WO2022174455A1 - 电容传感器、终端设备、传感器组件和检测方法 - Google Patents

电容传感器、终端设备、传感器组件和检测方法 Download PDF

Info

Publication number
WO2022174455A1
WO2022174455A1 PCT/CN2021/077294 CN2021077294W WO2022174455A1 WO 2022174455 A1 WO2022174455 A1 WO 2022174455A1 CN 2021077294 W CN2021077294 W CN 2021077294W WO 2022174455 A1 WO2022174455 A1 WO 2022174455A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
sensor
capacitance
capacitance value
capacitive sensor
Prior art date
Application number
PCT/CN2021/077294
Other languages
English (en)
French (fr)
Inventor
倪刚
郭智
黄启睿
张慧敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/077294 priority Critical patent/WO2022174455A1/zh
Priority to CN202180006916.6A priority patent/CN115244491A/zh
Publication of WO2022174455A1 publication Critical patent/WO2022174455A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer

Definitions

  • the present application relates to the field of terminal technology, and in particular, to a capacitive sensor, a terminal device, a sensor assembly and a detection method.
  • the motion recognition adopts infrared motion recognition or video motion recognition.
  • the wearable device When the user wears the wearable device in one hand, the other hand approaches the wearable device and makes a corresponding action, and the wearable device detects the user's action, and then triggers the execution of corresponding processing.
  • the action operation process in the above technology requires the two hands of the user to be close to each other, and the hand wearing the wearable device controls the angle of the wearable device, so that the infrared sensor or the camera is aimed at the other hand, and the other hand performs the action. Neither the hand doing the action nor the hand wearing the wearable device can be in a completely liberated state, resulting in low operational convenience.
  • Embodiments of the present application provide a capacitive sensor, a terminal device, a sensor assembly, and a detection method, so as to overcome the problem of low operational convenience in the related art.
  • a capacitive sensor 1 in a first aspect, includes a plurality of first electrode plates 2 and a plurality of second electrode plates 3, and the plurality of first electrode plates 2 and the plurality of second electrode plates 3 are used for connection Different electrodes, a plurality of first pole plates 2 and a plurality of second pole plates 3 form a plurality of pole plate pairs, and each pole plate pair in the plurality of pole plate pairs is composed of the adjacent first pole plates 2 and the second pole plate pairs. Plate 3 components.
  • the number of the plurality of pole plate pairs is greater than or equal to 5, the ratio of the effective pole plate length to the pole plate distance of each pole plate pair is greater than 10, and the ratio of the pole plate width to the pole plate distance of each pole plate pair is greater than 2.
  • all the second electrode plates 3 can be connected to the negative electrode
  • all the second electrode plates 3 can be connected to the negative electrode
  • positive electrode Two adjacent and facing conductor plates for connecting different electrodes can be called a plate pair, and the two conductor plates can be called pole plates.
  • the two plates of the plate pair are equidistant at different positions.
  • the electrode spacing of different electrode plate pairs can be the same or different.
  • Different pairs of plates may share a first plate or a second plate.
  • two first pole plates 2 and two second pole plates 3 placed in a staggered manner can form three pole plate pairs.
  • the effective pole plate length is the length of the part of the first pole plate 2 and the second pole plate 3 facing each other in the pole plate pair.
  • the number of electrode plate pairs is greater than the number threshold value of 5, and the ratio of the effective electrode plate length to the electrode plate spacing of each electrode plate pair is greater than the ratio threshold value of 10, so that the capacitive sensor can have a sufficiently large basic capacitance value.
  • the ratio of the plate width to the plate spacing of each plate pair is greater than the ratio threshold of 2, which can reduce the fringing field of the capacitive sensor, thereby reducing the capacitance value of the conductor pair at a distance
  • the effect of that is, reducing the ability of capacitive sensors to sense long-distance conductors, and focusing on the sensing of short-distance conductors.
  • the capacitive sensor in the embodiment of the present application the characteristic that the capacitance value changes with the change of the distance between the capacitive sensor and the conductor can be well utilized, and the above-mentioned parameter setting enables the capacitive sensor to be closer to each other
  • the distance change of the skin is sensed, and the distance between the skin and the wearable device is detected by detecting the capacitance value.
  • the terminal device can perform some specified processing at this time. In this way, when the user wants to trigger a certain process, he only needs to wear the organ of the terminal device to perform the action. If one hand wears the terminal device, the other hand does not need to participate at this time, and is in a completely liberated state. , it can be seen that by adopting the solution of the present application, the operation convenience can be improved.
  • a plurality of first electrode plates 2 and a plurality of second electrode plates 3 are arranged in parallel with each other, so that at least one first electrode plate 2 and at least one second electrode plate 3 can be reused for Two plate pairs.
  • the capacitive sensor 1 may have a double-comb structure.
  • a capacitance sensor 1 with a double-comb structure includes four first electrode plates 2 and four second electrode plates 3 staggered from top to bottom. In this way, 7 pole plate pairs can be formed. Viewed from top to bottom, the first first pole plate and the first second pole plate form a pole plate pair, and the first second pole plate and the second first pole plate The plates form a plate pair. That is to say, the two pole plate pairs share a second pole plate. There are also similar cases where the plurality of pole plate pairs in the lower part share one pole plate, which will not be listed one by one.
  • the plurality of first polar plates 2 are interconnected in a star-shaped structure.
  • the capacitive sensor 1 may have a star-shaped structure.
  • a capacitive sensor 1 with a star-shaped structure with three vertices includes 3 first electrode plates 2 and 6 second electrode plates 3, and 3 first electrode plates.
  • Plate 2 is located at 12 o'clock, 4 o'clock and 8 o'clock respectively, and each first pole plate 2 is provided with a second pole plate 3 on both sides, so that 6 pole plate pairs can be formed.
  • the pole plate as an example, the second pole plate 3 on the left and the first pole plate 2 in the middle form a pole plate pair, and the second pole plate 3 on the right and the first pole plate 2 in the middle form a pole plate pair. That is to say, the two pole plate pairs share one first pole plate 2 .
  • the plurality of pole plate pairs in the lower part share one pole plate, which will not be listed one by one.
  • the double comb structure and the star structure in the above scheme have the characteristics of simple structure and material saving.
  • At least one first electrode plate 2 among the plurality of first electrode plates 2 is disposed between two second electrode plates 3 among the plurality of second electrode plates 3 to form two electrode plates right.
  • the plurality of first electrode plates 2 and the plurality of second electrode plates 3 are both made of flexible conductive materials.
  • the capacitive sensor 1 can be made by 3D printing, which can directly print the designated position of the device or component where the capacitive sensor needs to be set, and the flexible conductive material can be metal such as gold, silver, copper, etc. Through 3D printing, the metal material is printed to the designated position of the device or part to form a metal film with a predetermined pattern.
  • a flexible conductive material is used to make the capacitive sensor 1 , so that the capacitive sensor 1 can be easily processed on either a soft material or a hard material, and the flexibility of setting the capacitive sensor 1 can be improved.
  • the plurality of first polar plates 2 and the plurality of second polar plates 3 are all wave-shaped.
  • each first pole plate 2 and each second pole plate may have the same wave arc, and the distances between adjacent pole plates at different positions are the same.
  • a terminal device in a second aspect, includes a capacitance value detection circuit 7, a processor 8, and a capacitance sensor 1 as in the first aspect and possible implementations thereof.
  • the capacitance value detection circuit 7 is used for detecting the capacitance value of the capacitance sensor 1, and sending indication information to the processor 8, wherein the indication information is determined according to the capacitance value.
  • the processor 8 is configured to perform corresponding processing based on the indication information.
  • the capacitive sensor 1 may be disposed on the surface of the terminal device, and the surface is the surface on the side close to the user's skin when the terminal device is worn.
  • the capacitance value detection circuit 7 may continuously detect the capacitance value of the capacitance sensor 1 , or may start to detect the capacitance value of the capacitance sensor 1 after a preset trigger event occurs.
  • the capacitive sensor 1 using the first aspect and its possible implementations can sense the distance change of human skin, and will not be disturbed by other conductive objects with a slightly farther distance. In this way, motion detection can be performed more accurately, or correct wearing detection can be performed.
  • the terminal device is a wearable device.
  • the terminal device also includes a body 4 .
  • a groove 6 is provided on the first surface of the body 4 , and the capacitive sensor 1 is arranged in the groove 6 .
  • the first surface is the surface on the side close to the user's skin when the terminal device is worn. This wearing refers to the regular wearing of the terminal device. When the terminal device is routinely worn, the first surface is close to the skin. If the terminal device is a smart watch, the first surface is the back of the smart watch. If the terminal device is a smart bracelet, the first surface is the back of the smart watch. One surface is the inner side of the smart bracelet.
  • the detection surface of the capacitive sensor 1 is lower than the notch of the groove 6 , and the distance between the detection surface and the notch of the groove 6 is within a preset distance range.
  • the preset distance range can be 0.5-1mm.
  • the terminal device may be a wearable device that is in contact with human skin when worn, such as a smart watch, a smart bracelet, a smart collar, and a smart foot ring.
  • the body 4 of the smart watch may include a dial and a watch strap.
  • the bottom surface of the dial is the surface on the side close to the human skin when worn, and the bottom surface of the strap is the surface on the side close to the human skin when worn.
  • the inner surface of the body 4 is the surface that is close to the skin of the human body when worn.
  • grooves 6 may be provided on the bottom surface of the dial and the bottom surface of the strap respectively, or the grooves 6 may be provided only on the bottom surface of the dial or the bottom surface of the strap.
  • the number and position of the grooves 6 can be arbitrarily set according to the requirements.
  • the number of grooves 6 and the number of capacitive sensors 1 can be the same or different, that is, only one capacitive sensor 1 can be set in one groove 6, or one groove 6 can also be set.
  • a plurality of capacitive sensors 1 can be provided.
  • the bottom surfaces of the two watch straps are respectively provided with a plurality of grooves 6, the bottom surface of the dial is provided with a plurality of grooves 6, and each groove 6 is provided with a capacitive sensor 1, for example Second, the bottom surfaces of the two watch straps and the bottom surface of the dial are each provided with a groove 6 , and each groove 6 is provided with a plurality of capacitive sensors 1 .
  • the terminal device is a wearable device.
  • the terminal device also includes a body 4 .
  • the capacitive sensor 1 is buried under the first surface of the body 4 .
  • the first surface is the surface on the side close to the user's skin when the terminal device is worn.
  • the distance between the detection surface of the capacitive sensor 1 and the surface is within a preset distance range.
  • the preset distance range can be 0.5-1mm.
  • a groove can be formed on the fuselage 4 first, the capacitive sensor 1 can be processed into the groove by 3D printing, and then the groove can be closed with a corresponding material to cover the capacitor Sensor 1.
  • the capacitive sensor 1 will not be exposed to the air, which has better durability, and the capacitive sensor 1 will not be seen, that is, it will not affect the appearance of the product, which is more convenient for the industrial design of the product.
  • the capacitive sensor 1 is used to change the capacitance value when the user wears the terminal device on the target part of the user, and when the target part moves.
  • the processor 8 is configured to determine a target action instruction corresponding to the action based on the indication information, and execute processing corresponding to the target action instruction.
  • the processor 8 may directly determine the target action instruction based on the instruction information.
  • the processor 8 can also first determine the target action based on the instruction information, and after determining the target action instruction based on the target action, the action can be recorded with an identifier. 002, and so on.
  • the action commands triggered by various actions can be set arbitrarily based on requirements, for example, the action of swinging an arm upward triggers an command to increase the volume.
  • the corresponding relationship between actions and action instructions can be defined in different application programs. Based on the corresponding relationship between the actions and action instructions of the currently running application program, the target action instruction corresponding to the target action can be determined, and the processing corresponding to the target action instruction can be executed. .
  • the corresponding relationship between actions and action instructions may be defined in different interfaces of different application programs, and the target action instruction corresponding to the target action may be determined based on the corresponding relationship between the actions and the action instructions in the current interface of the currently running application program, And execute the processing corresponding to the target action instruction.
  • the capacitive sensor 1 based on the first aspect and its possible implementations performs motion recognition, and the capacitive value of the capacitive sensor 1 changes with the distance between the human skin and the capacitive sensor 1 during the action process. Identify actions. When the user performs some actions while wearing the terminal device, the distance between the capacitive sensor and the skin will change slightly with the user's actions, which in turn causes the capacitance value to change. The terminal device can perform some specified processing at this time. In this way, when the user wants to trigger a certain process, he only needs to wear the organ of the terminal device to perform the action. If one hand wears the terminal device, the other hand does not need to participate at this time, and is in a completely liberated state. , it can be seen that by adopting the solution of the present application, the operation convenience can be improved.
  • the indication information is a capacitance value.
  • the processor 8 is configured to determine the target action command according to the pre-stored capacitance value condition and the capacitance value, and execute the processing corresponding to the target action command.
  • the solutions shown in the embodiments of the present application can store a correspondence table between capacitance value conditions and action commands, and the correspondence table includes a plurality of capacitance value conditions, and each capacitance value condition corresponds to at least one action command.
  • the target capacitance value condition that the capacitance value conforms to can be determined first, and then the target action instruction corresponding to the target capacitance value condition can be determined.
  • a corresponding relationship table between capacitance value conditions and actions, and a corresponding relationship table between actions and action commands may also be stored separately, where each capacitance value condition corresponds to one action, and each action corresponds to at least one action command. Actions can be recorded using an identity. In this way, it is possible to first determine the target capacitance value condition that the capacitance value complies with, then determine the target action corresponding to the target capacitance value condition, and then determine the target action instruction corresponding to the target action.
  • the terminal device is a device that is worn around, and the multiple capacitive sensors 1 are distributed on the terminal device, so that when the terminal device is worn, the multiple capacitive sensors surround the target part distributed.
  • the terminal device to be worn around can be a smart watch, a smart bracelet, etc., and the capacitive sensors 1 can be evenly distributed on the terminal device at equal distances.
  • the capacitance value condition is based on a first average value of the capacitance values of each capacitance sensor 1 in the first capacitance sensor set, and a second average value of the capacitance values of each capacitance sensor 1 in the second capacitance sensor set The average is determined.
  • the first capacitive sensor set is composed of capacitive sensors 1 located in the first region of the target site when worn
  • the second capacitive sensor set is composed of capacitive sensors 1 located in the second region of the target site when worn, and the first region is different from the second region.
  • a certain capacitance value condition in the correspondence table is: the difference between the capacitance values of any two capacitance sensors 1 in the first capacitance sensor set is less than the difference threshold, and any capacitance value in the second capacitance sensor set The difference between the capacitance values of the two capacitance sensors 1 is smaller than the difference threshold, and the average value of the capacitance values of each capacitance sensor 1 in the first capacitance sensor set is greater than the average capacitance value of each capacitance sensor 1 in the second capacitance sensor set value.
  • the first area and the second area are the upper side of the wrist and the lower side of the wrist when the palm is down, respectively.
  • the above solution can ensure that the motion detection has high accuracy.
  • the processor 8 is configured to input the instruction information into a pre-trained recognition model, and when the output of the recognition model is the target action command, execute the processing corresponding to the target action command.
  • the recognition model is a pre-trained machine learning model
  • the specific model algorithm can be arbitrarily selected according to requirements, such as Bayesian, decision tree and other algorithms.
  • the technician before the recognition model is used, the technician can wear the smart watch to perform various actions, and detect and record the capacitance values of all capacitive sensors 1 each time an action is performed, according to the predetermined capacitance.
  • the order of arrangement between sensors, the capacitance values are arranged to obtain the sample capacitance value sequence, and the action made by each sample capacitance value sequence during detection is recorded, and the preset action command corresponding to this action is recorded as a reference. Action command.
  • the recognition model is trained based on a large number of sample capacitance value sequences and reference action instructions. After training, the recognition model can more accurately recognize the action command based on the capacitance value.
  • the machine learning model is used for action recognition, and in the case where the distribution of the capacitive sensors 1 in the terminal device is relatively complex or the actions are relatively complex, the action recognition can be performed more conveniently and accurately.
  • the terminal device further includes a biological sign sensor 9 , and the multiple capacitive sensors 1 are evenly distributed around the biological sign sensor 9 .
  • the biological sign sensor 9 may be a sensor that needs to be worn on the skin to accurately detect corresponding parameters, such as a pulse sensor.
  • the biological sign sensor 9 is electrically connected to the processor 8 .
  • Both the capacitive sensor 1 and the biological sign sensor 9 are arranged on the side of the fuselage 4 close to the skin, all the capacitive sensors 1 are evenly distributed on the circumference with the biological sign sensor 9 as the center, and the space between any two adjacent capacitive sensors 1 is uniform. The spacing is the same.
  • the number of capacitive sensors 1 can be set according to the actual accuracy requirements, for example, 4 can be set, respectively in the directions of 3 o'clock, 6 o'clock, 9 o'clock and 12 o'clock.
  • the above scheme can improve the accuracy of biological sign monitoring.
  • the processor 8 is configured to determine, according to the capacitance value and the pre-stored capacitance value condition, that the terminal device is not properly worn, and issue a prompt message that the device is not properly worn.
  • the situation that the terminal device is not properly worn may be a problem with the tightness of the corresponding position.
  • the capacitance value of the capacitive sensor 1 in the embodiment of the present application can reflect the human skin and the capacitance.
  • the distance between sensors 1, that is to say, the capacitance value of capacitive sensor 1 can reflect the tightness of the terminal device at the corresponding position, and then can detect whether there is a problem with the tightness through the value range of the capacitance value. corresponding prompt information.
  • the technician can first determine the position where the terminal device needs to set the capacitive sensor 1, and then determine the distance range between the capacitive sensor 1 and the skin when each position is properly worn, such as 0-0.5mm, and then determine the preset value of the capacitance value based on the distance range.
  • the range is stored in the terminal device, and the preset value range represents the capacitance value when worn correctly.
  • the terminal device can obtain the capacitance value of each capacitive sensor 1 to determine whether the capacitance value of each capacitive sensor 1 is within the preset value range, and if there is a target capacitance If the capacitance value of the sensor 1 is not within the preset value range, it can be determined that the position corresponding to the target capacitance sensor 1 is somewhat loose. At this time, a corresponding prompt message can be issued.
  • the prompt information can be displayed on the screen or broadcast by voice.
  • the above scheme can improve the accuracy of biological sign monitoring.
  • the processor 8 is further configured to: when a start trigger event is detected, start the detection of the capacitance value.
  • the processor 8 can control not to supply power to the capacitance sensor 1, so that no capacitance value detection is performed, and the capacitance detection is started only after the startup trigger event is detected. value.
  • the above solution can save power to a certain extent.
  • starting the trigger event includes: the attitude information of the terminal device satisfies the first attitude condition, or, the motion information of the terminal device satisfies the first motion condition, or, receiving the start instruction, or, the target function on.
  • the first attitude condition may be that the attitude information of the terminal device changes from the first attitude information to the second attitude information, or the first attitude condition may be that the terminal device maintains the third attitude information to a preset value duration, etc.
  • the first motion condition is a condition that needs to be satisfied by motion parameters such as speed, acceleration or displacement of the smart watch. For example, within a preset time period, the speed increases to a preset speed value, and the displacement direction is upward, and the corresponding action is that the user quickly raises his hand.
  • the start instruction may be an instruction triggered by the user operating a physical button or a virtual control.
  • a physical button For example, an upper-layer floating control is set in the interface of the terminal device, and when the capacitance value detection is in the off state, clicking on the control can issue a start command.
  • the target function can be a function that needs to perform action operations or needs to be properly worn, such as a heart rate detection function.
  • Capacitance value detection can be triggered when the heart rate detection function is turned on, and the heart rate detection function can be turned on automatically or by user operation.
  • the above scheme can easily trigger and start the detection of the capacitance value.
  • the processor 8 is further configured to: when a shutdown trigger event is detected, stop the detection of the capacitance value.
  • the processor 8 may control not to supply power to the capacitance sensor 1, which will stop the detection of the capacitance value.
  • the above solution can save power to a certain extent.
  • the shutdown trigger event includes: the gesture information of the terminal device satisfies the second gesture condition, or the motion information of the terminal device satisfies the second motion condition, or, receiving a shutdown instruction, or, the target function closure.
  • the second attitude condition may be that the attitude information of the terminal device changes from the second attitude information to the first attitude information, or the second attitude condition is that the terminal device maintains the fourth attitude information for a preset period of time ,and many more.
  • the second motion condition is a condition that needs to be satisfied by motion parameters such as speed, acceleration, or displacement of the terminal device. For example, within a preset time period, the speed increases to a preset speed value, and the displacement direction is downward, and the corresponding action is that the user quickly throws his hand downward.
  • the closing instruction may be an instruction triggered by the user operating a physical button or a virtual control.
  • a physical button For example, an upper-layer floating control is set in the interface of the terminal device, and when the capacitance value detection is in an activated state, a closing command can be issued by clicking the control.
  • the target function can be a function that needs to perform action operations or needs to be properly worn, such as a heart rate detection function.
  • a heart rate detection function When the heart rate detection function is turned off, it can be triggered to stop the capacitance value detection.
  • the heart rate detection function can be automatically turned off when the heart rate detection is completed and the preset time period is reached or by user operation.
  • the above scheme can easily trigger and stop the capacitance value detection.
  • the terminal device further includes a base, the base is disposed on the surface of the terminal device, and the capacitive sensor 1 is disposed on the base.
  • the base can be a detachable part in the terminal device, so that the base and the capacitive sensor 1 can be detached from the terminal device and installed on other terminal devices, which has strong usage flexibility.
  • a sensor assembly of a terminal device includes a base 10 and the capacitive sensor 1 of the first aspect and possible implementations thereof.
  • the capacitive sensor 1 is provided on the base 10 .
  • the sensor component is a supporting component of the terminal device, which can be installed on the terminal device or removed from the terminal device, and can be used on different terminal devices.
  • the user has a smart watch and a smart bracelet, and also has a sensor assembly.
  • the user can install the sensor assembly on the smart watch, and when using the smart bracelet, the sensor assembly can be removed from the smart watch. Remove it from the top and install it on the smart bracelet.
  • the sensor assembly can be mounted on the skin-contacting surface of the end device.
  • the function of the sensor assembly is to perform capacitive detection.
  • the setting of the shape of the base 10 depends on the distribution requirements for the capacitive sensor 1 , and it can be a long strip, a circular shape, or the like.
  • the base 10 is made of flexible materials, such as rubber, plastic and the like.
  • the capacitive sensor 1 using the first aspect and its possible implementations can sense the distance change of human skin, and will not be disturbed by other conductive objects with a slightly farther distance. In this way, motion detection can be performed more accurately, or correct wearing detection can be performed. Moreover, the sensor assembly is in a detachable relationship with the terminal device, which can improve the flexibility of the terminal device for motion detection, correct wearing detection, and the like.
  • a groove 11 is provided on the surface of the base 10 , and the capacitive sensor 1 is provided in the groove 11 .
  • the surface is on the side of the base 10 close to the user's skin.
  • the detection surface of the capacitive sensor 1 is lower than the notch of the groove 11 , and the distance between the detection surface and the notch of the groove 11 is within a preset distance range.
  • the preset distance range can be 0.5-1mm.
  • the number and position of the grooves 6 can be arbitrarily set according to the requirements.
  • the sensor 1 , or a groove 6 can also be provided with a plurality of capacitive sensors 1 .
  • one long groove 11 is provided, and all capacitive sensors 1 are provided in the groove 11 , or a plurality of square grooves 11 are provided, and one capacitive sensor 1 is provided in each square groove 11 .
  • the capacitive sensor 1 is buried under the surface of the base 10 .
  • the surface is on the side of the base 10 close to the user's skin.
  • the distance between the detection surface of the capacitive sensor 1 and the surface is within a preset distance range.
  • the preset distance range can be 0.5-1mm.
  • a groove can be formed on the base 10 first, the capacitive sensor 1 can be processed into the groove by 3D printing, and then the groove can be closed with a corresponding material to cover the capacitor Sensor 1.
  • the capacitive sensor 1 will not be exposed to the air, which has better durability, and the capacitive sensor 1 will not be seen, that is, it will not affect the appearance of the product, which is more convenient for the industrial design of the product.
  • a detection method is provided.
  • the detection method can be applied to a terminal device.
  • the terminal device includes the capacitive sensor 1 of the first aspect and its possible implementations.
  • the method includes: detecting a capacitance value of the capacitive sensor 1; Based on the indication information, the corresponding processing is performed, and the indication information is determined according to the capacitance value.
  • the capacitance value of the capacitive sensor 1 changes according to the action of the target part.
  • the terminal device determines the target action instruction corresponding to the action of the target part based on the instruction information, and executes the processing corresponding to the target action instruction.
  • the indication information is a capacitance value.
  • the terminal device determines the target action instruction according to the pre-stored capacitance value condition and capacitance value, and executes the processing corresponding to the target action instruction, and the target action instruction corresponds to the capacitance value condition.
  • the terminal device is a device that is worn around, and the multiple capacitive sensors 1 are distributed on the terminal device, so that when the terminal device is worn, the multiple capacitive sensors surround the target part distributed.
  • the capacitance value condition is determined according to the first average value of the capacitance values of each capacitance sensor 1 in the first capacitance sensor set and the second average value of the capacitance values of each capacitance sensor 1 in the second capacitance sensor set.
  • the first capacitive sensor set is composed of capacitive sensors 1 located in the first area of the target site when worn
  • the second capacitive sensor set is composed of capacitive sensors 1 located in the second area of the target site when worn, and the first area is different from the second area.
  • the terminal device inputs the instruction information into a pre-trained recognition model, and when the output of the recognition model is the target action command, executes the processing corresponding to the target action command.
  • the terminal device further includes a biological sign sensor 9 , and the multiple capacitive sensors 1 are evenly distributed around the biological sign sensor 9 .
  • the terminal device determines that the terminal device is not properly worn according to the capacitance value and the pre-stored capacitance value condition, and issues a prompt message that the device is not properly worn.
  • a computer program product in a fifth aspect, includes computer program code, and when the computer program code is executed by a terminal device, the terminal device executes the method of the fourth aspect and possible implementations thereof.
  • the number of electrode plate pairs is greater than the number threshold value of 5, and the ratio of the effective electrode plate length to the electrode plate spacing of each electrode plate pair is greater than the ratio threshold value of 10, so that the capacitive sensor can have a sufficiently large basis
  • the capacitance value can be detected by the detection circuit.
  • the ratio of the plate width to the plate spacing of each plate pair is greater than the ratio threshold of 2, which can reduce the fringing field of the capacitive sensor, which can reduce the distance of conductor pairs.
  • the capacitive sensor in the embodiment of the present application the characteristic that the capacitance value changes with the change of the distance between the capacitive sensor and the conductor can be well utilized, and the above-mentioned parameter setting enables the capacitive sensor to be closer
  • the distance change of the skin is sensed, and the distance between the skin and the terminal device is detected by detecting the capacitance value.
  • the terminal device can perform some specified processing at this time. In this way, when the user wants to trigger a certain process, he only needs to wear the organ of the terminal device to perform the action. If one hand wears the terminal device, the other hand does not need to participate at this time, and is in a completely liberated state. , it can be seen that by adopting the solution of the present application, the operation convenience can be improved.
  • FIG. 1 is a schematic structural diagram of a capacitive sensor provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a capacitive sensor provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a processing circuit provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a capacitance value detection circuit provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a capacitance value detection circuit provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of an action detection provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a processor provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the distribution of capacitance values of a plurality of capacitance sensors when a user performs an action according to an embodiment of the present application;
  • FIG. 12 is a schematic diagram of the distribution of capacitance values of a plurality of capacitance sensors when a user performs an action according to an embodiment of the present application
  • FIG. 13 is a schematic diagram of the distribution of capacitance values of a plurality of capacitance sensors when a user performs an action according to an embodiment of the present application
  • FIG. 14 is a schematic diagram of the distribution of capacitance values of a plurality of capacitance sensors when a user performs an action according to an embodiment of the present application;
  • 15 is a schematic flowchart of a correct wearing detection provided by an embodiment of the present application.
  • 16 is a schematic structural diagram of a processor provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a sensor component of a terminal device provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a terminal device provided with a sensor assembly provided by an embodiment of the present application.
  • FIG. 20 is a schematic flowchart of a detection method provided by an embodiment of the present application.
  • Capacitive sensor The first plate
  • the embodiment of the present application provides a capacitive sensor 1 .
  • the capacitive sensor 1 includes a plurality of first electrode plates 2 and a plurality of second electrode plates 3 .
  • the plurality of first electrode plates 2 and the plurality of second electrode plates 3 are used to connect different electrodes. For example, when all the first electrode plates 2 are connected to the positive electrode, all the second electrode plates 3 can be connected to the negative electrode, and when all the first electrode plates 2 are connected to the negative electrode, all the second electrode plates 3 can be connected to the positive electrode.
  • a plurality of first pole plates 2 and a plurality of second pole plates 3 form a plurality of pole plate pairs, and each pole plate pair in the plurality of pole plate pairs is made up of adjacent first pole plates 2 and second pole plates 3 .
  • the number of the plurality of pole plate pairs is greater than or equal to 5, the ratio of the effective pole plate length to the pole plate distance of each pole plate pair is greater than 10, and the ratio of the pole plate width to the pole plate distance of each pole plate pair is greater than 2.
  • two adjacent and facing conductor plates for connecting different electrodes can be called a pole plate pair, and the two conductor plates can be called pole plates.
  • the two plates of the plate pair are equidistant at different positions.
  • the capacitive sensor 1 may have a double comb structure, a star structure, or the like. See Figures 1 and 2.
  • FIG. 1 shows a capacitive sensor 1 with a double-comb structure, wherein a plurality of first electrode plates 2 and a plurality of second electrode plates 3 are arranged in parallel with each other, so that at least one first electrode plate 2 and at least one second electrode plate are arranged in parallel. 3 can be reused for two plate pairs.
  • FIG. 2 shows a capacitive sensor 1 with a star-shaped structure, and a plurality of first electrode plates 2 are connected with each other in a star-shaped structure.
  • the common feature of the capacitive sensors 1 of the two structures is that they both have a plurality of first electrode plates 2 and a plurality of second electrode plates 3 to form a plurality of electrode plate pairs. A certain distance is maintained between the first pole plate 2 and the second pole plate 3 and are not in contact with each other.
  • a plurality of first electrode plates 2 are connected to positive electrodes and a plurality of second electrode plates 3 are connected to negative electrodes as an example.
  • Each pole plate pair consists of a first pole plate 2 and a second pole plate 3 .
  • At least one first electrode plate 2 among the plurality of first electrode plates 2 is disposed between two second electrode plates 3 among the plurality of second electrode plates 3 to form two electrode plate pairs. That is, different pole plate pairs may share one first pole plate 2 or share one second pole plate 3 .
  • the capacitive sensor 1 of the double-comb structure shown in FIG. 1 includes 4 first electrode plates 2, 4 second electrode plates 3 and 7 electrode plate pairs.
  • the pole plate and the first second pole plate form a pole plate pair, and the first second pole plate and the second first pole plate form a pole plate pair, that is to say, the two pole plate pairs share a second pole plate pair.
  • the star-shaped capacitive sensor 1 shown in FIG. 2 includes 3 first electrode plates 2, 6 second electrode plates 3 and 6 electrode plate pairs. Taking the uppermost 3 electrode plates as an example, The second pole plate 3 on the left and the first pole plate 2 in the middle form a pole plate pair, and the second pole plate 3 on the right and the first pole plate 2 in the middle form a pole plate pair, that is to say, the two pole plates There are similar situations in the lower part of the figure for sharing one first polar plate 2, and they will not be listed one by one.
  • the plurality of first electrode plates 2 and the plurality of second electrode plates 3 in the capacitive sensor 1 may all be wavy or straight.
  • Capacitive sensor 1 can be made by 3D printing, which can directly print the specified position of the device or component where the capacitive sensor needs to be set.
  • the material can be flexible conductive materials, such as gold, silver, copper, etc., and the metal material can be printed by 3D printing. To the designated position of the device or component, a metal film with a predetermined pattern is formed.
  • Figures 1 and 2 show the patterns of two capacitive sensors.
  • the effective pole plate length is the length of the part of the first pole plate 2 and the second pole plate 3 facing each other in the pole plate pair
  • the pole plate width is the width in the film plane.
  • the widths of the first electrode plates 2 and the second electrode plates 3 can be set to be equal, for example, the width of the electrode plates is 100 ⁇ m. It is also possible to set the pole plate spacings of all pole plate pairs to be equal, that is, the distances between all adjacent pole plates are equal, for example, the pole plate spacing is 40 microns.
  • the detection circuit In order to allow the detection circuit to better detect the capacitance value of the capacitive sensor 1, increase the number of electrode plate pairs and the ratio of the effective electrode plate length to the electrode plate spacing, which can increase the basic capacitance value of the capacitive sensor 1.
  • the basic capacitance value can meet the detection requirements.
  • the capacitive sensor 1 In order to reduce the influence of far-distance conductors on the capacitance value, increase the ratio of the electrode plate width to the electrode plate spacing, which can reduce the fringe field of the capacitive sensor 1, thereby reducing the impact of the capacitive sensor 1 on the long-distance conductors (such as the user's When the ratio of the plate width to the plate spacing is greater than 2, the capacitive sensor 1 can only perceive the distance to the skin, and the perception of other conductors can be ignored.
  • the characteristic that the capacitance value changes with the change of the distance between the capacitive sensor and the conductor can be well utilized.
  • the distance change is sensed, and the distance between the skin and the terminal device is detected by detecting the capacitance value.
  • the distance between the capacitive sensor and the skin will change slightly with the user's actions, which in turn causes the capacitance value to change.
  • the terminal device can perform some specified processing at this time. In this way, when the user wants to trigger a certain process, he only needs to wear the organ of the terminal device to perform the action. If one hand wears the terminal device, the other hand does not need to participate at this time, and is in a completely liberated state. , it can be seen that by adopting the solution of the present application, the operation convenience can be improved.
  • the terminal device includes a body 4 , a processing circuit 5 and a capacitive sensor 1 .
  • the capacitive sensor 1 is provided on the body 4 .
  • each terminal device may include one or more capacitive sensors 1, and the number of capacitive sensors 1 is set according to actual detection requirements. For example, for ring-shaped wearable devices, such as smart watches and smart bracelets, multiple capacitive sensors can be set, and the multiple capacitive sensors 1 can be evenly distributed inside the wearable device, or, around a certain biometric sensor of the wearable device Set up multiple capacitive sensors 1 evenly. The position of the capacitive sensor 1 is set close to the surface of the terminal device in contact with the human skin. For a terminal device that can be worn on both sides, one or more capacitive sensors 1 can also be arranged on both sides respectively.
  • the terminal device may be a wearable device that is in contact with human skin when worn, such as a smart watch, a smart bracelet, a smart collar, a smart foot ring, and the like.
  • a smart watch is used as an example to describe the solution, and other situations are similar, and will not be repeated here.
  • a groove 6 may be provided on the surface of the body 4, the capacitive sensor 1 is arranged in the groove 6, the detection surface of the capacitive sensor 1 is lower than the notch of the groove 6, and the detection The distance between the face and the notch of the groove 6 is within a predetermined distance range.
  • the above-mentioned surface may be the surface on the side close to the user's skin when the terminal device is worn.
  • the body 4 of the smart watch may include a dial and a strap.
  • the bottom surface of the dial is the surface on the side close to the human skin when worn, and the bottom surface of the strap is the surface on the side close to the human skin when worn.
  • the grooves 6 may be provided on the bottom surface of the dial and the bottom surface of the strap, respectively, or the grooves 6 may be provided only on the bottom surface of the dial or the bottom surface of the strap.
  • the number and position of the grooves 6 can be arbitrarily set according to the requirements.
  • the number of grooves 6 and the number of capacitive sensors 1 can be the same or different, that is, only one capacitive sensor 1 can be set in one groove 6, or one groove 6 can also be set.
  • a plurality of capacitive sensors 1 can be provided.
  • the bottom surfaces of the two watch straps are respectively provided with a plurality of grooves 6, the bottom surface of the dial is provided with a plurality of grooves 6, and each groove 6 is provided with a capacitive sensor 1, for example Second, the bottom surfaces of the two watch straps and the bottom surface of the dial are each provided with a groove 6 , and each groove 6 is provided with a plurality of capacitive sensors 1 .
  • the inner surface of the body 4 is the surface that is close to the skin of the human body when worn.
  • the capacitive sensor 1 can be printed into the groove 6 by 3D printing, and the material can be conductive materials such as gold, silver, copper, etc., and the metal material is printed on the bottom of the groove 6 by 3D printing to form a metal film with a predetermined pattern.
  • the pattern please refer to Figure 1, Figure 2.
  • the capacitive sensor 1 may also be buried under the surface of the body 4 , and the distance between the detection surface of the capacitive sensor 1 and the surface is within a preset distance range.
  • the surface may be the surface on the side close to the user's skin when the terminal device is worn.
  • a groove can be formed on the fuselage 4 first, the capacitive sensor 1 can be processed into the groove by 3D printing, and then the groove can be closed with a corresponding material to cover the capacitive sensor 1 .
  • the capacitive sensor 1 will not be exposed to the air, which has better durability, and the capacitive sensor 1 will not be seen, that is, the appearance of the product will not be affected, which is more convenient for the industrial design of the product.
  • the capacitive sensor 1 used in the embodiment of the present application has a characteristic: the capacitance value changes with the distance between the detection surface of the capacitive sensor 1 and the skin.
  • the detection surface of the capacitive sensor 1 is the surface of the capacitive sensor 1 closest to the skin.
  • the capacitance value of the capacitive sensor 1 will be affected by the capacitance of the human body and will change. If the human skin continues to approach the detection surface, the capacitance value will increase as the distance decreases. large, that is, the capacitance value is negatively related to the distance.
  • the setting of the groove 6 can better play this feature.
  • the capacitive sensor 1 is trapped in the groove 6, and the distance between the detection surface and the notch is within a preset distance range, which can generally be 0.5-1mm. In this way, when the user wears the smart watch and the hand is in a stationary state, there is no direct contact between the skin and the detection surface of the capacitive sensor 1 .
  • the fit between the human skin and the different positions of the body 4 will change slightly. For example, when the hand moves to the left, the fit between the skin on the left side of the wrist and the bottom surface of the left watch strap will increase. Large, part of the skin is pressed into the groove 6, and the fit between the skin on the right side of the wrist and the bottom surface of the right wristband will be reduced or even separated.
  • the distance between the skin at different positions and the detection surface of the capacitance sensor 1 will change differently, and the capacitance value of the capacitance sensor 1 at the corresponding position will also change. That is to say, the distance between the skin and the detection surface of the capacitive sensor 1 can be detected by detecting the capacitance value, thereby realizing motion detection or correct wearing detection.
  • Each capacitive sensor 1 is electrically connected to the processing circuit 5 respectively.
  • the electrically connected wires can be arranged in the watchband.
  • the electrically connected wires Can go through the casing.
  • the processing circuit 5 can be used to detect the capacitance value of the capacitive sensor 1 and perform corresponding processing based on the capacitance value of the capacitive sensor 1 .
  • the processing circuit 5 may include a capacitance value detection circuit 7 and a processor 8 .
  • the capacitance value detection circuit 7 is used for detecting the capacitance value of the capacitance sensor 1, and sending indication information to the processor 8, wherein the indication information is determined according to the capacitance value.
  • the processor 8 is configured to perform corresponding processing based on the indication information.
  • the indication information may be a capacitance value, or may be other information whose values correspond one-to-one with different capacitance values, for example, indication information A corresponds to capacitance value 1, indication information B corresponds to capacitance value 2, and so on.
  • This embodiment of the present application takes the indication information as a capacitance value as an example to describe the solution in detail, and other situations are similar to it, and will not be repeated here.
  • the processor 8 may be a central processing unit (CPU). Various possibilities of the capacitance value detection circuit 7 will be described below.
  • the processing circuit 5 includes a capacitance value detection circuit 7, and the capacitance value detection circuit 7 further includes at least one detection sub-circuit.
  • Each detection sub-circuit is electrically connected to a capacitance sensor 1 respectively, and is used for detecting the capacitance value of the corresponding capacitance sensor 1 .
  • Each detection sub-circuit may further include an analog signal detection circuit and an analog-to-digital converter, the analog signal detection circuit is electrically connected to the capacitive sensor 1, and the analog signal detection circuit may output an analog signal of a voltage value or a current value, and the analog signal is used for Indicates the capacitance value of the capacitance sensor 1.
  • the capacitance value of the capacitance sensor 1 changes, the voltage value or current value output by the analog signal detection circuit also changes correspondingly.
  • the analog signal of the voltage value or the current value is input to the analog-to-digital converter and converted into a digital signal, which can represent the capacitance value.
  • the capacitance value detection circuit 7 may also be provided with a signal transmission circuit, each detection sub-circuit is electrically connected to the signal transmission circuit, and sends a digital signal for reflecting the capacitance value to the signal transmission circuit, and the signal transmission circuit transmits the digital signal to processor 8.
  • the digital signal of the capacitance values of the multiple capacitive sensors 1 can be sent to the processor 8 by the signal transmission circuit in a time-division multiplexing manner, or a code division multiple access-like can be used.
  • the digital signals of the capacitance values of the plurality of capacitance sensors 1 are encoded by means of access, CDMA) and sent to the processor 8 .
  • CDMA code division multiple access-like
  • the above structure and corresponding processing method can reduce the occupation of 8 pins of the processor.
  • the structure of the capacitance value detection circuit may be as shown in FIG. 6 .
  • the processing circuit 5 includes at least one capacitance value detection circuit 7 , and each capacitance value detection circuit 7 is electrically connected to a capacitance sensor 1 , and is used to detect the capacitance value of the corresponding capacitance sensor 1 . .
  • Each capacitance value detection circuit 7 is electrically linked with the processor 8, respectively.
  • Each capacitance value detection circuit 7 may further include an analog signal detection circuit and an analog-to-digital converter.
  • the analog signal detection circuit is electrically connected to the capacitance sensor 1 , and the analog signal detection circuit can output an analog signal of a voltage value or a current value.
  • the analog signal It is used to reflect the capacitance value of the capacitance sensor 1.
  • the voltage value or current value output by the analog signal detection circuit will also change accordingly.
  • the analog signal of the voltage value or the current value is input to the analog-to-digital converter and converted into a digital signal, which can represent the capacitance value.
  • the analog-to-digital converter sends the digital signal to the processor 8 .
  • the structure of the capacitance value detection circuit may be as shown in FIG. 7 .
  • the processing circuit 5 is configured to detect the capacitance value of the capacitance sensor 1 , and perform corresponding processing based on the capacitance value of the capacitance sensor 1 .
  • the processing circuit 5 is configured to detect the capacitance value of the capacitance sensor 1 , and perform corresponding processing based on the capacitance value of the capacitance sensor 1 .
  • the processing flow of motion detection may include the following steps: 801 , collect the capacitance value of the capacitive sensor; 802 , determine the target motion instruction corresponding to the motion of the target part based on the capacitance value; 803 , execute the processing corresponding to the target motion instruction.
  • step 801 can be completed by the capacitive sensor 1 and the capacitance value detection circuit 7 together, and steps 802 and 803 can be completed by the processor 8 .
  • the processor 8 may include an action recognition module and an execution module. As shown in FIG. 9 , the action recognition module is used to determine the corresponding target action instruction based on the capacitance value of the capacitive sensor, and the execution module is used to execute the processing corresponding to the target action instruction.
  • the target part is the part where the user wears the terminal device.
  • the target action instruction is an instruction that triggers the execution of processing, such as a volume up instruction, a volume down instruction, and the like.
  • the processor 8 can directly determine the target action command based on the capacitance value. Alternatively, the processor 8 can also first determine the target action based on the capacitance value, and then determine the target action instruction based on the target action, and the action can be recorded with an identifier. 002, and so on.
  • the embodiments of the present application take the processor first determining the target action and then determining the corresponding target action instruction as an example to describe the solution in detail, and other situations are similar, and will not be repeated.
  • the action commands triggered by various actions can be set arbitrarily based on requirements.
  • the upward arm swing triggers the volume increase command
  • the downward arm swing triggers the volume reduction command
  • the right arm swing triggers the smart watch Fast-forward commands to the TV, etc.
  • the corresponding relationship between actions and action instructions can be defined in different application programs. Based on the corresponding relationship between the actions and action instructions of the currently running application program, the target action instruction corresponding to the target action can be determined, and the processing corresponding to the target action instruction can be executed. .
  • the corresponding relationship between actions and action instructions may be defined in different interfaces of different application programs, and the target action instruction corresponding to the target action may be determined based on the corresponding relationship between the actions and the action instructions in the current interface of the currently running application program, And execute the processing corresponding to the target action instruction.
  • Wearable devices based on surrounding wear can detect more kinds of actions.
  • Such wearable devices may have the following structural characteristics: a plurality of capacitive sensors 1 are distributed on the terminal device, so that the terminal device When worn, multiple capacitive sensors are distributed around the user's target area.
  • the target part is the part where the user wears the terminal device.
  • the terminal device includes a plurality of capacitive sensors 1
  • the body 4 has a ring structure
  • the plurality of capacitive sensors 1 are evenly distributed on the body 4
  • the numbers of A to N are set for the plurality of capacitive sensors 1 in the figure.
  • the distribution of the capacitive sensor 1 is exemplified in the figure, and other components are not fully reflected in the figure.
  • a plurality of capacitive sensors 1 can be uniformly arranged on the terminal device in the circumferential direction, specifically can be arranged in the grooves on the inner surface of the annular body 4, or can be embedded in the shallow layer of the inner surface of the annular body 4, or It can be provided directly on the inner surface of the annular body 4 .
  • the distance between the skin on one side of the movement direction and the corresponding several capacitive sensors 1 will become closer, and the corresponding capacitance value will be will increase, and the distance between the skin on the opposite side of the movement direction and the corresponding plurality of capacitive sensors 1 becomes farther, and the corresponding capacitance value will decrease.
  • the method of setting the capacitive sensor 1 shown in FIG. 10 take the smart watch on the right hand, the dial on the back of the wrist, and the palm facing down when performing an action as an example, the distribution of the capacitance value of each capacitive sensor 1 when performing an action is analyzed. illustrate.
  • the distribution of the detected capacitance values of each capacitive sensor 1 can be as shown in Figure 11, and in the case of swinging the arm downward, the distribution of the detected capacitance values of each capacitive sensor 1 can be shown in Figure 12 , in the case of swinging the arm to the left, the distribution of the detected capacitance values of each capacitance sensor 1 can be as shown in Figure 13, and in the case of swinging the arm to the right, the distribution of the detected capacitance values of each capacitance sensor 1 can be shown in Figure 14 shown.
  • a corresponding judgment method can be designed to judge the user's action based on the detection of the capacitance value.
  • Action determination method (1) Set a corresponding capacitance value condition for each action, and determine the corresponding action based on the condition satisfied by the detected capacitance value.
  • the processing circuit 5 is configured to determine the target action corresponding to the target capacitance value condition satisfied by the capacitance value of the capacitance sensor 1 based on the pre-stored correspondence between the action and the capacitance value condition.
  • Technicians can set the types of actions based on product requirements, and design the distribution of the capacitive sensors 1, and then set the capacitance value conditions corresponding to each action.
  • a plurality of capacitive sensors 1 can be arranged on the inner surface of the ring, and the corresponding actions can include swinging the arm up, swinging the arm down, swinging the arm to the left, and swinging the arm to the right.
  • At least one of the capacitor value conditions corresponding to each action can be as follows:
  • the capacitance value condition corresponding to the upward swing is: the difference between the capacitance values of any two capacitance sensors 1 in the first capacitance sensor set is less than the difference threshold, and the capacitance value of any two capacitance sensors 1 in the second capacitance sensor set The difference is smaller than the difference threshold, and the average value of the capacitance values of each capacitance sensor 1 in the first capacitance sensor set is greater than the average value of the capacitance values of each capacitance sensor 1 in the second capacitance sensor set.
  • the capacitance value condition corresponding to the downward arm swing is: the difference between the capacitance values of any two capacitance sensors 1 in the first capacitance sensor set is less than the difference threshold, and the capacitance of any two capacitance sensors 1 in the second capacitance sensor set The difference of the values is less than the difference threshold, and the average value of the capacitance values of each capacitive sensor 1 in the first capacitive sensor set is smaller than the average value of the capacitance values of each capacitive sensor 1 in the second capacitive sensor set.
  • the capacitance value condition corresponding to swinging the arm to the left is: the difference between the capacitance values of any two capacitance sensors 1 in the third capacitance sensor set is less than the difference threshold, and the capacitance of any two capacitance sensors 1 in the fourth capacitance sensor set The difference of the values is smaller than the difference threshold, and the average value of the capacitance values of each capacitive sensor 1 in the third capacitive sensor set is greater than the average value of the capacitance values of each capacitive sensor 1 in the fourth capacitive sensor set.
  • the capacitance value condition corresponding to the right arm swing is: the difference between the capacitance values of any two capacitance sensors 1 in the third capacitance sensor set is less than the difference threshold, and the capacitance of any two capacitance sensors 1 in the fourth capacitance sensor set The difference of the values is less than the difference threshold, and the average value of the capacitance values of each capacitive sensor 1 in the third capacitive sensor set is smaller than the average value of the capacitance values of each capacitive sensor 1 in the fourth capacitive sensor set.
  • the first capacitive sensor set is composed of capacitive sensors 1 located in the first region of the target site when worn
  • the second capacitive sensor set is composed of capacitive sensors 1 located in the second region of the target site when worn, and the first region is different from the second region.
  • the third capacitive sensor set is composed of capacitive sensors 1 located in the third region of the target site when worn
  • the fourth capacitive sensor set is composed of capacitive sensors 1 located in the fourth region of the target site when worn, and the third region is different from the fourth region.
  • the first area and the second area may be opposite sides of the wrist, such as the upper side of the wrist and the lower side of the wrist
  • the third area and the fourth area may be opposite sides of the wrist, such as the left side of the wrist and the wrist Right.
  • the first capacitive sensor set includes capacitive sensors D to J
  • the second capacitive sensor set includes capacitive sensors A to C and K to N
  • the third capacitive sensor set includes capacitive sensors A to G
  • the fourth capacitive sensor set Including capacitive sensors H ⁇ N.
  • the capacitance value of some capacitive sensors at critical positions may not meet the above capacitance value conditions, such as capacitive sensors A, N, G, H, etc. are not sensitive to left and right arm swings, and capacitive sensor D , K, etc. are not sensitive to swinging the arm up and down
  • the second capacitive sensor set to include capacitive sensors A, B, M, N
  • the third capacitive sensor set Including capacitive sensors C, D, E, F
  • the fourth capacitive sensor set includes capacitive sensors I, J, K, L. In this setting, since some capacitive sensors at critical positions are removed from the set, motion detection errors caused by wearing offset can also be reduced.
  • the user can be informed of a designated wearing position and the direction of the palm of the user when performing an action.
  • the example matches the above setting (a) and setting (b).
  • the specified wearing position and palm orientation of the user can also be notified in other ways, and the corresponding sets of the above capacitive sensors can also be adjusted accordingly at any time, which are not one by one here. enumerate.
  • the wearing position detection can be performed to determine the current wearing position of the smart watch, that is, to determine whether the hand wearing the smart watch is the left hand or the right hand, and to determine whether the dial is located outside or inside the wrist. Then, determine the direction of the palm of the user's hand wearing the smart watch. Then, based on the pre-stored correspondence between the wearing position, the palm orientation, the action and the capacitance value condition, determine the current wearing position, the palm orientation of the hand corresponding to the current wearing position, and the target capacitance satisfied by the capacitance value of the capacitive sensor 1. The target action corresponding to the value condition. In this correspondence, a corresponding set of capacitance sensors can be set separately for each capacitance value condition.
  • the above-mentioned example of 14 capacitive sensors is continued for description, and the details are as follows.
  • the first capacitive sensor set includes capacitive sensors F, G, H, and I
  • the second capacitive sensor set includes capacitive sensors A, B, M, N
  • the third capacitive sensor set includes capacitive sensors C, D, E, F
  • the fourth capacitive sensor set includes capacitive sensors I, J, K, L.
  • the first capacitive sensor set includes capacitive sensors A, B, M, and N
  • the second capacitive sensor set includes capacitive sensors F, G, H, I
  • the third capacitive sensor set includes capacitive sensors I, J, K, L
  • the fourth capacitive sensor set includes capacitive sensors C, D, E, F.
  • the following introduces how to determine the wearing position and palm orientation.
  • the wearing position is detected.
  • the wearing position is determined based on the parameter values output by sensors such as gyroscope and/or speed sensor and the pre-stored reference parameter value.
  • Technicians conduct multiple data collections, each time the smartwatch is worn in one wearing position, such as the outside of the left wrist, the inside of the left wrist, the outside of the right wrist, and the inside of the right wrist. After wearing the smart watch, the technician can raise his hand to look at the watch, and collect a series of parameter values output by the gyroscope during the operation. parameter value. In this way, for each wearing position, a series of parameter values output by the gyroscope can be obtained. This series of parameter values can be used as a reference for subsequent comparison with the parameter values output by the gyroscope, which can be called the reference gyroscope parameter value. sequence. Thus, the corresponding relationship between the wearing position and the reference gyro parameter value sequence can be established. In the corresponding relationship, one wearing position may correspond to one or more reference gyroscope parameter value sequences.
  • the smart watch can obtain the gyroscope parameter value in real time, and compare the gyroscope parameter value sequence of a period of time (this time length is equal to the collection time of the above-mentioned reference gyroscope parameter value sequence, such as 1 second) with the gyroscope parameter value sequence. Each reference gyroscope parameter value sequence is compared, and the matching degree is calculated. If the matching degree between the target reference gyroscope parameter value sequence and the gyroscope parameter value sequence is greater than the preset threshold, the target reference gyroscope is determined in the corresponding relationship.
  • the target wearing position corresponding to the instrument parameter value sequence is the current wearing position of the smart watch. In order to ensure the accuracy of wearing position determination, the detection results of multiple wearing positions can be obtained based on the above method, and the wearing position whose number of detections exceeds the threshold is determined as the current wearing position of the smart watch.
  • the wearing position is determined based on the parameter values output by sensors such as gyroscopes and/or speed sensors and the machine learning model.
  • sensors such as gyroscopes and/or speed sensors and the machine learning model.
  • the following uses the gyroscope as an example to illustrate, and other situations are similar and will not be repeated.
  • the smart watch can obtain the gyroscope parameter value in real time, input the gyroscope parameter value sequence for a period of time (such as 1 second) into the wearing position detection model, and output the wearing position, that is, the smart watch Current wearing position.
  • the wearing position detection model is a pre-trained machine learning model, and the specific model algorithm can be arbitrarily selected according to requirements, which is not limited in this application.
  • the wearing position detection model Before the wearing position detection model is used, a large number of sample gyroscope parameter value sequences can be obtained, and the actual wearing position corresponding to each sample gyroscope parameter value sequence can be obtained as the reference wearing position, based on the sample gyroscope parameter value sequence and the reference wearing position The position trains the wearing position detection model.
  • the orientation of the palm of the hand corresponding to the wearing position can be further determined.
  • the most basic palm orientation may include palm down and palm up, and may also include palm left, palm right, and the like.
  • the gyroscope parameter values corresponding to different palm orientations in each wearing position can be detected in advance, and the corresponding relationship between the wearing position, the palm orientation and the gyroscope parameter values can be obtained and stored. After the wearing position is detected, based on the detected current wearing position and the current gyroscope parameter value, the corresponding palm orientation is searched in the corresponding relationship.
  • the palm orientation can also be not detected, and the user can be directly informed of the palm orientation specified when performing the action operation in the instruction manual of the smart watch or in the prompt information displayed by the smart watch, such as the palm facing downward.
  • the action determination method (2) is based on the machine learning model to identify the action corresponding to the detected capacitance value.
  • the processor 8 is configured to input the instruction information into the pre-trained recognition model, and when the output of the recognition model is the target action command, execute the processing corresponding to the target action command.
  • the recognition model is a pre-trained machine learning model, and the specific model algorithm can be arbitrarily selected according to requirements, such as Bayesian, decision tree and other algorithms, which are not limited in this application.
  • the output of the recognition model can be different action commands or no commands.
  • the technician can wear the smart watch to perform various actions, and detect and record the capacitance values of all capacitive sensors 1 each time an action is performed. Values are arranged to obtain the sample capacitance value sequence, and the action made by each sample capacitance value sequence during detection is recorded, and the preset action command corresponding to this action is recorded as the reference action command. Then, the recognition model is trained based on a large number of sample capacitance value sequences and reference action instructions. After training, the recognition model can more accurately recognize the action command based on the capacitance value.
  • the second treatment is to wear it correctly.
  • the processing flow of correct wearing detection may include the following steps as shown in Figure 15: 1501, collect the capacitance value of the capacitive sensor; 1502, based on the capacitance value of the capacitive sensor, determine that the terminal device is not correctly worn; 1503, issue a prompt message of incorrect wearing .
  • step 1501 can be completed by the capacitive sensor 1 and the capacitance value detection circuit 7 together, and steps 1502 and 1503 can be completed by the processor 8 .
  • the processor 8 may include a correct wearing judging module and an execution module. As shown in FIG. 16 , the correct wearing judging module is used to determine that the terminal device is not properly worn based on the capacitance value of the capacitive sensor, and the execution module is used to issue a prompt message of incorrect wearing.
  • the terminal device includes multiple capacitive sensors 1 , the terminal device further includes a biological sign sensor 9 , and a plurality of capacitive sensors 1 are evenly distributed around the biological sign sensor 9 .
  • the distribution of the capacitive sensor 1 and the positional relationship with the biological sign sensor 9 are exemplified, and other components are not fully reflected in the figure.
  • the biometric sensor 9 can be a sensor that needs to be worn on the skin to accurately detect corresponding parameters, such as a pulse sensor.
  • the biological sign sensor 9 is electrically connected to the processing circuit 5 .
  • Both the capacitive sensor 1 and the biological sign sensor 9 are arranged on the side of the fuselage 4 close to the skin, all the capacitive sensors 1 are evenly distributed on the circumference with the biological sign sensor 9 as the center, and the space between any two adjacent capacitive sensors 1 is uniform. The spacing is the same.
  • the number of capacitive sensors 1 can be set according to the actual accuracy requirements, for example, 4 can be set, respectively in the directions of 3 o'clock, 6 o'clock, 9 o'clock and 12 o'clock.
  • the processing circuit 5 is used to determine the target capacitance sensor 1 whose capacitance value is not within the preset value range, determine that the position corresponding to the target capacitance sensor 1 is the position where the terminal device is not properly worn, and issue a message that the position is not properly worn prompt information.
  • the technician can first determine the position of the capacitive sensor 1 on the back of the smart watch, and then determine the distance range between the capacitive sensor 1 and the skin when each position is properly worn, such as 0-0.5mm, and then determine the preset capacitance value based on the distance range.
  • the value range, stored in the smart watch, the preset value range represents the capacitance value when properly worn.
  • the smart watch can obtain the capacitance value of each capacitive sensor 1 to determine whether the capacitance value of each capacitive sensor 1 is within the preset value range, and if there is a target capacitance If the capacitance value of the sensor 1 is not within the preset value range, it can be determined that the position corresponding to the target capacitance sensor 1 is somewhat loose. At this time, a corresponding prompt message can be issued.
  • the prompt message is "The belt is not tight at 3 o'clock, and accurate heart rate detection cannot be performed, please adjust it".
  • the prompt information can be displayed on the screen or broadcast by voice.
  • the processor 8 is configured to start capacitance value detection when a start trigger event is detected.
  • the processor 8 may control not to supply power to the capacitive sensor 1, so that no capacitance value detection is performed, and the capacitance value is detected only after the start-up trigger event is detected. In this way, power can be saved to a certain extent.
  • the startup trigger event can be triggered by a user operation, or automatically triggered by an application or system program in a business scenario.
  • the startup trigger event can be arbitrarily set based on actual requirements. Several feasible startup trigger events are described below.
  • the first attitude condition is a condition that needs to be satisfied by the attitude information of the smart watch.
  • the first attitude condition is that the attitude information of the smart watch changes from the first attitude information to the second attitude information
  • the first attitude information is the attitude information with the dial facing up
  • the second attitude information is the attitude information with the dial facing down.
  • the action is that the user's hand wearing the smart watch flips the wrist, from the dial facing up to the dial facing down.
  • the first posture condition is that the smart watch keeps the third posture information for a preset period of time
  • the third posture information is the posture information of the dial facing up
  • the corresponding action is that the user keeps the dial facing up for a certain period of time.
  • the first motion condition is a condition that needs to be satisfied by motion parameters such as speed, acceleration or displacement of the smart watch.
  • the speed increases to a preset speed value, and the displacement direction is upward, and the corresponding action is that the user quickly raises his hand.
  • the start instruction may be an instruction triggered by the user operating a physical button or a virtual control.
  • an upper-layer floating control is set in the interface of the smart watch.
  • clicking the control can issue a start command.
  • the heart rate detection function is turned on, and the heart rate detection function may be turned on periodically or automatically by a user operation.
  • the processor 8 is further configured to stop capacitance value detection when a shutdown trigger event is detected.
  • the shutdown trigger event can be set arbitrarily based on actual needs, and can be set in conjunction with the startup trigger time. Several feasible startup trigger events are described below.
  • the second attitude condition is a condition that needs to be satisfied by the attitude information of the smart watch.
  • the second attitude condition is that the attitude information of the smart watch is changed from the second attitude information to the first attitude information
  • the first attitude information is the attitude information with the dial facing up
  • the second attitude information is the attitude information with the dial facing down
  • the corresponding The action is that the user's hand wearing the smart watch flips the wrist, from the dial facing down to the dial facing up.
  • the second attitude condition is that the smart watch maintains the fourth attitude information for a preset period of time
  • the fourth attitude information is the attitude information of the dial facing down
  • the corresponding action is that the user keeps the dial facing down for a certain period of time.
  • the second motion condition is a condition that needs to be satisfied by motion parameters such as speed, acceleration, or displacement of the smart watch.
  • the speed increases to a preset speed value, and the displacement direction is downward, and the corresponding action is that the user quickly throws his hand downward.
  • the shutdown instruction may be an instruction triggered by the user operating a physical button or a virtual control.
  • an upper-layer floating control is set in the interface of the smart watch, and when the capacitance value detection is in the activated state, clicking the control can issue a shutdown command.
  • the heart rate detection function is turned off, and the heart rate detection function may be automatically turned off when a preset time period is reached after the heart rate detection is completed, or turned off by a user operation.
  • the terminal device can sense the distance change of the human skin by using the above-mentioned capacitive sensor 1, and will not be disturbed by other conductive objects with a slightly farther distance. In this way, motion detection can be performed more accurately, or correct wearing detection can be performed.
  • An embodiment of the present application further provides a sensor assembly of a terminal device.
  • the sensor assembly includes a base 10 and a capacitive sensor 1 , and the capacitive sensor 1 is disposed on the base 10 .
  • the sensor assembly is a supporting part of the terminal device, which can be installed on the terminal device or removed from the terminal device, and can be used on different terminal devices.
  • the user has a smart watch and a smart bracelet, and also has a sensor assembly.
  • the user can install the sensor assembly on the smart watch, and when using the smart bracelet, the sensor assembly can be removed from the smart watch. Remove it from the top and install it on the smart bracelet.
  • the sensor assembly can be mounted on the skin-contacting surface of the end device. The function of the sensor assembly is to perform capacitive detection.
  • the terminal device may be a wearable device that is in contact with human skin when worn, such as a smart watch, a smart bracelet, a smart collar, a smart foot ring, and the like.
  • a smart watch is used as an example to describe the solution, and other situations are similar, and will not be repeated here.
  • the setting of the shape of the base 10 depends on the distribution requirements for the capacitive sensor 1 , and it can be a long strip, a circular shape, or the like.
  • the base 10 is made of flexible materials, such as rubber, plastic and the like.
  • One surface of the base 10 is the surface on which the capacitive sensor 1 is provided. After the sensor assembly is installed on the smart watch, the other surface of the base is attached to the terminal device. When the user wears the smart watch, the surface of the base 10 where the capacitive sensor 1 is disposed is in contact with the skin, that is, when the sensor assembly is installed on the terminal device and the terminal device is worn, the surface is on the side of the base 10 close to the user's skin.
  • a groove 11 may be provided on the surface of the base 10, the capacitive sensor 1 is arranged in the groove 11, the detection surface of the capacitive sensor 1 is lower than the notch of the groove 11, and the distance between the detection surface and the notch of the groove 11 within a preset distance.
  • the preset distance range can be 0.5-1mm. This surface is on the side of the base 10 close to the user's skin when the sensor assembly is mounted on the terminal device and the terminal device is worn.
  • the number and position of the grooves 6 can be arbitrarily set according to the requirements.
  • the number of grooves 6 and the number of capacitive sensors 1 can be the same or different, that is, only one capacitive sensor 1 can be set in one groove 6, or one groove 6 can also be set.
  • a plurality of capacitive sensors 1 can be provided.
  • one long groove 11 is provided, and all capacitive sensors 1 are provided in the groove 11 , or a plurality of square grooves 11 are provided, and one capacitive sensor 1 is provided in each square groove 11 .
  • the capacitive sensor can be printed into the groove 6 by 3D printing.
  • the material can be conductive materials such as gold, silver, copper, etc., and the metal material can be printed on the bottom of the groove 6 by 3D printing to form a metal film with a predetermined pattern.
  • the pattern can be seen in Fig. 1. Figure 2.
  • the capacitive sensor 1 is buried under the surface of the base 10 , and the distance between the detection surface of the capacitive sensor 1 and the surface is within a preset distance range.
  • the preset distance range can be 0.5-1mm. This surface is on the side of the base 10 close to the user's skin when the sensor assembly is mounted on the terminal device and the terminal device is worn.
  • a groove can be formed on the base 10 first, the capacitive sensor 1 can be processed into the groove by 3D printing, and then the groove can be closed with a corresponding material to cover the capacitive sensor 1 .
  • the capacitive sensor 1 will not be exposed to the air, which has better durability, and the capacitive sensor 1 will not be seen, that is, the appearance of the product will not be affected, which is more convenient for the industrial design of the product.
  • a terminal device including a body, a processing circuit and the above-mentioned sensor assembly, and the base 10 is fixed on the body.
  • a smart watch may include a body and a processing circuit.
  • a mounting structure may be provided between the fuselage and the base 10 for fixing between the two.
  • an installation groove may be provided on the body, the installation groove matches the shape of the base 10, and the base 10 may be installed in the installation groove.
  • a plurality of mounting holes may be provided on the fuselage, and mounting posts are respectively provided on the base 10 at positions corresponding to each mounting hole, and the mounting posts are in interference fit with the mounting holes. Mounting holes to fix the base 10 on the fuselage.
  • Figure 19 is a schematic view of the terminal device and sensor assembly mounted together.
  • a first connection port may be provided on the body of the smart watch, and a corresponding second connection port may be provided at a corresponding position on the base 10 .
  • the first connection port is electrically connected with the processing circuit, and the second connection port is electrically connected with the capacitive sensor 1 .
  • the first connection port is electrically connected with the second connection port.
  • Case 1 the body is provided with a first connection port, the base 10 is provided with a second connection port, the number of pins of the first connection port and the second connection port are the same and the number of the capacitive sensor 1 in the sensor assembly same. Each pin of the second connection port is electrically connected to a capacitive sensor 1 respectively.
  • the body is provided with a plurality of first connection ports
  • the base 10 is provided with a plurality of second connection ports. same.
  • Each of the second connection ports is electrically connected to a capacitive sensor 1 respectively.
  • the sensor component adopts the above-mentioned capacitive sensor 1 to sense the distance change of the human skin, and will not be disturbed by other conductive objects with a slightly farther distance. In this way, motion detection can be performed more accurately, or correct wearing detection can be performed. Moreover, the sensor assembly is in a detachable relationship with the terminal device, which can improve the flexibility of the terminal device for motion detection, correct wearing detection, and the like.
  • the embodiment of the present application also provides a detection method, which can be applied to the above-mentioned terminal device. As shown in FIG. 20 , the method includes the following steps:
  • the capacitance value of the capacitive sensor 1 changes according to the action of the target part.
  • the terminal device determines the target action instruction corresponding to the action of the target part based on the instruction information, and executes the processing corresponding to the target action instruction.
  • the indication information is a capacitance value.
  • the terminal device determines the target action instruction according to the pre-stored capacitance value condition and capacitance value, and executes the processing corresponding to the target action instruction, and the target action instruction corresponds to the capacitance value condition.
  • the terminal device is a device that is worn around, and the multiple capacitive sensors 1 are distributed on the terminal device, so that when the terminal device is worn, the multiple capacitive sensors surround the target part distributed.
  • the capacitance value condition is determined according to the first average value of the capacitance values of each capacitance sensor 1 in the first capacitance sensor set and the second average value of the capacitance values of each capacitance sensor 1 in the second capacitance sensor set.
  • the first capacitive sensor set is composed of capacitive sensors 1 located in the first area of the target site when worn
  • the second capacitive sensor set is composed of capacitive sensors 1 located in the second area of the target site when worn, and the first area is different from the second area.
  • the terminal device inputs the instruction information into a pre-trained recognition model, and when the output of the recognition model is the target action command, executes the processing corresponding to the target action command.
  • the terminal device further includes a biological sign sensor 9 , and the multiple capacitive sensors 1 are evenly distributed around the biological sign sensor 9 .
  • the terminal device determines that the terminal device is not properly worn according to the capacitance value and the pre-stored capacitance value condition, and issues a prompt message that the device is not properly worn.
  • the terminal device uses the above-mentioned capacitive sensor, which can make good use of the characteristic that the capacitance value changes with the distance between the capacitive sensor and the conductor.
  • the distance change of the skin is sensed, and the distance between the skin and the terminal device is detected by detecting the capacitance value.
  • the distance between the capacitive sensor and the skin will change slightly with the user's actions, which in turn causes the capacitance value to change.
  • the terminal device can perform some specified processing at this time. In this way, when the user wants to trigger a certain process, he only needs to wear the organ of the terminal device to perform the action. If one hand wears the terminal device, the other hand does not need to participate at this time, and is in a completely liberated state. , it can be seen that by adopting the solution of the present application, the operation convenience can be improved.
  • the computer program product includes one or more computer instructions, and when the computer program instructions are loaded and executed on a device, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that the device can access, or a data storage device such as a server, data center, or the like that includes an integration of one or more available media.
  • the usable medium may be a magnetic medium (such as a floppy disk, a hard disk, and a magnetic tape, etc.), an optical medium (such as a digital video disk (DVD), etc.), or a semiconductor medium (such as a solid-state disk, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本申请实施例公开了一种电容传感器、终端设备、传感器组件和检测方法,属于终端技术领域。所述电容传感器1包括多个第一极板2和多个第二极板3,所述多个第一极板2与所述多个第二极板3用于连接不同的电极,所述多个第一极板2和所述多个第二极板3组成多个极板对,所述多个极板对中的每个极板对由相邻的第一极板2和第二极板3组成,所述多个极板对的数目大于或等于5,所述每个极板对的有效极板长度与极板间距的比值大于10,所述每个极板对的极板宽度与极板间距的比值大于2。采用本申请的方案,可以提高操作便捷性。

Description

电容传感器、终端设备、传感器组件和检测方法 技术领域
本申请涉及终端技术领域,特别涉及一种电容传感器、终端设备、传感器组件和检测方法。
背景技术
随着终端技术的飞速发展,穿戴设备得到了广泛应用。动作识别也随之得到了发展,在穿戴设备中广泛使用。
相关技术中动作识别是采用红外动作识别或视频动作识别。用户在一只手佩戴穿戴设备的情况下,另一只手向穿戴设备靠近,做出相应的动作,穿戴设备检测用户的动作,进而触发执行相应的处理。
上述技术中的动作操作过程,需要用户的两只手相互靠近,佩戴穿戴设备的手控制穿戴设备的角度,使红外传感器或摄像头对准另一只手,另一个手做动作,这样,无论是做动作的手还是佩戴穿戴设备的手,都不能处于完全解放的状态,导致操作便捷性不高。
发明内容
本申请实施例提供了一种电容传感器、终端设备、传感器组件和检测方法,以克服相关技术中存在的操作便捷性不高问题。
第一方面,提供了一种电容传感器1,电容传感器1包括多个第一极板2和多个第二极板3,多个第一极板2与多个第二极板3用于连接不同的电极,多个第一极板2和多个第二极板3组成多个极板对,多个极板对中的每个极板对由相邻的第一极板2和第二极板3组成。多个极板对的数目大于或等于5,每个极板对的有效极板长度与极板间距的比值大于10,每个极板对的极板宽度与极板间距的比值大于2。
本申请实施例所示的方案,所有第一极板2连接正电极时,所有第二极板3可以连接负电极,所有第一极板2连接负电极时,所有第二极板3可以连接正电极。相互邻近且正对的两个用于连接不同电极的导体板可称为极板对,此两个导体板则可以称作极板。极板对中的两个极板在不同位置处的距离相等。不同的极板对的极板间距可以相同也可以不同。不同的极板对可能共用一个第一极板或共用一个第二极板。例如,交错放置的两个第一极板2和两个第二极板3可以组成3个极板对。有效极板长度是极板对中第一极板2与第二极板3相互正对部分的长度。
上述方案中的电容传感器,极板对的数目大于数目阈值5,每个极板对的有效极板长度与极板间距的比值大于比值阈值10,这样可以使电容传感器具有足够大的基础电容值能够被检测电路检测到,另外,每个极板对的极板宽度与极板间距的比值大于比值阈值2,这样可以降低电容传感器的边缘场,从而可以减小较远距离的导体对电容值的影响,即降低电容传感器对远距离导体的感知能力,而专注于对近距离导体的感知。因此,采用本申请实施例中的电容传感器,可以很好的利用电容值随电容传感器与导体之间距离的变化而变化的特点, 通过上述的参数设置,使得电容传感器能够更好的对相贴近的皮肤的距离变化进行感知,通过检测电容值来检测皮肤与穿戴设备的距离情况。用户在佩戴终端设备进行一些动作时,随着用户的动作,电容传感器与皮肤之间的距离就会发生细微的变化,进而导致电容值发生变化,终端设备此时可以进行某些指定的处理。这样,用户想要触发某处理时,只需要佩戴终端设备的器官进行动作,如果是某一只手佩戴终端设备的话,则此时另一只手是完全不需要参与的,处于完全解放的状态,可见,采用本申请的方案,可以提高操作便捷性。
在一种可能的实现方式中,多个第一极板2和多个第二极板3相互穿插平行排列,以使至少一个第一极板2和至少一个第二极板3可以复用于两个极板对。
电容传感器1可以具有双梳型结构,举个具体结构的例子,双梳型结构的电容传感器1,包括4个第一极板2和4个第二极板3由上至下交错排布,这样可以组成7个极板对,从上向下看,第一个第一极板与第一个第二极板组成一个极板对,第一个第二极板与第二个第一极板组成一个极板对。也就是说这两个极板对共用一个第二极板。下部的多个极板对还有类似的不同极板对共用一个极板的情况,不一一列举。
在一种可能的实现方式中,多个第一极板2为相互连接的星形结构。
电容传感器1可以具有星型结构,举个具体结构的例子,三个顶点的星型结构的电容传感器1,包括3个第一极板2和6个第二极板3,3个第一极板2分别位于12点方向、4点方向和8点方向,每个第一极板2两侧各设置有一个第二极板3,这样可以组成6个极板对,以最上面的3个极板为例,左边的第二极板3和中间的第一极板2组成一个极板对,右边的第二极板3和中间的第一极板2组成一个极板对。也就是说这两个极板对共用一个第一极板2。下部的多个极板对还有类似的不同极板对共用一个极板的情况,不一一列举。
上述方案中的双梳型结构和星型结构具有结构简单节省材料的特点。
在一种可能的实现方式中,多个第一极板2中的至少一个第一极板2设置于多个第二极板3中的两个第二极板3之间组成两个极板对。
这说明电容传感器1中至少存在两个极板对是复用一个第一极板2的。这样,可以减小电容传感器1的空间占用。
在一种可能的实现方式中,多个第一极板2和多个第二极板3均由柔性导电材料制成。
本申请实施例所示的方案,电容传感器1可以通过3D打印的方式来制成,可以直接打印需要设置电容传感器的设备或部件的指定位置,柔性导电材料可以为金、银、铜等金属,通过3D打印将金属材料打印到设备或部件的指定位置,形成预定图案的金属薄膜。
上述方案中采用柔性导电材料制作电容传感器1,这样无论是在软材料还是在硬材料上都可以方便的加工电容传感器1,可以提高电容传感器1设置的灵活性。
在一种可能的实现方式中,多个第一极板2和多个第二极板3均为波浪形。
本申请实施例所示的方案,各第一极板2和各第二极板可以具有相同的波浪弧度,而且相邻的极板之间在不同位置的距离相同。
第二方面,提供了一种终端设备,终端设备包括电容值检测电路7、处理器8和如第一方面及其可能的实现方式的电容传感器1。电容值检测电路7,用于检测电容传感器1的电容值,向处理器8发送指示信息,其中,指示信息根据电容值确定。处理器8,用于基于指示信息,执行对应的处理。
本申请实施例所示的方案,电容传感器1可以设置于终端设备的表面,该表面为终端设备佩戴时贴近用户皮肤一侧的表面。电容值检测电路7可以持续不断检测电容传感器1的电容值,或者,也可以在预设触发事件发生后开始检测电容传感器1的电容值。
上述方案中,采用上述第一方面及其可能的实现方式的电容传感器1可以对人体皮肤的距离变化进行感知,而且不会受到距离稍远的其他导电物体的干扰。这样,可以较为准确的进行动作检测,或进行正确佩戴检测。
在一种可能的实现方式中,终端设备为可穿戴设备。终端设备还包括机身4。机身4的第一表面上设置有凹槽6,电容传感器1设置在凹槽6中。第一表面为终端设备佩戴时贴近用户皮肤一侧的表面。这个佩戴是指终端设备的常规佩戴,终端设备在常规佩戴时,第一表面贴近皮肤,如果终端设备是智能手表,则第一表面是智能手表的背面,如果终端设备是智能手环,则第一表面是智能手环的内侧面。
其中,电容传感器1的检测面低于凹槽6的槽口,且检测面与凹槽6的槽口的距离在预设距离范围内。预设距离范围可以为0.5-1mm。
本申请实施例所示的方案,终端设备可以是在穿戴时与人体皮肤存在接触的穿戴设备,如智能手表、智能手环、智能项圈、智能脚环等。对于智能手表来说,智能手表的机身4可以包括表盘和表带。表盘的底面是在佩戴时贴近人体皮肤一侧的表面,表带的底面是在佩戴时贴近人体皮肤一侧的表面。对于智能手环来说,机身4内侧的表面是在佩戴时贴近人体皮肤一侧的表面。
以智能手表为例,可以在表盘底面和表带底面分别设置凹槽6,或者可以只在表盘底面或表带底面设置凹槽6。凹槽6的数量和位置可以根据需求任意设置,凹槽6的数量与电容传感器1的数量可以相同也可以不同,即一个凹槽6中可以只设置一个电容传感器1,或者一个凹槽6也可以设置多个电容传感器1。举几个具体的例子,例子一,两个表带的底面分别设置有多个凹槽6,表盘的底面设置有多个凹槽6,每个凹槽6中设置有一个电容传感器1,例子二,两个表带的底面和表盘的底面各设置有一个凹槽6,每个凹槽6中均设置有多个电容传感器1。
上述方案中,由于凹槽6的存在,电容传感器1的检测面始终和人体皮肤保持一定的距离,不会完全接触,这样更有利于电容传感器1感知其与人体皮肤之间的距离变化,提高功能触发的准确性。
在一种可能的实现方式中,终端设备为可穿戴设备。终端设备还包括机身4。电容传感器1埋设在机身4的第一表面之下。第一表面为终端设备佩戴时贴近用户皮肤一侧的表面。
其中,电容传感器1的检测面与该表面的距离在预设距离范围内。预设距离范围可以为0.5-1mm。
本申请实施例所示的方案,在加工时,可以先在机身4上开设凹槽,通过3D打印将电容传感器1加工到凹槽中,然后再使用相应材料将凹槽封闭以遮盖住电容传感器1。
上述方案中,电容传感器1不会暴露于空气中,具有更好的耐用性,而且电容传感器1不会被看到,也即不会影响到产品外观,更便于产品的工业设计。
在一种可能的实现方式中,电容传感器1,用于在用户将终端设备佩戴于用户的目标部位时,并且当目标部位有动作时电容值发生变化。处理器8,用于基于指示信息确定该动作对应的目标动作指令,执行目标动作指令对应的处理。
本申请实施例所示的方案,处理器8可以基于指示信息直接确定目标动作指令。或者,处理器8也可以先基于指示信息确定目标动作,在基于目标动作确定目标动作指令,动作可以用标识来记录,例如,向上挥臂动作的标识为001,向下挥臂动作的标识为002,等等。另外,各种动作触发的动作指令可以基于需求任意设置,例如,向上挥臂的动作触发增大音量的指令。在不同的应用程序中可以分别定义动作与动作指令的对应关系,可以基于当前运行的应用程序的动作与动作指令的对应关系,确定目标动作对应的目标动作指令,并执行目标动作指令对应的处理。或者,在不同应用程序的不同界面中可以分别定义动作与动作指令的对应关系,可以基于当前运行的应用程序的当前界面中的动作与动作指令的对应关系,确定目标动作对应的目标动作指令,并执行目标动作指令对应的处理。
上述方案中,基于上述第一方面及其可能的实现方式的电容传感器1进行动作识别,可以利用电容传感器1在动作过程中电容值随着人体皮肤与电容传感器1之间距离变化的特点,来识别动作。用户在佩戴终端设备进行一些动作时,随着用户的动作,电容传感器与皮肤之间的距离就会发生细微的变化,进而导致电容值发生变化,终端设备此时可以进行某些指定的处理。这样,用户想要触发某处理时,只需要佩戴终端设备的器官进行动作,如果是某一只手佩戴终端设备的话,则此时另一只手是完全不需要参与的,处于完全解放的状态,可见,采用本申请的方案,可以提高操作便捷性。
在一种可能的实现方式中,指示信息为电容值。处理器8,用于根据预先存储的电容值条件和电容值确定目标动作指令,执行目标动作指令对应的处理。
本申请实施例所示的方案,可以存储电容值条件和动作指令的对应关系表,在对应关系表中包括多个电容值条件,每个电容值条件对应至少一个动作指令。这样,可以先确定电容值符合的目标电容值条件,然后确定目标电容值条件对应的目标动作指令。或者,也可以分别存储电容值条件和动作的对应关系表,以及动作和动作指令的对应关系表,每个电容值条件对应一个动作,每个动作对应至少一个动作指令。动作可以采用标识来记录。这样可以先确定电容值符合的目标电容值条件,然后确定目标电容值条件对应的目标动作,再后确定目标动作对应的目标动作指令。
对于动作较少又较为简单的应用场景,采用电容值条件来进行动作指令的判断,计算量非常小,可以有效的提高处理效率。
在一种可能的实现方式中,电容传感器1为多个,终端设备为环绕佩戴的设备,多个电容传感器1分布在终端设备上,以使得终端设备被佩戴时,多个电容传感器环绕目标部位分布。
本申请实施例所示的方案,环绕佩戴的终端设备可以是智能手表、智能手环等,电容传感器1可以等距离均匀分布在终端设备上。
上述结构下,用户佩戴终端设备的目标部位在向不同方向运动的时候,电容传感器1的电容值会呈现出不同的特点,所以这种结构可以更便于动作识别。
在一种可能的实现方式中,电容值条件为根据第一电容传感器集合中各电容传感器1的电容值的第一平均值,以及第二电容传感器集合中各电容传感器1的电容值的第二平均值确定。第一电容传感器集合为佩戴时位于目标部位第一区域的电容传感器1组成,第二电容传感器集合为佩戴时位于目标部位第二区域的电容传感器1组成,第一区域与第二区域不同。
一种可能的情况,对应关系表中的某个电容值条件为:第一电容传感器集合中的任意两 个电容传感器1的电容值的差值小于差值阈值,第二电容传感器集合中的任意两个电容传感器1的电容值的差值小于差值阈值,第一电容传感器集合中的各电容传感器1的电容值的平均值大于第二电容传感器集合中的各电容传感器1的电容值的平均值。第一区域和第二区域分别为掌心向下时的手腕上侧和手腕下侧。
上述方案能够保证动作检测具有较高的准确性。
在一种可能的实现方式中,处理器8,用于将指示信息,输入预先训练的识别模型,当识别模型的输出为目标动作指令时,执行目标动作指令对应的处理。
其中,识别模型为预先训练的机器学习模型,具体的模型算法可以根据需求任意选择,如贝叶斯、决策树等算法。
本申请实施例所示的方案,在识别模型使用前,技术人员可以佩戴智能手表做出各种动作,并且在每次做动作的时候检测并记录所有电容传感器1的电容值,按照预定的电容传感器之间的排列顺序,对电容值进行排列,得到样本电容值序列,并记录每个样本电容值序列在检测时做出的动作,并记录预先设定的此动作对应的动作指令,作为基准动作指令。然后,基于大量的样本电容值序列和基准动作指令对识别模型进行训练。经过训练之后,识别模型就可以较为准确的基于电容值识别动作指令。
上述方案中,采用机器学习模型进行动作识别,对于终端设备中电容传感器1分布比较复杂或者动作比较复杂的情况,能够更加便捷且准确的进行动作识别。
在一种可能的实现方式中,电容传感器1为多个,终端设备还包括生物体征传感器9,多个电容传感器1均匀分布在生物体征传感器9周围。
本申请实施例所示的方案,生物体征传感器9可以为需要贴合皮肤佩戴才能准确检测相应参数的传感器,如脉搏传感器等。生物体征传感器9与处理器8电性连接。电容传感器1和生物体征传感器9均设置于机身4靠近皮肤的一侧,所有电容传感器1均匀分布在以生物体征传感器9为圆心的圆周上,且任意两个相邻电容传感器1之间的间距相同。电容传感器1的数目可以根据实际精度需求来设置,例如,可以设置4个,分别在3点、6点、9点、12点方向。
上述方案可以提高生物体征监测的准确性。
在一种可能的实现方式中,处理器8,用于根据电容值和预先存储的电容值条件确定终端设备为未正确佩戴,发出未正确佩戴的提示信息。
本申请实施例所示的方案,终端设备未正确佩戴的情况可以是相应的位置松紧度存在问题,基于上面内容的说明,本申请实施例中的电容传感器1的电容值可以反映人体皮肤与电容传感器1之间的距离,也就是说电容传感器1的电容值可以反映终端设备在相应位置的松紧度,进而可以通过电容值的取值范围来检测松紧度是否出现问题,当出现问题时可以发出相应的提示信息。
技术人员可以先确定终端设备需要设置电容传感器1的位置,然后确定每个位置在正确佩戴时电容传感器1与皮肤的距离范围,如0-0.5mm,然后基于距离范围确定电容值的预设数值范围,存储在终端设备中,该预设数值范围代表正确佩戴时的电容值。在用户佩戴终端设备,需要进行生物体征监测时,如心率检测,终端设备可以获取各电容传感器1的电容值,确定每个电容传感器1的电容值是否在预设数值范围内,如果存在目标电容传感器1的电容值不在预设数值范围内,则可以确定目标电容传感器1对应的位置佩戴的有些松了。这个时 候可以发出相应的提示信息。提示信息可以通过屏幕显示,也可以通过语音播报等。
上述方案可以提高生物体征监测的准确性。
在一种可能的实现方式中,处理器8,还用于:当检测到启动触发事件时,启动电容值检测。
本申请实施例所示的方案,在没有检测到启动触发事件时,处理器8可以控制不向电容传感器1供电,这样不会进行电容值的检测,在检测到启动触发事件之后才开始检测电容值。
上述方案可以在一定程度上节省电能。
在一种可能的实现方式中,启动触发事件,包括:终端设备的姿态信息满足第一姿态条件,或,终端设备的运动信息满足第一运动条件,或,接收到启动指令,或,目标功能开启。
本申请实施例所示的方案,第一姿态条件可以为终端设备的姿态信息由第一姿态信息变化为第二姿态信息,或者,第一姿态条件可以为终端设备保持第三姿态信息达到预设时长,等等。
第一运动条件是需要智能手表的速度、加速度或位移等运动参数满足的条件。例如,在预设时长内,速度增大到预设速度值,且位移方向为向上,相应的动作是用户快速抬手。
启动指令可以是用户操作实体按键或虚拟控件触发的指令。例如,在终端设备的界面中设置有上层漂浮控件,在电容值检测处于关闭状态时,点击该控件则可以发出启动指令。
目标功能可以是需要进行动作操作或者需要进行正确佩戴检测的功能,如心率检测功能。在心率检测功能开启时可以触发启动电容值检测,心率检测功能可以是周期性自动开启或者用户操作开启。
上述方案可以很方便的触发启动电容值检测。
在一种可能的实现方式中,处理器8,还用于:当检测到关闭触发事件时,停止电容值检测。
本申请实施例所示的方案,当检测到关闭触发事件时,处理器8可以控制不向电容传感器1供电,这样会停止进行电容值的检测。
上述方案可以在一定程度上节省电能。
在一种可能的实现方式中,关闭触发事件,包括:终端设备的姿态信息满足第二姿态条件,或,终端设备的运动信息满足第二运动条件,或,接收到关闭指令,或,目标功能关闭。
本申请实施例所示的方案,第二姿态条件可以为终端设备的姿态信息由第二姿态信息变化为第一姿态信息,或者,第二姿态条件为终端设备保持第四姿态信息达到预设时长,等等。
第二运动条件是需要终端设备的速度、加速度或位移等运动参数满足的条件。例如,在预设时长内,速度增大到预设速度值,且位移方向为向下,相应的动作是用户快速向下甩手。
关闭指令可以是用户操作实体按键或虚拟控件触发的指令。例如,在终端设备的界面中设置有上层漂浮控件,在电容值检测处于启动状态时,点击该控件则可以发出关闭指令。
目标功能可以是需要进行动作操作或者需要进行正确佩戴检测的功能,如心率检测功能。在心率检测功能关闭时可以触发停止电容值检测,心率检测功能可以是在心率检测完毕后达到预设时长时自动关闭或者用户操作关闭。
上述方案可以很方便的触发停止电容值检测。
在一种可能的实现方式中,终端设备还包括基座,基座设置于终端设备表面,电容传感器1设置于基座上。
基座在终端设备中可以是一个可拆装的部件,这样,基座和电容传感器1就可以从终端设备上拆卸下来,安装到其他终端设备上,具有很强的使用灵活性。
第三方面,提供了一种终端设备的传感器组件,传感器组件包括基座10和上述第一方面及其可能的实现方式的电容传感器1。电容传感器1设置在基座10上。
本申请实施例所示的方案,传感器组件是终端设备的配套部件,可以安装在终端设备上,也可以从终端设备上拆除下来,可以在不同的终端设备上使用。例如,用户有一个智能手表和一个智能手环,还拥有一个传感器组件,该用户在使用智能手表时,可以将传感器组件安装在智能手表上,在使用智能手环时可以将传感器组件从智能手表上拆卸下来,将其安装在智能手环上。传感器组件可以安装在终端设备与皮肤接触的表面上。传感器组件的功能是进行电容检测。基座10形状的设置取决于对电容传感器1的分布需求,可以为长条形、圆环形等。基座10采用柔性材料制成,如橡胶、塑料等。
上述方案中,采用上述第一方面及其可能的实现方式的电容传感器1可以对人体皮肤的距离变化进行感知,而且不会受到距离稍远的其他导电物体的干扰。这样,可以较为准确的进行动作检测,或进行正确佩戴检测。而且,这种传感器组件与终端设备是可拆装关系,可以提高终端设备进行动作检测、正确佩戴检测等的灵活性。
在一种可能的实现方式中,基座10的表面上设置有凹槽11,电容传感器1设置在凹槽11中。
其中,在传感器组件安装在终端设备上且终端设备被佩戴时,该表面在基座10贴近用户皮肤一侧。电容传感器1的检测面低于凹槽11的槽口,且检测面与凹槽11的槽口的距离在预设距离范围内。预设距离范围可以为0.5-1mm。
本申请实施例所示的方案,凹槽6的数量和位置可以根据需求任意设置,凹槽6的数量与电容传感器1的数量可以相同也可以不同,即一个凹槽6中可以只设置一个电容传感器1,或者一个凹槽6也可以设置多个电容传感器1。例如,设置一个长条形凹槽11将所有电容传感器1都设置在凹槽11中,或者,设置多个方形凹槽11,每个方形凹槽11中设置一个电容传感器1。
上述方案中,由于凹槽6的存在,电容传感器1的检测面始终和人体皮肤保持一定的距离,不会完全接触,这样更有利于电容传感器1感知其与人体皮肤之间的距离变化,提高功能触发的准确性。
在一种可能的实现方式中,电容传感器1埋设在基座10的表面之下。
其中,在传感器组件安装在终端设备上且终端设备被佩戴时,该表面在基座10贴近用户皮肤一侧。电容传感器1的检测面与该表面的距离在预设距离范围内。预设距离范围可以为0.5-1mm。
本申请实施例所示的方案,在加工时,可以先在基座10上开设凹槽,通过3D打印将电容传感器1加工到凹槽中,然后再使用相应材料将凹槽封闭以遮盖住电容传感器1。
上述方案中,电容传感器1不会暴露于空气中,具有更好的耐用性,而且电容传感器1不会被看到,也即不会影响到产品外观,更便于产品的工业设计。
第四方面,提供了一种检测方法,该检测方法可以应用于终端设备,终端设备包括上述 第一方面及其可能的实现方式的电容传感器1,该方法包括:检测电容传感器1的电容值;基于指示信息,执行对应的处理,该指示信息根据该电容值确定。
在一种可能的实现方式中,当终端设备佩戴于用户的目标部位时,电容传感器1的电容值根据目标部位的动作发生变化。终端设备基于指示信息确定目标部位的动作对应的目标动作指令,执行目标动作指令对应的处理。
在一种可能的实现方式中,指示信息为电容值。终端设备根据预先存储的电容值条件和电容值确定目标动作指令,执行目标动作指令对应的处理,目标动作指令和电容值条件相对应。
在一种可能的实现方式中,电容传感器1为多个,终端设备为环绕佩戴的设备,多个电容传感器1分布在终端设备上,这样在终端设备被佩戴时,多个电容传感器环绕目标部位分布。电容值条件为根据第一电容传感器集合中各电容传感器1的电容值的第一平均值,以及第二电容传感器集合中各电容传感器1的电容值的第二平均值确定。
其中,第一电容传感器集合为佩戴时位于目标部位第一区域的电容传感器1组成,第二电容传感器集合为佩戴时位于目标部位第二区域的电容传感器1组成,第一区域与第二区域不同。
在一种可能的实现方式中,终端设备将指示信息,输入预先训练的识别模型,当识别模型的输出为目标动作指令时,执行目标动作指令对应的处理。
在一种可能的实现方式中,电容传感器1为多个,终端设备还包括生物体征传感器9,多个电容传感器1均匀分布在生物体征传感器9周围。终端设备根据电容值和预先存储的电容值条件确定终端设备为未正确佩戴,发出未正确佩戴的提示信息。
第五方面,提供了一种计算机程序产品,该计算机程序产品包括计算机程序代码,在计算机程序代码被终端设备执行时,终端设备执行上述第四方面及其可能的实现方式的方法。
本申请提供的技术方案至少包括以下有益效果:
本申请实施例中的电容传感器,极板对的数目大于数目阈值5,每个极板对的有效极板长度与极板间距的比值大于比值阈值10,这样可以使电容传感器具有足够大的基础电容值能够被检测电路检测到,另外,每个极板对的极板宽度与极板间距的比值大于比值阈值2,这样可以降低电容传感器的边缘场,从而可以减小较远距离的导体对电容值的影响,即降低电容传感器对远距离导体的感知能力,而专注于对近距离导体的感知。因此,采用本申请实施例中的电容传感器,可以很好的利用电容值随电容传感器与导体之间距离的变化而变化的特点,通过上述的参数设置,使得电容传感器能够更好的对相贴近的皮肤的距离变化进行感知,通过检测电容值来检测皮肤与终端设备的距离情况。用户在佩戴终端设备进行一些动作时,随着用户的动作,电容传感器与皮肤之间的距离就会发生细微的变化,进而导致电容值发生变化,终端设备此时可以进行某些指定的处理。这样,用户想要触发某处理时,只需要佩戴终端设备的器官进行动作,如果是某一只手佩戴终端设备的话,则此时另一只手是完全不需要参与的,处于完全解放的状态,可见,采用本申请的方案,可以提高操作便捷性。
附图说明
图1是本申请实施例提供的一种电容传感器的结构示意图;
图2是本申请实施例提供的一种电容传感器的结构示意图;
图3是本申请实施例提供的一种终端设备的结构示意图;
图4是本申请实施例提供的一种终端设备的结构示意图;
图5是本申请实施例提供的一种处理电路的结构示意图;
图6是本申请实施例提供的一种电容值检测电路的结构示意图;
图7是本申请实施例提供的一种电容值检测电路的结构示意图;
图8是本申请实施例提供的一种动作检测的流程示意图;
图9是本申请实施例提供的一种处理器的结构示意图;
图10是本申请实施例提供的一种终端设备的结构示意图;
图11是本申请实施例提供的一种在用户做动作时多个电容传感器的电容值的分布示意图;
图12是本申请实施例提供的一种在用户做动作时多个电容传感器的电容值的分布示意图;
图13是本申请实施例提供的一种在用户做动作时多个电容传感器的电容值的分布示意图;
图14是本申请实施例提供的一种在用户做动作时多个电容传感器的电容值的分布示意图;
图15是本申请实施例提供的一种正确佩戴检测的流程示意图;
图16是本申请实施例提供的一种处理器的结构示意图;
图17是本申请实施例提供的一种终端设备的结构示意图;
图18是本申请实施例提供的一种终端设备的传感器组件的结构示意图;
图19是本申请实施例提供的一种安装有传感器组件的终端设备的结构示意图;
图20是本申请实施例提供的一种检测方法的流程示意图。
图例说明
1、电容传感器                  2、第一极板
3、第二极板                    4、机身
5、处理电路                    6、凹槽
7、电容值检测电路              8、处理器
9、生物体征传感器              10、基座
11、凹槽
具体实施方式
本申请实施例提供了一种电容传感器1。
电容传感器1包括多个第一极板2和多个第二极板3。多个第一极板2与多个第二极板3用于连接不同的电极。例如,所有第一极板2连接正电极时,所有第二极板3可以连接负电极,所有第一极板2连接负电极时,所有第二极板3可以连接正电极。多个第一极板2和多个第二极板3组成多个极板对,多个极板对中的每个极板对由相邻的第一极板2和第二极板 3组成。多个极板对的数目大于或等于5,每个极板对的有效极板长度与极板间距的比值大于10,每个极板对的极板宽度与极板间距的比值大于2。
其中,相互邻近且正对的两个用于连接不同电极的导体板可称为极板对,此两个导体板则可以称作极板。极板对中的两个极板在不同位置处的距离相等。
电容传感器1可以具有双梳型结构或星型结构等。可以参见图1和图2。图1为双梳型结构的电容传感器1,其中,多个第一极板2和多个第二极板3相互穿插平行排列,以使至少一个第一极板2和至少一个第二极板3可以复用于两个极板对。图2为星型结构的电容传感器1,多个第一极板2为相互连接的星形结构。两种结构的电容传感器1共同的特点是都具有多个第一极板2和多个第二极板3,组成多个极板对。第一极板2与第二极板3之间保持一定的距离,不相接触。图1和图2中以多个第一极板2连接正电极多个第二极板3连接负电极为例。
每个极板对由一个第一极板2和一个第二极板3组成。多个第一极板2中的至少一个第一极板2设置于多个第二极板3中的两个第二极板3之间组成两个极板对。也就是说,不同的极板对可能共用一个第一极板2或共用一个第二极板3。例如,图1所示的双梳型结构的电容传感器1,包括4个第一极板2、4个第二极板3以及7个极板对,从上向下看,第一个第一极板与第一个第二极板组成一个极板对,第一个第二极板与第二个第一极板组成一个极板对,也就是说这两个极板对共用一个第二极板,图中下部还有类似情况,不一一列举。又例如,图2所示的星型结构的电容传感器1,包括3个第一极板2、6个第二极板3以及6个极板对,以最上面的3个极板为例,左边的第二极板3和中间的第一极板2组成一个极板对,右边的第二极板3和中间的第一极板2组成一个极板对,也就是说这两个极板对共用一个第一极板2,图中下部还有类似情况,不一一列举。
电容传感器1中多个第一极板2和多个第二极板3可以均为波浪形,也可以均为直板。
电容传感器1可以通过3D打印的方式来制成,可以直接打印需要设置电容传感器的设备或部件的指定位置,材料可以采用柔性导电材料,如金、银、铜等,通过3D打印将金属材料打印到设备或部件的指定位置,形成预定图案的金属薄膜,图1、2示出了两种电容传感器的图案。
参见图1,有效极板长度是极板对中第一极板2与第二极板3相互正对部分的长度,极板宽度是在薄膜平面内的宽度。在设计电容传感器1时,可以设置各第一极板2和各第二极板3的宽度均相等,如极板宽度为100微米。还可以设置所有极板对的极板间距均相等,即所有相邻极板之间的距离均相等,如极板间距为40微米。
为了让检测电路能够更好的检测到电容传感器1的电容值,增大极板对的数目、及有效极板长度与极板间距的比值,这样可以增大电容传感器1的基础电容值,当极板对的数目大于等于5、有效极板长度与极板间距的比值大于10时,可以使基础电容值达到检测要求。为了减小较远距离的导体对电容值的影响,增大极板宽度与极板间距的比值,这样可以减小电容传感器1的边缘场,从而降低电容传感器1对远距离导体(如用户的头部、其他人的手等)的感知能力,当极板宽度与极板间距的比值大于2时,电容传感器1只能感知其贴近的皮肤的距离,对其他导体的感知均可以忽略。
采用本申请实施例中的电容传感器,可以很好的利用电容值随电容传感器与导体之间距离的变化而变化的特点,通过上述的参数设置,使得电容传感器能够更好的对相贴近的皮肤 的距离变化进行感知,通过检测电容值来检测皮肤与终端设备的距离情况。用户在佩戴终端设备进行一些动作时,随着用户的动作,电容传感器与皮肤之间的距离就会发生细微的变化,进而导致电容值发生变化,终端设备此时可以进行某些指定的处理。这样,用户想要触发某处理时,只需要佩戴终端设备的器官进行动作,如果是某一只手佩戴终端设备的话,则此时另一只手是完全不需要参与的,处于完全解放的状态,可见,采用本申请的方案,可以提高操作便捷性。
本申请实施例还提供了一种终端设备,如图3所示,终端设备包括机身4、处理电路5和电容传感器1。电容传感器1设置在机身4上。
其中,每个终端设备可以包括一个或多个电容传感器1,电容传感器1的数量根据实际的检测需求进行设置。例如,对于环形的穿戴设备,如智能手表、智能手环,可以设置多个电容传感器,将多个电容传感器1均匀分布在穿戴设备的内侧,或者,可以在穿戴设备的某个生物体征传感器周围设置均匀多个电容传感器1。电容传感器1设置的位置靠近终端设备与人体皮肤接触的表面。对于可以两面穿戴的终端设备,还可以在两面分别设置一个或多个电容传感器1。
终端设备可以是在穿戴时与人体皮肤存在接触的穿戴设备,如智能手表、智能手环、智能项圈、智能脚环等。本实施例以智能手表为例进行方案说明,其他情况与之类似,不再赘述。
可选的,如图4所示,机身4的表面上可以设置有凹槽6,电容传感器1设置在凹槽6中,电容传感器1的检测面低于凹槽6的槽口,且检测面与凹槽6的槽口的距离在预设距离范围内。上述表面可以是终端设备佩戴时贴近用户皮肤一侧的表面。
智能手表的机身4可以包括表盘和表带。表盘的底面是在佩戴时贴近人体皮肤一侧的表面,表带的底面是在佩戴时贴近人体皮肤一侧的表面。可以在表盘底面和表带底面分别设置凹槽6,或者可以只在表盘底面或表带底面设置凹槽6。凹槽6的数量和位置可以根据需求任意设置,凹槽6的数量与电容传感器1的数量可以相同也可以不同,即一个凹槽6中可以只设置一个电容传感器1,或者一个凹槽6也可以设置多个电容传感器1。举几个具体的例子,例子一,两个表带的底面分别设置有多个凹槽6,表盘的底面设置有多个凹槽6,每个凹槽6中设置有一个电容传感器1,例子二,两个表带的底面和表盘的底面各设置有一个凹槽6,每个凹槽6中均设置有多个电容传感器1。
另外,对于智能手环来说,机身4内侧的表面是在佩戴时贴近人体皮肤一侧的表面。
电容传感器1可以通过3D打印的方式打印到凹槽6中,材料可以采用金、银、铜等导电材料,通过3D打印将金属材料打印到凹槽6底部形成预定图案的金属薄膜,图案可以参见图1、图2。
或者可选的,电容传感器1也可以埋设在机身4的表面之下,电容传感器1的检测面与该表面的距离在预设距离范围内。该表面可以是终端设备佩戴时贴近用户皮肤一侧的表面。
在加工时,可以先在机身4上开设凹槽,通过3D打印将电容传感器1加工到凹槽中,然后再使用相应材料将凹槽封闭以遮盖住电容传感器1。这样,电容传感器1不会暴露于空气中,具有更好的耐用性,而且电容传感器1不会被看到,也即不会影响到产品外观,更便于产品的工业设计。
基于上面对电容传感器1的说明,本申请实施例采用的电容传感器1具有一个特点:电容值随电容传感器1的检测面与皮肤的距离变化而变化。电容传感器1的检测面是电容传感器1最临近皮肤的表面。当皮肤靠近电容传感器1的检测面,进入一定距离范围的时候电容传感器1的电容值则会受到人体电容的影响发生变化,如果人体皮肤继续靠近检测面,电容值则会随距离减小而增大,即电容值与距离负相关。凹槽6的设置可以更好的发挥这种特点,电容传感器1陷在凹槽6中,检测面与槽口的距离在预设距离范围内,该距离范围一般可以为0.5-1mm。这样,在用户佩戴智能手表且手处于静置状态时,皮肤与电容传感器1的检测面之间不会直接接触。当手发生运动时,人体皮肤与机身4不同位置的贴合程度会发生细微的变化,例如,手向左运动时,手腕左侧皮肤与左侧表带底面之间的贴合度会增大,部分皮肤回被压入凹槽6中,手腕右侧皮肤与右侧表带底面的贴合度会降低甚至会分离。此时,不同位置的皮肤与电容传感器1的检测面的距离会发生不同的变化,相应的位置的电容传感器1的电容值也会发生变化。也就是说,可以通过对电容值的检测来对皮肤与电容传感器1检测面的距离进行检测,进而实现动作检测或正确佩戴检测等。
每个电容传感器1分别与处理电路5电性连接,对于表带底面上的电容传感器1,电性连接的导线可以设置在表带中,对于表盘底面上的电容传感器1,电性连接的导线可以穿过外壳。基于电容传感器1与处理电路5的电性链接,处理电路5可以用于检测电容传感器1的电容值,基于电容传感器1的电容值,执行对应的处理。
具体的基于电容值执行相应处理的方法在后面内容中会进行详细介绍,这里介绍一下处理电路5的内部结构。
如图5所示,处理电路5可以包括电容值检测电路7和处理器8。电容值检测电路7用于检测电容传感器1的电容值,向处理器8发送指示信息,其中,指示信息根据电容值确定。处理器8用于基于指示信息,执行对应的处理。
指示信息可以是电容值,也可以是取值与不同电容值一一对应的其它信息,例如,指示信息A对应电容值1,指示信息B对应电容值2,等等。本申请实施例以指示信息为电容值为例进行方案的详细说明,其它情况与之类似,不再赘述。
处理器8可以为中央处理单元(central processing unit,CPU)。下面对电容值检测电路7的多种可能性进行说明。
在一种可能的实现方式中,处理电路5中包括一个电容值检测电路7,电容值检测电路7中又包括至少一个检测子电路。每个检测子电路分别与一个电容传感器1电性连接,用于检测相应电容传感器1的电容值。每个检测子电路可以进一步包括模拟信号检测电路和模数转换器,模拟信号检测电路与电容传感器1电性连接,模拟信号检测电路可以输出电压值或电流值的模拟信号,该模拟信号用于表示电容传感器1的电容值,当电容传感器1的电容值发生变化时,模拟信号检测电路输出的电压值或电流值也会发生相应的变化。电压值或电流值的模拟信号被输入模数转换器,转换为数字信号,该数字信号可以表示电容值。电容值检测电路7中还可以设置有信号发送电路,每个检测子电路均与信号发送电路电性连接,将用于反映电容值的数字信号发送至信号发送电路,信号发送电路将数字信号发送至处理器8。当存在多个电容传感器1时,对于多个电容传感器1的电容值的数字信号,信号发送电路可以采用时分复用的方式发送至处理器8,或者可以采用类码分多址(code division multiple access, CDMA)的方式对多个电容传感器1的电容值的数字信号进行编码,发送至处理器8。上述这种结构和相应的处理方式可以减少对处理器8管脚的占用。电容值检测电路的结构可以如图6所示。
在另一种可能的实现方式中,处理电路5中包括至少一个电容值检测电路7,每个电容值检测电路7分别与一个电容传感器1电性连接,用于检测相应电容传感器1的电容值。每个电容值检测电路7又分别与处理器8电性链接。每个电容值检测电路7可以进一步包括模拟信号检测电路和模数转换器,模拟信号检测电路与电容传感器1电性连接,模拟信号检测电路可以输出电压值或电流值的模拟信号,该模拟信号用于反映电容传感器1的电容值,当电容传感器1的电容值发生变化时,模拟信号检测电路输出的电压值或电流值也会发生相应的变化。电压值或电流值的模拟信号被输入模数转换器,转换为数字信号,该数字信号可以表示电容值。模数转换器将数字信号发送至处理器8。电容值检测电路的结构可以如图7所示。
下面对处理电路5的功能进行介绍。基于终端设备上述的结构特点,处理电路5用于检测电容传感器1的电容值,基于电容传感器1的电容值,执行对应的处理。对于不同的应用场景,处理电路5进行的具体处理又有多种可能性,一下给出了几种具体处理。
处理一,动作检测。
动作检测的处理流程可以如图8所示包括如下步骤:801,采集电容传感器的电容值;802,基于电容值确定目标部位的动作对应的目标动作指令;803,执行目标动作指令对应的处理。其中,步骤801可以由电容传感器1和电容值检测电路7共同完成,步骤802和803可以由处理器8完成。处理器8可以包括动作识别模块和执行模块,如图9所示,动作识别模块用于基于电容传感器的电容值确定对应的目标动作指令,执行模块用于执行目标动作指令对应的处理。其中,目标部位是用户佩戴终端设备的部位。
目标动作指令是触发执行处理的指令,如音量增大指令、音量减小指令等。处理器8可以基于电容值直接确定目标动作指令。或者,处理器8也可以先基于电容值确定目标动作,在基于目标动作确定目标动作指令,动作可以用标识来记录,例如,向上挥臂动作的标识为001,向下挥臂动作的标识为002,等等。本申请实施例以处理器先确定目标动作再确定对应的目标动作指令为例进行方案详细说明,其它情况与之类似,不再赘述。
各种动作触发的动作指令可以基于需求任意设置,例如,向上挥臂的动作触发增大音量的指令,向下挥臂动作触发减小音量的指令,或者,向右挥臂的动作触发智能手表向电视发出快进指令,等等。在不同的应用程序中可以分别定义动作与动作指令的对应关系,可以基于当前运行的应用程序的动作与动作指令的对应关系,确定目标动作对应的目标动作指令,并执行目标动作指令对应的处理。或者,在不同应用程序的不同界面中可以分别定义动作与动作指令的对应关系,可以基于当前运行的应用程序的当前界面中的动作与动作指令的对应关系,确定目标动作对应的目标动作指令,并执行目标动作指令对应的处理。
基于环绕佩戴的穿戴设备,如智能手表、智能手环等,能够检测更多种类的动作,这种穿戴设备可以具有如下的结构特点:多个电容传感器1分布在终端设备上,以使得终端设备被佩戴时,多个电容传感器环绕用户的目标部位分布。目标部位是用户佩戴终端设备的部位。
如图10所示,终端设备包括多个电容传感器1,机身4具有环形结构,多个电容传感器1均匀分布在机身4上,图中给多个电容传感器1设置了A~N的编号,图中对电容传感器1的分布进行示例,其他部件没有在图中全部体现。可以将多个电容传感器1按圆周向均匀设置在终端设备上,具体可以设置在环形机身4的内表面上的凹槽中,或者可以埋设在环形机身4的内表面的浅层,或者可以直接设置在环形机身4的内表面上。
基于上述的结构特点,在佩戴智能手表的状态下,用户的手臂朝任意方向挥动,会使得运动方向一侧的皮肤与相应的若干个电容传感器1的距离变得更接近,相应的电容值就会增大,而运动方向的反方向一侧的皮肤与相应的若干个电容传感器1的距离变得更远,相应的电容值就会减小。下面针对图10所示的设置电容传感器1的方式,以右手佩戴智能手表、表盘在手腕背部、且做动作时手心向下为例,对做动作时各电容传感器1的电容值的分布情况进行说明。向上挥臂的情况,检测到的各电容传感器1的电容值的分布可以如图11所示,向下挥臂的情况,检测到的各电容传感器1的电容值的分布可以如图12所示,向左挥臂的情况,检测到的各电容传感器1的电容值的分布可以如图13所示,向右挥臂的情况,检测到的各电容传感器1的电容值的分布可以如图14所示。
基于以上特点,可以设计相应的判断方法,基于电容值的检测来判断用户的动作。
以下给出了几种可行的动作判定方式。
动作判定方式(一),为每种动作设置对应的电容值条件,基于检测到的电容值满足的条件来确定相应的动作。
相应的,处理电路5,用于基于预先存储的动作与电容值条件的对应关系,确定电容传感器1的电容值所满足的目标电容值条件对应的目标动作。
技术人员可以基于产品需求设置动作的种类,并设计电容传感器1的分布,进而设置每种动作对应的电容值条件。对于智能手表或智能手环这类环形穿戴设备,可以在环形的内侧面上设置多个电容传感器1,相应的动作可以包括向上挥臂、向下挥臂、向左挥臂、向右挥臂中的至少一种,每种动作对应的电容值条件可以如下:
向上挥臂对应的电容值条件为:第一电容传感器集合中的任意两个电容传感器1的电容值的差值小于差值阈值,第二电容传感器集合中的任意两个电容传感器1的电容值的差值小于差值阈值,第一电容传感器集合中的各电容传感器1的电容值的平均值大于第二电容传感器集合中的各电容传感器1的电容值的平均值。
向下挥臂对应的电容值条件为:第一电容传感器集合中的任意两个电容传感器1的电容值的差值小于差值阈值,第二电容传感器集合中的任意两个电容传感器1的电容值的差值小于差值阈值,第一电容传感器集合中的各电容传感器1的电容值的平均值小于第二电容传感器集合中的各电容传感器1的电容值的平均值。
向左挥臂对应的电容值条件为:第三电容传感器集合中的任意两个电容传感器1的电容值的差值小于差值阈值,第四电容传感器集合中的任意两个电容传感器1的电容值的差值小于差值阈值,第三电容传感器集合中的各电容传感器1的电容值的平均值大于第四电容传感器集合中的各电容传感器1的电容值的平均值。
向右挥臂对应的电容值条件为:第三电容传感器集合中的任意两个电容传感器1的电容值的差值小于差值阈值,第四电容传感器集合中的任意两个电容传感器1的电容值的差值小于差值阈值,第三电容传感器集合中的各电容传感器1的电容值的平均值小于第四电容传感 器集合中的各电容传感器1的电容值的平均值。
第一电容传感器集合为佩戴时位于目标部位第一区域的电容传感器1组成,第二电容传感器集合为佩戴时位于目标部位第二区域的电容传感器1组成,第一区域与第二区域不同。第三电容传感器集合为佩戴时位于目标部位第三区域的电容传感器1组成,第四电容传感器集合为佩戴时位于目标部位第四区域的电容传感器1组成,第三区域与第四区域不同。具体的,第一区域和第二区域可以是手腕上相反的两侧,如手腕上侧和手腕下侧,第三区域和第四区域可以是手腕上相反的两侧,如手腕左侧和手腕右侧。
以图10所示的14个电容传感器的情况为例,可以按如下方式设置上述几个电容传感器集合(参见图10):
设置(a),第一电容传感器集合包括电容传感器D~J,第二电容传感器集合包括电容传感器A~C、K~N,第三电容传感器集合包括电容传感器A~G,第四电容传感器集合包括电容传感器H~N。
设置(b),考虑到一些处于临界位置的电容传感器的电容值可能不是很符合上述电容值条件,如电容传感器A、N、G、H等对左右挥臂并不敏感,又如电容传感器D、K等对上下挥臂并不敏感,可以设置第一电容传感器集合包括电容传感器F、G、H、I,第二电容传感器集合包括电容传感器A、B、M、N,第三电容传感器集合包括电容传感器C、D、E、F,第四电容传感器集合包括电容传感器I、J、K、L。在这种设置方式下,因为在集合中去掉了一些临界位置的电容传感器,还能够减小佩戴偏移导致的动作检测误差。
在智能手表的说明书中或智能手表显示的提示信息中,可以告知用户一种指定的佩戴位置以及用户做动作时的手掌朝向,例如,告知用户右手外侧佩戴智能手表且手掌朝下做动作,这个例子与上述设置(a)和设置(b)相匹配,当然告知用户的指定的佩戴位置和手掌朝向也可以是其他方式,相应的上述各电容传感器集合也随时进行相应调整,此处不一一列举。
另外,也可以不要求用户采用指定的佩戴位置和手掌朝向。可以在动作检测之前,先进行佩戴位置检测,确定智能手表当前的佩戴位置,也即,确定佩戴智能手表的手是左手还是右手,并确定表盘位于手腕外侧还是内侧。然后,确定用户佩戴智能手表的手的手掌朝向。再后,基于预先存储的佩戴位置、手掌朝向、动作与电容值条件的对应关系,确定当前的佩戴位置、当前的佩戴位置对应的手的手掌朝向和电容传感器1的电容值所满足的目标电容值条件对应的目标动作。在此对应关系中,对于每个电容值条件可以分别设置相应的电容传感器集合。这里,继续采用上述的14个电容传感器的例子进行说明,具体如下。
佩戴位置为右手手腕外侧,手掌朝向为垂直向下,则在上述电容值条件中,第一电容传感器集合包括电容传感器F、G、H、I,第二电容传感器集合包括电容传感器A、B、M、N,第三电容传感器集合包括电容传感器C、D、E、F,第四电容传感器集合包括电容传感器I、J、K、L。
佩戴位置为右手手腕内侧,手掌朝向为垂直向下,则在上述电容值条件中,第一电容传感器集合包括电容传感器A、B、M、N,第二电容传感器集合包括电容传感器F、G、H、I,第三电容传感器集合包括电容传感器I、J、K、L,第四电容传感器集合包括电容传感器C、D、E、F。
还有很多其它的佩戴位置和手掌朝向的情况,电容传感器集合的设置思路与上述两种情况类似,此处不一一列举。
下面介绍一下佩戴位置和手掌朝向的确定方式。
首先,检测佩戴位置。
方式(a),基于陀螺仪和/或速度传感器等传感器输出的参数值和预存的基准参数值,判定佩戴位置,下面以陀螺仪为例说明,其它情况与之类似,不再赘述。
技术人员进行多次数据采集,每次数据采集将智能手表佩戴于一种佩戴位置,如左手手腕外侧、左手手腕内侧、右手手腕外侧和右手手腕内侧。在佩戴智能手表后,技术人员可以进行抬手看表的动作,并采集在动作过程中陀螺仪输出的一系列参数值,例如,整个动作过程时长为1秒,采集陀螺仪每隔100毫秒输出的参数值。这样,对于每种佩戴位置,就可以得到陀螺仪输出的一系列参数值,这一系列参数值可以作为后续与陀螺仪输出的参数值进行比对的基准,可称之为基准陀螺仪参数值序列。从而,可以建立佩戴位置与基准陀螺仪参数值序列的对应关系。在对应关系中,一个佩戴位置可以对应一个或多个基准陀螺仪参数值序列。
在用户佩戴使用智能手表的过程中,智能手表可以实时获取陀螺仪参数值,将一段时长(该时长与上述基准陀螺仪参数值序列的采集时长相等,如1秒)的陀螺仪参数值序列与每个基准陀螺仪参数值序列进行比对,计算匹配度,如果存在目标基准陀螺仪参数值序列与该陀螺仪参数值序列的匹配度大于预设阈值,则在该对应关系中确定目标基准陀螺仪参数值序列对应的目标佩戴位置,即为智能手表当前的佩戴位置。为了保证佩戴位置判定的准确性,可以基于上述方式获取多次佩戴位置的检测结果,将被检出次数超过阈值的佩戴位置,确定为智能手表当前的佩戴位置。
方式(b),基于陀螺仪和/或速度传感器等传感器输出的参数值和机器学习模型,判定佩戴位置,下面以陀螺仪为例说明,其它情况与之类似,不再赘述。
在用户佩戴使用智能手表的过程中,智能手表可以实时获取陀螺仪参数值,将一段时长(如1秒)的陀螺仪参数值序列输入到佩戴位置检测模型中,输出佩戴位置,即为智能手表当前的佩戴位置。
其中,佩戴位置检测模型为预先训练的机器学习模型,具体的模型算法可以根据需求任意选择,本申请不对此进行限定。
在佩戴位置检测模型使用前,可以获取大量的样本陀螺仪参数值序列,并获取每个样本陀螺仪参数值序列对应的实际佩戴位置,作为基准佩戴位置,基于样本陀螺仪参数值序列和基准佩戴位置对佩戴位置检测模型进行训练。
然后,在检测完佩戴位置后,可以进一步确定佩戴位置对应的手的手掌朝向。其中,手掌朝向最基本的可以包括掌心向下和掌心向上,还可以包括掌心向左、掌心向右等。
可以预先检测在每种佩戴位置下不同的手掌朝向对应的陀螺仪参数值,得到佩戴位置、手掌朝向与陀螺仪参数值的对应关系,进行存储。在检测佩戴位置后,基于检测到的当前的佩戴位置和当前的陀螺仪参数值,在该对应关系中查找对应的手掌朝向。
另外,手掌朝向也可以采用不检测的方式,直接在智能手表的说明书中或智能手表显示的提示信息中告知用户进行动作操作时指定的手掌朝向,如掌心向下。
动作判定方式(二),基于机器学习模型,识别检测到的电容值对应的动作。
相应的,处理器8,用于将指示信息,输入预先训练的识别模型,当识别模型的输出为目标动作指令时,执行目标动作指令对应的处理。
其中,识别模型为预先训练的机器学习模型,具体的模型算法可以根据需求任意选择,如贝叶斯、决策树等算法,本申请不对此进行限定。识别模型的输出可以为不同的动作指令,还可以为无指令。
在识别模型使用前,技术人员可以佩戴智能手表做出各种动作,并且在每次做动作的时候检测并记录所有电容传感器1的电容值,按照预定的电容传感器之间的排列顺序,对电容值进行排列,得到样本电容值序列,并记录每个样本电容值序列在检测时做出的动作,并记录预先设定的此动作对应的动作指令,作为基准动作指令。然后,基于大量的样本电容值序列和基准动作指令对识别模型进行训练。经过训练之后,识别模型就可以较为准确的基于电容值识别动作指令。
处理二,正确佩戴检测。
正确佩戴检测的处理流程可以如图15所示包括如下步骤:1501,采集电容传感器的电容值;1502,基于电容传感器的电容值,确定终端设备未正确佩戴;1503,发出未正确佩戴的提示信息。其中,步骤1501可以由电容传感器1和电容值检测电路7共同完成,步骤1502和1503可以由处理器8完成。处理器8可以包括正确佩戴判别模块和执行模块,如图16所示,正确佩戴判别模块用于基于电容传感器的电容值确定终端设备未正确佩戴,执行模块用于发出未正确佩戴的提示信息。
一般,正确佩戴检测最常用的场景是检测某生物体征传感器的位置有没有和皮肤平坦贴合,相应的穿戴设备可以具有如下的结构特点:如图17所示,终端设备包括多个电容传感器1,终端设备还包括生物体征传感器9,多个电容传感器1均匀分布在生物体征传感器9周围。图中对电容传感器1的分布以及与生物体征传感器9的位置关系进行示例,其他部件没有在图中全部体现。
生物体征传感器9可以为需要贴合皮肤佩戴才能准确检测相应参数的传感器,如脉搏传感器等。生物体征传感器9与处理电路5电性连接。电容传感器1和生物体征传感器9均设置于机身4靠近皮肤的一侧,所有电容传感器1均匀分布在以生物体征传感器9为圆心的圆周上,且任意两个相邻电容传感器1之间的间距相同。电容传感器1的数目可以根据实际精度需求来设置,例如,可以设置4个,分别在3点、6点、9点、12点方向。
基于上述的结构特点,处理电路5,用于确定电容值不在预设数值范围内的目标电容传感器1,确定目标电容传感器1对应的位置为终端设备未正确佩戴的位置,发出该位置未正确佩戴的提示信息。
技术人员可以先确定智能手表背面需要设置电容传感器1的位置,然后确定每个位置在正确佩戴时电容传感器1与皮肤的距离范围,如0-0.5mm,然后基于距离范围确定电容值的预设数值范围,存储在智能手表中,该预设数值范围代表正确佩戴时的电容值。在用户佩戴智能手表,需要进行生物体征监测时,如心率检测,智能手表可以获取各电容传感器1的电容值,确定每个电容传感器1的电容值是否在预设数值范围内,如果存在目标电容传感器1的电容值不在预设数值范围内,则可以确定目标电容传感器1对应的位置佩戴的有些松了。这个时候可以发出相应的提示信息,例如,提示信息为“3点位置没有带紧,无法进行准确的心率检测,请您调整一下”。提示信息可以通过屏幕显示,也可以通过语音播报等。
下面介绍一下进行动作检测或者正确佩戴检测的触发方式。
检测开启触发
处理器8,用于当检测到启动触发事件时,启动电容值检测。在没有检测到启动触发事件时,处理器8可以控制不向电容传感器1供电,这样不会进行电容值的检测,在检测到启动触发事件之后才开始检测电容值。这样,可以在一定程度上节省电能。启动触发事件可以是用户操作触发的,也可以是应用程序或系统程序在某个业务场景下自动触发的。启动触发事件可以基于实际需求任意设置,下面介绍几种可行的启动触发事件。
(1)终端设备的姿态信息满足第一姿态条件。
其中,第一姿态条件是需要智能手表的姿态信息满足的条件。
例如,第一姿态条件为智能手表的姿态信息由第一姿态信息变化为第二姿态信息,第一姿态信息是表盘朝上的姿态信息,第二姿态信息是表盘朝下的姿态信息,相应的动作是用户佩戴智能手表的手翻一下手腕,由表盘朝上翻转为表盘朝下。又例如,第一姿态条件为智能手表保持第三姿态信息达到预设时长,第三姿态信息是表盘朝上的姿态信息,相应的动作是用户保持表盘朝上一定时长。
(2)终端设备的运动信息满足第一运动条件。
其中,第一运动条件是需要智能手表的速度、加速度或位移等运动参数满足的条件。
例如,在预设时长内,速度增大到预设速度值,且位移方向为向上,相应的动作是用户快速抬手。
(3)接收到启动指令。
其中,启动指令可以是用户操作实体按键或虚拟控件触发的指令。
例如,在智能手表的界面中设置有上层漂浮控件,在电容值检测处于关闭状态时,点击该控件则可以发出启动指令。
(4)目标功能开启。
例如,心率检测功能开启,心率检测功能可以是周期性自动开启或者用户操作开启。
检测结束触发
处理器8,还用于当检测到关闭触发事件时,停止电容值检测。关闭触发事件可以基于实际需求任意设置,可以和启动触发时间配套设置,下面介绍几种可行的启动触发事件。
(1)终端设备的姿态信息满足第二姿态条件。
其中,第二姿态条件是需要智能手表的姿态信息满足的条件。
例如,第二姿态条件为智能手表的姿态信息由第二姿态信息变化为第一姿态信息,第一姿态信息是表盘朝上的姿态信息,第二姿态信息是表盘朝下的姿态信息,相应的动作是用户佩戴智能手表的手翻一下手腕,由表盘朝下翻转为表盘朝上。又例如,第二姿态条件为智能手表保持第四姿态信息达到预设时长,第四姿态信息是表盘朝下的姿态信息,相应的动作是用户保持表盘朝下一定时长。
(2)终端设备的运动信息满足第二运动条件。
其中,第二运动条件是需要智能手表的速度、加速度或位移等运动参数满足的条件。
例如,在预设时长内,速度增大到预设速度值,且位移方向为向下,相应的动作是用户快速向下甩手。
(3)接收到关闭指令。
其中,关闭指令可以是用户操作实体按键或虚拟控件触发的指令。
例如,在智能手表的界面中设置有上层漂浮控件,在电容值检测处于启动状态时,点击该控件则可以发出关闭指令。
(4)目标功能关闭。
例如,心率检测功能关闭,心率检测功能可以是在心率检测完毕后达到预设时长时自动关闭或者用户操作关闭。
本申请实施例中,终端设备采用上述的电容传感器1可以对人体皮肤的距离变化进行感知,而且不会受到距离稍远的其他导电物体的干扰。这样,可以较为准确的进行动作检测,或进行正确佩戴检测。
本申请实施例还提供了一种终端设备的传感器组件,如图18所示,传感器组件包括基座10和电容传感器1,电容传感器1设置在基座10上。
其中,传感器组件是终端设备的配套部件,可以安装在终端设备上,也可以从终端设备上拆除下来,可以在不同的终端设备上使用。例如,用户有一个智能手表和一个智能手环,还拥有一个传感器组件,该用户在使用智能手表时,可以将传感器组件安装在智能手表上,在使用智能手环时可以将传感器组件从智能手表上拆卸下来,将其安装在智能手环上。传感器组件可以安装在终端设备与皮肤接触的表面上。传感器组件的功能是进行电容检测。
终端设备可以是在穿戴时与人体皮肤存在接触的穿戴设备,如智能手表、智能手环、智能项圈、智能脚环等。本实施例以智能手表为例进行方案说明,其他情况与之类似,不再赘述。
基座10形状的设置取决于对电容传感器1的分布需求,可以为长条形、圆环形等。基座10采用柔性材料制成,如橡胶、塑料等。基座10的一个表面是设置电容传感器1的表面。在传感器组件安装在智能手表上之后,基座的另一个表面与终端设备贴合。在用户佩戴智能手表时,基座10设置电容传感器1的表面与皮肤相接触,即在传感器组件安装在终端设备上且终端设备被佩戴时该表面在基座10贴近用户皮肤一侧。
基座10的表面上可以设置有凹槽11,电容传感器1设置在凹槽11中,电容传感器1的检测面低于凹槽11的槽口,且检测面与凹槽11的槽口的距离在预设距离范围内。预设距离范围可以为0.5-1mm。在传感器组件安装在终端设备上且终端设备被佩戴时,该表面在基座10贴近用户皮肤一侧。凹槽6的数量和位置可以根据需求任意设置,凹槽6的数量与电容传感器1的数量可以相同也可以不同,即一个凹槽6中可以只设置一个电容传感器1,或者一个凹槽6也可以设置多个电容传感器1。例如,设置一个长条形凹槽11将所有电容传感器1都设置在凹槽11中,或者,设置多个方形凹槽11,每个方形凹槽11中设置一个电容传感器1。
电容传感器可以通过3D打印的方式打印到凹槽6中,材料可以采用金、银、铜等导电材料,通过3D打印将金属材料打印到凹槽6底部形成预定图案的金属薄膜,图案可以参见图1、图2。
或者可选的,电容传感器1埋设在基座10的表面之下,电容传感器1的检测面与该表面的距离在预设距离范围内。预设距离范围可以为0.5-1mm。在传感器组件安装在终端设备上 且终端设备被佩戴时,该表面在基座10贴近用户皮肤一侧。
在加工时,可以先在基座10上开设凹槽,通过3D打印将电容传感器1加工到凹槽中,然后再使用相应材料将凹槽封闭以遮盖住电容传感器1。这样,电容传感器1不会暴露于空气中,具有更好的耐用性,而且电容传感器1不会被看到,也即不会影响到产品外观,更便于产品的工业设计。
下面介绍一种终端设备,包括机身、处理电路和上述的传感器组件,基座10固定在机身上。仍以智能手表为例,智能手表可以包括机身和处理电路。
在机身和基座10之间可以设置有安装结构,用于两者之间的固定。例如,在机身上可以设置有安装槽,安装槽与基座10的形状相匹配,基座10可以安装在安装槽中。又例如,在机身上可以设置有多个安装孔,在基座10上与每个安装孔相对应的位置分别设置有安装柱,安装柱与安装孔过盈配合,这样可以通过安装柱和安装孔,将基座10固定在机身上。图19是终端设备和传感器组件安装在一起的示意图。
在智能手表的机身上可以设置有第一连接端口,相应的在基座10上对应的位置处可以设置有第二连接端口。第一连接端口与处理电路电性连接,第二连接端口与电容传感器1电性连接,当基座10与智能手表相固定时,第一连接端口与第二连接端口电性连接。以下介绍两种具体情况。
情况一,机身上设置有一个第一连接端口,基座10上设置有一个第二连接端口,第一连接端口和第二连接端口的管脚数目相同且与传感器组件中电容传感器1的数目相同。第二连接端口的每个管脚分别与一个电容传感器1电性连接。
情况二,机身上设置有多个第一连接端口,基座10上设置有多个第二连接端口,第一连接端口和第二连接端口的数目相同且与传感器组件中电容传感器1的数目相同。每个第二连接端口分别与一个电容传感器1电性连接。
处理电路的具体结构和功能在前面的实施例内容中已经介绍,此处不再赘述。
本申请实施例中,传感器组件采用上述的电容传感器1可以对人体皮肤的距离变化进行感知,而且不会受到距离稍远的其他导电物体的干扰。这样,可以较为准确的进行动作检测,或进行正确佩戴检测。而且,这种传感器组件与终端设备是可拆装关系,可以提高终端设备进行动作检测、正确佩戴检测等的灵活性。
本申请实施例还提供了一种检测方法,该检测方法可以应用于上述终端设备,如图20所示,该方法包括如下步骤:
2001,检测电容传感器1的电容值。
2002,基于指示信息,执行对应的处理,该指示信息根据该电容值确定。
在一种可能的实现方式中,当终端设备佩戴于用户的目标部位时,电容传感器1的电容值根据目标部位的动作发生变化。终端设备基于指示信息确定目标部位的动作对应的目标动作指令,执行目标动作指令对应的处理。
在一种可能的实现方式中,指示信息为电容值。终端设备根据预先存储的电容值条件和电容值确定目标动作指令,执行目标动作指令对应的处理,目标动作指令和电容值条件相对应。
在一种可能的实现方式中,电容传感器1为多个,终端设备为环绕佩戴的设备,多个电 容传感器1分布在终端设备上,这样在终端设备被佩戴时,多个电容传感器环绕目标部位分布。电容值条件为根据第一电容传感器集合中各电容传感器1的电容值的第一平均值,以及第二电容传感器集合中各电容传感器1的电容值的第二平均值确定。
其中,第一电容传感器集合为佩戴时位于目标部位第一区域的电容传感器1组成,第二电容传感器集合为佩戴时位于目标部位第二区域的电容传感器1组成,第一区域与第二区域不同。
在一种可能的实现方式中,终端设备将指示信息,输入预先训练的识别模型,当识别模型的输出为目标动作指令时,执行目标动作指令对应的处理。
在一种可能的实现方式中,电容传感器1为多个,终端设备还包括生物体征传感器9,多个电容传感器1均匀分布在生物体征传感器9周围。终端设备根据电容值和预先存储的电容值条件确定终端设备为未正确佩戴,发出未正确佩戴的提示信息。
检测方法的处理过程的具体说明可以参见上面的实施例内容。
本申请实施例中终端设备使用上述电容传感器,可以很好的利用电容值随电容传感器与导体之间距离的变化而变化的特点,通过上述的参数设置,使得电容传感器能够更好的对相贴近的皮肤的距离变化进行感知,通过检测电容值来检测皮肤与终端设备的距离情况。用户在佩戴终端设备进行一些动作时,随着用户的动作,电容传感器与皮肤之间的距离就会发生细微的变化,进而导致电容值发生变化,终端设备此时可以进行某些指定的处理。这样,用户想要触发某处理时,只需要佩戴终端设备的器官进行动作,如果是某一只手佩戴终端设备的话,则此时另一只手是完全不需要参与的,处于完全解放的状态,可见,采用本申请的方案,可以提高操作便捷性。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现,当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令,在设备上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴光缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是设备能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(如软盘、硬盘和磁带等),也可以是光介质(如数字视盘(digital video disk,DVD)等),或者半导体介质(如固态硬盘等)。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请一个实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (24)

  1. 一种电容传感器(1),其特征在于,所述电容传感器(1)包括多个第一极板(2)和多个第二极板(3),所述多个第一极板(2)与所述多个第二极板(3)用于连接不同的电极,所述多个第一极板(2)和所述多个第二极板(3)组成多个极板对,所述多个极板对中的每个极板对由相邻的第一极板(2)和第二极板(3)组成,其中:
    所述多个极板对的数目大于或等于5,所述每个极板对的有效极板长度与极板间距的比值大于10,所述每个极板对的极板宽度与极板间距的比值大于2。
  2. 根据权利要求1所述的电容传感器(1),其特征在于,所述多个第一极板(2)为相互连接的星形结构。
  3. 根据权利要求1所述的电容传感器(1),其特征在于,所述多个第一极板(2)和所述多个第二极板(3)相互穿插平行排列,以使至少一个第一极板(2)和至少一个第二极板(3)可以复用于两个极板对。
  4. 根据权利要求1所述的电容传感器(1),其特征在于,所述多个第一极板(2)和所述多个第二极板(3)组成多个极板对,包括:
    所述多个第一极板(2)中的至少一个第一极板(2)设置于所述多个第二极板(3)中的两个第二极板(3)之间组成两个极板对。
  5. 根据权利要求1所述的电容传感器(1),其特征在于,所述多个第一极板(2)和所述多个第二极板(3)均由柔性导电材料制成。
  6. 根据权利要求1所述的电容传感器(1),其特征在于,所述多个第一极板(2)和所述多个第二极板(3)均为波浪形。
  7. 一种终端设备,其特征在于,所述终端设备包括电容值检测电路(7)、处理器(8)和如权利要求1-6任一项所述的电容传感器(1),其中:
    所述电容值检测电路(7),用于检测所述电容传感器(1)的电容值,向所述处理器(8)发送指示信息,其中,所述指示信息根据所述电容值确定;
    所述处理器(8),用于基于所述指示信息,执行对应的处理。
  8. 根据权利要求7所述的终端设备,其特征在于,所述终端设备为可穿戴设备;
    所述终端设备还包括机身(4);
    所述机身(4)第一表面上设置有凹槽(6),所述电容传感器(1)设置在所述凹槽(6)中;或者,所述电容传感器(1)埋设在所述机身(4)第一表面之下;
    其中,所述第一表面为所述终端设备佩戴时贴近用户皮肤一侧的表面。
  9. 根据权利要求7或8所述的终端设备,其特征在于,
    所述电容传感器(1),用于在用户将所述终端设备佩戴于所述用户的目标部位时,并且当所述目标部位有动作时电容值发生变化;
    所述处理器(8),用于基于所述指示信息,执行对应的处理,具体为:
    所述处理器(8),用于基于所述指示信息确定所述动作对应的目标动作指令,执行所述目标动作指令对应的处理。
  10. 根据权利要求9所述的终端设备,其特征在于,所述指示信息为所述电容值,所述处理器(8),用于基于所述指示信息确定所述动作对应的目标动作指令,执行所述目标动作指令对应的处理,具体为:
    所述处理器(8),用于根据预先存储的电容值条件和所述电容值确定目标动作指令,执行所述目标动作指令对应的处理。
  11. 根据权利要求10所述的终端设备,其特征在于,所述电容传感器(1)为多个,所述终端设备为环绕佩戴的设备,所述多个电容传感器(1)分布在所述终端设备上,以使得所述终端设备被佩戴时,所述多个电容传感器环绕所述目标部位分布。
  12. 根据权利要求11所述的终端设备,其特征在于,所述电容值条件为根据第一电容传感器集合中各电容传感器(1)的电容值的第一平均值,以及第二电容传感器集合中各电容传感器(1)的电容值的第二平均值确定;
    所述第一电容传感器集合为佩戴时位于所述目标部位第一区域的电容传感器(1)组成;
    所述第二电容传感器集合为佩戴时位于所述目标部位第二区域的电容传感器(1)组成;
    所述第一区域与所述第二区域不同。
  13. 根据权利要求9所述的终端设备,其特征在于,所述处理器(8),用于基于所述指示信息确定所述动作对应的目标动作指令,执行所述目标动作指令对应的处理,具体为:
    所述处理器(8),用于将所述指示信息,输入预先训练的识别模型,当所述识别模型的输出为目标动作指令时,执行所述目标动作指令对应的处理。
  14. 根据权利要求7或8所述的终端设备,其特征在于,所述电容传感器(1)为多个,所述终端设备还包括生物体征传感器(9),所述多个电容传感器(1)均匀分布在所述生物体征传感器(9)周围。
  15. 根据权利要求7或8所述的终端设备,其特征在于,所述处理器(8),用于根据所述电容值和预先存储的电容值条件确定所述终端设备为未正确佩戴,发出未正确佩戴的提示信息。
  16. 根据权利要求1-15所述的终端设备,其特征在于,所述终端设备还包括基座,所述基座设置于所述终端设备表面,所述电容传感器(1)设置于基座上。
  17. 一种终端设备的传感器组件,其特征在于,所述传感器组件包括基座(10)和如权利要求1-6任一项所述的电容传感器(1),其中:
    所述电容传感器(1)设置在所述基座(10)上。
  18. 根据权利要求17所述的传感器组件,其特征在于,所述基座(10)的表面上设置有凹槽(11),所述电容传感器(1)设置在所述凹槽(11)中;或者,
    所述电容传感器(1)埋设在所述基座(10)的表面之下。
  19. 一种检测方法,所述检测方法应用于终端设备,其特征在于,所述终端设备包括如权利要求1-6任一项所述的电容传感器(1),所述方法包括:
    检测所述电容传感器(1)的电容值;
    基于指示信息,执行对应的处理,所述指示信息根据所述电容值确定。
  20. 根据权利要求19所述的方法,其特征在于,当所述终端设备佩戴于用户的目标部位 时,所述电容传感器(1)的电容值根据所述目标部位的动作发生变化;
    基于所述指示信息,执行对应的处理,具体为:
    基于所述指示信息确定所述目标部位的动作对应的目标动作指令,执行所述目标动作指令对应的处理。
  21. 根据权利要求20所述的方法,其特征在于,所述指示信息为所述电容值,所述基于所述指示信息确定所述目标部位的动作对应的目标动作指令,执行所述目标动作指令对应的处理,具体为:
    根据预先存储的电容值条件和所述电容值确定目标动作指令,执行所述目标动作指令对应的处理,所述目标动作指令和所述电容值条件相对应。
  22. 根据权利要求21所述的方法,其特征在于,所述电容传感器(1)为多个,所述终端设备为环绕佩戴的设备,所述多个电容传感器(1)分布在所述终端设备上,以使得所述终端设备被佩戴时,所述多个电容传感器环绕所述目标部位分布;
    所述电容值条件为根据第一电容传感器集合中各电容传感器(1)的电容值的第一平均值,以及第二电容传感器集合中各电容传感器(1)的电容值的第二平均值确定;
    所述第一电容传感器集合为佩戴时位于所述目标部位第一区域的电容传感器(1)组成;
    所述第二电容传感器集合为佩戴时位于所述目标部位第二区域的电容传感器(1)组成;
    所述第一区域与所述第二区域不同。
  23. 根据权利要求20所述的方法,其特征在于,所述基于所述指示信息确定所述目标部位的动作对应的目标动作指令,执行所述目标动作指令对应的处理,具体为:
    将所述指示信息,输入预先训练的识别模型,当所述识别模型的输出为目标动作指令时,执行所述目标动作指令对应的处理。
  24. 根据权利要求19所述的方法,其特征在于,所述电容传感器(1)为多个,所述终端设备还包括生物体征传感器(9),所述多个电容传感器(1)均匀分布在所述生物体征传感器(9)周围;
    根据所述电容值和预先存储的电容值条件确定所述终端设备为未正确佩戴,发出未正确佩戴的提示信息。
PCT/CN2021/077294 2021-02-22 2021-02-22 电容传感器、终端设备、传感器组件和检测方法 WO2022174455A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/077294 WO2022174455A1 (zh) 2021-02-22 2021-02-22 电容传感器、终端设备、传感器组件和检测方法
CN202180006916.6A CN115244491A (zh) 2021-02-22 2021-02-22 电容传感器、终端设备、传感器组件和检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/077294 WO2022174455A1 (zh) 2021-02-22 2021-02-22 电容传感器、终端设备、传感器组件和检测方法

Publications (1)

Publication Number Publication Date
WO2022174455A1 true WO2022174455A1 (zh) 2022-08-25

Family

ID=82930277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077294 WO2022174455A1 (zh) 2021-02-22 2021-02-22 电容传感器、终端设备、传感器组件和检测方法

Country Status (2)

Country Link
CN (1) CN115244491A (zh)
WO (1) WO2022174455A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104364745A (zh) * 2012-06-15 2015-02-18 三星电子株式会社 用于接近触摸感测的设备和方法
US20150124566A1 (en) * 2013-10-04 2015-05-07 Thalmic Labs Inc. Systems, articles and methods for wearable electronic devices employing contact sensors
US20160154952A1 (en) * 2016-02-01 2016-06-02 Fitbit, Inc. Method and apparatus for off-body detection for wearable device
CN108020016A (zh) * 2016-11-03 2018-05-11 比亚迪股份有限公司 车载冰箱的控制装置、方法、系统和汽车
CN110044976A (zh) * 2019-04-17 2019-07-23 淮阴师范学院 用于检测q235碳钢腐蚀的叉指电容式传感器
US20200371598A1 (en) * 2017-11-14 2020-11-26 Biointeractive Technologies, Inc. Apparatus and methods for detecting, quantifying, and providing feedback on user gestures

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104364745A (zh) * 2012-06-15 2015-02-18 三星电子株式会社 用于接近触摸感测的设备和方法
US20150124566A1 (en) * 2013-10-04 2015-05-07 Thalmic Labs Inc. Systems, articles and methods for wearable electronic devices employing contact sensors
US20160154952A1 (en) * 2016-02-01 2016-06-02 Fitbit, Inc. Method and apparatus for off-body detection for wearable device
CN108020016A (zh) * 2016-11-03 2018-05-11 比亚迪股份有限公司 车载冰箱的控制装置、方法、系统和汽车
US20200371598A1 (en) * 2017-11-14 2020-11-26 Biointeractive Technologies, Inc. Apparatus and methods for detecting, quantifying, and providing feedback on user gestures
CN110044976A (zh) * 2019-04-17 2019-07-23 淮阴师范学院 用于检测q235碳钢腐蚀的叉指电容式传感器

Also Published As

Publication number Publication date
CN115244491A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
US20220151560A1 (en) Wearing Dependent Operation of Wearable Device
WO2020253727A1 (zh) 一种ecg检测方法与穿戴设备
US10827268B2 (en) Detecting an installation position of a wearable electronic device
EP3246768B1 (en) Watch type terminal
US20190131812A1 (en) Portable electronic device
US11379009B2 (en) Electronic device having conductive exterior member and method for detecting leak current regarding same
US10747337B2 (en) Mechanical detection of a touch movement using a sensor and a special surface pattern system and method
CN106990879A (zh) 电子设备和在电子设备中确定触摸的方法
US9563258B2 (en) Switching method and electronic device
US20160066859A1 (en) Device-based activity classification using predictive feature analysis
KR102399533B1 (ko) 사용자의 활동에 대응하는 스트레스 지수를 제공하는 방법 및 전자 장치
US20180220923A1 (en) Watch-type terminal
WO2022025678A1 (en) Electronic device for evaluating sleep quality and method for operation in the electronic device
US20160070339A1 (en) Divice-based activity classification using predictive feature analysis
CN110114741A (zh) 穿戴式终端及其操作方法
US20160066857A1 (en) Device-Based Activity Classification Using Predictive Feature Analysis
US11899845B2 (en) Electronic device for recognizing gesture and method for operating the same
KR20200137460A (ko) 운동 환경에 따른 운동 정보를 제공하는 전자 장치 및 그 동작 방법
WO2022174455A1 (zh) 电容传感器、终端设备、传感器组件和检测方法
CN108780352A (zh) 可穿戴设备的带
US20210318759A1 (en) Input device to control a computing device with a touch pad having a curved surface configured to sense touch input
KR20230046168A (ko) 획득된 데이터에 기반하여 화면을 표시하기 위한 전자 장치 및 방법
WO2023075108A1 (ko) 웨어러블 전자 장치 및 웨어러블 전자 장치의 동작 방법
WO2023136628A1 (ko) 사용자의 생체 사인을 결정하는 전자 장치 및 그 동작 방법
US20230048413A1 (en) Wearable electronic device and method for providing information of brushing teeth in wearable electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926172

Country of ref document: EP

Kind code of ref document: A1