WO2022174566A1 - 基于图像处理的风电机组变桨不同步故障识别方法及系统 - Google Patents

基于图像处理的风电机组变桨不同步故障识别方法及系统 Download PDF

Info

Publication number
WO2022174566A1
WO2022174566A1 PCT/CN2021/114652 CN2021114652W WO2022174566A1 WO 2022174566 A1 WO2022174566 A1 WO 2022174566A1 CN 2021114652 W CN2021114652 W CN 2021114652W WO 2022174566 A1 WO2022174566 A1 WO 2022174566A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind turbine
blade
adjacent blades
deviation rate
image processing
Prior art date
Application number
PCT/CN2021/114652
Other languages
English (en)
French (fr)
Inventor
蔡安民
吕建波
王文峰
赵登峰
刘鹏程
蔺雪峰
焦冲
Original Assignee
中国华能集团清洁能源技术研究院有限公司
华能新能源股份有限公司山东分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 华能新能源股份有限公司山东分公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2022174566A1 publication Critical patent/WO2022174566A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present application belongs to the technical field of wind power generation, and relates to a method and system for identifying an asynchronous fault of wind turbine pitching based on image processing.
  • the blade is the main component of the wind turbine to absorb wind energy
  • the pitch system is a device that controls the angle change of the blade to ensure the safe and efficient operation of the blade.
  • Each blade of the wind turbine has a set of hydraulic or electric device to drive the blade to rotate. During operation, the rotation direction of each blade and the rotation angle of the pitch angle should be the same. However, when the blade pitch is out of sync, the change angle of each blade is inconsistent, which will affect the output of the unit, and even cause serious damage to the unit.
  • the purpose of this application is to overcome the shortcomings of the above-mentioned prior art, and to provide an image processing-based method and system for identifying the asynchronous fault of wind turbine pitching.
  • the method and system can quickly, accurately and effectively identify wind turbine pitch failure Synchronization failure.
  • the image processing-based wind turbine pitch asynchronous fault identification method described in this application includes the following steps:
  • the deviation rate PLi between the i-th blade and the i+1-th blade is:
  • L iab is the distance between the edges of the i-th blade
  • An image processing-based wind turbine pitch asynchronous fault identification system includes:
  • Image acquisition system for acquiring blade profile images
  • the server is used to extract the blade edge information of the horizontal line position in the blade contour image, calculate the distance between the edges of two adjacent blades on the same horizontal line according to the blade edge information, and then calculate the distance between the edges of two adjacent blades on the same horizontal line according to the blade edge information.
  • the distance between the blade edges calculates the deviation rate between each two adjacent blades, and then judges whether the deviation rate between each adjacent two blades is greater than or equal to the preset threshold. When the deviation rate between blades is greater than or equal to the preset threshold, it means that there is an asynchronous fault in the pitch of the wind turbine.
  • the image acquisition system includes a controller, a laser signal instrument, two photographing devices, and a number of reflection devices.
  • the two photographing devices are symmetrically arranged at the bottom positions on both sides of the axial centerline of the nacelle, and the laser signal instrument is installed on the main frame of the wind turbine.
  • each reflection device is installed on the main shaft flange, and each reflection device is distributed in sequence along the circumferential direction.
  • the controller It is connected with the laser signal instrument and the photographing device, and the photographing device is connected with the server.
  • the controller controls the laser signal meter to send out a laser signal.
  • the laser signal meter When the laser signal is reflected by the reflection device and then received by the laser signal meter, the laser signal meter sends a feedback signal to the controller, and the controller controls the two devices according to the feedback signal. Shooting with two shooting devices, so that the shooting directions of the two shooting devices are aligned with the maximum chord length of the blade at the lowest position on the side of the nacelle, and the profile photos of the blades captured by the two shooting devices are the same.
  • the photographing device is a camera with a light compensation function.
  • the reflecting device is a light reflecting strip.
  • the controller is connected with the photographing device and the laser signal instrument through the data acquisition equipment.
  • the server includes:
  • a distance calculation module used for extracting blade edge information at the position of the horizontal line in the blade contour image, and calculating the distance between the edges of two adjacent blades on the same horizontal line according to the blade edge information
  • the deviation rate calculation module is used to calculate the deviation rate between the two adjacent blades according to the distance between the edges of the two adjacent blades on the same horizontal line;
  • the judgment module is used to judge whether the deviation rate between the two adjacent blades is greater than or equal to a preset threshold, and when the deviation rate between any two adjacent blades is greater than or equal to the preset threshold, it means that the wind turbine generator set The pitch is out of sync.
  • the server When there is an asynchronous fault in the pitch of the wind turbine, the server generates a stop command, and sends the stop command to the main control system of the wind turbine.
  • the method and system for identifying the asynchronous fault of wind turbine pitching based on image processing described in this application uses image processing technology to judge whether there is an asynchronous fault in the pitching of the wind turbine according to the blade profile image.
  • the monitoring and recognition of pitch angle is converted into information extraction and analysis of the blade profile image, without the need to install additional equipment on the blade, which can ensure the safe operation of the unit, strong operability, and high recognition efficiency.
  • This recognition method is fast and accurate. , effective features.
  • the reflection device utilizes the combination of the laser signal meter, the reflection device and the controller to control the shooting timing of the shooting device, because the reflection device is evenly distributed in the circumferential direction, the accuracy of the shooting sequence of the shooting device can be ensured;
  • the present application selects two blades to take pictures when they are in the lowest position and symmetrically distributed along the axial direction of the unit. Whether it is an odd or even number of blades, it can effectively avoid the influence caused by gravity and angular imbalance, and reduce the extra cost. error, improve the accuracy of identification;
  • the two photographing devices are installed at symmetrical positions at the bottom of the nacelle, instead of being installed on the shroud or on the top of the nacelle in the traditional solution, so as to reduce the influence of sunlight, rain, snow and other weather on the photographing and ensure the accuracy of identification.
  • Fig. 1 is the installation position diagram of the photographing device 12 and the laser signal meter 11 in the application;
  • Fig. 2 is the installation position diagram of the launching device in the application
  • FIG. 3 is a schematic diagram of a blade profile image
  • FIG. 4 is a schematic diagram of the application.
  • 1 is an image acquisition system
  • 2 is a server
  • 3 is a reflection device
  • 11 is a laser signal meter
  • 12 is a photographing device
  • 13 is a controller
  • 21 is a distance calculation module
  • 22 is a deviation rate calculation module
  • 23 is a judgment module .
  • the image processing-based wind turbine pitch asynchronous fault identification method described in this application includes the following steps:
  • the deviation rate PL i between the i-th blade and the i+1-th blade is:
  • L iab is the distance between the edges of the i-th blade.
  • the image processing-based wind turbine pitch asynchronous fault identification system described in this application includes:
  • the server 2 is used to extract the blade edge information of the horizontal line position in the blade outline image, calculate the distance between the edges of two adjacent blades on the same horizontal line according to the blade edge information, and then calculate the distance between the edges of two adjacent blades on the same horizontal line according to the The distance between the edges of the propeller blades calculates the deviation rate between the two adjacent propeller blades, and then judges whether the deviation rate between the two adjacent propeller blades is greater than or equal to the preset threshold.
  • the server 2 When the deviation rate between the blades is greater than or equal to the preset threshold, it means that there is an asynchronous fault in the pitch of the wind turbine, and at the same time, the server 2 generates a stop command and sends the stop command to the main control system of the wind turbine.
  • the image acquisition system 1 includes a controller 13 , a laser signal meter 11 , two photographing devices 12 and a plurality of reflecting devices 3 , wherein the two photographing devices 12 are symmetrically arranged on both sides of the axial centerline of the nacelle.
  • the laser signal meter 11 is installed on the main frame of the wind turbine at a position close to the main shaft flange, and each reflection device 3 is installed on the main shaft flange, and the reflection devices 3 are distributed in sequence along the circumferential direction.
  • each reflecting device 3 is aligned with the laser signal device 11 in sequence, the controller 13 is connected with the laser signal device 11 and the photographing device 12 , and the photographing device 12 is connected with the server 2 .
  • the controller 13 controls the laser signal meter 11 to send out a laser signal.
  • the laser signal meter 11 sends a feedback signal
  • the controller 13 controls the two shooting devices 12 to shoot according to the feedback signal, so that the shooting directions of the two shooting devices 12 are aligned with the maximum chord length of the blade at the lowest position on the side of the nacelle where they are located.
  • the profile photos of the blades captured by the photographing device 12 are the same.
  • the photographing device 12 is a camera with a light compensation function and a light compensation function; the controller 13 is connected to the photographing device 12 and the laser signal meter 11 through a data acquisition device.
  • the server 2 includes:
  • the distance calculation module 21 is used to extract the blade edge information of the horizontal line position in the blade outline image, and calculate the distance between the edges of two adjacent blades on the same horizontal line according to the blade edge information;
  • the deviation rate calculation module 22 is used to calculate the deviation rate between the two adjacent blades according to the distance between the edges of the two adjacent blades on the same horizontal line;
  • the judgment module 23 is used for judging whether the deviation rate between the two adjacent blades is greater than or equal to a preset threshold, and when the deviation rate between any two adjacent blades is greater than or equal to the preset threshold, it means that the wind power The pitch of the crew is out of sync.
  • the number of blades of the wind turbine is 3, and the reflection device 3 adopts light reflection strips.
  • the three reflection strips form an included angle of 120° with each other and are evenly distributed on the main shaft flange.
  • the edges of the three blades are The distances between them are respectively recorded as L 1ab , L 2ab and L 3ab ; the deviation rates between the three blades are:
  • the dynamic deviation rate range of the pitch angle of the three blades is determined by using the image data of the wind turbine in the normal operating state (covering all working conditions of the normal operation of the unit), and it is set as [0, PL 0 ], Then, when any one of the parameters of PL 1 , PL 2 and PL 3 exceeds PL 0 +0.15, it is considered that the wind turbine has a pitch asynchronous fault.
  • 0.15 is the empirical threshold, which can be set according to the model of the wind turbine in actual operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

本申请公开了一种基于图像处理的风电机组变桨不同步故障识别方法及系统,包括以下步骤:1)获取桨叶轮廓图像;2)提取桨叶轮廓图像中水平线位置的桨叶边缘信息,根据桨叶边缘信息计算同一水平线上相邻两支桨叶边缘之间的距离;3)根据同一水平线上相邻两支桨叶边缘之间的距离计算各相邻两支桨叶之间的偏差率;4)判断各相邻两支桨叶之间的偏差率是否大于等于预设阈值,当任一相邻两支桨叶之间的偏差率大于等于预设阈值时,则说明风电机组变桨存在不同步故障。

Description

基于图像处理的风电机组变桨不同步故障识别方法及系统 技术领域
本申请属于风力发电技术领域,涉及一种基于图像处理的风电机组变桨不同步故障识别方法及系统。
背景技术
桨叶是风力发电机组吸收风能的主要部件,变桨系统是控制桨叶角度变化以保证桨叶安全高效运行的装置。风电机组的每支桨叶,各自有一套液压或电动装置驱动桨叶转动。运行时,每支桨叶的转动方向及桨距角的转动角度应当是一致的。但是,当发生桨叶变桨不同步故障时,每支桨叶的变化角度出现不一致,就会影响机组的出力,严重的甚至对机组造成重大的损伤。
目前对风电机组变桨不同步故障进行识别和监测主要有以下两种方法:
一、是基于风电机组自带的桨距角编码器记录桨距角的大小,进而判断是否存在角度偏差过大的变桨不同步故障,该方法是在主控中进行逻辑判断的,会占用主控内存,而主控中存储的数据量有限,每隔一段时间需要清理,维护成本高;另外,考虑到运行时长和安装工艺,信号经过滑环的传递后,考虑到运行时长及安装工艺等情况,其在受到较大电磁干扰时,信号会产生失真的情况,影响数据的准确性。所以,仅仅依靠主控中记录的桨距角数据,还不足以保证有效性。
二、在导流罩内桨叶根部设置可供辨识的图案,在整流罩内安装用 于拍摄图案的广角摄像头,通过拍摄图案的变化确定桨叶的角度,从而确定桨叶在变桨过程中是否发生了卡顿或者卡桨的情况。然而,在桨叶上安装不同颜色的色条和在整流罩上安装摄像头,该方法在实际操作中有较复杂且具有一定危险性,可操作性较低。此外,摄像头的拍摄效果会受到阳光、雨雪等的影响,不利于识别变桨角度,识别准确率低。
发明内容
本申请的目的在于克服上述现有技术的缺点,提供了一种基于图像处理的风电机组变桨不同步故障识别方法及系统,该方法及系统能够快速、准确、有效的识别风电机组变桨不同步故障。
为达到上述目的,本申请所述的基于图像处理的风电机组变桨不同步故障识别方法包括以下步骤:
1)获取桨叶轮廓图像;
2)提取桨叶轮廓图像中水平线位置的桨叶边缘信息,根据所述桨叶边缘信息计算同一水平线上相邻两支桨叶边缘之间的距离;
3)根据同一水平线上相邻两支桨叶边缘之间的距离计算各相邻两支桨叶之间的偏差率;
4)判断各相邻两支浆叶之间的偏差率是否大于等于预设阈值,当任一相邻两支桨叶之间的偏差率大于等于预设阈值时,则说明风电机组变桨存在不同步故障。
对于具有N支叶片的风电机组来说,第i支桨叶与第i+1支桨叶之间的偏差率PLi为:
Figure PCTCN2021114652-appb-000001
其中,L iab为第i支桨叶边缘之间的距离;
注意,当i=N时,应计算第N支叶片与第1支叶片的偏差率,如下:
Figure PCTCN2021114652-appb-000002
一种基于图像处理的风电机组变桨不同步故障识别系统包括:
图像采集系统,用于获取桨叶轮廓图像;
服务器,用于提取桨叶轮廓图像中水平线位置的桨叶边缘信息,根据所述桨叶边缘信息计算同一水平线上相邻两支桨叶边缘之间的距离,再根据同一水平线上相邻两支桨叶边缘之间的距离计算各相邻两支桨叶之间的偏差率,然后判断各相邻两支浆叶之间的偏差率是否大于等于预设阈值,当任一相邻两支桨叶之间的偏差率大于等于预设阈值时,说明风电机组变桨存在不同步故障。
图像采集系统包括控制器、激光信号仪、两台拍摄装置以及若干反射装置,其中,两台拍摄装置对称布置于机舱轴向中心线两侧的底部位置处,激光信号仪安装于风电机组主机架上靠近主轴法兰盘的位置处,各反射装置均安装于主轴法兰盘上,且各反射装置沿周向依次分布,风电机组在工作时,各反射装置依次与激光信号仪对齐,控制器与激光信号仪及拍摄装置相连接,拍摄装置与服务器相连接。
在工作时,控制器控制激光信号仪发出激光信号,当所述激光信号经反射装置反射后通过激光信号仪接收时,激光信号仪发出反馈信号给控制器,控制器根据所述反馈信号控制两台拍摄装置进行拍摄,使得两台拍摄装置的拍摄方向对准各自所在机舱一侧最低位置桨叶的最大弦长处,同时两台拍摄装置拍摄到的桨叶轮廓照片相同。
所述拍摄装置为带光补偿功能的照相机。
所述反射装置为光反射条。
控制器通过数采设备与拍摄装置及激光信号仪相连接。
所述服务器包括:
距离计算模块,用于提取桨叶轮廓图像中水平线位置的桨叶边缘信息,根据所述桨叶边缘信息计算同一水平线上相邻两支桨叶边缘之间的距离;
偏差率计算模块,用于根据同一水平线上相邻两支桨叶边缘之间的距离计算各相邻两支桨叶之间的偏差率;
判断模块,用于判断各相邻两支浆叶之间的偏差率是否大于等于预设阈值,当任一相邻两支桨叶之间的偏差率大于等于预设阈值时,则说明风电机组变桨存在不同步故障。
当风电机组变桨存在不同步故障时,服务器生成停止指令,并将所述停止指令发送给风电机组的主控系统。
本申请具有以下有益效果:
本申请所述的基于图像处理的风电机组变桨不同步故障识别方法及系统在具体操作时,根据桨叶轮廓图像采用图像处理技术判断风电机组变桨是否存在不同步故障,即将传统的叶片桨距角角度的监测识别转换成对桨叶轮廓图像的信息提取分析,无需在桨叶上安装额外设备,能够保障机组运行安全,可操作性强,并且识别效率高,该识别方式具有快速、准确、有效的特点。
进一步,利用激光信号仪、反射装置及控制器的组合控制拍摄装置 的拍摄时机,由于反射装置均匀周向分布,能够确保拍摄装置的拍摄时序的准确性;
进一步,本申请选择两支桨叶处于最低位沿机组轴向对称分布的位置时进行拍照,不论是奇数或偶数片桨叶,都可以有效避免由于重力、角度不平衡等造成的影响,减少额外的误差,提高识别的准确性;
进一步,本申请中两个拍摄装置安装于机舱底部对称位置处,摒弃传统方案中在导流罩或机舱顶部安装,以减轻阳光、雨雪等天气对拍摄造成的影响,确保识别的精确性。
附图说明
图1为本申请中拍摄装置12及激光信号仪11的安装位置图;
图2为本申请中发射装置的安装位置图;
图3为桨叶轮廓图像的示意图;
图4为本申请的原理图。
其中,1为图像采集系统、2为服务器、3为反射装置、11为激光信号仪、12为拍摄装置、13为控制器、21为距离计算模块、22为偏差率计算模块、23为判断模块。
具体实施方式
下面结合附图对本申请做进一步详细描述:
本申请所述的基于图像处理的风电机组变桨不同步故障识别方法包括以下步骤:
1)获取桨叶轮廓图像;
2)提取桨叶轮廓图像中水平线位置的桨叶边缘信息,根据所述桨叶 边缘信息计算同一水平线上相邻两支桨叶边缘之间的距离;
3)根据同一水平线上相邻两支桨叶边缘之间的距离计算各相邻两支桨叶之间的偏差率;
其中,第i支桨叶与第i+1支桨叶之间的偏差率PL i为:
Figure PCTCN2021114652-appb-000003
其中,L iab为第i支桨叶边缘之间的距离。
4)判断各相邻两支浆叶之间的偏差率是否大于等于预设阈值,当任一相邻两支桨叶之间的偏差率大于等于预设阈值时,则说明风电机组变桨存在不同步故障。
参考图4,本申请所述的基于图像处理的风电机组变桨不同步故障识别系统包括:
图像采集系统1,用于获取桨叶轮廓图像;
服务器2,用于提取桨叶轮廓图像中水平线位置的桨叶边缘信息,根据所述桨叶边缘信息计算同一水平线上相邻两支桨叶边缘之间的距离,再根据同一水平线上相邻两支桨叶边缘之间的距离计算各相邻两支桨叶之间的偏差率,然后判断各相邻两支浆叶之间的偏差率是否大于等于预设阈值,当任一相邻两支桨叶之间的偏差率大于等于预设阈值时,说明风电机组变桨存在不同步故障,同时服务器2生成停止指令,并将所述停止指令发送给风电机组的主控系统。
参考图1及图2,图像采集系统1包括控制器13、激光信号仪11、两台拍摄装置12以及若干反射装置3,其中,两台拍摄装置12对称布置于机舱轴向中心线两侧的底部位置处,激光信号仪11安装于风电机组 主机架上靠近主轴法兰盘的位置处,各反射装置3均安装于主轴法兰盘上,且各反射装置3沿周向依次分布,风电机组在工作时,各反射装置3依次与激光信号仪11对齐,控制器13与激光信号仪11及拍摄装置12相连接,拍摄装置12与服务器2相连接。
参考图3,图像采集系统1在工作时,控制器13控制激光信号仪11发出激光信号,当所述激光信号经反射装置3反射后通过激光信号仪11接收时,激光信号仪11发出反馈信号给控制器13,控制器13根据所述反馈信号控制两台拍摄装置12进行拍摄,使得两台拍摄装置12的拍摄方向对准各自所在机舱一侧最低位置桨叶的最大弦长处,同时两台拍摄装置12拍摄到的桨叶轮廓照片相同。
优选的,所述拍摄装置12为带光补偿功能带光补偿功能的照相机;控制器13通过数采设备与拍摄装置12及激光信号仪11相连接。
另外,所述服务器2包括:
距离计算模块21,用于提取桨叶轮廓图像中水平线位置的桨叶边缘信息,根据所述桨叶边缘信息计算同一水平线上相邻两支桨叶边缘之间的距离;
偏差率计算模块22,用于根据同一水平线上相邻两支桨叶边缘之间的距离计算各相邻两支桨叶之间的偏差率;
判断模块23,用于判断各相邻两支浆叶之间的偏差率是否大于等于预设阈值,当任一相邻两支桨叶之间的偏差率大于等于预设阈值时,则说明风电机组变桨存在不同步故障。
例如,风电机组的桨叶数目为3,反射装置3采用光反射条,三个 反射条两两互呈120°夹角,且均匀周向分布于主轴法兰盘上,三支桨叶边缘之间的距离分别记为L 1ab、L 2ab及L 3ab;三支桨叶之间的偏差率分别为:
Figure PCTCN2021114652-appb-000004
Figure PCTCN2021114652-appb-000005
Figure PCTCN2021114652-appb-000006
另外,机组运行时,三支桨叶桨距角的动态偏差率范围利用风电机组正常运行状态下(覆盖机组正常运行的全部工况)的图像数据确定,设其为[0,PL 0],则当PL 1、PL 2和PL 3任意一个参数超过PL 0+0.15,则认为风电机组存在变桨不同步故障,其中,0.15为经验阈值,在实际操作时可根据风电机组型号设置。
最后应当说明的是:以上实施例仅用以说明本申请的技术方案而非对其限制,尽管参照上述实施例对本申请进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本申请的具体实施方式进行修改或者等同替换,而未脱离本申请精神和范围的任何修改或者等同替换,其均应涵盖在本申请的权利要求保护范围之内。

Claims (10)

  1. 一种基于图像处理的风电机组变桨不同步故障识别方法,其特征在于,包括以下步骤:
    1)获取桨叶轮廓图像;
    2)提取桨叶轮廓图像中水平线位置的桨叶边缘信息,根据所述桨叶边缘信息计算同一水平线上相邻两支桨叶边缘之间的距离;
    3)根据同一水平线上相邻两支桨叶边缘之间的距离计算各相邻两支桨叶之间的偏差率;
    4)判断各相邻两支浆叶之间的偏差率是否大于等于预设阈值,当任一相邻两支桨叶之间的偏差率大于等于预设阈值时,则说明风电机组变桨存在不同步故障。
  2. 根据权利要求1所述的基于图像处理的风电机组变桨不同步故障识别方法,其特征在于,对于具有N支叶片的风电机组来说,第i支桨叶与第i+1支桨叶之间的偏差率PL i为:
    Figure PCTCN2021114652-appb-100001
    其中,L iab为第i支桨叶边缘之间的距离;
    当i=N时,计算第N支叶片与第1支叶片的偏差率:
    Figure PCTCN2021114652-appb-100002
  3. 一种基于图像处理的风电机组变桨不同步故障识别系统,其特征在于,包括:
    图像采集系统(1),用于获取桨叶轮廓图像;
    服务器(2),用于提取桨叶轮廓图像中水平线位置的桨叶边缘信息,根据所述桨叶边缘信息计算同一水平线上相邻两支桨叶边缘之间的距离, 再根据同一水平线上相邻两支桨叶边缘之间的距离计算各相邻两支桨叶之间的偏差率,然后判断各相邻两支浆叶之间的偏差率是否大于等于预设阈值,当任一相邻两支桨叶之间的偏差率大于等于预设阈值时,说明风电机组变桨存在不同步故障。
  4. 根据权利要求3所述的基于图像处理的风电机组变桨不同步故障识别系统,其特征在于,图像采集系统(1)包括控制器(13)、激光信号仪(11)、两台拍摄装置(12)以及若干反射装置(3),其中,两台拍摄装置(12)对称布置于机舱轴向中心线两侧的底部位置处,激光信号仪(11)安装于风电机组主机架上靠近主轴法兰盘的位置处,各反射装置(3)均安装于主轴法兰盘上,且各反射装置(3)沿周向依次分布,风电机组在工作时,各反射装置(3)依次与激光信号仪(11)对齐,控制器(13)与激光信号仪(11)及拍摄装置(12)相连接,拍摄装置(12)与服务器(2)相连接。
  5. 根据权利要求4所述的基于图像处理的风电机组变桨不同步故障识别系统,其特征在于,在工作时,控制器(13)控制激光信号仪(11)发出激光信号,当所述激光信号经反射装置(3)反射后通过激光信号仪(11)接收时,激光信号仪(11)发出反馈信号给控制器(13),控制器(13)根据所述反馈信号控制两台拍摄装置(12)进行拍摄,使得两台拍摄装置(12)的拍摄方向对准各自所在机舱一侧最低位置桨叶的最大弦长处,同时两台拍摄装置(12)拍摄到的桨叶轮廓照片相同。
  6. 根据权利要求4所述的基于图像处理的风电机组变桨不同步故障识别系统,其特征在于,所述拍摄装置(12)为带光补偿功能带光补偿功能的照相机。
  7. 根据权利要求4所述的基于图像处理的风电机组变桨不同步故障识别系统,其特征在于,所述反射装置(3)为光反射条。
  8. 根据权利要求4所述的基于图像处理的风电机组变桨不同步故障识别系统,其特征在于,控制器(13)通过数采设备与拍摄装置(12)及激光信号仪(11)相连接。
  9. 根据权利要求3所述的基于图像处理的风电机组变桨不同步故障识别系统,其特征在于,所述服务器(2)包括:
    距离计算模块(21),用于提取桨叶轮廓图像中水平线位置的桨叶边缘信息,根据所述桨叶边缘信息计算同一水平线上相邻两支桨叶边缘之间的距离;
    偏差率计算模块(22),用于根据同一水平线上相邻两支桨叶边缘之间的距离计算各相邻两支桨叶之间的偏差率;
    判断模块(23),用于判断各相邻两支浆叶之间的偏差率是否大于等于预设阈值,当任一相邻两支桨叶之间的偏差率大于等于预设阈值时,则说明风电机组变桨存在不同步故障。
  10. 根据权利要求9所述的基于图像处理的风电机组变桨不同步故障识别系统,其特征在于,当风电机组变桨存在不同步故障时,服务器(2)生成停止指令,并将所述停止指令发送给风电机组的主控系统。
PCT/CN2021/114652 2021-02-18 2021-08-26 基于图像处理的风电机组变桨不同步故障识别方法及系统 WO2022174566A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110188001.3A CN112879219B (zh) 2021-02-18 2021-02-18 基于图像处理的风电机组变桨不同步故障识别方法及系统
CN202110188001.3 2021-02-18

Publications (1)

Publication Number Publication Date
WO2022174566A1 true WO2022174566A1 (zh) 2022-08-25

Family

ID=76057622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114652 WO2022174566A1 (zh) 2021-02-18 2021-08-26 基于图像处理的风电机组变桨不同步故障识别方法及系统

Country Status (2)

Country Link
CN (1) CN112879219B (zh)
WO (1) WO2022174566A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112879219B (zh) * 2021-02-18 2022-06-07 中国华能集团清洁能源技术研究院有限公司 基于图像处理的风电机组变桨不同步故障识别方法及系统
CN113868759B (zh) * 2021-09-10 2022-11-01 中国兵器科学研究院 一种方舱车辆等效模型的建立方法、装置、设备和介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435394A (zh) * 2011-09-14 2012-05-02 国电联合动力技术有限公司 一种风力发电机组叶片气动不平衡检测方法及其装置
EP2481924A1 (en) * 2011-02-01 2012-08-01 Alstom Wind, S.L.U. Device and method for visual analysis of a wind turbine blade
CN105134510A (zh) * 2015-09-18 2015-12-09 北京中恒博瑞数字电力科技有限公司 一种风力发电机组变桨系统的状态监测和故障诊断方法
CN107587983A (zh) * 2017-09-01 2018-01-16 天津科技大学 新型风力机叶片状态监测与故障预警系统
CN109154274A (zh) * 2016-03-14 2019-01-04 风力工程有限责任公司 对一个或多个风力涡轮机及其零部件进行状态监测并在需要时执行即时警报的方法
CN110857685A (zh) * 2018-08-24 2020-03-03 中车株洲电力机车研究所有限公司 一种风电机组叶片安装角偏差检测方法
CN111102940A (zh) * 2018-10-29 2020-05-05 北京金风科创风电设备有限公司 叶片桨距角偏差的检测方法、装置、存储介质及系统
CN112879219A (zh) * 2021-02-18 2021-06-01 中国华能集团清洁能源技术研究院有限公司 基于图像处理的风电机组变桨不同步故障识别方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2481924A1 (en) * 2011-02-01 2012-08-01 Alstom Wind, S.L.U. Device and method for visual analysis of a wind turbine blade
CN102435394A (zh) * 2011-09-14 2012-05-02 国电联合动力技术有限公司 一种风力发电机组叶片气动不平衡检测方法及其装置
CN105134510A (zh) * 2015-09-18 2015-12-09 北京中恒博瑞数字电力科技有限公司 一种风力发电机组变桨系统的状态监测和故障诊断方法
CN109154274A (zh) * 2016-03-14 2019-01-04 风力工程有限责任公司 对一个或多个风力涡轮机及其零部件进行状态监测并在需要时执行即时警报的方法
CN107587983A (zh) * 2017-09-01 2018-01-16 天津科技大学 新型风力机叶片状态监测与故障预警系统
CN110857685A (zh) * 2018-08-24 2020-03-03 中车株洲电力机车研究所有限公司 一种风电机组叶片安装角偏差检测方法
CN111102940A (zh) * 2018-10-29 2020-05-05 北京金风科创风电设备有限公司 叶片桨距角偏差的检测方法、装置、存储介质及系统
CN112879219A (zh) * 2021-02-18 2021-06-01 中国华能集团清洁能源技术研究院有限公司 基于图像处理的风电机组变桨不同步故障识别方法及系统

Also Published As

Publication number Publication date
CN112879219B (zh) 2022-06-07
CN112879219A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2022174566A1 (zh) 基于图像处理的风电机组变桨不同步故障识别方法及系统
CN110282143B (zh) 一种海上风电场无人机巡检方法
EP2055940A2 (en) Wind farm and method for controlling same
CN205620817U (zh) 自主无人机巡检风机叶片系统
US20150354402A1 (en) Detecting blade structure abnormalities
EP3203066A1 (en) System and method for de-icing a wind turbine rotor blade
CN103047078B (zh) 确定是否将尖端特征安装到风力涡轮机转子叶片上的方法
US20120027592A1 (en) Methods for controlling the amplitude modulation of noise generated by wind turbines
US20190107100A1 (en) A System and a Method for Optimal Yaw Control
US10669988B2 (en) System and method for operating wind turbines to avoid stall during derating
EP3643914B1 (en) System and method for protecting wind turbines from extreme and fatigue loads
CN205135913U (zh) 一种风电机组叶片的弦线定位模板及叶片安装角测量系统
CN114866744A (zh) 一种风电叶片自动追踪扫描探测系统与方法
CN113176268A (zh) 一种基于云台拍摄图像的风电叶片表面损伤检测方法
CN208380747U (zh) 一种风力发电机组变速率顺桨的变桨系统
CN114753974A (zh) 一种用于风电机组叶片状态的监测方法及系统
US11028829B2 (en) Controlling wind turbine based on rain drop size
WO2023246062A1 (zh) 电力智能视频分析监控结构、系统、方法及其存储介质
CN109578226B (zh) 基于结冰探测器与场群互通的风电机组结冰状态检测方法
CN115059587B (zh) 一种基于5g通信的物联网实时监测预警系统
CN110471447A (zh) 风力机的巡检方法和系统
EP4180658A1 (en) Optimal position for wind turbine blade sound signal collection and selection method therefor
CN113464379B (zh) 一种漂浮式海上风电机组运行状态监控方法
KR102541382B1 (ko) 풍력 발전기의 제어 장치 및 풍력 발전기의 블레이드 검사 방법
CN217002157U (zh) 一种基于红外成像的叶片状态监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926280

Country of ref document: EP

Kind code of ref document: A1