WO2022174727A1 - 啸叫抑制方法、装置、助听器及存储介质 - Google Patents

啸叫抑制方法、装置、助听器及存储介质 Download PDF

Info

Publication number
WO2022174727A1
WO2022174727A1 PCT/CN2022/073870 CN2022073870W WO2022174727A1 WO 2022174727 A1 WO2022174727 A1 WO 2022174727A1 CN 2022073870 W CN2022073870 W CN 2022073870W WO 2022174727 A1 WO2022174727 A1 WO 2022174727A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
howling
subband
subband signal
sub
Prior art date
Application number
PCT/CN2022/073870
Other languages
English (en)
French (fr)
Inventor
陈霏
姬俊宇
Original Assignee
深圳市智听科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市智听科技有限公司 filed Critical 深圳市智听科技有限公司
Priority to US18/277,929 priority Critical patent/US20240137713A1/en
Priority to EP22755500.0A priority patent/EP4297431A1/en
Publication of WO2022174727A1 publication Critical patent/WO2022174727A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/02Circuits for transducers, loudspeakers or microphones for preventing acoustic reaction, i.e. acoustic oscillatory feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/45Prevention of acoustic reaction, i.e. acoustic oscillatory feedback
    • H04R25/453Prevention of acoustic reaction, i.e. acoustic oscillatory feedback electronically
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/03Synergistic effects of band splitting and sub-band processing

Definitions

  • the present application relates to the technical field of digital signal processing, and in particular, to a howling suppression method, device, hearing aid, and storage medium.
  • the distance between the microphone and the speaker is very small, and the signal output from the speaker can easily leak out from the gap between the earplug and the ear canal or the vent hole of the hearing aid.
  • the leaked sound signal is picked up again by the microphone and output from the speaker again to form a positive feedback, thus forming a closed feedback loop, which is the acoustic feedback phenomenon.
  • the presence of acoustic feedback phenomena can affect hearing aid performance, impair sound quality and limit the gain achievable with hearing aids. When the gain of the whole system is too large and a certain phase condition is satisfied, it will cause the instability of the hearing aid system and produce howling.
  • the phase modulation method is an early acoustic feedback control method, which suppresses howling by changing the phase conditions necessary to generate howling by shifting the frequency or phase of the signal before it is transmitted to the loudspeaker. But this method tends to distort the sound signal.
  • Room impulse response modeling methods include adaptive filtering and adaptive inverse filtering, the former is a widely used method.
  • this method due to the correlation between the input signal and the output signal of the system, this method will lead to a bias in the estimation of the feedback path by the system, thereby weakening the effect of feedback suppression.
  • gain control methods automatic gain control and notch method.
  • the automatic gain control reduces the gain of the whole frequency band, and the notch method reduces the gain at the whistling frequency by designing a notch filter.
  • This method suppresses the howling after the hearing aid generates it, so it is necessary to first detect whether the howling exists, and then suppress the howling.
  • the reliability of this algorithm largely depends on the accuracy and timeliness of howling detection.
  • Most of the current howling detection methods require Fourier Transform (FFT) to convert the time domain signal into frequency domain, and then judge and detect howling features.
  • FFT Fourier Transform
  • the inventor realized that when the number of FFT points increases, the butterfly operation unit required for the FFT will also increase, and each butterfly operation unit requires two complex multiplications and two complex additions, which consumes too much resources.
  • the determination accuracy of howling frequency points is low, and the sound quality is also damaged.
  • a first aspect of the present application provides a howling suppression method, and the howling suppression method includes:
  • the audio data obtain the first subband signal of the frame signal in the audio data
  • the first sub-band signal is the first howling sub-band signal, obtaining a second sub-band signal of the first howling sub-band signal according to the first howling sub-band signal;
  • the second sub-band signal is the second howling sub-band signal, then determine whether the frame signal is a howling frame signal according to the second howling sub-band signal;
  • the howling frame signal is suppressed.
  • a second aspect of the present application provides a hearing aid, the hearing aid comprising a processor and a memory, the processor being configured to execute computer-readable instructions stored in the memory to implement the following steps:
  • the audio data obtain the first subband signal of the frame signal in the audio data
  • the first sub-band signal is the first howling sub-band signal, obtaining a second sub-band signal of the first howling sub-band signal according to the first howling sub-band signal;
  • the second subband signal is the second howling subband signal, determining whether the frame signal is a howling frame signal according to the second howling subband signal;
  • the howling frame signal is suppressed.
  • a third aspect of the present application provides a storage medium on which at least one computer-readable instruction is stored, and the at least one computer-readable instruction is executed by a processor to implement the following steps:
  • the audio data obtain the first subband signal of the frame signal in the audio data
  • the first sub-band signal is the first howling sub-band signal, obtaining a second sub-band signal of the first howling sub-band signal according to the first howling sub-band signal;
  • the second subband signal is the second howling subband signal, determining whether the frame signal is a howling frame signal according to the second howling subband signal;
  • the howling frame signal is suppressed.
  • a fourth aspect of the present application provides a howling suppression device, and the howling suppression device includes:
  • Audio acquisition module for acquiring audio data
  • a first subband obtaining module configured to obtain the first subband signal of the frame signal in the audio data according to the audio data
  • the first subband acquisition module is further configured to determine whether the first subband signal is a first howling subband signal
  • a second subband obtaining module configured to obtain the first howling subband signal according to the first howling subband signal if the first subband signal is the first howling subband signal The second subband signal of ;
  • the second subband acquisition module is further configured to determine whether the second subband signal is a second howling subband signal
  • a howling judgment module configured to judge whether the frame signal is a howling frame signal according to the second howling subband signal if the second subband signal is the second howling subband signal;
  • the howling judging module is further configured to suppress the howling frame signal if the frame signal is a howling frame signal.
  • the present application obtains audio data; according to the audio data, obtains the first subband signal of the frame signal in the audio data; judges whether the first subband signal is the first howling sub-band signal; if the first sub-band signal is the first howling sub-band signal, obtain the second sub-band of the first howling sub-band signal according to the first howling sub-band signal signal; determine whether the second sub-band signal is the second howling sub-band signal; if the second sub-band signal is the second howling sub-band signal, according to the second howling sub-band signal Determine whether the frame signal is a howling frame signal; if the frame signal is a howling frame signal, suppress the howling frame signal.
  • the audio data is divided into a plurality of first sub-band signals according to the frequency, the first sub-band signal whose energy value exceeds the preset energy value is divided into a plurality of second sub-band signals, and the second sub-band signal with the largest energy value is determined.
  • the energy ratio of the band signal exceeds the preset ratio, if there is a second subband signal greater than the preset ratio in three consecutive frames or more, it is determined that there is howling, so that the howling frequency can be accurately found and suppressed. Suppressing the second howling subband signal can suppress the howling and reduce the damage to the sound quality.
  • FIG. 1 is a schematic structural diagram of a hearing aid in a hardware operating environment involved in a solution according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of the first embodiment of the howling suppression method of the present application
  • FIG. 3 is a schematic diagram of the acoustic feedback generated by the hearing aid according to an embodiment of the howling suppression method of the present application;
  • FIG. 4 is a schematic diagram of a filter spectrum according to an embodiment of a howling suppression method of the present application
  • FIG. 5 is a schematic diagram of a howling suppression principle according to an embodiment of a howling suppression method of the present application
  • FIG. 6 is a structural block diagram of the first embodiment of the howling suppression apparatus of the present application.
  • FIG. 1 is a schematic structural diagram of a hearing aid in a hardware operating environment involved in the solution of an embodiment of the present application.
  • the hearing aid may include: a processor 1001 , such as a central processing unit (Central Processing Unit, CPU), a communication bus 1002 , a user interface 1003 , a network interface 1004 , and a memory 1005 .
  • the communication bus 1002 is used to realize the connection and communication between these components.
  • the user interface 1003 may include a display screen (Display), an input unit such as a keyboard (Keyboard), and the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may include a standard wired interface and a wireless interface (such as a wireless fidelity (WIreless-FIdelity, WI-FI) interface).
  • WIreless-FIdelity WI-FI
  • the memory 1005 may be a high-speed random access memory (Random Access Memory, RAM) memory, or may be a stable non-volatile memory (Non-Volatile Memory, NVM), such as a disk memory.
  • RAM Random Access Memory
  • NVM Non-Volatile Memory
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001 .
  • FIG. 1 does not constitute a limitation on the hearing aid, and may include more or less components than the one shown, or combine some components, or arrange different components.
  • the memory 1005 as a storage medium may include an operating system, a network communication module, a user interface module and a howling suppression program.
  • the network interface 1004 is mainly used for data communication with the network server;
  • the user interface 1003 is mainly used for data interaction with the user;
  • the processor 1001 and the memory 1005 in the hearing aid of the present application can be set in the hearing aid , the hearing aid calls the howling suppression program stored in the memory 1005 through the processor 1001, and executes the howling suppression method provided by the embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a first embodiment of a howling suppression method of the present application.
  • the howling suppression method includes the following steps:
  • Step S10 Acquire audio data.
  • the executive body of this embodiment may be a hearing aid
  • the hearing aid may be a digital hearing aid
  • the hearing aid is a small amplifier that amplifies the sound that was originally inaudible, and then uses the residual hearing of the hearing impaired to make the sound. It can be sent to the auditory center of the brain, and the sound can be felt.
  • the principle of howling generated by hearing aids is shown in Figure 3. Part of the sound energy of the receiver is transmitted to the microphone through sound propagation, which is a phenomenon of howling.
  • Step S20 Obtain a first subband signal of a frame signal in the audio data according to the audio data.
  • step S20 includes: obtaining an audio sampling rate according to the audio data; obtaining frame information according to the audio sampling rate; obtaining frequency information according to the audio data; dividing the audio data into different frequency information according to the frequency information audio signals in a preset frequency range; assign the audio signals in different preset frequency ranges to the corresponding first channels to obtain a first subband signal set; according to the frame information and the first subband signal set, A first subband signal of the frame signal is obtained.
  • the audio sampling rate refers to the number of times the sound signal is sampled by the recording device in one second. The higher the sampling frequency, the more realistic and natural the sound will be. On today's mainstream capture cards, the sampling frequency is generally divided into five levels: 11025Hz, 22050Hz, 24000Hz, 44100Hz, and 48000Hz. The audio data with the sampling frequency of 11025Hz contains 11025 sampling points in one second.
  • the frame information includes the time information of each frame.
  • AAC Advanced Audio Coding
  • 1024 sampling points are usually used as a frame, so The time of one frame is within 23.22 milliseconds, and the frame information also differs according to different sampling rates, which is not limited in this embodiment.
  • the frequency information includes the sound wave frequency of the collected audio data
  • the first channel refers to the sound input line
  • one line counts as one channel.
  • the sound is the left and right channels. Left channel and right channel.
  • the audio data is divided into audio signals of different sound wave frequency ranges, and assigned to the corresponding first channel, that is, the audio data is divided into different sound wave frequency ranges through the first-stage filter group.
  • the first-stage filter bank includes a plurality of first channels in a preset frequency range to obtain a first subband signal set.
  • a first subband signal set within a frame time that is, a frame signal, can be obtained. For example, as shown in Figure 4, based on the auditory characteristics of the human ear, audio data with a sound wave frequency of 50Hz to 8000Hz can be divided into channels.
  • the low frequency band is divided It is relatively fine, and the high frequency band is relatively coarsely divided, so the preset frequency range is not evenly distributed.
  • the preset frequency range can be 50Hz ⁇ 600Hz, 601Hz ⁇ 1800Hz, 1801Hz ⁇ 4000Hz, 4001Hz ⁇ 8000Hz, and the audio data corresponding to the sound wave frequency is divided into 4 sets of audio signals, the first subband signal set including 4 sets of audio signals is obtained, the frame information is 23.22 milliseconds, then the first subband signal set within 23.22 milliseconds is the frame signal, and the audio signal of each first channel is the first For the subband signal, the above is only for illustration, and is not limited in this embodiment.
  • the frame signal is collected in real time, and the audio data collected in one frame time is divided into channels for the audio data in one frame time, which has achieved the effect of real-time processing.
  • Step S30 Determine whether the first subband signal is a first howling subband signal.
  • step S30 includes: determining the energy value of the first subband signal according to the first subband signal of the frame signal; comparing the energy value of the first subband signal with a preset energy threshold to determine Whether the first subband signal is the first howling subband signal.
  • the energy value of the first subband signal refers to the logarithm of the energy of the first subband signal, and the energy calculation formula is as follows:
  • x i (n) represents the signal value of the i-th first subband in the n-th frame signal of the first-stage filter bank, i ⁇ (0,1,2,3...,L), N ⁇ (0, 1,2...,N), L is the signal length, and N is the sequence of the current frame signal. represents the energy of the i-th first subband signal.
  • log_E i is the energy value of the i-th first subband signal.
  • the log_E i is compared with the preset energy value, and when it is greater than the preset energy value, it is determined that the first subband signal is the first howling subband signal, otherwise it is not. If all the first subband signals are not the first howling subband signals, it is determined that there is no howling.
  • Step S40 If the first sub-band signal is the first howling sub-band signal, obtain a second sub-band signal of the first howling sub-band signal according to the first howling sub-band signal .
  • step S40 includes: if the first sub-band signal is the first howling sub-band signal, according to the frequency of the first howling sub-band signal, the first howling sub-band signal Divide the first howling sub-band signals into different preset howling frequency ranges; assign the first howling sub-band signals in the different preset howling frequency ranges to the corresponding second channels to obtain the second sub-band signals set; obtaining a second subband signal according to the second subband signal set.
  • the first howling subband signal needs to be divided into a second subband signal with a narrower frequency band, that is, the preset howling frequency.
  • the range is smaller than that of the above-mentioned preset frequency range. For example: for the frequency of the first howling sub-band signal between 50Hz and 600Hz, divide 50Hz-600Hz into 50Hz-200Hz, 201Hz-400Hz, 401Hz-600Hz, and pass the first howling sub-band signal through the second-stage filter bank Assigned to the corresponding second channel, three sets of second subband signals of the second subband signal can be obtained, and three sets of second subband signals can be obtained from the second subband signal set.
  • this implementation Examples are not limited.
  • Step S50 Determine whether the second subband signal is a second howling subband signal.
  • step S50 includes: determining the energy value of the second subband signal according to the second subband signal, and obtaining a target second subband signal with the largest energy value; obtaining the target second subband signal energy value of two adjacent second subband signals; according to the energy value of the target second subband signal and the energy value of the two adjacent second subband signals, determine the target second subband signal and the target second subband signal and comparing the energy ratio with a preset energy ratio to determine whether the target second subband signal is a second howling subband signal.
  • each second subband signal can be obtained according to the above formula 1 and formula 2, and the second subband signal with the largest energy value, that is, the target second subband signal can be obtained.
  • the ratio calculation formula is as follows:
  • p indicates that the p-th first sub-band signal in the frame signal is the first howling sub-band signal
  • q indicates that the q-th second sub-band signal in the first howling sub-band signal is the target sub-band signal
  • Rate1, Rate2 represents the energy ratio between the target second subband signal and the adjacent two second subband signals.
  • Rate1 and Rate2 are greater than the preset energy ratio, it means that the target second subband signal is the second howling subband signal.
  • Step S60 If the second subband signal is the second howling subband signal, determine whether the frame signal is a howling frame signal according to the second howling subband signal.
  • step S60 includes: if the energy ratio is greater than a preset energy ratio, the target second subband signal is the second howling subband signal; marking the second howling subband signal , to obtain a marked frame signal; according to the marked frame signal, determine whether the frame signal is a howling frame signal.
  • the target second sub-band signal is the second howling sub-band signal, and the second howling sub-band signal may form howling, so it is necessary to measure the second howling sub-band signal.
  • the subband signal is marked, and the frame signal where the second howling subband signal is located is also marked as the marked frame signal.
  • the frame signals of more than three consecutive frames are marked frame signals, it means that there is a whistling phenomenon at this time, then the marked frame signals of more than three consecutive frames are all whistling frame signals, and it is necessary to perform the whistling frame signals. Suppression, the effect of suppressing howling has been achieved.
  • Step S70 If the frame signal is a howling frame signal, suppress the howling frame signal.
  • step S70 includes: if the frame signal is a howling frame signal, setting the second howling sub-band signal of the howling frame signal to a preset value, and obtaining a second howling suppression sub-band signal to obtain a second howling suppression sub-band signal. Suppressing the howling frame signal; after the suppressing the howling frame signal, the method further includes: synthesizing the second howling suppression subband signal with the remaining second subband signals to obtain a first howling suppression subband signal; synthesizing the first howling suppression subband signal and the remaining first subband signals to obtain howling suppression audio data.
  • the howling frequency point of the howling frame signal should be in the second howling sub-band signal, so suppressing the howling needs to process the second howling sub-band signal. For example, directly set 0 to the second howling sub-band signal, on the one hand, the computational complexity of howling suppression can be minimized. At the same time, reduce the damage to the sound quality.
  • the audio data obtains a set containing several first subband signals through the first-stage filter bank, and divides the first subband signal set into several frame signals according to the frame information. Howling detection is performed on the first subband signal in the frame signal, which is used to initially detect whether there is howling.
  • the first subband signal where howling exists is composed of a second-stage filter group.
  • the second sub-band signal with a narrower frequency band a more accurate result can be obtained by performing secondary howling detection on the second sub-band signal. All subband signals are synthesized into playable audio data.
  • audio data is obtained; according to the audio data, the first subband signal of the frame signal in the audio data is obtained; it is determined whether the first subband signal is the first howling subband signal; if the If the first subband signal is the first howling subband signal, then according to the first howling subband signal, a second subband signal of the first howling subband signal is obtained; Whether the sub-band signal is the second howling sub-band signal; if the second sub-band signal is the second howling sub-band signal, determine whether the frame signal is the second howling sub-band signal according to the second howling sub-band signal Howling frame signal; if the frame signal is a howling frame signal, suppress the howling frame signal.
  • the audio data is divided into a plurality of first sub-band signals according to the frequency, the first sub-band signal whose energy value exceeds the preset energy value is divided into a plurality of second sub-band signals, and the second sub-band signal with the largest energy value is determined.
  • the energy ratio of the band signal exceeds the preset ratio, if there is a second subband signal greater than the preset ratio in three consecutive frames or more, it is determined that there is howling, so that the howling frequency can be accurately found and suppressed. Suppressing the second howling subband signal can suppress the howling and reduce the damage to the sound quality.
  • an embodiment of the present application further provides a storage medium, where a howling suppression program is stored thereon, and when the howling suppression program is executed by a processor, implements the steps of the howling suppression method described above.
  • FIG. 6 is a structural block diagram of the first embodiment of the howling suppression apparatus of the present application.
  • the howling suppression device proposed in the embodiment of the present application includes:
  • a first subband obtaining module 20 configured to obtain the first subband signal of the frame signal in the audio data according to the audio data
  • the first subband acquisition module 20 is further configured to determine whether the first subband signal is a first howling subband signal
  • the second subband obtaining module 30 is configured to obtain the first howling subband according to the first howling subband signal if the first subband signal is the first howling subband signal the second subband signal of the signal;
  • the second subband obtaining module 30 is further configured to judge whether the second subband signal is a second howling subband signal
  • Howling judgment module 40 configured to judge whether the frame signal is a howling frame signal according to the second howling subband signal if the second subband signal is the second howling subband signal;
  • the howling judging module 40 is further configured to suppress the howling frame signal if the frame signal is a howling frame signal.
  • audio data is obtained; according to the audio data, the first subband signal of the frame signal in the audio data is obtained; it is determined whether the first subband signal is the first howling subband signal; if the If the first subband signal is the first howling subband signal, then according to the first howling subband signal, a second subband signal of the first howling subband signal is obtained; Whether the sub-band signal is the second howling sub-band signal; if the second sub-band signal is the second howling sub-band signal, determine whether the frame signal is the second howling sub-band signal according to the second howling sub-band signal Howling frame signal; if the frame signal is a howling frame signal, suppress the howling frame signal.
  • the audio data is divided into a plurality of first sub-band signals according to the frequency, the first sub-band signal whose energy value exceeds the preset energy value is divided into a plurality of second sub-band signals, and the second sub-band signal with the largest energy value is determined.
  • the energy ratio of the band signal exceeds the preset ratio, if there is a second subband signal greater than the preset ratio in three consecutive frames or more, it is determined that there is howling, so that the howling frequency can be accurately found and suppressed. Suppressing the second howling subband signal can suppress the howling and reduce the damage to the sound quality.
  • the first subband obtaining module 20 is further configured to obtain an audio sampling rate according to the audio data; obtain frame information according to the audio sampling rate; obtain frequency information according to the audio data; the frequency information, and divide the audio data into audio signals with different preset frequency ranges; assign the audio signals with different preset frequency ranges to the corresponding first channels to obtain a first subband signal set; according to the The frame information is combined with the first subband signal to obtain the first subband signal of the frame signal.
  • the first subband obtaining module 20 is further configured to determine the energy value of the first subband signal according to the first subband signal of the frame signal; The energy value is compared with a preset energy threshold to determine whether the first subband signal is a first howling subband signal.
  • the second sub-band obtaining module 30 is further configured to, if the first sub-band signal is the first howling sub-band signal, obtain a signal according to the first howling sub-band signal frequency, dividing the first howling sub-band signal into first howling sub-band signals of different preset howling frequency ranges; assigning the first howling sub-band signals of different preset howling frequency ranges to For the corresponding second channel, a second subband signal set is obtained; and a second subband signal is obtained according to the second subband signal set.
  • the second subband obtaining module 30 is further configured to determine the energy value of the second subband signal according to the second subband signal, and obtain the target second subband with the largest energy value.
  • Band signal obtain the energy value of the two adjacent second subband signals of the target second subband signal; according to the energy value of the target second subband signal and the energy value of the two adjacent second subband signals , determine the energy ratio between the target second subband signal and the two adjacent second subband signals; compare the energy ratio with the preset energy ratio to determine whether the target second subband signal is a The second howling subband signal.
  • the howling judging module 40 is further configured to, if the energy ratio is greater than a preset energy ratio, the target second subband signal is the second howling subband signal; marking the second howling subband signal to obtain a marked frame signal; and determining whether the frame signal is a howling frame signal according to the marked frame signal.
  • the howling judging module 40 is further configured to set the second howling subband signal of the howling frame signal to a preset value if the frame signal is a howling frame signal, and obtain The second howling suppression sub-band signal is used to suppress the howling frame signal; after the suppressing the howling frame signal, the method further includes: combining the second howling suppression sub-band signal with the remaining second sub-band signals synthesizing to obtain a first howling suppression sub-band signal; and synthesizing the first howling suppression sub-band signal with the remaining first sub-band signals to obtain howling suppression audio data.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solutions of the present application can be embodied in the form of software products in essence or the parts that make contributions to the prior art.
  • the computer software products are stored in a storage medium (such as a read-only memory (Read Only Memory). , ROM)/RAM, magnetic disk, optical disk), including several instructions to make a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Neurosurgery (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本申请属于数字信号处理技术领域,公开了一种啸叫抑制方法、装置、助听器及存储介质。该方法包括:获取音频数据;根据所述音频数据,获得所述音频数据中帧信号的第一子带信号;判断所述第一子带信号是否为第一啸叫子带信号;若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号,获得所述第一啸叫子带信号的第二子带信号;判断所述第二子带信号是否为第二啸叫子带信号;若所述第二子带信号为所述第二啸叫子带信号,则根据所述第二啸叫子带信号判断所述帧信号是否为啸叫帧信号;若所述帧信号为啸叫帧信号,则抑制所述啸叫帧信号。通过上述方式,可以准确找到啸叫频点并进行抑制,达到抑制啸叫的同时减少对音质的损害。

Description

啸叫抑制方法、装置、助听器及存储介质
本申请要求于2021年02月20日提交中国专利局,申请号为202110191088.X,发明名称为“啸叫抑制方法、装置、助听器及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及数字信号处理技术领域,尤其涉及一种啸叫抑制方法、装置、助听器及存储介质。
背景技术
由于数字助听器集成度高,体积小,麦克风和扬声器间距很小,从扬声器输出的信号很容易从耳塞与耳道之间的缝隙或助听器的通气孔泄露出去。泄露的声音信号被麦克风重新拾取,从扬声器再次输出就会形成正反馈,从而构成一个闭合的反馈回路,这就是声反馈现象。声反馈现象的存在会影响助听器的性能、损坏音质并限制助听器可实现的增益。当整个系统的增益过大且满足一定的相位条件时,就会引起助听器系统的不稳定,产生啸叫。
相位调制法是一种早期的声反馈控制方法,它通过对传输到扬声器之前的信号进行频移或相移,改变产生啸叫所必须的相位条件,从而对啸叫进行抑制。但这种方法容易使声音信号失真。房间脉冲响应建模法包括自适应滤波法和自适应逆滤波法,前者是一种广泛使用的方法。但这种方法由于系统输入信号和输出信号之间的相关性,会导致系统对反馈路径的估计存在偏差,从而减弱反馈抑制的效果。常用的增益控制法有两种:自动增益控制和陷波法。自动增益控制通过降低全频带的增益,陷波法通过设计陷波器降低啸叫频点处的增益。这种方法在助听器产生啸叫之后再进行抑制,因此需要先检测啸叫是否存在,在对啸叫进行抑制。这种算法的可靠性很大程度地依赖于啸叫检测的准确性和及时性,现在大多数的啸叫检测方法都需要先做傅里叶变换(Fourier Transformation,FFT)把时域信号转化到频域,然后再进行啸叫特征的判断与检测。然而,发明人意识到,当FFT的点数上升,其需要蝶形运算单元也会随之上升,每个蝶形运算单元需要两次复数乘法和两次复数加法,这对资源的消耗太大,并且啸叫频点的判定准确度低,还会对音质带来损害。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
发明内容
鉴于以上内容,有必要提供一种啸叫抑制方法、装置、助听器及存储介质,能够旨在解决现有技术啸叫频点检测的准确度低,啸叫抑制给音质带来的损害的技术问题。
本申请的第一方面提供一种啸叫抑制方法,所述啸叫抑制方法包括:
获取音频数据;
根据所述音频数据,获得所述音频数据中帧信号的第一子带信号;
判断所述第一子带信号是否为第一啸叫子带信号;
若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号,获得所述第一啸叫子带信号的第二子带信号;
判断所述第二子带信号是否为第二啸叫子带信号;
若所述第二子带信号为所述第二啸叫子带信号,则根据所述第二啸叫子带信号判断 所述帧信号是否为啸叫帧信号;
若所述帧信号为啸叫帧信号,则抑制所述啸叫帧信号。
本申请的第二方面提供一种助听器,所述助听器包括处理器和存储器,所述处理器用于执行所述存储器中存储的计算机可读指令以实现以下步骤:
获取音频数据;
根据所述音频数据,获得所述音频数据中帧信号的第一子带信号;
判断所述第一子带信号是否为第一啸叫子带信号;
若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号,获得所述第一啸叫子带信号的第二子带信号;
判断所述第二子带信号是否为第二啸叫子带信号;
若所述第二子带信号为所述第二啸叫子带信号,则根据所述第二啸叫子带信号判断所述帧信号是否为啸叫帧信号;
若所述帧信号为啸叫帧信号,则抑制所述啸叫帧信号。
本申请的第三方面提供一种存储介质,所述存储介质上存储有至少一个计算机可读指令,所述至少一个计算机可读指令被处理器执行以实现以下步骤:
获取音频数据;
根据所述音频数据,获得所述音频数据中帧信号的第一子带信号;
判断所述第一子带信号是否为第一啸叫子带信号;
若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号,获得所述第一啸叫子带信号的第二子带信号;
判断所述第二子带信号是否为第二啸叫子带信号;
若所述第二子带信号为所述第二啸叫子带信号,则根据所述第二啸叫子带信号判断所述帧信号是否为啸叫帧信号;
若所述帧信号为啸叫帧信号,则抑制所述啸叫帧信号。
本申请的第四方面提供一种啸叫抑制装置,所述啸叫抑制装置包括:
音频获取模块,用于获取音频数据;
第一子带获取模块,用于根据所述音频数据,获得所述音频数据中帧信号的第一子带信号;
所述第一子带获取模块,还用于判断所述第一子带信号是否为第一啸叫子带信号;
第二子带获取模块,用于若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号,获得所述第一啸叫子带信号的第二子带信号;
所述第二子带获取模块,还用于判断所述第二子带信号是否为第二啸叫子带信号;
啸叫判断模块,用于若所述第二子带信号为所述第二啸叫子带信号,则根据所述第二啸叫子带信号判断所述帧信号是否为啸叫帧信号;
所述啸叫判断模块,还用于若所述帧信号为啸叫帧信号,则抑制所述啸叫帧信号。
由以上技术方案可以看出,本申请通过获取音频数据;根据所述音频数据,获得所述音频数据中帧信号的第一子带信号;判断所述第一子带信号是否为第一啸叫子带信号;若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号,获得所述第一啸叫子带信号的第二子带信号;判断所述第二子带信号是否为第二啸叫子带信号;若所述第二子带信号为所述第二啸叫子带信号,则根据所述第二啸叫子带信号判断所述帧信号是否为啸叫帧信号;若所述帧信号为啸叫帧信号,则抑制所述啸叫帧信号。通过上述方式,将音频数据根据频率分成多个第一子带信号,并将能量值超过预设能量值的第一子带信号分成若干个第二子带信号,并判断能量值最大第二子带信号的能量比值是否超过预设比值,若连续三帧及以上帧信号存在大于预设比值的第二子带信号,则判定存在啸叫,从而可以准确找到啸叫频点并进行抑制,只对第二啸叫子带信号进行抑制,可以达到抑制啸叫的同时减少对音质的损害。
附图说明
图1是本申请实施例方案涉及的硬件运行环境的助听器的结构示意图;
图2为本申请啸叫抑制方法第一实施例的流程示意图;
图3为本申请啸叫抑制方法一实施例的助听器产生声反馈的原理图;
图4为本申请啸叫抑制方法一实施例的滤波器频谱示意图;
图5为本申请啸叫抑制方法一实施例的啸叫抑制原理示意图;
图6为本申请啸叫抑制装置第一实施例的结构框图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
参照图1,图1为本申请实施例方案涉及的硬件运行环境的助听器结构示意图。
如图1所示,该助听器可以包括:处理器1001,例如中央处理器(CentralProcessing Unit,CPU),通信总线1002、用户接口1003,网络接口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如无线保真(WIreless-FIdelity,WI-FI)接口)。存储器1005可以是高速的随机存取存储器(RandomAccess Memory,RAM)存储器,也可以是稳定的非易失性存储器(Non-Volatile Memory,NVM),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的结构并不构成对助听器的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及啸叫抑制程序。
在图1所示的助听器中,网络接口1004主要用于与网络服务器进行数据通信;用户接口1003主要用于与用户进行数据交互;本申请助听器中的处理器1001、存储器1005可以设置在助听器中,所述助听器通过处理器1001调用存储器1005中存储的啸叫抑制程序,并执行本申请实施例提供的啸叫抑制方法。
本申请实施例提供了一种啸叫抑制方法,参照图2,图2为本申请一种啸叫抑制方法第一实施例的流程示意图。
本实施例中,所述啸叫抑制方法包括以下步骤:
步骤S10:获取音频数据。
需要说明的是,本实施例的执行主体可为助听器,助听器可为数字助听器,助听器是一个小型扩音器,把原本听不到的声音加以扩大,再利用听障者的残余听力,使声音能送到大脑听觉中枢,而感觉到声音。助听器产生啸叫的原理如图3所示,受话器的声音能量的一部分通过声传播的方式传到麦克风而引起的啸叫现象。
可以理解的是,助听器的麦克风采集的声音经模数转换器采样量化后,得到离散的数字信号,离散的数字信号即为音频数据。
步骤S20:根据所述音频数据,获得所述音频数据中帧信号的第一子带信号。
进一步地,步骤S20包括:根据所述音频数据获得音频采样率;根据所述音频采样率获得帧信息;根据所述音频数据获得频率信息;根据所述频率信息,将所述音频数据划分成不同预设频率范围的音频信号;将所述不同预设频率范围的音频信号分配至对应的第一通道,获得第一子带信号集合;根据所述帧信息与所述第一子带信号集合,获得帧信号的第一子带信号。
需要说明的是,音频采样率是指录音设备在一秒钟内对声音信号的采样次数,采样频率越高声音的还原就越真实越自然。在当今的主流采集卡上,采样频率一般共分为 11025Hz、22050Hz、24000Hz、44100Hz、48000Hz五个等级,采样频率为11025Hz的音频数据,一秒钟内包含11025个采样点。
需要说明的是,帧信息包括每一帧的时间信息,例如:对采样率为44100Hz的高级音频编码音频(Advanced Audio Coding,AAC)进行解码时,通常是按1024个采样点为一帧,所以一帧的时间在23.22毫秒内,根据采样率的不同帧信息也存在不同,本实施例不做限制。
可以理解的是,频率信息包括采集到的音频数据的声波频率,第一通道是指声音输入线,一条线算一个通道。在一般音频数据中声音是左右通道。左声道和右声道。
需要说明的是,根据多段预设的声波频率范围,将音频数据分成不同声波频率范围的音频信号,并分配至对应的第一通道,即将音频数据通过第一级滤波器组分成不同声波频率范围的音频信号,第一级滤波器组中包含多个预设频率范围的第一通道,得到第一子带信号集合。根据帧信息,可以获得一帧时间内的第一子带信号集合,即帧信号。例如:如图4所示基于人耳听觉特性,可对声波频率在50Hz~8000Hz的音频数据进行分通道,由于人类耳蜗对声音频率的感知并不是等间距的,在耳蜗结构中,低频段划分比较细,高频段划分比较粗,所以预设频率范围并不是均匀分布的,预设频率范围可为50Hz~600Hz、601Hz~1800Hz、1801Hz~4000Hz、4001Hz~8000Hz,将对应声波频率的音频数据分成4组音频信号,得到包含4组音频信号第一子带信号集合,帧信息为23.22毫秒,则23.22毫秒内的第一子带信号集合为帧信号,每一第一通道的音频信号为第一子带信号,以上仅为举例说明,本实施例不做限制。
可以理解的是,帧信号为实时采集,每采集一帧时间的音频数据即对一帧时间内的音频数据分通道,已达到实时处理的效果。
步骤S30:判断所述第一子带信号是否为第一啸叫子带信号。
进一步地,步骤S30包括:根据帧信号的第一子带信号,确定所述第一子带信号的能量值;将所述第一子带信号的能量值与预设能量阈值进行比较,以判断所述第一子带信号是否为第一啸叫子带信号。
需要说明的是,第一子带信号的能量值是指第一子带信号能量的对数,能量计算公式如下:
Figure PCTCN2022073870-appb-000001
其中,x i(n)表示第一级滤波器组第n帧信号中第i个第一子带的信号值,i∈(0,1,2,3…,L),N∈(0,1,2…,N),L为信号长度,N表示当前帧信号的顺序。表示第i个第一子带信号的能量。
能量的对数的计算公式如下:
log_E i=log 2(E i)  公式一;
其中,log_E i第i个第一子带信号的能量值。
可以理解的是,将log_E i与预设能量值进行比较,当大于预设能量值时,则判定第一子带信号为第一啸叫子带信号,否则则不是。若所有第一子带信号都不是第一啸叫子带信号,则判定不存在啸叫。
步骤S40:若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号,获得所述第一啸叫子带信号的第二子带信号。
进一步地,步骤S40包括:若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号的频率,将所述第一啸叫子带信号划分成不同预设啸叫频率范围的第一啸叫子带信号;将所述不同预设啸叫频率范围的第一啸叫子带信号分配至对应的第二通道,获得第二子带信号集合;根据所述第二子带信号集合获得第二子带信号。
需要说明的是,当帧信号的第一子带信号为第一啸叫子带信号时,需要对第一啸叫子带信号分成频带更细的第二子带信号,即预设啸叫频率范围比上述的预设频率范围的范围更小。例如:对第一啸叫子带信号的频率在50Hz~600Hz,将50Hz~600Hz划分成 50Hz~200Hz、201Hz~400Hz、401Hz~600Hz,将第一啸叫子带信号通过第二级滤波器组分配至对应的第二通道,可以获得3组第二子带信号的第二子带信号集合,从第二子带信号集合可以获得3组第二子带信号,以上仅为举例说明,本实施例不做限制。
步骤S50:判断所述第二子带信号是否为第二啸叫子带信号。
进一步地,步骤S50包括:根据所述第二子带信号,确定所述第二子带信号的能量值,并获得能量值最大的目标第二子带信号;获取所述目标第二子带信号相邻两第二子带信号的能量值;根据所述目标第二子带信号的能量值以及所述相邻两第二子带信号的能量值,确定所述目标第二子带信号与所述相邻两第二子带信号的能量比值;将所述能量比值与预设能量比值进行比较,以判断所述目标第二子带信号是否为第二啸叫子带信号。
需要说明的是,根据上述公式一及公式二可以得到各第二子带信号的能量值,并可以获得能量值最大的第二子带信号,即目标第二子带信号。
可以理解的是,获取目标第二子带信号前后相邻的第二子带信号的能量值,并计算能量比值,比值计算公式如下:
Figure PCTCN2022073870-appb-000002
Figure PCTCN2022073870-appb-000003
其中,p表示帧信号中第p个第一子带信号为第一啸叫子带信号,q表示第一啸叫子带信号中第q个第二子带信号为目标子带信号,Rate1、Rate2表示目标第二子带信号与相邻两第二子带信号的能量比值。
可以理解的是,若Rate1、Rate2均大于预设能量比值,则说明目标第二子带信号为第二啸叫子带信号。
步骤S60:若所述第二子带信号为所述第二啸叫子带信号,则根据所述第二啸叫子带信号判断所述帧信号是否为啸叫帧信号。
进一步地,步骤S60包括:若所述能量比值大于预设能量比值,则所述目标第二子带信号为所述第二啸叫子带信号;对所述第二啸叫子带信号进行标记,得到标记帧信号;根据所述标记帧信号判断所述帧信号是否为啸叫帧信号。
需要说明的是,若能量比值大于预设能量比值,则目标第二子带信号为第二啸叫子带信号,第二啸叫子带信号可能会形成啸叫,因此需对第二啸叫子带信号进行标记,同时第二啸叫子带信号所在的帧信号也被标记为标记帧信号。
应理解的是,当连续三帧以上帧信号为标记帧信号时,则说明此时存在啸叫现象,则连续三帧以上的标记帧信号均为啸叫帧信号,需要对啸叫帧信号进行抑制,已达到抑制啸叫的效果。
步骤S70:若所述帧信号为啸叫帧信号,则抑制所述啸叫帧信号。
进一步地,步骤S70包括:若所述帧信号为啸叫帧信号,将所述啸叫帧信号的第二啸叫子带信号设置为预设值,获得第二啸叫抑制子带信号,以抑制所述啸叫帧信号;所述抑制所述啸叫帧信号之后,还包括:将所述第二啸叫抑制子带信号与其余第二子带信号合成,获得第一啸叫抑制子带信号;将所述第一啸叫抑制子带信号与其余第一子带信号合成,获得啸叫抑制音频数据。
可以理解的是,啸叫帧信号的啸叫频点应处于第二啸叫子带信号,所以抑制啸叫需要对第二啸叫子带信号进行处理。例如:对第二啸叫子带信号直接置0,这样做一方面可以将啸叫抑制的计算复杂度降到最低,同时,由于第二级滤波器组的频带很窄,能够在彻底抑制啸叫的同时,减少对音质的损害。
应理解的是,再消除啸叫频点后,需要将各第二子带信号进行合成,可以获得啸叫抑制后的第一啸叫抑制子带信号,并将第一啸叫抑制子带信号与各第一子带信号进行合成,可以得到啸叫抑制后啸叫抑制音频数据,从而助听器可以正常播放音频而不会产生 啸叫。啸叫抑制方法的原理示意图如图5所示,音频数据通过第一级滤波器组获得包含若干第一子带信号的集合,根据帧信息将第一子带信号的集合分成若干帧信号,对帧信号中的第一子带信号进行啸叫检测,用于初步检测是否存在啸叫,若检测结果为存在啸叫,则对啸叫存在的第一子带信号通过第二级滤波器组分成频带更细的第二子带信号,对第二子带信号进行二次啸叫检测可以获得更精准的结果,若二次检测结果为存在啸叫,则对啸叫进行抑制,抑制完成后将所有子带信号合成为可播放音频数据。
本实施例通过获取音频数据;根据所述音频数据,获得所述音频数据中帧信号的第一子带信号;判断所述第一子带信号是否为第一啸叫子带信号;若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号,获得所述第一啸叫子带信号的第二子带信号;判断所述第二子带信号是否为第二啸叫子带信号;若所述第二子带信号为所述第二啸叫子带信号,则根据所述第二啸叫子带信号判断所述帧信号是否为啸叫帧信号;若所述帧信号为啸叫帧信号,则抑制所述啸叫帧信号。通过上述方式,将音频数据根据频率分成多个第一子带信号,并将能量值超过预设能量值的第一子带信号分成若干个第二子带信号,并判断能量值最大第二子带信号的能量比值是否超过预设比值,若连续三帧及以上帧信号存在大于预设比值的第二子带信号,则判定存在啸叫,从而可以准确找到啸叫频点并进行抑制,只对第二啸叫子带信号进行抑制,可以达到抑制啸叫的同时减少对音质的损害。
此外,本申请实施例还提出一种存储介质,所述存储介质上存储有啸叫抑制程序,所述啸叫抑制程序被处理器执行时实现如上文所述的啸叫抑制方法的步骤。
参照图6,图6为本申请啸叫抑制装置第一实施例的结构框图。
如图6所示,本申请实施例提出的啸叫抑制装置包括:
音频获取模块10,用于获取音频数据;
第一子带获取模块20,用于根据所述音频数据,获得所述音频数据中帧信号的第一子带信号;
所述第一子带获取模块20,还用于判断所述第一子带信号是否为第一啸叫子带信号;
第二子带获取模块30,用于若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号,获得所述第一啸叫子带信号的第二子带信号;
所述第二子带获取模块30,还用于判断所述第二子带信号是否为第二啸叫子带信号;
啸叫判断模块40,用于若所述第二子带信号为所述第二啸叫子带信号,则根据所述第二啸叫子带信号判断所述帧信号是否为啸叫帧信号;
所述啸叫判断模块40,还用于若所述帧信号为啸叫帧信号,则抑制所述啸叫帧信号。
应当理解的是,以上仅为举例说明,对本申请的技术方案并不构成任何限定,在具体应用中,本领域的技术人员可以根据需要进行设置,本申请对此不做限制。
本实施例通过获取音频数据;根据所述音频数据,获得所述音频数据中帧信号的第一子带信号;判断所述第一子带信号是否为第一啸叫子带信号;若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号,获得所述第一啸叫子带信号的第二子带信号;判断所述第二子带信号是否为第二啸叫子带信号;若所述第二子带信号为所述第二啸叫子带信号,则根据所述第二啸叫子带信号判断所述帧信号是否为啸叫帧信号;若所述帧信号为啸叫帧信号,则抑制所述啸叫帧信号。通过上述方式,将音频数据根据频率分成多个第一子带信号,并将能量值超过预设能量值的第一子带信号分成若干个第二子带信号,并判断能量值最大第二子带信号的能量比值是否超过预设比值,若连续三帧及以上帧信号存在大于预设比值的第二子带信号,则判定存在啸叫,从而可以准确找到啸叫频点并进行抑制,只对第二啸叫子带信号进行抑制,可以达到抑制啸叫的同时减少对音质的损害。
需要说明的是,以上所描述的工作流程仅仅是示意性的,并不对本申请的保护范围 构成限定,在实际应用中,本领域的技术人员可以根据实际的需要选择其中的部分或者全部来实现本实施例方案的目的,此处不做限制。
另外,未在本实施例中详尽描述的技术细节,可参见本申请任意实施例所提供的啸叫抑制方法,此处不再赘述。
在一实施例中,所述第一子带获取模块20,还用于根据所述音频数据获得音频采样率;根据所述音频采样率获得帧信息;根据所述音频数据获得频率信息;根据所述频率信息,将所述音频数据划分成不同预设频率范围的音频信号;将所述不同预设频率范围的音频信号分配至对应的第一通道,获得第一子带信号集合;根据所述帧信息与所述第一子带信号集合,获得帧信号的第一子带信号。
在一实施例中,所述第一子带获取模块20,还用于根据帧信号的第一子带信号,确定所述第一子带信号的能量值;将所述第一子带信号的能量值与预设能量阈值进行比较,以判断所述第一子带信号是否为第一啸叫子带信号。
在一实施例中,所述第二子带获取模块30,还用于若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号的频率,将所述第一啸叫子带信号划分成不同预设啸叫频率范围的第一啸叫子带信号;将所述不同预设啸叫频率范围的第一啸叫子带信号分配至对应的第二通道,获得第二子带信号集合;根据所述第二子带信号集合获得第二子带信号。
在一实施例中,所述第二子带获取模块30,还用于根据所述第二子带信号,确定所述第二子带信号的能量值,并获得能量值最大的目标第二子带信号;获取所述目标第二子带信号相邻两第二子带信号的能量值;根据所述目标第二子带信号的能量值以及所述相邻两第二子带信号的能量值,确定所述目标第二子带信号与所述相邻两第二子带信号的能量比值;将所述能量比值与预设能量比值进行比较,以判断所述目标第二子带信号是否为第二啸叫子带信号。
在一实施例中,所述啸叫判断模块40,还用于若所述能量比值大于预设能量比值,则所述目标第二子带信号为所述第二啸叫子带信号;对所述第二啸叫子带信号进行标记,得到标记帧信号;根据所述标记帧信号判断所述帧信号是否为啸叫帧信号。
在一实施例中,所述啸叫判断模块40,还用于若所述帧信号为啸叫帧信号,将所述啸叫帧信号的第二啸叫子带信号设置为预设值,获得第二啸叫抑制子带信号,以抑制所述啸叫帧信号;所述抑制所述啸叫帧信号之后,还包括:将所述第二啸叫抑制子带信号与其余第二子带信号合成,获得第一啸叫抑制子带信号;将所述第一啸叫抑制子带信号与其余第一子带信号合成,获得啸叫抑制音频数据。
此外,需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(Read Only Memory,ROM)/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技 术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种啸叫抑制方法,其中,所述啸叫抑制方法包括:
    获取音频数据;
    根据所述音频数据,获得所述音频数据中帧信号的第一子带信号;
    判断所述第一子带信号是否为第一啸叫子带信号;
    若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号,获得所述第一啸叫子带信号的第二子带信号;
    判断所述第二子带信号是否为第二啸叫子带信号;
    若所述第二子带信号为所述第二啸叫子带信号,则根据所述第二啸叫子带信号判断所述帧信号是否为啸叫帧信号;
    若所述帧信号为啸叫帧信号,则抑制所述啸叫帧信号。
  2. 如权利要求1所述的啸叫抑制方法,其中,所述根据所述音频数据,获得所述音频数据中帧信号的第一子带信号,包括:
    根据所述音频数据获得音频采样率;
    根据所述音频采样率获得帧信息;
    根据所述音频数据获得频率信息;
    根据所述频率信息,将所述音频数据划分成不同预设频率范围的音频信号;
    将所述不同预设频率范围的音频信号分配至对应的第一通道,获得第一子带信号集合;
    根据所述帧信息与所述第一子带信号集合,获得帧信号的第一子带信号。
  3. 如权利要求1所述的啸叫抑制方法,其中,所述判断所述第一子带信号是否为第一啸叫子带信号,包括:
    根据帧信号的第一子带信号,确定所述第一子带信号的能量值;
    将所述第一子带信号的能量值与预设能量阈值进行比较,以判断所述第一子带信号是否为第一啸叫子带信号。
  4. 如权利要求1所述的啸叫抑制方法,其中,所述若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号,获得所述第一啸叫子带信号的第二子带信号,包括:
    若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号的频率,将所述第一啸叫子带信号划分成不同预设啸叫频率范围的第一啸叫子带信号;
    将所述不同预设啸叫频率范围的第一啸叫子带信号分配至对应的第二通道,获得第二子带信号集合;
    根据所述第二子带信号集合获得第二子带信号。
  5. 如权利要求1所述的啸叫抑制方法,其中,所述判断所述第二子带信号是否为第二啸叫子带信号,包括:
    根据所述第二子带信号,确定所述第二子带信号的能量值,并获得能量值最大的目标第二子带信号;
    获取所述目标第二子带信号相邻两第二子带信号的能量值;
    根据所述目标第二子带信号的能量值以及所述相邻两第二子带信号的能量值,确定所述目标第二子带信号与所述相邻两第二子带信号的能量比值;
    将所述能量比值与预设能量比值进行比较,以判断所述目标第二子带信号是否为第二啸叫子带信号。
  6. 如权利要求5所述的啸叫抑制方法,其中,所述若所述第二子带信号为所述第二啸叫子带信号,则根据所述第二啸叫子带信号判断所述帧信号是否为啸叫帧信号,包括:
    若所述能量比值大于预设能量比值,则所述目标第二子带信号为所述第二啸叫子带信号;
    对所述第二啸叫子带信号进行标记,得到标记帧信号;
    根据所述标记帧信号判断所述帧信号是否为啸叫帧信号。
  7. 如权利要求1所述的啸叫抑制方法,其中,若所述帧信号为啸叫帧信号,则抑制所述啸叫帧信号,包括:
    若所述帧信号为啸叫帧信号,将所述啸叫帧信号的第二啸叫子带信号设置为预设值,获得第二啸叫抑制子带信号,以抑制所述啸叫帧信号;
    所述抑制所述啸叫帧信号之后,还包括:
    将所述第二啸叫抑制子带信号与其余第二子带信号合成,获得第一啸叫抑制子带信号;将所述第一啸叫抑制子带信号与其余第一子带信号合成,获得啸叫抑制音频数据。
  8. 一种啸叫抑制装置,其中,所述啸叫抑制装置包括:
    音频获取模块,用于获取音频数据;
    第一子带获取模块,用于根据所述音频数据,获得所述音频数据中帧信号的第一子带信号;
    所述第一子带获取模块,还用于判断所述第一子带信号是否为第一啸叫子带信号;
    第二子带获取模块,用于若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号,获得所述第一啸叫子带信号的第二子带信号;
    所述第二子带获取模块,还用于判断所述第二子带信号是否为第二啸叫子带信号;啸叫判断模块,用于若所述第二子带信号为所述第二啸叫子带信号,则根据所述第二啸叫子带信号判断所述帧信号是否为啸叫帧信号;
    所述啸叫判断模块,还用于若所述帧信号为啸叫帧信号,则抑制所述啸叫帧信号。
  9. 一种助听器,其中,所述助听器包括处理器和存储器,所述处理器用于执行存储器中存储的至少一个计算机可读指令以实现以下步骤:
    获取音频数据;
    根据所述音频数据,获得所述音频数据中帧信号的第一子带信号;
    判断所述第一子带信号是否为第一啸叫子带信号;
    若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号,获得所述第一啸叫子带信号的第二子带信号;
    判断所述第二子带信号是否为第二啸叫子带信号;
    若所述第二子带信号为所述第二啸叫子带信号,则根据所述第二啸叫子带信号判断所述帧信号是否为啸叫帧信号;
    若所述帧信号为啸叫帧信号,则抑制所述啸叫帧信号。
  10. 根据权利要求9所述的助听器,其中,在所述根据所述音频数据,获得所述音频数据中帧信号的第一子带信号时,所述处理器执行所述至少一个计算机可读指令用以实现以下步骤:
    根据所述音频数据获得音频采样率;
    根据所述音频采样率获得帧信息;
    根据所述音频数据获得频率信息;
    根据所述频率信息,将所述音频数据划分成不同预设频率范围的音频信号;
    将所述不同预设频率范围的音频信号分配至对应的第一通道,获得第一子带信号集合;
    根据所述帧信息与所述第一子带信号集合,获得帧信号的第一子带信号。
  11. 根据权利要求9所述的助听器,其中,在所述判断所述第一子带信号是否为第一啸叫子带信号时,所述处理器执行所述至少一个计算机可读指令以实现以下步骤:
    根据帧信号的第一子带信号,确定所述第一子带信号的能量值;
    将所述第一子带信号的能量值与预设能量阈值进行比较,以判断所述第一子带信号是否为第一啸叫子带信号。
  12. 根据权利要求9所述的助听器,其中,在所述若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号,获得所述第一啸叫子带信号的第二子带信号时,所述处理器执行所述至少一个计算机可读指令以实现以下步骤:
    若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号的频率,将所述第一啸叫子带信号划分成不同预设啸叫频率范围的第一啸叫子带信号;
    将所述不同预设啸叫频率范围的第一啸叫子带信号分配至对应的第二通道,获得第二子带信号集合;
    根据所述第二子带信号集合获得第二子带信号。
  13. 根据权利要求9所述的助听器,其中,在所述判断所述第二子带信号是否为第二啸叫子带信号时,所述处理器执行所述至少一个计算机可读指令以实现以下步骤:
    根据所述第二子带信号,确定所述第二子带信号的能量值,并获得能量值最大的目标第二子带信号;
    获取所述目标第二子带信号相邻两第二子带信号的能量值;
    根据所述目标第二子带信号的能量值以及所述相邻两第二子带信号的能量值,确定所述目标第二子带信号与所述相邻两第二子带信号的能量比值;
    将所述能量比值与预设能量比值进行比较,以判断所述目标第二子带信号是否为第二啸叫子带信号。
  14. 根据权利要求13所述的助听器,其中,在所述若所述第二子带信号为所述第二啸叫子带信号,则根据所述第二啸叫子带信号判断所述帧信号是否为啸叫帧信号时,所述处理器执行所述至少一个计算机可读指令以实现以下步骤:
    若所述能量比值大于预设能量比值,则所述目标第二子带信号为所述第二啸叫子带信号;
    对所述第二啸叫子带信号进行标记,得到标记帧信号;
    根据所述标记帧信号判断所述帧信号是否为啸叫帧信。
  15. 一种存储介质,其中,所述存储介质存储有至少一个计算机可读指令,所述至少一个计算机可读指令被处理器执行时实现以下步骤:
    获取音频数据;
    根据所述音频数据,获得所述音频数据中帧信号的第一子带信号;
    判断所述第一子带信号是否为第一啸叫子带信号;
    若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号,获得所述第一啸叫子带信号的第二子带信号;
    判断所述第二子带信号是否为第二啸叫子带信号;
    若所述第二子带信号为所述第二啸叫子带信号,则根据所述第二啸叫子带信号判断所述帧信号是否为啸叫帧信号;
    若所述帧信号为啸叫帧信号,则抑制所述啸叫帧信号。
  16. 根据权利要求15所述的存储介质,其中,在所述根据所述音频数据,获得所述音频数据中帧信号的第一子带信号时,所述至少一个计算机可读指令被处理器执行用以实现以下步骤:
    根据所述音频数据获得音频采样率;
    根据所述音频采样率获得帧信息;
    根据所述音频数据获得频率信息;
    根据所述频率信息,将所述音频数据划分成不同预设频率范围的音频信号;
    将所述不同预设频率范围的音频信号分配至对应的第一通道,获得第一子带信号集合;
    根据所述帧信息与所述第一子带信号集合,获得帧信号的第一子带信号。
  17. 根据权利要求15所述的存储介质,其中,在所述判断所述第一子带信号是否为第一啸叫子带信号时,所述至少一个计算机可读指令被处理器执行以实现以下步骤:
    根据帧信号的第一子带信号,确定所述第一子带信号的能量值;
    将所述第一子带信号的能量值与预设能量阈值进行比较,以判断所述第一子带信号是否为第一啸叫子带信号。
  18. 根据权利要求15所述的存储介质,其中,在所述若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号,获得所述第一啸叫子带信号的第二子带信号时,所述至少一个计算机可读指令被处理器执行以实现以下步骤:
    若所述第一子带信号为所述第一啸叫子带信号,则根据所述第一啸叫子带信号的频率,将所述第一啸叫子带信号划分成不同预设啸叫频率范围的第一啸叫子带信号;
    将所述不同预设啸叫频率范围的第一啸叫子带信号分配至对应的第二通道,获得第二子带信号集合;
    根据所述第二子带信号集合获得第二子带信号。
  19. 根据权利要求15所述的存储介质,其中,在所述判断所述第二子带信号是否为第二啸叫子带信号时,所述至少一个计算机可读指令被处理器执行以实现以下步骤:
    根据所述第二子带信号,确定所述第二子带信号的能量值,并获得能量值最大的目标第二子带信号;
    获取所述目标第二子带信号相邻两第二子带信号的能量值;
    根据所述目标第二子带信号的能量值以及所述相邻两第二子带信号的能量值,确定所述目标第二子带信号与所述相邻两第二子带信号的能量比值;
    将所述能量比值与预设能量比值进行比较,以判断所述目标第二子带信号是否为第二啸叫子带信号。
  20. 根据权利要求19所述的存储介质,其中,在所述若所述第二子带信号为所述第二啸叫子带信号,则根据所述第二啸叫子带信号判断所述帧信号是否为啸叫帧信号时,所述至少一个计算机可读指令被处理器执行以实现以下步骤:
    若所述能量比值大于预设能量比值,则所述目标第二子带信号为所述第二啸叫子带信号;
    对所述第二啸叫子带信号进行标记,得到标记帧信号;
    根据所述标记帧信号判断所述帧信号是否为啸叫帧信号。
PCT/CN2022/073870 2021-02-20 2022-01-25 啸叫抑制方法、装置、助听器及存储介质 WO2022174727A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/277,929 US20240137713A1 (en) 2021-02-20 2022-01-25 Howling suppression method, hearing aid, and storage medium
EP22755500.0A EP4297431A1 (en) 2021-02-20 2022-01-25 Howling suppression method and apparatus, hearing aid, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110191088.X 2021-02-20
CN202110191088.XA CN112565981B (zh) 2021-02-20 2021-02-20 啸叫抑制方法、装置、助听器及存储介质

Publications (1)

Publication Number Publication Date
WO2022174727A1 true WO2022174727A1 (zh) 2022-08-25

Family

ID=75034392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073870 WO2022174727A1 (zh) 2021-02-20 2022-01-25 啸叫抑制方法、装置、助听器及存储介质

Country Status (4)

Country Link
US (1) US20240137713A1 (zh)
EP (1) EP4297431A1 (zh)
CN (1) CN112565981B (zh)
WO (1) WO2022174727A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115835092A (zh) * 2023-02-15 2023-03-21 南昌航天广信科技有限责任公司 一种音频扩音反馈抑制方法、系统、计算机及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112565981B (zh) * 2021-02-20 2021-06-15 深圳市智听科技有限公司 啸叫抑制方法、装置、助听器及存储介质
CN113225657B (zh) * 2021-04-16 2022-09-30 深圳木芯科技有限公司 基于双麦克风架构的多通道啸叫抑制方法
CN117641218B (zh) * 2024-01-25 2024-04-12 北京中电慧声科技有限公司 一种啸叫检测和抑制方法、系统及介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150104039A1 (en) * 2013-10-15 2015-04-16 Electronics And Telecommunications Research Institute Apparatus and method of suppressing howling
CN109451398A (zh) * 2018-11-16 2019-03-08 珠海市杰理科技股份有限公司 声反馈消除设备、声反馈消除方法、音频处理系统
CN109637552A (zh) * 2018-11-29 2019-04-16 河北远东通信系统工程有限公司 一种抑制音频设备啸叫的语音处理方法
CN110536215A (zh) * 2019-09-09 2019-12-03 普联技术有限公司 音频信号处理的方法、装置、计算设置及存储介质
CN110611871A (zh) * 2019-09-09 2019-12-24 惠州市锦好医疗科技股份有限公司 一种数字助听器的啸叫抑制方法、系统及专用dsp
CN110838301A (zh) * 2019-11-20 2020-02-25 北京雷石天地电子技术有限公司 抑制啸叫的方法、装置终端和非临时性计算机可读存储介质
CN110913306A (zh) * 2019-12-02 2020-03-24 北京飞利信电子技术有限公司 一种实现阵列麦克风波束形成的方法
CN112565981A (zh) * 2021-02-20 2021-03-26 深圳市智听科技有限公司 啸叫抑制方法、装置、助听器及存储介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4681163B2 (ja) * 2001-07-16 2011-05-11 パナソニック株式会社 ハウリング検出抑圧装置、これを備えた音響装置、及び、ハウリング検出抑圧方法
CN1767695A (zh) * 2005-09-08 2006-05-03 南京大学 无损语音质量的啸叫抑制方法
CN106162482B (zh) * 2015-04-10 2019-04-02 中国科学院声学研究所 一种用于抑制啸叫的扬声器阵列扩声系统及方法
US10251001B2 (en) * 2016-01-13 2019-04-02 Bitwave Pte Ltd Integrated personal amplifier system with howling control
CN105895115A (zh) * 2016-04-01 2016-08-24 北京小米移动软件有限公司 啸叫的判定方法及装置
CN107919134B (zh) * 2016-10-10 2021-04-02 杭州海康威视数字技术股份有限公司 啸叫检测方法及装置和啸叫抑制方法及装置
CN109218957B (zh) * 2018-10-23 2020-11-27 北京达佳互联信息技术有限公司 啸叫检测方法、装置、电子设备及存储介质
CN109671445A (zh) * 2018-12-28 2019-04-23 广东美电贝尔科技集团股份有限公司 一种音频系统声音啸叫的抑制方法
CN111402911B (zh) * 2019-12-23 2023-01-31 佛山慧明电子科技有限公司 一种啸叫检测与抑制方法
CN111883163B (zh) * 2020-04-02 2023-11-28 珠海市杰理科技股份有限公司 音频啸叫抑制方法、设备和系统及神经网络训练方法
CN112037816B (zh) * 2020-05-06 2023-11-28 珠海市杰理科技股份有限公司 语音信号频域频率的校正、啸叫检测、抑制方法及装置
CN111800725B (zh) * 2020-05-29 2021-10-29 展讯通信(上海)有限公司 啸叫检测方法及装置、存储介质、计算机设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150104039A1 (en) * 2013-10-15 2015-04-16 Electronics And Telecommunications Research Institute Apparatus and method of suppressing howling
CN109451398A (zh) * 2018-11-16 2019-03-08 珠海市杰理科技股份有限公司 声反馈消除设备、声反馈消除方法、音频处理系统
CN109637552A (zh) * 2018-11-29 2019-04-16 河北远东通信系统工程有限公司 一种抑制音频设备啸叫的语音处理方法
CN110536215A (zh) * 2019-09-09 2019-12-03 普联技术有限公司 音频信号处理的方法、装置、计算设置及存储介质
CN110611871A (zh) * 2019-09-09 2019-12-24 惠州市锦好医疗科技股份有限公司 一种数字助听器的啸叫抑制方法、系统及专用dsp
CN110838301A (zh) * 2019-11-20 2020-02-25 北京雷石天地电子技术有限公司 抑制啸叫的方法、装置终端和非临时性计算机可读存储介质
CN110913306A (zh) * 2019-12-02 2020-03-24 北京飞利信电子技术有限公司 一种实现阵列麦克风波束形成的方法
CN112565981A (zh) * 2021-02-20 2021-03-26 深圳市智听科技有限公司 啸叫抑制方法、装置、助听器及存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115835092A (zh) * 2023-02-15 2023-03-21 南昌航天广信科技有限责任公司 一种音频扩音反馈抑制方法、系统、计算机及存储介质

Also Published As

Publication number Publication date
US20240137713A1 (en) 2024-04-25
CN112565981A (zh) 2021-03-26
EP4297431A1 (en) 2023-12-27
CN112565981B (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2022174727A1 (zh) 啸叫抑制方法、装置、助听器及存储介质
Cornelis et al. Performance analysis of multichannel Wiener filter-based noise reduction in hearing aids under second order statistics estimation errors
TWI463817B (zh) 可適性智慧雜訊抑制系統及方法
EP3780656A1 (en) Systems and methods for providing personalized audio replay on a plurality of consumer devices
CN108235181B (zh) 在音频处理装置中降噪的方法
Roman et al. Speech intelligibility in reverberation with ideal binary masking: Effects of early reflections and signal-to-noise ratio threshold
Westermann et al. Binaural dereverberation based on interaural coherence histograms
US10623854B2 (en) Sub-band mixing of multiple microphones
US20170195811A1 (en) Audio Monitoring and Adaptation Using Headset Microphones Inside User's Ear Canal
WO2017054494A1 (zh) 一种混音处理方法、装置、设备及存储介质
Bernardi et al. Subjective and objective sound-quality evaluation of adaptive feedback cancellation algorithms
US11380312B1 (en) Residual echo suppression for keyword detection
US10991375B2 (en) Systems and methods for processing an audio signal for replay on an audio device
CN112802490B (zh) 一种基于传声器阵列的波束形成方法和装置
CN112997249B (zh) 语音处理方法、装置、存储介质及电子设备
US20190392850A1 (en) Systems and methods for processing an audio signal for replay on an audio device
CN114420153A (zh) 音质调整方法、装置、设备及存储介质
CN112309418B (zh) 一种抑制风噪声的方法及装置
WO2017171864A1 (en) Acoustic environment understanding in machine-human speech communication
Muralimanohar et al. Using envelope modulation to explain speech intelligibility in the presence of a single reflection
EP3896999A1 (en) Systems and methods for a hearing assistive device
JP2020201337A (ja) 音声処理装置及び音声処理方法
US11902747B1 (en) Hearing loss amplification that amplifies speech and noise subsignals differently
US11615801B1 (en) System and method of enhancing intelligibility of audio playback
EP4258263A1 (en) Apparatus and method for noise suppression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755500

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18277929

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022755500

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022755500

Country of ref document: EP

Effective date: 20230920