WO2022174431A1 - 图像传输方法、可移动平台、设备及计算机可读存储介质 - Google Patents

图像传输方法、可移动平台、设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2022174431A1
WO2022174431A1 PCT/CN2021/077124 CN2021077124W WO2022174431A1 WO 2022174431 A1 WO2022174431 A1 WO 2022174431A1 CN 2021077124 W CN2021077124 W CN 2021077124W WO 2022174431 A1 WO2022174431 A1 WO 2022174431A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
gdr
movable platform
image frame
slice
Prior art date
Application number
PCT/CN2021/077124
Other languages
English (en)
French (fr)
Inventor
吴一凡
刘怀宇
赵亮
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/077124 priority Critical patent/WO2022174431A1/zh
Publication of WO2022174431A1 publication Critical patent/WO2022174431A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/107Selection of coding mode or of prediction mode between spatial and temporal predictive coding, e.g. picture refresh
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/164Feedback from the receiver or from the transmission channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • the present application relates to the technical field of image transmission, and in particular, to an image transmission method, a movable platform, a device, and a computer-readable storage medium.
  • the mobile platform can transmit the captured image to the terminal device in real time through wireless communication, and the terminal device displays the transmitted image, so that the user can know the position of the obstacle in real time based on the displayed image, which is convenient for the user to control the mobile platform. Avoid obstacles.
  • the mobile platform needs to send a fault-tolerant frame to the terminal device.
  • the data volume of the fault-tolerant frame is large, and the communication quality of the image transmission link is not good. It is necessary to try to transmit the fault-tolerant frame many times, which causes the image displayed by the terminal device to freeze. It can only be recovered after the fault-tolerant frame is successfully received. Bad experience.
  • the embodiments of the present application provide an image transmission method, a movable platform, a device, and a computer-readable storage medium, which aim to solve the problem that the image frame cannot be quickly restored when the image frame transmission fails.
  • an embodiment of the present application provides an image transmission method, which is applied to a movable platform, where a wireless communication link is established between the movable platform and a terminal device, and the wireless communication link is used to transmit the The image frames collected by the movable platform are transmitted to the terminal device, and the method includes:
  • GDR encoding is performed on the image frame to obtain a GDR frame, and the GDR frame includes a plurality of P slices and at least one I slice;
  • inter-frame coding is performed on the image frame currently collected by the movable platform to obtain the inter-frame image frame, and the inter-frame image frame is sent to the terminal device.
  • an embodiment of the present application further provides an image transmission method, which is applied to a terminal device, where a wireless communication link is established between the terminal device and a movable platform, and the wireless communication link is used to transmit the The image frames collected by the movable platform are transmitted to the terminal device, and the method includes:
  • the GDR frame is obtained by performing GDR encoding on the image frame by the movable platform, and the GDR frame includes a plurality of P slices and at least one I slice;
  • an embodiment of the present application further provides a movable platform, where a wireless communication link is established between the movable platform and a terminal device, and the wireless communication link is used to collect data from the movable platform.
  • the image frame is transmitted to the terminal device, and the movable platform includes a memory and a processor;
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program and implement the following steps when executing the computer program:
  • GDR encoding is performed on the image frame to obtain a GDR frame, and the GDR frame includes a plurality of P slices and at least one I slice;
  • inter-frame coding is performed on the image frame currently collected by the movable platform to obtain the inter-frame image frame, and the inter-frame image frame is sent to the terminal device.
  • an embodiment of the present application further provides a terminal device, where a wireless communication link is established between the terminal device and the movable platform, and the wireless communication link is used to collect data collected by the movable platform.
  • the image frame is transmitted to the terminal device, and the terminal device includes a memory and a processor;
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program and implement the following steps when executing the computer program:
  • the GDR frame is obtained by performing GDR encoding on the image frame by the movable platform, and the GDR frame includes a plurality of P slices and at least one I slice;
  • an embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor implements the following steps:
  • GDR encoding is performed on the image frame collected by the movable platform to obtain a GDR frame, and the GDR frame includes a plurality of P slices and at least one I slice ;
  • inter-frame coding is performed on the image frame currently collected by the movable platform to obtain the inter-frame image frame, and the inter-frame image frame is sent to the terminal device.
  • an embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor implements the following steps:
  • the GDR frame is obtained by performing GDR encoding on the image frame by the movable platform, and the GDR frame includes a plurality of P slices and at least one I slice;
  • Embodiments of the present application provide an image transmission method, a movable platform, a device, and a computer-readable storage medium.
  • GDR encoding is performed on the image frame, Obtain the GDR frame, and send the GDR frame to the terminal device, so that the terminal device restores the image frame based on multiple P slices and at least one I slice in the GDR frame, and after the wireless communication link returns to normal, the mobile platform is currently collected.
  • the received image frame is inter-coded to obtain the inter-frame image frame, and the inter-frame image frame is sent to the terminal device.
  • the data volume of the GDR frame will be less than that of the fault-tolerant frame, so that the wireless communication link can transmit the GDR frame to the terminal device more easily, and the image can be restored based on the I slice of the GDR frame, It can also solve the problem of screen freeze, which greatly improves the user experience.
  • FIG. 1 is a schematic diagram of a scene for implementing the image transmission method provided by the embodiment of the present application
  • FIG. 2 is a schematic flowchart of steps of an image transmission method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a GDR frame in an embodiment of the present application.
  • FIG. 4 is another schematic diagram of a GDR frame in an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of steps of another image transmission method provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural block diagram of a movable platform provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural block diagram of a terminal device provided by an embodiment of the present application.
  • the mobile platform can transmit the captured image to the terminal device in real time through wireless communication, and the terminal device displays the transmitted image, so that the user can know the position of the obstacle in real time based on the displayed image, which is convenient for the user to control the mobile platform. Avoid obstacles.
  • the mobile platform needs to send a fault-tolerant frame to the terminal device.
  • the data volume of the fault-tolerant frame is large, and the communication quality of the image transmission link is not good. It is necessary to try to transmit the fault-tolerant frame many times, which causes the image displayed by the terminal device to freeze. It can only be recovered after the fault-tolerant frame is successfully received. Bad experience.
  • Embodiments of the present application provide an image transmission method, a movable platform, a device, and a computer-readable storage medium.
  • GDR encoding is performed on the image frame, Obtain the GDR frame, and send the GDR frame to the terminal device, so that the terminal device restores the image frame based on multiple P slices and at least one I slice in the GDR frame, and after the wireless communication link returns to normal, the mobile platform is currently collected.
  • the received image frame is inter-coded to obtain the inter-frame image frame, and the inter-frame image frame is sent to the terminal device.
  • the data volume of the GDR frame will be less than that of the fault-tolerant frame, so that the wireless communication link can transmit the GDR frame to the terminal device more easily, and the image can be restored based on the I slice of the GDR frame, It can also solve the problem of screen freeze, which greatly improves the user experience.
  • FIG. 1 is a schematic diagram of a scene for implementing the image transmission method provided by the embodiment of the present application.
  • the scenario includes a movable platform 100 and a terminal device 200 .
  • a wireless communication link is established between the movable platform 100 and the terminal device 200 , and the wireless communication link is used to collect the data collected by the movable platform 100 .
  • the image frames are transmitted to the terminal device 200 , and the terminal device 200 is used to control the movable platform 100 .
  • the movable platform 100 includes a platform body 110, a power system 120 provided on the platform body 110, a photographing device 130 and a control system (not shown in FIG. 1 ), and the power system 120 is used to provide moving power for the movable platform 100,
  • the photographing device 130 is used for capturing image frames.
  • the power system 120 may include one or more propellers 121 , one or more motors 122 corresponding to the one or more propellers, and one or more electronic governors (referred to as ESCs for short).
  • the motor 122 is connected between the electronic governor and the propeller 121, and the motor 122 and the propeller 121 are arranged on the platform body 110 of the movable platform 100; the electronic governor is used for receiving the driving signal generated by the control system, and according to the driving signal A driving current is provided to the motor 122 to control the rotational speed of the motor 122 .
  • the motor 122 is used to drive the propeller 121 to rotate, thereby providing power for the movement of the movable platform 100, and the power enables the movable platform 100 to achieve one or more degrees of freedom movement.
  • the movable platform 100 may rotate about one or more axes of rotation.
  • the above-mentioned rotation axes may include a roll axis, a yaw axis, and a pitch axis.
  • the motor 122 may be a DC motor or an AC motor.
  • the motor 122 may be a brushless motor or a brushed motor.
  • the control system may include a controller and a sensing system.
  • the sensing system is used to measure the attitude information of the movable platform, that is, the position information and state information of the movable platform 100 in space, such as three-dimensional position, three-dimensional angle, three-dimensional velocity, three-dimensional acceleration and three-dimensional angular velocity.
  • the sensing system may include at least one of a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit (Inertial Measurement Unit, IMU), a visual sensor, a global navigation satellite system, a barometer, and other sensors.
  • the global navigation satellite system may be the Global Positioning System (GPS).
  • the controller is used to control the movement of the movable platform 100, for example, the movement of the movable platform 100 can be controlled according to the attitude information measured by the sensing system. It should be understood that the controller can control the movable platform 100 according to pre-programmed instructions.
  • the controller is further configured to: perform GDR encoding on the image frame to obtain a GDR frame when the wireless communication link is abnormal, and the GDR frame includes a plurality of P slices and at least one I slice;
  • the device sends the GDR frame for the terminal device to restore the image frame based on multiple P slices and at least one I slice; after the wireless communication link returns to normal, perform inter-frame coding on the image frame currently collected by the movable platform to obtain the frame inter-frame image frames, and send the inter-frame image frames to the terminal device.
  • the terminal device 200 includes a display device 210 , and the terminal device 200 displays the image frames sent by the movable platform 100 through the display device 210 for viewing by the user.
  • the display device 210 includes a display screen disposed on the terminal device 200 or a display independent of the terminal device 200, and the display independent of the terminal device 200 may include a mobile phone, a tablet computer, a personal computer, etc. Other electronic equipment with a display screen.
  • the display screen includes an LED display screen, an OLED display screen, an LCD display screen, and the like.
  • the movable platform 100 includes unmanned aerial vehicles, unmanned vehicles, manned vehicles, manned aircraft and mobile robots, and the unmanned aerial vehicles include rotary-wing unmanned aerial vehicles, such as single-rotor unmanned aerial vehicles, dual-rotor unmanned aerial vehicles, A quad-rotor drone, a six-rotor drone, an eight-rotor drone, or a fixed-wing drone, or a combination of a rotary-wing and fixed-wing drone, is not limited here.
  • Terminal device 200 may include, but is not limited to, smart phones/mobile phones, tablet computers, personal digital assistants (PDAs), desktop computers, media content players, video game stations/systems, virtual reality systems, augmented reality systems, wearable devices (eg, watches, glasses, gloves, headwear (eg, hats, helmets, virtual reality headsets, augmented reality headsets, head mounted devices (HMDs), headbands), pendants, armbands, leg loops, shoes, vest), gesture recognition device, microphone, any electronic device capable of providing or rendering image data, or any other type of device.
  • the terminal device 200 may be a handheld terminal, and the terminal device 200 may be portable.
  • the terminal device 200 may be carried by a human user. In some cases, the end device 200 may be remote from the human user, and the user may control the end device 200 using wireless and/or wired communications.
  • the image transmission method provided in this application can also be applied to image transmission between a movable platform and a movable platform (such as video transmission between two manned vehicles), and the difference between the terminal device and the terminal device.
  • image transmission (such as video call) between surveillance cameras and terminal equipment, etc., which are not specifically limited in this application.
  • the first movable platform performs GDR on the captured image frames
  • the GDR frame is obtained by encoding;
  • the GDR frame is sent to the second movable platform, so that the second movable platform can restore the image frame based on a plurality of P slices and at least one I slice in the GDR frame;
  • the image frames currently collected by the first movable platform are inter-coded to obtain the inter-frame image frames, and the inter-frame image frames are sent to the second movable platform.
  • the first terminal device performs GDR encoding on the collected image frame to obtain the GDR frame
  • Send the GDR frame to the second terminal equipment for the second terminal equipment to restore the image frame based on a plurality of P slices and at least one I slice in the GDR frame
  • the second terminal equipment restore the image frame based on a plurality of P slices and at least one I slice in the GDR frame
  • the current collection of the first terminal equipment The received image frame is inter-coded to obtain the inter-frame image frame, and the inter-frame image frame is sent to the second terminal device.
  • the surveillance camera performs GDR encoding on the captured image frame to obtain the GDR frame;
  • the device sends the GDR frame for the terminal device to restore the image frame based on multiple P slices and at least one I slice in the GDR frame; after the wireless communication link returns to normal, the image frame currently collected by the surveillance camera is subjected to inter-frame encoding to obtain Inter-frame image frames, and send the inter-frame image frames to the terminal device.
  • the image transmission method provided by the embodiments of the present application will be described in detail with reference to the scene in FIG. 1 .
  • the scene in FIG. 1 is only used to explain the image transmission method provided by the embodiment of the present application, but does not constitute a limitation on the application scene of the image transmission method provided by the embodiment of the present application.
  • FIG. 2 is a schematic flowchart of steps of an image transmission method provided by an embodiment of the present application.
  • the image transmission method can be applied to a movable platform, and a wireless communication link is established between the movable platform and the terminal device, and the wireless communication link is used to transmit the image frames collected by the movable platform to the terminal device.
  • the image transmission method includes steps S101 to S103.
  • Step S101 when the wireless communication link is abnormal, perform GDR encoding on the image frame to obtain a GDR frame, and the GDR frame includes a plurality of P slices and at least one I slice;
  • Step S102 sending the GDR frame to the terminal device for the terminal device to restore the image frame based on the multiple P slices and the at least one I slice;
  • Step S103 After the wireless communication link returns to normal, perform inter-frame coding on the image frame currently collected by the movable platform to obtain the inter-frame image frame, and send the inter-frame image frame to the terminal device.
  • the Gradual Decoder Refresh (GDR) frame is that the movable platform performs intra-frame encoding on at least one slice (slice) in the image frame and performs inter-frame encoding on multiple slices other than at least one slice in the image frame
  • one slice may include one or more macroblocks
  • at least one I slice is obtained by performing intra-frame coding on at least one slice in the image frame
  • multiple P slices are obtained by dividing at least one slice in the image frame.
  • the inter-frame image frame refers to an image frame obtained by performing inter-frame encoding on the image frame
  • the inter-frame image frame may be a P frame.
  • the GDR frame includes 4 slices, namely slice 11, slice 12, slice 13 and slice 14, and slice 11 is an I slice, and slice 12, slice 13 and slice 14 are P slices.
  • the image frame is divided into N slices, and the first slice is subjected to intra-frame encoding to obtain the first I slice, and then the remaining N-1 slices are subjected to inter-frame encoding to obtain N-1 P slices, so as to obtain the first GDR frame, and send the first GDR frame to the terminal device; split the image frame into N slices again, and perform intra-frame coding on the second slice to obtain the first GDR frame.
  • the sizes of the split pieces may be the same or different, which is not specifically limited in this embodiment of the present application.
  • the width of the I slice is greater than the width of the P slice, and the width difference between the P slice and the I slice adjacent to the I slice is equal to the width of M or 2M macroblocks, where M is a positive integer, and M It may be set based on the actual situation, which is not specifically limited in this embodiment of the present application, and the position of the I slice in the GDR frame changes periodically.
  • the width difference between the P slice adjacent to the I slice and the I slice is equal to the width of M macroblocks
  • the position of the I slice in the GDR frame is not At the edge position
  • the width difference between the P slice adjacent to the I slice and the I slice is equal to the width of 2M macroblocks.
  • an encoded image is divided into several macroblocks, a macroblock consists of a luminance pixel block and two additional chrominance pixel blocks, and several macroblocks are arranged in the form of slices.
  • the first GDR frame includes slice 11, slice 12, slice 13 and slice 14, slice 11 is an I slice, and the width difference between slice 11 and slice 12 is equal to the width of M macroblocks Width;
  • the second GDR frame includes slice 21, slice 22, slice 23 and slice 24, slice 22 is an I slice, and the width difference between slice 22 and slice 21 or slice 23 is equal to the width of 2M macroblocks;
  • the first The 3 GDR frames include slice 31, slice 32, slice 33 and slice 34, slice 33 is an I slice, and the width difference between slice 33 and slice 32 or slice 34 is equal to the width of 2M macroblocks;
  • the fourth GDR The frame includes slice 41, slice 42, slice 43 and slice 44, slice 44 is an I slice, and the difference in width between slice 44 and slice 43 is equal to the width of M macroblocks.
  • the width difference between the P slice adjacent to the I slice and the I slice is equal to the width of M or 2M macroblocks, and when GDR encoding is performed on the image frame, the The lateral motion range is less than or equal to the width of M macroblocks.
  • the movable platform obtains feedback information sent by the terminal device; if the feedback information is abnormal feedback information, it is determined that the wireless communication link between the movable platform and the terminal device is abnormal, and the abnormal feedback information is used to indicate The movable platform transmits GDR frames; if the feedback information is normal feedback information, it is determined that the wireless communication link between the movable platform and the terminal device is back to normal, and the normal feedback information is used to instruct the movable platform to transmit inter-frame image frames.
  • the terminal device obtains the encoded image frame sent by the movable platform; determines whether the encoded image frame has an error; if the encoded image frame has an error, determines that the wireless communication link is abnormal, and sends the The mobile platform sends error feedback information to indicate that the wireless communication link of the mobile platform is abnormal, and instructs the mobile platform to transmit the GDR frame to the terminal device; if there is no error in the encoded image frame, it is determined that the wireless communication link does not appear. abnormal, and send correct feedback information to the movable platform to indicate that the wireless communication link of the movable platform is not abnormal, and instruct the movable platform to transmit inter-frame image frames to the terminal device.
  • the GDR frame includes the first number of slices
  • the way to determine whether the wireless communication link is back to normal may be: acquiring the second number of GDR frames successfully received by the terminal device; if the second number is greater than or equal to the first number, it is determined that the wireless communication link is back to normal; if the second number is less than the first number, it is determined that the wireless communication link is not back to normal.
  • the movable platform continues to perform GDR encoding on the image frame to obtain a GDR frame, and sends the GDR frame to the terminal device until the wireless communication link returns to normal.
  • a GDR frame includes 4 slices. If the number of GDR frames successfully received by the terminal device is 4, it can be determined that the wireless communication link is back to normal, that is, the terminal device receives 4 GDR frames, and based on the 4 GDR frames The I slice in the GDR frame can restore a complete picture. If the number of GDR frames successfully received by the terminal device is 3, it can be determined that the wireless communication link has not returned to normal. It can be understood that after the terminal device receives the GDR, since the I slice in the GDR frame is obtained by intra-frame coding, and does not refer to other slices or image frames, the corresponding image can be restored based on the I slice in the GDR frame. Since the position of the I slice in the GDR frame changes periodically, the complete picture can be restored by continuously receiving the GDR frame.
  • the way of determining whether the wireless communication link is back to normal may be: determining the quotient of the second number and the first number; if the quotient of the second number and the first number is greater than or equal to a preset threshold , it is determined that the wireless communication link is back to normal; if the quotient of the second number and the first number is less than the preset threshold, it is determined that the wireless communication link is not back to normal.
  • the preset threshold may be set based on the actual situation, which is not specifically limited in this embodiment of the present application. For example, the preset threshold is 3, and the GDR frame includes 4 slices. If the number of GDR frames successfully received by the terminal device is 12, the quotient of 12 and 3 is 4. Therefore, it can be determined that the wireless communication link is back to normal. If the number of GDR frames successfully received by the terminal device is 9, the quotient of 9 and 3 is 3, so it can be determined that the wireless communication link has not returned to normal.
  • GDR encoding is performed on the image frame corresponding to the encoded image frame to obtain the GDR frame.
  • GDR encoding is performed on the image frame currently collected by the movable platform to obtain the GDR frame.
  • the movable platform when the wireless communication link between the movable platform and the terminal device is abnormal, the movable platform sends the GDR frame to the terminal device, so that the terminal device is based on the multiple P in the GDR frame.
  • the slice and at least one I slice restore the image frame, and after the wireless communication link is restored to normal, the inter-frame image frame (P frame) is sent to the terminal device.
  • the I-slice of the GDR frame is used to restore the image and improve the reliability of image transmission, so as to solve the problem of screen jamming. Improve coding efficiency.
  • FIG. 5 is a schematic flowchart of steps of another image transmission method provided by an embodiment of the present application.
  • the image transmission method is applied to a terminal device, and a wireless communication link is established between the terminal device and the movable platform, and the wireless communication link is used for transmitting the image frames collected by the movable platform to the terminal device.
  • the image transmission method includes steps S201 to S205.
  • Step S201 when the wireless communication link is abnormal, send error feedback information to the mobile platform, where the error feedback information is used to instruct the mobile platform to transmit a GDR frame;
  • Step S202 obtain the GDR frame sent by the movable platform, the GDR frame is obtained by the movable platform performing GDR encoding on the image frame, and the GDR frame includes a plurality of P slices and at least one I slice;
  • Step S203 restore the image frame according to the multiple P slices and the at least one I slice;
  • Step S204 if the first number of the received GDR frame does not meet the preset condition, continue to send error feedback information to the movable platform;
  • Step S205 if the first number of the received GDR frames meets a preset condition, send correct feedback information to the movable platform, where the correct feedback information is used to instruct the movable platform to transmit inter-frame image frames .
  • the Gradual Decoder Refresh (GDR) frame is that the movable platform performs intra-frame encoding on at least one slice (slice) in the image frame and performs inter-frame encoding on multiple slices other than at least one slice in the image frame
  • one slice may include one or more macroblocks
  • at least one I slice is obtained by performing intra-frame coding on at least one slice in the image frame
  • multiple P slices are obtained by dividing at least one slice in the image frame.
  • the inter-frame image frame refers to an image frame obtained by performing inter-frame encoding on the image frame
  • the inter-frame image frame may be a P frame.
  • the preset conditions include at least one of the following: the first number is greater than or equal to the second number of slices in the GDR frame, and the quotient of the first number and the second number is greater than or equal to a preset threshold.
  • the terminal device obtains the encoded image frame sent by the movable platform; determines whether the encoded image frame has errors; if the encoded image frame has errors, determines that the wireless communication link is abnormal.
  • the method of determining whether the encoded image frame has errors may be: performing a cyclic redundancy check on the encoded image frame; if the encoded image frame fails the cyclic redundancy check, determining the encoded image frame An error occurs; if the encoded image frame passes the cyclic redundancy check, it is determined that the encoded image frame has no error.
  • the encoded image frame may be a GDR frame or an inter-frame image frame, which is not specifically limited in this application.
  • the GDR frame and the encoded image frame are obtained by encoding the same image frame by the movable platform.
  • the movable platform performs GDR encoding on the image frame corresponding to the encoded image frame, which can ensure that the GDR frame and the encoded image frame are obtained by encoding the same image frame.
  • the smoothness of the screen is obtained.
  • the GDR frame is obtained by the movable platform performing GDR encoding on the image frame currently collected by the movable platform.
  • the image frame currently collected by the movable platform is After GDR encoding, the latest GDR frame can be obtained to ensure the real-time nature of the picture.
  • the error feedback information is sent to the movable platform; the GDR frame sent by the movable platform is obtained, and the GDR frame is obtained by performing GDR encoding on the image frame by the movable platform, and the GDR frame includes multiple P slices and at least one I slice; restore image frames according to multiple P slices and at least one I slice; if the first number of received GDR frames does not meet the preset condition, continue to send error feedback information to the movable platform; If the first number of received GDR frames satisfies the preset condition, correct feedback information is sent to the movable platform, and the correct feedback information is used to instruct the movable platform to transmit inter-frame image frames.
  • the mobile platform When the terminal device is powered on, the default wireless communication link is abnormal. Therefore, the mobile platform is instructed to send GDR frames, and then when the first number of received GDR frames meets the preset conditions, the mobile platform is instructed to transmit between frames. Image frames can improve the reliability of image transmission while taking into account the coding efficiency.
  • the terminal device instructs the movable platform to transmit the GDR frame, so that the terminal device can transmit the GDR frame based on the multiple P in the GDR frame.
  • the slice and at least one I slice restore the image frame, and after the wireless communication link returns to normal, the movable platform is instructed to transmit the inter-frame image frame (P frame), so that when an abnormality occurs in the wireless communication link, based on the amount of data
  • the I-slice of the few GDR frames is used to restore the image and improve the reliability of the image transmission, so as to solve the problem of screen jamming.
  • the inter-frame image frame (P frame) is sent to the terminal device. , which can improve the coding efficiency, and improve the reliability of image transmission while taking into account the coding efficiency.
  • FIG. 6 is a schematic structural block diagram of a movable platform provided by an embodiment of the present application.
  • a wireless communication link is established between the movable platform and the terminal device, and the wireless communication link is used to transmit the image frames collected by the movable platform to the terminal device.
  • the movable platform 300 includes a processor 301 and a memory 302, and the processor 301 and the memory 302 are connected by a bus 303, such as an I2C (Inter-integrated Circuit) bus.
  • a bus 303 such as an I2C (Inter-integrated Circuit) bus.
  • the processor 301 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU) or a digital signal processor (Digital Signal Processor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 302 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • ROM Read-Only Memory
  • the memory 302 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • the processor 301 is used for running the computer program stored in the memory 302, and implements the following steps when executing the computer program:
  • GDR encoding is performed on the image frame to obtain a GDR frame, and the GDR frame includes a plurality of P slices and at least one I slice;
  • inter-frame coding is performed on the image frame currently collected by the movable platform to obtain the inter-frame image frame, and the inter-frame image frame is sent to the terminal device.
  • the width of the I slice is greater than the width of the P slice, and the difference in width between the P slice adjacent to the I slice and the I slice is equal to M or 2M macros
  • M is a positive integer.
  • the lateral motion range of the reference macroblock participating in the encoding is less than or equal to the width of the M macroblocks.
  • the position of the I-slice within the GDR frame changes periodically.
  • the at least one I slice is obtained by intra-coding at least one slice in the image frame
  • the plurality of P slices are obtained by dividing the at least one slice in the image frame. It is obtained by performing inter-frame coding on the other slices.
  • the GDR frame includes the first number of slices, and the processor is further configured to implement the following steps:
  • the second number is smaller than the first number, it is determined that the wireless communication link has not returned to normal.
  • the processor is further configured to implement the following steps:
  • the processor is further configured to implement the following steps:
  • the feedback information is abnormal feedback information, it is determined that the wireless communication link is abnormal, and the abnormal feedback information is used to instruct the movable platform to transmit a GDR frame;
  • the feedback information is normal feedback information, it is determined that the wireless communication link is back to normal, and the normal feedback information is used to instruct the movable platform to transmit inter-frame image frames.
  • the processor when the processor implements GDR encoding on the image frame to obtain a GDR frame, the processor is used to implement:
  • GDR encoding is performed on the image frame corresponding to the encoded image frame to obtain a GDR frame.
  • the processor when the processor implements GDR encoding on the image frame to obtain a GDR frame, the processor is used to implement:
  • GDR encoding is performed on the image frame currently collected by the movable platform to obtain a GDR frame.
  • FIG. 7 is a schematic structural block diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 400 includes a processor 401 and a memory 402, and the processor 401 and the memory 402 are connected through a bus 403, such as an I2C (Inter-integrated Circuit) bus.
  • a bus 403 such as an I2C (Inter-integrated Circuit) bus.
  • the processor 401 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU), or a digital signal processor (Digital Signal Processor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 402 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, or a mobile hard disk, and the like.
  • ROM Read-Only Memory
  • the memory 402 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, or a mobile hard disk, and the like.
  • the processor 401 is used for running the computer program stored in the memory 402, and implements the following steps when executing the computer program:
  • the GDR frame is obtained by performing GDR encoding on the image frame by the movable platform, and the GDR frame includes a plurality of P slices and at least one I slice;
  • the processor is further configured to implement the following steps:
  • the processor when the processor determines whether an error occurs in the encoded image frame, the processor is configured to:
  • the encoded image frame fails the cyclic redundancy check, it is determined that an error occurs in the encoded image frame.
  • the GDR frame and the encoded image frame are obtained by encoding the same image frame by the movable platform.
  • the GDR frame is obtained by the movable platform performing GDR encoding on an image frame currently collected by the movable platform.
  • the preset condition includes at least one of the following:
  • the first number is greater than or equal to the second number of slices in the GDR frame
  • the quotient of the first number and the second number is greater than or equal to a preset threshold.
  • the processor is further configured to implement the following steps:
  • Embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the following steps:
  • GDR encoding is performed on the image frame collected by the movable platform to obtain a GDR frame, and the GDR frame includes a plurality of P slices and at least one I slice ;
  • inter-frame coding is performed on the image frame currently collected by the movable platform to obtain the inter-frame image frame, and the inter-frame image frame is sent to the terminal device.
  • the width of the I slice is greater than the width of the P slice, and the difference in width between the P slice adjacent to the I slice and the I slice is equal to M or 2M macros
  • M is a positive integer.
  • the lateral motion range of the reference macroblock participating in the encoding is less than or equal to the width of the M macroblocks.
  • the position of the I-slice within the GDR frame changes periodically.
  • the at least one I slice is obtained by intra-coding at least one slice in the image frame
  • the plurality of P slices are obtained by dividing the at least one slice in the image frame. It is obtained by performing inter-frame coding on the other slices.
  • the GDR frame includes a first number of slices
  • the computer program when executed by a processor, causes the processor to implement the following steps:
  • the second number is smaller than the first number, it is determined that the wireless communication link has not returned to normal.
  • the computer program when executed by a processor, causes the processor to perform the following steps:
  • the computer program when executed by a processor, causes the processor to perform the following steps:
  • the feedback information is abnormal feedback information, it is determined that the wireless communication link is abnormal, and the abnormal feedback information is used to instruct the movable platform to transmit a GDR frame;
  • the feedback information is normal feedback information, it is determined that the wireless communication link is back to normal, and the normal feedback information is used to instruct the movable platform to transmit inter-frame image frames.
  • the computer program when the computer program is executed by the processor, when the processor implements GDR encoding on the image frame to obtain the GDR frame, the computer program is used to realize:
  • GDR encoding is performed on the image frame corresponding to the encoded image frame to obtain a GDR frame.
  • the computer program when the computer program is executed by the processor, when the processor implements GDR encoding on the image frame to obtain the GDR frame, the computer program is used to realize:
  • GDR encoding is performed on the image frame currently collected by the movable platform to obtain a GDR frame.
  • the computer-readable storage medium may be an internal storage unit of the removable platform described in any of the foregoing embodiments, such as a hard disk or a memory of the removable platform.
  • the computer-readable storage medium may also be an external storage device of the removable platform, such as a plug-in hard disk of the removable platform, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) ) card, Flash Card, etc.
  • Embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the following steps:
  • the GDR frame is obtained by performing GDR encoding on the image frame by the movable platform, and the GDR frame includes a plurality of P slices and at least one I slice;
  • the computer program when executed by a processor, causes the processor to perform the following steps:
  • the processor when the computer program is executed by the processor, the processor is configured to implement, when determining whether an error occurs in the encoded image frame, the processor:
  • the encoded image frame fails the cyclic redundancy check, it is determined that an error occurs in the encoded image frame.
  • the GDR frame and the encoded image frame are obtained by encoding the same image frame by the movable platform.
  • the GDR frame is obtained by the movable platform performing GDR encoding on an image frame currently collected by the movable platform.
  • the preset condition includes at least one of the following:
  • the first number is greater than or equal to the second number of slices in the GDR frame
  • the quotient of the first number and the second number is greater than or equal to a preset threshold.
  • the computer program when executed by a processor, causes the processor to perform the following steps:
  • the computer-readable storage medium may be an internal storage unit of the terminal device described in any of the foregoing embodiments, such as a hard disk or a memory of the terminal device.
  • the computer-readable storage medium may also be an external storage device of the terminal device, such as a plug-in hard disk of the terminal device, a smart memory card (Smart Media Card, SMC), a Secure Digital (Secure Digital, SD) card , Flash Card (Flash Card) and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

一种图像传输方法、可移动平台、设备及计算机可读存储介质,其中该方法包括:在所述无线通信链路出现异常时,对所述图像帧进行GDR编码得到GDR帧,所述GDR帧包括多个P片和至少一个I片(S101);向所述终端设备发送所述GDR帧,以供所述终端设备基于所述多个P片和所述至少一个I片恢复所述图像帧(S102);在所述无线通信链路恢复正常后,对所述可移动平台当前采集到的图像帧进行帧间编码得到帧间图像帧,并向所述终端设备发送所述帧间图像帧(S103)。该方法能够解决图像帧传输失败时无法快速恢复图像帧的问题。

Description

图像传输方法、可移动平台、设备及计算机可读存储介质 技术领域
本申请涉及图像传输技术领域,尤其涉及一种图像传输方法、可移动平台、设备及计算机可读存储介质。
背景技术
目前,可移动平台可以通过无线通信方式将拍摄得到的图像实时传输至终端设备,由终端设备显示传输的图像,使得用户能够基于显示的图像实时的知晓障碍物的位置,便于用户控制可移动平台避开障碍物。然而,可移动平台通过图传链路向终端设备传输图像的过程中,在图传链路出现中断或者图传链路传输的当前图像帧传输失败时,需要可移动平台向终端设备发送容错帧,而容错帧的数据量较大,且图传链路的通信质量不好,需要多次尝试传输容错帧,导致终端设备显示的图像出现卡顿,只有在成功接收到容错帧才能恢复,用户体验不好。
发明内容
基于此,本申请实施例提供了一种图像传输方法、可移动平台、设备及计算机可读存储介质,旨在解决图像帧传输失败时无法快速恢复图像帧的问题。
第一方面,本申请实施例提供了一种图像传输方法,应用于可移动平台,所述可移动平台与终端设备之间建立有无线通信链路,所述无线通信链路用于将所述可移动平台采集到的图像帧传输至所述终端设备,所述方法包括:
在所述无线通信链路出现异常时,对所述图像帧进行GDR编码得到GDR帧,所述GDR帧包括多个P片和至少一个I片;
向所述终端设备发送所述GDR帧,以供所述终端设备基于所述多个P片和所述至少一个I片恢复所述图像帧;
在所述无线通信链路恢复正常后,对所述可移动平台当前采集到的图像帧进行帧间编码得到帧间图像帧,并向所述终端设备发送所述帧间图像帧。
第二方面,本申请实施例还提供了一种图像传输方法,应用于终端设备,所述终端设备与可移动平台之间建立有无线通信链路,所述无线通信链路用于将所述可移动平台采集到的图像帧传输至所述终端设备,所述方法包括:
在所述无线通信链路出现异常时,向所述可移动平台发送错误反馈信息, 所述错误反馈信息用于指示所述可移动平台传输GDR帧;
获取所述可移动平台发送的GDR帧,所述GDR帧是所述可移动平台对图像帧进行GDR编码得到的,所述GDR帧包括多个P片和至少一个I片;
根据所述多个P片和所述至少一个I片恢复所述图像帧;
若接收到所述GDR帧的第一个数不满足预设条件,则继续向所述可移动平台发送错误反馈信息;
若接收到所述GDR帧的第一个数满足预设条件,则向所述可移动平台发送正确反馈信息,所述正确反馈信息用于指示所述可移动平台传输帧间图像帧。
第三方面,本申请实施例还提供了一种可移动平台,所述可移动平台与终端设备之间建立有无线通信链路,所述无线通信链路用于将所述可移动平台采集到的图像帧传输至所述终端设备,所述可移动平台包括存储器和处理器;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
在所述无线通信链路出现异常时,对所述图像帧进行GDR编码得到GDR帧,所述GDR帧包括多个P片和至少一个I片;
向所述终端设备发送所述GDR帧,以供所述终端设备基于所述多个P片和所述至少一个I片恢复所述图像帧;
在所述无线通信链路恢复正常后,对所述可移动平台当前采集到的图像帧进行帧间编码得到帧间图像帧,并向所述终端设备发送所述帧间图像帧。
第四方面,本申请实施例还提供了一种终端设备,所述终端设备与可移动平台之间建立有无线通信链路,所述无线通信链路用于将所述可移动平台采集到的图像帧传输至所述终端设备,所述终端设备包括存储器和处理器;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
在所述无线通信链路出现异常时,向所述可移动平台发送错误反馈信息,所述错误反馈信息用于指示所述可移动平台传输GDR帧;
获取所述可移动平台发送的GDR帧,所述GDR帧是所述可移动平台对图像帧进行GDR编码得到的,所述GDR帧包括多个P片和至少一个I片;
根据所述多个P片和所述至少一个I片恢复所述图像帧;
若接收到所述GDR帧的第一个数不满足预设条件,则继续向所述可移动 平台发送错误反馈信息;
若接收到所述GDR帧的第一个数满足预设条件,则向所述可移动平台发送正确反馈信息,所述正确反馈信息用于指示所述可移动平台传输帧间图像帧。
第五方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现以下步骤:
在可移动平台与终端设备之间的无线通信链路出现异常时,对所述可移动平台采集到的图像帧进行GDR编码得到GDR帧,所述GDR帧包括多个P片和至少一个I片;
向所述终端设备发送所述GDR帧,以供所述终端设备基于所述多个P片和所述至少一个I片恢复所述图像帧;
在所述无线通信链路恢复正常后,对所述可移动平台当前采集到的图像帧进行帧间编码得到帧间图像帧,并向所述终端设备发送所述帧间图像帧。
第六方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现以下步骤:
在可移动平台与终端设备之间的无线通信链路出现异常时,向所述可移动平台发送错误反馈信息,所述错误反馈信息用于指示所述可移动平台传输GDR帧;
获取所述可移动平台发送的GDR帧,所述GDR帧是所述可移动平台对图像帧进行GDR编码得到的,所述GDR帧包括多个P片和至少一个I片;
根据所述多个P片和所述至少一个I片恢复所述图像帧;
若接收到所述GDR帧的第一个数不满足预设条件,则继续向所述可移动平台发送错误反馈信息;
若接收到所述GDR帧的第一个数满足预设条件,则向所述可移动平台发送正确反馈信息,所述正确反馈信息用于指示所述可移动平台传输帧间图像帧。
本申请实施例提供了一种图像传输方法、可移动平台、设备及计算机可读存储介质,通过在可移动平台与终端设备之间的无线通信链路出现异常时,对图像帧进行GDR编码,得到GDR帧,并向终端设备发送该GDR帧,使得终端设备基于GDR帧中的多个P片和至少一个I片恢复图像帧,而在无线通信链路恢复正常后,对可移动平台当前采集到的图像帧进行帧间编码,得到帧间图像帧,并向终端设备发送该帧间图像帧。由于GDR帧仅包括至少一个I片,因 此,GDR帧的数据量会比容错帧少,使得无线通信链路能够更加容易的向终端设备传输GDR帧,可以基于GDR帧的I片来恢复图像,也可以解决画面卡顿的问题,极大的提高了用户体验。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是实施本申请实施例提供的图像传输方法的一场景示意图;
图2是本申请实施例提供的一种图像传输方法的步骤示意流程图;
图3是本申请实施例中的GDR帧的一示意图;
图4是本申请实施例中的GDR帧的另一示意图;
图5是本申请实施例提供的另一种图像传输方法的步骤示意流程图;
图6是本申请实施例提供的一种可移动平台的结构示意性框图;
图7是本申请实施例提供的一种终端设备的结构示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
目前,可移动平台可以通过无线通信方式将拍摄得到的图像实时传输至终端设备,由终端设备显示传输的图像,使得用户能够基于显示的图像实时的知晓障碍物的位置,便于用户控制可移动平台避开障碍物。然而,可移动平台通 过图传链路向终端设备传输图像的过程中,在图传链路出现中断或者图传链路传输的当前图像帧传输失败时,需要可移动平台向终端设备发送容错帧,而容错帧的数据量较大,且图传链路的通信质量不好,需要多次尝试传输容错帧,导致终端设备显示的图像出现卡顿,只有在成功接收到容错帧才能恢复,用户体验不好。
本申请实施例提供了一种图像传输方法、可移动平台、设备及计算机可读存储介质,通过在可移动平台与终端设备之间的无线通信链路出现异常时,对图像帧进行GDR编码,得到GDR帧,并向终端设备发送该GDR帧,使得终端设备基于GDR帧中的多个P片和至少一个I片恢复图像帧,而在无线通信链路恢复正常后,对可移动平台当前采集到的图像帧进行帧间编码,得到帧间图像帧,并向终端设备发送该帧间图像帧。由于GDR帧仅包括至少一个I片,因此,GDR帧的数据量会比容错帧少,使得无线通信链路能够更加容易的向终端设备传输GDR帧,可以基于GDR帧的I片来恢复图像,也可以解决画面卡顿的问题,极大的提高了用户体验。
请参阅图1,图1是实施本申请实施例提供的图像传输方法的一场景示意图。如图1所示,该场景包括可移动平台100和终端设备200,可移动平台100与终端设备200之间建立有无线通信链路,该无线通信链路用于将可移动平台100采集到的图像帧传输至终端设备200,终端设备200用于控制可移动平台100。可移动平台100包括平台本体110、设于平台本体110上的动力系统120、拍摄装置130和控制系统(图1中未示出),该动力系统120用于为可移动平台100提供移动动力,该拍摄装置130用于采集图像帧。
其中,动力系统120可以包括一个或多个螺旋桨121、与一个或多个螺旋桨相对应的一个或多个电机122、一个或多个电子调速器(简称为电调)。其中,电机122连接在电子调速器与螺旋桨121之间,电机122和螺旋桨121设置在可移动平台100的平台本体110上;电子调速器用于接收控制系统产生的驱动信号,并根据驱动信号提供驱动电流给电机122,以控制电机122的转速。电机122用于驱动螺旋桨121旋转,从而为可移动平台100的移动提供动力,该动力使得可移动平台100能够实现一个或多个自由度的运动。在某些实施例中,可移动平台100可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、偏航轴和俯仰轴。应理解,电机122可以是直流电机,也可以交流电机。另外,电机122可以是无刷电机,也可以是有刷电机。
其中,控制系统可以包括控制器和传感系统。传感系统用于测量可移动平 台的姿态信息,即可移动平台100在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(Global Positioning System,GPS)。控制器用于控制可移动平台100的移动,例如,可以根据传感系统测量的姿态信息控制可移动平台100的移动。应理解,控制器可以按照预先编好的程序指令对可移动平台100进行控制。
在一实施例中,所述控制器还用于:在该无线通信链路出现异常时,对图像帧进行GDR编码得到GDR帧,该GDR帧包括多个P片和至少一个I片;向终端设备发送所述GDR帧,以供终端设备基于多个P片和至少一个I片恢复图像帧;在无线通信链路恢复正常后,对可移动平台当前采集到的图像帧进行帧间编码得到帧间图像帧,并向终端设备发送帧间图像帧。
其中,终端设备200包括显示装置210,终端设备200通过显示装置210显示可移动平台100发送的图像帧,以供用户观看。需要说明的是,显示装置210包括设置在终端设备200上的显示屏或者独立于终端设备200的显示器,独立于终端设备200的显示器可以包括手机、平板电脑或者个人电脑等,或者也可以是带有显示屏的其他电子设备。其中,该显示屏包括LED显示屏、OLED显示屏、LCD显示屏等等。
其中,可移动平台100包括无人机、无人车、载人车、载人飞机和可移动机器人,无人机包括旋翼型无人机,例如单旋翼无人机、双旋翼无人机、四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机,还可以是旋翼型与固定翼无人机的组合,在此不作限定。终端设备200可以包括但不限于:智能电话/手机、平板电脑、个人数字助理(PDA)、台式计算机、媒体内容播放器、视频游戏站/系统、虚拟现实系统、增强现实系统、可穿戴式装置(例如,手表、眼镜、手套、头饰(例如,帽子、头盔、虚拟现实头戴耳机、增强现实头戴耳机、头装式装置(HMD)、头带)、挂件、臂章、腿环、鞋子、马甲)、手势识别装置、麦克风、能够提供或渲染图像数据的任意电子装置、或者任何其他类型的装置。该终端设备200可以是手持终端,终端设备200可以是便携式的。该终端设备200可以由人类用户携带。在一些情况下,终端设备200可以远离人类用户,并且用户可以使用无线和/或有线通信来控制终端设备200。
在一实施例中,本申请提供的图像传输方法,也可以应用于可移动平台与可移动平台之间的图像传输(如两辆载人车之间进行视频传输),终端设备和终端设备之间的图像传输(如视频通话)、监控摄像头与终端设备之间的图像传输等,本申请对此不做具体限定。
例如,对于两个可移动平台之间的图像传输:在第一可移动平台与第二可移动平台之间的无线通信链路出现异常时,第一可移动平台对采集到的图像帧进行GDR编码得到GDR帧;向第二可移动平台发送GDR帧,以供第二可移动平台基于GDR帧中的多个P片和至少一个I片恢复图像帧;在无线通信链路恢复正常后,对第一可移动平台当前采集到的图像帧进行帧间编码得到帧间图像帧,并向第二可移动平台发送帧间图像帧。
例如,对于两个终端设备之间的图像传输:在第一终端设备与第二终端设备之间的无线通信链路出现异常时,第一终端设备对采集到的图像帧进行GDR编码得到GDR帧;向第二终端设备发送GDR帧,以供第二终端设备基于GDR帧中的多个P片和至少一个I片恢复图像帧;在无线通信链路恢复正常后,对第一终端设备当前采集到的图像帧进行帧间编码得到帧间图像帧,并向第二终端设备发送帧间图像帧。
例如,对于监控摄像头与终端设备之间的图像传输:在监控摄像头与第二终端设备之间的无线通信链路出现异常时,监控摄像头对采集到的图像帧进行GDR编码得到GDR帧;向终端设备发送GDR帧,以供终端设备基于GDR帧中的多个P片和至少一个I片恢复图像帧;在无线通信链路恢复正常后,对监控摄像头当前采集到的图像帧进行帧间编码得到帧间图像帧,并向终端设备发送帧间图像帧。
以下,将结合图1中的场景对本申请的实施例提供的图像传输方法进行详细介绍。需知,图1中的场景仅用于解释本申请实施例提供的图像传输方法,但并不构成对本申请实施例提供的图像传输方法应用场景的限定。
请参阅图2,图2是本申请实施例提供的一种图像传输方法的步骤示意流程图。该图像传输方法可以应用可移动平台,可移动平台与终端设备之间建立有无线通信链路,该无线通信链路用于将可移动平台采集到的图像帧传输至终端设备。
如图2所示,该图像传输方法包括步骤S101至步骤S103。
步骤S101、在所述无线通信链路出现异常时,对所述图像帧进行GDR编码得到GDR帧,所述GDR帧包括多个P片和至少一个I片;
步骤S102、向所述终端设备发送所述GDR帧,以供所述终端设备基于所述多个P片和所述至少一个I片恢复所述图像帧;
步骤S103、在所述无线通信链路恢复正常后,对所述可移动平台当前采集到的图像帧进行帧间编码得到帧间图像帧,并向所述终端设备发送所述帧间图像帧。
其中,逐渐刷新(Gradual Decoder Refresh,GDR)帧是可移动平台对图像帧中的至少一个片(slice)进行帧内编码和对图像帧中的除至少一个片以外的多个片进行帧间编码得到的图像帧,一个片可以包括一个或多个宏块,至少一个I片是对图像帧中的至少一个片进行帧内编码得到的,多个P片是对图像帧中的除至少一个片以外的多个片进行帧间编码得到的,帧间图像帧是指对图像帧进行帧间编码得到的图像帧,帧间图像帧可以为P帧。如图3所示,GDR帧包括4个片,分别为片11、片12、片13和片14,且片11为I片,片12、片13和片14为P片。
在一实施例中,将图像帧拆分为N个片,并对第1个片进行帧内编码,得到第1个I片,然后对剩下的N-1个片进行帧间编码,得到N-1个P片,从而得到第1个GDR帧,并向终端设备发送第1个GDR帧;重新将图像帧拆分为N个片,并对第2个片进行帧内编码,得到第2个I片,然后对剩下的N-1个图像区域进行P编码,得到N-1个P片,从而得到第2个GDR帧,并向终端设备发送第2个GDR帧;以此类推,重新将图像帧拆分为N个片,并对第N个片进行帧内编码,得到第N个I片,然后对剩下的N-1个图像区域进行P编码,得到N-1个P片,从而得到第N个GDR帧,并向终端设备发送第N个GDR帧。其中,在对图像帧进行拆分时,拆分出来的片的大小可以是相同的,也可以是不同的,本申请实施例对此不做具体限定。
在一实施例中,I片的宽度大于P片的宽度,且与I片相邻的P片与I片之间的宽度差值等于M或2M个宏块的宽度,M为正整数,M可以基于实际情况进行设置,本申请实施例对此不做具体限定,I片在GDR帧内的位置是周期性变化的。其中,I片在GDR帧内的位置为边缘位置时,与I片相邻的P片与I片之间的宽度差值等于M个宏块的宽度,I片在GDR帧内的位置不为边缘位置时,与I片相邻的P片与I片之间的宽度差值等于2M个宏块的宽度。在视频编码中,一个编码后的图像被划分成若干宏块,一个宏块由一个亮度像素块和附加的两个色度像素块组成,若干宏块被排列成片的形式。
例如,如图4所示,第1个GDR帧包括片11、片12、片13和片14,片 11是I片,且片11与片12之间的宽度差值等于M个宏块的宽度;第2个GDR帧包括片21、片22、片23和片24,片22是I片,且片22与片21或片23之间的宽度差值等于2M个宏块的宽度;第3个GDR帧包括片31、片32、片33和片34,片33是I片,且片33与片32或片34之间的宽度差值等于2M个宏块的宽度;第4个GDR帧包括片41、片42、片43和片44,片44是I片,且片44与片43之间的宽度差值等于M个宏块的宽度。
在一实施例中,与I片相邻的P片与I片之间的宽度差值等于M或2M个宏块的宽度,且在对图像帧进行GDR编码时,参与编码的参考宏块的横向运动范围小于或等于M个宏块的宽度。通过在进行GDR编码时,限制参与编码的参考宏块的横向运动范围小于或等于M个宏块的宽度,可以防止因视频编码运动估计造成的错误扩散。
在一实施例中,可移动平台获取终端设备发送的反馈信息;若反馈信息为异常反馈信息,则确定可移动平台与终端设备之间的无线通信链路出现异常,该异常反馈信息用于指示可移动平台传输GDR帧;若反馈信息为正常反馈信息,则确定可移动平台与终端设备之间的无线通信链路恢复正常,该正常反馈信息用于指示可移动平台传输帧间图像帧。
在一实施例中,终端设备获取可移动平台发送的编码后的图像帧;确定编码后的图像帧是否出现错误;若编码后的图像帧出现错误,则确定无线通信链路出现异常,并向可移动平台发送错误反馈信息,以指示可移动平台无线通信链路出现异常,并指示可移动平台向终端设备传输GDR帧;若编码后的图像帧未出现错误,则确定无线通信链路未出现异常,并向可移动平台发送正确反馈信息,以指示可移动平台无线通信链路未出现异常,并指示可移动平台向终端设备传输帧间图像帧。
在一实施例中,GDR帧包括第一个数的片,确定无线通信链路是否恢复正常的方式可以为:获取终端设备成功接收到的GDR帧的第二个数;若第二个数大于或等于第一个数,则确定无线通信链路恢复正常;若第二个数小于第一个数,则确定无线通信链路未恢复正常。其中,若无线通信链路未恢复正常,则可移动平台继续对图像帧进行GDR编码,得到GDR帧,并向终端设备发送GDR帧,直到无线通信链路恢复正常。
例如,GDR帧包括4个片,若终端设备成功接收到的GDR帧的个数为4,则可以确定无线通信链路恢复正常,也即终端设备接收到4个GDR帧,且基于这4个GDR帧中的I片,可以恢复完整的画面,若终端设备成功接收到的 GDR帧的个数为3,则可以确定无线通信链路未恢复正常。可以理解的是,终端设备在接收到GDR后,由于GDR帧中的I片是通过帧内编码得到的,没有参考其余片或图像帧,因此,基于GDR帧中的I片可以恢复对应的图像区域,由于GDR帧中的I片的位置是周期性变化的,通过不断接收GDR帧,可以恢复完整的画面。
在一实施例中,确定无线通信链路是否恢复正常的方式可以为:确定第二个数与第一个数的商;若第二个数与第一个数的商大于或等于预设阈值,则确定无线通信链路恢复正常;若第二个数与第一个数的商小于预设阈值,则确定无线通信链路未恢复正常。其中,预设阈值可基于实际情况进行设置,本申请实施例对此不做具体限定。例如,预设阈值为3,GDR帧包括4个片,若终端设备成功接收到的GDR帧的个数为12,则12与3的商为4,因此,可以确定无线通信链路恢复正常,若终端设备成功接收到的GDR帧的个数为9,则9与3的商为3,因此,可以确定无线通信链路未恢复正常。
在一实施例中,若无线通信链路的异常为可移动平台发送的编码后的图像帧出现错误,则对编码后的图像帧对应的图像帧进行GDR编码得到GDR帧。通过在编码后的图像帧出现错误时,对编码后的图像帧对应的图像帧进行GDR编码,可以保证GDR帧和编码后的图像帧是对同一图像帧进行编码得到的,进而提高画面的流畅性。在另一实施例中,若无线通信链路的异常为可移动平台发送的编码后的图像帧出现错误,则对可移动平台当前采集到的图像帧进行GDR编码得到GDR帧。通过在编码后的图像帧出现错误时,对可移动平台当前采集到的图像帧进行GDR编码,可以得到最新的GDR帧,保证画面的实时性。
上述实施例提供的图像传输方法,通过在可移动平台与终端设备之间的无线通信链路出现异常时,可移动平台向终端设备发送该GDR帧,使得终端设备基于GDR帧中的多个P片和至少一个I片恢复图像帧,而在无线通信链路恢复正常后,向终端设备发送该帧间图像帧(P帧),可以在无线通信链路出现异常时,可以基于数据量少的GDR帧的I片来恢复图像,提高图传的可靠性,从而可以解决画面卡顿的问题,而在无线通信链路恢复正常后,向终端设备发送该帧间图像帧(P帧),可以提高编码效率。
请参阅图5,图5是本申请实施例提供的另一种图像传输方法的步骤示意流程图。该图像传输方法应用于终端设备,终端设备与可移动平台之间建立有无线通信链路,该无线通信链路用于将可移动平台采集到的图像帧传输至终端 设备。
如图5所示,该图像传输方法包括步骤S201至S205。
步骤S201、在所述无线通信链路出现异常时,向所述可移动平台发送错误反馈信息,所述错误反馈信息用于指示所述可移动平台传输GDR帧;
步骤S202、获取所述可移动平台发送的GDR帧,所述GDR帧是所述可移动平台对图像帧进行GDR编码得到的,所述GDR帧包括多个P片和至少一个I片;
步骤S203、根据所述多个P片和所述至少一个I片恢复所述图像帧;
步骤S204、若接收到所述GDR帧的第一个数不满足预设条件,则继续向所述可移动平台发送错误反馈信息;
步骤S205、若接收到所述GDR帧的第一个数满足预设条件,则向所述可移动平台发送正确反馈信息,所述正确反馈信息用于指示所述可移动平台传输帧间图像帧。
其中,逐渐刷新(Gradual Decoder Refresh,GDR)帧是可移动平台对图像帧中的至少一个片(slice)进行帧内编码和对图像帧中的除至少一个片以外的多个片进行帧间编码得到的图像帧,一个片可以包括一个或多个宏块,至少一个I片是对图像帧中的至少一个片进行帧内编码得到的,多个P片是对图像帧中的除至少一个片以外的多个片进行帧间编码得到的,帧间图像帧是指对图像帧进行帧间编码得到的图像帧,帧间图像帧可以为P帧。预设条件包括以下至少一种:第一个数大于或等于GDR帧中的片的第二个数、第一个数与第二个数的商大于或等于预设阈值。
在一实施例中,终端设备获取可移动平台发送的编码后的图像帧;确定编码后的图像帧是否出现错误;若编码后的图像帧出现错误,则确定无线通信链路出现异常。其中,确定编码后的图像帧是否出现错误的方式可以为:对编码后的图像帧进行循环冗余校验;若编码后的图像帧未通过循环冗余校验,则确定编码后的图像帧出现错误;若编码后的图像帧通过循环冗余校验,则确定编码后的图像帧未出现错误。编码后的图像帧可以是GDR帧,也可以是帧间图像帧,本申请对此不做具体限定。
在一实施例中,GDR帧与编码后的图像帧是可移动平台对同一图像帧进行编码得到的。通过在编码后的图像帧出现错误时,可移动平台对编码后的图像帧对应的图像帧进行GDR编码,可以保证GDR帧和编码后的图像帧是对同一图像帧进行编码得到的,进而提高画面的流畅性。在另一实施例中,GDR帧是 可移动平台对可移动平台当前采集到的图像帧进行GDR编码得到的,通过在编码后的图像帧出现错误时,对可移动平台当前采集到的图像帧进行GDR编码,可以得到最新的GDR帧,保证画面的实时性。
在一实施例中,在终端设备上电时,向可移动平台发送错误反馈信息;获取可移动平台发送的GDR帧,GDR帧是可移动平台对图像帧进行GDR编码得到的,GDR帧包括多个P片和至少一个I片;根据多个P片和至少一个I片恢复图像帧;若接收到GDR帧的第一个数不满足预设条件,则继续向可移动平台发送错误反馈信息;若接收到GDR帧的第一个数满足预设条件,则向可移动平台发送正确反馈信息,正确反馈信息用于指示可移动平台传输帧间图像帧。通过在终端设备上电时,默认无线通信链路出现异常,因此,指示可移动平台发送GDR帧,然后在接收到GDR帧的第一个数满足预设条件时,指示可移动平台传输帧间图像帧,可以在兼顾编码效率的同时,提高图传的可靠性。
上述实施例提供的图像传输方法,通过在可移动平台与终端设备之间的无线通信链路出现异常时,终端设备指示可移动平台传输GDR帧,使得终端设备能够基于GDR帧中的多个P片和至少一个I片恢复图像帧,而在无线通信链路恢复正常后,指示可移动平台传输该帧间图像帧(P帧),从而可以实现在无线通信链路出现异常时,基于数据量少的GDR帧的I片来恢复图像,提高图传的可靠性,从而可以解决画面卡顿的问题,而在无线通信链路恢复正常后,向终端设备发送该帧间图像帧(P帧),可以提高编码效率,实现在兼顾编码效率的同时,提高图传的可靠性。
请参阅图6,图6是本申请实施例提供的一种可移动平台的结构示意性框图。可移动平台与终端设备之间建立有无线通信链路,无线通信链路用于将可移动平台采集到的图像帧传输至终端设备。
如图6所示,该可移动平台300包括处理器301和存储器302,处理器301和存储器302通过总线303连接,该总线303比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器301可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器302可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器301用于运行存储在存储器302中的计算机程序,并在 执行所述计算机程序时实现如下步骤:
在所述无线通信链路出现异常时,对所述图像帧进行GDR编码得到GDR帧,所述GDR帧包括多个P片和至少一个I片;
向所述终端设备发送所述GDR帧,以供所述终端设备基于所述多个P片和所述至少一个I片恢复所述图像帧;
在所述无线通信链路恢复正常后,对所述可移动平台当前采集到的图像帧进行帧间编码得到帧间图像帧,并向所述终端设备发送所述帧间图像帧。
在一实施例中,所述I片的宽度大于所述P片的宽度,且与所述I片相邻的所述P片与所述I片之间的宽度差值等于M或2M个宏块的宽度,M为正整数。
在一实施例中,在进行所述GDR编码时,参与编码的参考宏块的横向运动范围小于或等于所述M个宏块的宽度。
在一实施例中,所述I片在所述GDR帧内的位置是周期性变化的。
在一实施例中,所述至少一个I片是对所述图像帧中的至少一个片进行帧内编码得到的,所述多个P片是对所述图像帧中的除所述至少一个片以外的多个片进行帧间编码得到的。
在一实施例中,所述GDR帧包括第一个数的片,所述处理器还用于实现以下步骤:
获取所述终端设备成功接收到的所述GDR帧的第二个数;
若所述第二个数大于或等于所述第一个数,则确定所述无线通信链路恢复正常;
若所述第二个数小于所述第一个数,则确定所述无线通信链路未恢复正常。
在一实施例中,所述处理器还用于实现以下步骤:
确定所述第二个数与所述第一个数的商;
若所述第二个数与所述第一个数的商大于或等于预设阈值,则确定所述无线通信链路恢复正常;
若所述第二个数与所述第一个数的商小于预设阈值,则确定所述无线通信链路未恢复正常。
在一实施例中,所述处理器还用于实现以下步骤:
获取所述终端设备发送的反馈信息;
若所述反馈信息为异常反馈信息,则确定所述无线通信链路出现异常,所述异常反馈信息用于指示所述可移动平台传输GDR帧;
若所述反馈信息为正常反馈信息,则确定所述无线通信链路恢复正常,所述正常反馈信息用于指示所述可移动平台传输帧间图像帧。
在一实施例中,所述处理器在实现对所述图像帧进行GDR编码得到GDR帧时,用于实现:
若所述无线通信链路的异常为所述可移动平台发送的编码后的图像帧出现错误,则对所述编码后的图像帧对应的图像帧进行GDR编码得到GDR帧。
在一实施例中,所述处理器在实现对所述图像帧进行GDR编码得到GDR帧时,用于实现:
若所述无线通信链路的异常为所述可移动平台发送的编码后的图像帧出现错误,则对所述可移动平台当前采集到的图像帧进行GDR编码得到GDR帧。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的可移动平台的具体工作过程,可以参考前述图像传输方法实施例中的对应过程,在此不再赘述。
请参阅图7,图7是本申请实施例提供的一种终端设备的结构示意性框图。
如图7所示,该终端设备400包括处理器401和存储器402,处理器401和存储器402通过总线403连接,该总线403比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器401可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器402可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器401用于运行存储在存储器402中的计算机程序,并在执行所述计算机程序时实现如下步骤:
在所述无线通信链路出现异常时,向所述可移动平台发送错误反馈信息,所述错误反馈信息用于指示所述可移动平台传输GDR帧;
获取所述可移动平台发送的GDR帧,所述GDR帧是所述可移动平台对图像帧进行GDR编码得到的,所述GDR帧包括多个P片和至少一个I片;
根据所述多个P片和所述至少一个I片恢复所述图像帧;
若接收到所述GDR帧的第一个数不满足预设条件,则继续向所述可移动平台发送错误反馈信息;
若接收到所述GDR帧的第一个数满足预设条件,则向所述可移动平台发 送正确反馈信息,所述正确反馈信息用于指示所述可移动平台传输帧间图像帧。
在一实施例中,所述处理器还用于实现以下步骤:
获取所述可移动平台发送的编码后的图像帧;
确定所述编码后的图像帧是否出现错误;
若编码后的图像帧出现错误,则确定无线通信链路出现异常。
在一实施例中,所述处理器在实现确定所述编码后的图像帧是否出现错误时,用于实现:
对所述编码后的图像帧进行循环冗余校验;
若所述编码后的图像帧未通过循环冗余校验,则确定所述编码后的图像帧出现错误。
在一实施例中,所述GDR帧与所述编码后的图像帧是所述可移动平台对同一图像帧进行编码得到的。
在一实施例中,所述GDR帧是所述可移动平台对所述可移动平台当前采集到的图像帧进行GDR编码得到的。
在一实施例中,所述预设条件包括以下至少一种:
所述第一个数大于或等于所述GDR帧中的片的第二个数;
所述第一个数与所述第二个数的商大于或等于预设阈值。
在一实施例中,所述处理器还用于实现以下步骤:
在所述终端设备上电时,向所述可移动平台发送错误反馈信息。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的终端设备的具体工作过程,可以参考前述图像传输方法实施例中的对应过程,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令以实现以下步骤:
在可移动平台与终端设备之间的无线通信链路出现异常时,对所述可移动平台采集到的图像帧进行GDR编码得到GDR帧,所述GDR帧包括多个P片和至少一个I片;
向所述终端设备发送所述GDR帧,以供所述终端设备基于所述多个P片和所述至少一个I片恢复所述图像帧;
在所述无线通信链路恢复正常后,对所述可移动平台当前采集到的图像帧进行帧间编码得到帧间图像帧,并向所述终端设备发送所述帧间图像帧。
在一实施例中,所述I片的宽度大于所述P片的宽度,且与所述I片相邻的所述P片与所述I片之间的宽度差值等于M或2M个宏块的宽度,M为正整数。
在一实施例中,在进行所述GDR编码时,参与编码的参考宏块的横向运动范围小于或等于所述M个宏块的宽度。
在一实施例中,所述I片在所述GDR帧内的位置是周期性变化的。
在一实施例中,所述至少一个I片是对所述图像帧中的至少一个片进行帧内编码得到的,所述多个P片是对所述图像帧中的除所述至少一个片以外的多个片进行帧间编码得到的。
在一实施例中,所述GDR帧包括第一个数的片,所述计算机程序被处理器执行时使所述处理器实现以下步骤:
获取所述终端设备成功接收到的所述GDR帧的第二个数;
若所述第二个数大于或等于所述第一个数,则确定所述无线通信链路恢复正常;
若所述第二个数小于所述第一个数,则确定所述无线通信链路未恢复正常。
在一实施例中,所述计算机程序被处理器执行时使所述处理器实现以下步骤:
确定所述第二个数与所述第一个数的商;
若所述第二个数与所述第一个数的商大于或等于预设阈值,则确定所述无线通信链路恢复正常;
若所述第二个数与所述第一个数的商小于预设阈值,则确定所述无线通信链路未恢复正常。
在一实施例中,所述计算机程序被处理器执行时使所述处理器实现以下步骤:
获取所述终端设备发送的反馈信息;
若所述反馈信息为异常反馈信息,则确定所述无线通信链路出现异常,所述异常反馈信息用于指示所述可移动平台传输GDR帧;
若所述反馈信息为正常反馈信息,则确定所述无线通信链路恢复正常,所述正常反馈信息用于指示所述可移动平台传输帧间图像帧。
在一实施例中,所述计算机程序被处理器执行时使所述处理器实现对所述图像帧进行GDR编码得到GDR帧时,用于实现:
若所述无线通信链路的异常为所述可移动平台发送的编码后的图像帧出现 错误,则对所述编码后的图像帧对应的图像帧进行GDR编码得到GDR帧。
在一实施例中,所述计算机程序被处理器执行时使所述处理器实现对所述图像帧进行GDR编码得到GDR帧时,用于实现:
若所述无线通信链路的异常为所述可移动平台发送的编码后的图像帧出现错误,则对所述可移动平台当前采集到的图像帧进行GDR编码得到GDR帧。
其中,所述计算机可读存储介质可以是前述任一实施例所述的可移动平台的内部存储单元,例如所述可移动平台的硬盘或内存。所述计算机可读存储介质也可以是所述可移动平台的外部存储设备,例如所述可移动平台的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令以实现以下步骤:
在可移动平台与终端设备之间的无线通信链路出现异常时,向所述可移动平台发送错误反馈信息,所述错误反馈信息用于指示所述可移动平台传输GDR帧;
获取所述可移动平台发送的GDR帧,所述GDR帧是所述可移动平台对图像帧进行GDR编码得到的,所述GDR帧包括多个P片和至少一个I片;
根据所述多个P片和所述至少一个I片恢复所述图像帧;
若接收到所述GDR帧的第一个数不满足预设条件,则继续向所述可移动平台发送错误反馈信息;
若接收到所述GDR帧的第一个数满足预设条件,则向所述可移动平台发送正确反馈信息,所述正确反馈信息用于指示所述可移动平台传输帧间图像帧。
在一实施例中,所述计算机程序被处理器执行时使所述处理器实现以下步骤:
获取所述可移动平台发送的编码后的图像帧;
确定所述编码后的图像帧是否出现错误;
若编码后的图像帧出现错误,则确定无线通信链路出现异常。
在一实施例中,所述计算机程序被处理器执行时使所述处理器在实现确定所述编码后的图像帧是否出现错误时,用于实现:
对所述编码后的图像帧进行循环冗余校验;
若所述编码后的图像帧未通过循环冗余校验,则确定所述编码后的图像帧 出现错误。
在一实施例中,所述GDR帧与所述编码后的图像帧是所述可移动平台对同一图像帧进行编码得到的。
在一实施例中,所述GDR帧是所述可移动平台对所述可移动平台当前采集到的图像帧进行GDR编码得到的。
在一实施例中,所述预设条件包括以下至少一种:
所述第一个数大于或等于所述GDR帧中的片的第二个数;
所述第一个数与所述第二个数的商大于或等于预设阈值。
在一实施例中,所述计算机程序被处理器执行时使所述处理器实现以下步骤:
在所述终端设备上电时,向所述可移动平台发送错误反馈信息。
其中,所述计算机可读存储介质可以是前述任一实施例所述的终端设备的内部存储单元,例如所述终端设备的硬盘或内存。所述计算机可读存储介质也可以是所述终端设备的外部存储设备,例如所述终端设备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (51)

  1. 一种图像传输方法,其特征在于,应用于可移动平台,所述可移动平台与终端设备之间建立有无线通信链路,所述无线通信链路用于将所述可移动平台采集到的图像帧传输至所述终端设备,所述方法包括:
    在所述无线通信链路出现异常时,对所述图像帧进行GDR编码得到GDR帧,所述GDR帧包括多个P片和至少一个I片;
    向所述终端设备发送所述GDR帧,以供所述终端设备基于所述多个P片和所述至少一个I片恢复所述图像帧;
    在所述无线通信链路恢复正常后,对所述可移动平台当前采集到的图像帧进行帧间编码得到帧间图像帧,并向所述终端设备发送所述帧间图像帧。
  2. 根据权利要求1所述的图像传输方法,其特征在于,所述I片的宽度大于所述P片的宽度,且与所述I片相邻的所述P片与所述I片之间的宽度差值等于M或2M个宏块的宽度,M为正整数。
  3. 根据权利要求2所述的图像传输方法,其特征在于,在进行所述GDR编码时,参与编码的参考宏块的横向运动范围小于或等于所述M个宏块的宽度。
  4. 根据权利要求1所述的图像传输方法,其特征在于,所述I片在所述GDR帧内的位置是周期性变化的。
  5. 根据权利要求1所述的图像传输方法,其特征在于,所述至少一个I片是对所述图像帧中的至少一个片进行帧内编码得到的,所述多个P片是对所述图像帧中的除所述至少一个片以外的多个片进行帧间编码得到的。
  6. 根据权利要求1-5中任一项所述的图像传输方法,其特征在于,所述GDR帧包括第一个数的片,所述方法还包括:
    获取所述终端设备成功接收到的所述GDR帧的第二个数;
    若所述第二个数大于或等于所述第一个数,则确定所述无线通信链路恢复正常;
    若所述第二个数小于所述第一个数,则确定所述无线通信链路未恢复正常。
  7. 根据权利要求6所述的图像传输方法,其特征在于,所述方法还包括:
    确定所述第二个数与所述第一个数的商;
    若所述第二个数与所述第一个数的商大于或等于预设阈值,则确定所述无线通信链路恢复正常;
    若所述第二个数与所述第一个数的商小于预设阈值,则确定所述无线通信 链路未恢复正常。
  8. 根据权利要求1-5中任一项所述的图像传输方法,其特征在于,所述方法还包括:
    获取所述终端设备发送的反馈信息;
    若所述反馈信息为异常反馈信息,则确定所述无线通信链路出现异常,所述异常反馈信息用于指示所述可移动平台传输GDR帧;
    若所述反馈信息为正常反馈信息,则确定所述无线通信链路恢复正常,所述正常反馈信息用于指示所述可移动平台传输帧间图像帧。
  9. 根据权利要求1-5中任一项所述的图像传输方法,其特征在于,所述对所述图像帧进行GDR编码得到GDR帧,包括:
    若所述无线通信链路的异常为所述可移动平台发送的编码后的图像帧出现错误,则对所述编码后的图像帧对应的图像帧进行GDR编码得到GDR帧。
  10. 根据权利要求1-5中任一项所述的图像传输方法,其特征在于,所述对所述图像帧进行GDR编码得到GDR帧,包括:
    若所述无线通信链路的异常为所述可移动平台发送的编码后的图像帧出现错误,则对所述可移动平台当前采集到的图像帧进行GDR编码得到GDR帧。
  11. 一种图像传输方法,其特征在于,应用于终端设备,所述终端设备与可移动平台之间建立有无线通信链路,所述无线通信链路用于将所述可移动平台采集到的图像帧传输至所述终端设备,所述方法包括:
    在所述无线通信链路出现异常时,向所述可移动平台发送错误反馈信息,所述错误反馈信息用于指示所述可移动平台传输GDR帧;
    获取所述可移动平台发送的GDR帧,所述GDR帧是所述可移动平台对图像帧进行GDR编码得到的,所述GDR帧包括多个P片和至少一个I片;
    根据所述多个P片和所述至少一个I片恢复所述图像帧;
    若接收到所述GDR帧的第一个数不满足预设条件,则继续向所述可移动平台发送错误反馈信息;
    若接收到所述GDR帧的第一个数满足预设条件,则向所述可移动平台发送正确反馈信息,所述正确反馈信息用于指示所述可移动平台传输帧间图像帧。
  12. 根据权利要求11所述的图像传输方法,其特征在于,所述方法还包括:
    获取所述可移动平台发送的编码后的图像帧;
    确定所述编码后的图像帧是否出现错误;
    若编码后的图像帧出现错误,则确定无线通信链路出现异常。
  13. 根据权利要求12所述的图像传输方法,其特征在于,所述确定所述编码后的图像帧是否出现错误,包括:
    对所述编码后的图像帧进行循环冗余校验;
    若所述编码后的图像帧未通过循环冗余校验,则确定所述编码后的图像帧出现错误。
  14. 根据权利要求12所述的图像传输方法,其特征在于,所述GDR帧与所述编码后的图像帧是所述可移动平台对同一图像帧进行编码得到的。
  15. 根据权利要求12所述的图像传输方法,其特征在于,所述GDR帧是所述可移动平台对所述可移动平台当前采集到的图像帧进行GDR编码得到的。
  16. 根据权利要求11-15中任一项所述的图像传输方法,其特征在于,所述预设条件包括以下至少一种:
    所述第一个数大于或等于所述GDR帧中的片的第二个数;
    所述第一个数与所述第二个数的商大于或等于预设阈值。
  17. 根据权利要求11-15中任一项所述的图像传输方法,其特征在于,所述方法还包括:
    在所述终端设备上电时,向所述可移动平台发送错误反馈信息。
  18. 一种可移动平台,其特征在于,所述可移动平台与终端设备之间建立有无线通信链路,所述无线通信链路用于将所述可移动平台采集到的图像帧传输至所述终端设备,所述可移动平台包括存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    在所述无线通信链路出现异常时,对所述图像帧进行GDR编码得到GDR帧,所述GDR帧包括多个P片和至少一个I片;
    向所述终端设备发送所述GDR帧,以供所述终端设备基于所述多个P片和所述至少一个I片恢复所述图像帧;
    在所述无线通信链路恢复正常后,对所述可移动平台当前采集到的图像帧进行帧间编码得到帧间图像帧,并向所述终端设备发送所述帧间图像帧。
  19. 根据权利要求18所述的可移动平台,其特征在于,所述I片的宽度大于所述P片的宽度,且与所述I片相邻的所述P片与所述I片之间的宽度差值等于M或2M个宏块的宽度,M为正整数。
  20. 根据权利要求19所述的可移动平台,其特征在于,在进行所述GDR 编码时,参与编码的参考宏块的横向运动范围小于或等于所述M个宏块的宽度。
  21. 根据权利要求18所述的可移动平台,其特征在于,所述I片在所述GDR帧内的位置是周期性变化的。
  22. 根据权利要求18所述的可移动平台,其特征在于,所述至少一个I片是对所述图像帧中的至少一个片进行帧内编码得到的,所述多个P片是对所述图像帧中的除所述至少一个片以外的多个片进行帧间编码得到的。
  23. 根据权利要求18-22中任一项所述的可移动平台,其特征在于,所述GDR帧包括第一个数的片,所述处理器还用于实现以下步骤:
    获取所述终端设备成功接收到的所述GDR帧的第二个数;
    若所述第二个数大于或等于所述第一个数,则确定所述无线通信链路恢复正常;
    若所述第二个数小于所述第一个数,则确定所述无线通信链路未恢复正常。
  24. 根据权利要求23所述的可移动平台,其特征在于,所述处理器还用于实现以下步骤:
    确定所述第二个数与所述第一个数的商;
    若所述第二个数与所述第一个数的商大于或等于预设阈值,则确定所述无线通信链路恢复正常;
    若所述第二个数与所述第一个数的商小于预设阈值,则确定所述无线通信链路未恢复正常。
  25. 根据权利要求18-22中任一项所述的可移动平台,其特征在于,所述处理器还用于实现以下步骤:
    获取所述终端设备发送的反馈信息;
    若所述反馈信息为异常反馈信息,则确定所述无线通信链路出现异常,所述异常反馈信息用于指示所述可移动平台传输GDR帧;
    若所述反馈信息为正常反馈信息,则确定所述无线通信链路恢复正常,所述正常反馈信息用于指示所述可移动平台传输帧间图像帧。
  26. 根据权利要求18-22中任一项所述的可移动平台,其特征在于,所述处理器在实现对所述图像帧进行GDR编码得到GDR帧时,用于实现:
    若所述无线通信链路的异常为所述可移动平台发送的编码后的图像帧出现错误,则对所述编码后的图像帧对应的图像帧进行GDR编码得到GDR帧。
  27. 根据权利要求18-22中任一项所述的可移动平台,其特征在于,所述处理器在实现对所述图像帧进行GDR编码得到GDR帧时,用于实现:
    若所述无线通信链路的异常为所述可移动平台发送的编码后的图像帧出现错误,则对所述可移动平台当前采集到的图像帧进行GDR编码得到GDR帧。
  28. 一种终端设备,其特征在于,所述终端设备与可移动平台之间建立有无线通信链路,所述无线通信链路用于将所述可移动平台采集到的图像帧传输至所述终端设备,所述终端设备包括存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    在所述无线通信链路出现异常时,向所述可移动平台发送错误反馈信息,所述错误反馈信息用于指示所述可移动平台传输GDR帧;
    获取所述可移动平台发送的GDR帧,所述GDR帧是所述可移动平台对图像帧进行GDR编码得到的,所述GDR帧包括多个P片和至少一个I片;
    根据所述多个P片和所述至少一个I片恢复所述图像帧;
    若接收到所述GDR帧的第一个数不满足预设条件,则继续向所述可移动平台发送错误反馈信息;
    若接收到所述GDR帧的第一个数满足预设条件,则向所述可移动平台发送正确反馈信息,所述正确反馈信息用于指示所述可移动平台传输帧间图像帧。
  29. 根据权利要求28所述的终端设备,其特征在于,所述处理器还用于实现以下步骤:
    获取所述可移动平台发送的编码后的图像帧;
    确定所述编码后的图像帧是否出现错误;
    若编码后的图像帧出现错误,则确定无线通信链路出现异常。
  30. 根据权利要求29所述的终端设备,其特征在于,所述处理器在实现确定所述编码后的图像帧是否出现错误时,用于实现:
    对所述编码后的图像帧进行循环冗余校验;
    若所述编码后的图像帧未通过循环冗余校验,则确定所述编码后的图像帧出现错误。
  31. 根据权利要求29所述的终端设备,其特征在于,所述GDR帧与所述编码后的图像帧是所述可移动平台对同一图像帧进行编码得到的。
  32. 根据权利要求29所述的终端设备,其特征在于,所述GDR帧是所述可移动平台对所述可移动平台当前采集到的图像帧进行GDR编码得到的。
  33. 根据权利要求28-32中任一项所述的终端设备,其特征在于,所述预 设条件包括以下至少一种:
    所述第一个数大于或等于所述GDR帧中的片的第二个数;
    所述第一个数与所述第二个数的商大于或等于预设阈值。
  34. 根据权利要求28-32中任一项所述的终端设备,其特征在于,所述处理器还用于实现以下步骤:
    在所述终端设备上电时,向所述可移动平台发送错误反馈信息。
  35. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现以下步骤:
    在可移动平台与终端设备之间的无线通信链路出现异常时,对所述可移动平台采集到的图像帧进行GDR编码得到GDR帧,所述GDR帧包括多个P片和至少一个I片;
    向所述终端设备发送所述GDR帧,以供所述终端设备基于所述多个P片和所述至少一个I片恢复所述图像帧;
    在所述无线通信链路恢复正常后,对所述可移动平台当前采集到的图像帧进行帧间编码得到帧间图像帧,并向所述终端设备发送所述帧间图像帧。
  36. 根据权利要求35所述的计算机可读存储介质,其特征在于,所述I片的宽度大于所述P片的宽度,且与所述I片相邻的所述P片与所述I片之间的宽度差值等于M或2M个宏块的宽度,M为正整数。
  37. 根据权利要求36所述的计算机可读存储介质,其特征在于,在进行所述GDR编码时,参与编码的参考宏块的横向运动范围小于或等于所述M个宏块的宽度。
  38. 根据权利要求35所述的计算机可读存储介质,其特征在于,所述I片在所述GDR帧内的位置是周期性变化的。
  39. 根据权利要求35所述的计算机可读存储介质,其特征在于,所述至少一个I片是对所述图像帧中的至少一个片进行帧内编码得到的,所述多个P片是对所述图像帧中的除所述至少一个片以外的多个片进行帧间编码得到的。
  40. 根据权利要求35-39中任一项所述的计算机可读存储介质,其特征在于,所述GDR帧包括第一个数的片,所述计算机程序被处理器执行时使所述处理器实现以下步骤:
    获取所述终端设备成功接收到的所述GDR帧的第二个数;
    若所述第二个数大于或等于所述第一个数,则确定所述无线通信链路恢复正常;
    若所述第二个数小于所述第一个数,则确定所述无线通信链路未恢复正常。
  41. 根据权利要求40所述的计算机可读存储介质,其特征在于,所述计算机程序被处理器执行时使所述处理器实现以下步骤:
    确定所述第二个数与所述第一个数的商;
    若所述第二个数与所述第一个数的商大于或等于预设阈值,则确定所述无线通信链路恢复正常;
    若所述第二个数与所述第一个数的商小于预设阈值,则确定所述无线通信链路未恢复正常。
  42. 根据权利要求35-39中任一项所述的计算机可读存储介质,其特征在于,所述计算机程序被处理器执行时使所述处理器实现以下步骤:
    获取所述终端设备发送的反馈信息;
    若所述反馈信息为异常反馈信息,则确定所述无线通信链路出现异常,所述异常反馈信息用于指示所述可移动平台传输GDR帧;
    若所述反馈信息为正常反馈信息,则确定所述无线通信链路恢复正常,所述正常反馈信息用于指示所述可移动平台传输帧间图像帧。
  43. 根据权利要求35-39中任一项所述的计算机可读存储介质,其特征在于,所述计算机程序被处理器执行时使所述处理器实现对所述图像帧进行GDR编码得到GDR帧时,用于实现:
    若所述无线通信链路的异常为所述可移动平台发送的编码后的图像帧出现错误,则对所述编码后的图像帧对应的图像帧进行GDR编码得到GDR帧。
  44. 根据权利要求35-39中任一项所述的计算机可读存储介质,其特征在于,所述计算机程序被处理器执行时使所述处理器实现对所述图像帧进行GDR编码得到GDR帧时,用于实现:
    若所述无线通信链路的异常为所述可移动平台发送的编码后的图像帧出现错误,则对所述可移动平台当前采集到的图像帧进行GDR编码得到GDR帧。
  45. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现以下步骤:
    在可移动平台与终端设备之间的无线通信链路出现异常时,向所述可移动平台发送错误反馈信息,所述错误反馈信息用于指示所述可移动平台传输GDR帧;
    获取所述可移动平台发送的GDR帧,所述GDR帧是所述可移动平台对图像帧进行GDR编码得到的,所述GDR帧包括多个P片和至少一个I片;
    根据所述多个P片和所述至少一个I片恢复所述图像帧;
    若接收到所述GDR帧的第一个数不满足预设条件,则继续向所述可移动平台发送错误反馈信息;
    若接收到所述GDR帧的第一个数满足预设条件,则向所述可移动平台发送正确反馈信息,所述正确反馈信息用于指示所述可移动平台传输帧间图像帧。
  46. 根据权利要求45所述的计算机可读存储介质,其特征在于,所述计算机程序被处理器执行时使所述处理器实现以下步骤:
    获取所述可移动平台发送的编码后的图像帧;
    确定所述编码后的图像帧是否出现错误;
    若编码后的图像帧出现错误,则确定无线通信链路出现异常。
  47. 根据权利要求46所述的计算机可读存储介质,其特征在于,所述计算机程序被处理器执行时使所述处理器在实现确定所述编码后的图像帧是否出现错误时,用于实现:
    对所述编码后的图像帧进行循环冗余校验;
    若所述编码后的图像帧未通过循环冗余校验,则确定所述编码后的图像帧出现错误。
  48. 根据权利要求46所述的计算机可读存储介质,其特征在于,所述GDR帧与所述编码后的图像帧是所述可移动平台对同一图像帧进行编码得到的。
  49. 根据权利要求46所述的计算机可读存储介质,其特征在于,所述GDR帧是所述可移动平台对所述可移动平台当前采集到的图像帧进行GDR编码得到的。
  50. 根据权利要求45-49中任一项所述的计算机可读存储介质,其特征在于,所述预设条件包括以下至少一种:
    所述第一个数大于或等于所述GDR帧中的片的第二个数;
    所述第一个数与所述第二个数的商大于或等于预设阈值。
  51. 根据权利要求45-49中任一项所述的计算机可读存储介质,其特征在于,所述计算机程序被处理器执行时使所述处理器实现以下步骤:
    在所述终端设备上电时,向所述可移动平台发送错误反馈信息。
PCT/CN2021/077124 2021-02-20 2021-02-20 图像传输方法、可移动平台、设备及计算机可读存储介质 WO2022174431A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/077124 WO2022174431A1 (zh) 2021-02-20 2021-02-20 图像传输方法、可移动平台、设备及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/077124 WO2022174431A1 (zh) 2021-02-20 2021-02-20 图像传输方法、可移动平台、设备及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022174431A1 true WO2022174431A1 (zh) 2022-08-25

Family

ID=82931925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077124 WO2022174431A1 (zh) 2021-02-20 2021-02-20 图像传输方法、可移动平台、设备及计算机可读存储介质

Country Status (1)

Country Link
WO (1) WO2022174431A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160100181A1 (en) * 2014-10-07 2016-04-07 Socionext Inc. Image encoding apparatus, image encoding method, and image encoding program
CN110291774A (zh) * 2018-03-16 2019-09-27 深圳市大疆创新科技有限公司 一种图像处理方法、设备、系统及存储介质
CN111279694A (zh) * 2018-11-28 2020-06-12 深圳市大疆创新科技有限公司 Gdr码流编码方法、终端设备、机器可读存储介质
WO2020185957A1 (en) * 2019-03-11 2020-09-17 Futurewei Technologies, Inc. Gradual decoding refresh in video coding
CN111713107A (zh) * 2019-06-28 2020-09-25 深圳市大疆创新科技有限公司 图像处理方法、设备、无人飞行器和接收端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160100181A1 (en) * 2014-10-07 2016-04-07 Socionext Inc. Image encoding apparatus, image encoding method, and image encoding program
CN110291774A (zh) * 2018-03-16 2019-09-27 深圳市大疆创新科技有限公司 一种图像处理方法、设备、系统及存储介质
CN111279694A (zh) * 2018-11-28 2020-06-12 深圳市大疆创新科技有限公司 Gdr码流编码方法、终端设备、机器可读存储介质
WO2020185957A1 (en) * 2019-03-11 2020-09-17 Futurewei Technologies, Inc. Gradual decoding refresh in video coding
CN111713107A (zh) * 2019-06-28 2020-09-25 深圳市大疆创新科技有限公司 图像处理方法、设备、无人飞行器和接收端

Similar Documents

Publication Publication Date Title
US10936894B2 (en) Systems and methods for processing image data based on region-of-interest (ROI) of a user
US11288767B2 (en) Course profiling and sharing
CN109076249B (zh) 用于视频处理和显示的系统和方法
WO2019242553A1 (zh) 控制拍摄装置的拍摄角度的方法、控制装置及可穿戴设备
EP3510780B1 (en) Method and apparatus for session control support for field of view virtual reality streaming
EP3364273A1 (en) Electronic device and method for transmitting and receiving image data in the electronic device
CN111213002B (zh) 一种云台控制方法、设备、云台、系统及存储介质
JP2016045874A (ja) 情報処理装置、情報処理方法、及びプログラム
WO2022174431A1 (zh) 图像传输方法、可移动平台、设备及计算机可读存储介质
WO2022141314A1 (zh) 航线规划方法、装置、设备、无人机及可读存储介质
WO2020019175A1 (zh) 图像处理方法和设备、摄像装置以及无人机
WO2022140971A1 (zh) 图像传输方法、装置、平台、设备及计算机可读存储介质
US20230071690A1 (en) Remote control system, remote operation apparatus, video image processing apparatus, and computer-readable medium
JP2017010119A (ja) 情報処理装置、画像処理装置、それらの制御方法及びプログラム
WO2022217557A1 (zh) 可移动平台的图像传输方法、可移动平台及可读存储介质
EP4142292A1 (en) Image content transmitting method and device using edge computing service
WO2022141316A1 (zh) 图像传输方法、可移动平台、设备、系统及可读存储介质
WO2022217555A1 (zh) 无人机的图像传输方法、无人机及计算机可读存储介质
WO2022141121A1 (zh) 图像传输方法、可移动平台、遥控装置、系统及存储介质
WO2022088200A1 (zh) 视频传输方法、装置、可移动平台及计算机可读存储介质
CN108319295B (zh) 避障控制方法、设备及计算机可读存储介质
US20240032118A1 (en) Wireless communication method, movable platform, system, and computer-readable storage media
CN112822398A (zh) 拍摄方法、装置和电子设备
JP2021022075A (ja) 映像表示制御装置、方法およびプログラム
WO2023065126A1 (zh) 拍摄控制方法、设备、拍摄系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926149

Country of ref document: EP

Kind code of ref document: A1