WO2022172886A1 - バックアップ用電源装置 - Google Patents

バックアップ用電源装置 Download PDF

Info

Publication number
WO2022172886A1
WO2022172886A1 PCT/JP2022/004664 JP2022004664W WO2022172886A1 WO 2022172886 A1 WO2022172886 A1 WO 2022172886A1 JP 2022004664 W JP2022004664 W JP 2022004664W WO 2022172886 A1 WO2022172886 A1 WO 2022172886A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
power supply
discharge
switch
voltage
Prior art date
Application number
PCT/JP2022/004664
Other languages
English (en)
French (fr)
Inventor
謙治 北村
瞬 望月
洋祐 齋藤
Original Assignee
Fdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fdk株式会社 filed Critical Fdk株式会社
Priority to CA3210925A priority Critical patent/CA3210925A1/en
Priority to JP2022580613A priority patent/JPWO2022172886A1/ja
Priority to US18/276,695 priority patent/US20240128747A1/en
Publication of WO2022172886A1 publication Critical patent/WO2022172886A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/084Three-wire systems; Systems having more than three wires for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the present invention relates to a backup power supply device for a load device that operates by power supply from an external power supply device.
  • a backup power supply device 1 includes an input/output unit 4 connected to a power line between a load device 2 and a power supply device 3, a battery charging power supply 5, a storage battery 6, a battery Charging switches S1 and S2 provided between the charging power supply 5 and the storage battery 6, discharge switches S3 and S4 for discharging the storage battery 6 toward the input/output unit 4, and a control unit for controlling charging and discharging of the storage battery 6.
  • the charging switches S1 and S2 consist of two field effect transistors (FETs) connected in series, and the two FETs are connected so that the polarities of their body diodes are opposite to each other.
  • the discharge switches S3 and S4 also consist of two FETs, and the two FETs are connected in series so that the polarities of their body diodes are opposite to each other.
  • the control unit 7 closes the charging switches S1 and S2 and opens the discharging switches S3 and S4.
  • the charging switches S1 and S2 are opened and the discharging switches S3 and S4 are closed to supply power to the load device 2 via the input/output unit 4.
  • the two FETs constituting the discharge switches S3 and S4 are both turned off to cut off the discharge path from the storage battery 6 during charging of the storage battery 6 .
  • the storage battery 6 consists of nickel metal hydride battery cells
  • the battery voltage becomes higher than the input voltage to the device 1 while the storage battery 6 is being charged, current may leak from the storage battery 6 being charged.
  • a backup power supply device of the present invention is a backup power supply device used in a load device to which power is supplied from an external power supply device, the backup power supply device being charged with power from the external power supply device.
  • the suppression means is characterized by suppressing discharge leaking from the storage battery through the discharge switch.
  • the backup power supply device of the present invention the leakage of current from the storage battery being charged is suppressed with a small number of parts. Therefore, the backup power supply can be manufactured at low cost.
  • FIG. 1 is a circuit diagram of a conventional backup power supply
  • FIG. 1 is a circuit diagram of a backup power supply device according to an embodiment
  • a backup power supply device according to an embodiment of the present invention will be described below with reference to FIG.
  • FIG. 2 shows a backup power supply device 100 according to this embodiment.
  • the backup power supply device 100 includes an input/output unit 10, a storage battery 20 made of a secondary battery, a charging circuit 30, a discharging circuit 40, and a control unit 50.
  • a control unit 50 When the power supplied from the external power supply 3 to the load device 2 is reduced or interrupted, power of the nominal voltage is supplied to the device 2 instead of the external power supply 3 .
  • the input/output unit 10 is connected to a power line L that connects the external power supply device 3 to the load device 2, receives power from the external power supply device 3, and directs power from the storage battery 20 to the load device 2. Output.
  • the storage battery 20 is composed of at least one secondary battery cell such as a nickel-metal hydride battery, for example, and is configured by connecting an appropriate number of secondary battery cells in series according to the nominal voltage supplied by the backup power supply device 100. ing. The storage battery 20 can be discharged after being charged.
  • the charging circuit 30 is provided between the input/output unit 10 and the storage battery 20, and includes a battery charging power source 31 and two switches SW1 and SW2 connected in series from the input/output unit 10 side toward the storage battery 20 side. connected to The battery charging power supply 31 converts the input power Vin input to the input/output unit 10 into power of voltage and current suitable for charging the storage battery 20 and outputs the power to the storage battery 20 .
  • the two switches SW1 and SW2 are each composed of a MOSFET, and are connected in series so that the polarities of the body diodes of the FETs are opposite to each other.
  • the two switches SW1 and SW2 are examples of charging switches.
  • the discharge circuit 40 is provided between the storage battery 20 and the input/output unit 10, and two switches SW3 and SW4 are connected in series.
  • Each switch SW3, SW4 consists of MOSFET.
  • the two switches SW3 and SW4 are connected so that the polarities of the body diodes of the FETs are opposite to each other.
  • the body diode of the switch SW3 has an anode located on the input/output unit 10 side and a cathode located on the storage battery 20 side
  • the body diode of the switch SW4 has an anode located on the storage battery 20 side and a cathode located on the input/output unit 10 side. is doing.
  • the two switches SW3 and SW4 are examples of discharge switches.
  • a discharge suppression circuit 41 is connected in series between the switch SW3 and the switch SW4.
  • the switch SW11 and the diodes D1, D2 and D3 are connected in parallel.
  • the switch SW11 is composed of a MOSFET.
  • the body diode of the MOSFET that constitutes the switch SW11 is connected so that the anode is located on the input/output unit side and the cathode is located on the storage battery side.
  • Diodes D1, D2, and D3 consist of three diodes, and each diode D1, D2, and D3 is connected in series so that the anode is located on the storage battery 20 side and the cathode is located on the input/output unit 10 side.
  • Diodes D1, D2 and D3 have forward voltages VF1, VF2 and VF3, respectively.
  • the number of diodes connected in series is such that the combined value of the forward voltages obtained by all the diodes constituting the discharge circuit 40 is equal to or greater than the predicted maximum value of the difference voltage ⁇ V between the battery voltage Vbat and the input voltage Vin.
  • the discharge suppression circuit 41 is an example of a discharge suppression means.
  • the control unit 50 includes an input voltage detector (not shown) that detects the input voltage Vin input to the input/output unit 10, and a battery voltage detector (not shown) that detects the battery voltage Vbat of the storage battery 20. Prepare.
  • the control unit 50 charges and discharges the storage battery 20 by controlling the charging circuit 30 and the discharging circuit 40 according to the detected input voltage Vin and battery voltage Vbat.
  • the control unit 50 When charging the storage battery 20 , the control unit 50 turns on the two switches SW ⁇ b>1 and SW ⁇ b>2 of the charging circuit 30 to supply the power output from the battery charging power supply 31 to the storage battery 20 .
  • the control unit 50 detects the input voltage Vin and the battery voltage Vbat while the storage battery 20 is being charged.
  • the control unit 50 detects that the storage battery 20 is fully charged by the battery voltage Vbat, the control unit 50 turns off the two switches SW1 and SW2 of the charging circuit 30 to finish charging the storage battery 20 .
  • the switches SW3 and SW4 of the discharge circuit 40 are turned on.
  • the switch SW11 of the discharge suppression circuit 41 is turned on to close the discharge path from the storage battery 20 to the input/output unit 10 and discharge the storage battery 20 toward the load device 2 .
  • the storage battery 20 Since the input/output unit 10 of the backup power supply device 100 is connected to the power supply line L, the storage battery 20 is charged with the power from the external power supply device 3, and the power from the external power supply device 3 to the load device 2 is supplied. Be prepared for reduction or blockage.
  • the control unit 50 When charging the storage battery 20, the control unit 50 turns on the charging switches SW1 and SW2 to close the charging path from the input/output unit 10 to the storage battery 20, and turns off the discharge switches SW3 and SW4 and the switch SW11 of the discharge suppression circuit 41. , the discharge path of the storage battery 20 is opened.
  • the battery charging power source 31 outputs electric power suitable for charging the storage battery 20 toward the storage battery 20 to charge the storage battery 20 .
  • the control unit 50 monitors the battery voltage Vbat continuously or at predetermined intervals, determines that the storage battery 20 is fully charged when the battery voltage Vbat reaches the full charge voltage, and turns off the charging switches SW1 and SW2. to end the charging of the storage battery 20 .
  • the storage battery 20 is a nickel metal hydride battery, in order to fully charge the storage battery 20, it is necessary to charge the storage battery 20 to a voltage higher than its nominal voltage. Therefore, when the battery voltage Vbat becomes higher than the input voltage Vin There is The difference voltage ⁇ V between the input voltage Vin and the battery voltage Vbat generated at this time is converted to the forward voltages DF1, DF2, and DF3 of the three diodes D1, D2, and D3 connected in series in the discharge path and the discharge switch SW4. The voltage is dropped using the added value with the forward voltage of the body diode. Due to this voltage drop, the potential on the storage battery side of the discharge switch SW3 becomes substantially equal to the battery voltage, so current leakage from the storage battery 20 to the discharge path is suppressed. In the present embodiment, the differential voltage ⁇ V is 0.75 V at maximum. No leakage occurs.
  • the control unit 50 also monitors the input voltage Vin from the external power supply device 3 to the input/output unit 10 continuously or at predetermined intervals. When the input voltage Vin drops below the voltage required for the operation of the load device 2 to which power is supplied from the external power supply device 3, or when the power supply from the external power supply device 3 to the load device 2 is cut off. Then, the discharge switches SW3 and SW4 and the switch SW11 of the discharge suppression circuit 41 are turned on to close the discharge path from the storage battery 20 to the input/output unit 10, and power supply from the storage battery 20 to the load device 2 is started.
  • the number of FETs constituting the switches SW3, SW4, and SW11 included in the discharge circuit 40 is only three, so the number of parts required for switching control of the switches SW3, SW4, and SW11 can be reduced. , the size of the backup power supply device 100 can be prevented from increasing.
  • the number of diodes connected in series in the discharge suppression circuit 41 may be set in consideration of the forward voltage of each diode and the maximum value of the differential voltage ⁇ V expected during charging of the storage battery 20 . Since the forward voltage of one diode is small, as the differential voltage ⁇ V increases, the required voltage drop value also increases, so the number of diodes connected in series also increases accordingly.
  • the forward voltage of the series-connected diodes is used to drop the differential voltage ⁇ V that occurs when the battery voltage Vbat becomes higher than the input voltage Vin while the storage battery 20 is being charged. Therefore, leakage of current from the storage battery 20 during charging can be prevented with a simple configuration and at low cost using a diode, which is a passive component. Also, since the diode is a passive component, a control circuit for the diode can be eliminated when incorporating it into the circuit. Therefore, the backup power supply device 100 can be manufactured at low cost.
  • the single switch SW11 and the three diodes D1, D2, and D3 connected in series are connected in parallel.
  • a connected configuration is also possible.
  • ⁇ V can also be reduced in voltage between storage battery 20 and input/output unit 10 . Therefore, current leakage from the storage battery 20 is suppressed.
  • control unit 100 backup power supply device D1, D2, D3 diodes SW1, SW2 charging switches SW3, SW4, SW11 discharging switches

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

少ない部品点数で充電中の蓄電池からの電流漏出を抑制することができるバックアップ用電源装置。0バックアップ用電源装置100は、外部電源3からの電力により充電される蓄電池20と、蓄電池を充電する充電スイッチSW1、SW2と、電界効果トランジスタからなり、蓄電池を負荷装置2に放電させる放電スイッチSW3、SW4と、充電スイッチ及び放電スイッチを制御する制御部50と、放電スイッチと直列に接続される放電抑制手段41とを備える。制御部50が蓄電池20を充電するときであって、電池電圧が入力電圧よりも高くなり、且つ電池電圧と入力電圧との差分電圧が所定値未満であるときにのみ、放電抑制手段41は、蓄電池20からの電流の漏出を抑制する。

Description

バックアップ用電源装置
 本発明は、外部電源装置からの給電により動作する負荷装置のバックアップ用電源装置に関する。
 従来、バックアップ用電源装置1は、例えば図1に示すように、負荷装置2と電源装置3との電力ラインに接続される入出力部4と、電池充電用電源5と、蓄電池6と、電池充電用電源5と蓄電池6との間に設けられた充電スイッチS1、S2と、蓄電池6から入出力部4に向けて放電させる放電スイッチS3、S4と、蓄電池6の充放電を制御する制御部7とを備える。充電スイッチS1、S2は、直列接続された2つの電界効果トランジスタ(FET)からなり、2つのFETは、各々のボディダイオードの極性が互いに逆向きになるように接続されている。放電スイッチS3、S4も、2つのFETからなり、2つのFETは、各々のボディダイオードの極性が互いに逆向きになるように直列接続されている。
 制御部7は、蓄電池6を充電するときは、充電スイッチS1、S2を閉じると共に放電スイッチS3、S4を開放する。一方、蓄電池6を放電させるときは、充電スイッチS1、S2を開放すると共に放電スイッチS3、S4を閉じて、入出力部4を介して負荷装置2に給電を行っている。
 図1に示す電源装置1において、蓄電池6の充電中は、放電スイッチS3、S4を構成する2つのFETは、いずれもオフにされて蓄電池6からの放電路を遮断している。蓄電池6がニッケル水素電池セルからなる場合、蓄電池6を満充電するためには、電池電圧が蓄電池6の公称電圧よりも高い満充電電圧値に達するまで蓄電池6を充電する必要がある。しかしながら、蓄電池6の充電中において電池電圧が装置1への入力電圧よりも高くなると、充電中の蓄電池6から電流が漏出することがあった。
 本発明は、上記問題点に鑑みて、少ない部品点数で充電中の蓄電池からの電流漏出を抑制するバックアップ用電源装置を提供することを目的とする。
 上記目的を達成するため、本発明のバックアップ用電源装置は、外部電源装置から電力が供給される負荷装置に使用されるバックアップ用電源装置であって、前記外部電源装置からの電力により充電される蓄電池と、前記蓄電池を充電する充電スイッチと、第1電界効果トランジスタからなり、前記蓄電池から前記負荷装置に向けて放電させる放電スイッチと、前記充電スイッチ及び前記放電スイッチを制御すると共に、前記外部電源装置からの入力電圧と前記蓄電池の電池電圧とを検出する制御部と、前記放電スイッチと直列に接続される放電抑制手段と、を備え、前記制御部が前記充電スイッチをオンにし且つ前記放電スイッチをオフして前記蓄電池を充電するときであって、前記電池電圧が前記入力電圧よりも高くなり、且つ前記電池電圧と前記入力電圧との差分電圧が所定値未満であるときにのみ、前記放電抑制手段は、前記蓄電池から前記放電スイッチを介して漏出する放電を抑制する、ことを特徴とする。
 上記構成により、蓄電池の充電中に電池電圧が入力電圧よりも高くなった場合であっても、蓄電池からの電流の漏出が抑制される。
 本発明のバックアップ用電源装置によれば、少ない部品点数で、蓄電池の充電中の蓄電池からの電流の漏出を抑制する。従って、バックアップ用電源装置を安価で製造することができる。
従来のバックアップ用電源装置の回路図である。 本実施の形態に係るバックアップ用電源装置の回路図である。
 本発明の実施の形態に係るバックアップ用電源装置を、図2を参照して以下に説明する。 
図2に、本実施の形態に係るバックアップ用電源装置100を示す。バックアップ用電源装置100は、入出力部10と、二次電池からなる蓄電池20と、充電回路30と、放電回路40と、制御部50とを備え、外部電源装置3から給電されて動作する負荷装置2に対して、外部電源装置3から負荷装置2への供給電力の減少または遮断が生じた場合に、外部電源装置3の代わりに公称電圧の電力を供給する。 
入出力部10は、外部電源装置3を負荷装置2に接続する電源ラインLに接続されて、外部電源装置3からの電力が入力されるとともに、蓄電池20からの電力を負荷装置2に向けて出力する。 
蓄電池20は、例えばニッケル水素電池などの二次電池セルの少なくとも一つ以上からなり、バックアップ用電源装置100が供給する公称電圧に応じて適宜の個数の二次電池セルが直列接続されて構成されている。蓄電池20は、充電されると放電可能となる。 
充電回路30は、入出力部10と蓄電池20との間に設けられ、入出力部10側から蓄電池20側に向けて、順に、電池充電用電源31と、2つのスイッチSW1、SW2とが直列に接続される。電池充電用電源31は、入出力部10に入力される入力電力Vinを蓄電池20の充電に適した電圧及び電流の電力に変換して蓄電池20に向けて出力する。2つのスイッチSW1、SW2は、それぞれMOSFETからなり、各FETのボディダイオードの極性が互いに反対方向を向くように直列接続されている。2つのスイッチSW1、SW2は、充電スイッチの一例である。 
放電回路40は、蓄電池20と入出力部10との間に設けられ、2つのスイッチSW3、SW4が直列に接続されている。各スイッチSW3、SW4は、MOSFETからなる。2つのスイッチSW3、SW4は、FETのボディダイオードの極性が互いに反対を向くように接続され、スイッチSW3が蓄電池20側に、スイッチSW4が入出力部10側に位置する。例えば、スイッチSW3のボディダイオードは、アノードが入出力部10側に、カソードが蓄電池20側に位置し、スイッチSW4のボディダイオードは、アノードが蓄電池20側に、カソードが入出力部10側に位置している。2つのスイッチSW3、SW4は、放電スイッチの一例である。 
さらに、放電回路40において、放電抑制回路41が、スイッチSW3とスイッチSW4との間に直列に接続されている。放電抑制回路41において、スイッチSW11とダイオードD1、D2、D3とが並列に接続されている。スイッチSW11は、MOSFETからなる。スイッチSW11を構成するMOSFETのボディダイオードは、アノードが入出力部側、カソードが蓄電池側に位置するように接続される。 
ダイオードD1、D2、D3は、3つのダイオードからなり、各ダイオードD1、D2、D3は、アノードが蓄電池20側、カソードが入出力部10側に位置するように直列接続されている。また、ダイオードD1、D2、D3は、それぞれが順方向電圧VF1、VF2、VF3を有する。直列接続されるダイオードの個数は、放電回路40を構成する全ダイオードによって得られる順方向電圧の合成値が、電池電圧Vbatと入力電圧Vinとの差分電圧ΔVの予測最大値以上の値になるように設定される。放電抑制回路41は、放電抑制手段の一例である。 
制御部50は、入出力部10に入力される入力電圧Vinを検出する入力電圧検出器(図示せぬ)と、蓄電池20の電池電圧Vbatを検出する電池電圧検出器(図示せぬ)とを備える。制御部50は、検出される入力電圧Vin及び電池電圧Vbatに応じて、充電回路30と放電回路40とをそれぞれ制御して、蓄電池20の充放電を行う。 
制御部50は、蓄電池20を充電するときは、充電回路30の2つのスイッチSW1、SW2をオンにして、電池充電用電源31が出力する電力を蓄電池20に供給する。制御部50は、蓄電池20の充電中は入力電圧Vinと電池電圧Vbatとを検出する。制御部50は、電池電圧Vbatにより蓄電池20が満充電されたことを検出すると、充電回路30の2つのスイッチSW1、SW2をオフにして、蓄電池20の充電を終了する。 
一方、制御部50は、外部電源装置3からの入力電圧Vinの所定値を下回る低下を検出したり、外部電源装置3からの電力の遮断を検出した場合、放電回路40のスイッチSW3、SW4をオンにし、さらに放電抑制回路41のスイッチSW11をオンにして、蓄電池20から入出力部10までの放電路を閉じて、蓄電池20から負荷装置2に向けて放電させる。 
次に、バックアップ用電源装置100の動作について説明する。 
バックアップ用電源装置100は、入出力部10が電源ラインLに接続されているので、蓄電池20は、外部電源装置3からの電力により充電されて、外部電源装置3から負荷装置2への電力の減少または遮断に備えている。 
蓄電池20を充電するとき、制御部50は、充電スイッチSW1、SW2をオンにして入出力部10から蓄電池20への充電路を閉じ、放電スイッチSW3、SW4及び放電抑制回路41のスイッチSW11をオフにして蓄電池20の放電路を開放する。電池充電用電源31は、蓄電池20の充電に適した電力を蓄電池20に向けて出力し蓄電池20を充電する。制御部50は、電池電圧Vbatを連続的または所定間隔毎にモニタし、電池電圧Vbatが満充電電圧に達したときは蓄電池20が満充電されたと判断して、充電スイッチSW1、SW2をオフにして蓄電池20の充電を終了する。 
蓄電池20がニッケル水素電池からなる場合、蓄電池20を満充電するためには、蓄電池20の公称電圧よりも高い電圧にまで充電する必要があるため、電池電圧Vbatが入力電圧Vinよりも高くなる時がある。このときに生じた入力電圧Vinと電池電圧Vbatとの間の差分電圧ΔVを、放電路において直列接続された3つのダイオードD1、D2、D3の順方向電圧DF1、DF2、DF3と放電スイッチSW4のボディダイオードの順方向電圧との加算値を利用して電圧降下させる。この電圧降下により、放電スイッチSW3の蓄電池側の電位が電池電圧と略等しくなるために、蓄電池20から放電路への電流の漏出が抑制される。本実施の形態では、差分電圧ΔVは、最大で0.75Vになるため、放電路におけるダイオードの順方向電圧の合成値が少なくとも0.75V以上であれば、蓄電池20から放電路への電流の漏出は生じない。 
また、制御部50は、外部電源装置3から入出力部10への入力電圧Vinも連続的または所定間隔でモニタする。制御部50は、入力電圧Vinが、外部電源装置3から給電される負荷装置2の動作に必要な電圧以下に低下したとき、または、外部電源装置3から負荷装置2への給電が遮断したときに、放電スイッチSW3、SW4と放電抑制回路41のスイッチSW11とをオンにして蓄電池20から入出力部10への放電路を閉じて、蓄電池20から負荷装置2への給電を開始する。 
上記実施の形態において、放電回路40に含まれるスイッチSW3、SW4、SW11を構成するFETは3つだけであるため、スイッチSW3、SW4、SW11のスイッチング制御に必要な部品点数を少なくすることができ、バックアップ用電源装置100の大型化を防止できる。 
放電抑制回路41において直列接続されるダイオードの個数は、各ダイオードの順方向電圧と、蓄電池20の充電中に予測される差分電圧ΔVの最大値とを考慮して設定すれば良い。1つのダイオードによる順方向電圧は小さいので、差分電圧ΔVが大きくなると、必要とされる電圧降下値も大きくなるので、直列接続されるダイオードの個数もそれに応じて増やすことになる。 
このように、蓄電池20の充電中に、電池電圧Vbatが入力電圧Vinよりも高くなった場合に生じる差分電圧ΔVを、直列接続したダイオードの順方向電圧を利用して電圧降下させている。従って、充電時の蓄電池20からの電流の漏出を、受動部品であるダイオードを利用して簡単な構成で且つ安価に防止することができる。また、ダイオードは受動部品であるため、回路への組み込みにあたり、ダイオード用の制御回路を不要にできる。従って、バックアップ用電源装置100を安価に製造することができる。 
上記実施の形態では、放電抑制回路41において、単一のスイッチSW11と直列接続された3つのダイオードD1、D2、D3とを並列接続させていたが、この構成に代えて、複数のFETを直列接続させた構成を取ることもできる。この場合、直列接続されたFETの各々のボディダイオードの順方向電圧の合成値を利用して、蓄電池20を充電しているときに電池電圧Vbatが入力電圧Vinよりも高くなることにより生じる差分電圧ΔVを、蓄電池20と入出力部10との間で電圧降下させることもできる。故に、蓄電池20からの電流の漏出が抑制される。
  20  蓄電池
  41  放電抑制手段
  50  制御部
 100  バックアップ用電源装置
  D1、D2、D3  ダイオード
  SW1、SW2  充電スイッチ
  SW3、SW4、SW11  放電スイッチ
 

Claims (3)

  1.  外部電源装置から電力が供給される負荷装置に使用されるバックアップ用電源装置であって、
     前記外部電源装置からの電力により充電される蓄電池と、
     前記蓄電池を充電する充電スイッチと、
     第1電界効果トランジスタからなり、前記蓄電池から前記負荷装置に向けて放電させる放電スイッチと、
     前記充電スイッチ及び前記放電スイッチを制御すると共に、前記外部電源装置からの入力電圧と前記蓄電池の電池電圧とを検出する制御部と、
     前記放電スイッチと直列に接続される放電抑制手段と、を備え、
     前記制御部が前記充電スイッチをオンにし且つ前記放電スイッチをオフして前記蓄電池を充電するときであって、前記電池電圧が前記入力電圧よりも高くなり、且つ前記電池電圧と前記入力電圧との差分電圧が所定値未満であるときにのみ、前記放電抑制手段は、前記蓄電池から前記放電スイッチを介して漏出する放電を抑制する、バックアップ用電源装置。
  2.  前記蓄電池から前記放電スイッチを介して前記負荷装置に接続可能な出力部をさらに備え、
     前記放電抑制手段は、互いに並列接続された第2電界効果トランジスタとダイオードとを含み、
     前記ダイオードは、アノードが前記蓄電池側に、カソードが前記出力部側に接続され、
     前記所定値は、前記ダイオードの順方向電圧と等しく、
     前記制御部は、前記充電スイッチをオンにするときは、前記第2電界効果トランジスタをオフにし、前記放電スイッチをオンにするときは、前記第2電界効果トランジスタもオンにする、請求項1記載のバックアップ用電源装置。
  3.  前記蓄電池から前記放電スイッチを介して前記負荷装置に接続可能な出力部をさらに備え、
     前記放電抑制手段は、第2電界効果トランジスタと複数のダイオードとを含み、
     前記複数のダイオードは、それぞれ、アノードが前記蓄電池側に、カソードが前記出力部側に位置するように直列接続され、
     直列接続された複数のダイオードは、前記第2電界効果トランジスタと並列に接続され、
     前記所定値は、前記複数のダイオードの各々の順方向電圧を加算した値と等しく、
     前記制御部は、前記充電スイッチをオンにするときは、前記第2電界効果トランジスタをオフにし、前記放電スイッチをオンにするときは、前記第2電界効果トランジスタもオンにする、請求項1記載のバックアップ用電源装置。
     
PCT/JP2022/004664 2021-02-12 2022-02-07 バックアップ用電源装置 WO2022172886A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3210925A CA3210925A1 (en) 2021-02-12 2022-02-07 Backup power supply device
JP2022580613A JPWO2022172886A1 (ja) 2021-02-12 2022-02-07
US18/276,695 US20240128747A1 (en) 2021-02-12 2022-02-07 Backup power supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-021019 2021-02-12
JP2021021019 2021-02-12

Publications (1)

Publication Number Publication Date
WO2022172886A1 true WO2022172886A1 (ja) 2022-08-18

Family

ID=82837831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004664 WO2022172886A1 (ja) 2021-02-12 2022-02-07 バックアップ用電源装置

Country Status (4)

Country Link
US (1) US20240128747A1 (ja)
JP (1) JPWO2022172886A1 (ja)
CA (1) CA3210925A1 (ja)
WO (1) WO2022172886A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207682A (ja) * 1992-01-24 1993-08-13 Yuasa Corp 無停電電源装置
JP2001333546A (ja) * 2000-05-23 2001-11-30 Hitachi Maxell Ltd 電源装置
JP2010178500A (ja) * 2009-01-29 2010-08-12 Nippon Telegr & Teleph Corp <Ntt> 放電器、放電方法および直流電源システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207682A (ja) * 1992-01-24 1993-08-13 Yuasa Corp 無停電電源装置
JP2001333546A (ja) * 2000-05-23 2001-11-30 Hitachi Maxell Ltd 電源装置
JP2010178500A (ja) * 2009-01-29 2010-08-12 Nippon Telegr & Teleph Corp <Ntt> 放電器、放電方法および直流電源システム

Also Published As

Publication number Publication date
US20240128747A1 (en) 2024-04-18
JPWO2022172886A1 (ja) 2022-08-18
CA3210925A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
US9537329B2 (en) Battery management circuit maintaining cell voltages between a minimum and a maximum during charging and discharging
US7463008B2 (en) Power supply apparatus with transistor control for constant current between series-connected battery blocks
US7298113B2 (en) Battery pack
US9350185B2 (en) Power output distribution and control system for multi-output battery charger
EP2908403B1 (en) Battery state control circuit, battery state control device, and battery pack
US10193356B2 (en) Electrochemical energy accumulator and balancing method
TW201218576A (en) Dc power supply device
CN101467325A (zh) 电荷均衡设备及方法
US20180191173A1 (en) Battery Balancing Circuit
KR20190048972A (ko) 리튬전지 및 캐패시터의 셀 밸런싱을 통한 시동용 배터리 시스템
EP2320536A1 (en) Electric energy storage module control device
US20110273145A1 (en) Charge control circuit
JP3002623B2 (ja) 直列電池の過放電防止回路、過充電防止回路および充放電制御回路
JP3249261B2 (ja) パック電池
WO2022172886A1 (ja) バックアップ用電源装置
JP2009148110A (ja) 充放電器とこれを用いた電源装置
KR101639885B1 (ko) 정전압원 기능을 갖는 배터리 보조 장치 및 이를 포함하는 배터리 팩
US11139662B2 (en) Balance circuits for battery cells
WO2021215282A1 (ja) 無停電電源装置
WO2021241136A1 (ja) バックアップ電源装置
JP3806639B2 (ja) 保護回路を備える電池パック
US11641116B2 (en) Charge/discharge control circuit and battery device having the same
US11539221B2 (en) Charge-discharge control circuit including cell balancing circuits, cell balance detection circuits, overcharge detection circuits, and a control circuit
CN106300279B (zh) 用于二次电池过放电后的强制充电保护电路
US20230090434A1 (en) Open Contactor Bypass Circuit For A Battery System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752710

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022580613

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3210925

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18276695

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752710

Country of ref document: EP

Kind code of ref document: A1