の送受信時刻の差分から、送受信間の遅延時間を測定する。特定部25は、測定された遅延時間を基に信号光の送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致するDB26内の往復伝搬距離に対応付けられたファイバミラー22mを特定する構成とした。 The delay measurement unit 24 measures the delay time between transmission and reception from the difference in the transmission and reception times of the signal light transmitted and received by the communication device 11 after being reflected by the fiber mirror 22m. The identifying unit 25 obtains the measured propagation distance between transmission and reception of the signal light based on the measured delay time, and selects the fiber mirror 22m associated with the round-trip propagation distance in the DB 26 that matches the obtained measured propagation distance. It has a specific configuration.
 この構成によれば、通信装置11から送信された信号光が全てのFBG22a~22kを透過した場合、ファイバミラー22mで反射後に光サーキュレータ21及び光伝送路としての光ファイバ12を介して通信装置11で受信される。この場合、遅延測定部24により、ファイバミラー22mでの反射に係る送受信の遅延時間が測定される。次に、特定部25で、その測定された遅延時間に基づく送受信間の計測伝搬距離と一致する、DB26内のファイバミラー22mに係る往復伝搬距離Lmを検索し、この往復伝搬距離Lmに対応付けられたファイバミラー22mを検出する。更に、特定部25で、その検出されたファイバミラー22mに対応付けられた特定情報としての状態異常を特定できる。この光センシング装置20Aにおいても、光ファイバを低コストでデータ解析が容易となる環境条件の光センシングを行うことができ、通信用途にも利用できる。 According to this configuration, when the signal light transmitted from the communication device 11 passes through all the FBGs 22a to 22k, after being reflected by the fiber mirror 22m, the communication device 11 passes through the optical circulator 21 and the optical fiber 12 as the optical transmission line. received at. In this case, the delay measurement unit 24 measures the transmission/reception delay time associated with the reflection at the fiber mirror 22m. Next, the specifying unit 25 searches for the round-trip propagation distance Lm related to the fiber mirror 22m in the DB 26 that matches the measured propagation distance between transmission and reception based on the measured delay time, and associates it with this round-trip propagation distance Lm. detected the fiber mirror 22m. Furthermore, the identifying unit 25 can identify the abnormal state as the specific information associated with the detected fiber mirror 22m. This optical sensing device 20A can also perform optical sensing under environmental conditions that facilitate data analysis at low cost using an optical fiber, and can also be used for communication purposes.
<実施形態の変形例2>
 図6は、本発明の実施形態の変形例2に係る光センシング装置を用いた通信ネットワークの構成を示すブロック図である。
<Modification 2 of Embodiment>
FIG. 6 is a block diagram showing the configuration of a communication network using the optical sensing device according to Modification 2 of the embodiment of the present invention.
 図6に示す変形例2の光センシング装置20Bが、上述した実施形態の光センシング装置20(図1)と異なる点は、光伝送路としての光ファイバ12が往復接続された通信装置11(図1)に代え、通信装置11aと通信装置11b間(通信装置11a,11b間ともいう)の光ファイバ12の途中に介挿接続されていることにある。通信装置11aは、上述の特定波長λ1を含む複数の異なる波長の信号光を光ファイバ12へ送信する。通信装置11bは、その送信された信号光を光ファイバ12を介して受信するものである。なお、通信装置11aは、請求項記載の第1通信装置を構成し、通信装置11bは、請求項記載の第2通信装置を構成する。 The optical sensing device 20B of Modification 2 shown in FIG. 6 differs from the optical sensing device 20 of the above-described embodiment (FIG. 1) in that the communication device 11 (FIG. Instead of 1), it is inserted and connected in the middle of the optical fiber 12 between the communication devices 11a and 11b (also called between the communication devices 11a and 11b). The communication device 11 a transmits to the optical fiber 12 signal lights of a plurality of different wavelengths including the above-described specific wavelength λ1. The communication device 11 b receives the transmitted signal light via the optical fiber 12 . The communication device 11a constitutes the first communication device described in the claims, and the communication device 11b constitutes the second communication device described in the claims.
 また、光センシング装置20Bの遅延測定部24及び環境条件特定部25は、後述する処理を行い、DB26には後述の情報が記憶されている。 In addition, the delay measuring unit 24 and the environmental condition specifying unit 25 of the optical sensing device 20B perform the processing described later, and the information described later is stored in the DB 26.
 即ち、DB26には、通信装置11aから送信された信号光を光サーキュレータ21を介して複数のFBG22a~22kの何れか1つで反射後に通信装置11bで受信される信号光の伝搬距離を、複数のFBG22a~22k毎に対応付けると共に、FBG22a~22k毎の設定環境条件(温度)を対応付けて記憶してある。 That is, the DB 26 stores a plurality of propagation distances of signal light received by the communication device 11b after the signal light transmitted from the communication device 11a is reflected by any one of the plurality of FBGs 22a to 22k via the optical circulator 21. are associated with each of the FBGs 22a to 22k, and set environmental conditions (temperatures) for each of the FBGs 22a to 22k are associated and stored.
 遅延測定部24は、通信装置11a,11b間で送受信される信号光の送受信時刻の差分から、送受信間の遅延時間を測定する。 The delay measurement unit 24 measures the delay time between transmission and reception from the difference in the transmission and reception times of the signal light transmitted and received between the communication devices 11a and 11b.
 特定部25は、その測定された遅延時間を基に信号光の送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致するDB26内の伝搬距離に対応付けられたFBG22a~22kを特定する。 The specifying unit 25 obtains the measured propagation distance between transmission and reception of the signal light based on the measured delay time, and selects the FBGs 22a to 22k associated with the propagation distance in the DB 26 that matches the obtained measured propagation distance. Identify.
 このような構成の光センシング装置20Bを用いた光センシング処理について説明する。
 通信装置11aから波長λ1の信号光が光ファイバ12へ送信されると、この信号光は光サーキュレータ21を介して往路方向Y1へ伝送される。
A light sensing process using the light sensing device 20B having such a configuration will be described.
When the signal light of wavelength λ1 is transmitted from the communication device 11a to the optical fiber 12, this signal light is transmitted in the outward direction Y1 via the optical circulator 21. FIG.
 ここで、FBG22bに設定環境条件としての温度21℃が設定され、環境条件の温度が21℃である。この場合、上記往路方向Y1へ伝送された信号光はFBG22bで反射され、復路方向Y2に伝送されて光サーキュレータ21に入力される。光サーキュレータ21は、入力された信号光を光ファイバ12を介して通信装置11bへ向かって伝送する。この光信号は、通信装置11bで受信される。 Here, a temperature of 21°C is set as the set environmental condition in the FBG 22b, and the temperature of the environmental condition is 21°C. In this case, the signal light transmitted in the forward direction Y1 is reflected by the FBG 22b, transmitted in the backward direction Y2, and input to the optical circulator 21. FIG. The optical circulator 21 transmits the input signal light through the optical fiber 12 toward the communication device 11b. This optical signal is received by the communication device 11b.
 この受信時に、遅延測定部24は、通信装置11a,11b間で送受信される信号光の送受信時刻の差分から、送受信間の遅延時間を測定する。 At the time of this reception, the delay measurement unit 24 measures the delay time between transmission and reception from the difference between the transmission and reception times of the signal light transmitted and received between the communication devices 11a and 11b.
 次に、特定部25は、その測定された遅延時間を基に信号光の送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致するDB26内の伝搬距離に対応付けられたFBG22bを検出(特定)する。更に、特定部25は、その検出されたFBG22bに対応付けられた温度=21℃を特定する。この特定によって、例えばNW10の管理者等は、FBG22bが配置された場所の温度が21℃であることが把握できる。 Next, the specifying unit 25 obtains the measured propagation distance between transmission and reception of the signal light based on the measured delay time, and the FBG 22b associated with the propagation distance in the DB 26 that matches the obtained measured propagation distance. to detect (identify) Furthermore, the identifying unit 25 identifies the temperature=21° C. associated with the detected FBG 22b. By this identification, for example, the administrator of the NW 10 can grasp that the temperature of the place where the FBG 22b is arranged is 21.degree.
 このような構成の変形例2の光センシング装置20B、即ち、通信装置11a,11b間の光ファイバ12に光サーキュレータ21を介して接続される光センシング装置20Bによれば、上述した実施形態の光センシング装置20(図1)と同様に、低コストでデータ解析が容易となる環境条件の光センシングを行うことができ、通信用途にも利用可能とすることができる。 According to the optical sensing device 20B of Modification 2 having such a configuration, that is, the optical sensing device 20B connected to the optical fiber 12 between the communication devices 11a and 11b via the optical circulator 21, the light of the above-described embodiment is Similar to the sensing device 20 (FIG. 1), it is possible to perform optical sensing of environmental conditions that facilitate data analysis at a low cost, and it can also be used for communication applications.
<実施形態の変形例3>
 図7は、本発明の実施形態の変形例3に係る光センシング装置を用いた通信ネットワークの構成を示すブロック図である。
<Modification 3 of Embodiment>
FIG. 7 is a block diagram showing the configuration of a communication network using a light sensing device according to Modification 3 of the embodiment of the present invention.
 図7に示す変形例3の光センシング装置20Cが、上述した変形例2の光センシング装置20B(図6)と異なる点は、FBG22a~22kの後段に、全ての波長の信号光を反射するファイバミラー22mを更に縦続接続したことにある。更に、DB26に次の情報を追加して記憶したことにある。 The optical sensing device 20C of Modified Example 3 shown in FIG. 7 differs from the optical sensing device 20B of Modified Example 2 (FIG. 6) described above in that a fiber for reflecting signal light of all wavelengths is provided behind the FBGs 22a to 22k. The reason is that the mirrors 22m are further connected in cascade. Furthermore, the following information is additionally stored in the DB 26.
 即ち、DB26に、最後段のファイバミラー22mでの反射経路を含む通信装置11a,11b間の伝搬距離をファイバミラー22mに対応付け、このファイバミラー22mに特定情報としての上述した状態異常を対応付けて記憶してある。 That is, in the DB 26, the propagation distance between the communication devices 11a and 11b, including the reflection path at the last-stage fiber mirror 22m, is associated with the fiber mirror 22m, and the above-described abnormal state as specific information is associated with the fiber mirror 22m. I remembered.
 遅延測定部24は、FBG22a~22kの何れか1つ又はファイバミラー22mで反射された信号光の遅延時間を含む、通信装置11a,11b間の送受信時刻の差分である送受信間の遅延時間を測定する。 The delay measurement unit 24 measures the delay time between transmission and reception, which is the difference between the transmission and reception times of the communication devices 11a and 11b, including the delay time of the signal light reflected by one of the FBGs 22a to 22k or the fiber mirror 22m. do.
 特定部25は、上記測定された遅延時間に基づき信号光の送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致するDB26内の伝搬距離を検索する。ここで、例えば、ファイバミラー22mでの反射に係る伝搬距離が検索されたとする。次に、特定部25は、その検索された伝搬距離に対応付けられたファイバミラー22mを検出し、この検出したファイバミラー22mに対応付けられた状態異常を特定する。 The specifying unit 25 obtains the measured propagation distance between transmission and reception of the signal light based on the measured delay time, and searches the DB 26 for the propagation distance that matches the obtained measured propagation distance. Here, for example, it is assumed that the propagation distance related to the reflection at the fiber mirror 22m is retrieved. Next, the identifying unit 25 detects the fiber mirror 22m associated with the found propagation distance, and identifies the abnormal state associated with the detected fiber mirror 22m.
 この構成によれば、上述したように、光センシング装置20Cの特定部25で、その検出されたファイバミラー22mに対応付けられた特定情報としての状態異常を特定できる。このため、上記変形例2と同様に、光ファイバを低コストでデータ解析が容易となる環境条件の光センシングを行うことができ、通信用途にも利用できる。 According to this configuration, as described above, the identifying unit 25 of the optical sensing device 20C can identify the abnormal state as the specific information associated with the detected fiber mirror 22m. Therefore, as in the second modification, the optical fiber can be used for optical sensing under environmental conditions that facilitate data analysis at low cost, and can be used for communication purposes.
 次に、上述した光センシング装置を用いた通信ネットワークの実施例1,2,3について説明する。 Next, examples 1, 2, and 3 of communication networks using the optical sensing device described above will be described.
<実施例1>
 図8は、実施例1に係る通信ネットワーク10Aの構成を示すブロック図である。この図8に示す実施例1の通信ネットワーク10Aは、上述した変形例3の光センシング装置20C(図7)の応用例としての光センシング装置20C1を用いたものである。
<Example 1>
FIG. 8 is a block diagram showing the configuration of the communication network 10A according to the first embodiment. A communication network 10A of the first embodiment shown in FIG. 8 uses a light sensing device 20C1 as an application example of the light sensing device 20C (FIG. 7) of the third modification described above.
 通信ネットワーク10Aは、通信の局舎61内の通信装置11aと、局舎62内の通信装置11bとの間に接続された光ファイバ12に、3つの光サーキュレータ21を介して3つの光センシング手段1,2,3が接続されている。なお、局舎61,62は遠隔地に離間しているものとする。 The communication network 10A connects the optical fiber 12 connected between the communication device 11a in the communication station 61 and the communication device 11b in the station 62 via three optical circulators 21 to three optical sensing means. 1, 2 and 3 are connected. It is assumed that the office buildings 61 and 62 are separated from each other.
 光センシング装置20C1の遅延測定部24、環境条件特定部25及びDB26は、局舎62に配置されている。各光センシング手段1~3は、通信装置11a,11b間の光ファイバ12に所定間隔離間して配設されており、上述の従属接続された複数のFBG22a~22k及びファイバミラー22mを備えて構成されている。 The delay measurement unit 24, the environmental condition identification unit 25, and the DB 26 of the optical sensing device 20C1 are arranged in the office building 62. Each of the optical sensing means 1 to 3 is arranged on the optical fiber 12 between the communication devices 11a and 11b at a predetermined interval, and comprises a plurality of cascade-connected FBGs 22a to 22k and a fiber mirror 22m. It is
 光センシング手段1~3の各FBG22a~22kには、FBG周囲の環境条件である温度、圧力、張力等が設定環境条件として設定されている。 For each of the FBGs 22a to 22k of the optical sensing means 1 to 3, temperature, pressure, tension, etc., which are the environmental conditions around the FBG, are set as set environmental conditions.
 DB26には、変形例3で説明したと同等に、通信装置11aから送信された信号光を、各光サーキュレータ21を介して各光センシング手段1~3の各FBG22a~22kの何れか1つ又はファイバミラー22mの組み合わせで反射後に通信装置11bで受信される信号光の伝搬距離を、各々のFBG22a~22k毎又はファイバミラー22mに対応付けると共に、FBG22a~22k毎の設定環境条件(例えば温度)を対応付けて記憶してある。ファイバミラー22mには特定情報としての上述した状態異常を対応付けて記憶してある。 In the DB 26, the signal light transmitted from the communication device 11a is sent to any one of the FBGs 22a to 22k of the optical sensing means 1 to 3 via the optical circulators 21 or The propagation distance of the signal light received by the communication device 11b after being reflected by the combination of the fiber mirrors 22m is associated with each of the FBGs 22a to 22k or the fiber mirror 22m, and the set environmental conditions (eg temperature) for each of the FBGs 22a to 22k are associated. I have attached it and memorized it. The fiber mirror 22m is stored in association with the above-described abnormal state as specific information.
 例えば、DB26には、光センシング手段1のFBG22a、光センシング手段2のFBG22b、光センシング手段3のファイバミラー22mの組み合わせで反射後に通信装置11bで受信される信号光の伝搬距離が、各々のFBG22a、FBG22b又はファイバミラー22mに対応付けられると共に、FBG22a、FBG22b毎の温度を対応付けて記憶してある。 For example, in the DB 26, the propagation distance of the signal light received by the communication device 11b after being reflected by the combination of the FBG 22a of the optical sensing means 1, the FBG 22b of the optical sensing means 2, and the fiber mirror 22m of the optical sensing means 3 is stored in each FBG 22a. , FBG 22b or fiber mirror 22m, and the temperature of each FBG 22a and FBG 22b is stored in association with each other.
 遅延測定部24が、各光センシング手段1~3におけるFBG22a~22kの何れか1つ又はファイバミラー22mで反射された信号光の遅延時間を含む、通信装置11a,11b間の送受信時刻の差分である送受信間の遅延時間を測定する。 The delay measurement unit 24 measures the difference in transmission/reception time between the communication devices 11a and 11b, including the delay time of the signal light reflected by one of the FBGs 22a to 22k or the fiber mirror 22m in each of the optical sensing means 1 to 3. Measure the delay time between certain transmissions and receptions.
 次に、特定部25が、上記測定された遅延時間に基づき信号光の送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致するDB26内の伝搬距離を検索する。ここで、例えば、光センシング手段1のFBG22aでの反射、光センシング手段2のFBG22bでの反射、光センシング手段3のファイバミラー22mでの反射に係る伝搬距離が検索されたとする。 Next, the specifying unit 25 obtains the measured propagation distance between transmission and reception of the signal light based on the measured delay time, and searches the DB 26 for the propagation distance that matches the obtained measured propagation distance. Here, for example, it is assumed that propagation distances related to reflection at the FBG 22a of the optical sensing means 1, reflection at the FBG 22b of the optical sensing means 2, and reflection at the fiber mirror 22m of the optical sensing means 3 are retrieved.
 次に、特定部25は、その検索された伝搬距離に対応付けられた光センシング手段1のFBG22a、光センシング手段2のFBG22b、光センシング手段3のファイバミラー22mを検出する。特定部25は、その検出した光センシング手段1のFBG22aの温度(例えば20℃)、光センシング手段2のFBG22bの温度(例えば21℃)、光センシング手段3のファイバミラー22mに対応付けられた状態異常を特定する。 Next, the identifying unit 25 detects the FBG 22a of the optical sensing means 1, the FBG 22b of the optical sensing means 2, and the fiber mirror 22m of the optical sensing means 3 associated with the retrieved propagation distance. The identification unit 25 detects the temperature of the FBG 22a of the optical sensing means 1 (eg, 20° C.), the temperature of the FBG 22b of the optical sensing means 2 (eg, 21° C.), and the state associated with the fiber mirror 22m of the optical sensing means 3. Identify anomalies.
 この特定によって、局舎62の管理者等は、光センシング手段1のFBG22aが配置された場所の温度が20℃であり、光センシング手段2のFBG22bが配置された場所の温度が21℃であることを認識できる。更に、光センシング手段3のファイバミラー22mが配置された場所が状態異常であることが認識できる。 By this identification, the administrator of the office building 62 or the like can determine that the temperature at the location where the FBG 22a of the optical sensing means 1 is arranged is 20°C and the temperature at the location where the FBG 22b of the optical sensing means 2 is arranged is 21°C. I can recognize that. Furthermore, it can be recognized that the location where the fiber mirror 22m of the optical sensing means 3 is arranged is in an abnormal state.
<実施例2>
 図9は、実施例2に係る通信設備の状態監視を行う構成を示すブロック図である。この図9に示す実施例2の通信設備は、インターネット等の通信に係る通信ラック41,42,43に、上述した変形例3の光センシング装置20C(図7)の応用例としての光センシング装置20C2を用いたものである。
<Example 2>
FIG. 9 is a block diagram showing a configuration for monitoring the state of communication equipment according to the second embodiment. In the communication equipment of the second embodiment shown in FIG. 9, the optical sensing device as an application example of the optical sensing device 20C (FIG. 7) of the modified example 3 described above is installed in the communication racks 41, 42, 43 related to communication such as the Internet. 20C2 is used.
 通信ラック41~43は各々の外観が縦長の直方体形状を成し、矢印Y21で指し示す側が、ラック内の図示せぬ空調機が外気を給気口(図示せず)から吸引して内部機器の冷却を行うコールドアイル(コールドアイルY21)である。矢印Y22で指し示す側が、空調機が複数の排気口45から排熱するホットアイル(ホットアイルY22)である。 Each of the communication racks 41 to 43 has a vertically long rectangular parallelepiped shape, and the side indicated by the arrow Y21 is an air conditioner (not shown) inside the rack that sucks outside air from an air supply port (not shown) to the internal equipment. It is a cold aisle (cold aisle Y21) for cooling. The side indicated by the arrow Y22 is the hot aisle (hot aisle Y22) where the air conditioner exhausts heat from the plurality of exhaust ports 45. As shown in FIG.
 通信ラック41に配設された通信装置11aと、通信ラック43に配設された通信装置11b間の図示せぬ光ファイバに、各光サーキュレータ21を介して5つの光センシング手段1a(矢印1a),1b,2a(矢印2a),2b,3が接続されている。 Five optical sensing means 1a (arrows 1a) are connected via optical circulators 21 to an optical fiber (not shown) between the communication device 11a arranged on the communication rack 41 and the communication device 11b arranged on the communication rack 43. , 1b, 2a (arrow 2a), 2b, 3 are connected.
 但し、光センシング手段1b,2bは、ホットアイルY22側に配設された光サーキュレータ21に従属接続された複数のFBG22a~22k及びファイバミラー22mを示す。しかし、光センシング手段1a,2aは、矢印1a,2aのみで、コールドアイルY21側にホットアイルY22側と同様に配設されていることを示す。また、光センシング手段3は、コールドアイルY21とホットアイルY22との間の通信ラック43の側面に配設された光サーキュレータ21に従属接続された複数のFBG22a~22k及びファイバミラー22mを示す。なお、光センシング手段1a,1b,2a,2b,3を、光センシング手段1a~3と記載する。 However, the optical sensing means 1b and 2b represent a plurality of FBGs 22a to 22k and a fiber mirror 22m cascade-connected to the optical circulator 21 arranged on the hot aisle Y22 side. However, the optical sensing means 1a and 2a are arranged on the cold aisle Y21 side in the same way as on the hot aisle Y22 side by arrows 1a and 2a alone. The optical sensing means 3 also shows a plurality of FBGs 22a-22k and a fiber mirror 22m cascaded to the optical circulator 21 disposed on the side of the communication rack 43 between the cold aisle Y21 and the hot aisle Y22. The optical sensing means 1a, 1b, 2a, 2b, and 3 are referred to as optical sensing means 1a-3.
 光センシング手段1a~3の各FBG22a~22kには、FBG周囲の環境条件である温度、圧力、張力等が設定環境条件として設定されている。 For each of the FBGs 22a to 22k of the optical sensing means 1a to 3, temperature, pressure, tension, etc., which are environmental conditions around the FBG, are set as set environmental conditions.
 DB26には、変形例3で説明したと同等に、通信装置11aから送信された信号光を、各光サーキュレータ21を介して各光センシング手段1a~3の各FBG22a~22kの何れか1つ又はファイバミラー22mの組み合わせで反射後に通信装置11bで受信される信号光の伝搬距離を、各々のFBG22a~22k毎又はファイバミラー22mに対応付けると共に、FBG22a~22k毎の設定環境条件(例えば温度)を対応付けて記憶してある。ファイバミラー22mには特定情報としての上述した状態異常(温度異常)を対応付けて記憶してある。 In the DB 26, the signal light transmitted from the communication device 11a is sent to any one of the FBGs 22a to 22k of the optical sensing means 1a to 3 via the optical circulators 21, or The propagation distance of the signal light received by the communication device 11b after being reflected by the combination of the fiber mirrors 22m is associated with each of the FBGs 22a to 22k or the fiber mirror 22m, and the set environmental conditions (eg temperature) for each of the FBGs 22a to 22k are associated. I have attached it and memorized it. The fiber mirror 22m is stored in association with the above-described abnormal state (temperature abnormality) as specific information.
 例えば、DB26には、光センシング手段1aのFBG22a(図示せず)での反射、光センシング手段1bのFBG22aでの反射、光センシング手段2aのFBG22b(図示せず)での反射、光センシング手段2bのFBG22bでの反射、光センシング手段3のFBG22bの組み合わせで反射後に通信装置11bで受信される信号光の伝搬距離が、それらのFBG22a、FBG22bに対応付けられると共に、FBG22a、FBG22b毎の温度を対応付けて記憶してある。 For example, the DB 26 includes reflections from the FBG 22a (not shown) of the light sensing means 1a, reflections from the FBG 22a of the light sensing means 1b, reflection from the FBGs 22b (not shown) of the light sensing means 2a, and light sensing means 2b. The propagation distance of the signal light received by the communication device 11b after being reflected by the combination of the FBG 22b of the optical sensing means 3 and the FBG 22b of the optical sensing means 3 is associated with the FBG 22a and the FBG 22b, and the temperature of each of the FBG 22a and the FBG 22b is associated. I have attached it and memorized it.
 遅延測定部24が、各光センシング手段1a~3におけるFBG22a~22kの何れか1つ又はファイバミラー22mで反射された信号光の遅延時間を含む、通信装置11a,11b間の送受信時刻の差分である送受信間の遅延時間を測定する。 The delay measurement unit 24 is the difference in the transmission and reception times between the communication devices 11a and 11b, including the delay time of the signal light reflected by one of the FBGs 22a to 22k in each of the optical sensing means 1a to 3 or the fiber mirror 22m. Measure the delay time between certain transmissions and receptions.
 次に、特定部25が、上記測定された遅延時間に基づき信号光の送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致するDB26内の伝搬距離を検索する。ここで、例えば、光センシング手段1aのFBG22a(図示せず)での反射、光センシング手段1bのFBG22aでの反射、光センシング手段2aのFBG22b(図示せず)での反射、光センシング手段2bのFBG22bでの反射、光センシング手段3のFBG22bでの反射に係る伝搬距離が検索されたとする。 Next, the specifying unit 25 obtains the measured propagation distance between transmission and reception of the signal light based on the measured delay time, and searches the DB 26 for the propagation distance that matches the obtained measured propagation distance. Here, for example, reflection at the FBG 22a (not shown) of the optical sensing means 1a, reflection at the FBG 22a of the optical sensing means 1b, reflection at the FBG 22b (not shown) of the optical sensing means 2a, and reflection at the FBG 22b (not shown) of the optical sensing means 2b Suppose that the propagation distance related to the reflection at the FBG 22b and the reflection at the FBG 22b of the light sensing means 3 is retrieved.
 次に、特定部25は、その検索された伝搬距離に対応付けられた光センシング手段1aのFBG22a(図示せず)、光センシング手段1bのFBG22a、光センシング手段2aのFBG22b(図示せず)、光センシング手段2bのFBG22b、光センシング手段3のFBG22bを検出する。 Next, the identifying unit 25 determines the FBG 22a (not shown) of the optical sensing means 1a, the FBG 22a of the optical sensing means 1b, the FBG 22b (not shown) of the optical sensing means 2a, and the FBG 22b of the optical sensing means 2a, which are associated with the searched propagation distance. The FBG 22b of the optical sensing means 2b and the FBG 22b of the optical sensing means 3 are detected.
 次に、特定部25は、その検出した光センシング手段1aのFBG22a(図示せず)の温度(例えば20℃)、光センシング手段1bのFBG22aの温度(例えば30℃)、光センシング手段2aのFBG22b(図示せず)の温度(例えば21℃)、光センシング手段2bのFBG22bの温度(例えば31℃)、光センシング手段3のFBG22bの温度(例えば25℃)を特定する。 Next, the identifying unit 25 detects the temperature of the FBG 22a (not shown) of the optical sensing means 1a (eg, 20° C.), the temperature of the FBG 22a of the optical sensing means 1b (eg, 30° C.), and the FBG 22b of the optical sensing means 2a. (not shown) (for example, 21° C.), the temperature of the FBG 22b of the optical sensing means 2b (for example, 31° C.), and the temperature of the FBG 22b of the optical sensing means 3 (for example, 25° C.).
 この特定によって、通信ラック41~43の管理者等は、コールドアイルY21側の温度が20℃~21℃であり、ホットアイルY22側の温度が30℃~31℃であることを認識できる。 By this identification, the administrators of the communication racks 41 to 43 can recognize that the temperature on the cold aisle Y21 side is 20°C to 21°C and the temperature on the hot aisle Y22 side is 30°C to 31°C.
 一方、特定部25が、光センシング手段1aのFBG22a(図示せず)での反射、光センシング手段1bのファイバミラー22mでの反射、光センシング手段2aのFBG22b(図示せず)での反射、光センシング手段2bのファイバミラー22mでの反射、光センシング手段3のFBG22kでの反射に係る伝搬距離が検索されたとする。 On the other hand, the specifying unit 25 is reflected by the FBG 22a (not shown) of the optical sensing means 1a, reflected by the fiber mirror 22m of the optical sensing means 1b, reflected by the FBG 22b (not shown) of the optical sensing means 2a, light Suppose that the propagation distance related to the reflection at the fiber mirror 22m of the sensing means 2b and the reflection at the FBG 22k of the optical sensing means 3 is retrieved.
 この場合、特定部25は、光センシング手段1b,2bのファイバミラー22mに対応付けられた状態異常を特定するので、管理者等は、通信ラック41~43のホットアイルY22側の温度が異常であることを認識できる。 In this case, the identification unit 25 identifies the abnormal state associated with the fiber mirror 22m of the optical sensing means 1b, 2b, so that the administrator or the like can confirm that the temperature on the hot aisle Y22 side of the communication racks 41 to 43 is abnormal. can recognize something.
<実施例3>
 図10は、実施例3に係る侵入禁止エリア設備の状態監視を行う構成を示すブロック図である。この図10に示す実施例3の侵入禁止エリア設備は、光ファイバ12を周回させて囲ったエリア及び管理局30に、上述した変形例1の光センシング装置20A(図4)の応用例としての光センシング装置20A1を用いたものである。
<Example 3>
FIG. 10 is a block diagram showing a configuration for monitoring the state of equipment in a no-entry area according to the third embodiment. The no-entry area equipment of the third embodiment shown in FIG. It uses the optical sensing device 20A1.
 光センシング装置20A1の遅延測定部24、環境条件特定部25及びDB26は、管理局30に配設されている。また、光センシング装置20A1の光サーキュレータ21を含むFBG22a~22k及びファイバミラー22mは、後述のように侵入禁止エリアに配設されている。 The delay measurement unit 24, the environmental condition identification unit 25 and the DB 26 of the optical sensing device 20A1 are arranged in the management station 30. Also, the FBGs 22a to 22k including the optical circulator 21 of the optical sensing device 20A1 and the fiber mirror 22m are arranged in a no-entry area as will be described later.
 侵入禁止エリアは、例えば広大な広さを有しており、エリアの地面に六角形状に支柱71,72,73,74,75,76が固定されている。各支柱71~76には、上下に光ファイバ12が周回して張り巡らされている。この光ファイバ12の一端は、管理局30に接続された通信装置11aの送信ポート(図示せず)に接続され、他端は受信ポート(図示せず)に接続されている。つまり、通信装置11aの送受信ポートに、支柱71~76を周回する光ファイバ12が接続されている。この光ファイバ12の周回接続は、図4に示した通信装置11の送受信ポート1p1,1p2への光ファイバ12の往復接続と同様である。 A no-entry area has, for example, a vast area, and pillars 71, 72, 73, 74, 75, and 76 are fixed to the ground of the area in a hexagonal shape. The optical fiber 12 is wound around and stretched vertically on each of the posts 71 to 76 . One end of the optical fiber 12 is connected to a transmission port (not shown) of the communication device 11a connected to the control station 30, and the other end is connected to a reception port (not shown). That is, the optical fiber 12 that goes around the supports 71 to 76 is connected to the transmission/reception port of the communication device 11a. This circular connection of the optical fiber 12 is similar to the round-trip connection of the optical fiber 12 to the transmission/reception ports 1p1 and 1p2 of the communication device 11 shown in FIG.
 図10に示す支柱71~76の下方側に周回する光ファイバ12には、支柱71,73,75に配設された光サーキュレータ21が介挿接続されている。支柱71の光サーキュレータ21には、光センシング手段1としての複数のFBG22a~22k及びファイバミラー22mが従属接続されている。支柱73の光サーキュレータ21には、光センシング手段2としての複数のFBG22a~22k及びファイバミラー22mが従属接続されている。支柱75の光サーキュレータ21には、光センシング手段3としての複数のFBG22a~22k及びファイバミラー22mが従属接続されている。 The optical circulators 21 arranged on the supports 71, 73, and 75 are inserted and connected to the optical fibers 12 that go around the supports 71 to 76 shown in FIG. A plurality of FBGs 22a to 22k and a fiber mirror 22m as optical sensing means 1 are cascade-connected to the optical circulator 21 of the post 71. FIG. A plurality of FBGs 22a to 22k and a fiber mirror 22m as the optical sensing means 2 are cascade-connected to the optical circulator 21 of the post 73. FIG. A plurality of FBGs 22a to 22k and a fiber mirror 22m as optical sensing means 3 are cascade-connected to the optical circulator 21 of the post 75. FIG.
 支柱71の光サーキュレータ21には、支柱71に配設された通信装置11aが光ファイバ12で接続されている。支柱73の光サーキュレータ21には、支柱73に配設された通信装置11bが光ファイバ12で接続されている。支柱75の光サーキュレータ21には、支柱75に配設された通信装置11cが光ファイバ12で接続されている。 The optical circulator 21 of the support 71 is connected to the communication device 11a provided on the support 71 via an optical fiber 12. The optical circulator 21 of the support 73 is connected to the communication device 11b provided on the support 73 via the optical fiber 12 . The optical circulator 21 of the support 75 is connected to the communication device 11 c provided on the support 75 via the optical fiber 12 .
 また、支柱71の上端には、矢印Y11方向又はこの逆方向に回動可能なカメラ32aが配設され、光ファイバ12に接続されている。支柱73の上端には、矢印Y12方向又はこの逆方向に回動可能なカメラ32bが配設され、光ファイバ12に接続されている。支柱75の上端には、矢印Y13方向又はこの逆方向に回動可能なカメラ32cが配設され、光ファイバ12に接続されている。 In addition, a camera 32a that can rotate in the direction of arrow Y11 or in the opposite direction is arranged at the upper end of the column 71 and connected to the optical fiber 12. A camera 32 b that can rotate in the direction of arrow Y 12 or in the opposite direction is provided at the upper end of the support 73 and connected to the optical fiber 12 . A camera 32 c rotatable in the direction of arrow Y 13 or in the opposite direction is arranged at the upper end of the support 75 and connected to the optical fiber 12 .
 各カメラ32a~32cは、管理局30に配設された制御部32の制御により自在に回動可能となっている。 Each of the cameras 32a to 32c can be freely rotated under the control of the control unit 32 provided in the management station 30.
 光センシング手段1~3の各FBG22a~22kには、FBG周囲の環境条件である圧力が設定環境条件として設定されている。例えば、FBG22aには圧力P1が設定環境条件として設定され、FBG22bには圧力P1よりも大きい圧力P2が設定され、FBG22kには圧力P2よりも大きい圧力P3が設定されているとする。 For each of the FBGs 22a-22k of the optical sensing means 1-3, the pressure, which is the environmental condition around the FBG, is set as the set environmental condition. For example, the FBG 22a is set to a pressure P1 as a set environmental condition, the FBG 22b is set to a pressure P2 higher than the pressure P1, and the FBG 22k is set to a pressure P3 higher than the pressure P2.
 FBG22aは、周囲から圧力P1が掛った場合に、光サーキュレータ21からの特定波長λ1の信号光を反射し、これ以外の波長の信号光を透過する。FBG22bは、圧力P2が掛った場合に特定波長λ1を反射し、これ以外の波長の信号光を透過する。FBG22kは、圧力P3が掛った場合に特定波長λ1を反射し、これ以外の波長の信号光を透過する。各FBG22a~22kが圧力P3よりも大きい圧力P4が掛った場合は、特定波長λ1を透過する。この透過された特定波長λ1は、ファイバミラー22mで反射されて光サーキュレータ21へ伝送される。 The FBG 22a reflects signal light with a specific wavelength λ1 from the optical circulator 21 and transmits signal light with other wavelengths when pressure P1 is applied from the surroundings. The FBG 22b reflects the specific wavelength λ1 when pressure P2 is applied, and transmits signal light of other wavelengths. The FBG 22k reflects the specific wavelength λ1 when pressure P3 is applied, and transmits signal light of other wavelengths. When a pressure P4 larger than the pressure P3 is applied to each of the FBGs 22a to 22k, the specific wavelength λ1 is transmitted. This transmitted specific wavelength λ 1 is reflected by the fiber mirror 22 m and transmitted to the optical circulator 21 .
 DB26には、通信装置11aから光ファイバ12へ送信される信号光が、各光センシング手段1~3の何れかのFBG22a~22kで反射されて支柱71~76を周回し、通信装置11aで受信されるまでの各伝搬距離が、反射した何れかのFBG22a~22kに対応付けられて記憶されている。 In the DB 26, the signal light transmitted from the communication device 11a to the optical fiber 12 is reflected by any of the FBGs 22a to 22k of the optical sensing means 1 to 3, circulates the posts 71 to 76, and is received by the communication device 11a. Each propagation distance up to the point of reflection is stored in association with one of the reflected FBGs 22a to 22k.
 更に、DB26には、各FBG22a~22kに設定環境条件としての圧力が対応付けられている。FBG22aには圧力P1が対応付けられ、FBG22bには圧力P2が、FBG22kには圧力P3が対応付けられている。ファイバミラー22mには特定情報としての上述した状態異常(圧力異常)が対応付けられている。 Furthermore, in the DB 26, each FBG 22a to 22k is associated with pressure as a set environmental condition. The pressure P1 is associated with the FBG 22a, the pressure P2 is associated with the FBG 22b, and the pressure P3 is associated with the FBG 22k. The fiber mirror 22m is associated with the above-described abnormal state (abnormal pressure) as specific information.
 遅延測定部24は、各光センシング手段1~3におけるFBG22a~22kの何れか1つ又はファイバミラー22mで反射された信号光の遅延時間を含む、通信装置11aでの送受信時刻の差分である送受信間の遅延時間を測定する。 The delay measurement unit 24 measures the difference between the transmission and reception times in the communication device 11a, including the delay time of the signal light reflected by one of the FBGs 22a to 22k or the fiber mirror 22m in each of the optical sensing means 1 to 3. Measure the delay time between
 次に、特定部25は、上記測定された遅延時間に基づき信号光の送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致するDB26内の伝搬距離を検索する。ここで、例えば、各光センシング手段1~3のFBG22aでの反射に係る伝搬距離が検索されたとする。 Next, the specifying unit 25 obtains the measured propagation distance between transmission and reception of the signal light based on the measured delay time, and searches the DB 26 for the propagation distance that matches the obtained measured propagation distance. Here, for example, it is assumed that the propagation distance related to the reflection at the FBG 22a of each of the optical sensing means 1-3 is retrieved.
 次に、特定部25は、その検索された伝搬距離に対応付けられた光センシング手段1~3のFBG22aを検出する。特定部25は、その検出した各光センシング手段1~3のFBG22aの圧力P1を特定する。この特定によって、管理局30の管理者等は、侵入禁止エリアには侵入者が居ないことを認識できる。 Next, the specifying unit 25 detects the FBGs 22a of the optical sensing means 1 to 3 associated with the searched propagation distance. The identifying unit 25 identifies the detected pressure P1 of the FBG 22a of each of the optical sensing means 1-3. By this identification, the manager or the like of the management station 30 can recognize that there is no intruder in the intrusion prohibited area.
 一方、侵入禁止エリアの光センシング手段2の位置で、ギザ丸50で示すように、人が光ファイバ12を乗り越え侵入したとする。この場合、特定部25では、光センシング手段2のファイバミラー22mでの特定波長λ1の信号光反射に係る伝搬距離が検索され、この検索された伝搬距離に対応付けられた状態異常が特定される。この特定に応じた制御部32の制御によって、支柱73のカメラ32bが、そのファイバミラー22mの方向へ向けられる。これによって、管理者等は、侵入禁止エリアの光センシング手段2の位置に侵入者が居ることを認識できる。 On the other hand, it is assumed that a person climbs over the optical fiber 12 and intrudes at the position of the optical sensing means 2 in the no-entry area, as indicated by the notched circle 50 . In this case, the specifying unit 25 searches for the propagation distance related to the reflection of the signal light of the specific wavelength λ1 at the fiber mirror 22m of the optical sensing means 2, and specifies the abnormal condition associated with the searched propagation distance. . The camera 32b of the post 73 is directed toward the fiber mirror 22m by the control of the control unit 32 according to this specification. As a result, the administrator or the like can recognize that an intruder is at the position of the light sensing means 2 in the no-entry area.
 この他、通信装置11b又は通信装置11cから特定波長λ1の信号光を、光ファイバ12へ左回り及び右回りに送信し、各光センシング手段1~3のFBG22a~22k及びファイバミラー22mで反射された信号光を通信装置11aで受信する。この送受信間の遅延時間を測定し、上記変形例3と同様に特定部25で環境条件や状態異常を特定してもよい。 In addition, signal light with a specific wavelength λ1 is transmitted from the communication device 11b or the communication device 11c to the optical fiber 12 counterclockwise and clockwise, and is reflected by the FBGs 22a to 22k and the fiber mirror 22m of the optical sensing means 1 to 3. The received signal light is received by the communication device 11a. The delay time between transmission and reception may be measured, and environmental conditions and abnormal states may be specified by the specifying unit 25 in the same manner as in Modification 3 above.
<効果>
 (1)特定波長又は特定波長を含む複数の異なる波長の信号光を送受信する通信装置に往復接続された光伝送路の途中に介挿接続された光サーキュレータと、前記光サーキュレータに光ファイバで従属接続され、環境条件が予め設定された設定環境条件の場合に、当該光サーキュレータからの特定波長の信号光を反射し、特定波長以外の信号光を透過する光センシングを行う、当該設定環境条件が各々異なる複数のFBG(Fiber Bragg Gratings)と、前記光サーキュレータを介し、前記複数のFBGの何れか1つで反射後に、光伝送路を経由して前記通信装置で送受信される信号光の往復伝搬距離が、当該複数のFBG毎に対応付けられると共に、当該FBG毎の設定環境条件の情報が対応付けられて記憶されたDB(Data Base)と、前記光サーキュレータを介し、前記複数のFBGの何れか1つで反射後に前記通信装置で送受信される信号光の送受信時刻の差分から、送受信間の遅延時間を測定する遅延測定部と、前記測定された遅延時間を基に信号光の送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致する前記DB内の往復伝搬距離に対応付けられたFBGを特定する特定部とを備えることを特徴とする光センシング装置である。
<effect>
(1) An optical circulator interposed and connected in the middle of an optical transmission line that is connected back and forth to a communication device that transmits and receives signal light of a specific wavelength or a plurality of different wavelengths including the specific wavelength, and an optical circulator that is dependent on the optical circulator. When the optical circulator is connected and environmental conditions are set in advance, optical sensing is performed by reflecting signal light with a specific wavelength from the optical circulator and transmitting signal light with a wavelength other than the specific wavelength. Through a plurality of FBGs (Fiber Bragg Gratings) different from each other and the optical circulator, round-trip propagation of signal light transmitted and received by the communication device via an optical transmission line after being reflected by any one of the plurality of FBGs. A DB (data base) in which a distance is associated with each of the plurality of FBGs and information on the set environmental conditions for each of the FBGs is associated and stored; a delay measuring unit for measuring a delay time between transmission and reception from a difference in transmission and reception times of signal light transmitted and received by the communication device after being reflected by one; an identifying unit that obtains a measured propagation distance and identifies an FBG associated with the round-trip propagation distance in the DB that matches the obtained measured propagation distance.
 この構成によれば、次のような作用効果を得ることができる。本発明の光センシング装置は、通信用途に利用する光ファイバによる光伝送路に、汎用部品である光サーキュレータを介して複数の汎用部品のFBGを光ファイバで従属接続して構成されている。光サーキュレータ及びFBGは汎用品であるため低コストで構成できる。光センシング装置は、光伝送路に分岐接続して構成されているので、光ファイバを光センシングのために専有することが無く、信号光のパケットロスも生じないので、通信用途にも利用できる。また、通信装置での送受信時刻から送受信の遅延時間のみを測定して光センシングが行えるので、長時間センシングしても測定データ量が膨大になることは無く、また、データ解析に専用プログラムが必要になることも無いので、解析時間が掛かることが無くなる。 According to this configuration, the following effects can be obtained. The optical sensing device of the present invention is constructed by connecting a plurality of FBGs, which are general-purpose components, cascaded with optical fibers via optical circulators, which are general-purpose components, to an optical transmission line using optical fibers for communication purposes. Since the optical circulator and FBG are general-purpose products, they can be configured at low cost. Since the optical sensing device is branch-connected to an optical transmission line, the optical fiber is not exclusively used for optical sensing, and packet loss of signal light does not occur, so it can be used for communication purposes. In addition, optical sensing can be performed by measuring only the transmission/reception delay time from the transmission/reception time of the communication device, so the amount of measurement data does not become enormous even if the measurement is performed for a long time, and a dedicated program is required for data analysis. Therefore, the analysis time is not required.
 従って、本発明の光センシング装置によれば、光ファイバを低コストでデータ解析が容易となる環境条件の光センシングを行うことができ、通信用途にも利用可能とすることができる。 Therefore, according to the optical sensing device of the present invention, the optical fiber can be used for optical sensing under environmental conditions that facilitate data analysis at low cost, and can also be used for communication purposes.
 (2)前記複数のFBGにおける末尾のFBGに、全波長を反射するファイバミラーを従属接続し、前記DBに前記記憶された情報に加え、前記ファイバミラーで反射後に前記通信装置で送受信される信号光の往復伝搬距離を当該ファイバミラーに対応付けると共に、当該ファイバミラーの特定情報を対応付けて記憶し、前記遅延測定部は、前記ファイバミラーで反射後に前記通信装置で送受信される信号光の送受信時刻の差分から、送受信間の遅延時間を測定し、前記特定部は、前記測定された遅延時間を基に信号光の送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致する前記DB内の往復伝搬距離に対応付けられたファイバミラー及び前記特定情報を特定することを特徴とする上記(1)に記載の光センシング装置である。 (2) A fiber mirror that reflects all wavelengths is cascade-connected to the last FBG in the plurality of FBGs, and in addition to the information stored in the DB, a signal that is transmitted and received by the communication device after being reflected by the fiber mirror A round-trip propagation distance of light is associated with the fiber mirror, and specific information of the fiber mirror is associated and stored. the delay time between transmission and reception is measured from the difference between the transmission and reception, the specifying unit obtains the measured propagation distance between transmission and reception of the signal light based on the measured delay time, and The optical sensing device according to (1) above, wherein the fiber mirror and the specific information associated with the round-trip propagation distance in the DB are specified.
 この構成によれば、通信装置から送信された信号光が全てのFBGを透過した場合、ファイバミラーで反射後に光サーキュレータ及び光伝送路を介して通信装置で受信される。この場合、遅延測定部により、ファイバミラーでの反射に係る送受信の遅延時間が測定される。次に、特定部で、その測定された遅延時間に基づく送受信間の計測伝搬距離と一致する、DB内のファイバミラーに係る往復伝搬距離を検索し、この往復伝搬距離に対応付けられたファイバミラーを検出する。更に、特定部で、その検出されたファイバミラーに対応付けられた特定情報としての例えば上述した状態異常を特定できる。このため、上記(1)と同様に、光ファイバを低コストでデータ解析が容易となる環境条件の光センシングを行うことができ、通信用途にも利用できる。 According to this configuration, when the signal light transmitted from the communication device passes through all the FBGs, it is received by the communication device via the optical circulator and the optical transmission line after being reflected by the fiber mirror. In this case, the delay measurement unit measures the transmission/reception delay time associated with the reflection on the fiber mirror. Next, the specifying unit searches for the round-trip propagation distance related to the fiber mirror in the DB that matches the measured propagation distance between transmission and reception based on the measured delay time, and searches the fiber mirror associated with this round-trip propagation distance. to detect Furthermore, the identification unit can identify, for example, the above-described abnormal condition as identification information associated with the detected fiber mirror. Therefore, as in (1) above, the optical fiber can be used for optical sensing under environmental conditions that facilitate data analysis at low cost, and can also be used for communication purposes.
 (3)特定波長又は特定波長を含む複数の異なる波長の信号光を送信する第1通信装置と、その送信された信号光を受信する第2通信装置間の光伝送路の途中に介挿接続された光サーキュレータと、前記光サーキュレータに光ファイバで従属接続され、環境条件が予め設定された設定環境条件の場合に、当該光サーキュレータからの特定波長の信号光を反射し、特定波長以外の信号光を透過する光センシングを行う、当該設定環境条件が各々異なる複数のFBGと、前記第1通信装置から送信された信号光を前記光サーキュレータを介して前記複数のFBGの何れか1つで反射後に前記第2通信装置で受信される信号光の伝搬距離が当該複数のFBG毎に対応付けられると共に、当該FBG毎の設定環境条件が対応付けられて記憶されたDBと、前記第1通信装置から送信され、前記第2通信装置で受信される信号光の送受信時刻の差分から、送受信間の遅延時間を測定する遅延測定部と、前記測定された遅延時間を基に信号光の送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致する前記DB内の伝搬距離に対応付けられたFBGを特定する特定部とを備えることを特徴とする光センシング装置である。 (3) Interposed connection in the middle of an optical transmission line between a first communication device that transmits a specific wavelength or a plurality of different wavelengths of signal light including the specific wavelength and a second communication device that receives the transmitted signal light and an optical circulator cascade-connected to the optical circulator by an optical fiber, and in the case of environmental conditions set in advance, the signal light of a specific wavelength from the optical circulator is reflected, and the signal of a wavelength other than the specific wavelength is reflected. a plurality of FBGs having different set environmental conditions for performing optical sensing that transmits light; and the signal light transmitted from the first communication device is reflected by any one of the plurality of FBGs via the optical circulator a DB in which a propagation distance of the signal light to be received later by the second communication device is associated with each of the plurality of FBGs and a set environmental condition for each of the FBGs is associated and stored; a delay measurement unit for measuring a delay time between transmission and reception from the difference in transmission and reception times of signal light transmitted from and received by the second communication device; an identifying unit that obtains a measured propagation distance and identifies an FBG associated with the propagation distance in the DB that matches the obtained measured propagation distance.
 この構成によれば、第1通信装置と第2通信装置間の光伝送路に光サーキュレータを介して接続される光センシング装置において、上記(1)と同様に、光ファイバを低コストでデータ解析が容易となる環境条件の光センシングを行うことができ、通信用途にも利用可能とすることができる。 According to this configuration, in the optical sensing device connected to the optical transmission line between the first communication device and the second communication device via the optical circulator, data analysis is performed on the optical fiber at low cost, as in (1) above. It is possible to perform optical sensing of environmental conditions that facilitate
 (4)前記複数のFBGにおける末尾のFBGに、全波長を反射するファイバミラーを従属接続し、前記DBに前記記憶された情報に加え、前記第1通信装置から送信され、前記ファイバミラーで反射後に前記第2通信装置で受信される信号光の伝搬距離を当該ファイバミラーに対応付けると共に、当該ファイバミラーの特定情報を対応付けて記憶し、前記遅延測定部は、前記ファイバミラーで反射後に前記送受信される信号光の送受信時刻の差分から、送受信間の遅延時間を測定し、前記特定部は、前記測定された遅延時間を基に信号光の送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致する前記DB内の伝搬距離に対応付けられたファイバミラーを特定することを特徴とする上記(3)に記載の光センシング装置である。 (4) A fiber mirror that reflects all wavelengths is subordinately connected to the last FBG in the plurality of FBGs, and in addition to the information stored in the DB, transmitted from the first communication device and reflected by the fiber mirror The propagation distance of the signal light received later by the second communication device is associated with the fiber mirror, and the specific information of the fiber mirror is associated and stored, and the delay measurement unit measures the transmission and reception after being reflected by the fiber mirror. The delay time between transmission and reception is measured from the difference between the transmission and reception times of the signal light, and the specifying unit obtains the measured propagation distance between transmission and reception of the signal light based on the measured delay time. The optical sensing device according to (3) above, wherein the fiber mirror associated with the propagation distance in the DB that matches the measured propagation distance is specified.
 この構成によれば、第1通信装置から送信された信号光が全てのFBGを透過した場合、ファイバミラーで反射後に光サーキュレータ及び光伝送路を介して第2通信装置で受信される。この場合、遅延測定部により、ファイバミラーでの反射に係る送受信の遅延時間が測定される。次に、特定部で、その測定された遅延時間に基づく送受信間の計測伝搬距離と一致する、DB内のファイバミラーに係る伝搬距離を検索し、この伝搬距離に対応付けられたファイバミラーを検出する。更に、特定部で、その検出されたファイバミラーに対応付けられた特定情報としての例えば上述した状態異常を特定できる。このため、上記(3)と同様に、光ファイバを低コストでデータ解析が容易となる環境条件の光センシングを行うことができ、通信用途にも利用可能とできる。 According to this configuration, when the signal light transmitted from the first communication device passes through all the FBGs, it is received by the second communication device via the optical circulator and the optical transmission line after being reflected by the fiber mirror. In this case, the delay measurement unit measures the transmission/reception delay time associated with the reflection on the fiber mirror. Next, the identification unit searches for the propagation distance related to the fiber mirror in the DB that matches the measured propagation distance between transmission and reception based on the measured delay time, and detects the fiber mirror associated with this propagation distance. do. Furthermore, the identification unit can identify, for example, the above-described abnormal condition as identification information associated with the detected fiber mirror. Therefore, as in (3) above, the optical fiber can be used for optical sensing under environmental conditions that facilitate data analysis at low cost, and can be used for communication purposes.
 その他、具体的な構成について、本発明の主旨を逸脱しない範囲で適宜変更が可能である。 In addition, the specific configuration can be changed as appropriate without departing from the gist of the present invention.
 10 通信ネットワーク
 11 通信装置
 12 光ファイバ
 20,20A,20B,20C 光センシング装置
 21 光サーキュレータ
 22a~22k FBG
 22m ファイバミラー
 24 遅延測定部
 25 環境条件特定部(特定部)
 26 DB
10 communication network 11 communication device 12 optical fiber 20, 20A, 20B, 20C optical sensing device 21 optical circulator 22a to 22k FBG
22m fiber mirror 24 delay measurement unit 25 environmental condition identification unit (identification unit)
26 DBs

Claims (6)

  1.  特定波長又は特定波長を含む複数の異なる波長の信号光を送受信する通信装置に往復接続された光伝送路の途中に介挿接続された光サーキュレータと、
     前記光サーキュレータに光ファイバで従属接続され、環境条件が予め設定された設定環境条件の場合に、当該光サーキュレータからの特定波長の信号光を反射し、特定波長以外の信号光を透過する光センシングを行う、当該設定環境条件が各々異なる複数のFBG(Fiber Bragg Gratings)と、
     前記光サーキュレータを介し、前記複数のFBGの何れか1つで反射後に、光伝送路を経由して前記通信装置で送受信される信号光の往復伝搬距離が、当該複数のFBG毎に対応付けられると共に、当該FBG毎の設定環境条件の情報が対応付けられて記憶されたDB(Data Base)と、
     前記光サーキュレータを介し、前記複数のFBGの何れか1つで反射後に前記通信装置で送受信される信号光の送受信時刻の差分から、送受信間の遅延時間を測定する遅延測定部と、
     前記測定された遅延時間を基に信号光の送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致する前記DB内の往復伝搬距離に対応付けられたFBGを特定する特定部と
     を備えることを特徴とする光センシング装置。
    an optical circulator interposed and connected in the middle of an optical transmission line that is connected back and forth to a communication device that transmits and receives signal light of a specific wavelength or a plurality of different wavelengths including the specific wavelength;
    Optical sensing that is cascade-connected to the optical circulator with an optical fiber, and reflects signal light of a specific wavelength from the optical circulator and transmits signal light of a wavelength other than the specific wavelength when environmental conditions are preset environmental conditions. a plurality of FBGs (Fiber Bragg Gratings) each having different set environmental conditions;
    A round-trip propagation distance of signal light transmitted and received by the communication device via an optical transmission line after being reflected by any one of the plurality of FBGs via the optical circulator is associated with each of the plurality of FBGs. together with a DB (data base) in which information on the set environmental conditions for each FBG is associated and stored;
    a delay measurement unit that measures a delay time between transmission and reception from a difference in transmission and reception times of signal light transmitted and received by the communication device after being reflected by any one of the plurality of FBGs via the optical circulator;
    a specifying unit that obtains a measured propagation distance between transmission and reception of signal light based on the measured delay time, and identifies an FBG associated with the round-trip propagation distance in the DB that matches the obtained measured propagation distance; An optical sensing device comprising:
  2.  前記複数のFBGにおける末尾のFBGに、全波長を反射するファイバミラーを従属接続し、
     前記DBに前記記憶された情報に加え、前記ファイバミラーで反射後に前記通信装置で送受信される信号光の往復伝搬距離を当該ファイバミラーに対応付けると共に、当該ファイバミラーの特定情報を対応付けて記憶し、
     前記遅延測定部は、前記ファイバミラーで反射後に前記通信装置で送受信される信号光の送受信時刻の差分から、送受信間の遅延時間を測定し、
     前記特定部は、前記測定された遅延時間を基に信号光の送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致する前記DB内の往復伝搬距離に対応付けられたファイバミラー及び前記特定情報を特定する
     ことを特徴とする請求項1に記載の光センシング装置。
    cascade-connecting a fiber mirror that reflects all wavelengths to the last FBG in the plurality of FBGs;
    In addition to the information stored in the DB, the round-trip propagation distance of the signal light transmitted and received by the communication device after being reflected by the fiber mirror is associated with the fiber mirror, and the specific information of the fiber mirror is associated and stored. ,
    The delay measurement unit measures a delay time between transmission and reception from a difference in transmission and reception times of signal light transmitted and received by the communication device after being reflected by the fiber mirror,
    The identifying unit obtains a measured propagation distance between transmission and reception of signal light based on the measured delay time, and the fiber mirror associated with the round-trip propagation distance in the DB that matches the obtained measured propagation distance. and the specific information are specified.
  3.  特定波長又は特定波長を含む複数の異なる波長の信号光を送信する第1通信装置と、その送信された信号光を受信する第2通信装置間の光伝送路の途中に介挿接続された光サーキュレータと、
     前記光サーキュレータに光ファイバで従属接続され、環境条件が予め設定された設定環境条件の場合に、当該光サーキュレータからの特定波長の信号光を反射し、特定波長以外の信号光を透過する光センシングを行う、当該設定環境条件が各々異なる複数のFBGと、
     前記第1通信装置から送信された信号光を前記光サーキュレータを介して前記複数のFBGの何れか1つで反射後に前記第2通信装置で受信される信号光の伝搬距離が当該複数のFBG毎に対応付けられると共に、当該FBG毎の設定環境条件が対応付けられて記憶されたDBと、
     前記第1通信装置から送信され、前記第2通信装置で受信される信号光の送受信時刻の差分から、送受信間の遅延時間を測定する遅延測定部と、
     前記測定された遅延時間を基に信号光の送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致する前記DB内の伝搬距離に対応付けられたFBGを特定する特定部と
     を備えることを特徴とする光センシング装置。
    Light inserted and connected in the middle of an optical transmission line between a first communication device that transmits a specific wavelength or a plurality of different wavelengths of signal light including the specific wavelength and a second communication device that receives the transmitted signal light a circulator;
    Optical sensing that is cascade-connected to the optical circulator with an optical fiber, and reflects signal light of a specific wavelength from the optical circulator and transmits signal light of a wavelength other than the specific wavelength when environmental conditions are preset environmental conditions. a plurality of FBGs each having different set environmental conditions,
    The signal light transmitted from the first communication device is reflected by any one of the plurality of FBGs via the optical circulator, and the propagation distance of the signal light received by the second communication device is determined for each of the plurality of FBGs. and a DB in which setting environment conditions for each FBG are associated and stored;
    a delay measuring unit that measures a delay time between transmission and reception from a difference between transmission and reception times of signal light transmitted from the first communication device and received by the second communication device;
    a specifying unit that obtains a measured propagation distance between transmission and reception of signal light based on the measured delay time, and identifies an FBG associated with the propagation distance in the DB that matches the obtained measured propagation distance; A light sensing device comprising:
  4.  前記複数のFBGにおける末尾のFBGに、全波長を反射するファイバミラーを従属接続し、
     前記DBに記憶された情報に加え、前記第1通信装置から送信され、前記ファイバミラーで反射後に前記第2通信装置で受信される信号光の伝搬距離を当該ファイバミラーに対応付けると共に、当該ファイバミラーの特定情報を対応付けて記憶し、
     前記遅延測定部は、前記ファイバミラーで反射後に前記送受信される信号光の送受信時刻の差分から、送受信間の遅延時間を測定し、
     前記特定部は、前記測定された遅延時間を基に信号光の送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致する前記DB内の伝搬距離に対応付けられたファイバミラーを特定する
     ことを特徴とする請求項3に記載の光センシング装置。
    cascade-connecting a fiber mirror that reflects all wavelengths to the last FBG in the plurality of FBGs;
    In addition to the information stored in the DB, the propagation distance of the signal light transmitted from the first communication device and received by the second communication device after being reflected by the fiber mirror is associated with the fiber mirror, and and stores the specific information of
    The delay measuring unit measures a delay time between transmission and reception from a difference in transmission and reception times of the signal light transmitted and received after being reflected by the fiber mirror,
    The identifying unit obtains a measured propagation distance between transmission and reception of signal light based on the measured delay time, and selects a fiber mirror associated with the propagation distance in the DB that matches the obtained measured propagation distance. The optical sensing device according to claim 3, characterized in that:
  5.  信号光による光センシングを行う光センシング装置による光センシング方法であって、
     前記光センシング装置は、
     特定波長又は特定波長を含む複数の異なる波長の信号光を送受信する通信装置に往復接続された光伝送路の途中に介挿接続された光サーキュレータと、
     前記光サーキュレータに光ファイバで従属接続され、環境条件が予め設定された設定環境条件の場合に、当該光サーキュレータからの特定波長の信号光を反射し、特定波長以外の信号光を透過する光センシングを行う、当該設定環境条件が各々異なる複数のFBGと、
     前記光サーキュレータを介し、前記複数のFBGの何れか1つで反射後に、光伝送路を経由して前記通信装置で送受信される信号光の往復伝搬距離が、当該複数のFBG毎に対応付けられると共に、当該FBG毎の設定環境条件の情報が対応付けられて記憶されたDBと
     を備え、
     前記光サーキュレータを介し、前記複数のFBGの何れか1つで反射後に前記通信装置で送受信される信号光の送受信時刻の差分から、送受信間の遅延時間を測定するステップと、
     前記測定された遅延時間を基に信号光の送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致する前記DB内の往復伝搬距離に対応付けられたFBGを特定するステップと
     を実行することを特徴とする光センシング方法。
    An optical sensing method using an optical sensing device that performs optical sensing using signal light,
    The optical sensing device is
    an optical circulator interposed and connected in the middle of an optical transmission line that is connected back and forth to a communication device that transmits and receives signal light of a specific wavelength or a plurality of different wavelengths including the specific wavelength;
    Optical sensing that is cascade-connected to the optical circulator with an optical fiber, and reflects signal light of a specific wavelength from the optical circulator and transmits signal light of a wavelength other than the specific wavelength when environmental conditions are preset environmental conditions. a plurality of FBGs each having different set environmental conditions,
    A round-trip propagation distance of signal light transmitted and received by the communication device via an optical transmission line after being reflected by any one of the plurality of FBGs via the optical circulator is associated with each of the plurality of FBGs. and a DB in which information on the set environmental conditions for each FBG is associated and stored,
    a step of measuring a delay time between transmission and reception from the difference in transmission and reception times of signal light transmitted and received by the communication device after being reflected by any one of the plurality of FBGs via the optical circulator;
    obtaining a measured propagation distance between transmission and reception of signal light based on the measured delay time, and identifying an FBG associated with the round-trip propagation distance in the DB that matches the obtained measured propagation distance; An optical sensing method, characterized by performing:
  6.  信号光による光センシングを行う光センシング装置による光センシング方法であって、
     前記光センシング装置は、
     特定波長又は特定波長を含む複数の異なる波長の信号光を送信する第1通信装置と、その送信された信号光を受信する第2通信装置間の光伝送路の途中に介挿接続された光サーキュレータと、
     前記光サーキュレータに光ファイバで従属接続され、環境条件が予め設定された設定環境条件の場合に、当該光サーキュレータからの特定波長の信号光を反射し、特定波長以外の信号光を透過する光センシングを行う、当該設定環境条件が各々異なる複数のFBGと、
     前記第1通信装置から送信された信号光を前記光サーキュレータを介して前記複数のFBGの何れか1つで反射後に前記第2通信装置で受信される信号光の伝搬距離が当該複数のFBG毎に対応付けられると共に、当該FBG毎の設定環境条件が対応付けられて記憶されたDBと
     を備え、
     前記第1通信装置から送信され、前記第2通信装置で受信される信号光の送受信時刻の差分から、送受信間の遅延時間を測定するステップと、
     前記測定された遅延時間を基に信号光の送受信間の計測伝搬距離を求め、この求められた計測伝搬距離と一致する前記DB内の伝搬距離に対応付けられたFBGを特定するステップと
     を実行することを特徴とする光センシング方法。
    An optical sensing method using an optical sensing device that performs optical sensing using signal light,
    The optical sensing device is
    Light inserted and connected in the middle of an optical transmission line between a first communication device that transmits a specific wavelength or a plurality of different wavelengths of signal light including the specific wavelength and a second communication device that receives the transmitted signal light a circulator;
    Optical sensing that is cascade-connected to the optical circulator with an optical fiber, and reflects signal light of a specific wavelength from the optical circulator and transmits signal light of a wavelength other than the specific wavelength when environmental conditions are preset environmental conditions. a plurality of FBGs each having different set environmental conditions,
    The signal light transmitted from the first communication device is reflected by any one of the plurality of FBGs via the optical circulator, and the propagation distance of the signal light received by the second communication device is determined for each of the plurality of FBGs. and a DB in which the setting environment conditions for each FBG are associated and stored,
    a step of measuring a delay time between transmission and reception from a difference in transmission and reception times of signal light transmitted from the first communication device and received by the second communication device;
    obtaining a measured propagation distance between transmission and reception of signal light based on the measured delay time, and identifying an FBG associated with the propagation distance in the DB that matches the obtained measured propagation distance; An optical sensing method characterized by:
PCT/JP2021/005726 2021-02-16 2021-02-16 Light sensing device and light sensing method WO2022176018A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/005726 WO2022176018A1 (en) 2021-02-16 2021-02-16 Light sensing device and light sensing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/005726 WO2022176018A1 (en) 2021-02-16 2021-02-16 Light sensing device and light sensing method

Publications (1)

Publication Number Publication Date
WO2022176018A1 true WO2022176018A1 (en) 2022-08-25

Family

ID=82931259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005726 WO2022176018A1 (en) 2021-02-16 2021-02-16 Light sensing device and light sensing method

Country Status (1)

Country Link
WO (1) WO2022176018A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252251A (en) * 2005-03-11 2006-09-21 Toshiba Corp Fiber bragg grating physical quantity measurement instrument and fiber bragg grating physical quantity measuring method
JP2009229134A (en) * 2008-03-19 2009-10-08 Photonic Science Technology Inc Optical sensor system
JP2013113830A (en) * 2011-12-01 2013-06-10 Hitachi Ltd Multipoint measuring method and multipoint measuring device, using fbg sensor
JP2017110921A (en) * 2015-12-14 2017-06-22 国立大学法人横浜国立大学 Cable diagnosis system and sensing cable
CN107402028A (en) * 2017-08-02 2017-11-28 南昌大学 A kind of multi-path optical fiber grating sensing system based on intensity type wavelength-division multiplex technique
US20190383672A1 (en) * 2018-06-14 2019-12-19 Kidde Technologies, Inc. Overheat detection using a fiber bragg gratings array by time-of-flight

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252251A (en) * 2005-03-11 2006-09-21 Toshiba Corp Fiber bragg grating physical quantity measurement instrument and fiber bragg grating physical quantity measuring method
JP2009229134A (en) * 2008-03-19 2009-10-08 Photonic Science Technology Inc Optical sensor system
JP2013113830A (en) * 2011-12-01 2013-06-10 Hitachi Ltd Multipoint measuring method and multipoint measuring device, using fbg sensor
JP2017110921A (en) * 2015-12-14 2017-06-22 国立大学法人横浜国立大学 Cable diagnosis system and sensing cable
CN107402028A (en) * 2017-08-02 2017-11-28 南昌大学 A kind of multi-path optical fiber grating sensing system based on intensity type wavelength-division multiplex technique
US20190383672A1 (en) * 2018-06-14 2019-12-19 Kidde Technologies, Inc. Overheat detection using a fiber bragg gratings array by time-of-flight

Similar Documents

Publication Publication Date Title
US10837806B2 (en) Distributed optical fibre sensors
Luo et al. A time-and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings
EP1068686B1 (en) Networked photonic distribution system for sensing ambient conditions
EP2373956B1 (en) Distributed optical fibre sensor
US20080291431A1 (en) Apparatus for monitoring optical obstructions in an optical split network and method thereof
US20190234831A1 (en) Optical line testing device using wavelength tunable laser
CN106471340A (en) For the device from multiple fiber sensor measuring optical signals
JPS62110160A (en) Optical time-region reflection measurement
WO2011010110A2 (en) Distributed optical fibre sensing
EP3384248B1 (en) Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system
WO2022176018A1 (en) Light sensing device and light sensing method
WO2015083993A1 (en) Optical time domain reflectometer using polymer wavelength tunable laser
CN112649115A (en) OPGW optical cable temperature monitoring system
JP2013032988A (en) Optical fiber line core determination device and determination method thereof
KR102397735B1 (en) Distributed raman amplifier systems
Xiaolin et al. A miniaturized, low-cost and portable fiber Bragg grating interrogation system for remote monitoring
US10823625B1 (en) Overheat testing apparatus for optical fiber
JP4625593B2 (en) Optical fiber multipoint physical quantity measurement system
KR0150021B1 (en) Fiber optic address detector in photonic packet switching device and its method for fabricating
CN105409073A (en) Laser wavelength alignment method and device, onu, olt and pon system
JP2004361284A (en) System for measuring reflected wavelength
JP2011146865A (en) Optical communication system and method for monitoring the same
CN214407810U (en) OPGW optical cable temperature monitoring system
US11462882B2 (en) Distributed Raman amplifier systems
JPH1127211A (en) Branch optical line checking device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 21926458

Country of ref document: EP

Kind code of ref document: A1