WO2022176014A1 - データ分析方法選択装置、方法及びプログラム - Google Patents

データ分析方法選択装置、方法及びプログラム Download PDF

Info

Publication number
WO2022176014A1
WO2022176014A1 PCT/JP2021/005698 JP2021005698W WO2022176014A1 WO 2022176014 A1 WO2022176014 A1 WO 2022176014A1 JP 2021005698 W JP2021005698 W JP 2021005698W WO 2022176014 A1 WO2022176014 A1 WO 2022176014A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis method
unit
time
data
series data
Prior art date
Application number
PCT/JP2021/005698
Other languages
English (en)
French (fr)
Inventor
太三 山本
高明 森谷
学 西尾
優 三好
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023500142A priority Critical patent/JP7469730B2/ja
Priority to PCT/JP2021/005698 priority patent/WO2022176014A1/ja
Priority to US18/277,003 priority patent/US20240119117A1/en
Publication of WO2022176014A1 publication Critical patent/WO2022176014A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2457Query processing with adaptation to user needs
    • G06F16/24573Query processing with adaptation to user needs using data annotations, e.g. user-defined metadata
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/28Databases characterised by their database models, e.g. relational or object models
    • G06F16/284Relational databases
    • G06F16/285Clustering or classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management

Definitions

  • the present invention relates to a data analysis method selection device, method and program.
  • DS data scientist
  • Patent Document 1 discloses a device that obtains regularity in a data set such as time-series data, calculates an index value that indicates the amount of change over time in each data, and graphs the time-series data. disclosed.
  • Patent Document 1 displays a plurality of graphs of time series data side by side in the order according to the obtained index values. Therefore, the displayed graph may not be what the user wants. In other words, there is a problem that the user's feedback is not effective for the analysis results.
  • the present invention has been made in view of this problem, and a data analysis method selection device that can select an appropriate data analysis by narrowing down an appropriate analysis method by utilizing user's feedback even when there is no know-how. , to provide a method and a program.
  • a data analysis method selection device includes a data set including a plurality of sets in which two pieces of time-series data are respectively recorded, and an evaluation value representing a relationship between the two pieces of time-series data, which is different for each set.
  • an analysis unit obtained by an analysis method a combination extraction unit that extracts a combination of the sets with different trends of change in the evaluation values corresponding to the analysis method; and each of the combinations extracted by the combination extraction unit: an analysis method grouping unit that classifies the analysis methods into groups according to the quality of the evaluation values and records the results of the classification in association with the sets; an inquiry unit that presents time-series data to a user and inquires of the user which set of time-series data is similar; Repeat the processing of each of the scoring unit that adds the score of the analysis method belonging to the group that is better, the combination extraction unit, the analysis method grouping unit, the inquiry unit, and the scoring unit, and an analysis method selection unit that selects the analysis method with which the score becomes a predetermined value.
  • a data analysis method selection method is a method performed by the data analysis method selection device described above, wherein the analysis unit calculates an evaluation value representing a relationship between two pieces of time-series data according to the time-series data.
  • an analysis step in which each set in which data is recorded is obtained by a different analysis method; and a combination extraction step in which the combination extraction unit extracts a combination of the sets with different tendency of change of the evaluation values corresponding to the analysis method.
  • the analysis method grouping unit classifies the analysis methods into groups according to the quality of the evaluation value for each of the combinations extracted in the combination extraction step, and records the results of the classification in association with the set.
  • an analysis method grouping step and an inquiry unit presenting the time-series data of each set of the combinations extracted by the combination extraction unit to the user, and utilizing which set of time-series data is similar. and a scoring step of adding the score of the analysis method belonging to the group with the better evaluation value of the set judged to be similar in the user's answers. and an analysis method selection unit that repeats each of the combination extraction step, the analysis method grouping step, the inquiry step, and the scoring step, and selects the analysis method that makes the score a predetermined value. This is the gist of it.
  • a program according to one aspect of the present invention is summarized as a program for causing a computer to function as the data analysis method selection device.
  • a data analysis method selection device, method, and program that can select an appropriate data analysis method by narrowing down an appropriate analysis method using user feedback even when there is no know-how. can be done.
  • FIG. 4 is a diagram showing an example of a set of time-series data and evaluation values obtained by analyzing the time-series data by different analysis methods
  • FIG. 2 is a diagram schematically showing an example of an evaluation value table shown in FIG. 1
  • FIG. 2 is a diagram schematically showing an example of a score table shown in FIG. 1
  • FIG. 2 is a diagram for explaining the action of an analysis method selection unit shown in FIG. 1
  • FIG. It is a figure for demonstrating the analysis method (1). It is a figure for demonstrating the analysis method (2). It is a figure for demonstrating the analysis method (3). It is a figure for demonstrating the analysis method (4).
  • 2 is a flow chart showing a processing procedure of the data analysis method selection device shown in FIG. 1; 1 is a block diagram showing a configuration example of a general-purpose computer system; FIG.
  • FIG. 1 is a diagram showing a configuration example of a data analysis method selection device according to an embodiment of the present invention.
  • the data analysis method selection device 100 shown in FIG. 1 selects an appropriate data analysis method by narrowing down the appropriate analysis methods based on user feedback.
  • the data analysis method selection device 100 includes a data set 10, an analysis unit 20, an evaluation value table 30, a combination extraction unit 40, an analysis method grouping unit 50, an inquiry unit 60, a scoring unit 70, a score table 80, and an analysis method selection. A portion 90 is provided.
  • the data analysis method selection device 100 can be realized by a computer comprising a ROM, a RAM, a CPU, etc., for example. In that case, the processing contents of each functional component are described by a program.
  • the data set 10 includes multiple sets A, B, C, D, .
  • Set A records, for example, changes in the price indices of cut flowers (roses) and information and communication-related costs.
  • Set B records, for example, changes in the price index of underwear and school fees.
  • the analysis unit 20 obtains an evaluation value representing the relationship between two pieces of time-series data for each set A, B, . . . using different analysis methods.
  • An analysis method is, for example, a plurality of analysis methods in the DS's mind.
  • FIG. 2 is a diagram showing an example of time-series data of a data set and evaluation values obtained by analyzing the time-series data using different analysis methods.
  • FIG. 2(a) shows time-series data of price indexes for cut flowers (roses) and information and communication related expenses.
  • FIG. 2(b) shows evaluation values analyzed by four analysis methods (1) to (4), for example.
  • the evaluation value is, for example, a numerical value that decreases if two sets of time-series data in set A are similar. A specific method of calculating the evaluation value will be described later.
  • FIG. 2(c) shows the time-series data of price indexes for underwear (brass) and university tuition (national).
  • FIG. 2(d) shows evaluation values obtained by analyzing the two time-series data shown in FIG. 2(c) by each of the analysis methods (1) to (4).
  • the evaluation value table 30 is a table of evaluation values obtained by analyzing the sets A, B, . . . using different analysis methods.
  • the evaluation value table 30 is a table in which rows are recorded for each set A, B, . . . and columns are recorded for each analysis method.
  • FIG. 3 is a diagram showing an example of the evaluation value table 30.
  • Each row of the table corresponds to a set A, B, . . . and each column corresponds to an analysis method. Note that the evaluation values of the sets A and B in FIG. 3 are different from the sets A and B in FIG. 2 for convenience of explanation.
  • the evaluation value for analysis method (1) for set A is 0.09, and the evaluation value for analysis method (4) is -0.02.
  • the analysis method is not limited to the four types (1) to (4).
  • the combination extraction unit 40 extracts combinations of sets with different tendency of change in evaluation values corresponding to the analysis method.
  • the combination extraction unit 40 extracts the combination of the set A and the set B, for example.
  • the evaluation value change tendency is different, as shown in sets A and B in FIG. 3, when the evaluation values of analysis methods (1) to (4) are, for example, reversed.
  • Set A has a large evaluation value for analysis method (1) and large evaluation values for analysis methods (2) to (3).
  • set B has a small evaluation value for analysis method (1) and a large evaluation value for analysis methods (2) to (3).
  • the combination extraction unit 40 extracts the combination of set A and set B.
  • the combination extracting unit 40 extracts a set of combinations with opposite trends in evaluation values and large differences in evaluation values.
  • the analysis method grouping unit 50 classifies the classification methods into groups according to the quality of the evaluation value for each of the combinations extracted by the combination extraction unit 40, and records the results of the classification in association with the set.
  • the quality of the evaluation value is defined as a small numerical evaluation value, for example, when two pieces of time-series data are similar, and a bad evaluation value, for example, a large numerical value when two pieces of time-series data are similar.
  • analysis method (1) is grouped as "bad”, and analysis methods (2) to (4) are grouped as "good”.
  • analysis method (1) is grouped as "good” and the analysis methods (2) to (4) are grouped as "bad”.
  • the evaluation value table shown in FIG. 3 does not explicitly indicate the quality of the analysis method.
  • the pass/fail may be indicated by, for example, pass/fail flags corresponding to the grids in the table.
  • the inquiry unit 60 presents the time-series data of each set of combinations extracted by the combination extraction unit 40 to the user, and asks the user which sets of time-series data are similar. The inquiry is made by displaying, for example, "Which set A or set B is similar?"
  • the scoring unit 70 adds the score of the analysis method belonging to the group with the better evaluation value for the set determined to be similar in the user's answers.
  • the user's answer is made by the user touching an operation panel (not shown) configured by a touch panel, for example.
  • the user's answer is either that the time-series data of one set is similar, that the data set of the other set is similar, or that they do not know. This makes it possible to appropriately capture the user's (person's) sensibility.
  • the scoring unit 70 adds a score of 1 to the set A analysis method (1).
  • FIG. 4 is a diagram showing an example of a score table in which the results of adding scores by the scoring unit 70 are recorded.
  • the example shown in FIG. 4 shows the case of inquiring the user seven times about the combination of sets AB. It also shows the case where the user is asked 33 times about the combination of sets CD. It should be noted that the seven users in the set AB are different people.
  • set A groups analysis method (1) as “bad” and analysis methods (2) to (4) as “good,” so set A is more similar. If it is determined that, a score of 1 is added to the cells (2) to (4) of the analysis method.
  • the analysis methods (1) to (4) and their corresponding evaluation values are internal information of the data analysis method selection device 100 and do not appear on the surface.
  • a plurality of analysis methods and their evaluation values are black-boxed.
  • the analysis method selection unit 90 repeats the processes of the combination extraction unit 40, the analysis method grouping unit 50, the inquiry unit 60, and the scoring unit 70, and selects the analysis method that gives the score a predetermined value.
  • the inquiry unit 60 presents combinations of multiple data sets 10 to the user.
  • the number PN of combinations of the data sets 10 presented to the user can be expressed by the following equation, where N is the number of sets forming the data sets 10 .
  • the inquiry unit 60 first inquires of the user which time-series data of the combination A and B are similar. For example, if the answer is that the set A is more similar, the analysis methods (2) to (3) are classified into groups with good evaluation values as shown in FIG. Add a score of 1 to each of 2) to (3).
  • each of the methods (2) to (4) in the rows of the set AB shown in FIG. 4 is added to +1.
  • the notation in FIG. 4 is different.
  • the inquiry unit 60 inquires of the user which time-series data of the combinations B and C are similar. For example, when answering that the set B is more similar, as shown in FIG. (3) Add a score of 1 to each of (4).
  • the inquiry unit 60 inquires of the user which time-series data of the combination C-A are similar. For example, when answering that the set C is more similar, as shown in FIG. (3) Add a score of 1 to each of (4).
  • the analysis method selection unit 90 selects analysis method (3).
  • the number PN of combinations of data sets 10 presented to the user is larger, and the predetermined value for selecting the analysis method is also larger.
  • the data analysis method selection device 100 includes a data set 10 including a plurality of sets A, B, . and a combination extraction that extracts combinations of sets A, B, .
  • the grouping unit 50 and the time-series data of each set (A-B, etc.) of combinations extracted by the combination extraction unit 40 are presented to the user, and the time-series data of which sets A and B are similar.
  • An inquiry unit 60 for inquiring of a user a scoring unit 70 for adding the score of an analysis method belonging to a group with a better evaluation value of a set judged to be similar based on the user's answer, a combination extraction unit 40, An analysis method selection unit 90 that repeats the processing of each of the analysis method grouping unit 50, the inquiry unit 60, and the scoring unit 70 and selects an analysis method with a score of a predetermined value. Accordingly, it is possible to provide a data analysis method selection device capable of selecting an appropriate data analysis method by narrowing down the appropriate analysis method by utilizing user's feedback even when there is no know-how.
  • This embodiment focuses on the relationship between two time-series data, quantifies the relationship, presents the two time-series data as an image to the user, and feeds back the user's response.
  • an analysis method that is close to the human (user) sense from a plurality of analysis methods. Therefore, even if the user does not have specialized knowledge, the optimum analysis method can be selected.
  • this embodiment presents the results of multiple analysis methods to the user based on the premise that there is no perfect analysis method, and provides a mechanism for the user to select the better analysis method.
  • a user (a test subject described later) to whom the analysis method is presented is basically different from a user who uses the data analysis method selection device 100 according to the present embodiment.
  • the number of people using the data analysis method selection device 100 will increase.
  • the number of users to whom the analysis method is presented may be one or more.
  • the score added by the scoring unit 70 is 1. Also, even if the user who uses the data analysis method selection device 100 changes, one optimal analysis method for analyzing a certain set of time-series data is selected.
  • FIG. 6 is a diagram for explaining analysis method (1).
  • FIG. 6 shows time series data of two price indices. The horizontal axis of FIG. 6 is time, and the vertical axis is the price index.
  • Analysis method (1) divides the cumulative value of the difference between the corresponding data of the two time-series data for the two price indices to be compared indicated by the dashed-dotted line and the solid line by the number of accumulated data. Note that the difference may be signed or treated as an absolute value. As indicated by the dashed line in FIG. 6, if only one side has data, no addition is made.
  • This analysis method (1) is suitable for two sets of price index data to be compared, and for those with small hourly fluctuations such as seasonal fluctuations.
  • FIG. 7 is a diagram for explaining analysis method (2). The relationship between the horizontal axis and the vertical axis in FIG. 7 is the same as in FIG.
  • Analysis method (2) obtains the amount of change in each of the two time-series data, and divides the accumulated value of the difference in the amount of change by the number of accumulated data.
  • analysis method (1) if there is data for only one side, do not add.
  • This analysis method (2) is suitable for two sets of price index data to be compared, the absolute value of the difference between which is large, and the shape of the fluctuations similar.
  • FIG. 8 is a diagram for explaining analysis method (3).
  • the relationship between the horizontal axis and the vertical axis in FIG. 7 is the same as in FIG.
  • the calculation method for analysis method (3) is basically the same as analysis method (2) above. However, when there is only one of the two time-series data, the amount of change in the other time-series data is interpolated by the average value of the amount of change in the time-series data. Note that interpolation is not performed for sections in which there is no data in both.
  • this analysis method (3) is more suitable for cases where one of the two time-series data to be compared has many intervals with no data.
  • FIG. 9 is a diagram for explaining analysis method (4). The relationship between the horizontal axis and the vertical axis in FIG. 7 is the same as in FIG.
  • the calculation method for analysis method (3) is basically the same as analysis method (2) above. However, the above average value is the average value of a plurality of variations immediately before the time-series data disappears. The number of pieces of data to be averaged and the weighting at the time of averaging may be changed.
  • This analysis method (4) is suitable for comparing time-series data with large seasonal fluctuations for which the above analysis method (1) is inappropriate.
  • FIG. 10 is a flow chart showing the processing procedure of the data analysis method selection method performed by the data analysis method selection device 100 according to this embodiment.
  • the data analysis method selection device 100 includes a data set 10 including a plurality of sets A, B, .
  • a data set 10 is prepared in advance. Sets are added as appropriate.
  • the analysis unit 20 of the data analysis method selection device 100 calculates an evaluation value representing the relationship between two pieces of time-series data by different analysis methods (for example, (1) to (4) above) for each set A, B, ... (step S1).
  • the combination extracting unit 40 extracts combinations of sets with different tendency of change in evaluation values corresponding to the analysis method (step S2).
  • Combinations of sets are, for example, AB, BC, CA, and so on.
  • the analysis method grouping unit 50 classifies the analysis methods into groups according to the quality of the evaluation value for each combination of the sets extracted by the combination extraction unit 40, and records the classified results in association with the sets (step S3).
  • the inquiry unit 60 presents the time-series data of each set of combinations extracted by the combination extraction unit 40 to the user, and asks the user which sets of time-series data are similar (step S4).
  • the answer is given by, for example, the user touching an operation panel (not shown) or the like.
  • the scoring unit 70 adds the score of the analysis method belonging to the group with the better evaluation value for the set determined to be similar in the user's answers. For example, if it is determined that the time-series data of set A are more similar, a score is added to the set of sets in the score table (FIG. 4), for example, method (1) of AB (step S6). Also, if it is determined that the time-series data of the set B is more similar, the score is added to the set of the score table (Fig. 4), for example, the methods (2), (3), and (4) of A-B. (Step S7).
  • the analysis method selection unit 90 repeats the combination extraction step (step S2), the analysis method grouping step (step S3), the inquiry step (step S4), and the scoring step (step S5). Select an analysis method that provides a value (YES in step S8). Note that when a set is added, the processing is repeated from the processing of the analysis unit 20 (step S2).
  • the data analysis method selection device 100 can be realized by a general-purpose computer system shown in FIG.
  • a general-purpose computer system including a CPU 90, a memory 91, a storage 92, a communication unit 93, an input unit 94, and an output unit 95
  • the CPU 90 executes a predetermined program loaded on the memory 91 to obtain data.
  • Each function of the analysis method selection device 100 is realized.
  • a given program can be recorded on computer-readable recording media such as HDD, SSD, USB memory, CD-ROM, DVD-ROM, MO, etc., or can be distributed via a network.
  • evaluation experiment An evaluation experiment was conducted for the purpose of confirming the effect obtained by the data analysis method selection device 100 according to this embodiment.
  • the analysis methods used were the four analysis methods (1) to (4) above. Set selection was performed 20 times per analysis method. As a result of the preliminary evaluation, it was found that the analysis method (1) most suited the subject's (user's) sense.
  • the analysis method (1) which was determined to be most suitable for the subject in the preliminary evaluation, had the highest matching rate of 89% on average, and the data analysis method selection device 100 was used. Therefore, it was found that the analysis method can be selected with a relatively small number of trials.
  • the relationship is not only quantified, but also visualized and presented to the user to obtain an answer from the user. It is possible to select an analysis method that is close to human senses from among multiple analysis methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Software Systems (AREA)
  • Evolutionary Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Algebra (AREA)
  • Business, Economics & Management (AREA)
  • Library & Information Science (AREA)
  • Computational Linguistics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Quality & Reliability (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

2つの時系列データの関係性を表す評価値を集合A,B,…ごとに異なる分析方法で求める分析部10と、分析方法に対応させて評価値の変化の傾向が異なる集合の組合せを抽出する組合せ抽出部40と、組合せ抽出部40で抽出された組合せのそれぞれについて、評価値の良否で分析方法をグループに分類し、該分類した結果を集合に対応させて記録する分析方法グループ化部50と、組合せ抽出部40が抽出した組合せのそれぞれの集合の時系列データを利用者に提示し、どちらの集合の時系列データが似ているかを利用者に問合せる問合せ部60と、利用者の回答で似ていると判定された集合の評価値が良い方のグループに属する分析方法のスコアを加点するスコア化部70と、上記の各機能構成部のそれぞれの処理を繰り返し、スコアが所定値になる分析方法を選択する分析方法選択部90とを備える。

Description

データ分析方法選択装置、方法及びプログラム
 本発明は、データ分析方法選択装置、方法及びプログラムに関する。
 データの集合を分析・評価するのに、データサイエンティスト(Data Scientist、以降DS)のサポートを受ける場合がある。DSは、さまざまな意向決定の局面において、データに基づいて合理的な判断を行えるように意向決定者をサポートする職務を行う。
 DSは、各分野に精通した専門家ではあるが、ノウハウを持たない分野もある。よって、DSにノウハウのない場合は、適切なデータ分析ができない。
 一方、データ分析装置としては、時系列データ等のデータ集合に規則性を求め、各データの時間的変化量を示す指標値を算出し、時系列データをグラフ化するものが例えば特許文献1に開示されている。
特許第6592411号公報
 しかしながら、特許文献1に開示された技術は、求めた上記の指標値に従った順番で複数の時系列データをグラフ化したものを並べて表示するものである。よって、表示されたグラフが利用者の求めるもので無い場合もある。つまり、分析結果に利用者のフィードバックが効かないという課題がある。
 このように従来は、完全な分析方法は存在しないという前提に基づいて複数の分析方法の結果を利用者に提示し、利用者がより良い分析方法を選択するという仕組みが存在しなかった。
 本発明は、この課題を鑑みてなされたものであり、ノウハウが無いような場合においても適切な分析手法を利用者のフィードバックを効かせて絞り込み、適切なデータ分析が選択できるデータ分析方法選択装置、方法及びプログラムを提供することを目的とする。
 本発明の一態様に係るデータ分析方法選択装置は、2つの時系列データをそれぞれ記録した集合を複数含むデータ集合と、前記2つの時系列データの関係性を表す評価値を前記集合ごとに異なる分析方法で求める分析部と、前記分析方法に対応させて前記評価値の変化の傾向が異なる前記集合の組合せを抽出する組合せ抽出部と、前記組合せ抽出部で抽出された前記組合せのそれぞれについて、前記評価値の良否で前記分析方法をグループに分類し、該分類した結果を前記集合に対応させて記録する分析方法グループ化部と、前記組合せ抽出部が抽出した前記組合せのそれぞれの前記集合の時系列データを利用者に提示し、どちらの前記集合の時系列データが似ているかを利用者に問合せる問合せ部と、前記利用者の回答で似ていると判定された前記集合の前記評価値が良い方の前記グループに属する前記分析方法のスコアを加点するスコア化部と、前記組合せ抽出部、前記分析方法グループ化部、前記問合せ部、及び前記スコア化部のそれぞれの処理を繰り返し、前記スコアが所定値になる前記分析方法を選択する分析方法選択部とを備えることを要旨とする。
 また、本発明の一態様に係るデータ分析方法選択方法は、上記のデータ分析方法選択装置が行う方法であって、分析部は、2つの時系列データの関係性を表す評価値を前記時系列データがそれぞれ記録された集合ごとに異なる分析方法で求める分析ステップと、組合せ抽出部は、前記分析方法に対応させて前記評価値の変化の傾向が異なる前記集合の組合せを抽出する組合せ抽出ステップと、分析方法グループ化部は、前記組合せ抽出ステップで抽出された前記組合せのそれぞれについて、前記評価値の良否で前記分析方法をグループに分類し、該分類した結果を前記集合に対応させて記録する分析方法グループ化ステップと、問合せ部は、前記組合せ抽出部が抽出した前記組合せのそれぞれの前記集合の時系列データを利用者に提示し、どちらの前記集合の時系列データが似ているかを利用者に問合せる問合せステップと、スコア化部は、前記利用者の回答で似ていると判定された前記集合の前記評価値が良い方の前記グループに属する前記分析方法のスコアを加点するスコア化ステップと、前記組合せ抽出ステップ、前記分析方法グループ化ステップ、前記問合せステップ、及び前記スコア化ステップのそれぞれの処理を繰り返し、前記スコアが所定値になる前記分析方法を選択する分析方法選択部とを行うことを要旨とする。
 また、本発明の一態様に係るプログラムは、上記のデータ分析方法選択装置としてコンピュータを機能させるためのプログラムであることを要旨とする。
 本発明によれば、ノウハウが無いような場合においても適切な分析手法を利用者のフィードバックを効かせて絞り込み、適切なデータ分析方法を選択できるデータ分析方法選択装置、方法及びプログラムを提供することができる。
本発明の実施形態に係るデータ分析方法選択装置の構成例を示す図である。 ある集合の時系列データと、該時系列データを異なる分析方法で分析して求めた評価値の例を示す図である。 図1に示す評価値テーブルの一例を模式的に示す図である。 図1に示すスコアテーブルの一例を模式的に示す図である。 図1に示す分析方法選択部の作用を説明するための図である。 分析方法(1)を説明するための図である。 分析方法(2)を説明するための図である。 分析方法(3)を説明するための図である。 分析方法(4)を説明するための図である。 図1に示すデータ分析方法選択装置の処理手順を示すフローチャートである 汎用的なコンピュータシステムの構成例を示すブロック図である。
 以下、本発明の実施形態について図面を用いて説明する。複数の図面中同一のものには同じ参照符号を付し、説明は繰り返さない。
 図1は、本発明の実施形態に係るデータ分析方法選択装置の構成例を示す図である。図1に示すデータ分析方法選択装置100は、適切な分析手法を利用者のフィードバックを効かせて絞り込み、適切なデータ分析方法を選択するものである。
 データ分析方法選択装置100は、データ集合10、分析部20、評価値テーブル30、組合せ抽出部40、分析方法グループ化部50、問合せ部60、スコア化部70、スコアテーブル80、及び分析方法選択部90を備える。データ分析方法選択装置100は、例えば、ROM、RAM、CPU等からなるコンピュータで実現することができる。その場合、各機能構成部の処理内容はプログラムによって記述される。
 データ集合10は、2つの時系列データをそれぞれ記録した集合A,B,C,D,…を複数含む。集合Aは、例えば、切り花(バラ)と情報通信関係費のそれぞれの物価指数の推移を記録したものである。集合Bは、例えば、下着と授業料の物価指数の推移を記録したものである。
 分析部20は、2つの時系列データの関係性を表す評価値を集合A,B,…ごとに異なる分析方法で求める。分析方法は、例えばDSの頭の中にある複数の分析方法のことである。
 図2は、データ集合の時系列データと、該時系列データを異なる分析方法で分析して求めた評価値の例を示す図である。図2(a)は、切り花(バラ)と情報通信関係費のそれぞれの物価指数の時系列データを示す。図2(b)は、例えば4つの分析方法(1)~(4)のそれぞれで分析した評価値を示す。
 評価値は、例えば集合Aの2つの時系列データが似ていれば値が小さくなる数値である。評価値の具体的な計算方法については後述する。
 図2(c)は、下着(ブラジャー)と大学授業料(国立)のそれぞれの物価指数の時系列データを示す。図2(d)は、図2(c)に示す2つの時系列データを分析方法(1)~(4)のそれぞれで分析した評価値を示す。
 評価値テーブル30は、集合A,B,…ごとに異なる分析方法で分析して求めた評価値のテーブルである。評価値デーブル30は、行を集合A,B,…ごと、列を分析方法ごとに記録した表である。
 図3は、評価値テーブル30の例を示す図である。表の各行が集合A,B,…に対応し、各列が分析方法に対応する。なお、図3の集合A,Bの評価値は、説明の都合により図2の集合A,Bと異なる。
 集合Aの分析方法(1)の評価値は0.09、途中省略、分析方法(4)の評価値は-0.02である。分析方法は(1)~(4)の4種類に限られない。
 組合せ抽出部40は、分析方法に対応させて評価値の変化の傾向が異なる集合の組合せを抽出する。組合せ抽出部40は、例えば集合Aと集合Bの組合せを抽出する。
 評価値の変化の傾向が異なるとは、図3の集合AとBに示すように、分析方法(1)~(4)の評価値が例えば逆転している様な場合である。集合Aは、分析方法(1)の評価値が大きく、分析方法(2)~(3)の評価値が大きい。
 一方、集合Bは、分析方法(1)の評価値が小さく、分析方法(2)~(3)の評価値が大きい。この例の場合、組合せ抽出部40は、集合Aと集合Bの組合せを抽出する。
 このように組合せ抽出部40は、評価値の傾向が反対、及び評価値の差の大きな集合の組合せを抽出する。
 分析方法グループ化部50は、組合せ抽出部40で抽出され組合せのそれぞれについて、評価値の良否で分類方法をグループに分類し、該分類した結果を集合に対応させて記録する。評価値の良否とは、良を2つの時系列データが似ている場合の例えば小さい数値の評価値、否を2つの時系列データが似ている場合の例えば大きな数値の評価値とする。
 図3に示す集合Aの場合は、分析方法(1)を「否」、分析方法(2)~(4)を「良」にグループ分けする。図3に示す集合Bの場合は、分析方法(1)を「良」、分析方法(2)~(4)を「否」にグループ分けする。
 なお、図3に示す評価値テーブルでは、分析方法の良否が陽として表されていない。良否は、例えば表のマス目に対応させた良否フラグで表わす様にしてもよい。
 問合せ部60は、組合せ抽出部40が抽出した組合せのそれぞれの集合の時系列データを利用者に提示し、どちらの集合の時系列データが似ているかを利用者に問い合わせる。問い合わせは、図示を省略している操作パネル等に、例えば「集合Aと集合Bのどちらが似ていますか?」等を表示して行う。
 スコア化部70は、利用者の回答で似ていると判定された集合の評価値が良い方のグループに属する分析方法のスコアを加点する。利用者の回答は、例えばタッチパネルで構成される操作パネル(図示せず)に利用者がタッチすることで行われる。
 利用者の回答は、一方の集合の時系列データが似ている、他方の集合のデータ集合が似ている、及び分からない、の何れかである。これにより利用者(人)の感性を適切に取り込むことができる。
 図2に示した例において、利用者が集合Aの2つの時系列データの方が、集合Bよりも似ていると回答したと仮定する。この場合、スコア化部70は、集合Aの分析方法(1)にスコア1を加点する。
 図4は、スコア化部70がスコアを加点した結果を記録したスコアテーブルの例を示す図である。図4に示す例は、集合A-Bの組合せを7回利用者に問い合わせた場合を示す。また、集合C-Dの組合せを33回利用者に問い合わせた場合を示す。なお、集合A-Bにおいて7回の利用者は、それぞれ異なる人である。
 集合Aは、図3に示したように分析方法(1)を「否」、分析方法(2)~(4)を「良」にグループ分けしているので、集合Aの方が似ていると判定された場合に分析方法の(2)~(4)マス目にスコア1が加点される。
 なお、利用者は、分析方法(1)~(4)について関知しない。分析方法(1)~(4)及びそれぞれに対応する評価値は、データ分析方法選択装置100の内部の情報であり表に出ない。複数の分析方法及びそれぞれの評価値はブラックボックス化されている。
 分析方法選択部90は、組合せ抽出部40、分析方法グループ化部50、問合せ部60、及びスコア化部70のそれぞれの処理を繰り返し、スコアが所定値になる分析方法を選択する。
 分析方法選択部90の作用によって、問合せ部60は複数のデータ集合10の組合せを利用者に提示する。利用者に提示するデータ集合10の組合せの数PNは、データ集合10を構成する集合の数をNとすると次式で表せる。
Figure JPOXMLDOC01-appb-M000001
 例えば集合の数をA,B,Cの3つとすると、データ集合10の組合せは、A-B、B-C、C-Aの3つである。N=100とするとPN=4900である。
 図5は、N=3とした場合の分析方法選択部90の作用を説明するための図である。なお、集合A,B,Cの評価値の変化の傾向は、それぞれ異なるものとして説明する。
 問合せ部60は、最初に組合せA-Bのどちらの時系列データが似ているかを利用者に問い合わせる。例えば集合Aの方が似ていると回答した場合、図5に示すように分析方法(2)~(3)が評価値の良いグループに分類されているので、スコア化部70は分析方法(2)~(3)のそれぞれにスコア1を加点する。
 この場合、図4に示す集合A-Bの行の方法(2)~(4)のそれぞれが加点され+1になる。図4の表記は異なっている。
 次に、問合せ部60は、組合せB-Cのどちらの時系列データが似ているかを利用者に問い合わせる。例えば集合Bの方が似ていると回答した場合、図5に示すように分析方法(1)(3)(4)のグループの評価値が良いので、スコア化部70は分析方法(1)(3)(4)のそれぞれにスコア1を加点する。
 次に、問合せ部60は、組合せC-Aのどちらの時系列データが似ているかを利用者に問い合わせる。例えば集合Cの方が似ていると回答した場合、図5に示すように分析方法(2)(3)(4)のグループの評価値が良いので、スコア化部70は分析方法(2)(3)(4)のそれぞれにスコア1を加点する。
 以上の処理の結果、スコアテーブルにおける各分析方法(1)~(4)のスコアは、分析方法(3)のスコアが3ポイントとなり最も多くなる。この場合、分析方法選択部90は分析方法(3)を選択する。
 実際は、利用者に提示するデータ集合10の組合せの数PNはもっと多数であり、分析方法を選択する所定値ももっと大きな数値になる。
 以上説明したように、本実施形態に係るデータ分析方法選択装置100は、2つの時系列データをそれぞれ記録した集合A,B,…を複数含むデータ集合10と、2つの時系列データの関係性を表す評価値を集合A,B,…ごとに異なる分析方法で求める分析部20と、分析方法に対応させて評価値の変化の傾向が異なる集合A,B,…の組合せを抽出する組合せ抽出部40と、組合せ抽出部40で抽出された組合せ(A-B等)のそれぞれについて、評価値の良否で分析方法をグループに分類し、該分類した結果を集合に対応させて記録する分析方法グループ化部50と、組合せ抽出部40が抽出した組合せのそれぞれの集合(A-B等)の時系列データを利用者に提示し、どちらの集合A,Bの時系列データが似ているかを利用者に問合せる問合せ部60と、利用者の回答で似ていると判定された集合の評価値が良い方のグループに属する分析方法のスコアを加点するスコア化部70と、組合せ抽出部40、分析方法グループ化部50、問合せ部60、及びスコア化部70のそれぞれの処理を繰り返し、スコアが所定値になる分析方法を選択する分析方法選択部90とを備える。これにより、ノウハウが無いような場合においても適切な分析手法を利用者のフィードバックを効かせて絞り込み、適切なデータ分析方法を選択できるデータ分析方法選択装置を提供することができる。
 本実施形態は、2つの時系列データの関係に着目し、その関係性を数値化し、利用者に2つの時系列データを画像化して提示して利用者の回答をフィードバックする。その結果、複数の分析方法から人(利用者)の感覚に近い分析方法を選択することができる。したがって、利用者に専門的な知識が無くても最適な分析方法の選択を可能にする。
 つまり、本実施形態は、完全な分析方法は存在しないという前提に基づいて複数の分析方法の結果を利用者に提示し、利用者がより良い分析方法を選択するという仕組みを提供する。なお、分析方法を提示される利用者(後述する被験者)と、本実施形態に係るデータ分析方法選択装置100を利用する利用者とは基本的には別である。データ分析方法選択装置100を利用する人の方が多くなる。また、分析方法を提示される利用者は一人であってもよいし、複数であっても構わない。
 なお、分析方法を提示される利用者が一人の場合、スコア化部70が加点するスコアは1である。また、データ分析方法選択装置100を利用する利用者が変わっても、ある一組の時系列データを分析する分析方法は最適なものが一つ選択される。
 次に分析方法の具体例について説明する。
 (分析方法(1))
 図6は、分析方法(1)を説明するための図である。図6は、2つの物価指数の時系列データを示す。図6の横軸は時間、縦軸は物価指数である。
 分析方法(1)は、一点鎖線と実線で示す比較する2つの物価指数について、2つの時系列データの対応するデータの差分の累積値を、該累積したデータ数で除算する。なお、差分については符号付でもよいし、絶対値で扱ってもよい。なお、図6において破線で示すように、一方にしかデータがない場合は加算しない。
 この分析方法(1)は、比較する2つの物価指数データの数が多く、季節変動のような時間ごとの変動が少ないものに好適である。
 (分析方法(2))
 図7は、分析方法(2)を説明するための図である。図7の横軸と縦軸の関係は図6と同じである。
 分析方法(2)は、2つの時系列データのそれぞれの変化量を求め、該変化量の差分の累積値を該累積したデータ数で除算する。図7に示す時間5の差分は2-(-2)=4である。分析方法(1)と同様に、一方にしかデータがない場合は加算しない。
 この分析方法(2)は、比較する2つの物価指数データの個数が多く、差分の絶対値は大きく且つ変動の形が似ているものに好適である。
 (分析方法(3))
 図8は、分析方法(3)を説明するための図である。図7の横軸と縦軸の関係は図6と同じである。
 分析方法(3)の計算方法は、上記の分析方法(2)と基本的に同じである。ただし、2つの時系列データの一方のデータしか無い場合は、他方の時系列データの変化量を該時系列データの変化量の平均値で補間する点である。なお、両方共にデータが無い区間については補間を行わない。
 この分析方法(3)は、分析方法(2)と比べて、比較する2つの時系列データの一方にデータの無い区間が多いものに好適である。
 (分析方法(4))
 図9は、分析方法(4)を説明するための図である。図7の横軸と縦軸の関係は図6と同じである。
 分析方法(3)の計算方法は、上記の分析方法(2)と基本的に同じである。ただし、上記の平均値は、時系列データが無くなる直前の複数の変化量の平均値である。平均するデータの個数及び平均時の重みづけについては変更してもよい。
 この分析方法(4)は、上記の分析方法(1)が不適な季節変動の大きな時系列データの比較に好適である。
 (データ分析方法選択方法)
 図10は、本実施形態に係るデータ分析方法選択装置100が行うデータ分析方法選択方法の処理手順を示すフローチャートである。
 データ分析方法選択装置100は、2つの時系列データをそれぞれ記録した集合A,B,…を複数含むデータ集合10を備える。データ集合10は予め用意される。集合…は適宜追加される。
 データ分析方法選択装置100の分析部20は、2つの時系列データの関係性を表す評価値を集合A,B,…ごとに異なる分析方法(例えば上記の(1)~(4))で算出する(ステップS1)。
 組合せ抽出部40は、分析方法に対応させて評価値の変化の傾向が異なる集合の組合せを抽出する(ステップS2)。集合の組合せは、例えば、A-B、B-C、C-A等である。
 分析方法グループ化部50は、組合せ抽出部40で抽出された集合の組合せのそれぞれについて、評価値の良否で分析方法をグループに分類し、該分類した結果を集合に対応させて記録する(ステップS3)。
 問合せ部60は、組合せ抽出部40が抽出した組合せのそれぞれの集合の時系列データを利用者に提示し、どちらの集合の時系列データが似ているかを利用者に問い合わせる(ステップS4)。
 利用者は、どちらの集合の時系列データが似ているかを回答する(ステップS5)。回答は、例えば操作パネル(図示せず)等を利用者がタッチすることで行う。
 スコア化部70は、利用者の回答で似ていると判定された集合の評価値が良い方のグループに属する分析方法のスコアを加点する。例えば、集合Aの時系列データの方が似ていると判定された場合は、スコアテーブル(図4)の集合の例えばA-Bの方法(1)にスコアを加点する(ステップS6)。また、集合Bの時系列データの方が似ていると判定された場合は、スコアテーブル(図4)の集合の例えばA-Bの方法(2)(3)(4)にスコアを加点する(ステップS7)。
 分析方法選択部90は、組合せ抽出ステップ(ステップS2)、分析方法グループ化ステップ(ステップS3)、問合せステップ(ステップS4)、及びスコア化ステップ(ステップS5)のそれぞれの処理を繰り返し、スコアが所定値になる分析方法を選択する(ステプS8のYES)。なお、集合が追加された場合、処理の繰り返しは分析部20の処理(ステップS2)から繰り返す。
 データ分析方法選択装置100は、図8に示す汎用的なコンピュータシステムで実現することができる。例えば、CPU90、メモリ91、ストレージ92、通信部93、入力部94、及び出力部95を備える汎用的なコンピュータシテムにおいて、CPU90がメモリ91上にロードされた所定のプログラムを実行することにより、データ分析方法選択装置100の各機能が実現される。所定のプログラムは、HDD、SSD、USBメモリ、CD-ROM、DVD-ROM、MOなどのコンピュータ読取り可能な記録媒体に記録することも、ネットワークを介して配信することもできる。
 (評価実験)
 本実施形態に係るデータ分析方法選択装置100で得られる効果を確認する目的で評価実験を行った。
 評価実験には、総省統計局が提供している消費者物価指数(品目別価格指数)から時系列データ380項目を使用した。380項目を組み合わせた約7万2千個の集合を用いて、評価値の算出方法が異なる分析方法の中から、最も適した分析方法を選択する実験を行った。
 分析方法は、上記の分析方法(1)~(4)の4つを用いた。集合の選択は、分析方法1種類につき20回実施した。その事前評価の結果、分析方法(1)が最も被験者(利用者(人))の感覚に合うことが分かった。
 その後、被験者4人に対して、ランダムに抽出した集合の10組について同様の評価を行った。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、事前の評価で分析方法(1)が最も被験者に合うと判定された分析方法(1)の一致率が平均値89%と最も高く、データ分析方法選択装置100を用いることで、比較的少ない試行回数で分析方法が選択できることが分かった。
 本実施形態によれば、2つのデータの集合の時系列データの関係性に着目し、その関係性を数値化するだけでなく、視覚化して利用者に提示し、利用者から回答を得ることで複数の分析方法の中から人の感覚に近い分析方法を選択することができる。
 つまり、DSと異なりノウハウのない利用者であっても適切なデータ分析方法を選択することが可能になる。
 なお、上記の実施例では、分析方法を(1)~(4)の4種類で説明したが、本発明はこの例に限定されない。分析方法はn個(nは自然数)であってもよい。また、分析方法は上記の実施例に限定されない。また、集合A,Bは、物価指数の時系列データを例に示したが、他の時系列データであっても構わない。
 このように本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
10:データ集合
20:分析部
30:評価値テーブル
40:組合せ抽出部
50:分析方法グループ化部
60:問合せ部
70:スコア化部
80:スコアテーブル
90:分析方法選択部
100:データ分析方法選択装置
A,B,C,D:集合

Claims (8)

  1.  2つの時系列データをそれぞれ記録した集合を複数含むデータ集合と、
     前記2つの時系列データの関係性を表す評価値を前記集合ごとに異なる分析方法で求める分析部と、
     前記分析方法に対応させて前記評価値の変化の傾向が異なる前記集合の組合せを抽出する組合せ抽出部と、
     前記組合せ抽出部で抽出された前記組合せのそれぞれについて、前記評価値の良否で前記分析方法をグループに分類し、該分類した結果を前記集合に対応させて記録する分析方法グループ化部と、
     前記組合せ抽出部が抽出した前記組合せのそれぞれの前記集合の時系列データを利用者に提示し、どちらの前記集合の時系列データが似ているかを利用者に問合せる問合せ部と、
     前記利用者の回答で似ていると判定された前記集合の前記評価値が良い方の前記グループに属する前記分析方法のスコアを加点するスコア化部と、
     前記組合せ抽出部、前記分析方法グループ化部、前記問合せ部、及び前記スコア化部のそれぞれの処理を繰り返し、前記スコアが所定値になる前記分析方法を選択する分析方法選択部と
     を備えるデータ分析方法選択装置。
  2.  前記利用者の回答は、
     一方の前記時系列データが似ている、他方の前記時系列データが似ている、及び分からない、の何れかである
     請求項1に記載のデータ分析方法選択装置。
  3.  前記分析方法の1つは、
     前記2つの時系列データの対応するデータの差分を累積した累積値を、該累積したデータ数で除算する
     請求項1又は2に記載のデータ分析方法選択装置。
  4.  前記分析方法の1つは、
     前記2つの時系列データのそれぞれの変化量を求め、該変化量の差分を累積した累積値を該累積したデータ数で除算する
     請求項1又は2に記載のデータ分析方法選択装置。
  5.  前記分析方法の1つは、
     前記2つの時系列データの一方しか無い場合は、他方の前記時系列データの前記変化量を該時系列データの前記変化量の平均値で補間する
     請求項4に記載のデータ分析方法選択装置。
  6.  前記平均値は、
     前記時系列データが無くなる直前の複数の前記変化量の平均値である
     請求項5に記載のデータ分析方法選択装置。
  7.  分析部は、2つの時系列データの関係性を表す評価値を前記時系列データがそれぞれ記録された集合ごとに異なる分析方法で求める分析ステップと、
     組合せ抽出部は、前記分析方法に対応させて前記評価値の変化の傾向が異なる前記集合の組合せを抽出する組合せ抽出ステップと、
     分析方法グループ化部は、前記組合せ抽出ステップで抽出された前記組合せのそれぞれについて、前記評価値の良否で前記分析方法をグループに分類し、該分類した結果を前記集合に対応させて記録する分析方法グループ化ステップと、
     問合せ部は、前記組合せ抽出部が抽出した前記組合せのそれぞれの前記集合の時系列データを利用者に提示し、どちらの前記集合の時系列データが似ているかを利用者に問合せる問合せステップと、
     スコア化部は、前記利用者の回答で似ていると判定された前記集合の前記評価値が良い方の前記グループに属する前記分析方法のスコアを加点するスコア化ステップと、
     前記組合せ抽出ステップ、前記分析方法グループ化ステップ、前記問合せステップ、及び前記スコア化ステップのそれぞれの処理を繰り返し、前記スコアが所定値になる前記分析方法を選択する分析方法選択部と
     を行うデータ分析方法選択方法。
  8.  請求項1乃至6の何れかに記載のデータ分析方法選択装置としてコンピュータを機能させるためのプログラム。
PCT/JP2021/005698 2021-02-16 2021-02-16 データ分析方法選択装置、方法及びプログラム WO2022176014A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023500142A JP7469730B2 (ja) 2021-02-16 2021-02-16 データ分析方法選択装置、方法及びプログラム
PCT/JP2021/005698 WO2022176014A1 (ja) 2021-02-16 2021-02-16 データ分析方法選択装置、方法及びプログラム
US18/277,003 US20240119117A1 (en) 2021-02-16 2021-02-16 Data analysis method selection device method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/005698 WO2022176014A1 (ja) 2021-02-16 2021-02-16 データ分析方法選択装置、方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2022176014A1 true WO2022176014A1 (ja) 2022-08-25

Family

ID=82931231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005698 WO2022176014A1 (ja) 2021-02-16 2021-02-16 データ分析方法選択装置、方法及びプログラム

Country Status (3)

Country Link
US (1) US20240119117A1 (ja)
JP (1) JP7469730B2 (ja)
WO (1) WO2022176014A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005157896A (ja) * 2003-11-27 2005-06-16 Mitsubishi Electric Corp データ分析支援システム
JP2010205218A (ja) * 2009-03-06 2010-09-16 Dainippon Printing Co Ltd データ分析支援装置、データ分析支援システム、データ分析支援方法、及びプログラム
WO2017168967A1 (ja) * 2016-03-28 2017-10-05 三菱電機株式会社 データ分析手法候補決定装置
JP2019105953A (ja) * 2017-12-12 2019-06-27 株式会社日立製作所 データ分析システム、及びデータ分析方法
WO2019187012A1 (ja) * 2018-03-30 2019-10-03 三菱電機株式会社 学習処理装置、データ分析装置、分析手法選択方法、及び分析手法選択プログラム
JP2020170371A (ja) * 2019-04-04 2020-10-15 三菱電機株式会社 データ分析装置、データ分析方法及びデータ分析プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005157896A (ja) * 2003-11-27 2005-06-16 Mitsubishi Electric Corp データ分析支援システム
JP2010205218A (ja) * 2009-03-06 2010-09-16 Dainippon Printing Co Ltd データ分析支援装置、データ分析支援システム、データ分析支援方法、及びプログラム
WO2017168967A1 (ja) * 2016-03-28 2017-10-05 三菱電機株式会社 データ分析手法候補決定装置
JP2019105953A (ja) * 2017-12-12 2019-06-27 株式会社日立製作所 データ分析システム、及びデータ分析方法
WO2019187012A1 (ja) * 2018-03-30 2019-10-03 三菱電機株式会社 学習処理装置、データ分析装置、分析手法選択方法、及び分析手法選択プログラム
JP2020170371A (ja) * 2019-04-04 2020-10-15 三菱電機株式会社 データ分析装置、データ分析方法及びデータ分析プログラム

Also Published As

Publication number Publication date
JP7469730B2 (ja) 2024-04-17
JPWO2022176014A1 (ja) 2022-08-25
US20240119117A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
Kent Data construction and data analysis for survey research
Nusrat et al. Evaluating cartogram effectiveness
Schütte* et al. Concepts, methods and tools in Kansei engineering
US20040181519A1 (en) Method for generating multidimensional summary reports from multidimensional summary reports from multidimensional data
Liu et al. Research fronts and prevailing applications in data envelopment analysis
Faridah Aini et al. Evaluating the usefulness and ease of use of participatory tools for forestry and livelihoods research in Sarawak, Malaysia
Wątróbski et al. Integration of eye-tracking based studies into e-commerce websites evaluation process with eQual and TOPSIS methods
US20170169448A1 (en) Applying Priority Matrix to Survey Results
WO2022176014A1 (ja) データ分析方法選択装置、方法及びプログラム
Gkintoni et al. Burnout: Emerged Issue in Business during Economic Recession in Greece
Morais et al. Visualization and characterization of users in a citizen science project
Selvamuthu et al. Descriptive statistics
JP4308683B2 (ja) ユーザ活動履歴可視化・分析方法、ユーザ活動履歴可視化・分析装置、および、プログラム
US8122056B2 (en) Interactive aggregation of data on a scatter plot
Wee An improved diversity visualization system for multivariate data
US10431113B2 (en) Method and system for verifying and determining acceptability of unverified survey items
KR100852543B1 (ko) 상품개발방법, 상품개발 시스템, 상품개발 프로그램 및상품개발 프로그램을 기록한 기록매체
JP5271821B2 (ja) 調査装置及びコンピュータプログラム
Uddin et al. E-Government Development & Digital Economy: Relationship
Halkiopoulos et al. Analysis of Behavioral Data in Business Burnout during Economic Upheaval in Greece
Pfeiffer et al. On the relationship between interactive decision aids and decision strategies: A theoretical analysis
Alrehiely et al. Evaluating different visualization designs for personal health data
Malonda et al. PERCEPTUAL MAPPING OF MID END SMARTPHONE USING MULTIDIMENSIONAL SCALLING ANALYSIS (CASE: OPPO, SAMSUNG, XIAOMI, AND ASUS)
Kelly et al. The development of a tool for the preference assessment of the visual aesthetics of an object using interactive genetic algorithms
Kowang et al. Perception versus performance indicators: a study of innovation performance in a research university

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500142

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18277003

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926454

Country of ref document: EP

Kind code of ref document: A1