WO2022174828A1 - 一种多位置寻北方法、装置、电子设备及存储介质 - Google Patents

一种多位置寻北方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2022174828A1
WO2022174828A1 PCT/CN2022/077078 CN2022077078W WO2022174828A1 WO 2022174828 A1 WO2022174828 A1 WO 2022174828A1 CN 2022077078 W CN2022077078 W CN 2022077078W WO 2022174828 A1 WO2022174828 A1 WO 2022174828A1
Authority
WO
WIPO (PCT)
Prior art keywords
north
seeking
heading angle
attitude matrix
mems
Prior art date
Application number
PCT/CN2022/077078
Other languages
English (en)
French (fr)
Inventor
李荣熙
王月
韩雷晋
司徒春辉
Original Assignee
广州导远电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州导远电子科技有限公司 filed Critical 广州导远电子科技有限公司
Publication of WO2022174828A1 publication Critical patent/WO2022174828A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/34Rotary gyroscopes for indicating a direction in the horizontal plane, e.g. directional gyroscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation

Definitions

  • the present application relates to the technical field of inertial navigation, and in particular, to a multi-position north finding method, device, electronic device and storage medium.
  • the gyro directional instrument is used to find the value of the true north direction. It is an inertial measurement system that uses the principle of the gyro to sense the projection direction of the earth's rotation angular rate on the local horizontal plane (that is, the true north position). External reference, unaffected by weather, day and night time, geomagnetic field and site visibility conditions.
  • gyroscopes use dynamic tuning gyroscopes, laser gyroscopes or fiber optic gyroscopes, which can achieve high orientation accuracy, but lead to large size, heavy weight, high cost, inconvenient portability and limited personal consumption applications.
  • the purpose of the embodiments of the present application is to provide a multi-position north finding method, device, electronic device and storage medium, using a MEMS gyroscope array with small size, light weight, low cost and fast orientation for north finding, so as to solve the problem of existing directional instruments.
  • the problem is that it is large in size, heavy in weight, high in cost, inconvenient to carry and restricts personal consumption applications.
  • the embodiment of the present application provides a multi-location north finding method, and the method includes:
  • the MEMS gyro array is used to perform a single north-seeking to obtain the reference heading angle;
  • the MEMS gyro array is controlled to rotate according to the preset north-seeking circles and north-seeking times, so as to realize continuous north-seeking and obtain north-seeking results;
  • Orientation estimation is performed using the updated four-element attitude matrix.
  • the MEMS gyroscope array is used to obtain the effect of lower cost and smaller volume than the fiber optic gyroscope and the laser gyroscope, and can accurately measure the angular velocity of the earth's rotation.
  • the accuracy of MEMS gyroscopes is constantly improving, and it gradually replaces the application of low-end fiber optic gyroscopes. Therefore, directional instruments made of high-precision MEMS gyroscopes have lower cost, smaller size and can accurately measure the angular velocity of the earth's rotation. Applicable industries and applications of the orientation meter.
  • the MEMS gyro array is used to perform a single north-seeking to obtain the reference heading angle, including:
  • the heading angle is expressed as:
  • the MEMS gyro array is controlled to rotate according to the preset number of north-seeking circles and the number of north-seeking times, so as to realize continuous north-seeking and obtain north-seeking results, including:
  • the multiple north-seeking data is compared with the reference heading angle to obtain a corresponding north-seeking result.
  • Kalman filter convergence is performed on the north-seeking result to update the four-element attitude matrix, including:
  • Kalman filter convergence is performed using the initial parameters and the north finding result to update the four-element attitude matrix
  • the elements in the four-element attitude matrix include attitude angle, pitch angle, roll angle and heading angle .
  • the four-element pose matrix is updated through Kalman filter convergence to obtain more accurate results.
  • the azimuth estimation using the updated four-element attitude matrix includes:
  • the corrected velocity, position and attitude values are obtained according to the corrected four-element attitude matrix.
  • the attitude angle, pitch angle, roll angle, and heading angle are obtained according to the corrected four-element attitude matrix, and the corrected speed, position and attitude values are stored.
  • the embodiment of the present application also provides a multi-location north finding device, the device includes:
  • the reference heading angle acquisition module is used to use the MEMS gyroscope array to perform a single north finding according to the preset north-seeking gyro sampling rate, the number of gyro sampling points per position, and the number of north-seeking positions in a single circle to obtain the reference heading angle;
  • a north-seeking result acquisition module configured to control the MEMS gyro array to rotate based on the reference heading angle and according to the preset north-seeking circles and north-seeking times, so as to realize continuous north-seeking and obtain north-seeking results;
  • a filter convergence module for performing Kalman filter convergence on the north-seeking result to update the four-element attitude matrix
  • the orientation estimation module is used to perform orientation estimation using the updated four-element attitude matrix.
  • the MEMS gyro array has the characteristics of small size, light weight and low cost, so as to solve the problem of the size of the existing directional instrument. Large, heavy, high cost, inconvenient to carry and restrict personal consumption applications.
  • the north-seeking result acquisition module includes:
  • the multiple north seeking data acquisition module is used to obtain the multiple north seeking data obtained by rotating the MEMS gyro array to the positions of 0°, 90°, 180° and 270° respectively;
  • a comparison calculation module is configured to compare the multiple north-seeking data with the reference heading angle to obtain a corresponding north-seeking result.
  • an accurate north-seeking result is obtained by searching north for multiple times at multiple locations.
  • the filtering convergence module includes:
  • the definition module is used to define and store the initial parameters of the inertial navigation solution
  • the update module is used to perform Kalman filter convergence using the initial parameters and the north finding result to update the four-element attitude matrix.
  • the elements in the four-element attitude matrix include attitude angle, pitch angle, horizontal roll and heading angles.
  • the four-element attitude matrix is updated and the accuracy is improved by performing Kalman filter convergence on the results of multiple north seeking.
  • An embodiment of the present application further provides an electronic device, the electronic device includes a memory and a processor, the memory is used to store a computer program, and the processor runs the computer program to cause the electronic device to execute any one of the above The multi-location north-finding method described in item.
  • Embodiments of the present application further provide a readable storage medium, where computer program instructions are stored in the readable storage medium, and when the computer program instructions are read and run by a processor, execute any of the above Multi-location north finding method.
  • FIG. 1 is a structural block diagram of a directional instrument based on a MEMS gyroscope array provided by an embodiment of the present application;
  • FIG. 2 is a schematic block diagram of a MEMS gyro array mini-director provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of the rotation of a MEMS gyroscope array provided by an embodiment of the present application
  • FIG. 4 is a flowchart of a multi-location north finding method provided by an embodiment of the present application.
  • Fig. 5 is the flow chart of rough north finding provided by the embodiment of the present application.
  • FIG. 6 is a flow chart of a directional instrument based on a MEMS gyroscope array provided by an embodiment of the present application
  • FIG. 7 is a flow chart of continuously north-seeking to obtain parting data provided by an embodiment of the present application.
  • FIG. 8 is a Kalman filter convergence flowchart provided by an embodiment of the present application.
  • FIG. 9 is a flow chart of orientation estimation provided by an embodiment of the present application.
  • FIG. 10 is a structural block diagram of a multi-location north-seeking device provided by an embodiment of the present application.
  • FIG. 11 is a block diagram of an overall structure of a multi-position north finding apparatus provided by an embodiment of the present application.
  • 100-reference heading angle acquisition module 101-angular velocity acquisition module; 102-calculation module; 200-north-seeking result acquisition module; 201-multiple north-seeking data acquisition module; 202-comparison calculation module; 300-filter convergence module; 301 -definition module; 302-update module; 400-azimuth estimation module; 401-state value acquisition module; 402-correction module; 403-azimuth acquisition module; 500-MEMS gyro array; 501-zero photoelectric sensor; 502-MEMS acceleration 503-data processing module; 504-wire slip ring; 505-motor driver; 506-motor; 507-rotating platform.
  • FIG. 1 it is a structural block diagram of a directional instrument based on a MEMS gyroscope array, including a rotating device, a data processing module 503 and a MEMS sensor module, specifically:
  • the rotating device includes a rotating platform 507, a motor 506 and a motor driver 505;
  • the MEMS sensor module includes a directional MEMS gyro array 500, a direction integration MEMS gyro, an inclination measurement MEMS accelerometer 502, and a zero-position photoelectric sensor 501, wherein the directional MEMS gyro array 500 is disposed on the rotating platform 507, and the directional MEMS gyro array 500 is driven to rotate by the rotating platform 507.
  • the data processing module 503 includes a power supply board, a DSP signal processing board, a MEMS sensor circuit board, a wire slip ring 504, etc., and is electrically connected to the motor driver 505 through the wire slip ring 504 to realize the control of the motor 506, as shown in FIG. 2, It is the principle block diagram of the small directional instrument of the MEMS gyro array, which realizes the output of the true north angle in a short time under the static condition.
  • the directional MEMS gyroscope array 500 can be composed of 2-4 pieces of MEMS gyroscopes installed coaxially, the purpose is to obtain a much higher than one piece of gyroscope under suitable volume and cost conditions by optimizing the measurement results of the multi-piece gyroscope. precision.
  • the number of MEMS gyroscopes can be adjusted as required, which is not limited here.
  • the data processing core is DSP, and the data of the directional MEMS gyro array 500 and the MEMS accelerometer 502 are collected by the MEMS sensor circuit board.
  • the wire slip ring 504 outputs the signal line of the direction result obtained by the DSP operation to the external interface of the directional instrument.
  • the MEMS gyroscope array is installed on the rotating platform 507, the motor 506 drives the platform to rotate, the DSP sends instructions to the motor driver 505 to control the motor 506 to drive the platform to rotate at a constant speed, and the directional MEMS gyroscope array 500 rotates on the platform and continuously outputs the measured angular velocity data , the DSP performs orientation operation processing on the output data, and the inclination MEMS accelerometer 502 measures the horizontal inclination of the orientation instrument and sends the data to the DSP as the inclination compensation.
  • Figure 3 is a schematic diagram of the rotation of the MEMS gyroscope array
  • the 20-position north finding method is used to make the MEMS gyroscope array rotate 360°/20 accurately from position 1 to obtain the difference of 20 positions, and To correct, for accuracy, rotate 4 times and take the average.
  • the DSP sends an instruction to stop the motor 506, and the final result of the output direction is the true north angle. If the directional instrument starts to move, the direction integrating MEMS gyroscope can output the direction after the directional instrument moves on the basis of this result.
  • FIG. 4 is a flowchart of a multi-position north finding method provided by an embodiment of the present application. The method is applied to the data processing module 503 of the directional instrument, and specifically includes the following steps:
  • Step S100 use the MEMS gyro array 500 to perform a single north-seeking according to the preset north-seeking gyro sampling rate, the number of sampling points of the gyro per position, and the number of single-turn north-seeking positions to obtain a reference heading angle;
  • this step may specifically include:
  • Step S101 acquiring the first angular velocity and the second angular velocity of the MEMS gyro array 500 rotated to a first position and a second position that differ by 180° respectively;
  • Step S102 obtaining a reference heading angle based on the first angular velocity and the second angular velocity
  • the heading angle is expressed as:
  • the process is shown in Figure 6, which is the flow chart of the directional instrument based on the MEMS gyroscope array.
  • the process includes rough north finding, which can be obtained by rotating one circle, defining the sampling rate of the north finding gyroscope, the number of sampling points of the gyroscope at each position, and the single-turn finding.
  • the number of north positions, the number of north-seeking circles and the number of continuous north-seeking times, the motor 506 electric north-seeker is used to rotate to the specified position, and the data of the gyroscope and inclinometer are collected within a certain period of time. If the geographic latitude of the measurement location is a known value, it is only necessary to measure the position 1 and the position 3 (or the position 2 and the position 4) in FIG. 3 to obtain the reference heading angle.
  • Step S200 controlling the MEMS gyro array 500 to rotate based on the reference heading angle and according to the preset number of north-seeking circles and the number of north-seeking times, so as to realize continuous north-seeking and obtain a north-seeking result;
  • this step may include:
  • Step S201 acquiring multiple north-seeking data obtained by rotating the MEMS gyro array 500 to positions of 0°, 90°, 180° and 270° respectively;
  • Step S202 Compare the multiple north-seeking data with the reference heading angle to obtain a corresponding north-seeking result.
  • the process is precise north finding, that is, the gyroscope is rotated 360°/20 precisely, and the difference of 20 positions is taken for correction. For accuracy, rotate 4 times and take the average value.
  • the motor 506 drives the north finder to rotate to a specified position, and performs continuous north seeking, collecting data from the gyroscope and inclinometer within a certain period of time.
  • Step S300 perform Kalman filter convergence on the north finding result to update the four-element attitude matrix
  • Step S301 define and store the initial parameters of the inertial navigation solution
  • Step S302 Use the initial parameters and the north finding result to perform Kalman filter convergence to update the four-element attitude matrix, where the elements in the four-element attitude matrix include attitude angle, pitch angle, roll angle and heading angle.
  • Step S400 Use the updated four-element attitude matrix to perform orientation estimation.
  • Step S401 filter using the updated four-element attitude matrix and the initial parameters in the stored inertial navigation solution to obtain a state value of cyclic filtering
  • Step S402 Calculate the estimated mean square error of the state value to correct the four-element attitude matrix
  • Step S403 Acquire corrected velocity, position and attitude values according to the corrected four-element attitude matrix.
  • Start filtering define the measurement matrix and the system noise driving matrix, obtain the one-step transition matrix of the system according to the discretization, store the state value obtained by each loop filter, and calculate the estimated mean square error of the state value.
  • the speed and position are corrected by the filter value, and the attitude angle, pitch angle, roll angle and heading angle are obtained according to the corrected four-element attitude matrix, and the corrected speed, position and attitude values are stored.
  • the 20-position north-seeking method is used to make the gyroscope rotate 360°/20 precisely from position 1 to position 2.
  • the input of the earth component changes the positive and negative signs, while the constant value and successive start items of the gyroscope
  • the drift does not change, subtract the values of position 1 and position 2 to obtain the input of ground speed, thereby obtaining the angle between the gyro sensitive axis and the north direction, which is the basic principle of two-position north finding.
  • the DSP sends an instruction to stop the motor 506, and the final result of the output direction is the true north angle. If the directional instrument starts to move, the direction integrating MEMS gyroscope can output the direction after the directional instrument moves on the basis of this result.
  • MEMS gyroscope array has the effect of lower cost and smaller volume than fiber optic gyroscope and laser gyroscope, and can accurately measure the angular velocity of the earth's rotation.
  • MEMS gyroscopes Compared with fiber optic gyroscopes and laser gyroscopes, MEMS gyroscopes have lower cost, smaller volume, but lower accuracy. At present, the zero drift of high-precision MEMS gyroscopes is 1°-10°/hour, while the angular velocity of the earth's rotation is low.
  • MEMS gyroscopes In addition, the accuracy of MEMS gyroscopes is constantly improving, gradually replacing the application of low-end fiber optic gyroscopes. Therefore, directional instruments made of high-precision MEMS gyroscopes have lower cost, smaller size and can accurately measure the angular velocity of the earth's rotation. Thus, the applicable industry and application range of the directional instrument can be expanded.
  • the MEMS gyroscope array directional instrument in this application can quickly find the true north angle without interference from the magnetic field environment. After the true north angle is obtained, the directional instrument is moved, and the true north angle can be changed accordingly.
  • the directional instrument has a small size. , The characteristics of light weight, can be stored in pockets, changing the shortcomings of traditional similar products of large size and heavy weight, greatly reducing the restrictions on transportation and use environment, and the application is more extensive.
  • An embodiment of the present application provides a multi-location north-seeking device, which can be applied to the data processing module 503 in Embodiment 1.
  • FIG. 10 it is a structural block diagram of the multi-location north-seeking device, and the device includes:
  • the reference heading angle acquisition module 100 is used to utilize the MEMS gyro array 500 to perform a single north finding according to the preset north-seeking gyro sampling rate, the number of gyro sampling points per position, and the number of single-circle north-seeking positions to obtain the reference heading angle;
  • the north-seeking result obtaining module 200 is configured to control the MEMS gyro array 500 to rotate based on the reference heading angle and according to the preset north-seeking circles and north-seeking times, so as to realize continuous north-seeking and obtain a north-seeking result;
  • a filter convergence module 300 configured to perform Kalman filter convergence on the north finding result to update a four-element attitude matrix
  • the orientation estimation module 400 is configured to perform orientation estimation using the updated four-element attitude matrix.
  • FIG. 11 it is a block diagram of the overall structure of the multi-position north-seeking device, wherein the reference heading angle obtaining module 100 includes:
  • an angular velocity acquisition module 101 configured to acquire a first angular velocity and a second angular velocity of the MEMS gyro array 500 rotated to a first position and a second position with a difference of 180°;
  • a calculation module 102 configured to obtain a reference heading angle based on the first angular velocity and the second angular velocity
  • the heading angle is expressed as:
  • the north-seeking result obtaining module 200 includes:
  • the multiple north-seeking data acquisition module 201 is used to obtain multiple north-seeking data obtained by rotating the MEMS gyro array 500 to positions of 0°, 90°, 180° and 270° respectively;
  • the comparison calculation module 202 is configured to compare the multiple north-seeking data with the reference heading angle to obtain a corresponding north-seeking result.
  • Filter convergence module 300 includes:
  • a definition module 301 used to define and store the initial parameters of the inertial navigation solution
  • the updating module 302 is used to perform Kalman filter convergence using the initial parameters and the north finding result to update the four-element attitude matrix, where the elements in the four-element attitude matrix include attitude angle, pitch angle, roll and heading angles.
  • the orientation estimation module 400 includes:
  • a state value acquisition module 401 configured to perform filtering by using the updated four-element attitude matrix and the stored initial parameters in the inertial navigation solution to obtain a cyclically filtered state value
  • a correction module 402 configured to calculate the estimated mean square error of the state value to correct the four-element attitude matrix
  • the orientation obtaining module 403 is configured to obtain corrected velocity, position and attitude values according to the corrected four-element attitude matrix.
  • An embodiment of the present application provides an electronic device, the electronic device includes a memory and a processor, where the memory is used to store a computer program, and the processor runs the computer program to make the electronic device execute any one of Embodiment 1 A described multi-location north-finding method.
  • An embodiment of the present application provides a readable storage medium, where computer program instructions are stored in the readable storage medium, and when the computer program instructions are read and run by a processor, any one of Embodiment 1 is executed. Multi-location north finding method.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more functions for implementing the specified logical function(s) executable instructions. It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented in dedicated hardware-based systems that perform the specified functions or actions , or can be implemented in a combination of dedicated hardware and computer instructions.
  • each functional module in each embodiment of the present application may be integrated together to form an independent part, or each module may exist independently, or two or more modules may be integrated to form an independent part.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Gyroscopes (AREA)
  • Navigation (AREA)

Abstract

一种多位置寻北方法、装置、电子设备及存储介质,涉及惯性导航技术领域。方法包括根据预设的寻北陀螺采样率、每位置陀螺采样点数、单圈寻北位置数利用MEMS陀螺阵列(500)进行单次寻北,以获取基准航向角(S100);基于基准航向角,并根据预设的寻北圈数和寻北次数控制MEMS陀螺阵(500)列进行转动,以实现连续寻北并获取寻北结果(S200);对寻北结果进行卡尔曼滤波收敛,以更新四元素姿态矩阵(S300);利用更新后的四元素姿态矩阵进行方位推算(S400),采用体积小、重量轻、低成本、快速定向的MEMS陀螺阵列(500)进行寻北,以解决现有定向仪的体积大、重量大、成本高,不方便携带及限制个人消费应用的问题。

Description

一种多位置寻北方法、装置、电子设备及存储介质 技术领域
本申请涉及惯性导航技术领域,具体而言,涉及一种多位置寻北方法、装置、电子设备及存储介质。
背景技术
陀螺定向仪用来寻找真北方向值,是利用陀螺原理感应地球自转角速率在当地水平面投影方向(即真北方位)的一种惯性测量系统,除受高纬度限制之外,寻北过程无需外部参考,不受天气、昼夜时间、地磁场和场地通视条件的影响。
目前使用的陀螺定向仪大部分使用动力调谐陀螺、激光陀螺或光纤陀螺,可实现较高的定向精度,但导致定向仪的体积大、重量大、成本高,不方便携带及限制个人消费应用。
发明内容
本申请实施例的目的在于提供一种多位置寻北方法、装置、电子设备及存储介质,采用体积小、重量轻、低成本、快速定向的MEMS陀螺阵列进行寻北,以解决现有定向仪的体积大、重量大、成本高,不方便携带及限制个人消费应用的问题。
本申请实施例提供了一种多位置寻北方法,所述方法包括:
根据预设的寻北陀螺采样率、每位置陀螺采样点数、单圈寻北位置数利用MEMS陀螺阵列进行单次寻北,以获取基准航向角;
基于所述基准航向角,并根据预设的寻北圈数和寻北次数控制所述MEMS陀螺阵列进行转动,以实现连续寻北并获取寻北结果;
对所述寻北结果进行卡尔曼滤波收敛,以更新四元素姿态矩阵;
利用更新后的所述四元素姿态矩阵进行方位推算。
在上述实现过程中,采用MEMS陀螺仪阵列获得了比光纤陀螺及激光陀螺更低成本,更小体积且能准确测量地球自转角速度的效果。MEMS陀螺仪精度在不断提高,逐渐取代中低端光纤陀螺的应用场合,因此采用高精度的MEMS陀螺制造的定向仪具有更低成本,更小体积且能准确测量地球自转角速度的效果,能扩大定向仪的适用行业和应用。
进一步地,所述根据预设的寻北陀螺采样率、每位置陀螺采样点数、单圈寻北位置数利用MEMS陀螺阵列进行单次寻北,以获取基准航向角,包括:
获取所述MEMS陀螺阵列分别转动至相差180°的第一位置和第二位置的第一角速度和第二角速度;
基于所述第一角速度和第二角速度,获取基准航向角;
所述航向角表示为:
Figure PCTCN2022077078-appb-000001
其中,ω1、ω2表示第一角速度和第二角速度,Ω=15.041度/小时,
Figure PCTCN2022077078-appb-000002
为地理纬度;ω H=Ωcosφ,ω v=-Ωsinφ。
在上述实现过程中,给出了单次寻北中,旋转180度,通过两位置寻北计算陀螺敏感轴与北向的夹角。
进一步地,所述基于所述基准航向角,并根据预设的寻北圈数和寻北次数控制所述MEMS陀螺阵列进行转动,以实现连续寻北并获取寻北结果,包括:
获取所述MEMS陀螺阵列分别旋转至0°、90°、180°和270°位置所得到的多次寻北数据;
将所述多次寻北数据与所述基准航向角进行比较,以获得对应的寻北 结果。
在上述实现过程中,通过对4个位置进行多次寻北并与基准航向角进行比较,以获得更加准确的寻北结果。
进一步地,所述对所述寻北结果进行卡尔曼滤波收敛,以更新四元素姿态矩阵,包括:
定义并存储惯导解算的初始参数;
利用所述初始参数和所述寻北结果进行卡尔曼滤波收敛,以对所述四元素姿态矩阵进行更新,所述四元素姿态矩阵中的元素包括姿态角、俯仰角、横滚角和航向角。
在上述实现过程中,通过卡尔曼滤波收敛对四元素姿态矩阵进行更新,以获得更加准确的结果。
进一步地,所述利用更新后的所述四元素姿态矩阵进行方位推算,包括:
利用更新后的所述四元素姿态矩阵和存储的惯导解算中的初始参数进行滤波,以获得循环滤波的状态值;
计算所述状态值的估算均方差,以对所述四元素姿态矩阵进行校正;
根据校正后的所述四元素姿态矩阵获取校正后的速度、位置和姿态值。
在上述实现过程中,根据校正后的四元素姿态矩阵求取姿态角、俯仰角、横滚角、航向角,存储校正后的速度、位置和姿态值。
本申请实施例还提供一种多位置寻北装置,所述装置包括:
基准航向角获取模块,用于根据预设的寻北陀螺采样率、每位置陀螺采样点数、单圈寻北位置数利用MEMS陀螺阵列进行单次寻北,以获取基准航向角;
寻北结果获取模块,用于基于所述基准航向角,并根据预设的寻北圈数和寻北次数控制所述MEMS陀螺阵列进行转动,以实现连续寻北并获取寻北结果;
滤波收敛模块,用于对所述寻北结果进行卡尔曼滤波收敛,以更新四元素姿态矩阵;
方位推算模块,用于利用更新后的所述四元素姿态矩阵进行方位推算。
在上述实现过程中,通过粗寻北和多位置多次数的精寻北得到准确的寻北结果,同时MEMS陀螺阵列具有体积小、重量轻和成本低的特点,从而解决现有定向仪的体积大、重量大、成本高,不方便携带及限制个人消费应用的问题。
进一步地,所述寻北结果获取模块包括:
多次寻北数据获取模块,用于获取所述MEMS陀螺阵列分别旋转至0°、90°、180°和270°位置所得到的多次寻北数据;
比较计算模块,用于将所述多次寻北数据与所述基准航向角进行比较,以获得对应的寻北结果。
在上述实现过程中,通过多位置多次寻北,以得到准确的寻北结果。
进一步地,所述滤波收敛模块包括:
定义模块,用于定义并存储惯导解算的初始参数;
更新模块,用于利用所述初始参数和所述寻北结果进行卡尔曼滤波收敛,以对所述四元素姿态矩阵进行更新,所述四元素姿态矩阵中的元素包括姿态角、俯仰角、横滚角和航向角。
在上述实现过程中,通过对多次寻北结果进行卡尔曼滤波收敛,以对四元素姿态矩阵进行更新,提高准确性。
本申请实施例还提供一种电子设备,所述电子设备包括存储器以及处理器,所述存储器用于存储计算机程序,所述处理器运行所述计算机程序以使所述电子设备执行上述中任一项所述的多位置寻北方法。
本申请实施例还提供一种可读存储介质,所述可读存储介质中存储有计算机程序指令,所述计算机程序指令被一处理器读取并运行时,执行上述中任一项所述的多位置寻北方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的基于MEMS陀螺仪阵列的定向仪的结构框图;
图2为本申请实施例提供的MEMS陀螺阵列小型定向仪的原理框图;
图3为本申请实施例提供的MEMS陀螺仪阵列旋转示意图;
图4为本申请实施例提供的一种多位置寻北方法的流程图;
图5为本申请实施例提供的粗寻北的流程图;
图6为本申请实施例提供的基于MEMS陀螺仪阵列的定向仪的流程图;
图7为本申请实施例提供的连续寻北得到寻别数据的流程图;
图8为本申请实施例提供的卡尔曼滤波收敛流程图;
图9为本申请实施例提供的方位推算流程图;
图10为本申请实施例提供的多位置寻北装置的结构框图;
图11为本申请实施例提供的多位置寻北装置的整体结构框图。
图标:
100-基准航向角获取模块;101-角速度获取模块;102-计算模块;200-寻北结果获取模块;201-多次寻北数据获取模块;202-比较计算模块;300-滤波收敛模块;301-定义模块;302-更新模块;400-方位推算模块;401-状态值获取模块;402-校正模块;403-方位获取模块;500-MEMS陀螺阵列;501-零位光电传感器;502-MEMS加速度计;503-数据处理模块;504-导线 滑环;505-电机驱动器;506-电机;507-旋转平台。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
实施例1
如图1所示,为基于MEMS陀螺仪阵列的定向仪的结构框图,包括转动装置、数据处理模块503和MEMS传感器模块,具体地:
转动装置包括旋转平台507、电机506和电机驱动器505;MEMS传感器模块包括定向MEMS陀螺阵列500、方向积分MEMS陀螺、倾角测量MEMS加速度计502,还包括零位光电传感器501,其中,定向MEMS陀螺阵列500设置于旋转平台507上,通过旋转平台507带动定向MEMS陀螺阵列500转动。
数据处理模块503包括电源板、DSP信号处理板、MEMS传感器电路板和导线滑环504等,通过导线滑环504与电机驱动器505电连接,以实现对电机506的控制,如图2所示,为MEMS陀螺阵列小型定向仪的原理框图,在静止情况下实现短时间内的真北夹角输出。
示例地,定向MEMS陀螺阵列500可由2-4片MEMS陀螺仪共轴安装组成,目的是通过优化运算多片陀螺仪的测量结果,在合适的体积和成本条件下获得远高于一片陀螺仪的精度。根据需要可调整MEMS陀螺仪的片数,在此不做限定。
数据处理核心是DSP,定向MEMS陀螺阵列500及MEMS加速度计 502的数据由MEMS传感器电路板采集。导线滑环504将DSP运算所得的方向结果信号线输出至定向仪的外部接口。
MEMS陀螺仪阵列安装在旋转平台507上,电机506带动平台旋转,DSP向电机驱动器505发送指令,控制电机506驱动平台匀速转动,定向MEMS陀螺阵列500在平台上转动并连续输出测得的角速度数据,DSP对输出数据进行定向运算处理,倾角MEMS加速度计502测得定向仪水平倾角并将数据发给DSP作为倾角补偿。
示例地,如图3所示,为MEMS陀螺仪阵列旋转示意图,采用20位置寻北法,令MEMS陀螺仪阵列从位置1精确地旋转360°/20,以取20次位置的差值,并进行校正,为了精准,旋转4圈,并取平均值。DSP发送指令使电机506停转,输出方向的最终结果即真北夹角,若定向仪开始移动,方向积分MEMS陀螺在此结果基础上可输出定向仪移动后的方向。
在上述定向仪的基础上,请参看图4,图4为本申请实施例提供的一种多位置寻北方法的流程图。该方法应用于定向仪的数据处理模块503,具体包括以下步骤:
步骤S100:根据预设的寻北陀螺采样率、每位置陀螺采样点数、单圈寻北位置数利用MEMS陀螺阵列500进行单次寻北,以获取基准航向角;
如图5所示,为粗寻北的流程图,该步骤具体可以包括:
步骤S101:获取所述MEMS陀螺阵列500分别转动至相差180°的第一位置和第二位置的第一角速度和第二角速度;
步骤S102:基于所述第一角速度和第二角速度,获取基准航向角;
所述航向角表示为:
Figure PCTCN2022077078-appb-000003
其中,ω1、ω2表示第一角速度和第二角速度,Ω=15.041度/小时,
Figure PCTCN2022077078-appb-000004
为地理纬度,ω H=Ωcosφ,ω v=-Ωsinφ。
该过程如图6所示,为基于MEMS陀螺仪阵列的定向仪的流程图,该过程包括粗寻北,旋转一圈可得,定义寻北陀螺采样率、每位置陀螺采样点数、单圈寻北位置数、寻北圈数和连续寻北次数,利用电机506电动寻北仪旋转到指定位置,采集一定时间内的陀螺仪和倾角仪的数据。如果测量地点的地理纬度为已知值,则只需要测量图3中的位置1和位置3(或者位置2和位置4)即可求出基准航向角。
步骤S200:基于所述基准航向角,并根据预设的寻北圈数和寻北次数控制所述MEMS陀螺阵列500进行转动,以实现连续寻北并获取寻北结果;
如图7所示,为连续寻北得到寻别数据的流程图,该步骤可以包括:
步骤S201:获取所述MEMS陀螺阵列500分别旋转至0°、90°、180°和270°位置所得到的多次寻北数据;
步骤S202:将所述多次寻北数据与所述基准航向角进行比较,以获得对应的寻北结果。
该过程为精寻北,即令陀螺仪精确地旋转360°/20,取20次位置的差值,进行校正,为了精准,旋转4圈,取平均值。
基于预设的采样点数和圈数,电机506带动寻北仪转动到指定位置,并进行连续寻北,采集一定时间内陀螺仪和倾角仪的数据。
将20次寻别结果与基准航向角(零位加上所转角度)进行比较,统计每个位置(共4个位置)的5次结果,并求平均值、方差以及与基准航向作差的得到的最大值和最小值。
步骤S300:对所述寻北结果进行卡尔曼滤波收敛,以更新四元素姿态矩阵;
如图8所示,为卡尔曼滤波收敛流程图,该步骤具体包括:
步骤S301:定义并存储惯导解算的初始参数;
步骤S302:利用所述初始参数和所述寻北结果进行卡尔曼滤波收敛,以对所述四元素姿态矩阵进行更新,所述四元素姿态矩阵中的元素包括姿 态角、俯仰角、横滚角和航向角。
定义存储惯导解算的位置、速度、姿态以及滤波后的位置、速度、姿态,用GPS导航的初始位置和初始速度作为导航解算的初始位置和初始速度,定义四元数初值姿态角、俯仰角、横滚角、航向角;定义滤波初始状态量和滤波初始所需矩阵、四元素姿态矩阵;通过解加速度、速度和位置,更新四元素姿态矩阵。
步骤S400:利用更新后的所述四元素姿态矩阵进行方位推算。
如图9所示,为方位推算流程图,该步骤包括:
步骤S401:利用更新后的所述四元素姿态矩阵和存储的惯导解算中的初始参数进行滤波,以获得循环滤波的状态值;
步骤S402:计算所述状态值的估算均方差,以对所述四元素姿态矩阵进行校正;
步骤S403:根据校正后的所述四元素姿态矩阵获取校正后的速度、位置和姿态值。
根据更新过的四元素姿态矩阵求姿态角、俯仰角、横滚角、航向角,存储惯导解算中的速度、位置和姿态角。开始滤波,定义量测矩阵和系统噪声驱动阵,根据离散化求取系统的一步转移阵,存储每次循环滤波得出的状态值,计算状态值的估计均方差。由滤波值对速度和位置进行输出校正,根据校正后的四元素姿态矩阵求取姿态角、俯仰角、横滚角和航向角,并存储校正后的速度、位置和姿态值。
采用20位置寻北法,令陀螺仪从位置1精确地旋转360°/20,达到位置2,这时地球分量的输入就改变了正、负号,而陀螺仪的常值项、逐次启动项等漂移没有改变,把位置1、位置2的值相减,就得到地速的输入,从而求出陀螺敏感轴与北向的夹角,就是两位置寻北的基本原理。
在此基础上,取20次位置的差值,进行校正,为了精准,旋转4圈,取平均值。DSP发送指令使电机506停转,输出方向的最终结果即真北夹 角,若定向仪开始移动,方向积分MEMS陀螺在此结果基础上可输出定向仪移动后的方向。
MEMS陀螺仪阵列具有比光纤陀螺及激光陀螺更低的成本、更小体积且能准确测量地球自转角速度的效果。由于MEMS陀螺仪相对于光纤陀螺仪及激光陀螺仪成本较低,体积较小,但精度也较低,目前较高精度的MEMS陀螺仪零漂在1°-10°/小时,而地球自转角速度为15.0411°/小时,这样的精度用来测量地球自转角速度仍比较勉强,但如果采用多片MEMS陀螺仪阵列,例如把N片同轴布置相同特性的MEMS陀螺仪的输出相加,根据每个MEMS陀螺仪的统计和时间序列特性进行建模和优化计算,可以得到优于
Figure PCTCN2022077078-appb-000005
倍的精度改善,此外,采用20位置寻北法,同样能够达到改善精度的效果。
此外,MEMS陀螺仪精度在不断提高,逐渐取代中低端光纤陀螺的应用场合,因此采用高精度的MEMS陀螺制造的定向仪具有更低成本、更小体积且能准确测量地球自转角速度的效果,从而能够扩大定向仪的适用行业和应用范围。
本申请中的MEMS陀螺仪阵列定向仪,能够快速找出真北夹角,不受磁场环境干扰,得到真北夹角后移动定向仪,真北夹角可以随动变化,定向仪具有体积小、重量轻的特点,可以口袋收纳,一改传统同类产品体积大、重量大的缺点,大大降低对运输及使用环境的限制,应用场合更为广泛。
实施例2
本申请实施例提供一种多位置寻北装置,该装置可以应用于实施例1中的数据处理模块503,如图10所示,为多位置寻北装置的结构框图,所述装置包括:
基准航向角获取模块100,用于根据预设的寻北陀螺采样率、每位置陀螺采样点数、单圈寻北位置数利用MEMS陀螺阵列500进行单次寻北,以 获取基准航向角;
寻北结果获取模块200,用于基于所述基准航向角,并根据预设的寻北圈数和寻北次数控制所述MEMS陀螺阵列500进行转动,以实现连续寻北并获取寻北结果;
滤波收敛模块300,用于对所述寻北结果进行卡尔曼滤波收敛,以更新四元素姿态矩阵;
方位推算模块400,用于利用更新后的所述四元素姿态矩阵进行方位推算。
如图11所示,为多位置寻北装置的整体结构框图,其中,基准航向角获取模块100包括:
角速度获取模块101,用于获取所述MEMS陀螺阵列500分别转动至相差180°的第一位置和第二位置的第一角速度和第二角速度;
计算模块102,用于基于所述第一角速度和第二角速度,获取基准航向角;
所述航向角表示为:
Figure PCTCN2022077078-appb-000006
其中,ω1、ω2表示第一角速度和第二角速度,Ω=15.041度/小时,
Figure PCTCN2022077078-appb-000007
为地理纬度;ω H=Ωcosφ,ω v=-Ωsinφ。
所述寻北结果获取模块200包括:
多次寻北数据获取模块201,用于获取所述MEMS陀螺阵列500分别旋转至0°、90°、180°和270°位置所得到的多次寻北数据;
比较计算模块202,用于将所述多次寻北数据与所述基准航向角进行比较,以获得对应的寻北结果。
滤波收敛模块300包括:
定义模块301,用于定义并存储惯导解算的初始参数;
更新模块302,用于利用所述初始参数和所述寻北结果进行卡尔曼滤波收敛,以对所述四元素姿态矩阵进行更新,所述四元素姿态矩阵中的元素包括姿态角、俯仰角、横滚角和航向角。
方位推算模块400包括:
状态值获取模块401,用于利用更新后的所述四元素姿态矩阵和存储的惯导解算中的初始参数进行滤波,以获得循环滤波的状态值;
校正模块402,用于计算所述状态值的估算均方差,以对所述四元素姿态矩阵进行校正;
方位获取模块403,用于根据校正后的所述四元素姿态矩阵获取校正后的速度、位置和姿态值。
本申请实施例提供一种电子设备,所述电子设备包括存储器以及处理器,所述存储器用于存储计算机程序,所述处理器运行所述计算机程序以使所述电子设备执行实施例1中任一项所述的多位置寻北方法。
本申请实施例提供一种可读存储介质,所述可读存储介质中存储有计算机程序指令,所述计算机程序指令被一处理器读取并运行时,执行实施例1任一项所述的多位置寻北方法。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和框图显示了根据本申请的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及 框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者 暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (10)

  1. 一种多位置寻北方法,其特征在于,所述方法包括:
    根据预设的寻北陀螺采样率、每位置陀螺采样点数、单圈寻北位置数利用MEMS陀螺阵列进行单次寻北,以获取基准航向角;
    基于所述基准航向角,并根据预设的寻北圈数和寻北次数控制所述MEMS陀螺阵列进行转动,以实现连续寻北并获取寻北结果;
    对所述寻北结果进行卡尔曼滤波收敛,以更新四元素姿态矩阵;
    利用更新后的所述四元素姿态矩阵进行方位推算。
  2. 根据权利要求1所述的多位置寻北方法,其特征在于,所述根据预设的寻北陀螺采样率、每位置陀螺采样点数、单圈寻北位置数利用MEMS陀螺阵列进行单次寻北,以获取基准航向角,包括:
    获取所述MEMS陀螺阵列分别转动至相差180°的第一位置和第二位置的第一角速度和第二角速度;
    基于所述第一角速度和第二角速度,获取基准航向角;
    所述航向角表示为:
    Figure PCTCN2022077078-appb-100001
    其中,ω1、ω2表示第一角速度和第二角速度,Ω=15.041度/小时,
    Figure PCTCN2022077078-appb-100002
    为地理纬度;ω H=Ωcosφ,ω v=-Ωsinφ。
  3. 根据权利要求1所述的多位置寻北方法,其特征在于,所述基于所述基准航向角,并根据预设的寻北圈数和寻北次数控制所述MEMS陀螺阵列进行转动,以实现连续寻北并获取寻北结果,包括:
    获取所述MEMS陀螺阵列分别旋转至0°、90°、180°和270°位置所得到的多次寻北数据;
    将所述多次寻北数据与所述基准航向角进行比较,以获得对应的寻北 结果。
  4. 根据权利要求1所述的多位置寻北方法,其特征在于,所述对所述寻北结果进行卡尔曼滤波收敛,以更新四元素姿态矩阵,包括:
    定义并存储惯导解算的初始参数;
    利用所述初始参数和所述寻北结果进行卡尔曼滤波收敛,以对所述四元素姿态矩阵进行更新,所述四元素姿态矩阵中的元素包括姿态角、俯仰角、横滚角和航向角。
  5. 根据权利要求1所述的多位置寻北方法,其特征在于,所述利用更新后的所述四元素姿态矩阵进行方位推算,包括:
    利用更新后的所述四元素姿态矩阵和存储的惯导解算中的初始参数进行滤波,以获得循环滤波的状态值;
    计算所述状态值的估算均方差,以对所述四元素姿态矩阵进行校正;
    根据校正后的所述四元素姿态矩阵获取校正后的速度、位置和姿态值。
  6. 一种多位置寻北装置,其特征在于,所述装置包括:
    基准航向角获取模块,用于根据预设的寻北陀螺采样率、每位置陀螺采样点数、单圈寻北位置数利用MEMS陀螺阵列进行单次寻北,以获取基准航向角;
    寻北结果获取模块,用于基于所述基准航向角,并根据预设的寻北圈数和寻北次数控制所述MEMS陀螺阵列进行转动,以实现连续寻北并获取寻北结果;
    滤波收敛模块,用于对所述寻北结果进行卡尔曼滤波收敛,以更新四元素姿态矩阵;
    方位推算模块,用于利用更新后的所述四元素姿态矩阵进行方位推算。
  7. 根据权利要求6所述的多位置寻北装置,其特征在于,所述寻北结果获取模块包括:
    多次寻北数据获取模块,用于获取所述MEMS陀螺阵列分别旋转至 0°、90°、180°和270°位置所得到的多次寻北数据;
    比较计算模块,用于将所述多次寻北数据与所述基准航向角进行比较,以获得对应的寻北结果。
  8. 根据权利要求6所述的多位置寻北装置,其特征在于,所述滤波收敛模块包括:
    定义模块,用于定义并存储惯导解算的初始参数;
    更新模块,用于利用所述初始参数和所述寻北结果进行卡尔曼滤波收敛,以对所述四元素姿态矩阵进行更新,所述四元素姿态矩阵中的元素包括姿态角、俯仰角、横滚角和航向角。
  9. 一种电子设备,其特征在于,所述电子设备包括存储器以及处理器,所述存储器用于存储计算机程序,所述处理器运行所述计算机程序以使所述电子设备执行根据权利要求1至5中任一项所述的多位置寻北方法。
  10. 一种可读存储介质,其特征在于,所述可读存储介质中存储有计算机程序指令,所述计算机程序指令被一处理器读取并运行时,执行权利要求1至5任一项所述的多位置寻北方法。
PCT/CN2022/077078 2021-02-20 2022-02-21 一种多位置寻北方法、装置、电子设备及存储介质 WO2022174828A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110195272.1 2021-02-20
CN202110195272.1A CN112964241B (zh) 2021-02-20 2021-02-20 一种多位置寻北方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022174828A1 true WO2022174828A1 (zh) 2022-08-25

Family

ID=76285373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077078 WO2022174828A1 (zh) 2021-02-20 2022-02-21 一种多位置寻北方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN112964241B (zh)
WO (1) WO2022174828A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117419745A (zh) * 2023-10-13 2024-01-19 南京理工大学 一种基于循环ekf的惯性辅助地磁在线标定方法及系统
CN117629174A (zh) * 2024-01-25 2024-03-01 深圳市瑞芬科技有限公司 一种基于感应地球自转原理的陀螺寻北装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112964241B (zh) * 2021-02-20 2023-04-07 广州导远电子科技有限公司 一种多位置寻北方法、装置、电子设备及存储介质
CN115164859B (zh) * 2022-06-17 2024-02-09 武汉天宸伟业煤安科技有限公司 一种定向仪的寻北定向方法及寻北定向系统
CN117109635A (zh) * 2023-08-29 2023-11-24 北京中捷时代航空科技有限公司 寻北式捷联惯性航向效应补偿方法、装置、设备及介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105659809B (zh) * 2005-06-02 2010-05-05 北京航天时代光电科技有限公司 基于倾斜补偿和粗精组合位置法的光纤陀螺寻北仪及寻北方法
WO2013139486A1 (en) * 2012-03-23 2013-09-26 Civitanavi Systems Ltd True north seeking and attitude system
CN103344226A (zh) * 2013-06-27 2013-10-09 南京航空航天大学 一种基于mems旋转技术的寻北系统及方法
CN103512570A (zh) * 2013-10-12 2014-01-15 北京信息科技大学 一种预置45°带解算失效判定的寻北方法
US9217639B1 (en) * 2012-03-20 2015-12-22 Moog Inc. North-finding using inertial navigation system
CN106017452A (zh) * 2016-08-10 2016-10-12 中国电子科技集团公司第二十六研究所 双陀螺抗扰动寻北方法
CN106706003A (zh) * 2017-02-15 2017-05-24 重庆邮电大学 一种基于三轴mems陀螺仪的寻北旋转在线校准方法
CN109084761A (zh) * 2018-08-07 2018-12-25 合肥正阳光电科技有限责任公司 一种基于惯性寻北装置的抗冲击寻北解算方法
CN111366144A (zh) * 2019-11-26 2020-07-03 北京计算机技术及应用研究所 一种陀螺寻北仪多位置寻北方法
CN112539743A (zh) * 2020-11-09 2021-03-23 北京电子工程总体研究所 一种基于陀螺寻北仪的连续寻北方位更新方法和系统
CN112964241A (zh) * 2021-02-20 2021-06-15 广州导远电子科技有限公司 一种多位置寻北方法、装置、电子设备及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108387229A (zh) * 2018-01-30 2018-08-10 南京理工大学 一种基于单轴旋转调制的mems惯性导航系统及寻北方法
CN110186446B (zh) * 2019-06-27 2022-12-02 重庆芯力源科技有限公司 一种基于mems陀螺的寻北仪寻北方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105659809B (zh) * 2005-06-02 2010-05-05 北京航天时代光电科技有限公司 基于倾斜补偿和粗精组合位置法的光纤陀螺寻北仪及寻北方法
US9217639B1 (en) * 2012-03-20 2015-12-22 Moog Inc. North-finding using inertial navigation system
WO2013139486A1 (en) * 2012-03-23 2013-09-26 Civitanavi Systems Ltd True north seeking and attitude system
CN103344226A (zh) * 2013-06-27 2013-10-09 南京航空航天大学 一种基于mems旋转技术的寻北系统及方法
CN103512570A (zh) * 2013-10-12 2014-01-15 北京信息科技大学 一种预置45°带解算失效判定的寻北方法
CN106017452A (zh) * 2016-08-10 2016-10-12 中国电子科技集团公司第二十六研究所 双陀螺抗扰动寻北方法
CN106706003A (zh) * 2017-02-15 2017-05-24 重庆邮电大学 一种基于三轴mems陀螺仪的寻北旋转在线校准方法
CN109084761A (zh) * 2018-08-07 2018-12-25 合肥正阳光电科技有限责任公司 一种基于惯性寻北装置的抗冲击寻北解算方法
CN111366144A (zh) * 2019-11-26 2020-07-03 北京计算机技术及应用研究所 一种陀螺寻北仪多位置寻北方法
CN112539743A (zh) * 2020-11-09 2021-03-23 北京电子工程总体研究所 一种基于陀螺寻北仪的连续寻北方位更新方法和系统
CN112964241A (zh) * 2021-02-20 2021-06-15 广州导远电子科技有限公司 一种多位置寻北方法、装置、电子设备及存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117419745A (zh) * 2023-10-13 2024-01-19 南京理工大学 一种基于循环ekf的惯性辅助地磁在线标定方法及系统
CN117629174A (zh) * 2024-01-25 2024-03-01 深圳市瑞芬科技有限公司 一种基于感应地球自转原理的陀螺寻北装置
CN117629174B (zh) * 2024-01-25 2024-04-05 深圳市瑞芬科技有限公司 一种基于感应地球自转原理的陀螺寻北装置

Also Published As

Publication number Publication date
CN112964241A (zh) 2021-06-15
CN112964241B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2022174828A1 (zh) 一种多位置寻北方法、装置、电子设备及存储介质
WO2022174831A1 (zh) 一种连续寻北装置、方法、电子设备及存储介质
CN107490803A (zh) 利用gps和惯导系统对机器人定位定向方法
CA1278846C (en) Vehicle land navigating device
CN112595350B (zh) 一种惯导系统自动标定方法及终端
CN103712622B (zh) 基于惯性测量单元旋转的陀螺漂移估计补偿方法及装置
CN110926447B (zh) 一种具有自主导航功能的单轴光纤陀螺寻北方法及航姿导航方法
CN110954102B (zh) 用于机器人定位的磁力计辅助惯性导航系统及方法
CN103697878B (zh) 一种单陀螺单加速度计旋转调制寻北方法
CN111964696B (zh) 一种双轴旋转惯导系统载体角运动隔离调制方法
CN105737854A (zh) 一种捷联惯导系统在线标定方法
CN106017452A (zh) 双陀螺抗扰动寻北方法
CN110621961A (zh) 低成本惯性导航系统
CN111366144A (zh) 一种陀螺寻北仪多位置寻北方法
CN113959462B (zh) 一种基于四元数的惯性导航系统自对准方法
CN113092822B (zh) 一种基于惯组的激光多普勒测速仪的在线标定方法和装置
CN115790653A (zh) 一种用于旋转式惯导的自对准方法及装置
CN115931001A (zh) 惯性测量单元标定方法、装置、计算机设备及存储介质
US20180087906A1 (en) Device orientation systems and methods
Sun et al. Design and implementation of fiber optic gyro north-seeker
CN115773750B (zh) 一种磁航向角测量装置及方法
US20230204358A1 (en) Mems gyrocompass
RU2754964C1 (ru) Способ определения азимута и динамический гирокомпас
CN110849342B (zh) 一种寻北误差补偿方法
RU2782334C1 (ru) Способ определения параметров ориентации объекта при помощи полуаналитической инерциальной навигационной системы с географической ориентацией осей четырехосной гироплатформы

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22755601

Country of ref document: EP

Kind code of ref document: A1