JP2013032988A - Optical fiber line core determination device and determination method thereof - Google Patents

Optical fiber line core determination device and determination method thereof Download PDF

Info

Publication number
JP2013032988A
JP2013032988A JP2011169534A JP2011169534A JP2013032988A JP 2013032988 A JP2013032988 A JP 2013032988A JP 2011169534 A JP2011169534 A JP 2011169534A JP 2011169534 A JP2011169534 A JP 2011169534A JP 2013032988 A JP2013032988 A JP 2013032988A
Authority
JP
Japan
Prior art keywords
optical
onu
optical line
line
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011169534A
Other languages
Japanese (ja)
Other versions
JP5467080B2 (en
Inventor
Nagetsu Honda
奈月 本田
Tetsuya Manabe
哲也 真鍋
Yuji Higashi
裕司 東
Satoshi Shimazu
聡志 嶌津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2011169534A priority Critical patent/JP5467080B2/en
Publication of JP2013032988A publication Critical patent/JP2013032988A/en
Application granted granted Critical
Publication of JP5467080B2 publication Critical patent/JP5467080B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical fiber line core determination device capable of enhancing the determination accuracy of a core in an optical fiber line as a working target.SOLUTION: An optical fiber line connecting between an OLT 11 with an ONU 17 in an optical fiber line network has a monitor point which is formed to extract a part of a transmission optical signal to input the same to a core determination device 14. The core determination device 14 measures the timing when a signal frame passes through the monitor point on the basis of a result of the extraction of the optical signal at the monitor point and stores the same. The core determination device 14 obtains device time and a piece of device information owned by the ONU 17 or OLT 11 from the frame to obtain a piece of information on a distance between the monitor point and the ONU and a piece of information on an ONU proper ID and measures the length of the optical fiber line from the monitor point to the far-end of the optical fiber line. The core determination device 14 compares the distance information between the monitor point and the ONU and the length of the measured optical fiber line to collate a reflection point in the optical fiber line and a piece of ONU information on the far-end of the optical fiber line. In the analysis, the optical fiber line is given a reversible loss to obtain a piece of core information of the optical fiber line on the basis of the variation in the measured data of the optical fiber line length generated before and after the loss is given and the ONU information which coincides with the measured line length in the collation.

Description

本発明は、光ファイバによる光線路で構築された光通信ネットワーク(光線路網)に係り、特に分岐方光線路網の光線路心線の中から対象とする心線を特定する光線路心線判定装置及び心線判定方法に関する。   The present invention relates to an optical communication network (optical line network) constructed by an optical line made of an optical fiber, and in particular, an optical line core for specifying a target core line from among optical line cores of a branching optical line network. The present invention relates to a determination device and a core wire determination method.

近年のインターネット利用者の拡大とTV電話や映像配信といったブロードバンドアプリケーションの普及により、アクセスネットワークにも光線路を用いた通信ネットワークが利用されている。このような光線路によるネットワーク(以下、光線路網と記す)では、経済的な構築をするために、伝送光信号を光線路網の途中で光スプリッタによって分岐し、通信事業者ビルに設置される1台の所内側伝送装置OLT(Optical Line Terminal)に対して複数のユーザ側伝送装置ONU(Optical Network Unit)を接続する分岐型(PON:Passive Optical Network)の光線路網が広く用いられている。   With the recent expansion of Internet users and the spread of broadband applications such as videophone and video distribution, communication networks using optical lines are also used for access networks. In such an optical line network (hereinafter referred to as an optical line network), in order to make an economical construction, a transmission optical signal is branched by an optical splitter in the middle of the optical line network and installed in a communication company building. A branch type (PON: Passive Optical Network) optical line network that connects a plurality of user-side transmission devices ONU (Optical Network Unit) to one indoor transmission device OLT (Optical Line Terminal) is widely used. Yes.

ところで、分岐型光線路網についてルート変更が必要となった場合には、屋外のマンホール等の光線路の接続点において、光線路の切替工事を行うことになる。一般に、光線路の接続点には、光線路心線に設備情報を記載した識別タグ等が取り付けられている。しかしながら、識別タグの取り付け誤り等がある場合を想定し、屋外切替点での作業者は、通信事業者ビルの作業員と連絡を取りつつ、対象心線の確認を行いながら心線の特定(判定)を行う。この確認手順は、(1)屋外作業者が対象と思われる光線路心線に曲げ損失を付与し、(2)これを通信事業者ビルの作業者が光線路損失の発生をモニタし、(3)損失発生が確認された光線路心線が、切替対象とする光線路の線路長と一致しているか否かを調べ、(4)一致している場合に正しい対象の光線路心線であると判断し、屋外作業者に正しい対象心線である旨の連絡を行う。   By the way, when it is necessary to change the route of the branched optical line network, the optical line is switched at the connection point of the optical line such as an outdoor manhole. In general, an identification tag or the like that describes facility information on an optical line core is attached to a connection point of the optical line. However, assuming that there is a mistake in attaching the identification tag, etc., the worker at the outdoor switching point identifies the core wire while checking the target core wire while contacting the operator of the telecommunications carrier building ( Judgment). This confirmation procedure consists of (1) adding bending loss to the optical fiber core, which is considered to be an object by outdoor workers, and (2) monitoring the occurrence of optical line loss by the operator of the telecommunications carrier building, 3) Check whether or not the optical fiber core line in which loss has been confirmed matches the line length of the optical line to be switched, and (4) It is judged that there is, and the outside worker is notified that it is the correct target core wire.

“拡大する光アクセス網を支える光媒体網運用技術”、NTT技術ジャーナル2006.12、P58-61“Optical media network operation technology to support expanding optical access network”, NTT Technology Journal 2006.12, P58-61

しかしながら、近年の多心化された光ファイバケーブルの接続点においては、高密度の光線路心線を扱う作業環境となり、その環境下で光線路心線に識別タグを取付ける場合に、誤った心線に識別タグを取付けてしまう恐れがあった。一旦、誤った光線路心線に識別タグが取り付けられると、作業現場となる接続点のみでの情報からは、正しい光線路心線であるか否かを確認することができない。   However, at the connection points of multi-fiber optical fiber cables in recent years, it becomes a working environment for handling high-density optical fiber cores. There was a risk of attaching identification tags to the wires. Once the identification tag is attached to the wrong optical fiber core, it is impossible to confirm whether the optical fiber core is correct from the information only at the connection point at the work site.

また、光線路心線を識別する情報の一つにその線路長があり、線路長の確認には光パルス試験が一般的に用いられる。この光パルス試験では、光線路にパルス光を入射し、散乱光や反射光の戻る時間とパワーを計測することで、光線路長手方向の損失位置や光線路遠端を検出する。しかし、光パルス試験により得られた波形より読取られる光線路心線の遠端位置が、本来あるべき長さであるかどうかを確認するためには、予めストレージされた設備データとの比較する必要がある。   One of the information for identifying the optical fiber core line is the line length, and an optical pulse test is generally used to confirm the line length. In this optical pulse test, pulse light is incident on the optical line, and the loss time in the longitudinal direction of the optical line and the far end of the optical line are detected by measuring the return time and power of scattered light and reflected light. However, in order to confirm whether or not the far end position of the optical fiber core line read from the waveform obtained by the optical pulse test is the original length, it is necessary to compare with the equipment data stored in advance. There is.

しかしながら、光線路の新設時には光線路心線の接続部において任意長の収納余長を設けるため、設備データを構築するにあたっては、正確な光線路長を求めるのは困難であり、且つ、精度の良い光線路長のデータベースを構築・運用していくには、加入者の増減に併せて、絶え間なくデータ更新作業を行うなど、非常に大きな運用コストがかかる。また、データの投入の際にはデータの投入誤りなどのヒューマンエラーが発生する。   However, when a new optical line is installed, a storage length of an arbitrary length is provided at the connection part of the optical line, so in constructing equipment data, it is difficult to obtain an accurate optical line length and the accuracy is high. Building and operating a good optical line length database requires very large operational costs, such as constantly updating data as subscribers increase and decrease. Further, when data is input, a human error such as data input error occurs.

また、一般的に光パルス試験によって散乱光や反射光を計測する際に、光線路中に発生する反射が大きい場合、反射点間を往復する多重反射が発生し、実際に存在する光線路より長い距離に反射が発生して誤測定を行う場合がある。
本発明は、上記の事情に着目してなされたもので、従来の損失発生のモニタにより行っていた心線判定に比べ、該当光線路心線に接続されているONU情報や光線路長情報も同時に確認することが可能となり、作業対象の光線路心線の特定(判定)精度を高めることが可能な光線路心線判定装置およびその判定方法を提供することを目的とする。
In general, when scattered light or reflected light is measured by an optical pulse test, if there is a large amount of reflection in the optical line, multiple reflections that reciprocate between the reflection points will occur. In some cases, reflection occurs at a long distance and erroneous measurement is performed.
The present invention has been made paying attention to the above-mentioned circumstances, and the ONU information and the optical line length information connected to the corresponding optical line core wire are also compared with the core line determination performed by the conventional loss occurrence monitor. An object of the present invention is to provide an optical fiber core determination device and a determination method thereof that can be confirmed at the same time and can increase the accuracy of identification (determination) of the optical fiber core to be worked.

上記の課題を解決するため、本発明に係る光線路心線判定装置は、以下の態様で構成される。
(1)所内側伝送装置OLT(Optical Line Terminal)と複数のユーザ側伝送装置ONU(Optical Network Unit)とを光線路により接続する光線路網に用いられ、前記光線路の途中にモニタ点を設けて当該モニタ点で伝送する光信号の一部を抽出し、抽出された光信号を解析して前記光線路の心線を判定する情報を取得する光線路心線判定装置であって、前記モニタ点にて前記OLTからONUへまたはONUからOLTへ伝送する光信号の抽出結果から、信号フレームがモニタ点を通過するタイミングを測定して記録する記録手段と、前記OLTとONUとの間の伝送信号フレームからONUまたはOLTが持つ装置時間および装置情報を取得することで、前記モニタ点とONUとの距離情報並びにONU固有識別情報を取得する線路情報抽出手段と、前記モニタ点から前記光線路遠端までの光線路長を計測する光線路長計測手段と、前記線路情報抽出手段によって得られた前記モニタ点とONUとの間の距離情報と、前記光線路長計測手段で得られた光線路長とを比較することにより、光線路における反射点と光線路遠端のONU情報とを照合する解析手段とを具備し、前記解析手段は、前記光線路に可逆性の損失を与えることにより、損失を付与する前後に生じる前記光線路長計測データの変化と、計測線路長と照合一致したONU情報とから前記光線路の心線情報を取得する態様とする。
In order to solve the above-described problems, the optical line core wire determination device according to the present invention is configured in the following manner.
(1) Used in an optical line network that connects a site-side transmission apparatus OLT (Optical Line Terminal) and a plurality of user-side transmission apparatuses ONU (Optical Network Unit) via an optical line, and provides a monitoring point in the middle of the optical line An optical line core determination device that extracts a part of an optical signal transmitted at the monitor point and analyzes the extracted optical signal to acquire information for determining the core of the optical line, Recording means for measuring and recording the timing at which a signal frame passes through a monitor point from the extraction result of the optical signal transmitted from the OLT to the ONU or from the ONU to the OLT at a point, and transmission between the OLT and the ONU Line information extraction means for acquiring distance information between the monitoring point and the ONU and ONU unique identification information by acquiring the device time and device information of the ONU or OLT from the signal frame, Optical line length measuring means for measuring the optical line length from the monitoring point to the far end of the optical line, distance information between the monitoring point and ONU obtained by the line information extracting means, and the optical line length Comparing the length of the optical line obtained by the measuring means with an analyzing means for collating the reflection point in the optical line with the ONU information at the far end of the optical line, the analyzing means is reversible to the optical line. The optical fiber core information is obtained from the change in the optical line length measurement data that occurs before and after the loss is given and the ONU information that matches the measurement line length.

(2)(1)の構成において、前記ONUの入出力部に反射波を発生する光フィルタを配置し、光線路への側圧印加による偏波変調を用いる手法により前記光フィルタの反射波形のピーク値が変動する現象を与えることで対象となる心線を確認させる態様とする。   (2) In the configuration of (1), an optical filter that generates a reflected wave is arranged at the input / output unit of the ONU, and the peak of the reflected waveform of the optical filter is obtained by a technique that uses polarization modulation by applying a side pressure to the optical line. It is set as the aspect which confirms the core wire used as object by giving the phenomenon from which a value fluctuates.

(3)(1)または(2)の構成において、前記光信号の抽出には、光カプラを用いる態様とする。
(4)(1)または(2)の構成において、前記光信号の抽出には、前記光線路を構成する光ファイバに曲げを付与し、マクロベンディングによる光ファイバコアからクラッドへの放射モードを発生させて漏洩光を得る手段を用いる態様とする。
(3) In the configuration of (1) or (2), an optical coupler is used for extracting the optical signal.
(4) In the configuration of (1) or (2), the optical signal is extracted by bending the optical fiber constituting the optical line and generating a radiation mode from the optical fiber core to the cladding by macro bending. And a means for obtaining leaked light.

(5)(1)乃至(4)のいずれかの構成において、前記線路情報抽出手段と光線路長計測手段それぞれの入出力ポートの切り替えに光スイッチを用いる態様とする。
(6)(1)乃至(4)のいずれかの構成において、前記線路情報抽出手段と光線路長計測手段それぞれの入出力ポートの切り替えに光分岐カプラを用いる態様とする。
(5) In any one of the constitutions (1) to (4), an optical switch is used for switching the input / output ports of the line information extracting means and the optical line length measuring means.
(6) In any one of the constitutions (1) to (4), an optical branching coupler is used for switching the input / output ports of the line information extracting means and the optical line length measuring means.

(7)(6)の構成において、前記光分岐カプラには、前記光線路長計測手段側には第1の波長の試験光を透過し、他方の線路情報抽出手段側には前記第1の波長より短い第2の波長の試験光を透過する特性を有するWDM(Wavelength Division Multiplexing)カプラを用いる態様とする。   (7) In the configuration of (6), the optical branch coupler transmits the test light having the first wavelength to the optical line length measuring means side, and the first optical line length extracting means side transmits the first light to the optical line length measuring means side. It is assumed that a WDM (Wavelength Division Multiplexing) coupler having a characteristic of transmitting test light having a second wavelength shorter than the wavelength is used.

また、本発明に係る光線路心線判定方法は、以下の態様で構成される。
(8)所内側伝送装置OLT(Optical Line Terminal)と複数のユーザ側伝送装置ONU(Optical Network Unit)とを光線路により接続する光線路網に用いられ、前記光線路の途中にモニタ点を設けて当該モニタ点で伝送する光信号の一部を抽出し、抽出された光信号を解析して前記光線路の心線を判定する情報を取得する光線路心線判定方法であって、前記モニタ点にて前記OLTからONUへまたはONUからOLTへ伝送する光信号の抽出結果から、信号フレームがモニタ点を通過するタイミングを測定して記録し、前記OLTとONUとの間の伝送信号フレームからONUまたはOLTが持つ装置時間および装置情報を取得することで、前記モニタ点とONUとの距離情報並びにONU固有識別情報を取得し、前記モニタ点から前記光線路遠端までの光線路長を計測し、前記取得されたモニタ点とONUとの間の距離情報と前記計測された光線路長とを比較することにより、前記光線路における反射点と光線路遠端のONU情報とを照合するものとし、前記光線路に可逆性の損失を与えることにより、損失を付与する前後に生じる前記光線路長計測データの変化と、計測線路長と照合一致したONU情報とから前記光線路の心線情報を取得する態様とする。
Moreover, the optical line core wire determination method according to the present invention is configured in the following manner.
(8) Used in an optical line network that connects a site-side transmission device OLT (Optical Line Terminal) and a plurality of user-side transmission devices ONU (Optical Network Unit) by an optical line, and provides a monitor point in the middle of the optical line An optical line core line determination method for extracting a part of an optical signal transmitted at the monitor point and analyzing the extracted optical signal to obtain information for determining the core line of the optical line, From the extraction result of the optical signal transmitted from the OLT to the ONU or from the ONU to the OLT at a point, the timing at which the signal frame passes through the monitor point is measured and recorded, and the transmission signal frame between the OLT and the ONU is recorded. By acquiring the device time and device information that the ONU or OLT has, the distance information between the monitor point and the ONU and the ONU unique identification information are acquired, and from the monitor point to the far end of the optical line The optical line length of the optical line is measured, and the distance information between the acquired monitor point and the ONU is compared with the measured optical line length, so that the reflection point in the optical line and the ONU at the far end of the optical line are compared. Information is collated, and by giving a reversible loss to the optical line, the change in the optical line length measurement data that occurs before and after applying the loss, and the ONU information that is collated with the measurement line length It is set as the aspect which acquires the core line information of an optical line.

上記構成によれば、従来の損失発生のモニタにより行っていた心線判定に比べ、該当光線路心線に接続されているONU情報や光線路長情報も同時に確認することが可能となり、作業対象の光線路心線の特定(判定)精度を高めることが可能な光線路心線判定装置およびその判定方法を提供することができる。   According to the above configuration, it is possible to simultaneously check the ONU information and the optical line length information connected to the corresponding optical fiber as compared with the conventional determination of the optical fiber that has been performed by monitoring the occurrence of loss. It is possible to provide an optical line core determination device and a determination method thereof that can increase the accuracy of identification (determination) of the optical fiber core.

本発明の一実施形態に係る光線路心線判定装置が用いられる通信システムの構成を示すブロック図である。It is a block diagram which shows the structure of the communication system with which the optical line core wire determination apparatus which concerns on one Embodiment of this invention is used. 図1に示す光線路心線判定装置の具体的な構成を示すブロック図である。It is a block diagram which shows the specific structure of the optical line core wire determination apparatus shown in FIG. 図1に示す光線路心線判定装置が計測する信号とタイミングとの関係を示す図である。It is a figure which shows the relationship between the signal which the optical line core wire determination apparatus shown in FIG. 1 measures, and timing. 図1に示す光線路心線判定装置の取得データの例を示す図である。It is a figure which shows the example of the acquisition data of the optical line core wire determination apparatus shown in FIG. 図1に示す光ファイバ心線判定装置が取得した計測データと装置情報表示例を示す図である。It is a figure which shows the measurement data and the apparatus information display example which the optical fiber core wire determination apparatus shown in FIG. 1 acquired.

添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。
(第1の実施形態)
図1は本発明の一実施形態に係る心線判定装置が用いられる通信システムの構成を示すブロック図である。
Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment.
(First embodiment)
FIG. 1 is a block diagram showing a configuration of a communication system in which a cord determination device according to an embodiment of the present invention is used.

図1において、通信事業者ビルに設置されたOLT11とユーザ宅に設置された複数のONU(図では#1〜#8)17は、詳細は図示しないが、光線路、光線路を分岐する1台または複数の光スプリッタ、および光線路を接続するコネクタまたは融着などの接続部とから構成される。図1には、通信事業者ビルと、屋外にそれぞれ光スプリッタ12,15を配置した例を示す。   In FIG. 1, an OLT 11 installed in a telecommunications carrier building and a plurality of ONUs (# 1 to # 8 in the figure) 17 installed in a user's house are not shown in detail, but the optical line 1 It comprises a base or a plurality of optical splitters, and a connector for connecting the optical line or a connecting part such as fusion. FIG. 1 shows an example in which optical splitters 12 and 15 are arranged outdoors in a communication carrier building.

OLT11から送信された光信号は光スプリッタ12で等分岐され、光スプリッタ12の下部に接続された各々の光線路に分配される。OLT11とONU17とを接続する光線路の中途には、OLT11とONU17との間で伝送する光信号を僅かに漏洩させる光カプラ13を予め設置し、モニタ点とする。光カプラ13とOLT11またはONU17へつながるポートを通信ポート131,132と呼び、心線判定装置14を接続するポートを試験ポート133,134と呼ぶ。光カプラ13の試験ポート133,134には心線判定装置14が接続される。   The optical signal transmitted from the OLT 11 is equally branched by the optical splitter 12 and distributed to each optical line connected to the lower portion of the optical splitter 12. In the middle of the optical line connecting the OLT 11 and the ONU 17, an optical coupler 13 that slightly leaks an optical signal transmitted between the OLT 11 and the ONU 17 is set in advance as a monitoring point. Ports connected to the optical coupler 13 and the OLT 11 or the ONU 17 are called communication ports 131 and 132, and ports connecting the core determination device 14 are called test ports 133 and 134. A core determination device 14 is connected to the test ports 133 and 134 of the optical coupler 13.

図2は上記心線判定装置14の具体的な構成を示すブロック図である。図2において、心線判定装置14は、光モニタ点からOLT11とONU17との間の信号光を受光または光モニタ点へ試験光を送出する光入出力ポート140を備える。この光入出力ポート140には、光スイッチ141により、線路情報抽出部142と光線路長計測部143とが選択的に接続される。線路情報抽出部142は光線路を伝送する通信光を入力ポートを通じて受信し、伝送フレームに含まれた装置情報や装置が備えるカウンタ(counter)値を抽出する。光線路長計測部143は試験光を入出力する光ポートを備え、光線路の光パルス応答を計測する。   FIG. 2 is a block diagram showing a specific configuration of the core wire determination device 14. In FIG. 2, the core wire determination device 14 includes an optical input / output port 140 that receives signal light between the OLT 11 and the ONU 17 from the optical monitoring point or transmits test light to the optical monitoring point. A line information extracting unit 142 and an optical line length measuring unit 143 are selectively connected to the optical input / output port 140 by an optical switch 141. The line information extraction unit 142 receives communication light transmitted through the optical line through the input port, and extracts apparatus information included in the transmission frame and a counter value included in the apparatus. The optical line length measurement unit 143 includes an optical port for inputting and outputting test light, and measures the optical pulse response of the optical line.

まず、線路情報抽出部142によってモニタ点とONU17との間の距離情報を伝送システムから取得する方法について説明する。光線路中を伝送するOLT11又はONU17からの光信号を入力した光カプラ13におけるモニタ点では極一部の光パワーが漏洩する。この漏洩光は心線判定装置14の光入出力ポートから線路情報抽出部142に導かれ、漏洩光受信部1421で電気信号に変換され、信号解析部1422にて、変換された信号を解析してモニタ点とONU17との間の距離情報並びにONU固有識別情報を取得する。   First, a method for acquiring distance information between the monitor point and the ONU 17 from the transmission system by the line information extraction unit 142 will be described. At the monitor point in the optical coupler 13 to which an optical signal from the OLT 11 or the ONU 17 that transmits through the optical line is input, a part of the optical power leaks. This leaked light is guided from the optical input / output port of the core wire determination device 14 to the line information extracting unit 142, converted into an electrical signal by the leaked light receiving unit 1421, and the signal analysis unit 1422 analyzes the converted signal. The distance information between the monitor point and the ONU 17 and the ONU unique identification information are acquired.

上記距離情報並びにONU固有識別情報を取得する方法を述べる。EPON(Ethernet(登録商標)PON)においては、1台のOLT11に対して複数のONU17を制御するMPCP(Multi point control protocol)が用いられており、ONU信号が光スプリッタ15から先の光線路を共有するため、異なるONU17から送信された信号の衝突が起こらないように各ONU17が信号の送信タイミングを制御している。   A method for acquiring the distance information and the ONU unique identification information will be described. In EPON (Ethernet (registered trademark) PON), MPCP (Multi point control protocol) for controlling a plurality of ONUs 17 for one OLT 11 is used, and the ONU signal is transmitted from the optical splitter 15 to the optical path ahead. In order to share, each ONU 17 controls the signal transmission timing so that collision of signals transmitted from different ONUs 17 does not occur.

上記送信タイミングの制御に必要なOLT11とONU17との間の信号伝送遅延時間はOLT11にて取得される。この信号伝送遅延時間の取得方法を、図3に示すタイムチャートを参照して説明する。
E−PONにおいて、OLT11は新たなONU17を登録するために、Discoveryプロセスを定期的に実施する。OLT11は自身のローカルタイミングt0を含むDiscovery Gateを送信しており、ONU17は受信したt0を自身のカウンタにセットする。しかる後に、ONU17において信号の送出タイミング時に、ONU固有識別情報と送信タイミングt'1を含むRegister RequestをOLT11へ送信する。
The signal transmission delay time between the OLT 11 and the ONU 17 required for the transmission timing control is acquired by the OLT 11. A method for acquiring the signal transmission delay time will be described with reference to a time chart shown in FIG.
In E-PON, the OLT 11 periodically performs a Discovery process in order to register a new ONU 17. The OLT 11 transmits a Discovery Gate including its own local timing t0, and the ONU 17 sets the received t0 in its own counter. Thereafter, a register request including ONU unique identification information and transmission timing t ′ 1 is transmitted to the OLT 11 at the signal transmission timing in the ONU 17.

ここで、漏洩光受信部1421にて、モニタ点でのDiscovery GateとRegister Requestを漏洩光により検出し、信号解析部1422にて、前述の信号を計測した時間(Abs time)を絶対時間τ1、τ2として記録し、(1)式より光信号がモニタ点とONU装置間伝送にかかる時間Tαを求める。   Here, the leakage light receiving unit 1421 detects the Discovery Gate and Register Request at the monitor point from the leaked light, and the signal analysis unit 1422 uses the time (Abs time) when the above signal is measured as the absolute time τ1, Recorded as τ2, and the time Tα required for transmission of the optical signal between the monitor point and the ONU device is obtained from the equation (1).

2Tα=(τ2 − τ1)−(t'1 − t0) …(1)
ここで、伝送フレームに埋め込まれる“MPCP timestamp”は装置の中のカウンタ値としてバイナリ値で取得できる。さらにカウンタ値から往復時間(t'1 − t0)を得る場合には、Discovery Gateフレームの“MPCP timestamp”、Register Requestフレームの“MPCP timestamp”の差に1bit当たりのタイムカウントを反映させる。
2Tα = (τ2-τ1)-(t'1-t0) (1)
Here, “MPCP timestamp” embedded in the transmission frame can be acquired as a binary value as a counter value in the apparatus. Further, when the round trip time (t′1−t0) is obtained from the counter value, the time count per bit is reflected in the difference between “MPCP timestamp” of the Discovery Gate frame and “MPCP timestamp” of the Register Request frame.

図4にキャプチャパケットの例を示す。OLT→ONU stream のDiscovery Gateフレームには、キャプチャタイミング“Abs Timestamp : 542.092856770”と、“MPCP timestamp = 992861107”が得られた。これに対してONUから送信されたRegister RequestからはONU固有識別情報としてMAC address “xx:xx:xx:xx:01:01”とキャプチャタイミング“Abs Timestamp : 543.007258310”と、“MPCP timestamp = 1050004859”が得られた。よって、(τ2−τ1)は、0.914401540[s]であり、“MPCP timestamp”の差は57143752である。また対応する装置のMAC address は“xx:xx:xx:xx:01:01”である。E−PONでは、カウンタ1bitあたりが16nsとIEEE Std 802.3ah標準化規格に定められており、t'1−t0は0.914300032[s]、以上よりモニタ点からONUまでの往復時間、0.000101508[s]が得られた。光線路における距離LはL = T×c/n (c:光速、n:光ファイバ中の屈折率)で求められる。   FIG. 4 shows an example of a capture packet. The capture timing “Abs Timestamp: 542.092856770” and “MPCP timestamp = 992861107” were obtained in the Discovery Gate frame of OLT → ONU stream. On the other hand, the MAC address “xx: xx: xx: xx: 01: 01” and the capture timing “Abs Timestamp: 543.007258310” and “MPCP timestamp = 1050004859” are registered as ONU unique identification information from the Register Request transmitted from the ONU. was gotten. Therefore, (τ2−τ1) is 0.914401540 [s], and the difference of “MPCP timestamp” is 57143752. The MAC address of the corresponding device is “xx: xx: xx: xx: 01: 01”. In E-PON, 16 ns per 1-bit counter is defined in the IEEE Std 802.3ah standardization standard, t'1-t0 is 0.914300032 [s], and the round trip time from the monitoring point to ONU is 0.000101508 [s] Obtained. The distance L in the optical line is obtained by L = T × c / n (c: speed of light, n: refractive index in optical fiber).

図2において、光線路長計測部143は、モニタ点において、モニタ点とONUとの間の距離を計測するもので、パルス光を発する光源1431、光信号を電気信号に変換する受光部1432、光源1431からの試験光を光線路に送信し、光線路から戻る信号を受光部1432に結合させる光カプラ1430を備えており、光源1431から光線路に入射した光は被測定線路において、レイリー散乱やフレネル反射を発生させ、光線路長での発生した地点と装置との距離に応じた遅延の後、これらの発生した信号が受光部1432で受光される。A/D変換器1433は受光信号パワーを時分割してサンプリングし、制御装置1434にて受光パワーの時間変化の解析を行う。   In FIG. 2, an optical line length measuring unit 143 measures the distance between the monitoring point and the ONU at the monitoring point, and includes a light source 1431 that emits pulsed light, a light receiving unit 1432 that converts an optical signal into an electrical signal, An optical coupler 1430 that transmits test light from the light source 1431 to the optical line and couples a signal returning from the optical line to the light receiving unit 1432 is provided. Light incident on the optical line from the light source 1431 is Rayleigh scattered in the measured line. The Fresnel reflection is generated, and the generated signal is received by the light receiving unit 1432 after a delay corresponding to the distance between the generated point in the optical line length and the apparatus. The A / D converter 1433 samples the received light signal power in a time-sharing manner, and the controller 1434 analyzes the temporal change in the received light power.

心線判定装置14と被測定光線路(光ファイバ)とを接続するために、心線判定装置14を図1の光カプラ13の試験ポートに適宜接続替えし、光パルスを入力し応答光を測定する。
応答光の時間とパワー変化の関係を図5に示す。光線路からの戻り光は微弱なレイリー散乱光が線路損失に応じて徐々に減衰し、光スプリッタ12,15や光線路遠端では大きなフレネル反射が発生するため、反射パワーが急激に増大する。PON光線路では光スプリッタ12,15で光パルス試験光も各分岐線路にパワー分配され、それぞれの分岐線路下部長に応じた地点に反射ピークを得る。
In order to connect the core determining device 14 and the optical line to be measured (optical fiber), the core determining device 14 is appropriately connected to the test port of the optical coupler 13 of FIG. taking measurement.
FIG. 5 shows the relationship between response light time and power change. In the return light from the optical line, weak Rayleigh scattered light is gradually attenuated according to the line loss, and a large Fresnel reflection occurs at the optical splitters 12 and 15 and the far end of the optical line, so that the reflected power increases rapidly. In the PON optical line, optical pulse test light is also distributed to each branch line by the optical splitters 12 and 15, and a reflection peak is obtained at a point corresponding to the lower length of each branch line.

図2において、解析部144では、光線路長計測部143による光線路計測データと、前述の線路情報抽出部142によって得たモニタ点とONUとの間の距離情報をデータ格納部1441に格納し、これらの格納データを用いてデータ比較部1442にてデータ比較を行い、その比較結果から設備判定部1443にて作業すべき光線路心線を判定する。その比較・判定処理は適宜表示部145にて表示される。   In FIG. 2, the analysis unit 144 stores in the data storage unit 1441 the optical line measurement data obtained by the optical line length measurement unit 143 and the distance information between the monitor point obtained by the above-described line information extraction unit 142 and the ONU. The data comparison unit 1442 performs data comparison using these stored data, and the equipment determination unit 1443 determines the optical fiber core to be operated from the comparison result. The comparison / determination process is appropriately displayed on the display unit 145.

上記構成による心線判定装置14において、光線路長計測部143による光線路計測データと、前述の線路情報抽出部142によって得たモニタ点とONUとの間の距離情報に基づいて、光線路を構成する大量の心線の中から作業すべき光線路心線(以下、該当心線)を判定する方法を以下に述べる。   In the optical fiber determination device 14 having the above configuration, the optical line is determined based on the optical line measurement data obtained by the optical line length measurement unit 143 and the distance information between the monitor point and the ONU obtained by the line information extraction unit 142 described above. A method for determining an optical fiber core to be worked out (hereinafter referred to as a corresponding core wire) from a large number of core wires to be configured will be described below.

光線路網のルートを変更する切替工事を行う現地作業者は、現地へ立入るに先立ち、該当心線に接続するユーザ情報としてONUのMAC addressと該当心線に取り付けられるべき識別タグの表示情報を事前に把握しておく。その後、現場において作業者は、事前に把握している設備の識別タグを目安として該当心線の見当を付ける。   Prior to entering the site, field workers who perform switching work to change the route of the optical network will display the ONU MAC address and the identification tag display information to be attached to the core as the user information to connect to the core. Know in advance. After that, the worker at the job site registers the corresponding core wire using the facility identification tag ascertained in advance.

一方で、通信事業者ビル内の光カプラ13における光モニタ点では、心線判定装置14によってモニタ点とONUとの間の距離情報、ONU固有識別情報、光線路計測データを得る。通信事業者ビル内では、屋外の切替工事を行う現地作業が開始される前に、試験ポート133,134に心線判定装置14を接続することにより、心線判定装置14−ONU17間距離、ONU17のMACアドレスと波形データを取得する。   On the other hand, at the optical monitoring point in the optical coupler 13 in the communication carrier building, the core line determination device 14 obtains distance information between the monitoring point and the ONU, ONU unique identification information, and optical line measurement data. In the telecommunications carrier building, before the field work for outdoor switching work is started, the distance between the core wire determination device 14 and the ONU 17, ONU 17 is connected by connecting the core wire determination device 14 to the test ports 133 and 134. Get the MAC address and waveform data.

次に現場作業者は、該当心線であると見当を付けた光線路に対して、曲げなどの損失を与える。光計測には例えば試験光は1650nm等の通信光帯域(1260〜1625nm)よりも長い波長を用い、ONU17の直前には試験光のみを遮断する光フィルタ16を設置する。光線路への曲げによる損失は長波長のみに大きく発生するため、OLT11とONU17が通信状態であっても影響を与えることなく該当心線を特定することが可能である。   Next, the site worker gives a loss such as bending to the optical line that is registered as the core. For optical measurement, for example, the test light uses a wavelength longer than the communication light band (1260 to 1625 nm) such as 1650 nm, and an optical filter 16 that blocks only the test light is installed immediately before the ONU 17. Since the loss due to bending to the optical line is large only in the long wavelength, even if the OLT 11 and the ONU 17 are in the communication state, it is possible to specify the corresponding core wire without affecting it.

通信事業者ビル内にて心線判定装置14を操作する作業者と、所外光スプリッタ15の下部にいる現地作業者とは、携帯電話等で進捗状況等について連絡を取りながら作業を進めることを想定する。また、現地作業者は作業すべき光線路心線に接続されたONU17の情報、例えば、“xx-xx-xx-xx-xx-01”を事前に取得しておく。   The worker who operates the core wire determination device 14 in the telecommunications carrier building and the local worker below the off-site light splitter 15 proceed with the work while communicating with the mobile phone etc. about the progress status etc. Is assumed. In addition, the local worker acquires in advance information about the ONU 17 connected to the optical fiber core to be worked on, for example, “xx-xx-xx-xx-xx-01”.

現地作業者が光線路に対して曲げを加えると光線路心線の損失が増加するため、通信事業者ビル内にて心線判定装置14を操作する作業者は、心線判定装置14の表示により図5に示す波形を観察する。これにより、事前に確認していた“xx-xx-xx-xx-xx-01”と一致する反射が下がった場合には、間違いなく該当心線であると確認できる。一致しない場合は、所外の現地作業者が曲げを与えた光線路が本来の作業を予定する該当心線ではないことから、現地の光線路心線に目印として取付けられていた識別タグに記載の情報は誤りであり、所外の作業者は、作業予定のユーザ装置MAC addressと一致する光線路心線に波形の変化が生じる光線路を探し出せばよい。   Since the loss of the optical fiber core line increases when the local worker bends the optical line, the operator who operates the optical fiber determination device 14 in the telecommunications carrier building displays the core wire determination device 14. The waveform shown in FIG. 5 is observed. As a result, when the reflection corresponding to “xx-xx-xx-xx-xx-01”, which has been confirmed in advance, falls, it can be confirmed that it is definitely the corresponding core wire. If they do not match, the optical line bent by an off-site local worker is not the relevant core line for which the original work is planned, so it is written on the identification tag attached as a mark to the local optical line core line. This information is incorrect, and a worker outside the office only needs to find an optical line in which a waveform change occurs in the optical line core that matches the user apparatus MAC address to be worked on.

以上のように、本実施形態によれば、OLT11とONU17とを接続する光線路網において、光線路網の中途に伝送される光信号を漏洩させるモニタ点を備え、このモニタ点において、OLT11からONU17へ、またはONU17からOLT11へ伝送される伝送光信号がモニタ点を通過するタイミングを記録し、且つOLT11とONU17との間の伝送信号に記述されたフレーム情報が持つONU17またはOLT11の装置が備えるcounter値および装置情報を解析することで、モニタ点とONU17との間の距離情報、並びにONU固有識別情報を取得することにより線路情報抽出機能(142)を実現する。   As described above, according to the present embodiment, the optical line network connecting the OLT 11 and the ONU 17 includes the monitor point that leaks the optical signal transmitted in the middle of the optical line network. The ONU 17 or OLT 11 apparatus has a recording timing of a transmission optical signal transmitted to the ONU 17 or from the ONU 17 to the OLT 11 passing through the monitor point and has frame information described in a transmission signal between the OLT 11 and the ONU 17. By analyzing the counter value and the device information, the distance information between the monitoring point and the ONU 17 and the ONU unique identification information are acquired, thereby realizing the line information extraction function (142).

また、光線路長計測機能(143)によって光線路計測データより抽出したモニタ点からONU17との間の光線路長と、前述の線路情報抽出機能(142)によって得られたモニタ点とONU17との間の距離情報とを各々比較することで、光線路における反射点と光線路遠端のONU情報を対照するシステムを実現する。   Further, the optical line length between the ONU 17 and the monitor point extracted from the optical line measurement data by the optical line length measurement function (143), the monitor point obtained by the above-described line information extraction function (142), and the ONU 17 By comparing the distance information between them, a system for comparing the reflection point in the optical line with the ONU information at the far end of the optical line is realized.

また、光線路に可逆性の損失を与え、損失を生じさせる前後で光線路長計測を実施して計測データに変化を生じさせ、変化した計測線路長と照合一致したONU情報をキーとして、光線路心線に誤った識別タグが取り付けられた場合でも、作業現場となる接続点のみでの情報から正しい光ファイバ心線であるか否かを確認する手段を実現する。   Also, the loss of reversibility is given to the optical line, the optical line length is measured before and after the loss is caused, the measurement data is changed, and the ONU information collated with the changed measurement line length is used as a key. Even when an erroneous identification tag is attached to the route core, a means for confirming whether or not the optical fiber is the correct optical fiber from information only at the connection point at the work site is realized.

上記構成によれば、従来の損失発生のモニタにより行っていた心線判定に比べ、該当光線路心線に接続されているONU情報や光線路長情報も同時に確認することが可能となり、作業対象の光線路心線の特定(判定)精度を高めることができる。
従来は光計測データとの照合は、任意長の収納余長を設けるため、一致しているかどうかの判定に数十〜数100mの差が生じることもあったが、本方式によれば非常に高い精度で照合を行うことができる。また、計測もデータ取得も直接光ファイバ心線を計測するために、この情報を関連づけて記録すればデータの投入誤りなどのヒューマンエラーは発生しえない。
According to the above configuration, it is possible to simultaneously check the ONU information and the optical line length information connected to the corresponding optical fiber as compared with the conventional determination of the optical fiber that has been performed by monitoring the occurrence of loss. The accuracy of specifying (determining) the optical fiber core can be improved.
Conventionally, collation with optical measurement data has a storage length of arbitrary length, so a difference of several tens to several hundreds of meters may have occurred in determining whether they match, but according to this method, Collation can be performed with high accuracy. In addition, in order to directly measure the optical fiber core for both measurement and data acquisition, if this information is recorded in association with each other, human errors such as data input errors cannot occur.

一般的に光パルス試験を実施した際、光線路中のコネクタ等の反射点を往復する多重反射によって、光線路遠端よりも長い位置にゴースト反射が発生して判断し難い場合がある。本発明を用いることで、計測波形においてどの反射点が光線路の遠端であるかを確実に判定することができる。   In general, when an optical pulse test is performed, ghost reflection may occur at a position longer than the far end of the optical line due to multiple reflections that reciprocate a reflection point such as a connector in the optical line, and it may be difficult to determine. By using the present invention, it is possible to reliably determine which reflection point is the far end of the optical line in the measurement waveform.

尚、上記実施形態において、モニタ点にて光信号の漏洩光を取得する手段としては、光カプラを用いる手段に代えて、光線路を構成する光ファイバに曲げを付与し、マクロベンディングによる光ファイバコアからクラッドへの放射モードを発生させ、漏洩光を得る手段を用いてもよい。   In the above embodiment, the means for acquiring the leaked light of the optical signal at the monitor point is not a means using an optical coupler, but a bend is applied to the optical fiber constituting the optical line, and the optical fiber by macrobending. A means for generating a radiation mode from the core to the clad to obtain leaked light may be used.

また、現地作業者と通信事業者ビル内での作業者の該当心線の確認のためには、心線判定装置14の表示にて光フィルタ16の反射波形のピーク値が変動するような現象を現地において作業者が行えばよいことから、上記のような光スプリッタ12,15の下部心線に曲げを付与する手法に代えて、光ファイバへの側圧印加による偏波変調を用いる手法により反射ピーク値を変動させてもよい。   In addition, in order to confirm the corresponding core wire of the local worker and the operator in the telecommunications carrier building, a phenomenon that the peak value of the reflected waveform of the optical filter 16 fluctuates on the display of the core wire determination device 14. Therefore, instead of the method of bending the lower cores of the optical splitters 12 and 15 as described above, the reflection is performed by a method using polarization modulation by applying a side pressure to the optical fiber. The peak value may be varied.

また、心線判定装置14が備える線路情報抽出部142と光線路長計測部143それぞれの入出力ポートを切り替える光スイッチ141には、光分岐カプラを用いてもよい。さらに、光分岐カプラを用いた場合の分岐損失を低減させるために、光線路長計測部143側には、例えば1625nmより長波長の試験光を透過し、他方の線路情報抽出部142側には1625nm以下の短波長を透過する特性を有したWDM(Wavelength Division Multiplexing)カプラを用いてもよい。   Further, an optical branching coupler may be used for the optical switch 141 that switches the input / output ports of the line information extraction unit 142 and the optical line length measurement unit 143 included in the core determination device 14. Further, in order to reduce the branching loss when the optical branching coupler is used, the optical line length measurement unit 143 side transmits test light having a wavelength longer than 1625 nm, for example, and the other line information extraction unit 142 side transmits the test light. A WDM (Wavelength Division Multiplexing) coupler having a characteristic of transmitting a short wavelength of 1625 nm or less may be used.

また、心線判定装置14は通信事業者ビルに常時設置し、心線判定装置14の光入出力ポート140は、複数の光線路(図1において、複数のOLTが存在する場合)に設置されたそれぞれの光カプラ13に任意に接続する光スイッチ(図示せず)と接続して、心線判定装置14、光スイッチの制御および判定結果を携帯電話やデータネットワーク等を介して現地作業者のみで直接制御するシステムとしてもよい。   Moreover, the core wire determination device 14 is always installed in a telecommunications carrier building, and the optical input / output port 140 of the core wire determination device 14 is installed in a plurality of optical lines (when there are a plurality of OLTs in FIG. 1). The optical coupler 13 is connected to an optical switch (not shown) arbitrarily connected to each optical coupler 13, and the control and determination result of the core wire determination device 14 and the optical switch is transmitted only to a local worker via a mobile phone or a data network. It is good also as a system directly controlled by.

その他、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成を削除してもよい。さらに、異なる実施形態例に亘る構成要素を適宜組み合わせてもよい。   In addition, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some configurations may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different example embodiments may be combined as appropriate.

11…OLT、17…ONU(図では#1〜#8)、12,15…光スプリッタ、13…光カプラ、131,132…通信ポート、14…心線判定装置、133,134…試験ポート、140…光入出力ポート、141…光スイッチ、142…線路情報抽出部、143…光線路長計測部、1421…漏洩光受信部、1422…信号解析部、1431…光源、1432…受光部、1430…光カプラ、1433…A/D変換器、1434…制御装置。   DESCRIPTION OF SYMBOLS 11 ... OLT, 17 ... ONU (# 1- # 8 in a figure), 12, 15 ... Optical splitter, 13 ... Optical coupler, 131, 132 ... Communication port, 14 ... Core wire determination apparatus, 133, 134 ... Test port, DESCRIPTION OF SYMBOLS 140 ... Optical input / output port, 141 ... Optical switch, 142 ... Line information extraction part, 143 ... Optical line length measurement part, 1421 ... Leakage light receiving part, 1422 ... Signal analysis part, 1431 ... Light source, 1432 ... Light receiving part, 1430 ... Optical coupler, 1433 ... A / D converter, 1434 ... Control device.

Claims (8)

所内側伝送装置OLT(Optical Line Terminal)と複数のユーザ側伝送装置ONU(Optical Network Unit)とを光線路により接続する光線路網に用いられ、前記光線路の途中にモニタ点を設けて当該モニタ点で伝送する光信号の一部を抽出し、抽出された光信号を解析して前記光線路の心線を判定する情報を取得する光線路心線判定装置であって、
前記モニタ点にて前記OLTからONUへまたはONUからOLTへ伝送する光信号の抽出結果から、信号フレームがモニタ点を通過するタイミングを測定して記録する記録手段と、
前記OLTとONUとの間の伝送信号フレームからONUまたはOLTが持つ装置時間および装置情報を取得することで、前記モニタ点とONUとの距離情報並びにONU固有識別情報を取得する線路情報抽出手段と、
前記モニタ点から前記光線路遠端までの光線路長を計測する光線路長計測手段と、
前記線路情報抽出手段によって得られた前記モニタ点とONUとの間の距離情報と、前記光線路長計測手段で得られた光線路長とを比較することにより、光線路における反射点と光線路遠端のONU情報とを照合する解析手段とを具備し、
前記解析手段は、前記光線路に可逆性の損失を与えることにより、損失を付与する前後に生じる前記光線路長計測データの変化と、計測線路長と照合一致したONU情報とから前記光線路の心線情報を取得することを特徴とする光線路心線判定装置。
Used in an optical line network that connects an indoor transmission device OLT (Optical Line Terminal) and a plurality of user-side transmission devices ONU (Optical Network Unit) by an optical line, and a monitor point is provided in the middle of the optical line Extracting a part of an optical signal transmitted at a point, analyzing the extracted optical signal and obtaining information for determining the core of the optical line,
Recording means for measuring and recording the timing at which a signal frame passes the monitor point from the extraction result of the optical signal transmitted from the OLT to the ONU or from the ONU to the OLT at the monitor point;
Line information extraction means for acquiring distance information between the monitoring point and the ONU and ONU unique identification information by acquiring device time and device information of the ONU or OLT from a transmission signal frame between the OLT and the ONU ,
An optical line length measuring means for measuring an optical line length from the monitor point to the far end of the optical line;
By comparing the distance information between the monitoring point obtained by the line information extracting means and the ONU with the optical line length obtained by the optical line length measuring means, the reflection point and the optical line in the optical line are compared. Analyzing means for collating with the far-end ONU information,
The analyzing means gives a reversible loss to the optical line, so that the change in the optical line length measurement data that occurs before and after the loss is applied, and the ONU information that matches the measurement line length are used for the optical line. An optical-line core-line determination device characterized by acquiring core-line information.
前記ONUの入出力部に反射波を発生する光フィルタを配置し、光線路への側圧印加による偏波変調を用いる手法により前記光フィルタの反射波形のピーク値が変動する現象を与えることで対象となる心線を確認させることを特徴とする請求項1記載の光線路心線判定装置。   By providing a phenomenon in which the peak value of the reflected waveform of the optical filter fluctuates by a method using polarization modulation by applying a side pressure to the optical line by arranging an optical filter that generates a reflected wave at the input / output unit of the ONU The optical fiber core wire determination device according to claim 1, wherein the optical fiber core wire is confirmed. 前記光信号の抽出には、光カプラを用いることを特徴とする請求項1または2に記載の光線路心線判定装置。   3. The optical line core determining device according to claim 1, wherein an optical coupler is used for extracting the optical signal. 前記光信号の抽出には、前記光線路を構成する光ファイバに曲げを付与し、マクロベンディングによる光ファイバコアからクラッドへの放射モードを発生させて漏洩光を得る手段を用いることを特徴とする請求項1または2に記載の光線路心線判定装置。   The optical signal is extracted by using means for obtaining leakage light by bending the optical fiber constituting the optical line and generating a radiation mode from the optical fiber core to the cladding by macro bending. The optical line core wire determination apparatus according to claim 1 or 2. 前記線路情報抽出手段と光線路長計測手段それぞれの入出力ポートの切り替えに光スイッチを用いることを特徴とする請求項1乃至4のいずれかに記載の光線路心線判定装置。   5. The optical line core determining device according to claim 1, wherein an optical switch is used for switching input / output ports of the line information extracting unit and the optical line length measuring unit. 前記線路情報抽出手段と光線路長計測手段それぞれの入出力ポートの切り替えに光分岐カプラを用いることを特徴とする請求項1乃至4のいずれかに記載の光線路心線判定装置。   5. The optical fiber core line judging device according to claim 1, wherein an optical branching coupler is used for switching the input / output port of each of the line information extracting unit and the optical line length measuring unit. 前記光分岐カプラには、前記光線路長計測手段側には第1の波長の試験光を透過し、他方の線路情報抽出手段側には前記第1の波長より短い第2の波長の試験光を透過する特性を有するWDM(Wavelength Division Multiplexing)カプラを用いることを特徴とする請求項6に記載の光線路心線判定装置。   The optical branching coupler transmits test light having a first wavelength to the optical line length measuring means side, and test light having a second wavelength shorter than the first wavelength to the other line information extracting means side. 7. The optical fiber core determining device according to claim 6, wherein a WDM (Wavelength Division Multiplexing) coupler having a characteristic of transmitting light is used. 所内側伝送装置OLT(Optical Line Terminal)と複数のユーザ側伝送装置ONU(Optical Network Unit)とを光線路により接続する光線路網に用いられ、前記光線路の途中にモニタ点を設けて当該モニタ点で伝送する光信号の一部を抽出し、抽出された光信号を解析して前記光線路の心線を判定する情報を取得する光線路心線判定方法であって、
前記モニタ点にて前記OLTからONUへまたはONUからOLTへ伝送する光信号の抽出結果から、信号フレームがモニタ点を通過するタイミングを測定して記録し、
前記OLTとONUとの間の伝送信号フレームからONUまたはOLTが持つ装置時間および装置情報を取得することで、前記モニタ点とONUとの距離情報並びにONU固有識別情報を取得し、
前記モニタ点から前記光線路遠端までの光線路長を計測し、
前記取得されたモニタ点とONUとの間の距離情報と前記計測された光線路長とを比較することにより、前記光線路における反射点と光線路遠端のONU情報とを照合するものとし、
前記光線路に可逆性の損失を与えることにより、損失を付与する前後に生じる前記光線路長計測データの変化と、計測線路長と照合一致したONU情報とから前記光線路の心線情報を取得することを特徴とする光線路心線判定方法。
Used in an optical line network that connects an indoor transmission device OLT (Optical Line Terminal) and a plurality of user-side transmission devices ONU (Optical Network Unit) by an optical line, and a monitor point is provided in the middle of the optical line Extracting a part of an optical signal transmitted at a point, analyzing the extracted optical signal and obtaining information for determining the core of the optical line,
From the extraction result of the optical signal transmitted from the OLT to the ONU or from the ONU to the OLT at the monitor point, the timing at which the signal frame passes the monitor point is measured and recorded,
By acquiring the device time and device information of the ONU or OLT from the transmission signal frame between the OLT and the ONU, the distance information between the monitor point and the ONU and the ONU unique identification information are acquired,
Measure the optical line length from the monitor point to the far end of the optical line,
By comparing the distance information between the acquired monitor point and the ONU and the measured optical line length, the reflection point in the optical line and the ONU information at the far end of the optical line are collated,
By providing a reversible loss to the optical line, the optical line information of the optical line is obtained from the change in the optical line length measurement data that occurs before and after applying the loss, and the ONU information that matches the measurement line length. A method for determining an optical fiber core wire, comprising:
JP2011169534A 2011-08-02 2011-08-02 Optical fiber core determination device and determination method thereof Expired - Fee Related JP5467080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011169534A JP5467080B2 (en) 2011-08-02 2011-08-02 Optical fiber core determination device and determination method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011169534A JP5467080B2 (en) 2011-08-02 2011-08-02 Optical fiber core determination device and determination method thereof

Publications (2)

Publication Number Publication Date
JP2013032988A true JP2013032988A (en) 2013-02-14
JP5467080B2 JP5467080B2 (en) 2014-04-09

Family

ID=47788981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011169534A Expired - Fee Related JP5467080B2 (en) 2011-08-02 2011-08-02 Optical fiber core determination device and determination method thereof

Country Status (1)

Country Link
JP (1) JP5467080B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120117A (en) * 2011-12-07 2013-06-17 Nippon Telegr & Teleph Corp <Ntt> Optical fiber path core wire determination device and method for determining the same
KR101638316B1 (en) * 2015-01-20 2016-07-11 (주)티디아이 Optical Fiber Information Management System of Optical Network
KR20160124480A (en) * 2015-04-20 2016-10-28 (주)티디아이 An apparatus for reading an Opitical Fiber Line Information and system using it
KR101733468B1 (en) * 2015-08-31 2017-05-23 (주)티디아이 Transmitter-receiver of Optical Fiber Information and Readout System Thereof
WO2023084763A1 (en) * 2021-11-15 2023-05-19 日本電信電話株式会社 Optical communication path opening method and management control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120117A (en) * 2011-12-07 2013-06-17 Nippon Telegr & Teleph Corp <Ntt> Optical fiber path core wire determination device and method for determining the same
KR101638316B1 (en) * 2015-01-20 2016-07-11 (주)티디아이 Optical Fiber Information Management System of Optical Network
KR20160124480A (en) * 2015-04-20 2016-10-28 (주)티디아이 An apparatus for reading an Opitical Fiber Line Information and system using it
KR101715185B1 (en) * 2015-04-20 2017-03-10 (주)티디아이 An apparatus for reading an Opitical Fiber Line Information and system using it
KR101733468B1 (en) * 2015-08-31 2017-05-23 (주)티디아이 Transmitter-receiver of Optical Fiber Information and Readout System Thereof
WO2023084763A1 (en) * 2021-11-15 2023-05-19 日本電信電話株式会社 Optical communication path opening method and management control device

Also Published As

Publication number Publication date
JP5467080B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
US8270828B2 (en) Optical line monitoring apparatus and optical line monitoring method
JP5467080B2 (en) Optical fiber core determination device and determination method thereof
CN104655591B (en) A kind of optical cable generaI investigation device and method of detection beating position
US9103746B2 (en) OTDR mapping method
CN105762621A (en) Rare earth-doped fiber amplifier with integral optical metrology functionality
CN102291173A (en) Passive optical network failure detecting device and detecting method thereof
JP7268455B2 (en) Optical fiber display system and optical fiber switching method
CN102104421B (en) Branched optical fiber failure detection method and device for optical network, and optical network
JP5167321B2 (en) Optical communication system and connection state determination method
WO2014002741A1 (en) Optical path monitoring method and optical path monitoring system
CN101540936A (en) Station terminal device, communication system, subscriber device management method
JP5736300B2 (en) Optical fiber core determination device and determination method thereof
JP6196124B2 (en) Optical fiber transmission line monitoring system
KR20110061254A (en) Detecting apparatus and method for optical line in passive optical network system
JP5291908B2 (en) Optical line test system and optical line test method
JP5315269B2 (en) Optical equipment judgment system and judgment method
JP6106144B2 (en) Optical fiber test apparatus and optical fiber test system
CN115967445B (en) Method, equipment and system for generating optical network topology
EP4160178A1 (en) Fiber element offset length-based optical reflector peak analysis
JP4990854B2 (en) Optical line characteristic analysis method, analysis apparatus, and program
KR20130068304A (en) Coded fbg used optical connector
US9735866B2 (en) Method, system and device for the supervision of optical fibres
CN103023563A (en) Optical cable monitoring method
KR20100131136A (en) System and method for optical cable monitoring using photonic power
EP1578039A1 (en) Device and method for real-time optical network monitoring

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Ref document number: 5467080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees