WO2022174445A1 - 灰阶和灰阶电压对应关系的获取方法及装置、显示装置 - Google Patents

灰阶和灰阶电压对应关系的获取方法及装置、显示装置 Download PDF

Info

Publication number
WO2022174445A1
WO2022174445A1 PCT/CN2021/077240 CN2021077240W WO2022174445A1 WO 2022174445 A1 WO2022174445 A1 WO 2022174445A1 CN 2021077240 W CN2021077240 W CN 2021077240W WO 2022174445 A1 WO2022174445 A1 WO 2022174445A1
Authority
WO
WIPO (PCT)
Prior art keywords
grayscale
voltage
grayscales
gray
value
Prior art date
Application number
PCT/CN2021/077240
Other languages
English (en)
French (fr)
Inventor
毕鑫
左堃
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/631,404 priority Critical patent/US11967264B2/en
Priority to PCT/CN2021/077240 priority patent/WO2022174445A1/zh
Priority to CN202180000269.8A priority patent/CN115668351A/zh
Publication of WO2022174445A1 publication Critical patent/WO2022174445A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2074Display of intermediate tones using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0267Details of drivers for scan electrodes, other than drivers for liquid crystal, plasma or OLED displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a method and device for obtaining the corresponding relationship between grayscales and grayscale voltages, and a display device.
  • the grayscale curve is a characteristic curve that describes the relationship between the grayscale of the display product and the brightness change.
  • gamma correction is introduced in the display product manufacturing, so that the display effect of the display product is improved. for best results.
  • a display device in one aspect, includes a display panel, a memory and a driver.
  • the display panel includes a plurality of sub-pixels.
  • the driver is coupled to the memory, the signal transmission interface and the display panel.
  • the memory is configured to store at least one set of correspondences, and each set of correspondences includes 2N groups of grayscale data and 2N register values one-to-one corresponding to the 2N groups of grayscale data; each register value is configured is a grayscale voltage value representing a corresponding set of grayscale data; N is a positive integer greater than or equal to 6.
  • the driver is configured to acquire the at least one set of correspondences in the memory; receive image data from the signal transmission interface, the image data including multiple sets of grayscale data corresponding to the plurality of sub-pixels; And for any group of gray-scale data in the image data, obtain the register value corresponding to the group of gray-scale data in a set of correspondence; output the gray-scale data to a sub-pixel of the display panel according to the register value.
  • the plurality of subpixels include a plurality of first color subpixels, a plurality of second color subpixels and a plurality of third color subpixels; the first color, the second color and the third color are three primary colors .
  • the at least one set of corresponding relationships includes three sets of corresponding relationships, and the three sets of corresponding relationships are respectively used for the gray scale voltage values of the first color sub-pixel, the second color sub-pixel and the third color sub-pixel in the display panel.
  • the driver is configured to, for any group of gray levels in the image data, determine the color of the sub-pixels corresponding to the gray level of the group; and determine a group of the three groups of correspondences according to the colors of the sub-pixels Corresponding relationship, the determined set of corresponding relationships is used to obtain the gray-scale voltage value of one of the first color sub-pixel, second color sub-pixel and third color sub-pixel with the same color as the sub-pixel; The register value corresponding to the gray scale is obtained from the determined set of correspondences.
  • the memory is non-volatile memory.
  • the driver includes a random access memory, a plurality of registers, a controller, and a grayscale voltage output circuit.
  • the random access memory is coupled to the nonvolatile memory.
  • the random access memory is also coupled with the signal transmission interface.
  • the plurality of registers are coupled to the random access memory.
  • the controller is coupled to the random access memory and the plurality of registers.
  • the grayscale voltage output circuit is coupled to the plurality of registers and the display panel.
  • the random access memory is configured to retrieve and store the at least one set of correspondences in the non-volatile memory.
  • the random access memory is also configured to acquire image data from the signal output interface.
  • the controller is configured to, according to each set of grayscale data in the image data, control a register to acquire and register a register value corresponding to a set of grayscale data from a set of correspondences in the random access memory.
  • the grayscale voltage output circuit is configured to, according to the register value stored in the register, output a grayscale voltage corresponding to the grayscale voltage value represented by the register value to the display panel.
  • the gray-scale voltage output circuit includes: a first voltage generating circuit and a plurality of first gating circuits.
  • the first voltage generating circuit is coupled to the first voltage terminal and the second voltage terminal.
  • Each first gating circuit is coupled to the first voltage generating circuit, a register and the display panel.
  • the first voltage generating circuit is configured to obtain a plurality of third voltages according to the first voltage of the first voltage terminal and the second voltage of the second voltage terminal. Wherein, the first voltage is greater than the second voltage.
  • the first gating circuit is configured to output the first voltage, the second voltage from the first voltage generating sub-circuit to the display panel in response to the register value stored in the register and one voltage in the plurality of third piezoelectrics, where the one voltage is the gray-scale voltage corresponding to the gray-scale voltage value represented by the register value.
  • the gray-scale voltage output circuit further includes: a second voltage generating circuit, a second gating circuit and a third gating circuit.
  • the second voltage generating circuit is coupled to the first reference voltage terminal and the second reference voltage terminal.
  • the second gating circuit is coupled to the first voltage terminal and the second voltage generating circuit.
  • the third gating circuit is coupled to the second voltage terminal and the second voltage generating circuit.
  • the second voltage generating circuit is configured to obtain a plurality of divided voltages according to the first reference voltage of the first reference voltage terminal and the second reference voltage of the second reference voltage terminal.
  • the second gating circuit is configured to output a divided voltage among the plurality of divided voltages in response to a register value representing a maximum gray-scale voltage value among the 2 N register values, the divided voltage being the first divided voltage. a voltage.
  • the third gating circuit is configured to, in response to a register value representing a minimum gray-scale voltage value among the 2 N register values, output a divided voltage among the plurality of divided voltages, the divided voltage being the first divided voltage. Second voltage.
  • the first voltage generating circuit includes a first resistor string; two ends of the first resistor string are coupled to the second gating circuit and the third gating circuit, respectively.
  • the second voltage generating circuit includes a second resistor string; two ends of the second resistor string are respectively coupled to the first reference voltage terminal and the second reference voltage terminal.
  • the value range of the preset parameter is -0.1 ⁇ 2.4.
  • the N is 8 or 10.
  • the obtaining method includes: obtaining grayscale voltage values corresponding to at least two first grayscales in the plurality of grayscales; wherein, between two adjacent first grayscales among the at least two first grayscales There are multiple second grayscales; according to the two adjacent first grayscales and their corresponding grayscale voltage values, a plurality of second grayscales located between the two adjacent first grayscales are obtained.
  • a corresponding grayscale voltage value wherein, in the coordinate system formed by the grayscale and the grayscale voltage values, the connecting line formed by sequentially connecting the grayscale voltage values corresponding to the plurality of second grayscales is nonlinear; according to the The plurality of grayscales and the corresponding plurality of grayscale voltage values are obtained to obtain a set of correspondences; wherein, a set of correspondences includes the plurality of grayscales and a plurality of register values corresponding to the plurality of grayscales one-to-one ; Each register value is configured to represent the grayscale voltage value of the corresponding grayscale.
  • the plurality of gray levels are 2 N gray levels, and N is a positive integer greater than or equal to 6.
  • the obtaining the grayscale voltage values corresponding to at least two first grayscales in the plurality of grayscales includes: for any first grayscale, measuring the subpixels of one color in the display panel at When displaying the first grayscale, the actual brightness of the display panel; when the actual brightness of the display panel reaches the target brightness of the first grayscale, The value of the driving voltage corresponding to the sub-pixel of the color is used as the gray-scale voltage value corresponding to the first gray-scale.
  • a plurality of second grayscales located between the two adjacent first grayscales are obtained.
  • a corresponding grayscale voltage value comprising: performing nonlinear interpolation according to the two adjacent first grayscales and their corresponding grayscale voltage values to obtain a voltage between the two adjacent first grayscales. Grayscale voltage values corresponding to the plurality of second grayscales.
  • the grayscale voltage value corresponding to the second grayscale and the two adjacent first grayscales and their corresponding grayscale voltage values satisfy the formula: Wherein, V3 represents the grayscale voltage value corresponding to the second grayscale, V2 and V1 respectively represent the grayscale voltage value corresponding to the two adjacent first grayscales, and G3 represents the second grayscale level, G 2 and G 1 respectively represent the two adjacent first gray levels, and ⁇ represents a preset parameter.
  • the value range of the preset parameter is -0.1 ⁇ 2.4.
  • a device for acquiring a corresponding relationship between grayscales and grayscale voltages includes: a first processing unit, a second processing unit and a third processing unit.
  • the first processing unit is configured to obtain grayscale voltage values corresponding to at least two first grayscales among the plurality of grayscales. Wherein, there are multiple second gray levels between two adjacent first gray levels in the at least two first gray levels.
  • the second processing unit is configured to obtain a plurality of second grayscales located between the two adjacent first grayscales according to the two adjacent first grayscales and their corresponding grayscale voltage values One-to-one corresponding grayscale voltage value.
  • the connecting line formed by sequentially connecting the gray scale voltage values corresponding to the plurality of second gray scales is nonlinear.
  • the third processing unit is configured to obtain a set of correspondences according to the plurality of grayscales and the corresponding plurality of grayscale voltage values.
  • a set of correspondence includes the plurality of grayscales and a plurality of register values one-to-one corresponding to the plurality of grayscales; each register value is configured to represent a grayscale voltage value of the corresponding grayscale.
  • a device for acquiring a corresponding relationship between grayscales and grayscale voltages includes: a storage device and a processing device.
  • the processing device is coupled to the storage device.
  • One or more computer programs are stored in the storage device.
  • the processing device is configured to execute the computer program to implement the acquisition method as described in any of the above embodiments.
  • a computer-readable storage medium stores a computer program, and when the computer program runs on a computer, causes the computer to execute the acquisition method described in any of the above embodiments.
  • a computer program product includes a computer program that, when executed on a computer, causes the computer to execute the acquisition method as described in any of the above embodiments.
  • a computer program When the computer program is executed on a computer, the computer program causes the computer to execute the acquisition method as described in any of the above embodiments.
  • FIG. 1 is a structural diagram of a display device according to some embodiments.
  • FIG. 2 is a structural diagram of a display panel according to some embodiments.
  • FIG. 3 is a schematic diagram of a set of correspondences according to some embodiments.
  • FIG. 5 is another structural diagram of a display device according to some embodiments.
  • FIG. 6 is a structural diagram of a grayscale voltage output circuit according to some embodiments.
  • FIG. 7A is another structural diagram of a grayscale voltage output circuit according to some embodiments.
  • FIG. 7B is another structural diagram of a grayscale voltage output circuit according to some embodiments.
  • 7C is another structural diagram of a grayscale voltage output circuit according to some embodiments.
  • FIG. 8 is a block diagram of a first voltage generating circuit according to some embodiments.
  • FIG. 9 is a block diagram of a second voltage generating circuit according to some embodiments.
  • FIG. 10 is a flowchart of a method for obtaining a corresponding relationship between gray scales and gray scale voltages according to some embodiments
  • FIG. 11 is a process diagram of a method for obtaining the corresponding relationship between gray scales and gray scale voltages according to some embodiments
  • FIG. 12 is another process diagram of a method for obtaining the corresponding relationship between gray scales and gray scale voltages according to some embodiments
  • 13 is a distribution diagram of grayscale voltage values under different preset parameters according to some embodiments.
  • FIG. 14 is a graph showing a distribution of luminance errors of different grayscales according to some embodiments.
  • FIG. 15 is a structural diagram of an apparatus for obtaining the corresponding relationship between gray scales and gray scale voltages according to some embodiments
  • FIG. 16 is another structural diagram of an apparatus for acquiring the corresponding relationship between gray scales and gray scale voltages according to some embodiments.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • the term “if” is optionally construed to mean “when” or “at” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrases “if it is determined that" or “if a [statement or event] is detected” are optionally interpreted to mean “in determining" or “in response to determining" or “on detection of [recited condition or event]” or “in response to detection of [recited condition or event]”.
  • some tie-point grayscales may be preset, and by adjusting the grayscale voltage of the tie-point grayscale, the brightness of the display tie-point grayscale is corrected, and the corrected grayscale voltage of the tie-point grayscale is adjusted.
  • to obtain the grayscale voltages of all grayscales for example, by performing linear interpolation (or linear voltage division) on the grayscale voltages of each binding point grayscale to obtain the grayscale voltages of all grayscales.
  • the error between the actual brightness value of the displayed grayscale and the theoretical brightness value is relatively large (for example, greater than 5%), so that the relationship between the displayed grayscale and the brightness is deviated from the gamma curve, reducing the display effect of the device.
  • the display device may be any device that displays text or images, whether in motion (eg, video) or stationary (eg, still images).
  • the display device may be one of a variety of electronic devices in which the embodiments may be implemented or associated with a variety of electronic devices, such as, but not limited to, mobile Phones, wireless devices, personal data assistants (PDAs), handheld or portable computers, GPS receivers/navigators, cameras, MP4 video players, video cameras, game consoles, watches, clocks, calculators, TV monitors, tablets Displays, computer monitors, automotive displays (eg, odometer displays, etc.), navigators, cockpit controls and/or displays, camera view displays (eg, displays for rear-view cameras in vehicles), electronic photographs, electronic billboards, or Signs, projectors, architectural structures, packaging and aesthetic structures (eg, a display for an image of a piece of jewelry), etc.
  • the embodiments of the present disclosure do not specifically limit the specific form of
  • the display device 100 includes a display panel 10 , a memory 20 and a driver 30 .
  • the driver 30 is coupled to the memory 20 , the signal transmission interface 40 and the display panel 10 .
  • the display panel may include a liquid crystal display panel (LCD, Liquid Crystal Display) or a self-luminous display panel, such as a display panel based on an OLED (Organic Light Emitting Diode, organic light emitting diode), a display panel based on an AMOLED (Active Matrix Organic Light Emitting). Diode, active matrix organic light emitting diode) display panel, or LED (light emitting diode, Light Emitting Diode)-based display panel, etc.
  • LCD liquid crystal display panel
  • OLED Organic Light Emitting Diode, organic light emitting diode
  • AMOLED Active Matrix Organic Light Emitting
  • Diode, active matrix organic light emitting diode display panel
  • LED light emitting diode, Light Emitting Diode
  • the display panel 10 has a display area (Active Area, AA) and a peripheral area S. Wherein, the peripheral area S is located at least on the outer side of the AA area.
  • the display panel 10 includes a plurality of sub-pixels P.
  • a plurality of sub-pixels P are arranged in the AA area.
  • a plurality of sub-pixels P may be arranged in an array.
  • the sub-pixels arranged in a row along the X direction (ie, the horizontal direction) in FIG. 2 are called a row of sub-pixels
  • the sub-pixels arranged in a column along the Y direction (ie, the vertical direction) in FIG. 2 are called a column of sub-pixels .
  • the plurality of sub-pixels includes sub-pixels of a first color, sub-pixels of a second color, and sub-pixels of a third color.
  • the first color, the second color and the third color are three primary colors.
  • the first color, the second color, and the third color are red, green, and blue, respectively; that is, the plurality of subpixels include red, green, and blue subpixels.
  • the signal transmission interface may be an interface for signal transmission between the display device and an external device; the signal transmission interface may be an interface for signal transmission between various devices inside the display device.
  • the signal may be a video signal or an image signal.
  • the signal transmission interface may include MIPI (Mobile Industry Processor Interface), LVDS (Low-Voltage Differential Signaling) interface, SDI (Serial Digital Interface), HDMI (High Definition Multimedia Interface, High Definition Multimedia Interface) or DP (Display Interface, Display Port) and so on.
  • MIPI Mobile Industry Processor Interface
  • LVDS Low-Voltage Differential Signaling
  • SDI Serial Digital Interface
  • HDMI High Definition Multimedia Interface
  • High Definition Multimedia Interface High Definition Multimedia Interface
  • DP Display Interface, Display Port
  • the memory is configured to store at least one set of correspondences.
  • Each set of corresponding relationships includes 2N sets of grayscale data and 2N register values corresponding to the 2N sets of grayscale data one-to-one.
  • Each register value is configured as a grayscale voltage value representing a corresponding set of grayscale data.
  • N is a positive integer greater than or equal to 6.
  • N is 8 or 10.
  • each set of correspondence includes 28 (ie 256) sets of grayscale data and 28 (ie 256) register values corresponding to the 28 sets of grayscale data one-to-one.
  • a set of corresponding relationships includes: 256 sets of grayscale data (F 0 , F 1 , F 2 , F 3 , F 4 . . . F 255 ), and 256 sets of grayscale data
  • the 2 N groups of grayscale data may correspond to all grayscales of the display panel.
  • N is 8, that is, in a set of correspondence
  • the memory may employ non-volatile memory.
  • the non-volatile memory may include: Flash ROM (Flash Read Only Memory, non-volatile flash memory).
  • Flash ROM Flash Read Only Memory
  • non-volatile flash memory Flash Read Only Memory
  • the memory can store more grayscale data and register values corresponding to the grayscale data.
  • the brightness of each grayscale of the display panel is calibrated by calibrating the display brightness value (Display Brightness Value, DBV) of the brightness of the tie-point grayscale displayed by the display panel.
  • DBV Display Brightness Value
  • the gray-scale data in one set of corresponding relationships can be 256 sets.
  • the driver is configured to acquire at least one set of correspondences in the memory; receive image data from the signal transmission interface, the image data includes multiple sets of grayscale data corresponding to multiple sub-pixels; and for any set of grayscale data in the image data
  • the gray-scale data is obtained in a set of corresponding relationships, and the register value corresponding to the gray-scale data of the group is obtained; the gray-scale voltage corresponding to the gray-scale voltage value is output to a sub-pixel of the display panel according to the register value.
  • the driver may be a driver IC (Driver IC).
  • the display panel 10 further includes a source driver (Source IC), the driver IC transmits a gray-scale voltage to the display panel, and the source driver can transmit data signals to a plurality of sub-pixels in the display panel according to the gray-scale voltage, The sub-pixels perform grayscale display according to the received data signal.
  • Source IC source driver
  • the driver IC transmits a gray-scale voltage to the display panel
  • the source driver can transmit data signals to a plurality of sub-pixels in the display panel according to the gray-scale voltage, The sub-pixels perform grayscale display according to the received data signal.
  • a register value corresponding to the grayscale can be found according to at least one set of correspondences, and the register value can be obtained according to the register value.
  • the represented grayscale voltage value corresponding to the one grayscale is used to output the grayscale voltage corresponding to the grayscale voltage value to the display panel, so that when the sub-pixel displays the one grayscale according to the grayscale voltage, the actual brightness displayed
  • the error between the value and the theoretical brightness value is relatively small, and it is more in line with the gamma curve, thereby improving the display effect and realizing the correction of grayscale display.
  • the above-mentioned at least one set of correspondences can determine each gray-scale voltage.
  • the grayscale voltage value corresponding to the grayscale that is, the grayscale voltage value corresponding to all grayscales of the display panel can be obtained, so that the grayscale and brightness displayed by the display panel are more in line with the gamma curve, and display deviation is avoided.
  • an embodiment of the present disclosure provides a display device.
  • At least one set of correspondences is stored in the memory, and each set of correspondences includes 2N sets of grayscale data and 2N registers corresponding to the 2N sets of grayscale data one-to-one. value.
  • Each register value can represent the grayscale voltage value of a corresponding set of grayscale data.
  • the driver acquires at least one set of correspondences in the memory; receives image data from the signal transmission interface, the image data includes multiple sets of gray-scale data corresponding to multiple sub-pixels; and for any set of gray-scale data in the image data, a The register value corresponding to the gray-scale data of the group is obtained from the group correspondence; the gray-scale voltage corresponding to the gray-scale voltage value is output to a sub-pixel of the display panel according to the register value.
  • a register value corresponding to the grayscale can be found according to at least one set of correspondences, and a register value represented by the register value can be obtained according to the register value.
  • the gray scale voltage value corresponding to the one gray scale is used to output the gray scale voltage corresponding to the gray scale voltage value to the display panel, so that when the sub-pixel displays the one gray scale according to the gray scale voltage, the actual brightness value displayed is the same as the theoretical value.
  • the error of the brightness value is relatively small, which is more in line with the gamma curve, thereby improving the display effect and realizing the correction of the grayscale display.
  • the at least one set of correspondences includes three sets of correspondences.
  • the three sets of corresponding relationships are respectively used for obtaining gray-scale voltage values of the first color sub-pixel, the second color sub-pixel and the third color sub-pixel in the display panel.
  • the three sets of correspondences are respectively: a first set of correspondences, a second set of correspondences, and a third set of correspondences.
  • the first set of correspondences is used to obtain the grayscale voltage values of the first color sub-pixels in the display panel. For example, referring to FIG.
  • the first set of correspondences includes: 256 sets of grayscales level data (RF 0 , RF 1 , RF 2 , RF 3 , RF 4 & RF 255 ), and 256 register values (RH 0 , RH 1 , RH 2 , RH 3 ) corresponding to 256 sets of grayscale data , RH 4 ... RH 255 ).
  • the second set of correspondences is used to obtain the grayscale voltage values of the second color sub-pixels in the display panel.
  • the second set of correspondences includes: 256 sets of grayscale data (GF 0 , GF 1 , GF 2 , GF 3 , GF 4 ......
  • the third set of correspondences is used to obtain the grayscale voltage values of the third color sub-pixels in the display panel.
  • the third set of correspondences includes: 256 sets of grayscale data (BF 0 , BF 1 , BF 2 , BF 3 , BF 4 ising BF 255 ), and 256 register values (BH 0 , BH 1 , BH 2 , BH 3 , BH 4 ...BH 255 ).
  • the driver is configured to, for any group of gray scales in the image data, determine the color of the sub-pixels corresponding to the group of gray scales; A set of correspondences is used to obtain the gray-scale voltage value of one of the first color subpixel, the second color subpixel and the third color subpixel with the same color as the subpixel; obtain in the determined set of correspondences The register value corresponding to the gray scale.
  • the three sets of correspondences are respectively the first set of correspondences, the second set of correspondences, and the third set of correspondences; the first set of correspondences is used for the grayscale voltage values of the first color subpixels of the same color as the subpixels The second set of correspondences is used to obtain the grayscale voltage values of the second color subpixels with the same color as the subpixels, and the third set of correspondences is used for the third color subpixels with the same color as the subpixels.
  • the acquisition of grayscale voltage values is used for the first set of correspondences.
  • the first set of correspondences is determined from the three sets of correspondences, and then the grayscale is obtained from the first set of correspondences according to any grayscale of the first color subpixels
  • the corresponding register value of the grayscale is used to send the grayscale voltage corresponding to the grayscale voltage value represented by the register value to the display panel.
  • the first color sub-pixel can display the corresponding grayscale according to the grayscale voltage, so that the displayed grayscale is actually The error between the luminance value and the theoretical luminance value is reduced.
  • a second set of correspondences is determined from the three sets of correspondences, and then according to any grayscale of the second color subpixel, the register value corresponding to the one grayscale is obtained from the second set of correspondences , with the grayscale voltage corresponding to the grayscale voltage value represented by the register value of the display panel, the second color sub-pixel can display the corresponding grayscale according to the grayscale voltage, so that the actual brightness value of the displayed grayscale is the same as the theoretical brightness. The error of the value is reduced.
  • a third set of correspondences is determined from the three sets of correspondences, and then according to any grayscale of the third color subpixel, the register value corresponding to the one grayscale is obtained from the third set of correspondences , with the grayscale voltage corresponding to the grayscale voltage value represented by the register value of the display panel, the third color sub-pixel can display the corresponding grayscale according to the grayscale voltage, so that the actual brightness value of the displayed grayscale is different from the theoretical brightness.
  • the error of the value is reduced. In this way, the error of the displayed brightness of the display panel can be reduced, so that the displayed gray scale and brightness are more in line with the gamma curve, thereby improving the display effect.
  • the driver 30 includes a random access memory 31 , a plurality of registers 32 , a grayscale voltage output circuit 33 and a controller 34 .
  • the random access memory may include: RAM (Random Access Memory, Random Access Memory), SRAM (Static Random Access Memory, Static Random-Access Memory).
  • the register is a gamma register, for example, the register includes a plurality of logic circuits, for example, the logic electrodes include gate circuits.
  • the controller may employ a device having processing functions, such as a processor.
  • the memory 20 is a non-volatile memory.
  • the random access memory 31 is coupled with a non-volatile memory (ie, memory).
  • the random access memory 31 is also coupled to the signal transmission interface 40 .
  • a plurality of registers 32 are coupled to the random access memory 31 .
  • the controller 34 is coupled to the random access memory 31 and the plurality of registers 32 .
  • the grayscale voltage output circuit 33 is coupled to the plurality of registers 32 and the display panel 10 .
  • the random access memory is configured to obtain and store at least one set of correspondences in the non-volatile memory.
  • the random access memory is also configured to obtain image data from the signal transmission interface, eg, the signal transmission interface transmits the image data to the random access memory, which can store the image data.
  • at least one set of correspondence and image data are respectively stored in different storage spaces in the random access memory. For example, in the process of the drive being woken up from the sleep state, the non-volatile memory can write the corresponding relationship into the random access memory through the SPI interface.
  • the controller is configured to, according to each group of grayscale data in the image data, control a register to acquire and register a register value corresponding to a set of grayscale data from a set of correspondences in the random access memory.
  • each register may acquire and register a register value corresponding to a set of gray-scale data in the random access memory according to a set of gray-scale data in the image data.
  • the grayscale voltage output circuit is configured to output a grayscale voltage corresponding to the grayscale voltage value represented by the register value to the display panel according to the register value stored in the register.
  • the at least one set of correspondences is stored in the random access memory, and the at least one set of correspondences may include three sets of correspondences.
  • the image data includes multiple sets of grayscale data, for example, the multiple sets of grayscale data may be stored in a random access memory.
  • the controller finds the register value corresponding to each group of gray-scale data in the image data according to the multiple sets of gray-scale data in the image data, in at least one set of corresponding relationships, for example, the register value corresponding to the gray-scale displayed by each sub-pixel, Control a register to obtain and register a register value corresponding to a sub-pixel display gray scale.
  • the image data includes 256 sets of gray-scale data
  • there are correspondingly 256 registers and for a set of gray-scale data, there is a corresponding register to acquire and register the register value corresponding to the set of gray-scale data in a set of correspondence .
  • the grayscale voltage output circuit outputs a grayscale voltage corresponding to the grayscale voltage value represented by the register value to the display panel according to a register value stored in the register, so that the grayscale displayed by the sub-pixel receiving the grayscale voltage is this grayscale voltage.
  • the gray-scale voltage output by the driver to the display panel can drive the sub-pixels to display the corresponding gray-scale, and the displayed gray-scale brightness value is closer to the theoretical brightness value, so that the displayed gray-scale and brightness are more in line with the gamma curve, avoiding Display brightness error, thereby improving the display effect.
  • the grayscale voltage output circuit 33 includes: a first voltage generating circuit 331 and a plurality of first gating circuits 332 .
  • the first voltage generating circuit 331 is coupled to the first voltage terminal VMA and the second voltage terminal VMI .
  • Each of the first gate circuits 332 is coupled with the first voltage generation circuit 331 , one register 32 and the display panel 10 .
  • the first voltage generating circuit is configured to obtain a plurality of third voltages according to the first voltage at the first voltage terminal and the second voltage at the second voltage terminal.
  • the first voltage transmitted by the first voltage terminal is a DC voltage, such as a DC high voltage
  • the second voltage transmitted by the second voltage terminal is a DC voltage, such as a DC low voltage.
  • the first voltage is greater than the second voltage, that is, the amplitude of the first voltage (ie, the voltage value) is greater than the amplitude of the second voltage.
  • the first voltage may be the grayscale voltage corresponding to the largest grayscale among the multiple grayscales
  • the second voltage may be the grayscale voltage corresponding to the smallest grayscale among the multiple grayscales.
  • the first voltage generation circuit may output the corresponding grayscale data between the maximum grayscale data and the minimum grayscale data according to the grayscale voltage corresponding to the maximum grayscale data and the grayscale voltage corresponding to the minimum grayscale data.
  • Grayscale voltage For example, in the case where N is 8, the multiple sets of grayscale data are 00000000 to 11111111 sets of grayscale data, that is, 0 to 255 grayscales.
  • the corresponding grayscale voltage and the grayscale voltage corresponding to 0 grayscale ie, the minimum grayscale data 00000000
  • generate a plurality of third voltages and the plurality of third voltages respectively correspond to 1 grayscale to 254 grayscales (ie, 00000001 to 11111110 grayscale data) corresponding to multiple grayscale voltages.
  • the first gating circuit is configured to output the first voltage, the second voltage and one of a plurality of third voltages from the first voltage generating circuit to the display panel, the one voltage in response to the register value stored in the register is the grayscale voltage corresponding to the grayscale voltage value represented by the register value.
  • the first gating circuit may employ a multiplexer (MUX).
  • the first gating circuit may output the grayscale voltage corresponding to the grayscale voltage value represented by each register value to the display panel according to the register value stored in the register. For example, in the case where multiple sets of grayscale data correspond to grayscales from 0 to 255, the first gating circuit can output grayscale voltages corresponding to grayscales from 0 to 255 to the display panel, so that the sub-pixels in the display panel can respond to According to the gray-scale voltage, the corresponding gray-scale is displayed, so as to reduce the error between the actual brightness value of the displayed gray-scale and the theoretical brightness value.
  • the gray-scale voltage output circuit 33 further includes: a second voltage generating circuit 333 , a second gating circuit 334 and a third gating circuit 335 .
  • the second voltage generating circuit 333 is coupled to the first reference voltage terminal V REG and the second reference voltage terminal V REF .
  • the second gating circuit 334 is coupled to the first voltage terminal VMA and the second voltage generating circuit 333 .
  • the third gating circuit 335 is coupled to the second voltage terminal V MI and the second voltage generating circuit 333 .
  • both the second gating circuit and the third gating circuit may employ a multiplexer (MUX).
  • MUX multiplexer
  • the first reference voltage transmitted by the first reference voltage terminal is a DC voltage, such as a DC high voltage.
  • the second reference voltage transmitted by the second reference voltage terminal is a DC voltage, such as a DC low voltage.
  • the first reference voltage is greater than the second reference voltage, that is, the magnitude of the first reference voltage is greater than the magnitude of the second reference voltage.
  • the second voltage generating circuit is configured to obtain a plurality of divided voltages according to the first reference voltage of the first reference voltage terminal and the second reference voltage of the second reference voltage terminal.
  • the second gating circuit is configured to output one of a plurality of divided voltages, the divided voltage being the first voltage, in response to a register value representing the maximum grayscale voltage value among the 2 N register values.
  • the second gating circuit is further coupled to a register, and the register coupled to the second gating circuit can acquire and store the register value representing the maximum gray-scale voltage value among the 2 N register values, so as to send the register value to the second gating circuit.
  • the second gate circuit provides a register value representing the maximum gray-scale voltage value among the 2 N register values.
  • a register coupled to the second gating circuit and one register of the plurality of registers coupled to the first gating circuit for acquiring and storing the register value representing the maximum gray-scale voltage value among the 2 N register values may be for the same register.
  • the multiple sets of grayscale data are 00000000 to 11111111 sets of grayscale data, that is, 0 to 255 grayscales
  • the maximum grayscale data (that is, 11111111 grayscale data, that is, 255 grayscales) corresponds to
  • the register value can represent the maximum grayscale voltage value
  • the second gating circuit responds to the register value corresponding to the 255 grayscale, and outputs the register value corresponding to the 255 grayscale from the multiple voltage divisions from the second voltage generation circuit.
  • the grayscale voltage corresponding to the corresponding grayscale voltage value that is, the amplitude of the grayscale voltage output by the second gating circuit is the grayscale voltage value corresponding to the register value corresponding to the 255 grayscale.
  • the third gating circuit is configured to output one divided voltage among the plurality of divided voltages, the divided voltage being the second voltage, in response to a register value representing the minimum gray-scale voltage value among the 2 N register values.
  • the third gating circuit is further coupled to a register, and the register coupled to the third gating circuit can acquire and store the register value representing the minimum gray-scale voltage value among the 2 N register values, so as to send the register value to the third gating circuit.
  • the three-strobe circuit provides a register value representing the minimum gray-scale voltage value among the 2 N register values.
  • a register coupled to the third gating circuit and one register of the plurality of registers coupled to the first gating circuit for acquiring and storing the register value representing the minimum gray-scale voltage value among the 2 N register values may be for the same register.
  • the multiple sets of grayscale data are 00000000 to 11111111 sets of grayscale data, that is, 0 to 255 grayscales
  • the minimum grayscale data that is, 00000000 grayscale data, that is, 0 grayscale
  • the register value can represent the minimum grayscale voltage value
  • the third gating circuit responds to the register value corresponding to the 0 grayscale, and outputs the register value corresponding to the 0 grayscale from the multiple voltage divisions from the second voltage generating circuit
  • the grayscale voltage corresponding to the corresponding grayscale voltage value that is, the amplitude of the grayscale voltage output by the third gating circuit is the grayscale voltage value corresponding to the register value corresponding to the 0 grayscale.
  • the gray-scale voltage output by the second gating circuit can be transmitted to the first voltage generating circuit as the first voltage
  • the gray-scale voltage output by the third gating circuit can be transmitted as the second voltage to the first voltage generating circuit, are respectively used for the first voltage generating circuit to obtain a plurality of third voltages.
  • the second gating circuit and the third gating circuit may output the first voltage and the second voltage to the display panel respectively (refer to FIG. 7B), at this time, a first gating circuit and a second gating circuit for outputting the first voltage to the display panel among the plurality of first gating circuits can be regarded as the same gating circuit; A first gating circuit and a third gating circuit for outputting the second voltage to the display panel in a gating circuit can be regarded as the same gating circuit. For example, referring to FIG.
  • the second gating circuit can output a grayscale voltage corresponding to a grayscale of 255
  • the third gating circuit can output a grayscale voltage corresponding to a grayscale of 0.
  • the pass-through circuit can output grayscale voltages corresponding to 1 to 254 grayscales.
  • the gray-scale voltage output circuit 33 further includes: a plurality of operational amplifiers OP.
  • a first gating circuit is coupled to an operational amplifier
  • a second gating circuit is coupled to an operational amplifier
  • a third gating circuit is coupled to an operational amplifier.
  • Each operational amplifier is configured to amplify the grayscale voltage from each gating circuit.
  • the first voltage generating circuit 331 includes: a first resistor string R_S1 .
  • Two ends of the first resistor string R_S1 are respectively coupled to the second gating circuit 334 and the third gating circuit 335 .
  • the second gating circuit is coupled to the first voltage terminal
  • the third gating circuit is coupled to the second voltage terminal. Therefore, both ends of the first resistor string are respectively coupled to the first voltage terminal and the second voltage terminal . In this way, both ends of the first resistor string receive the first voltage and the second voltage respectively, so that the first resistor string can be divided according to the first voltage and the second voltage.
  • the second voltage generating circuit 333 includes: a second resistor string R_S2 .
  • Two ends of the second resistor string R_S2 are respectively coupled to the first reference voltage terminal V REG and the second reference voltage terminal V REF .
  • both ends of the second resistor string receive the first reference voltage and the second reference voltage, respectively, so that the second resistor string can divide the voltage according to the first reference voltage and the second reference voltage.
  • the grayscale is an analog value of a set of grayscale data.
  • V X represents the grayscale voltage value
  • G X represents the grayscale
  • represents the preset parameter
  • a and B represent the proportional coefficients, respectively.
  • the grayscale data can be represented by binary numbers, and the analog value of the grayscale data can be understood as the decimal number of the grayscale data; for example, when the number of bits of the grayscale data is 8 bits, there are 256 groups of grayscales from 00000000 to 11111111.
  • the analog values of the data are 0 to 255, that is, 0 to 255 grayscales.
  • 0 grayscale is the analog value of 00000000 grayscale data
  • 255 grayscale is the analog value of 11111111 grayscale data.
  • the preset parameter ⁇ may be 0.1, 0.5, 1.1, 1.5, or 2.2.
  • the specific value of the preset parameter can be selected according to the actual situation, which is not limited here.
  • the proportional coefficients A and B are not equal, and both A and B are related to the preset parameter ⁇ .
  • the multiple grayscales include: at least two first grayscales, and multiple second grayscales exist between two adjacent first grayscales among the at least two first grayscales.
  • the grayscale voltage value corresponding to the second grayscale and the adjacent two first grayscales and their corresponding grayscale voltage values satisfy the formula: Among them, V3 represents the grayscale voltage value corresponding to the second grayscale, V2 and V1 respectively represent the grayscale voltage value corresponding to two adjacent first grayscales, G3 represents the second grayscale, G2 and G 1 represents two adjacent first grayscales respectively, and ⁇ represents a preset parameter.
  • the scaling factor A can be
  • the scale factor B can be
  • the maximum gray level is the G MAX gray level
  • the minimum gray level is the G MIN gray level.
  • the gray scale voltage value corresponding to the gray scale is V MAX
  • the gray scale voltage value corresponding to the minimum gray scale is V MIN .
  • the gray scale voltage corresponding to each second gray scale G i located between the maximum gray scale and the minimum gray scale The value V i can be expressed as i is a positive integer, and i can continuously take values in the interval from the minimum gray level to the maximum gray level.
  • the maximum grayscale is 255 grayscale
  • the minimum grayscale is 0 grayscale
  • the grayscale voltage value corresponding to the 255 grayscale is the voltage value V M1 of the first voltage of the first voltage terminal V MA
  • the grayscale voltage value corresponding to grayscale 0 is the voltage value VM2 of the second voltage at the second voltage terminal VMI
  • the proportional coefficient A can be
  • the scale factor B can be
  • the scale factor A is
  • the scale factor B is V M1 .
  • Embodiments of the present disclosure provide a method for obtaining a corresponding relationship between grayscales and grayscale voltages. Exemplarily, through the obtaining method, at least one set of correspondences stored in the memory of the display device described in any of the foregoing embodiments can be obtained.
  • the acquisition method includes the following steps:
  • the plurality of gray levels are 2 N gray levels, and N is a positive integer greater than or equal to 6.
  • N is 8 or 10.
  • the plurality of grayscales are 256 grayscales, for example, the 256 grayscales are respectively 0 grayscale to 255 grayscale.
  • the at least two first gray levels may include a maximum gray level and a minimum gray level.
  • the two first grayscales are two adjacent first grayscales, for example, the two first grayscales are respectively the largest Gray scale and minimum gray scale, then the maximum gray scale and the minimum gray scale are two adjacent first gray scales;
  • the two first grayscales are respectively 0 grayscale and 255 grayscale, then 0 grayscale and 255 grayscale are two adjacent first grayscales.
  • the two or more first grayscales include a maximum grayscale and a minimum grayscale, and a grayscale located between the maximum grayscale and the minimum grayscale at least one grayscale.
  • the number and position of the at least one grayscale can be designed according to the actual situation, which is not limited here.
  • the total number of the at least two first grayscales can be 9 to 40, for example, 11 or 15. Or 20.
  • There are multiple second gray levels between two adjacent first gray levels for example, the number of the multiple second gray levels is two or more.
  • the number of the plurality of second gray levels between two adjacent first gray levels may not be equal.
  • grayscale refers to the analog value of grayscale data
  • grayscale data is represented by binary numbers
  • grayscale is represented by decimal numbers; for example, grayscale data is 00000000, and its analog value is 0, that is, grayscale is 0; grayscale is 0; The grayscale data is 00000001, and its analog value is 1, that is, the grayscale is 1; the grayscale data is 11111111, and its analog value is 255, that is, the grayscale is 255.
  • the gray-scale voltage value corresponding to the gray-scale refers to the voltage amplitude of the gray-scale voltage corresponding to the gray-scale (for example, the gray-scale voltage can be regarded as a transmitted voltage signal), and the gray-scale voltage value is a numerical value with a physical unit, For example, the grayscale voltage value corresponding to the 0 grayscale is 0V.
  • obtaining grayscale voltage values corresponding to at least two first grayscales among the multiple grayscales includes: for any first grayscale, measuring when a subpixel of one color in the display panel displays the first grayscale. When the actual brightness of the display panel reaches the target brightness of the first grayscale, the measured value of the driving voltage corresponding to the sub-pixel of the color in the display panel is taken as the first grayscale. The grayscale voltage value corresponding to the grayscale.
  • a subpixel of one color eg, one of the first color subpixel, the second color subpixel, and the third color subpixel
  • the value of the driving voltage corresponding to the sub-pixel is obtained, and the actual brightness of the display panel is obtained by measurement.
  • the value (ie, the amplitude) of the driving voltage corresponding to the sub-pixel the actual brightness of the display panel is adjusted accordingly.
  • the measured value of the driving voltage corresponding to the sub-pixel is used as the gray-scale voltage value corresponding to the first gray-scale. In this way, the relationship between the first gray level and the gray level voltage value corresponding to the first gray level can be obtained, that is, the relationship between the first gray level and the gray level voltage corresponding to the first gray level is obtained.
  • GAM is the gamma value
  • G MAX is the maximum gray level
  • G j is the jth gray level
  • L MAX is the brightness value corresponding to the maximum gray level
  • G MAX is the brightness value corresponding to the jth gray level
  • j is the Integer.
  • the gray scale G j is 0-255, and 0 ⁇ j ⁇ 255, then G MAX is 255.
  • the brightness value corresponding to the maximum gray scale may be the brightness value measured when the display device displays the maximum gray scale when the luminous brightness reaches the maximum.
  • the plurality of sub-pixels include first-color sub-pixels, second-color sub-pixels, and third-color sub-pixels
  • a set of first grayscale and first grayscale can be measured.
  • the relationship between the grayscale voltages corresponding to the first grayscales that is, the relationship between the three groups of first grayscales and the grayscale voltages corresponding to the first grayscales can be obtained.
  • the method includes: performing nonlinear interpolation according to two adjacent first grayscales and their corresponding grayscale voltage values to obtain grayscale voltage values corresponding to a plurality of second grayscales located between the two adjacent first grayscales .
  • the obtained results are located in two adjacent first gray scales and their corresponding gray scale voltage values.
  • the grayscale voltage values corresponding to a plurality of second grayscales between a grayscale are sequentially connected to form a linear connection line, for example, the connection line is a straight line; refer to Figure 11 , if nonlinear interpolation is performed on two adjacent first grayscales and their corresponding grayscale voltage values, the grayscale voltage values corresponding to multiple second grayscales located between two adjacent first grayscales are obtained.
  • the connecting line formed by sequentially connecting the gray-scale voltage values corresponding to the plurality of second gray-scales is nonlinear, for example, the connecting line is an arc.
  • the relationship between grayscale and brightness is nonlinear, for example, the relationship between grayscale and brightness is exponential, for example, the relationship between grayscale and brightness conforms to a gamma curve, and the index is the gamma value
  • the grayscale voltage that is, the grayscale voltage
  • the relationship between the gray scale voltage value) and the brightness is linear, so the relationship between the gray scale and the gray scale voltage value is a nonlinear relationship, such as an exponential relationship.
  • the relationship between gray-scale voltage and brightness is not completely linear. Therefore, compared with the gray-scale voltage value of the second gray-scale obtained by linear interpolation shown in FIG.
  • the grayscale voltage value of two grayscales the grayscale voltage corresponding to the grayscale voltage value is transmitted to the display panel, and the grayscale and brightness displayed by the display panel will be more in line with the gamma curve, thereby avoiding display brightness deviation.
  • the grayscale voltage value corresponding to the second grayscale and the two adjacent first grayscales and their corresponding grayscale voltage values satisfy the formula:
  • V3 represents the grayscale voltage value corresponding to the second grayscale
  • V2 and V1 respectively represent the grayscale voltage value corresponding to two adjacent first grayscales
  • G3 represents the second grayscale
  • G2 and G 1 represents two adjacent first grayscales respectively
  • represents a preset parameter.
  • the preset parameter ⁇ may be 0.1, 0.5, 1.1, 1.5, or 2.2.
  • the connecting line formed by sequentially connecting the corresponding gray-scale voltage values of the gray-scale is nonlinear, such as an arc, that is, the gray-scale voltage value is obtained by nonlinear interpolation, and for the same gray-scale, the nonlinear interpolation is used.
  • the grayscale voltage value is greater than the grayscale voltage value obtained by linear interpolation.
  • the connecting line formed by sequentially connecting the grayscale voltage values corresponding to the grayscale is nonlinear, such as an arc.
  • the gray-scale voltage value is obtained by interpolation, and for the same gray-scale, the gray-scale voltage value obtained by nonlinear interpolation is smaller than the gray-scale voltage value obtained by linear interpolation.
  • the maximum gray level is the G MAX gray level
  • the minimum gray level is the G MIN gray level.
  • the gray scale voltage value corresponding to the gray scale is V MAX
  • the gray scale voltage value corresponding to the minimum gray scale is V MIN .
  • the gray scale voltage corresponding to each second gray scale G i located between the maximum gray scale and the minimum gray scale The value V i can be expressed as i is a positive integer, and i can continuously take values in the interval from the minimum gray level to the maximum gray level.
  • the maximum grayscale is 255 grayscale
  • the minimum grayscale is 0 grayscale
  • the grayscale voltage value corresponding to the 255 grayscale is the voltage value V M1 of the first voltage of the first voltage terminal V MA
  • the grayscale voltage value corresponding to grayscale 0 is the voltage value VM2 of the second voltage at the second voltage terminal VMI
  • the grayscale voltage value corresponding to any grayscale from 1 to 254 can be expressed as which is, i is a positive integer, and i continuously takes values in the interval (0,255).
  • a set of correspondence includes a plurality of grayscales and a plurality of register values one-to-one corresponding to the plurality of grayscales; each register value is configured to represent a grayscale voltage value of the corresponding grayscale.
  • gray scales can be represented by binary numbers, that is, grayscales are grayscale data, or they can be expressed by decimal numbers, that is,
  • the grayscale is the analog value of the grayscale data, and the grayscale data and the data expressed by the grayscale have the same meaning.
  • the grayscale voltage value of the grayscale refers to the amplitude of the grayscale voltage of the grayscale.
  • the gray-scale voltage is a DC voltage
  • the gray-scale voltage value represents the voltage value of the DC voltage.
  • a set of correspondences may be used to obtain grayscale voltage values of one color subpixel (eg, one of the first color subpixel, the second color subpixel, and the third color subpixel) in the display panel.
  • the multiple sets of correspondences include three sets of correspondences, and the three sets of correspondences are respectively used for the first color sub-pixel, the second color sub-pixel and the third color sub-pixel.
  • the display device may, according to the obtained corresponding relationship between gray scales and gray scale voltages, according to multiple sets of gray scale data (ie, multiple gray scales) corresponding to a plurality of sub-pixels in the display panel in the image data, for the gray scales in the image data
  • any set of grayscale data that is, any grayscale
  • obtain the register value corresponding to the grayscale of the grayscale data in a set of correspondences and determine the grayscale voltage value corresponding to the grayscale of the set of grayscale data, and outputting a gray-scale voltage corresponding to the gray-scale voltage value to a sub-pixel of the display panel according to the gray-scale voltage value.
  • the relationship between the gray scale and the brightness displayed by each sub-pixel in the display panel can be closer to the gamma curve, and the error between the displayed actual brightness and the target brightness can be reduced, thereby improving the display effect.
  • FIG. 14 shows the error distribution curve between the luminance value (ie the actual luminance value) and the theoretical luminance value of the gray-scale displayed when the gray-scale voltage corresponding to the gray-scale is obtained by linear interpolation and nonlinear interpolation.
  • the grayscale voltage value of the second grayscale is obtained by linear interpolation as shown in FIG.
  • the maximum error value between the displayed actual brightness value and the theoretical brightness value corresponding to the grayscale can exceed 5%; refer to the figure
  • the grayscale voltage value of the second grayscale is obtained by nonlinear interpolation as shown in 11, and the error value between the displayed brightness value corresponding to the grayscale (for example, the second grayscale) and the theoretical value is approximately in the range of -2% to 2% Inside. Therefore, the embodiments of the present disclosure use nonlinear interpolation to obtain the grayscale voltage value corresponding to the grayscale, which can reduce the error between the actual brightness of the grayscale displayed and the target brightness, thereby improving the display effect.
  • the embodiments of the present disclosure provide a method for obtaining the corresponding relationship between gray scales and gray scale voltages, to obtain gray scale voltage values corresponding to at least two first gray scales in a plurality of gray scales.
  • the gray scale and its corresponding gray scale voltage value are obtained, and the gray scale voltage values corresponding to a plurality of second gray scales between two adjacent first gray scales are obtained.
  • a set of corresponding relationships is obtained; a set of corresponding relationships includes multiple gray levels and multiple register values corresponding to the multiple gray levels; each register value is configured to represent the gray level voltage of the corresponding gray level value.
  • a register value corresponding to the grayscale can be found according to a set of correspondences, and the register value represented by the register value can be obtained according to the register value.
  • a grayscale voltage value corresponding to a grayscale so as to output the grayscale voltage corresponding to the grayscale voltage value to the display panel, so that when the sub-pixel displays the one grayscale according to the grayscale voltage, the displayed actual brightness value and theoretical brightness The error of the value is relatively small, and it is more in line with the gamma curve, thereby improving the display effect and realizing the correction of grayscale display.
  • Embodiments of the present disclosure provide a device for acquiring a corresponding relationship between grayscales and grayscale voltages.
  • the obtaining apparatus 200A includes: a first processing unit 210 , a second processing unit 220 and a third processing unit 230 .
  • the first processing unit is configured to obtain grayscale voltage values corresponding to at least two first grayscales among the plurality of grayscales. Wherein, there are multiple second gray levels between two adjacent first gray levels in the at least two first gray levels.
  • the second processing unit is configured to obtain a one-to-one corresponding grayscale of a plurality of second grayscales located between the two adjacent first grayscales according to the two adjacent first grayscales and their corresponding grayscale voltage values Voltage value.
  • the connecting line formed by sequentially connecting the gray scale voltage values corresponding to the plurality of second gray scales is nonlinear.
  • the third processing unit is configured to obtain a set of correspondences according to the plurality of grayscales and the corresponding plurality of grayscale voltage values.
  • a set of correspondence includes a plurality of grayscales and a plurality of register values one-to-one corresponding to the plurality of grayscales; each register value is configured to represent a grayscale voltage value of the corresponding grayscale.
  • the embodiment of the obtaining apparatus described in FIG. 15 is only illustrative.
  • the division of the above-mentioned units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components may be combined or may be Integration into another system, or some features can be ignored, or not implemented.
  • Each functional unit in each embodiment of the present disclosure may be integrated into one processing module, or each unit may exist physically alone, or two or more units may be integrated into one module.
  • the above-mentioned units in FIG. 15 may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the above-mentioned first processing unit, second processing unit and third processing unit may be implemented by software function modules generated by at least one processor after reading the program code stored in the memory.
  • the above-mentioned units in FIG. 15 may also be implemented by different hardware in a computer (such as a display device), for example, a part of the first processing unit, the second processing unit and the third processing unit are processed by a part of at least one processor resources (e.g. one core or two cores in a multi-core processor) while another part of the first processing unit, second processing unit and third processing unit is processed by the remaining part of at least one processor (e.g. other cores in a multi-core processor).
  • it is implemented in the form of hardware.
  • the above obtaining device can be a programmable device, such as a hardware programmable device, such as an FPGA (Field Programmable Gate Array, Field Programmable Gate Array).
  • the first processing unit, the second processing unit and the third processing unit in the above-mentioned obtaining device may all include a configurable logic block (Configurable Logic Block, CLB), and the different units are connected through an internal connection line (Interconnect line). ) coupled.
  • CLB configurable logic block
  • Interconnect line Internal connection line
  • the above functional units can also be implemented by a combination of software and hardware.
  • the first processing unit is implemented by a hardware circuit, while the second processing unit and the third processing unit are generated by the CPU after reading the program code stored in the memory. software function modules.
  • each unit in FIG. 15 for example, including the first processing unit, the second processing unit, and the third processing unit, please refer to the descriptions in the foregoing method embodiments, which will not be repeated here.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer, or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disks, magnetic disks, magnetic tapes), optical media (eg, DVD (Digital Versatile Disk)), or semiconductor media (eg, solid state drives (SSD)), etc. .
  • the obtaining device 200B includes a storage device 201 and a processing device 202 .
  • the processing device 202 is coupled to the storage device 201 .
  • Storage device 201 stores one or more computer programs, eg, one or more computer programs executable on processing device 202 .
  • processing device 202 executes the computer program, the acquisition method described in any of the above embodiments is implemented.
  • the above-mentioned processing device 202 may be a processor, or may be a collective term for multiple processing elements.
  • the processing device 202 may be a general-purpose central processing unit (CPU), microprocessor, application-specific integrated circuit (ASIC), or one or more programs for controlling the present disclosure Implementing integrated circuits, such as one or more microprocessors.
  • the above-mentioned storage device 201 may be a memory, or may be a collective name of a plurality of storage elements, and is used to store executable program codes and the like. And the storage device 201 may include random access memory (Random Access Memory, RAM), and may also include non-volatile memory (non-volatile memory), such as magnetic disk memory, flash memory (Flash), and the like.
  • the storage device 201 is used to store application code for executing the solutions of the present disclosure, and the execution is controlled by the processing device 202 .
  • the processing device 202 is configured to execute the application program code stored in the storage device 201, so as to control the processing device 202 to implement the obtaining method provided by any of the above embodiments of the present disclosure.
  • the electronic device includes: the display device according to any one of the above embodiments and the acquisition device according to any one of the above embodiments.
  • the acquisition device acquires the corresponding relationship between the grayscale and the grayscale voltage
  • the corresponding relationship may be transmitted to the display device, and the memory in the display device stores the corresponding relationship.
  • Some embodiments of the present disclosure provide a computer-readable storage medium (eg, a non-transitory computer-readable storage medium) having computer program instructions stored thereon, the computer program instructions being stored in a computer (eg, a computer) When running on the processor), the computer executes the acquisition method described in any of the foregoing embodiments, for example, one or more steps in the acquisition method.
  • a computer eg, a computer
  • the above-mentioned computer-readable storage media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks or magnetic tapes, etc.), optical disks (for example, CD (Compact Disk, compact disk), DVD (Digital Versatile Disk, Digital Universal Disk), etc.), smart cards and flash memory devices (eg, EPROM (Erasable Programmable Read-Only Memory, Erasable Programmable Read-Only Memory), card, stick or key drive, etc.).
  • the various computer-readable storage media described in this disclosure may represent one or more devices and/or other machine-readable storage media for storing information.
  • the term "machine-readable storage medium" may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • Some embodiments of the present disclosure also provide a computer program product.
  • the computer program product includes computer program instructions that, when executed on a computer, cause the computer to perform the acquisition method described in the above embodiments, eg, one or more steps in the acquisition method.
  • Some embodiments of the present disclosure also provide a computer program.
  • the computer program When the computer program is executed on a computer, the computer program causes the computer to perform the acquisition method described in the above-mentioned embodiments, eg, one or more steps in the acquisition method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示装置,包括:显示面板、存储器和驱动器。存储器存储至少一组对应关系,每组对应关系包括2N组灰阶数据以及与2N组灰阶数据一一对应的2N个寄存器值;每个寄存器值表征对应的一组灰阶数据的灰阶电压值;N为大于或等于6的正整数。驱动器获取存储器中的至少一组对应关系;接收来自信号传输接口的图像数据,图像数据包括与多个子像素对应的多组灰阶数据;并针对图像数据中的任一组灰阶数据,在一组对应关系中获取该组灰阶数据对应的寄存器值;根据寄存器值向显示面板的一子像素输出灰阶电压值对应的灰阶电压。

Description

灰阶和灰阶电压对应关系的获取方法及装置、显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种灰阶和灰阶电压对应关系的获取方法及装置、显示装置。
背景技术
灰阶曲线是一种描述显示产品灰阶下与亮度变化关系的特性曲线,为使得显示的亮度与人眼视觉的一致性,在显示产品制造中引入了伽马校正,使得显示产品的显示效果达到最佳效果。
发明内容
一方面,提供一种显示装置。所述显示装置包括显示面板、存储器和驱动器。所述显示面板包括多个子像素。所述驱动器与所述存储器、信号传输接口和所述显示面板耦接。
所述存储器被配置为存储至少一组对应关系,每组对应关系包括2 N组灰阶数据以及与所述2 N组灰阶数据一一对应的2 N个寄存器值;每个寄存器值被配置为表征对应的一组灰阶数据的灰阶电压值;N为大于或等于6的正整数。
所述驱动器被配置为获取所述存储器中的所述至少一组对应关系;接收来自所述信号传输接口的图像数据,所述图像数据包括与所述多个子像素对应的多组灰阶数据;并针对所述图像数据中的任一组灰阶数据,在一组对应关系中获取该组灰阶数据对应的寄存器值;根据所述寄存器值向所述显示面板的一子像素输出所述灰阶电压值对应的灰阶电压。
在一些实施例中,所述多个子像素包括多个第一颜色子像素、多个第二颜色子像素和多个第三颜色子像素;第一颜色、第二颜色和第三颜色为三基色。所述至少一组对应关系包括三组对应关系,所述三组对应关系分别用于所述显示面板中第一颜色子像素、第二颜色子像素和第三颜色子像素的灰阶电压值的获取。
所述驱动器被配置为针对所述图像数据中的任一组灰阶,确定该组灰阶对应的子像素的颜色;根据所述子像素的颜色,在所述三组对应关系中确定一组对应关系,确定的一组对应关系用于与所述子像素的颜色相同的第一颜色子像素、第二颜色子像素和第三颜色子像素中一者的灰阶电压值的获取;在所述确定的一组对应关系中获取所述灰阶对应的寄存器值。
在一些实施例中,所述存储器为非易失性存储器。
在一些实施例中,所述驱动器包括:随机存储器、多个寄存器、控制器 和灰阶电压输出电路。所述随机存储器与所述非易失性存储器耦接。所述随机存储器还与所述信号传输接口耦接。所述多个寄存器与所述随机存储器耦接。所述控制器与所述随机存储器和所述多个寄存器耦接。所述灰阶电压输出电路与所述多个寄存器和所述显示面板耦接。
所述随机存储器被配置为获取并存储所述非易失性存储器中的所述至少一组对应关系。所述随机存储器还被配置为获取来自所述信号输出接口的图像数据。所述控制器被配置为根据所述图像数据中的每组灰阶数据,控制一个寄存器从所述随机存储器中的一组对应关系中获取并寄存与一组灰阶数据对应的寄存器值。所述灰阶电压输出电路被配置为,根据来自所述寄存器中存储的所述寄存器值,向所述显示面板输出所述寄存器值所表征的灰阶电压值对应的灰阶电压。
在一些实施例中,所述灰阶电压输出电路包括:第一电压生成电路和多个第一选通电路。所述第一电压生成电路与第一电压端和第二电压端耦接。每个第一选通电路与所述第一电压生成电路、一个寄存器和所述显示面板耦接。
所述第一电压生成电路被配置为根据所述第一电压端的第一电压和所述第二电压端的第二电压,得到多个第三电压。其中,所述第一电压大于所述第二电压。所述第一选通电路被配置为,响应于来自所述寄存器中存储的寄存器值,向所述显示面板输出来自所述第一电压生成子电路的所述第一电压、所述第二电压以及所述多个第三压电中的一个电压,该一个电压为与所述寄存器值所表征的所述灰阶电压值对应的所述灰阶电压。
在一些实施例中,所述灰阶电压输出电路还包括:第二电压生成电路、第二选通电路和第三选通电路。所述第二电压生成电路,与第一参考电压端和第二参考电压端耦接。所述第二选通电路与所述第一电压端和所述第二电压生成电路耦接。所述第三选通电路与所述第二电压端和所述第二电压生成电路耦接。
所述第二电压生成电路被配置为根据所述第一参考电压端的第一参考电压和所述第二参考电压端的第二参考电压,得到多个分压。所述第二选通电路被配置为响应于所述2 N个寄存器值中表征最大灰阶电压值的寄存器值,输出所述多个分压中的一个分压,该分压为所述第一电压。所述第三选通电路被配置为响应于所述2 N个寄存器值中表征最小灰阶电压值的寄存器值,输出所述多个分压中的一个分压,该分压为所述第二电压。
在一些实施例中,所述第一电压生成电路包括第一电阻串;所述第一电 阻串的两端分别与所述第二选通电路和所述第三选通电路耦接。所述第二电压生成电路包括第二电阻串;所述第二电阻串的两端分别与所述第一参考电压端和所述第二参考电压端耦接。
在一些实施例中,灰阶与对应的灰阶电压值满足公式:V X=A×G X β+B;其中,所述灰阶为一组灰阶数据的模拟值;V X表示所述灰阶电压值,G X表示所述灰阶,β表示预设参数,A和B分别表示比例系数。
在一些实施例中,所述预设参数的取值范围为-0.1~2.4。
在一些实施例中,所述N为8或10。
另一方面,提供一种灰阶和灰阶电压对应关系的获取方法。所述获取方法包括:获得多个灰阶中的至少两个第一灰阶对应的灰阶电压值;其中,所述至少两个第一灰阶中的相邻两个第一灰阶之间存在多个第二灰阶;根据所述相邻两个第一灰阶及其对应的灰阶电压值,得到位于所述相邻两个第一灰阶之间的多个第二灰阶一一对应的灰阶电压值;其中,在灰阶和灰阶电压值构成的坐标系中,所述多个第二灰阶对应的灰阶电压值依次连接构成的连接线呈非线性;根据所述多个灰阶以及对应的多个灰阶电压值,获得一组对应关系;其中,一组对应关系包括所述多个灰阶以及与所述多个灰阶一一对应的多个寄存器值;每个寄存器值被配置为表征对应的灰阶的灰阶电压值。
在一些实施例中,所述多个灰阶为2 N个灰阶,N为大于或等于6的正整数。
在一些实施例中,所述获得多个灰阶中的至少两个第一灰阶对应的灰阶电压值,包括:针对任一第一灰阶,测量显示面板中一种颜色的子像素在显示所述第一灰阶时,所述显示面板的实际亮度;在所述显示面板的实际亮度达到所述第一灰阶的目标亮度的情况下,将测量得到的对所述显示面板中的所述颜色的子像素对应的驱动电压的数值作为所述第一灰阶对应的灰阶电压值。
在一些实施例中,所述根据所述相邻两个第一灰阶及其对应的灰阶电压值,得到位于所述相邻两个第一灰阶之间的多个第二灰阶一一对应的灰阶电压值,包括:根据所述相邻两个第一灰阶及其对应的灰阶电压值,进行非线性插值,得到位于所述相邻两个第一灰阶之间的多个第二灰阶对应的灰阶电压值。
在一些实施例中,第二灰阶对应的灰阶电压值与所述相邻两个第一灰阶及其应对的灰阶电压值满足公式:
Figure PCTCN2021077240-appb-000001
其中, V 3表示所述第二灰阶对应的灰阶电压值,V 2和V 1分别表示所述相邻两个第一灰阶对应的灰阶电压值,G 3表示所述第二灰阶,G 2和G 1分别表示所述相邻两个第一灰阶,β表示预设参数。
在一些实施例中,所述预设参数的取值范围为-0.1~2.4。
又一方面,提供一种灰阶和灰阶电压对应关系的获取装置。所述获取装置包括:第一处理单元、第二处理单元和第三处理单元。所述第一处理单元被配置为获得多个灰阶中的至少两个第一灰阶对应的灰阶电压值。其中,所述至少两个第一灰阶中的相邻两个第一灰阶之间存在多个第二灰阶。所述第二处理单元被配置为根据所述相邻两个第一灰阶及其对应的灰阶电压值,得到位于所述相邻两个第一灰阶之间的多个第二灰阶一一对应的灰阶电压值。其中,在灰阶和灰阶电压值构成的坐标系中,所述多个第二灰阶对应的灰阶电压值依次连接构成的连接线呈非线性。所述第三处理单元被配置为根据所述多个灰阶以及对应的多个灰阶电压值,获得一组对应关系。其中,一组对应关系包括所述多个灰阶以及与所述多个灰阶一一对应的多个寄存器值;每个寄存器值被配置为表征对应的灰阶的灰阶电压值。
又一方面,提供一种灰阶和灰阶电压对应关系的获取装置。所述获取装置包括:存储装置和处理装置。所述处理装置与所述存储装置耦接。所述存储装置中存储一个或多个计算机程序。所述处理装置被配置为执行所述计算机程序,以实现如上述任一实施例所述的获取方法。
再一方面,提供一种计算机可读存储介质。所述计算机可读存储介质存储有计算机程序,所述计算机程序在计算机上运行时,使得所述计算机执行如上述任一实施例所述的获取方法。
又一方面,提供一种计算机程序产品。所述计算机程序产品包括计算机程序,在计算机上执行所述计算机程序时,所述计算机程序使计算机执行如上述任一实施例所述的获取方法。
又一方面,提供一种计算机程序。当所述计算机程序在计算机上执行时,所述计算机程序使计算机执行如上述任一实施例所述的获取方法。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流 程、信号的实际时序等的限制。
图1为根据一些实施例的显示装置的一种结构图;
图2为根据一些实施例的显示面板的一种结构图;
图3为根据一些实施例的一组对应关系的一种示意图;
图4为根据一些实施例的三组对应关系的一种示意图;
图5为根据一些实施例的显示装置的另一种结构图;
图6为根据一些实施例的灰阶电压输出电路的一种结构图;
图7A为根据一些实施例的灰阶电压输出电路的另一种结构图;
图7B为根据一些实施例的灰阶电压输出电路的又一种结构图;
图7C为根据一些实施例的灰阶电压输出电路的又一种结构图;
图8为根据一些实施例的第一电压生成电路的一种结构图;
图9为根据一些实施例的第二电压生成电路的一种结构图;
图10为根据一些实施例的灰阶和灰阶电压对应关系的获取方法的一种流程图;
图11为根据一些实施例的灰阶和灰阶电压对应关系的获取方法的一种过程图;
图12为根据一些实施例的灰阶和灰阶电压对应关系的获取方法的另一种过程图;
图13为根据一些实施例的不同预设参数下的灰阶电压值的一种分布图;
图14为根据一些实施例的显示不同灰阶的亮度误差的一种分布图;
图15为根据一些实施例的灰阶和灰阶电压对应关系的获取装置的一种结构图;
图16为根据一些实施例的灰阶和灰阶电压对应关系的获取装置的另一种结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包 含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
在显示装置的生产过程中,由于半导体制程中的不确定性,因此,在显 示装置进行显示的过程中,需要进行伽马校正。在一些实施例中,可以预先设置一些绑点灰阶,通过调整绑点灰阶的灰阶电压,对显示绑点灰阶的亮度进行校正,并通过校正后的绑点灰阶的灰阶电压,得到全部灰阶的灰阶电压,例如,通过对各个绑点灰阶的灰阶电压进行线性插值(或线性分压),得到全部灰阶的灰阶电压。但是,在显示过程中,显示灰阶的实际亮度值与理论亮度值之间的误差较大(例如大于5%),使得显示的灰阶与亮度的关系与伽马曲线有偏差,降低了显示装置的效果。
本公开的一些实施例提供一种显示装置。示例性地,该显示装置可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论文字还是图像的任何装置。示例性地,显示装置可以是多种电子装置中的一种,所述实施例可实施在多种电子装置中或与多种电子装置关联,所述多种电子装置例如(但不限于)移动电话、无线装置、个人数据助理(PDA)、手持式或便携式计算机、GPS接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的图像的显示器)等。本公开的实施例对上述显示装置的具体形式不做特殊限制。
如图1所示,显示装置100包括:显示面板10、存储器20和驱动器30。其中,驱动器30与存储器20、信号传输接口40和显示面板10耦接。
示例性地,显示面板可以包括液晶显示面板(LCD,Liquid Crystal Display)或者自发光型显示面板,例如基于OLED(Organic Light Emitting Diode,有机发光二极管)的显示面板、基于AMOLED(Active Matrix Organic Light Emitting Diode,有源矩阵有机发光二极管)的显示面板、或者基于LED(发光二极管,Light Emitting Diode)的显示面板等。
例如,如图2所示,显示面板10具有显示区(Active Area,AA)和周边区S。其中,周边区S至少位于AA区外一侧。其中,显示面板10包括多个子像素P。多个子像素P设置于AA区中。例如,多个子像素P可以呈阵列排布。例如,沿图2中X方向(也即水平方向)排列成一排的子像素称为一行子像素,沿图2中Y方向(也即竖直方向)排列成一列的子像素称为一列子像素。
示例性地,多个子像素包括第一颜色子像素、第二颜色子像素和第三颜 色子像素。例如,第一颜色、第二颜色和第三颜色为三基色。例如,第一颜色、第二颜色和第三颜色分别为红色、绿色和蓝色;即,多个子像素包括红色子像素、绿色子像素和蓝色子像素。
例如,信号传输接口可以为显示装置与外部设备进行信号传输的接口;信号传输接口可以为显示装置内部的各个器件进行信号传输的接口。例如该信号可以为视频信号或图像信号。示例性地,信号传输接口可以包括MIPI(移动产业处理器接口,Mobile Industry Processor Interface)、LVDS(低电压差分信号,Low-Voltage Differential Signaling)接口、SDI(串行数字接口,Serial Digital Interface)、HDMI(高清晰度多媒体接口,High Definition Multimedia Interface)或者DP(显示接口,Display Port)等。
其中,存储器被配置为存储至少一组对应关系。每组对应关系包括2 N组灰阶数据以及与2 N组灰阶数据一一对应的2 N个寄存器值。每个寄存器值被配置为表征对应的一组灰阶数据的灰阶电压值。
其中,N为大于或等于6的正整数。例如,N为8或10。例如,在N为8的情况下,每组对应关系包括2 8(即256)组灰阶数据以及与2 8组灰阶数据一一对应的2 8(即256)个寄存器值。例如,参考图3,在N为8的情况下,一组对应关系包括:256组灰阶数据(F 0、F 1、F 2、F 3、F 4……F 255),以及与256组灰阶数据一一对应的256个寄存器值(H 0、H 1、H 2、H 3、H 4……H 255)。示例性地,2 N组灰阶数据可以对应于显示面板的所有灰阶,例如,在显示面板的所有灰阶为256个灰阶的情况下,N取8,即,一组对应关系中的灰阶数据有256组。
示例性地,存储器可以采用非易失性存储器。这样,在停止供电(即下电)时,例如驱动器处于休眠状态,存储器仍然可以保持数据。例如,非易失性存储器可以包括:Flash ROM(Flash Read Only Memory,非易失性闪存)。其中,领域内技术人员可以根据实际情况,选择不同类型的存储器,使得存储器可以存储至少一组对应关系。
例如,驱动器中也可以存在存储空间,但驱动器中的存储空间远小于存储器中的存储空间,因此相比于驱动器,存储器中可以存储更多的灰阶数据以及灰阶数据对应的寄存器值。例如,如果在显示装置中预先设置一些绑点灰阶,通过校准显示面板显示绑点灰阶的亮度的显示亮度值(Display Brightness Value,DBV),来校准显示面板各个灰阶的亮度。如果一些灰阶的节点的个数为11个,一组对应关系中的灰阶数据可以为256组,如果至少一组对应关系包括三组对应关系,子像素的一种颜色的位宽为9bit,则三组对 应关系需要的存储空间为11×256×3×9bit=76032bit。此时,对应关系的数据量较大,驱动器中的存储空间无法满足,故可以通过存储器来存储对应关系。
其中,驱动器被配置为获取存储器中的至少一组对应关系;接收来自信号传输接口的图像数据,图像数据包括与多个子像素对应的多组灰阶数据;并针对图像数据中的任一组灰阶数据,在一组对应关系中获取该组灰阶数据对应的寄存器值;根据寄存器值向显示面板的一子像素输出灰阶电压值对应的灰阶电压。
示例性地,驱动器可以为驱动IC(Driver IC)。例如,参考图2,显示面板10还包括源极驱动器(Source IC),驱动IC向显示面板传输灰阶电压,源极驱动器可以根据灰阶电压,向显示面板中的多个子像素传输数据信号,子像素根据接收到的数据信号,进行灰阶显示。
在此情况下,显示装置在进行显示的过程中,针对一个灰阶,可以根据至少一组对应关系,找到该一个灰阶对应的一个寄存器值,并根据该一个寄存器值,得到该一个寄存器值所表征的该一个灰阶对应的灰阶电压值,以向显示面板输出该灰阶电压值对应的灰阶电压,使得子像素在根据该灰阶电压显示该一个灰阶时,显示的实际亮度值与理论亮度值的误差相对较小,更符合伽马曲线,从而提高了显示效果,实现了对灰阶显示的校正。而且,在显示过程中,相比于通过几个绑点灰阶的灰阶电压进行线性插值后得到每一个灰阶的灰阶电压的情况,上述的通过至少一组对应关系可以确定每一个灰阶对应的灰阶电压值,即,可以得到显示面板的所有灰阶对应的灰阶电压值,使得显示面板显示的灰阶和亮度更符合伽马曲线,避免了显示偏差。
因此,本公开的实施例提供一种显示装置,存储器中存储有至少一组对应关系,每组对应关系包括2 N组灰阶数据以及与2 N组灰阶数据一一对应的2 N个寄存器值。每个寄存器值可表征对应的一组灰阶数据的灰阶电压值。驱动器获取存储器中的至少一组对应关系;接收来自信号传输接口的图像数据,图像数据包括与多个子像素对应的多组灰阶数据;并针对图像数据中的任一组灰阶数据,在一组对应关系中获取该组灰阶数据对应的寄存器值;根据寄存器值向显示面板的一子像素输出灰阶电压值对应的灰阶电压。这样,显示装置在进行显示的过程中,针对一个灰阶,可以根据至少一组对应关系,找到该一个灰阶对应的一个寄存器值,并根据该一个寄存器值,得到该一个寄存器值所表征的该一个灰阶对应的灰阶电压值,以向显示面板输出该灰阶电压值对应的灰阶电压,使得子像素在根据该灰阶电压显示该一个灰阶时,显 示的实际亮度值与理论亮度值的误差相对较小,更符合伽马曲线,从而提高了显示效果,实现了对灰阶显示的校正。
在一些实施例中,至少一组对应关系包括三组对应关系。该三组对应关系分别用于显示面板中的第一颜色子像素、第二颜色子像素和第三颜色子像素的灰阶电压值的获取。例如,参考图4,三组对应关系分别为:第一组对应关系、第二组对应关系和第三组对应关系。其中,第一组对应关系用于显示面板中的第一颜色子像素的灰阶电压值的获取,例如,参考图4,在N为8的情况下,第一组对应关系包括:256组灰阶数据(RF 0、RF 1、RF 2、RF 3、RF 4……RF 255),以及与256组灰阶数据一一对应的256个寄存器值(RH 0、RH 1、RH 2、RH 3、RH 4……RH 255)。第二组对应关系用于显示面板中的第二颜色子像素的灰阶电压值的获取,例如,参考图4,在N为8的情况下,第二组对应关系包括:256组灰阶数据(GF 0、GF 1、GF 2、GF 3、GF 4……GF 255),以及与256组灰阶数据一一对应的256个寄存器值(GH 0、GH 1、GH 2、GH 3、GH 4……GH 255)。第三组对应关系用于显示面板中的第三颜色子像素的灰阶电压值的获取,例如,参考图4,在N为8的情况下,第三组对应关系包括:256组灰阶数据(BF 0、BF 1、BF 2、BF 3、BF 4……BF 255),以及与256组灰阶数据一一对应的256个寄存器值(BH 0、BH 1、BH 2、BH 3、BH 4……BH 255)。
其中,驱动器被配置为,针对图像数据中的任一组灰阶,确定该组灰阶对应的子像素的颜色;根据子像素的颜色,在三组对应关系中确定一组对应关系,确定的一组对应关系用于与子像素的颜色相同的第一颜色子像素、第二颜色子像素和第三颜色子像素中一者的灰阶电压值的获取;在确定的一组对应关系中获取灰阶对应的寄存器值。
例如,三组对应关系分别为第一组对应关系、第二组对应关系和第三组对应关系;第一组对应关系用于与子像素的颜色相同的第一颜色子像素的灰阶电压值的获取,第二组对应关系用于与子像素的颜色相同的第二颜色子像素的灰阶电压值的获取,第三组对应关系用于与子像素的颜色相同的第三颜色子像素的灰阶电压值的获取。在此情况下,对于第一颜色子像素,从三组对应关系中确定出第一组对应关系,再根据第一颜色子像素的任一个灰阶,在第一组对应关系中获取该一个灰阶对应的寄存器值,以向显示面板该寄存器值所表征的灰阶电压值对应的灰阶电压,第一颜色子像素可以根据该灰阶电压显示对应的灰阶,使得显示的灰阶的实际亮度值与理论亮度值的误差减小。对于第二颜色子像素,从三组对应关系中确定出第二组对应关系,再根据第二颜色子像素的任一个灰阶,在第二组对应关系中获取该一个灰阶对应 的寄存器值,以向显示面板该寄存器值所表征的灰阶电压值对应的灰阶电压,第二颜色子像素可以根据该灰阶电压显示对应的灰阶,使得显示的灰阶的实际亮度值与理论亮度值的误差减小。对于第三颜色子像素,从三组对应关系中确定出第三组对应关系,再根据第三颜色子像素的任一个灰阶,在第三组对应关系中获取该一个灰阶对应的寄存器值,以向显示面板该寄存器值所表征的灰阶电压值对应的灰阶电压,第三颜色子像素可以根据该灰阶电压显示对应的灰阶,使得显示的灰阶的实际亮度值与理论亮度值的误差减小。这样,可以减小显示面板的显示的亮度的误差,使得显示的灰阶和亮度更符合伽马曲线,从而提高了显示效果。
在一些实施例中,如图5所示,驱动器30包括:随机存储器31、多个寄存器32、灰阶电压输出电路33和控制器34。
示例性地,随机存储器可以包括:RAM(随机存取存储器,Random Access Memory)、SRAM(静态随机存取存储器,Static Random-Access Memory)。示例性地,寄存器即为伽马寄存器,例如寄存器包括多个逻辑电路,例如逻辑电极包括门电路。示例性地,控制器可以采用具有处理功能的器件,例如处理器。
参考图5,存储器20为非易失性存储器。随机存储器31与非易失性存储器(即存储器)耦接。随机存储器31还与信号传输接口40耦接。多个寄存器32与随机存储器31耦接。控制器34与随机存储器31和多个寄存器32耦接。灰阶电压输出电路33与多个寄存器32和显示面板10耦接。
其中,随机存储器被配置为获取并存储非易失性存储器中的至少一组对应关系。随机存储器还被配置为获取来自信号传输接口的图像数据,例如,信号传输接口将图像数据传输至随机存储器,随机存储器可以存储该图像数据。示例性地,至少一组对应关系和图像数据分别存储在随机存储器中的不同的存储空间中。例如,在驱动器从休眠状态被唤醒的过程中,非易失性存储器可以通过SPI接口将对应关系写入随机存储器中。
控制器被配置为根据图像数据中的每组灰阶数据,控制一个寄存器从随机存储器中的一组对应关系中获取并寄存与一组灰阶数据对应的寄存器值。例如,每个寄存器可以根据图像数据中的一组灰阶数据,从随机存储器中的一组对应关系中获取并寄存该组灰阶数据对应的寄存器值。
灰阶电压输出电路被配置为根据来自寄存器中存储的寄存器值,向显示面板输出寄存器值所表征的灰阶电压值对应的灰阶电压。
例如,随机存储器中存储有至少一组对应关系,该至少一组对应关系可 以包括三组对应关系。在图像数据到来时,图像数据包括多组灰阶数据,例如该多组灰阶数据可以存储在随机存储器中。控制器根据图像数据中的多组灰阶数据,在至少一组对应关系中,找到图像数据中的每组灰阶数据对应的寄存器值,例如,每个子像素显示的灰阶对应的寄存器值,控制一个寄存器获取并寄存一个子像素显示灰阶对应的寄存器值。例如,如果图像数据包括256组灰阶数据,则对应有256个寄存器,对于一组灰阶数据,对应有一个寄存器获取并寄存在一组对应关系中与该一组灰阶数据对应的寄存器值。灰阶电压输出电路根据来自寄存器中存储的一个寄存器值,向显示面板输出该寄存器值所表征的灰阶电压值对应的灰阶电压,使得接收该灰阶电压的子像素显示的灰阶为该寄存器值对应的一组灰阶数据对应的灰阶。这样,驱动器向显示面板输出的灰阶电压可以驱动子像素显示相应的灰阶,且显示的灰阶的亮度值更接近于理论亮度值,使得显示的灰阶和亮度更符合伽马曲线,避免显示亮度的误差,从而提高显示效果。
示例性地,如图6所示,灰阶电压输出电路33包括:第一电压生成电路331和多个第一选通电路332。第一电压生成电路331与第一电压端V MA和第二电压端V MI耦接。每个第一选通电路332与第一电压生成电路331、一个寄存器32和显示面板10耦接。
其中,第一电压生成电路被配置为,根据第一电压端的第一电压和第二电压端的第二电压,得到多个第三电压。示例性地,第一电压端所传输的第一电压为直流电压,例如直流高电压;第二电压端所传输的第二电压为直流电压,例如直流低电压。其中,第一电压大于第二电压,也即第一电压的幅值(即电压值)大于第二电压的幅值。例如,第一电压可以为多个灰阶中的最大灰阶对应的灰阶电压,第二电压可以为多个灰阶中的最小灰阶对应的灰阶电压。例如,第一电压生成电路可以根据最大灰阶数据对应的灰阶电压和最小灰阶数据对应的灰阶电压,输出位于最大灰阶数据和最小灰阶数据之间的多组灰阶数据对应的灰阶电压。例如,在N为8的情况下,多组灰阶数据为00000000至11111111组灰阶数据,即,0至255灰阶,第一电压生成电路可以根据255灰阶(即最大灰阶数据11111111)对应的灰阶电压和0灰阶(即最小灰阶数据00000000)对应的灰阶电压,生成多个第三电压,该多个第三电压分别对应于1灰阶至254灰阶(即00000001至11111110灰阶数据)对应的多个灰阶电压。
第一选通电路被配置为响应于来自寄存器中存储的寄存器值,向显示面板输出来自第一电压生成电路的第一电压、第二电压以及多个第三电压中的 一个电压,该一个电压为与寄存器值所表征的灰阶电压值对应的灰阶电压。示例性地,第一选通电路可以采用多路选通器(MUX)。
例如,第一选通电路可以根据来自寄存器中存储的寄存器值,向显示面板输出各个寄存器值所表征的灰阶电压值对应的灰阶电压。例如,在多组灰阶数据对应于0至255灰阶的情况下,第一选通电路可以将0至255灰阶对应的灰阶电压输出至显示面板,使得显示面板中的子像素可以响应于灰阶电压,显示对应的灰阶,以减小显示的灰阶的实际亮度值与理论亮度值的误差。
在一些实施例中,如图7A所示,灰阶电压输出电路33还包括:第二电压生成电路333、第二选通电路334和第三选通电路335。其中,第二电压生成电路333与第一参考电压端V REG和第二参考电压端V REF耦接。第二选通电路334与第一电压端V MA和第二电压生成电路333耦接。第三选通电路335与第二电压端V MI和第二电压生成电路333耦接。示例性地,第二选通电路和第三选通电路可以均采用多路选通器(MUX)。
示例性地,第一参考电压端所传输的第一参考电压为直流电压,例如直流高电压。示例性地,第二参考电压端所传输的第二参考电压为直流电压,例如直流低电压。例如,第一参考电压大于第二参考电压,即第一参考电压的幅值大于第二参考电压的幅值。
其中,第二电压生成电路被配置为根据第一参考电压端的第一参考电压和第二参考电压端的第二参考电压,得到多个分压。
第二选通电路被配置为响应于2 N个寄存器值中表征最大灰阶电压值的寄存器值,输出多个分压中的一个分压,该分压为第一电压。示例性地,第二选通电路还与一个寄存器耦接,该与第二选通电路耦接的寄存器可以获取并存储2 N个寄存器值中表征最大灰阶电压值的寄存器值,以向第二选通电路提供2 N个寄存器值中表征最大灰阶电压值的寄存器值。例如,与第二选通电路耦接的寄存器和与第一选通电路耦接的多个寄存器中用于获取并存储2 N个寄存器值中表征最大灰阶电压值的寄存器值的一个寄存器可以为同一个寄存器。例如,在N为8的情况下,多组灰阶数据为00000000至11111111组灰阶数据,即,0至255灰阶,最大灰阶数据(即11111111灰阶数据,也即255灰阶)对应的寄存器值可以表征最大灰阶电压值,则第二选通电路响应于255灰阶对应的寄存器值,从来自第二电压生成电路的多个分压中,输出该255灰阶对应的寄存器值对应的灰阶电压值对应的灰阶电压,即,第二选通电路输出的灰阶电压的幅值为该255灰阶对应的寄存器值对应的灰阶电压值。
第三选通电路被配置为,响应于2 N个寄存器值中表征最小灰阶电压值的 寄存器值,输出多个分压中的一个分压,该分压为第二电压。示例性地,第三选通电路还与一个寄存器耦接,该与第三选通电路耦接的寄存器可以获取并存储2 N个寄存器值中表征最小灰阶电压值的寄存器值,以向第三选通电路提供2 N个寄存器值中表征最小灰阶电压值的寄存器值。例如,与第三选通电路耦接的寄存器和与第一选通电路耦接的多个寄存器中用于获取并存储2 N个寄存器值中表征最小灰阶电压值的寄存器值的一个寄存器可以为同一个寄存器。例如,在N为8的情况下,多组灰阶数据为00000000至11111111组灰阶数据,即,0至255灰阶,最小灰阶数据(即00000000灰阶数据,也即0灰阶)对应的寄存器值可以表征最小灰阶电压值,则第三选通电路响应于0灰阶对应的寄存器值,从来自第二电压生成电路的多个分压中,输出该0灰阶对应的寄存器值对应的灰阶电压值对应的灰阶电压,即,第三选通电路输出的灰阶电压的幅值为该0灰阶对应的寄存器值对应的灰阶电压值。
并且,第二选通电路输出的灰阶电压作为第一电压,可以传输至第一电压生成电路,第三选通电路输出的灰阶电压作为第二电压,可以传输至第一电压生成电路,分别用于第一电压生成电路得到多个第三电压。
示例性地,在显示面板待显示的灰阶包括最大灰阶和最小灰阶的情况下,第二选通电路和第三选通电路可以分别向显示面板输出第一电压和第二电压(参考图7B),此时,多个第一选通电路中用于向显示面板输出第一电压的一个第一选通电路与第二选通电路可以被看作同一个选通电路;多个第一选通电路中用于向显示面板输出第二电压的一个第一选通电路与第三选通电路可以被看作同一个选通电路。例如,参考图7B,对于0至255灰阶,第二选通电路可以输出255灰阶对应的灰阶电压,第三选通电路可以输出0灰机对应的灰阶电压,多个第三选通电路可以输出1至254灰阶对应的灰阶电压。
另外,参考图7C,灰阶电压输出电路33还包括:多个运算放大器OP。一个第一选通电路与一个运算放大器耦接,一个第二选通电路与一个运算放大器耦接,一个第三选通电路与一个运算放大器耦接。每个运算放大器被配置为将来自每个选通电路的灰阶电压进行放大。
示例性地,如图8所示,第一电压生成电路331包括:第一电阻串R_S1。第一电阻串R_S1的两端分别与第二选通电路334和第三选通电路335耦接。例如,第二选通电路与第一电压端耦接,第三选通电路与第二电压端耦接,因此,第一电阻串的两端分别与第一电压端和第二电压端耦接。这样,第一电阻串的两端分别接收到第一电压和第二电压,使得第一电阻串可以根据第一电压和第二电压进行分压。
示例性地,如图9所示,第二电压生成电路333包括:第二电阻串R_S2。第二电阻串R_S2的两端分别与第一参考电压端V REG和第二参考电压端V REF耦接。这样,第二电阻串的两端分别接收到第一参考电压和第二参考电压,使得第二电阻串可以根据第一参考电压和第二参考电压进行分压。
示例性地,灰阶与对应的灰阶电压值满足公式:V X=A×G X β+B。其中,灰阶为一组灰阶数据的模拟值。V X表示灰阶电压值,G X表示灰阶,β表示预设参数,A和B分别表示比例系数。
其中,灰阶数据可以为二进制数表示,灰阶数据的模拟值可以理解为灰阶数据的十进制数;例如,在灰阶数据的位数为8bit的情况下,00000000至11111111共256组灰阶数据的模拟值分别为0至255,即0至255灰阶。例如,0灰阶为00000000灰阶数据的模拟值,255灰阶为11111111灰阶数据的模拟值。
示例性地,预设参数的取值范围为-0.1~2.4,即,β=-0.1~2.4。例如,预设参数β可以为0.1、0.5、1.1、1.5或者2.2等。其中,可以根据实际情况,选择预设参数的具体数值,在此不作限定。示例性地,比例系数A和B不相等,且A和B均与预设参数β有关。
例如,多个灰阶包括:至少两个第一灰阶,以及至少两个第一灰阶中的相邻两个第一灰阶之间存在多个第二灰阶。第二灰阶对应的灰阶电压值与相邻两个第一灰阶及其应对的灰阶电压值满足公式:
Figure PCTCN2021077240-appb-000002
其中,V 3表示第二灰阶对应的灰阶电压值,V 2和V 1分别表示相邻两个第一灰阶对应的灰阶电压值,G 3表示第二灰阶,G 2和G 1分别表示相邻两个第一灰阶,β表示预设参数。这样,比例系数A可以为
Figure PCTCN2021077240-appb-000003
比例系数B可以为
Figure PCTCN2021077240-appb-000004
例如,如果相邻两个第一灰阶分别为最大灰阶和最小灰阶,例如多个灰阶中,最大灰阶为G MAX灰阶,最小灰阶为G MIN灰阶,其中,最大灰阶对应的灰阶电压值为V MAX,最小灰阶对应的灰阶电压值为V MIN,这样,位于最大灰阶和最小灰阶之间的每个第二灰阶G i对应的灰阶电压值V i可以表示为
Figure PCTCN2021077240-appb-000005
i为正整数,且i可以在最小灰阶至最大灰阶的区间内连续取值。例如256个灰阶中,最大灰阶为255灰阶,最小灰阶为0灰阶,其中,255灰阶对应的灰阶电压值为第一电压端V MA的第一电压的电压值V M1,0灰阶对应的灰阶电压值为第二电压端V MI的第二电压的电压值V M2,这样,1至254灰阶中的任一灰阶对应的灰阶电压值可以表示为
Figure PCTCN2021077240-appb-000006
i的取值范围为1~254。其 中,比例系数A可以为
Figure PCTCN2021077240-appb-000007
比例系数B可以为
Figure PCTCN2021077240-appb-000008
例如比例系数A为
Figure PCTCN2021077240-appb-000009
比例系数B为V M1
本公开的实施例提供一种灰阶和灰阶电压对应关系的获取方法。示例性地,可以通过该获取方法,可以得到上述任一实施例所述的显示装置中的存储器中存储的至少一组对应关系。
其中,参考图10,该获取方法包括以下步骤:
S10、获得多个灰阶中的至少两个第一灰阶对应的灰阶电压值。
示例性地,多个灰阶为2 N个灰阶,N为大于或等于6的正整数。例如,N为8或10。例如,在N为8的情况下,多个灰阶为256个灰阶,例如,256个灰阶分别为0灰阶至255灰阶。
其中,至少两个第一灰阶中的相邻两个第一灰阶之间存在多个第二灰阶。例如,至少两个第一灰阶可以包括最大灰阶和最小灰阶。例如,在至少两个第一灰阶包括两个第一灰阶的情况下,该两个第一灰阶即为相邻两个第一灰阶,例如,两个第一灰阶分别为最大灰阶和最小灰阶,则最大灰阶和最小灰阶即为相邻两个第一灰阶;例如,在多个灰阶为0灰阶至255灰阶共256个灰阶的情况下,两个第一灰阶分别为0灰阶和255灰阶,则0灰阶和255灰阶即为相邻两个第一灰阶。例如,在至少两个第一灰阶包括两个以上第一灰阶的情况下,两个以上第一灰阶包括最大灰阶和最小灰阶,以及位于最大灰阶和最小灰阶之间的至少一个灰阶。其中,至少一个灰阶的个数和位置可以根据实际情况进行设计,在此不作限定,例如,至少两个第一灰阶的总数可以为9~40个,例如,可以为11个、15个或者20个。相邻两个第一灰阶之间具有多个第二灰阶,例如,多个第二灰阶的个数为两个或两个以上。例如,相邻两个第一灰阶之间的多个第二灰阶的个数可以不相等。
其中,灰阶指的是灰阶数据的模拟值,灰阶数据采用二进制数表示,灰阶采用十进制数表示;例如,灰阶数据为00000000,其模拟值为0,即灰阶为0;灰阶数据为00000001,其模拟值为1,即灰阶为1;灰阶数据为11111111,其模拟值为255,即灰阶为255。灰阶对应的灰阶电压值指的是灰阶对应的灰阶电压(例如灰阶电压可以被看作是传输的电压信号)的电压幅值,该灰阶电压值是具有物理单位的数值,例如,0灰阶对应的灰阶电压值为0V。
示例性地,获得多个灰阶中的至少两个第一灰阶对应的灰阶电压值,包括:针对任一第一灰阶,测量显示面板中一种颜色的子像素在显示第一灰阶时,显示面板的实际亮度;在显示面板的实际亮度达到第一灰阶的目标亮度 的情况下,将测量得到的对显示面板中的该颜色的子像素对应的驱动电压的数值作为第一灰阶对应的灰阶电压值。
例如,针对任一第一灰阶,在显示面板中的一种颜色的子像素(例如第一颜色子像素、第二颜色子像素和第三颜色子像素中的一者)在显示第一灰阶的情况下,得到子像素对应的驱动电压的数值,并测量得到显示面板的实际亮度。通过调整子像素对应的驱动电压的数值(即幅值),相应地调整显示面板的实际亮度,在显示面板在显示第一灰阶的实际亮度达到该第一灰阶的目标亮度的情况下,测量得到的子像素对应的驱动电压的数值作为第一灰阶对应的灰阶电压值。这样,可以得到第一灰阶与该第一灰阶对应的灰阶电压值的关系,即得到第一灰阶与第一灰阶对应的灰阶电压的关系。
示例性地,根据灰阶G j及其对应的亮度值L j,以及伽马值GAM的关系式
Figure PCTCN2021077240-appb-000010
可以得到一种颜色子像素在一个灰阶下的亮度值,作为该灰阶下的理论亮度值;在显示面板显示该一个灰阶下的亮度值达到亮度理论值时,可以认为显示一个灰阶的实际亮度达到目标亮度。其中,GAM为伽马值;G MAX为最大灰阶,G j为第j灰阶,L MAX为最大灰阶G MAX对应的亮度值,L j为第j灰阶对应的亮度值,j为整数。示例性地,以伽马值GAM的取值为2.2,灰阶G j的取值为0~255,0≤j≤255,则G MAX为255。例如,最大灰阶对应的亮度值可以是显示装置在显示最大灰阶时发光亮度达到最大时测量得到的亮度值。
需要说明的是,在多个子像素包括第一颜色子像素、第二颜色子像素和第三颜色子像素的情况下,针对每种颜色,都可以测量得到一组第一灰阶与第一灰阶对应的灰阶电压的关系,即,可以得到三组第一灰阶与第一灰阶对应的灰阶电压的关系。
S20、根据相邻两个第一灰阶及其对应的灰阶电压值,得到位于相邻两个第一灰阶之间的多个第二灰阶一一对应的灰阶电压值。其中,在灰阶和灰阶电压值构成的坐标系中,多个第二灰阶对应的灰阶电压值依次连接构成的连接线呈非线性。
示例性地,根据相邻两个第一灰阶及其对应的灰阶电压值,得到位于相邻两个第一灰阶之间的多个第二灰阶一一对应的灰阶电压值,包括:根据相邻两个第一灰阶及其对应的灰阶电压值,进行非线性插值,得到位于相邻两个第一灰阶之间的多个第二灰阶对应的灰阶电压值。
例如,在灰阶和灰阶电压值构成的坐标系中,参考图12,如果对相邻两个第一灰阶及其对应的灰阶电压值进行线性插值,得到的位于相邻两个第一 灰阶之间的多个第二灰阶对应的灰阶电压值,则多个第二灰阶对应的灰阶电压值依次连接构成的连接线呈线性,例如连接线呈直线;参考图11,如果对相邻两个第一灰阶及其对应的灰阶电压值进行非线性插值,得到的位于相邻两个第一灰阶之间的多个第二灰阶对应的灰阶电压值,多个第二灰阶对应的灰阶电压值依次连接构成的连接线呈非线性,例如连接线呈弧线。
其中,由于灰阶和亮度的关系呈非线性,例如灰阶和亮度的关系呈指数关系,例如灰阶和亮度的关系符合伽马曲线,该指数为伽马值,灰阶电压(也即灰阶电压值)与亮度的关系呈线性关系,因此,灰阶和灰阶电压值的关系呈非线性关系,例如呈指数关系。并且,灰阶电压和亮度的关系实际上不完全呈线性,因此相比与图12示意的采用线性插值得到的第二灰阶的灰阶电压值,图11示意的采用非线性插值得到的第二灰阶的灰阶电压值,该灰阶电压值对应的灰阶电压传输至显示面板,显示面板显示的灰阶与亮度会更符合伽马曲线,从而可以避免显示亮度出现偏差。
示例性地,第二灰阶对应的灰阶电压值与相邻两个第一灰阶及其应对的灰阶电压值满足公式:
Figure PCTCN2021077240-appb-000011
其中,V 3表示第二灰阶对应的灰阶电压值,V 2和V 1分别表示相邻两个第一灰阶对应的灰阶电压值,G 3表示第二灰阶,G 2和G 1分别表示相邻两个第一灰阶,β表示预设参数。
示例性地,预设参数的取值范围为-0.1~2.4,即,β=-0.1~2.4。例如,预设参数β可以为0.1、0.5、1.1、1.5或者2.2等。其中,可以根据实际情况,选择预设参数的具体数值,在此不作限定。例如,参考图13,当预设参数β=1时,灰阶对应的灰阶电压值依次连接构成的连接线呈线性,例如直线,即为采用线性插值得到灰阶电压值,当预设参数β>1时,灰阶对应的灰阶电压值依次连接构成的连接线呈非线性,例如弧线,即为采用非线性插值得到灰阶电压值,且对于同一灰阶,非线性插值得到的灰阶电压值大于线性插值得到的灰阶电压值,当预设参数β<1时,灰阶对应的灰阶电压值依次连接构成的连接线呈非线性,例如弧线,即为采用非线性插值得到灰阶电压值,且对于同一灰阶,非线性插值得到的灰阶电压值小于线性插值得到的灰阶电压值。例如,当预设参数β>1时,预设参数β越大,灰阶对应的灰阶电压值依次连接构成的连接线的弧度(即弯曲程度)越大,当预设参数β<1时,预设参数β越小,灰阶对应的灰阶电压值依次连接构成的连接线的弧度(即弯曲程度)越大。这样,可以通过调整预设参数β的取值,可以调整灰阶对应的灰阶电压值依次连接构成的连接线(或插值曲线)的弧度,从而调整伽马曲线的弧 度,也就可以通过不同的伽马曲线,选择合适的预设参数,以使得显示装置根据灰阶和灰阶电压对应关系进行显示时,提高灰阶的亮度的准确性,更符合伽马曲线。
例如,如果相邻两个第一灰阶分别为最大灰阶和最小灰阶,例如多个灰阶中,最大灰阶为G MAX灰阶,最小灰阶为G MIN灰阶,其中,最大灰阶对应的灰阶电压值为V MAX,最小灰阶对应的灰阶电压值为V MIN,这样,位于最大灰阶和最小灰阶之间的每个第二灰阶G i对应的灰阶电压值V i可以表示为
Figure PCTCN2021077240-appb-000012
i为正整数,且i可以在最小灰阶至最大灰阶的区间内连续取值。例如256个灰阶中,最大灰阶为255灰阶,最小灰阶为0灰阶,其中,255灰阶对应的灰阶电压值为第一电压端V MA的第一电压的电压值V M1,0灰阶对应的灰阶电压值为第二电压端V MI的第二电压的电压值V M2,这样,1至254灰阶中的任一灰阶对应的灰阶电压值可以表示为
Figure PCTCN2021077240-appb-000013
即,
Figure PCTCN2021077240-appb-000014
i为正整数,且i在(0,255)区间内连续取值。
S30、根据多个灰阶以及对应的多个灰阶电压值,获得一组对应关系。
其中,一组对应关系包括多个灰阶以及与多个灰阶一一对应的多个寄存器值;每个寄存器值被配置为表征对应的灰阶的灰阶电压值。
需要说明的是,在一组对应关系中,灰阶的表示方式可以根据实际情况进行实际,例如,灰阶可以采用二进制数表示,即灰阶为灰阶数据,也可以采用十进制数表示,即灰阶为灰阶数据的模拟值,灰阶数据和灰阶所表达的数据的含义是一样的。其中,灰阶的灰阶电压值指的是灰阶的灰阶电压的幅值。例如,灰阶电压为直流电压,灰阶电压值表示该直流电压的电压值。
例如,一组对应关系可以用于显示面板中的一种颜色子像素(例如第一颜色子像素、第二颜色子像素和第三颜色子像素中的一者)的灰阶电压值的获取。这样,根据上述步骤S10至步骤S30,可以得到多组对应关系,多组对应关系包括三组对应关系,三组对应关系分别用于第一颜色子像素、第二颜色子像素和第三颜色子像素的灰阶电压值的获取。
例如,显示装置可以根据得到的灰阶和灰阶电压对应关系,根据图像数据中的与显示面板中的多个子像素对应的多组灰阶数据(即多个灰阶),针对图像数据中的任一组灰阶数据(即任一个灰阶),在一组对应关系中获取该组灰阶数据的灰阶对应的寄存器值,确定该组灰阶数据的灰阶对应的灰阶电压值,并根据该灰阶电压值向显示面板的一子像素输出灰阶电压值对应的灰阶电压。这样,显示面板中的每个子像素显示的灰阶与亮度的关系可以更 贴近伽马曲线,可以减小显示的实际亮度与目标亮度的误差,从而提高显示效果。
例如,图14示意了采用线性插值和非线性插值得到灰阶对应的灰阶电压进行显示时,显示该灰阶的亮度值(即实际亮度值)与理论亮度值的误差分布曲线,其中,参考图12中示意的采用线性插值得到第二灰阶的灰阶电压值,灰阶(例如第二灰阶)对应的显示的实际亮度值与理论亮度值的最大误差值可以超过5%;参考图11中示意的采用非线性插值得到第二灰阶的灰阶电压值,灰阶(例如第二灰阶)对应的显示的亮度值与理论值的误差值近似在-2%~2%的范围内。因此,本公开的实施例采用非线性插值得到灰阶对应的灰阶电压值,可以减小显示该灰阶的实际亮度与目标亮度的误差,从而提高显示效果。
因此,本公开的实施例提供一种灰阶和灰阶电压对应关系的获取方法,获得多个灰阶中的至少两个第一灰阶对应的灰阶电压值,根据相邻两个第一灰阶及其对应的灰阶电压值,得到位于相邻两个第一灰阶之间的多个第二灰阶一一对应的灰阶电压值,根据多个灰阶以及对应的多个灰阶电压值,获得一组对应关系;一组对应关系包括多个灰阶以及与多个灰阶一一对应的多个寄存器值;每个寄存器值被配置为表征对应的灰阶的灰阶电压值。这样,显示装置在进行显示的过程中,针对一个灰阶,可以根据一组对应关系,找到该一个灰阶对应的一个寄存器值,并根据该一个寄存器值,得到该一个寄存器值所表征的该一个灰阶对应的灰阶电压值,以向显示面板输出该灰阶电压值对应的灰阶电压,使得子像素在根据该灰阶电压显示该一个灰阶时,显示的实际亮度值与理论亮度值的误差相对较小,更符合伽马曲线,从而提高了显示效果,实现了对灰阶显示的校正。
本公开的实施例提供一种灰阶和灰阶电压对应关系的获取装置。如图15所示,该获取装置200A包括:第一处理单元210、第二处理单元220和第三处理单元230。
其中,第一处理单元被配置为被配置为获得多个灰阶中的至少两个第一灰阶对应的灰阶电压值。其中,至少两个第一灰阶中的相邻两个第一灰阶之间存在多个第二灰阶。
第二处理单元被配置为根据相邻两个第一灰阶及其对应的灰阶电压值,得到位于相邻两个第一灰阶之间的多个第二灰阶一一对应的灰阶电压值。其中,在灰阶和灰阶电压值构成的坐标系中,多个第二灰阶对应的灰阶电压值依次连接构成的连接线呈非线性。
第三处理单元被配置为根据多个灰阶以及对应的多个灰阶电压值,获得一组对应关系。其中,一组对应关系包括多个灰阶以及与多个灰阶一一对应的多个寄存器值;每个寄存器值被配置为表征对应的灰阶的灰阶电压值。
图15所描述的获取装置实施例仅仅是示意性的,例如,上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。在本公开的各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。图15中上述各个单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。例如,采用软件实现时,上述第一处理单元、第二处理单元和第三处理单元可以是由至少一个处理器读取存储器中存储的程序代码后,生成的软件功能模块来实现。图15中上述各个单元也可以由计算机(例如显示设备)中的不同硬件分别实现,例如第一处理单元、第二处理单元和第三处理单元中的一部分单元由至少一个处理器中的一部分处理资源(例如多核处理器中的一个核或两个核)实现,而第一处理单元、第二处理单元和第三处理单元中的另一部分单元由至少一个处理器中的其余部分处理资源(例如多核处理器中的其他核)。例如,采用硬件的形式实现,示例性地,上述的获取装置可以为可编程器件,例如硬件可编程器件,例如FPGA(Field Programmable Gate Array,现场可编程门阵列)。在此情况下,上述的获取装置中的第一处理单元、第二处理单元和第三处理单元均可以包括可配置逻辑模块(Configurable Logic Block,CLB),不同单元之间通过内部连接线(Interconnect)耦接。显然上述功能单元也可以采用软件硬件相结合的方式来实现,例如第一处理单元由硬件电路实现,而第二处理单元和第三处理单元是由CPU读取存储器中存储的程序代码后,生成的软件功能模块。
图15中的各个单元(例如包括第一处理单元、第二处理单元和第三处理单元)实现上述功能的更多细节请参考前面各个方法实施例中的描述,在这里不再重复。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加 载和执行该计算机指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、磁盘、磁带)、光介质(例如,DVD(Digital Versatile Disk,数字通用盘))、或者半导体介质(例如固态硬盘(solid state drives,SSD))等。
需要说明的是,上述获取装置的有益效果和上述一些实施例所述的获取方法的有益效果相同,此处不再赘述。
本公开的一些实施例提供了一种灰阶和灰阶电压对应关系的获取装置。如图16所示,该获取装置200B包括存储装置201和处理装置202。处理装置202与存储装置201耦接。
存储装置201中存储一个或多个计算机程序,例如,可在处理装置202上运行的一个或多个计算机程序。处理装置202执行该计算机程序时,以实现如上述任一实施例所述的获取方法。
示例性地,上述处理装置202可以是一个处理器,也可以是多个处理元件的统称。例如,该处理装置202可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application specific integrated circuit,ASIC),或一个或多个用于控制本公开方案程序执行的集成电路,例如:一个或多个微处理器。示例性地,上述存储装置201可以是一个存储器,也可以是多个存储元件的统称,且用于存储可执行程序代码等。且存储装置201可以包括随机存储器(Random Access Memory,RAM),也可以包括非易失性存储器(non-volatile memory),例如磁盘存储器,闪存(Flash)等。
例如,存储装置201用于存储执行本公开方案的应用程序代码,并由处理装置202来控制执行。处理装置202用于执行存储装置201中存储的应用程序代码,以控制处理装置202实现本公开的上述任一实施例提供的获取方法。
需要说明的是,上述获取装置的有益效果和上述一些实施例所述的获取方法的有益效果相同,此处不再赘述。
本公开的一些实施例提供了一种电子设备。其中,电子设备包括:如上述实施例中任一实施例所述的显示装置和如上述实施例中任一实施例所述的 获取装置。获取装置在获取到灰阶和灰阶电压对应关系的情况下,可以将该对应关系传输至显示装置,显示装置中的存储器存储该对应关系。
其中,上述电子设备的有益效果和上述一些实施例所述的显示装置和获取装置的有益效果相同,此处不再赘述。
本公开的一些实施例提供了一种计算机可读存储介质(例如,非暂态计算机可读存储介质),该计算机可读存储介质中存储有计算机程序指令,计算机程序指令在计算机(例如计算机中的处理器)上运行时,使得计算机执行如上述实施例中任一实施例所述的获取方法,例如获取方法中的一个或多个步骤。
示例性的,上述计算机可读存储介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。本公开描述的各种计算机可读存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读存储介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
本公开的一些实施例还提供了一种计算机程序产品。该计算机程序产品包括计算机程序指令,在计算机上执行该计算机程序指令时,该计算机程序指令使计算机执行如上述实施例所述的获取方法,例如获取方法中的一个或多个步骤。
本公开的一些实施例还提供了一种计算机程序。当该计算机程序在计算机上执行时,该计算机程序使计算机执行如上述实施例所述的获取方法,例如获取方法中的一个或多个步骤。
上述计算机可读存储介质、计算机程序产品及计算机程序的有益效果和上述一些实施例所述的获取方法的有益效果相同,此处不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种显示装置,包括:
    显示面板,包括多个子像素;
    存储器,被配置为存储至少一组对应关系,每组对应关系包括2 N组灰阶数据以及与所述2 N组灰阶数据一一对应的2 N个寄存器值;每个寄存器值被配置为表征对应的一组灰阶数据的灰阶电压值;N为大于或等于6的正整数;
    驱动器,与所述存储器、信号传输接口和所述显示面板耦接;
    所述驱动器被配置为,获取所述存储器中的所述至少一组对应关系;接收来自所述信号传输接口的图像数据,所述图像数据包括与所述多个子像素对应的多组灰阶数据;并针对所述图像数据中的任一组灰阶数据,在一组对应关系中获取该组灰阶数据对应的寄存器值;根据所述寄存器值向所述显示面板的一子像素输出所述灰阶电压值对应的灰阶电压。
  2. 根据权利要求1所述的显示装置,其中,
    所述多个子像素包括多个第一颜色子像素、多个第二颜色子像素和多个第三颜色子像素;第一颜色、第二颜色和第三颜色为三基色;
    所述至少一组对应关系包括三组对应关系,所述三组对应关系分别用于所述显示面板中第一颜色子像素、第二颜色子像素和第三颜色子像素的灰阶电压值的获取;
    所述驱动器被配置为,针对所述图像数据中的任一组灰阶,确定该组灰阶对应的子像素的颜色;根据所述子像素的颜色,在所述三组对应关系中确定一组对应关系,确定的一组对应关系用于与所述子像素的颜色相同的第一颜色子像素、第二颜色子像素和第三颜色子像素中一者的灰阶电压值的获取;在所述确定的一组对应关系中获取所述灰阶对应的寄存器值。
  3. 根据权利要求1或2所述的显示装置,其中,所述存储器为非易失性存储器;
    所述驱动器包括:
    随机存储器,与所述非易失性存储器耦接;所述随机存储器被配置为,获取并存储所述非易失性存储器中的所述至少一组对应关系;
    所述随机存储器还与所述信号传输接口耦接;所述随机存储器还被配置为获取来自所述信号输出接口的图像数据;
    多个寄存器,与所述随机存储器耦接;
    控制器,与所述随机存储器和所述多个寄存器耦接;
    所述控制器被配置为,根据所述图像数据中的每组灰阶数据,控制一个 寄存器从所述随机存储器中的一组对应关系中获取并寄存与一组灰阶数据对应的寄存器值;
    灰阶电压输出电路,与所述多个寄存器和所述显示面板耦接;所述灰阶电压输出电路被配置为,根据来自所述寄存器中存储的所述寄存器值,向所述显示面板输出所述寄存器值所表征的灰阶电压值对应的灰阶电压。
  4. 根据权利要求1~3中任一项所述的显示装置,其中,所述灰阶电压输出电路包括:
    第一电压生成电路,与第一电压端和第二电压端耦接;所述第一电压生成电路被配置为,根据所述第一电压端的第一电压和所述第二电压端的第二电压,得到多个第三电压;其中,所述第一电压大于所述第二电压;
    多个第一选通电路;每个第一选通电路与所述第一电压生成电路、一个寄存器和所述显示面板耦接;所述第一选通电路被配置为,响应于来自所述寄存器中存储的寄存器值,向所述显示面板输出来自所述第一电压生成子电路的所述第一电压、所述第二电压以及所述多个第三压电中的一个电压,该一个电压为与所述寄存器值所表征的所述灰阶电压值对应的所述灰阶电压。
  5. 根据权利要求4所述的显示装置,其中,所述灰阶电压输出电路还包括:
    第二电压生成电路,与第一参考电压端和第二参考电压端耦接;所述第二电压生成电路被配置为,根据所述第一参考电压端的第一参考电压和所述第二参考电压端的第二参考电压,得到多个分压;
    第二选通电路,与所述第一电压端和所述第二电压生成电路耦接;所述第二选通电路被配置为,响应于所述2 N个寄存器值中表征最大灰阶电压值的寄存器值,输出所述多个分压中的一个分压,该分压为所述第一电压;和
    第三选通电路,与所述第二电压端和所述第二电压生成电路耦接;所述第三选通电路被配置为,响应于所述2 N个寄存器值中表征最小灰阶电压值的寄存器值,输出所述多个分压中的一个分压,该分压为所述第二电压。
  6. 根据权利要求5所述的显示装置,其中,
    所述第一电压生成电路包括第一电阻串;所述第一电阻串的两端分别与所述第二选通电路和所述第三选通电路耦接;
    所述第二电压生成电路包括第二电阻串;所述第二电阻串的两端分别与所述第一参考电压端和所述第二参考电压端耦接。
  7. 根据权利要求1~6中任一项所述的显示装置,其中,灰阶与对应的灰阶电压值满足公式:V X=A×G X β+B;
    其中,所述灰阶为一组灰阶数据的模拟值;V X表示所述灰阶电压值,G X表示所述灰阶,β表示预设参数,A和B分别表示比例系数。
  8. 根据权利要求7所述的显示装置,其中,所述预设参数的取值范围为-0.1~2.4。
  9. 根据权利要求1~8中任一项所述的显示装置,其中,所述N为8或10。
  10. 一种灰阶和灰阶电压对应关系的获取方法,包括:
    获得多个灰阶中的至少两个第一灰阶对应的灰阶电压值;其中,所述至少两个第一灰阶中的相邻两个第一灰阶之间存在多个第二灰阶;
    根据所述相邻两个第一灰阶及其对应的灰阶电压值,得到位于所述相邻两个第一灰阶之间的多个第二灰阶一一对应的灰阶电压值;其中,在灰阶和灰阶电压值构成的坐标系中,所述多个第二灰阶对应的灰阶电压值依次连接构成的连接线呈非线性;
    根据所述多个灰阶以及对应的多个灰阶电压值,获得一组对应关系;其中,一组对应关系包括所述多个灰阶以及与所述多个灰阶一一对应的多个寄存器值;每个寄存器值被配置为表征对应的灰阶的灰阶电压值。
  11. 根据权利要求10所述的获取方法,其中,所述多个灰阶为2 N个灰阶,N为大于或等于6的正整数。
  12. 根据权利要求10或11所述的获取方法,其中,所述获得多个灰阶中的至少两个第一灰阶对应的灰阶电压值,包括:
    针对任一第一灰阶,测量显示面板中一种颜色的子像素在显示所述第一灰阶时,所述显示面板的实际亮度;
    在所述显示面板的实际亮度达到所述第一灰阶的目标亮度的情况下,将测量得到的对所述显示面板中的所述颜色的子像素对应的驱动电压的数值作为所述第一灰阶对应的灰阶电压值。
  13. 根据权利要求10~12中任一项所述的获取方法,其中,所述根据所述相邻两个第一灰阶及其对应的灰阶电压值,得到位于所述相邻两个第一灰阶之间的多个第二灰阶一一对应的灰阶电压值,包括:
    根据所述相邻两个第一灰阶及其对应的灰阶电压值,进行非线性插值,得到位于所述相邻两个第一灰阶之间的多个第二灰阶对应的灰阶电压值。
  14. 根据权利要求10~13中任一项所述的获取方法,其中,
    第二灰阶对应的灰阶电压值与所述相邻两个第一灰阶及其应对的灰阶电压值满足公式:
    Figure PCTCN2021077240-appb-100001
    其中,V 3表示所述第二灰阶对应的灰阶电压值,V 2和V 1分别表示所述相邻两个第一灰阶对应的灰阶电压值,G 3表示所述第二灰阶,G 2和G 1分别表示所述相邻两个第一灰阶,β表示预设参数。
  15. 根据权利要求14所述的获取方法,其中,所述预设参数的取值范围为-0.1~2.4。
  16. 一种灰阶和灰阶电压对应关系的获取装置,包括:
    第一处理单元,被配置为获得多个灰阶中的至少两个第一灰阶对应的灰阶电压值;其中,所述至少两个第一灰阶中的相邻两个第一灰阶之间存在多个第二灰阶;
    第二处理单元,被配置为根据所述相邻两个第一灰阶及其对应的灰阶电压值,得到位于所述相邻两个第一灰阶之间的多个第二灰阶一一对应的灰阶电压值;其中,在灰阶和灰阶电压值构成的坐标系中,所述多个第二灰阶对应的灰阶电压值依次连接构成的连接线呈非线性;
    第三处理单元,被配置为根据所述多个灰阶以及对应的多个灰阶电压值,获得一组对应关系;其中,一组对应关系包括所述多个灰阶以及与所述多个灰阶一一对应的多个寄存器值;每个寄存器值被配置为表征对应的灰阶的灰阶电压值。
  17. 一种灰阶和灰阶电压对应关系的获取装置,包括:
    存储装置;所述存储装置中存储一个或多个计算机程序;
    处理装置,与所述存储装置耦接;所述处理装置被配置为执行所述计算机程序,以实现如权利要求10~15中任一项所述的获取方法。
  18. 一种计算机可读存储介质,其存储有计算机程序,其中,所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求10~15中任一项所述的获取方法。
PCT/CN2021/077240 2021-02-22 2021-02-22 灰阶和灰阶电压对应关系的获取方法及装置、显示装置 WO2022174445A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/631,404 US11967264B2 (en) 2021-02-22 2021-02-22 Method and apparatus for obtaining correspondences between grayscales and grayscale voltages, and display apparatus
PCT/CN2021/077240 WO2022174445A1 (zh) 2021-02-22 2021-02-22 灰阶和灰阶电压对应关系的获取方法及装置、显示装置
CN202180000269.8A CN115668351A (zh) 2021-02-22 2021-02-22 灰阶和灰阶电压对应关系的获取方法及装置、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/077240 WO2022174445A1 (zh) 2021-02-22 2021-02-22 灰阶和灰阶电压对应关系的获取方法及装置、显示装置

Publications (1)

Publication Number Publication Date
WO2022174445A1 true WO2022174445A1 (zh) 2022-08-25

Family

ID=82931935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077240 WO2022174445A1 (zh) 2021-02-22 2021-02-22 灰阶和灰阶电压对应关系的获取方法及装置、显示装置

Country Status (3)

Country Link
US (1) US11967264B2 (zh)
CN (1) CN115668351A (zh)
WO (1) WO2022174445A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101075415A (zh) * 2006-05-17 2007-11-21 恩益禧电子股份有限公司 显示装置、显示面板驱动器以及驱动显示面板的方法
CN104332151A (zh) * 2013-11-06 2015-02-04 苹果公司 具有对亮度设置敏感的峰值亮度控制的显示器
CN110349537A (zh) * 2019-07-23 2019-10-18 云谷(固安)科技有限公司 显示补偿方法、装置、计算机设备和存储介质
CN110556077A (zh) * 2019-09-26 2019-12-10 京东方科技集团股份有限公司 电压输出电路、驱动电路、显示面板及显示装置
CN111833793A (zh) * 2020-06-29 2020-10-27 昆山国显光电有限公司 伽马调试方法及伽马调试装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7504979B1 (en) 2006-08-21 2009-03-17 National Semiconductor Corporation System and method for providing an ultra low power scalable digital-to-analog converter (DAC) architecture
US20080303836A1 (en) 2007-06-01 2008-12-11 National Semiconductor Corporation Video display driver with partial memory control
KR101286536B1 (ko) 2008-03-17 2013-07-17 엘지디스플레이 주식회사 디지털 감마 보정 시스템 및 보정방법
KR101969830B1 (ko) * 2012-08-31 2019-08-14 삼성디스플레이 주식회사 감마 보정 커브 생성 방법, 감마 보정 유닛 및 이를 구비하는 유기 발광 표시 장치
KR102076042B1 (ko) 2013-01-17 2020-02-12 삼성디스플레이 주식회사 영상 표시 방법, 이를 수행하는 표시 장치, 이에 적용되는 보정값 산출 방법 및 장치
US9396684B2 (en) 2013-11-06 2016-07-19 Apple Inc. Display with peak luminance control sensitive to brightness setting
KR102368596B1 (ko) * 2015-06-26 2022-03-03 삼성디스플레이 주식회사 영상처리장치 및 영상처리방법
KR20180043563A (ko) 2016-10-20 2018-04-30 엘지디스플레이 주식회사 디지털-아날로그 변환회로와 그를 포함한 유기발광 표시장치
US20190122607A1 (en) * 2017-10-25 2019-04-25 Wuhan China Star Optoelectronics Semiconductor Display Technologies Co., Ltd. Automatic adjusting method of luminance and brightness for amoled display device
US11212424B2 (en) 2018-10-05 2021-12-28 Synaptics Incorporated Device and method for compensation of power source voltage drop
KR102651651B1 (ko) 2018-11-09 2024-03-28 엘지디스플레이 주식회사 표시장치 및 이의 구동방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101075415A (zh) * 2006-05-17 2007-11-21 恩益禧电子股份有限公司 显示装置、显示面板驱动器以及驱动显示面板的方法
CN104332151A (zh) * 2013-11-06 2015-02-04 苹果公司 具有对亮度设置敏感的峰值亮度控制的显示器
CN110349537A (zh) * 2019-07-23 2019-10-18 云谷(固安)科技有限公司 显示补偿方法、装置、计算机设备和存储介质
CN110556077A (zh) * 2019-09-26 2019-12-10 京东方科技集团股份有限公司 电压输出电路、驱动电路、显示面板及显示装置
CN111833793A (zh) * 2020-06-29 2020-10-27 昆山国显光电有限公司 伽马调试方法及伽马调试装置

Also Published As

Publication number Publication date
US20230162645A1 (en) 2023-05-25
US11967264B2 (en) 2024-04-23
CN115668351A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
CN107240372B (zh) 显示器驱动电路和包括显示器驱动电路的显示装置
US11482171B2 (en) Display panel, display module, and display device and control method therefor
TWI591608B (zh) 產生伽瑪修正曲線的方法、伽瑪修正單元及具有其之有機發光顯示裝置
US10089920B2 (en) Rollable display device and electronic device including the same
US11373593B2 (en) Display device and method for generating compensating data of the same
WO2020211543A1 (zh) 显示调试方法、补偿方法及装置、显示装置和存储介质
CN108922483B (zh) 像素电路、阵列基板、显示面板及电子设备
US10339847B2 (en) Display apparatus
CN109712569B (zh) 一种减小显示色差的方法及oled显示面板
US10580343B2 (en) Display data transmission method and apparatus, display panel drive method and apparatus
JP2019095527A (ja) 表示ドライバ、表示装置及び画像補正方法
US9685123B2 (en) Method of testing a display apparatus and a display apparatus tested by the same
WO2022174445A1 (zh) 灰阶和灰阶电压对应关系的获取方法及装置、显示装置
US9558539B2 (en) Method of processing image data and display system for display power reduction
CN112447134A (zh) 显示面板的灰度校正方法和系统
KR102043625B1 (ko) 주파수 보정 방법 및 이를 이용한 표시장치
US11348504B2 (en) Display driver integrated circuit (DDI) chip and display apparatus
WO2022022093A1 (zh) 数据处理方法、数据处理装置、显示装置
TWI424400B (zh) 電泳顯示器
US11030927B2 (en) Method of performing a sensing operation in an organic light emitting diode display device, and organic light emitting diode display device
US11984066B2 (en) Processing method and processing device for pixel data, display device, display method, and computer readable storage medium
US11501688B2 (en) Display device selectively performing a mura correction operation, and method of operating a display device
CN106910477B (zh) 数据转换方法及其显示设备
CN111443754B (zh) 伽马电压输出电路及模块、校准方法及装置、显示装置
US11551622B2 (en) Display apparatus and method of driving display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205A DATED 16.01.2024)