WO2022174596A1 - 磁悬浮压缩机 - Google Patents

磁悬浮压缩机 Download PDF

Info

Publication number
WO2022174596A1
WO2022174596A1 PCT/CN2021/123492 CN2021123492W WO2022174596A1 WO 2022174596 A1 WO2022174596 A1 WO 2022174596A1 CN 2021123492 W CN2021123492 W CN 2021123492W WO 2022174596 A1 WO2022174596 A1 WO 2022174596A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
main shaft
magnetic levitation
axial
motor main
Prior art date
Application number
PCT/CN2021/123492
Other languages
English (en)
French (fr)
Inventor
张芳
龚高
邹志堂
李欣
邓明星
钟敦颖
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2022174596A1 publication Critical patent/WO2022174596A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic

Definitions

  • the present application relates to the technical field of air compression, in particular to a magnetic levitation compressor.
  • the impeller pressure ratio of the compressor is generally relatively high, which will cause the compressor rotor to be subjected to a large axial force.
  • a balance disc structure is generally installed on the rotor to balance out part of the axial force.
  • the balance plate is also set for the consideration of reducing the axial magnetic bearing load, and the magnetic levitation compressor generally adopts indirect control when controlling the position of the impeller, by controlling a certain part of the axial component such as The position of the oil choke in turn controls the impeller position.
  • the structure of the magnetic levitation centrifugal compressor in the related art includes a recirculator, a secondary impeller, an oil resistance sleeve, an oil resistance sealing ring, a casing, a displacement sensor, a radial protection structure and a motor main shaft.
  • the secondary impeller and the oil resistance sleeve are installed on the main shaft of the motor, the oil resistance sleeve sealing ring is fixed on the recirculator, and the displacement sensor is fixed on the casing.
  • the compressor adopts the oil resistance sleeve to balance the axial force, controls the axial position of the oil resistance sleeve through the displacement sensor, and then controls the axial position of the secondary impeller, and forms a comb-tooth structure through the oil resistance sleeve and the oil resistance sealing ring, thereby starting the operation. to the sealing effect.
  • the high-speed rotation of the rotor drives the secondary impeller and the oil resistance sleeve to rotate together at a high speed, and a gas film is formed between the oil resistance sleeve and the oil resistance sealing ring, which plays a sealing role;
  • the axial displacement sensor detects the oil resistance of the oil resistance sleeve. position, the front and rear axial bearings control the position of the thrust plate according to the position information of the oil blocking sleeve, and then control the position of the impeller.
  • the technical problem to be solved by the present application is to provide a magnetic levitation compressor, which can directly detect the axial position of the impeller and improve the control precision of the system.
  • the present application provides a magnetic levitation compressor, which includes a motor main shaft, a first impeller, a recirculator and an axial displacement sensor.
  • the first impeller is installed in the recirculator and sleeved outside the main shaft of the motor, and the axial displacement sensor is fixedly arranged relative to the recirculator.
  • the side of the first impeller facing the axial displacement sensor has an axial detection surface, and the axial displacement sensor can detect the axial displacement of the first impeller through the axial detection surface.
  • the magnetic levitation compressor further includes a casing, the motor main shaft is installed in the casing, the recirculator and the casing are fixedly connected, and the axial displacement sensor is installed on the recirculator or the casing.
  • an impeller sealing ring is fixedly installed on the casing or the recirculator, an installation groove is provided on the impeller sealing ring, and the axial displacement sensor is installed in the installation groove.
  • the installation groove is arranged on a side of the impeller seal ring facing the recirculator, and the axial displacement sensor is arranged on a side of the impeller seal ring facing the recirculator.
  • a sealing fit is formed between the impeller sealing ring and the first impeller.
  • the impeller sealing ring abuts against the first impeller in the radial direction of the main shaft of the motor and forms a sealing fit.
  • a balance ring is provided on the side of the first impeller facing the axial displacement sensor, the balance ring extends along the axial direction of the main shaft of the motor, the balance ring is sleeved in the impeller seal ring, and is in sealing fit with the impeller seal ring.
  • a zigzag structure is provided on the inner ring surface of the impeller seal ring, the balance ring and the impeller seal ring are gap-fitted, and an air film gap is formed between the outer ring wall of the balance ring and the zigzag structure.
  • the outer diameter of the backside of the first impeller facing the axial displacement sensor is R1
  • the outer diameter of the balance ring is R2, 1/3 ⁇ R2/R1 ⁇ 2/3.
  • the motor main shaft includes an inclined shaft shoulder
  • the inner ring wall of the first impeller has a conical surface segment
  • the conical surface segment cooperates with the inclined shaft shoulder to define the axial position of the first impeller relative to the motor main shaft.
  • a thrust plate is fixedly installed on the main shaft of the motor, and an axial magnetic suspension bearing is fixedly installed in the housing.
  • the axial magnetic suspension bearing is arranged on both sides of the thrust plate and defines the axial position of the thrust plate.
  • radial magnetic suspension bearings are also provided on the inner wall of the housing.
  • a first radial magnetic suspension bearing is arranged at the first end of the casing, and a second radial magnetic suspension bearing is arranged at the second end of the casing, which can be connected to the motor shaft from both ends of the motor shaft.
  • the main shaft of the motor exerts a radial magnetic levitation effect.
  • a first radial protection structure is provided on the inner wall of the first end of the housing facing the motor spindle, and a first radial protection structure is provided on the inner wall of the second end of the housing facing the motor spindle.
  • the second radial protection structure is provided on the inner wall of the first end of the housing facing the motor spindle.
  • a motor stator is also fixedly installed on the inner wall of the housing facing the motor main shaft, and the motor stator is used to cooperate with the rotor assembly on the motor main shaft.
  • the magnetic levitation compressor further includes a second impeller, a second impeller diffuser, a first-stage diffuser and an interstage seal support collar;
  • the second impeller is mounted on the second impeller diffuser. facing the inner side of the motor main shaft and fixedly mounted on the first end of the motor main shaft;
  • the second impeller, the first-stage diffuser and the first impeller are along the axial direction of the motor main shaft
  • the first impeller and the second impeller respectively have an air inlet and an air outlet that communicate with each other, and the first-stage diffuser is arranged between the air outlet of the second impeller and the first impeller.
  • the air outlet of the second impeller is in gas communication with the air inlet of the second impeller through a first-stage diffuser; the inter-stage sealing support collar is sleeved outside the motor main shaft, The first stage diffuser is sleeved outside the interstage seal support collar.
  • the magnetic levitation compressor provided by the present application includes a motor main shaft, a first impeller, a recirculator, an axial displacement sensor and a casing.
  • the main shaft of the motor is installed in the casing, the recirculator and the casing are fixedly connected, the first impeller is installed in the recirculator and sleeved outside the main shaft of the motor, the axial displacement sensor is fixed relative to the casing, and the first impeller faces the shaft
  • the side facing the displacement sensor has an axial detection surface, and the axial displacement sensor can detect the axial displacement of the first impeller through the axial detection surface.
  • the axial displacement sensors of the magnetic levitation compressor are distributed on the back side of the first impeller, and directly detect the axial displacement of the first impeller by detecting the axial detection surface on the back side of the first impeller, avoiding the
  • the high temperature makes the axial components elongate, resulting in inaccurate detection of the axial position of the impeller, which improves the control accuracy of the system, reduces the energy loss between the impeller outlet and the air inlet of the recirculator, and improves the compressor conversion efficiency. .
  • FIG. 1 is a cross-sectional structural diagram of a magnetic levitation compressor according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the matching structure of the magnetic levitation compressor at the impeller sealing ring according to the embodiment of the present application.
  • FIG. 3 is an enlarged structural view of C in FIG. 2 .
  • FIG. 4 is a schematic diagram of the force of the first impeller of the magnetic levitation compressor according to the embodiment of the present application.
  • FIG. 5 is a schematic diagram of the balance principle of the first impeller of the magnetic levitation compressor according to the embodiment of the present application.
  • the magnetic levitation compressor includes a motor main shaft 13 , a first impeller 6 , a recirculator 4 , an axial displacement sensor 7 and a casing 9 .
  • the motor spindle 13 is installed in the housing 9 , and the recirculator 4 is fixedly connected with the housing 9 .
  • the first impeller 6 is installed in the recirculator 4 and sleeved outside the motor main shaft 13 .
  • the axial displacement sensor 7 is fixedly arranged relative to the casing 9 , and the side of the first impeller 6 facing the axial displacement sensor 7 has an axial detection surface 602 .
  • the axial displacement sensor 7 can detect the axial displacement of the first impeller 6 through the axial detection surface 602 .
  • the axial displacement sensor 7 of the magnetic levitation compressor is distributed on the back side of the first impeller 6, and directly detects the axial displacement of the first impeller 6 by detecting the axial detection surface 602 on the back side of the first impeller 6, avoiding the need for During the operation of the compressor, the axial components are elongated due to the high temperature, resulting in inaccurate detection of the axial position of the impeller, which improves the control accuracy of the system and reduces the energy loss between the impeller outlet and the air inlet of the recirculator. Improved compressor conversion efficiency.
  • the above-mentioned magnetic levitation compressor is, for example, a magnetic levitation centrifugal compressor.
  • the back side of the first impeller 6 is the side of the first impeller 6 facing the casing 9 in the axial direction of the motor main shaft 13 (hereinafter referred to as the axial direction).
  • the axial displacement sensor 7 is provided between the first impeller 6 and the housing 9 .
  • the axial displacement sensor 7 is installed on the recirculator 4 or the housing 9, so that the axial displacement sensor 7 can be in a fixed state relative to the housing 9, and will not change with the extension or shortening of the motor shaft 13, so it can accurately detect Axial displacement of the first impeller 6 .
  • the casing 9 or the recirculator 4 is fixedly installed with an impeller sealing ring 8
  • the impeller sealing ring 8 is provided with an installation groove
  • the axial displacement sensor 7 is installed in the installation groove.
  • the impeller sealing ring 8 is sleeved outside the first impeller 6 .
  • the axial displacement sensor 7 is installed on the impeller sealing ring 8, so that an integral structure can be formed between the axial displacement sensor 7 and the impeller sealing ring 8, thereby reducing the axial size of the compressor, making the compressor
  • the overall structure is more compact.
  • the impeller sealing ring 8 can also be fixedly connected to the recirculator 4 and the housing 9 at the same time.
  • the axial displacement sensor 7 is fixed on the impeller sealing ring 8, and the connection methods include but are not limited to screws, bolts, pin connections, interference fit heat assembly, welding, applying adhesives, and the like.
  • a mounting groove is provided on the side of the impeller seal ring 8 facing the recirculator 4 , and the axial displacement sensor 7 is arranged on the side of the impeller seal ring 8 facing the recirculator 4 , so that it is more convenient to realize the axial displacement sensor 7 fixed installation.
  • a sealing fit is formed between the impeller sealing ring 8 and the first impeller 6 , and the surface fit between the oil blocking sleeve and the impeller sealing ring 8 can be replaced by the sealing fit between the impeller sealing ring 8 and the first impeller 6 , so that the resistance can be eliminated.
  • the oil jacket reduces the number of parts and the weight of the rotor assembly, thus improving the operational stability of the compressor.
  • the impeller sealing ring 8 abuts with the first impeller 6 in the radial direction of the motor main shaft 13 and forms a sealing fit.
  • a balance ring 601 is provided on the side of the first impeller 6 facing the axial displacement sensor 7 .
  • the balance ring 601 extends along the axial direction of the motor shaft 13 .
  • the balance ring 601 is sleeved in the impeller sealing ring 8 and is in sealing fit with the impeller sealing ring 8 .
  • the inner ring surface of the impeller sealing ring 8 is provided with a serrated structure, and the balance ring 601 and the impeller sealing ring 8 are in clearance fit.
  • An air film gap is formed between the outer ring wall of the balance ring 601 and the sawtooth structure.
  • the zigzag structure of the impeller sealing ring 8 is not limited to triangular zigzag, rectangular zigzag, etc. It can generate a gas film when the balance ring 601 on the first impeller 6 and the impeller sealing ring 8 rotate at a relatively high speed, thereby blocking the flow of gas. Can.
  • the first impeller 6 is a rotating body, and the impeller sealing ring 8 is a non-rotating body, so a clearance fit is used between the balance ring 601 and the impeller sealing ring 8 to avoid contact with the impeller sealing ring when the balance ring 601 rotates with the first impeller 6 Friction occurs between 8, causing wear.
  • the outer diameter of the back side of the first impeller 6 facing the axial displacement sensor 7 is R1, and the outer diameter of the balance ring is R2, 1/3 ⁇ R2/R1 ⁇ 2/3.
  • the balance ring 601 can balance the axial force at both ends of the first impeller 6 and improve the stability of the first impeller 6 during operation.
  • the inner diameter of the balance ring 601 is larger than the inner diameter of the first impeller 6
  • the outer diameter of the balance ring 601 is smaller than the outer diameter of the back side of the first impeller 6 .
  • the back side of the first impeller 6 refers to the side of the first impeller 6 facing the impeller sealing ring 8 .
  • the balance ring 601 is located in the range of 1/3-2/3 of the outer diameter of the first impeller 6 , the effect of balancing the axial force is the best.
  • the motor main shaft 13 includes an oblique shaft shoulder 131 , and the inner ring wall of the first impeller 6 has a conical surface section 603 .
  • the shaft 13 of the motor and the first impeller 6 are fitted with an oblique shaft shoulder 131 , which can facilitate the axial positioning of the first impeller 6 on the main shaft 13 of the motor.
  • a thrust plate 17 is fixedly installed on the motor main shaft 13, and an axial magnetic suspension bearing is fixedly installed in the housing 9.
  • the axial magnetic suspension bearing is arranged on both sides of the thrust plate 17 in the axial direction, and defines the axis of the thrust plate 17. to the location.
  • the axial magnetic suspension bearing is sleeved outside the main shaft 13 of the motor.
  • the axial magnetic suspension bearing includes a first axial magnetic suspension bearing 16 disposed on the first side of the thrust plate 17 in the axial direction and a first axial magnetic suspension bearing 16 disposed on the second side of the thrust plate 17 in the axial direction.
  • the two axial magnetic suspension bearings 18 can exert an axial action on the thrust plate 17 from both sides of the thrust plate 17 to realize the axial position adjustment of the thrust plate 17 and further realize the axial position adjustment of the motor spindle 13 .
  • a radial magnetic suspension bearing is also arranged on the inner wall of the housing 9 .
  • a first radial magnetic suspension bearing 11 is arranged at the first end of the housing 9
  • a second radial magnetic suspension bearing 14 is arranged at the second end of the housing 9 .
  • the radial magnetic levitation effect is applied to the motor main shaft 13 , which makes it easier to realize the radial balance of the motor main shaft 13 .
  • a first radial protection structure 10 is provided on the inner wall of the first end of the housing 9 facing the motor spindle 13, and a second radial protection structure 15 is provided on the inner wall of the second end of the housing 9 facing the motor spindle 13 , radial protection can be formed at both ends of the motor main shaft 13 to avoid the problem of damage to the motor main shaft 13 caused by the failure of the magnetic suspension bearing.
  • the inner wall of the housing 9 facing the motor main shaft 13 is also fixedly installed with a motor stator 12 .
  • the magnetic levitation compressor further includes a second impeller 1 , a second impeller diffuser 2 , a first-stage diffuser 3 and an inter-stage seal support collar 5 .
  • the second impeller 1 is installed on the inner side of the second impeller diffuser 2 toward the motor main shaft 13 , and is fixedly installed at the first end of the motor main shaft 13 .
  • the second impeller 1 , the first-stage diffuser 3 and the first impeller 6 are arranged in sequence along the axial direction of the motor main shaft 13 .
  • the first impeller 6 and the second impeller 1 respectively have an air inlet and an air outlet in gas communication.
  • the primary diffuser 3 is provided between the air outlet of the second impeller 1 and the air inlet of the first impeller 6 .
  • the air outlet of the second impeller 1 is in gas communication with the air inlet of the first impeller 1 through the first-stage diffuser 3 .
  • the first-stage diffuser 3 diffuses the gas at the gas outlet of the second impeller 1 and sends it to the gas inlet of the first impeller 6 .
  • the interstage seal support collar 5 is sleeved outside the motor main shaft 13 , and the first-stage diffuser 3 is sleeved outside the interstage seal support collar 5 .
  • the motor main shaft 13 rotates at a high speed, which drives the first impeller 6 to rotate.
  • a gas film is formed between the impeller sealing ring 8 and the balance ring 601 , so that the gas in the cavity of the recirculator 4 is sealed and isolated from the gas in the motor cavity, so as to play a sealing role.
  • the motor cavity refers to the space in the casing 9 , and is specifically defined by the casing 9 , the first impeller 6 and the impeller sealing ring 8 .
  • the first impeller 6 works so that a pressure difference is generated between the primary air pressure P1, the secondary air pressure P2 and the cavity air pressure P3.
  • the primary air pressure P1 refers to the air pressure at the air inlet of the first impeller 6
  • the secondary air pressure P2 refers to the air pressure at the air outlet of the first impeller 6
  • the cavity air pressure P3 refers to the air pressure in the motor cavity.
  • the axial pressure of the first impeller 6 is P1 ⁇ S1, P2 ⁇ (S2-S3) and P3 ⁇ S4.
  • S1 and S4 are respectively the action areas of the primary air pressure P1 and the cavity air pressure P3 on the first impeller 6 .
  • S2 and S3 are respectively the action areas of the secondary air pressure P2 on the front side and the back side of the first impeller 6 .
  • the front side and the back side of the first impeller 6 are arranged opposite to each other in the axial direction.
  • the balance ring 601 has an optimal position, which can better balance the axial force of the first impeller 6 .
  • the axial displacement sensor 7 monitors the axial position of the first impeller 6 in real time, and the first axial magnetic suspension bearing 16 and the second axial magnetic suspension bearing 18 control the position of the thrust plate 17 according to the data collected by the axial displacement sensor 7, thereby driving the The first impeller 6 moves to realize real-time control of the position of the first impeller 6 .

Abstract

一种磁悬浮压缩机包括电机主轴(13)、第一叶轮(6)、回流器(4)和轴向位移传感器(7),第一叶轮(6)安装在回流器(4)内,并且套设在电机主轴(13)外,轴向位移传感器(7)相对于回流器(4)固定设置,第一叶轮(6)朝向轴向位移传感器(7)的一侧具有轴向检测面(602)。该磁悬浮压缩机能够直接检测叶轮的轴向位置,提高系统的控制精度。

Description

磁悬浮压缩机
相关申请
本申请要求2021年02月22日申请的,申请号为202110198091.4,名称为“磁悬浮压缩机”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及空气压缩技术领域,具体涉及一种磁悬浮压缩机。
背景技术
压缩机的叶轮压比一般都比较高,这会使压缩机转子所受轴向力较大,为了减小推力轴承的载荷,一般都会在转子上设置平衡盘结构用于平衡掉一部分轴向力。对于磁悬浮压缩机来说,会同样出于减小轴向磁轴承载荷的考虑设置平衡盘,并且磁悬浮压缩机在控制叶轮位置时,一般都采用间接控制,通过控制轴向组件的某个零件如阻油套的位置进而控制叶轮位置。
相关技术中的磁悬浮离心压缩机结构包括回流器、二级叶轮、阻油套、阻油密封环、壳体、位移传感器、径向保护结构和电机主轴。二级叶轮及阻油套安装在电机主轴上,阻油套密封环固定在回流器上,位移传感器固定于机壳上。
压缩机采用阻油套平衡轴向力,通过位移传感器控制阻油套的轴向位置,进而控制二级叶轮的轴向位置,并且通过阻油套与阻油密封环形成梳齿结构,进而起到密封作用。当压缩机运行时,转子高速旋转带动二级叶轮以及阻油套一起高速旋转,通过阻油套及阻油密封环之间形成气膜,起到密封作用;轴向位移传感器检测阻油套的位置,前后轴向轴承根据阻油套位置信息控制止推盘位置,进而控制叶轮的位置。
然而,由于叶轮与阻油套之间有一定的轴向距离,当压缩机运行时,电机主轴会因为高温而发生伸长,导致二级叶轮和阻油套的相对位置发生变化,导致轴向传感器检测数据与叶轮的实际轴向位置数据会产生误差,从而影响系统的控制精度。
发明内容
因此,本申请要解决的技术问题在于提供一种磁悬浮压缩机,能够直接检测叶轮的轴向位置,提高系统的控制精度。
为了解决上述问题,本申请提供一种磁悬浮压缩机,包括电机主轴、第一叶轮、回流器和轴向位移传感器。第一叶轮安装在回流器内,并且套设在电机主轴外,轴向位移传感器相对于回流器固定设置。第一叶轮朝向轴向位移传感器的一侧具有轴向检测面,轴向位移传感器能够通过轴向检测面检测第一叶轮的轴向位移。
可选地,磁悬浮压缩机还包括壳体,电机主轴安装在壳体内,回流器与壳体之间固定连接,轴向位移传感器安装在回流器或者壳体上。
可选地,壳体或回流器固定安装有叶轮密封环,叶轮密封环上设置有安装槽,轴向位移传感器安装在安装槽内。
可选地,所述安装槽设置在所述叶轮密封环朝向所述回流器的一侧,所述轴向位移传感器设置在所述叶轮密封环朝向所述回流器的一侧。
可选地,叶轮密封环与第一叶轮之间形成密封配合。
可选地,所述叶轮密封环与所述第一叶轮在所述电机主轴的径向上抵接并形成密封配合。
可选地,第一叶轮朝向轴向位移传感器的一侧设置有平衡圈,平衡圈沿着电机主轴的轴向延伸,平衡圈套设在叶轮密封环内,并与叶轮密封环之间密封配合。
可选地,叶轮密封环的内环面上设置有锯齿状结构,平衡圈与叶轮密封环之间间隙配合,平衡圈的外环壁与锯齿状结构之间形成气膜间隙。
可选地,第一叶轮朝向轴向位移传感器的背侧外径为R1,平衡圈的外径为R2,1/3≤R2/R1≤2/3。
可选地,电机主轴包括斜轴肩,第一叶轮的内环壁具有锥面段,锥面段与斜轴肩配合,限定第一叶轮相对于电机主轴的轴向位置。
可选地,电机主轴上固定安装有止推盘,壳体内固定安装有轴向磁悬浮轴承,轴向磁悬浮轴承设置在止推盘的两侧,并限定止推盘的轴向位置。
可选地,壳体的内壁上还设置有径向磁悬浮轴承。
可选地,在所述壳体的第一端设置有第一径向磁悬浮轴承,在所述壳体的第二端设置有第二径向磁悬浮轴承,能够从所述电机主轴的两端对所述电机主轴施加径向磁悬浮作用。
可选地,在所述壳体的第一端的朝向所述电机主轴的内壁上设置有第一径向保护结构,在所述壳体的第二端的朝向所述电机主轴的内壁上设置有第二径向保护结构。
可选地,所述壳体的朝向所述电机主轴的内壁还固定安装有电机定子,所述电机定子用于与所述电机主轴上的转子组件配合。
可选地,所述磁悬浮压缩机还包括第二叶轮、第二叶轮扩压器、一级扩压器和级间密封支撑套环;所述第二叶轮安装在所述第二叶轮扩压器朝向所述电机主轴的内侧,并且固定安装在所述电机主轴的第一端端部;所述第二叶轮、所述一级扩压器和所述第一叶轮沿所述电机主轴的轴向依次设置;所述第一叶轮和所述第二叶轮分别具有气体连通的进气口和出气口,所述一级扩压器设置在所述第二叶轮的出气口与所述第一叶轮的进气口之间,所述第二叶轮的出气口与所述第二叶轮的进气口通过一级扩压器气体连通;所述级间密封支撑套环套设在所述电机主轴外,所述一级扩压器套设在级间密封支撑套环外。
本申请提供的磁悬浮压缩机,包括电机主轴、第一叶轮、回流器、轴向位移传感器和壳体。电机主轴安装在壳体内,回流器与壳体之间固定连接,第一叶轮安装在回流器内,并且套设在电机主轴外,轴向位移传感器相对于壳体固定设置,第一叶轮朝向轴向位移传感器的一侧具有轴向检测面,轴向位移传感器能够通过轴向检测面检测第一叶轮的轴向位移。该磁悬浮压缩机的轴向位移传感器分布在第一叶轮的背侧,并且通过检测第一叶轮背侧的轴向检测面的方式直接检测第一叶轮轴向位移,避免了压缩机运行过程中由于高温使得轴向组件伸长,导致叶轮的轴向位置检测不准确的问题,提高了系统的控制精度,减少了叶轮出气口与回流器进气口之间的能量损耗,提高了压缩机转化效率。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例的磁悬浮压缩机的剖视结构图。
图2为本申请实施例的磁悬浮压缩机在叶轮密封环处的配合结构图。
图3为图2的C处的放大结构图。
图4为本申请实施例的磁悬浮压缩机的第一叶轮的受力示意图。
图5为本申请实施例的磁悬浮压缩机的第一叶轮的平衡原理示意图。
附图标记表示为:
1、第二叶轮;2、第二叶轮扩压器;3、一级扩压器;4、回流器;5、级间密封支撑套环;6、第一叶轮;7、轴向位移传感器;8、叶轮密封环;9、壳体;10、第一径向保护结构;11、第一径向磁悬浮轴承;12、电机定子;13、电机主轴;14、第二径向磁悬浮轴 承;15、第二径向保护结构;16、第一轴向磁悬浮轴承;17、止推盘;18、第二轴向磁悬浮轴承;601、平衡圈;602、轴向检测面。
具体实施方式
为使本公开的上述目的、特征和优点能够更加明显易懂,下面结合附图对本公开的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本公开。但是本公开能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本公开内涵的情况下做类似改进,因此本公开不受下面公开的具体实施例的限制。
结合参见图1至图5所示,根据本申请的实施例,磁悬浮压缩机包括电机主轴13、第一叶轮6、回流器4、轴向位移传感器7和壳体9。电机主轴13安装在壳体9内,回流器4与壳体9之间固定连接。第一叶轮6安装在回流器4内,并且套设在电机主轴13外。轴向位移传感器7相对于壳体9固定设置,第一叶轮6朝向轴向位移传感器7的一侧具有轴向检测面602。轴向位移传感器7能够通过轴向检测面602检测第一叶轮6的轴向位移。
该磁悬浮压缩机的轴向位移传感器7分布在第一叶轮6的背侧,并且通过检测第一叶轮6背侧的轴向检测面602的方式直接检测第一叶轮6的轴向位移,避免了压缩机运行过程中由于高温使得轴向组件伸长,导致叶轮的轴向位置检测不准确的问题,提高了系统的控制精度,减少了叶轮出气口与回流器进气口之间的能量损耗,提高了压缩机转化效率。上述的磁悬浮压缩机例如为磁悬浮离心压缩机。第一叶轮6的背侧为第一叶轮6在电机主轴13的轴向(以下简称轴向)上朝向壳体9的一侧。轴向位移传感器7设置在第一叶轮6与壳体9之间。
轴向位移传感器7安装在回流器4或者壳体9上,从而能够使得轴向位移传感器7处于相对壳体9固定状态,不会随电机主轴13的伸长或者缩短发生变化,因此能够准确检测第一叶轮6的轴向位移。
在一实施例中,壳体9或者回流器4固定安装有叶轮密封环8,叶轮密封环8上设置有安装槽,轴向位移传感器7安装在安装槽内。叶轮密封环8套设在第一叶轮6外。本实施例将轴向位移传感器7安装在叶轮密封环8上,使得轴向位移传感器7与叶轮密封环8之间能够形成一体结构,从而减小了压缩机的轴向尺寸,使得压缩机的整体结构更加紧凑。叶轮密封环8也可以同时与回流器4和壳体9固定连接。
轴向位移传感器7固定于叶轮密封环8上,连接方式包括但不限于螺钉、螺栓、销钉连接、过盈配合热装配、焊接、涂抹粘合剂等。在本实施例中,在叶轮密封环8朝向回流 器4的一侧设置有安装槽,轴向位移传感器7设置在叶轮密封环8朝向回流器4的一侧,从而更加方便实现轴向位移传感器7的固定安装。
叶轮密封环8与第一叶轮6之间形成密封配合,可以通过叶轮密封环8与第一叶轮6之间的密封配合取代阻油套与叶轮密封环8之间的面配合,从而能够取消阻油套,减少了零件数量,降低了转子组件的重量,因此能够提高压缩机的运行稳定性。在一实施例中,叶轮密封环8与第一叶轮6在电机主轴13的径向上抵接并形成密封配合。
第一叶轮6朝向轴向位移传感器7的一侧设置有平衡圈601。平衡圈601沿着电机主轴13的轴向延伸。平衡圈601套设在叶轮密封环8内,并与叶轮密封环8之间密封配合。
叶轮密封环8的内环面上设置有锯齿状结构,平衡圈601与叶轮密封环8之间间隙配合。平衡圈601的外环壁与锯齿状结构之间形成气膜间隙。
叶轮密封环8的锯齿状结构不限于三角形锯齿状、矩形锯齿状等,能在第一叶轮6上的平衡圈601与叶轮密封环8间发生相对高速旋转时产生气膜,进而阻隔气体流通即可。第一叶轮6为旋转体,叶轮密封环8为非旋转体,所以平衡圈601与叶轮密封环8之间采用间隙配合,避免在平衡圈601随第一叶轮6旋转的过程中与叶轮密封环8之间发生摩擦,造成磨损。
第一叶轮6朝向轴向位移传感器7的背侧外径为R1,平衡圈的外径为R2,1/3≤R2/R1≤2/3。平衡圈601能够平衡第一叶轮6两端的轴向力,提高第一叶轮6运行时的稳定性。平衡圈601的内径大于第一叶轮6的内径,平衡圈601的外径小于第一叶轮6的背侧外径。具体的,第一叶轮6的背侧是指第一叶轮6朝向叶轮密封环8的一侧。可选地,平衡圈601位于第一叶轮6的外径的1/3-2/3范围内时,平衡轴向力效果最佳。
电机主轴13包括斜轴肩131,第一叶轮6的内环壁具有锥面段603,锥面段603与斜轴肩131配合,限定第一叶轮6相对于电机主轴13的轴向位置。电机主轴13与第一叶轮6之间采用斜轴肩131配合,能够方便实现第一叶轮6在电机主轴13上的轴向定位。
电机主轴13上固定安装有止推盘17,壳体9内固定安装有轴向磁悬浮轴承,轴向磁悬浮轴承设置在止推盘17在轴向上的两侧,并限定止推盘17的轴向位置。轴向磁悬浮轴承套设在电机主轴13外。在本实施例中,轴向磁悬浮轴承包括设置在止推盘17在轴向上的第一侧的第一轴向磁悬浮轴承16以及设置在止推盘17在轴向上的第二侧的第二轴向磁悬浮轴承18,能够从止推盘17的两侧对止推盘17施加轴向作用,实现止推盘17的轴向位置调节,进而实现电机主轴13的轴向位置调节。
壳体9的内壁上还设置有径向磁悬浮轴承。在本实施例中,在壳体9的第一端设置有 第一径向磁悬浮轴承11,在壳体9的第二端设置有第二径向磁悬浮轴承14,能够从电机主轴13的两端对电机主轴13施加径向磁悬浮作用,更加容易实现电机主轴13的径向平衡。
在壳体9的第一端的朝向电机主轴13的内壁上设置有第一径向保护结构10,在壳体9的第二端的朝向电机主轴13的内壁上设置有第二径向保护结构15,能够在电机主轴13的两端形成径向保护,避免磁悬浮轴承失效导致电机主轴13损坏的问题。
壳体9的朝向电机主轴13的内壁还固定安装有电机定子12,电机定子12能够与电机主轴13上的转子组件配合,提供电机主轴13旋转的作用力。
磁悬浮压缩机还包括第二叶轮1、第二叶轮扩压器2、一级扩压器3和级间密封支撑套环5。第二叶轮1安装在第二叶轮扩压器2朝向电机主轴13的内侧,并且固定安装在电机主轴13的第一端端部。第二叶轮1、一级扩压器3和第一叶轮6沿电机主轴13的轴向依次设置。第一叶轮6和第二叶轮1分别具有气体连通的进气口和出气口。一级扩压器3设置在第二叶轮1的出气口与第一叶轮6的进气口之间。第二叶轮1的出气口与第一叶轮1的进气口通过一级扩压器3气体连通。一级扩压器3对第二叶轮1的出气口的气体进行扩压之后送入到第一叶轮6的进气口。级间密封支撑套环5套设在电机主轴13外,一级扩压器3套设在级间密封支撑套环5外。
上述的磁悬浮压缩机的工作过程如下:
磁悬浮压缩机运行时,电机主轴13高速旋转,带动第一叶轮6旋转。叶轮密封环8与平衡圈601之间形成气膜,使得回流器4的腔体内气体与电机腔体内气体密封隔离,从而起到密封作用。电机腔体指壳体9内的空间,具体为由壳体9、第一叶轮6和叶轮密封环8共同限定。第一叶轮6工作,使得一级气压P1、二级气压P2与腔体气压P3产生压强差。一级气压P1指第一叶轮6的进气口处的气压,二级气压P2指第一叶轮6的出气口处的气压,腔体气压P3指电机腔体内的气压。第一叶轮6受到轴向压力为P1×S1、P2×(S2-S3)与P3×S4。S1和S4分别为一级气压P1与腔体气压P3在第一叶轮6上的作用面积。S2和S3分别为二级气压P2在第一叶轮6正侧与背侧上的作用面积。第一叶轮6的正侧与背侧在轴向上相对设置。此时平衡圈601存在一个最佳位置,能够较好地实现第一叶轮6的轴向作用力平衡。经过研究发现,当平衡圈601位于第一叶轮6的背侧外径的1/3-2/3范围内时,使得叶轮轴向力为零,平衡圈601起到平衡轴向力的作用。轴向位移传感器7实时监测第一叶轮6的轴向位置,第一轴向磁悬浮轴承16和第二轴向磁悬浮轴承18根据轴向位移传感器7采集的数据控制止推盘17的位置,进而带动第一叶轮6进行移动,实现第一叶轮6位置的实时控制。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种磁悬浮压缩机,其特征在于,包括电机主轴(13)、第一叶轮(6)、回流器(4)和轴向位移传感器(7);所述第一叶轮(6)安装在所述回流器(4)内,并且套设在所述电机主轴(13)外;所述轴向位移传感器(7)相对于所述回流器(4)固定设置;所述第一叶轮(6)朝向所述轴向位移传感器(7)的一侧具有轴向检测面(602),所述轴向位移传感器(7)能够通过所述轴向检测面(602)检测所述第一叶轮(6)的轴向位移。
  2. 根据权利要求1所述的磁悬浮压缩机,其特征在于,所述磁悬浮压缩机还包括壳体(9),所述电机主轴(13)安装在所述壳体(9)内,所述回流器(4)与所述壳体(9)之间固定连接,所述轴向位移传感器(7)安装在所述回流器(4)或者所述壳体(9)上。
  3. 根据权利要求2所述的磁悬浮压缩机,其特征在于,所述壳体(9)或所述回流器(4)固定安装有叶轮密封环(8),所述叶轮密封环(8)上设置有安装槽,所述轴向位移传感器(7)安装在所述安装槽内。
  4. 根据权利要求3所述的磁悬浮压缩机,所述安装槽设置在所述叶轮密封环(8)朝向所述回流器(4)的一侧,所述轴向位移传感器(7)设置在所述叶轮密封环(8)朝向所述回流器(4)的一侧。
  5. 根据权利要求3所述的磁悬浮压缩机,其特征在于,所述叶轮密封环(8)与所述第一叶轮(6)之间形成密封配合。
  6. 根据权利要求5所述的磁悬浮压缩机,其特征在于,所述叶轮密封环(8)与所述第一叶轮(6)在所述电机主轴(13)的径向上抵接并形成密封配合。
  7. 根据权利要求5所述的磁悬浮压缩机,其特征在于,所述第一叶轮(6)朝向所述轴向位移传感器(7)的一侧设置有平衡圈(601),所述平衡圈(601)沿着所述电机主轴(13)的轴向延伸,所述平衡圈(601)套设在所述叶轮密封环(8)内,并与所述叶轮密封环(8)之间密封配合。
  8. 根据权利要求7所述的磁悬浮压缩机,其特征在于,所述叶轮密封环(8)的内环面上设置有锯齿状结构,所述平衡圈(601)与所述叶轮密封环(8)之间间隙配合,所述平衡圈(601)的外环壁与所述锯齿状结构之间形成气膜间隙。
  9. 根据权利要求7所述的磁悬浮压缩机,其特征在于,所述第一叶轮(6)朝向所述轴向位移传感器(7)的背侧外径为R1,所述平衡圈的外径为R2,1/3≤R2/R1≤2/3。
  10. 根据权利要求1至9中任一项所述的磁悬浮压缩机,其特征在于,所述电机主轴(13)包括斜轴肩,所述第一叶轮(6)的内环壁具有锥面段,所述锥面段与所述斜轴肩配合, 限定所述第一叶轮(6)相对于所述电机主轴(13)的轴向位置。
  11. 根据权利要求2至9中任一项所述的磁悬浮压缩机,其特征在于,所述电机主轴(13)上固定安装有止推盘(17),所述壳体(9)内固定安装有轴向磁悬浮轴承,所述轴向磁悬浮轴承设置在所述止推盘(17)的两侧,并限定所述止推盘(17)的轴向位置。
  12. 根据权利要求2至9中任一项所述的磁悬浮压缩机,其特征在于,所述壳体(9)的内壁上还设置有径向磁悬浮轴承。
  13. 根据权利要求2至9中任一项所述的磁悬浮压缩机,其特征在于,在所述壳体(9)的第一端设置有第一径向磁悬浮轴承(11),在所述壳体(9)的第二端设置有第二径向磁悬浮轴承(14),能够从所述电机主轴(13)的两端对所述电机主轴(13)施加径向磁悬浮作用。
  14. 根据权利要求2至9中任一项所述的磁悬浮压缩机,其特征在于,在所述壳体(9)的第一端的朝向所述电机主轴(13)的内壁上设置有第一径向保护结构(10),在所述壳体(9)的第二端的朝向所述电机主轴(13)的内壁上设置有第二径向保护结构(15)。
  15. 根据权利要求2至9中任一项所述的磁悬浮压缩机,其特征在于,所述壳体(9)的朝向所述电机主轴(13)的内壁还固定安装有电机定子(12),所述电机定子(12)用于与所述电机主轴(13)上的转子组件配合。
  16. 根据权利要求1至15中任一项所述的磁悬浮压缩机,其特征在于,还包括第二叶轮(1)、第二叶轮扩压器(2)、一级扩压器(3)和级间密封支撑套环(5);所述第二叶轮(1)安装在所述第二叶轮扩压器(2)朝向所述电机主轴(13)的内侧,并且固定安装在所述电机主轴(13)的第一端端部;所述第二叶轮(1)、所述一级扩压器(3)和所述第一叶轮(6)沿所述电机主轴(13)的轴向依次设置;所述第一叶轮(6)和所述第二叶轮(1)分别具有气体连通的进气口和出气口,所述一级扩压器(3)设置在所述第二叶轮(1)的出气口与所述第一叶轮(6)的进气口之间,所述第二叶轮(1)的出气口与所述第二叶轮(1)的进气口通过一级扩压器(3)气体连通;所述级间密封支撑套环(5)套设在所述电机主轴(13)外,所述一级扩压器(3)套设在级间密封支撑套环(5)外。
PCT/CN2021/123492 2021-02-22 2021-10-13 磁悬浮压缩机 WO2022174596A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110198091.4A CN112780584A (zh) 2021-02-22 2021-02-22 磁悬浮压缩机
CN202110198091.4 2021-02-22

Publications (1)

Publication Number Publication Date
WO2022174596A1 true WO2022174596A1 (zh) 2022-08-25

Family

ID=75761719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123492 WO2022174596A1 (zh) 2021-02-22 2021-10-13 磁悬浮压缩机

Country Status (2)

Country Link
CN (1) CN112780584A (zh)
WO (1) WO2022174596A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112780584A (zh) * 2021-02-22 2021-05-11 珠海格力电器股份有限公司 磁悬浮压缩机
CN113864211A (zh) * 2021-08-19 2021-12-31 青岛海尔智能技术研发有限公司 磁悬浮泵、具有其的制冷设备和空调室外机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102803736A (zh) * 2009-06-05 2012-11-28 江森自控科技公司 控制系统
CN107435621A (zh) * 2017-08-17 2017-12-05 珠海格力节能环保制冷技术研究中心有限公司 磁悬浮压缩机及其间隙调整方法
CN107939699A (zh) * 2017-12-04 2018-04-20 南京磁谷科技有限公司 一种磁悬浮压缩机结构
CN109563847A (zh) * 2016-08-05 2019-04-02 大金应用美国股份有限公司 离心压缩机、用于离心压缩机的叶轮间隙控制装置和用于离心压缩机的叶轮间隙控制方法
CN109763994A (zh) * 2019-02-21 2019-05-17 珠海格力电器股份有限公司 磁悬浮轴承和磁悬浮离心压缩机、空调器
CN110762051A (zh) * 2019-12-13 2020-02-07 南京磁谷科技有限公司 一种磁悬浮空气压缩机防止喘振的结构
CN211230872U (zh) * 2019-12-11 2020-08-11 南京磁谷科技有限公司 一种利用空气压缩机轴向传感器调整间隙结构
CN112780584A (zh) * 2021-02-22 2021-05-11 珠海格力电器股份有限公司 磁悬浮压缩机
CN214533602U (zh) * 2021-02-22 2021-10-29 珠海格力电器股份有限公司 磁悬浮压缩机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102803736A (zh) * 2009-06-05 2012-11-28 江森自控科技公司 控制系统
CN109563847A (zh) * 2016-08-05 2019-04-02 大金应用美国股份有限公司 离心压缩机、用于离心压缩机的叶轮间隙控制装置和用于离心压缩机的叶轮间隙控制方法
CN107435621A (zh) * 2017-08-17 2017-12-05 珠海格力节能环保制冷技术研究中心有限公司 磁悬浮压缩机及其间隙调整方法
CN107939699A (zh) * 2017-12-04 2018-04-20 南京磁谷科技有限公司 一种磁悬浮压缩机结构
CN109763994A (zh) * 2019-02-21 2019-05-17 珠海格力电器股份有限公司 磁悬浮轴承和磁悬浮离心压缩机、空调器
CN211230872U (zh) * 2019-12-11 2020-08-11 南京磁谷科技有限公司 一种利用空气压缩机轴向传感器调整间隙结构
CN110762051A (zh) * 2019-12-13 2020-02-07 南京磁谷科技有限公司 一种磁悬浮空气压缩机防止喘振的结构
CN112780584A (zh) * 2021-02-22 2021-05-11 珠海格力电器股份有限公司 磁悬浮压缩机
CN214533602U (zh) * 2021-02-22 2021-10-29 珠海格力电器股份有限公司 磁悬浮压缩机

Also Published As

Publication number Publication date
CN112780584A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2022174596A1 (zh) 磁悬浮压缩机
WO2020134433A1 (zh) 离心压缩机及空调设备
US8113798B2 (en) Turbomachine with tilt-segment bearing and force measurement arrangemment
US3160108A (en) Thrust carrying arrangement for fluid handling machines
JP3148081B2 (ja) 可変形状タービン
US9909592B2 (en) Vacuum pump
JP3936911B2 (ja) 水力ターボ機械用のシール装置
CN101268284A (zh) 离心压缩机的叶轮
JP4485729B2 (ja) ターボマシンで軸方向スラストを補償する装置
JPH11257293A (ja) 遠心圧縮機の制御装置
CN214533602U (zh) 磁悬浮压缩机
JP3486000B2 (ja) ねじ溝真空ポンプ
US20230250825A1 (en) Compressor
CN109563772B (zh) 电动增压器
JP2013221454A (ja) 遠心圧縮機
US11572881B2 (en) Compressor system
JP2000018248A (ja) 軸受装置および軸受装置用シール機構
JP2003286992A (ja) ターボ分子ポンプ及びその調整方法
JP2001003890A (ja) 磁気軸受式ターボ分子ポンプ
CN112539090B (zh) 一种吊舱用升压式气浮涡轮冷却器结构
CN216767490U (zh) 转动装置及燃气轮机
KR102239817B1 (ko) 터보 압축기
CN211398277U (zh) 转子组件、压缩机及空调设备
WO1992019869A1 (en) Co-planar seal arrangement
JP2009250151A (ja) 軸流タービンのスラスト低減装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926310

Country of ref document: EP

Kind code of ref document: A1