WO2022172820A1 - 基地局、コアネットワーク装置、端末及び通信方法 - Google Patents

基地局、コアネットワーク装置、端末及び通信方法 Download PDF

Info

Publication number
WO2022172820A1
WO2022172820A1 PCT/JP2022/003959 JP2022003959W WO2022172820A1 WO 2022172820 A1 WO2022172820 A1 WO 2022172820A1 JP 2022003959 W JP2022003959 W JP 2022003959W WO 2022172820 A1 WO2022172820 A1 WO 2022172820A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
transmission mode
mode
switching
Prior art date
Application number
PCT/JP2022/003959
Other languages
English (en)
French (fr)
Inventor
輝文 ▲高▼田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022172820A1 publication Critical patent/WO2022172820A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • H04W40/36Modification of an existing route due to handover

Definitions

  • the present disclosure relates to base stations, core network devices, terminals, and communication methods.
  • Non-Patent Document 1 In the Third Generation Partnership Project (3GPP), an international standardization organization, Long Term Evolution (LTE), which is the 3.9th generation Radio Access Technology (RAT), and LTE-Advanced, which is the 4th generation RAT As a successor, Release 15 of New Radio (NR), which is a fifth generation (5G) RAT, has been specified (for example, Non-Patent Document 1).
  • LTE Long Term Evolution
  • RAT Radio Access Technology
  • NR New Radio
  • Release 15 of 5G Core Network which is the 5th generation CN, has been specified as a successor to Evolved Packet Core (EPC), which is the 4th generation Core Network (CN) (for example, , Non-Patent Document 2).
  • EPC Evolved Packet Core
  • CN 4th generation Core Network
  • MBS Multicast Broadcast Service
  • 5GC 5MBS and the like.
  • MBS multicast data and / or broadcast data
  • delivery mode for transmitting multicast data and / or broadcast data
  • PDU protocol data unit
  • MBS data is transmitted through a shared transport tunnel between the CN and the base station It is being considered to support Shared mode and Note that the MBS data may also be called an MBS stream or the like.
  • the user plane in CN (User plane; U plane) can be expected to be reduced.
  • the U-plane overhead is also called traffic overhead or the like.
  • One object of the present disclosure is to provide a base station, a core network device, a terminal, and a communication method that can appropriately control switching of MBS data transmission modes.
  • a communication method is a first transmission mode using a protocol data unit (PDU) session between a first user plane device and each terminal, or a second user plane device and a base station.
  • a communication method for transmitting multicast broadcast service (MBS) data using a second transmission mode using a shared tunnel between the base station, the core network device, or the first transmission mode In the terminal, based on terminal state information about the state of the terminal and/or support information about support of the second transmission mode in the target base station of the terminal, the first transmission mode for the terminal to the a step of controlling switching to a second transmission mode; and transferring the MBS data transmitted from the second user plane device via the shared tunnel in the terminal switched to the second transmission mode to the and receiving from a base station.
  • PDU protocol data unit
  • MBS multicast broadcast service
  • switching of MBS data transmission modes can be appropriately controlled.
  • FIG. 1 is a diagram showing an example of an outline of a communication system according to this embodiment.
  • FIG. 2 is a diagram showing an example of a transmission mode of MBS data according to this embodiment.
  • FIG. 3 is a diagram showing an example of MBS data transmission mode switching control.
  • FIG. 4 is a diagram showing an example of first switching control from the individual mode to the shared mode according to this embodiment.
  • FIG. 5 is a diagram showing an example of switching processing from the individual mode to the shared mode according to this embodiment.
  • FIG. 6 is a diagram showing an example of second switching control from the individual mode to the shared mode according to this embodiment.
  • FIG. 7 is a diagram showing an example of third switching control from the individual mode to the shared mode according to this embodiment.
  • FIG. 1 is a diagram showing an example of an outline of a communication system according to this embodiment.
  • FIG. 2 is a diagram showing an example of a transmission mode of MBS data according to this embodiment.
  • FIG. 3 is a diagram showing an example of MBS data transmission mode
  • FIG. 8 is a diagram showing an example of fourth switching control from the individual mode to the shared mode according to this embodiment.
  • FIG. 9 is a diagram showing an example of fifth switching control from the individual mode to the shared mode according to this embodiment.
  • FIG. 10 is a diagram showing an example of the hardware configuration of each device in the communication system according to this embodiment.
  • FIG. 11 is a diagram showing an example of a functional block configuration of a terminal according to this embodiment.
  • FIG. 12 is a diagram showing an example of the functional block configuration of the base station according to this embodiment.
  • FIG. 13 is a diagram showing an example of a functional block configuration of a core network device according to this embodiment.
  • FIG. 1 is a diagram showing an example of an outline of a communication system according to this embodiment.
  • a communication system 1 includes a terminal 10, a base station 20, a core network (CN) 30, and provides MBS.
  • CN core network
  • the terminal 10 is, for example, a predetermined terminal or device such as a smartphone, a personal computer, an in-vehicle terminal, an in-vehicle device, a stationary device, a telematics control unit (TCU), or the like.
  • Terminal 10 may also be called a User Equipment (UE), a Mobile Station (MS), a User Terminal, a Radio apparatus, a subscriber terminal, an access terminal, and so on.
  • the terminal 10 may be mobile or stationary.
  • the terminal 10 is configured to be able to communicate using at least one of LTE, LTE-Advanced, NR, etc. as a radio access technology (RAT) RAT for the base station 20, but not limited to this. , 6th generation or later RATs may be used for communication.
  • the terminal 10 is not limited to the access network defined by 3GPP as described above (3GPP access network). may access.
  • the base station 20 forms one or more cells and communicates with the terminal 10 using the cell.
  • Base station 20 includes gNodeB (gNB), en-gNB, radio access network (RAN), access network (AN), next generation radio access network (Next Generation-Radio Access Network: NG-RAN ) node, low-power node, Central Unit (CU), Distributed Unit (DU), gNB-DU, Remote Radio Head (RRH), integrated access and back It may also be called a hole (Integrated Access and Backhaul/Backhauling: IAB) node or the like.
  • the base station 20 is not limited to one node, and may be composed of a plurality of nodes (for example, a combination of a lower node such as DU and an upper node such as CU).
  • the number of terminals 10 and base stations 20 shown in FIG. 1 may be one or more. It goes without saying that one or more terminals 10 may be connected to one base station 20 . Also, a plurality of base stations 20 (eg, base stations 20A and 20B in FIG. 3) are connected via an Xn interface. Also, the plurality of base stations 20 are each connected to the AMF 31 via the N2 interface.
  • the CN 30 is, for example, 5GC, but is not limited to this, and may be an EPC or a 6th generation or later core network.
  • CN 30 includes, for example, Access and Mobility Management Function (AMF) 31, Session Management Function (SMF) 32, User Plane Function (UPF) 33, Multicast Broadcast (MB)-SMF 34, Multicast Broadcast (MB)-UPF 35, Network Exposure Function (NEF)/Multicast Broadcast Service Function (MBSF) 36, Application Function (AF) 37, Multicast Broadcast Service User plane (MBSU) 38, etc.
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • MSF Multicast Broadcast
  • NEF Network Exposure Function
  • MBSF Multicast Broadcast Service Function
  • AF Application Function
  • MBSU Multicast Broadcast Service User plane
  • Core network devices Devices included in the CN 30 (devices on the CN 30 (hereinafter also referred to as “core network devices”) are not limited to those shown in FIG. 1, and some core network devices may be omitted or not shown. (e.g., PCF, etc.), and the names of the core network devices and interfaces shown in Figure 1 are merely examples and are not limited to those shown in Figure 1, and equivalent or similar functions may be included. Other names may be used if the core network device shown in FIG. It may consist of a plurality of devices.
  • the AMF 31 is a core network device that manages access and/or mobility of the terminal 10.
  • the AMF 31 is connected to the base station 20 via the N2 interface and to the terminal 10 via the N1 interface.
  • the AMF 31 performs processing related to the C-plane (for example, registration management, connection management, mobility management) and the like.
  • the AMF 31 also performs processing related to non-access stratum (NAS), and transmits and/or receives NAS messages to and from the terminal 10 .
  • NAS non-access stratum
  • the SMF 32 is a core network device that manages sessions, and controls, for example, session establishment, update and release.
  • the SMF 32 is connected to the AMF 31 via the N11 interface and to the UPF 33 via the N4 interface.
  • the UPF 33 is a core network device that serves as a connection point to a data network (DN) (not shown), and performs packet routing, forwarding, etc., for example.
  • the UPF 33 is connected to the SMF 32 via the N4 interface and to the base station 20 via the N3 interface.
  • UPF 33 establishes a PDU session with terminal 10 .
  • the UPF 33 is the first user plane device that performs processing related to the U plane.
  • Downlink data from the DN is transmitted from the UPF 33 to the base station 20 via the N3 tunnel, and transmitted from the base station 20 to the terminal 10 via the radio bearer.
  • uplink data from the terminal 10 is transmitted from the terminal 10 to the base station 20 via the radio bearer, transmitted from the base station 20 to the UPF 33 via the N3 tunnel, and transmitted from the UPF 33 to the DN.
  • the N3 tunnel is a tunnel for transmitting encapsulated IP (Encapsulated Internet Protocol) packets, and may be called a U-plane tunnel or the like.
  • the PDU session between the terminal 10 and the UPF 33 can be rephrased as connecting the radio bearer between the terminal 10 and the base station 20 and the N3 tunnel between the base station 20 and the UPF 33 .
  • the MB-SMF 34 is a core network device that manages sessions for MBS (hereinafter referred to as "MBS sessions"), and controls, for example, establishment, update and release of MBS sessions.
  • MBS sessions sessions for MBS
  • the MB-SMF 34 is connected to the AMF 31 via the N11 interface and to the MB-UPF 35 via the N4 interface.
  • An MBS session is also called a multicast broadcast (MB) session or the like.
  • joining (joining) to an MBS session includes a NAS message from terminal 10 to AMF 31 (eg, UL NAS MB Session Join Request), a request message from AMF 31 to MB-SMF 34 (eg, MB Session Request), the request Even if it is accepted by a response message from MB-SMF 34 to AMF 31 (for example, MB Session Response) in response to the message, and a NAS message from AMF 31 to terminal 10 in response to the response message (for example, DL NAS MB Session Join Accept) good.
  • An MBS session or stream of MBS data may be identified by a predetermined identifier (eg Temporary Mobile Group Identity (TMGI)).
  • TMGI Temporary Mobile Group Identity
  • the MB-UPF 35 is a core network device that controls transmission of MBS data from the MBSU 38 or a DN (not shown). Downlink MBS data from MBSU 38 or a DN (not shown) is transmitted from MB-UPF 35 to base station 20 or UPF 33 .
  • MB-UPF 35 is connected to base station 20 via N3 interface and to AF 37 via N6 interface. Also, the MB-UPF 35 is connected to the UPF 33 via the N9 interface.
  • MB-UPF 35 is a second user plane device that performs processing related to the U plane.
  • the NEF/MBSF 36 provides an interface to the AF 37 for MBS procedures including positioning, MBS session and QoS management.
  • NEF/MBSF 36 is connected to MB-SMF 34 via N29 interface and to AF 37 via N33 interface.
  • AF37 will provide information on MBS.
  • MBSU 38 manages the payload for service level functions and management.
  • MBSU 38 is connected to MB-UPF 35 via N6 interface, to AF 37 via NxMB-U interface, and to NEF/MBSF 36 via Ny interface.
  • MBS data is registered by a message (e.g., join or leave message) of a multicast distribution control protocol (e.g., Internet Group Management Protocol (IGMP) or Multicast Listener Discovery (MLD)). It is delivered to the terminal 10 that has been (registered). Supporting an individual mode and a shared mode as transmission modes for MBS data is under consideration.
  • IGMP Internet Group Management Protocol
  • MLD Multicast Listener Discovery
  • MBS data (a single copy of MBS data) received by CN 30 is sent to each terminal 10 via a PDU session for each terminal 10 (for example, a single unicast PDU session with each terminal 10). is transmitted to The individual transmission mode is also called the first transmission mode, Individual MBS Traffic delivery, Ind-mode, and the like.
  • a terminal 10 in dedicated mode can receive MBS data regardless of whether the base station 20 forming the serving cell supports MBS.
  • MBS data (a single copy of MBS data) received by CN 30 is transmitted to base station 20 via a shared transport (Shared Transport) with base station 20, and a terminal under the control of base station 20 10 is transmitted by Point To Point (PTP) or Point To Multi-point (PTM).
  • the shared mode is also called a second transmission mode, Shared MBS Traffic delivery, Shared-mode, and so on.
  • a terminal 10 in shared mode can receive MBS data when a base station 20 forming a serving cell supports MBS.
  • FIG. 2 is a diagram showing an example of the MBS data transmission mode according to this embodiment.
  • MBS data from MBSU 38 or a DN (not shown) is received by MB-UPF 35 in CN 30 .
  • MB-UPF 35 transfers the received MBS data to UPF 33 via the N9 tunnel.
  • the N9 tunnel is the tunnel of the N9 interface.
  • the UPF 33 replicates the MBS data received from the MB-UPF 35 and transmits the replicated MBS data to each terminal 10 through a PDU session individually established with each terminal 10 .
  • the terminal 10 can continue to receive MBS data.
  • the MB-UPF 35 transmits the received MBS data to the base station 20 via shared transport.
  • a shared transport is a shared tunnel within the CN 30, also called a shared downlink CN tunnel (Shred downlink CN Tunnel), N3 tunnel, and so on.
  • the base station 20 transmits the MBS data received from the MB-UPF 35 via the shared transport to the terminal 10 under its control by PTM or PTP.
  • shared mode MBS data for a large number of terminals 10 are bundled into one stream, so U-plane overhead in CN 30 can be reduced compared to dedicated mode.
  • the MBS data transmission mode for the terminal 10 is simply switched from the individual mode to the shared mode, for example, reception of the MBS data at the terminal 10 may be interrupted and/or switching between the individual mode and the shared mode may occur. Problems such as an increase in C-plane overhead due to frequent switching may occur.
  • FIG. 3 is a diagram showing an example of MBS data transmission mode switching control. It should be noted that timings Ti (0 ⁇ i ⁇ 4) shown below are timings in chronological order, and it is assumed that time elapses as i increases.
  • Base stations 20A and 20B also form cells CA and CB, respectively. The cells CA and CB may be called coverage or the like. It is also assumed that the base station 20A supports MBS, but the base station 20B does not support MBS.
  • terminals 10A to 10C each receive MBS data of the same stream using the individual mode. Also, at timing T0, terminal 10A is located within cell CA, and terminals 10B and 10C are located within a cell (not shown) other than cells CA and CB.
  • the terminals 10B and 10C move into the cell CA and are handed over from the base station 20 (not shown) to the base station 20A.
  • timing T2 it is detected that the PDU session established with each of the terminals 10A to 10C in the individual mode is for the terminals 10A to 10C residing in the same cell CA, and the transmission mode of the terminals 10A to 10C is detected. can be switched from individual mode to shared mode.
  • the terminal 10A moves from the cell CA to the cell CB and is handed over from the base station 20A to the base station 20B.
  • the terminal 10A cannot continue communication in the shared mode because the handover destination base station (hereinafter referred to as "target base station") 20B does not support MBS. Therefore, at the timing T4, the transmission mode of the terminal 10A is switched again from the shared mode to the individual mode.
  • a shared tunnel common to terminals 10A to 10C can be used. Can reduce plane overhead.
  • the terminal 10A located on the boundary between the cells CA and CB is handed over to the base station 20B that does not support MBS, the terminal 10A cannot receive MBS data until switching from the shared mode to the individual mode is completed again. There is a risk of interruption.
  • frequent switching between the individual mode and the shared mode of the terminal 10A may increase the overhead of the C-plane.
  • terminal state information information about the state of the terminal 10 in individual mode
  • support information information about MBS support in the target base station 20 of the terminal 10
  • the terminal 10 in dedicated mode is located at the cell edge and handover is imminent, or when the target base station 20 does not support MBS (that is, does not support shared mode), the terminal 10 transmission modes are kept in individual mode without being switched to shared mode. Therefore, problems due to switching from the individual mode to the shared mode (for example, MBS data reception interruption in the terminal 10, increase in C-plane overhead due to frequent switching at timings T2 and T4 in FIG. 3, etc.) are prevented. can.
  • the terminal state information may include, for example, at least one of the following (a) to (g).
  • the terminal state information may include, for example, a cell identifier (hereinafter also referred to as “cell ID”) as information about the target base station 20 of the terminal 10 .
  • Measurement report from terminal 10 (b) the received power of the signal from the base station 20 in the terminal 10 (for example, reference signal received power (RSRP) (c) the received quality of the signal from the base station 20 in the terminal 10 (for example, reference signal received quality (RSRQ)) (d) received strength of the signal from the base station 20 in the terminal 10 (for example, reference signal strength indicator (RSSI)) (e) UE Context (f) Channel State Information (CSI) fed back from the terminal 10 to the base station 20 (g) Information indicating the determination result of whether or not the HO state is based on at least one of the measurement report, received power, received quality, received strength, and CSI
  • the support information regarding MBS support in the target base station 20 may be, for example, information indicating whether MBS is supported, or information indicating the release of the 3GPP specifications supported by the target base station 20B. etc.
  • the shared mode is available when the base station 20 supports MBS, so "MBS support" can be rephrased as "shared mode support.”
  • the first to fifth switching controls when switching the transmission mode of the terminal 10 from the individual mode to the shared mode will be described below. 4 to 9, after the terminals 10B and 10C move into the cell CA at the timing T1 in FIG. 3, it is assumed that the three terminals 10A to 10C are located in the cell CA in individual mode. . Moreover, the terminals 10A to 10C and the base stations 20A and 20B are collectively referred to as the terminal 10 and the base station 20 when not distinguished.
  • the AMF 31 detects that a plurality of individual mode terminals 10 are located within the same cell of the base station 20 . In addition, the AMF 31 switches from the individual mode to the shared mode for each terminal 10 based on the terminal state information of each terminal 10 and/or the support information regarding shared mode support in the target base station 20 of each terminal 10. to trigger.
  • FIG. 4 is a diagram showing an example of first switching control from the individual mode to the shared mode according to this embodiment.
  • FIG. 4 shows the operations of the terminals 10B and 10C in common, it goes without saying that the terminals 10B and 10C perform the operations respectively.
  • step S101 MBS data is transmitted to the terminals 10A-10C in individual mode.
  • the UPF 33 transmits the MBS data received from the MB-UPF 35 to each of the terminals 10A-10C using PDU sessions individually established with each of the terminals 10A-10C.
  • step S102 the AMF 31 detects that the terminals 10A-10C are located in the cell CA of the base station 20A, and decides to switch the transmission mode of the terminals 10A-10C from the individual mode to the shared mode. For example, the AMF 31 detects that the terminals 10A to 10C are located in the same cell CA based on the location information notified from the base station 20A.
  • the location information is information indicating terminals 10 that are located in the cell of the base station 20A.
  • step S103 the AMF 31 transmits a message requesting the terminal state information (hereinafter referred to as "terminal state information request") to the base station 20A to which the terminals 10A to 10C are connected.
  • the terminal state information request may be, for example, an N2 message or the like.
  • step S104 in response to the terminal state information request from AMF 31, base station 20A sends a response message including terminal state information of terminals 10A to 10C under its own station (hereinafter referred to as "terminal state information response") to AMF 31. send to.
  • the terminal status information response may be, for example, an N2 message or the like.
  • the AMF 31 determines the target base station 20B of the terminal 10 based on the terminal state information (information on the target base station 20 included therein).
  • the AMF 31 may transmit a message requesting the support information regarding MBS support (hereinafter referred to as "support information request") to the target base station 20B.
  • the support information request may be, for example, an N2 message or the like.
  • step S106 the base station 20B transmits a message including the support information (hereinafter referred to as "support information response") to the AMF 31 in response to the support information request from the AMF 31.
  • the support information response may be, for example, an N2 message or the like.
  • the AMF 31 transmits the support information request to the target base station 20B in step S105 above, the present invention is not limited to this.
  • the AMF 31 may transmit the support information request to the base station 20A in step S105, and the base station 20A may transmit the result of the support information inquiry to the target base station 20B to the AMF 31 as a support information response in step S106. Also, if the AMF 31 can recognize the MBS support information of the target base station 20B, steps S105 and S106 may be omitted.
  • step S107 the AMF 31 determines whether the terminals 10A to 10C are in the HO state based on the terminal state information, and/or determines whether the target base station 20B supports MBS based on the support information. to decide.
  • the terminal state information satisfies a predetermined condition (for example, the received power, received quality, or received strength of the signal from the base station 20A in the terminal 10 is less than or less than a predetermined threshold, and the signal from the base station 20B in the terminal 10 is greater than or equal to a predetermined threshold)
  • the terminal 10 may be determined to be in the HO state.
  • step S108a the transmission modes of all terminals 10A to 10C are switched from individual mode to shared mode.
  • step S109a MBS data is transmitted to terminals 10A-10C in shared mode.
  • the MB-UPF 35 transmits MBS data through the shared tunnel to the base station 20A in which the terminals 10A to 10C are located.
  • the base station 20A transmits the MBS data received via the shared tunnel by PTP or PTM.
  • the terminal 10 is in shared mode at the target base station 20B.
  • the transmission modes of both the terminal 10 not in the HO state and the terminal 10 in the HO state may be switched from the individual mode to the shared mode.
  • step S108b the transmission modes of the terminals 10 (here, the terminals 10B and 10C) that are not in the HO state are switched from the individual mode to the shared mode, and the terminals 10 that are in the HO state (here, the terminals 10A) transmission mode is kept in individual mode.
  • step S107 when it is determined only whether or not the terminals 10A to 10C are in the HO state, the "cases other than the above" are, for example, "the case where the terminal 10 is in the HO state".
  • step S107 when it is determined whether or not the terminals 10A to 10C are in the HO state and whether or not the target base station 20B supports MBS, "cases other than the above” are, for example, This is "when there is a terminal 10 in the HO state and the target base station 20B does not support MBS". Also, in step S107, when only whether or not the target base station 20B supports MBS is determined, "other than the above” is, for example, "when the target base station 20B does not support MBS". . At this time, the transmission mode of the terminal 10 whose target base station 20B does not support MBS may be maintained in the individual mode regardless of whether the terminal 10 is in the HO state.
  • step S109b the MBS data for terminals 10B and 10C switched to shared mode are transmitted via the shared tunnel between MB-UPF 35 and base station 20A.
  • step 109c MBS data for terminal 10A that remains in dedicated mode is transmitted via the PDU session between UPF 33 and terminal 10A.
  • FIG. 5 is a diagram showing an example of switching processing from the individual mode to the shared mode according to this embodiment.
  • the terminals 10 in FIG. 5 are, for example, the terminals 10A to 10C in step S108a of FIG. 4, and the terminals 10B and 10C in step S108b.
  • the AMF 31 transmits a request message (hereinafter referred to as a "switching request") requesting switching from the individual mode to the shared mode for the terminal 10 to the MB-SMF 34.
  • the switching request may include, for example, identification information of the terminal 10, TMGI, and the like.
  • the switching request may be, for example, an N11 message or the like.
  • step S1082 the MB-SMF 34 transfers the switching request from the MB-SMF 34 to the MB-UPF 35.
  • step S1083 the MB-SMF 34 transmits to the AMF 31 a switching notification including information (for example, session ID, etc.) regarding the new (after switching) transmission mode.
  • AMF 31 transfers the switching notification from MB-SMF 34 to base station 20A.
  • the switching notification may be, for example, an N2 message or a NAS message.
  • step S1085 the base station 20A changes resources (for example, access node (AN) resources, etc.) for the session (for example, the MBS session) with the terminal 10 according to the new transmission mode. you can go
  • the base station 20A transmits to the AMF 31 a response message to the switching notification in step S1084 (hereinafter referred to as "switching notification response").
  • step S1087 the AMF 31 transfers the information about the session, the location information of the terminal 10, etc. in the switching notification response to the MB-SMF .
  • the terminal 10 transmits a service request.
  • the service request can also be called a join request to an MBS session, a request to switch to shared mode, or the like.
  • the service request may include, for example, the TMGI and/or the identifier of the PDU session used in the individual mode (hereinafter referred to as "PDU session ID").
  • MBS session update processing is performed for the MB-SMF 34. Specifically, MBS session update processing is performed between MB-SMF 34 and MB-UPF 35 in response to an update request from AMF 31 to MB-SMF 34 . This enables the shared tunnel between MB-UPF 35 and base station 20 to be used.
  • step S1089 the PDU session between the terminal 10 and the UPF 33 is deactivated. Since the shared tunnel for the shared mode can be used in step S1088, the utilization efficiency of resources in the CN 30 can be improved by deactivating the PDU session for the individual mode. Note that the deactivation of the PDU session in step S1089 may be performed after the start of transmission of MBS data in shared mode in step S109a or S109b of FIG. 4, or may be performed before the start of the transmission. good too.
  • the AMF 31 triggers switching of the terminal 10 from the individual mode to the shared mode by transmitting a switching request to the MB-SMF 34 or the terminal 10 .
  • the AMF 31 determines whether the terminal 10 in the individual mode is in the HO state and/or whether the target base station 20 of the terminal 10 supports MBS. , the switching of the terminal 10 from the individual mode to the shared mode is controlled. Therefore, it is possible to prevent interruption of MBS data reception in the terminal 10 due to switching from the individual mode to the shared mode, an increase in C-plane overhead due to frequent switching between the individual mode and the shared mode, and the like.
  • the base station 20 In the second switching control, instead of the AMF 31 in the first switching control, the base station 20 detects that a plurality of individual mode terminals 10 are within the same cell. Also, instead of the AMF 31 for the first switching control, the base station 20, based on the terminal state information of each terminal 10 and/or the support information about the shared mode support in the target base station 20 of each terminal 10, Trigger switching from individual mode to shared mode for each terminal 10 .
  • the second switching control will be described with a focus on differences from the first switching control.
  • FIG. 6 is a diagram showing an example of second switching control from the individual mode to the shared mode according to this embodiment.
  • Step S201 in FIG. 6 is the same as step S101 in FIG.
  • step S202 the base station 20A detects that the terminals 10A-10C are present in the cell CA, and decides to switch the transmission mode of the terminals 10A-10C from the individual mode to the shared mode. For example, the base station 20A detects that multiple PDU sessions have been established between the terminals 10A to 10C and the UPF 33 located in the same cell CA.
  • step S203 the base station 20A acquires terminal state information of the terminals 10A to 10C whose transmission modes are to be switched. Since the terminals 10A to 10C are located in the cell CA of the base station 20A, the terminal state information may be held by the base station 20A itself.
  • step S204 the base station 20A transmits the support information request to the target base station 20B of the terminal 10 in HO state.
  • step S205 the base station 20B receives a support information response corresponding to the support information request from the target base station 20B. Note that steps S204 and S205 may be omitted if the base station 20A holds MBS support information of the base station 20B in advance or if there is no terminal in the HO state.
  • step S206 the base station 20A determines whether the terminals 10A to 10C are in the HO state based on the terminal state information, and/or whether the target base station 20B supports MBS based on the support information. to judge whether A specific determination method is the same as that of step S107 in FIG.
  • step S207a the transmission modes of all terminals 10A to 10C are switched from individual mode to shared mode.
  • Step S208a is the same as step S109a in FIG.
  • step S207b the transmission modes of the terminals 10 (here, terminals 10B and 10C) that are not in the HO state are switched from the individual mode to the shared mode, and the terminals that are in the HO state are switched from the individual mode to the shared mode. 10 (here, terminal 10A) is maintained in the individual mode.
  • Steps S208b and 208c are similar to steps S109b and S109c of FIG. Also, "cases other than the above" are as described in step S107 of FIG.
  • steps S1081 to S1087 of FIG. 5 are performed.
  • steps S207a and S207b of FIG. 6 a step of the base station 20A transmitting a switching request to the AMF 31 may be added before step S1081 of FIG.
  • the base station 20A transmits a switching request to the MB-SMF 34 via the AMF 31 or directly transmits a switching request to the terminal 10, thereby switching the terminal 10 from the individual mode to the shared mode. Trigger a switch.
  • the base station 20 determines whether the terminal 10 in the individual mode is in the HO state and/or whether the target base station 20 of the terminal 10 supports MBS. Switching of the terminal 10 from the individual mode to the shared mode is controlled based on the determination result. Therefore, it is possible to prevent interruption of MBS data reception in the terminal 10 due to switching from the individual mode to the shared mode, an increase in C-plane overhead due to frequent switching between the individual mode and the shared mode, and the like.
  • the second switching control unlike the first switching control, it is not necessary to transmit and receive the terminal state information between the base station 20 and the AMF 31. Therefore, compared to the first switching control, the C-plane overhead can be reduced.
  • the AMF 31 detects that a plurality of terminals 10 in individual mode exist within the same cell, it triggers switching from the individual mode to the shared mode for the plurality of terminals 10 .
  • the base station 20 in response to a trigger from the AMF 31, the base station 20, based on the terminal state information of each terminal 10 and/or the support information regarding shared mode support in the target base station 20 of each terminal 10, each terminal 10 is actually switched from individual mode to shared mode.
  • the base station 20 determines whether or not to actually perform the switching. It differs from the first or second switching control. In the third switching control, the differences from the first or second switching control will be mainly described.
  • FIG. 7 is a diagram showing an example of third switching control from the individual mode to the shared mode according to this embodiment. Steps S301 and S302 are the same as steps S101 and S102 in FIG.
  • the AMF 31 transmits a request for switching from the individual mode to the shared mode for the terminals 10A to 10C to the base station 20A.
  • the switching request can also be rephrased as a message requesting confirmation (check) of the switching, a confirmation request, or the like.
  • the switching request corresponds to a trigger from the AMF 31, and may include, for example, identification information of the terminal 10, TMGI, and the like.
  • a switch request may be, for example, an N2 message containing a NAS message.
  • step S304 the base station 20A acquires terminal state information in response to the switching request from the AMF31. Since the terminals 10A to 10C are located in the cell CA of the base station 20A, the terminal state information may be held by the base station 20A itself. Steps S305-S307 are the same as steps S204-S206 in FIG.
  • step S308a the base station 20A sends a switching request from the AMF 31 to the terminals 10A to 10C. transfer to In step S309a, the transmission modes of all terminals 10A-10C are switched from individual mode to shared mode.
  • Step S310a is the same as step S109a in FIG.
  • step S308b the base station 20A transfers the switching request from the AMF 31 to the terminals 10B and 10C that are not in the HO state, but transfers the request to the terminal 10A that is in the HO state. Do not forward.
  • step S309b the transmission modes of terminals 10B and 10C are switched from individual mode to shared mode, and the transmission mode of terminal 10A in the HO state is maintained in individual mode.
  • Steps S310b and S310c are similar to steps S109b and S109c of FIG. Also, "cases other than the above" are as described in step S107 of FIG.
  • At least one of steps S1085 to S1089 in FIG. 5 may be performed in steps S309a and S309b.
  • the base station 20 determines whether or not the terminal 10 in the individual mode is in the HO state in response to a request from the AMF 31 to switch from the individual mode to the shared mode, and/or It is determined whether or not the target base station 20 of the terminal 10 supports MBS, and a switching request from the AMF 31 is transferred to the terminal 10 based on the determination result. Therefore, it is possible to prevent interruption of MBS data reception in the terminal 10 due to switching from the individual mode to the shared mode, an increase in C-plane overhead due to frequent switching between the individual mode and the shared mode, and the like.
  • the base station 20 determines whether or not to actually perform the switching. Therefore, the switching process can be made more efficient than the first or second switching control that triggers the switching via the MB-SMF 34 after making the determination.
  • the fourth switching control when the AMF 31 detects that a plurality of terminals 10 in the individual mode are present in the same cell, the individual mode is assigned to the plurality of terminals 10 instead of the base station 20. It differs from the third switching control in that it triggers switching to a mode. In the fourth switching control, differences from the first to third switching controls will be mainly described.
  • FIG. 8 is a diagram showing an example of fourth switching control from the individual mode to the shared mode according to this embodiment. Steps S401 and S402 are the same as steps S101 and S102 in FIG.
  • step S403 the AMF 31 transmits the switching request not to the base station 20A but to the terminals 10A to 10C located in the cell CA.
  • step S404 in response to the switching request from the AMF 31, the terminals 10A to 10C send a participation request message (hereinafter referred to as a "participation request") requesting participation in the MBS session (or PTP session or PTM session).
  • a participation request message (hereinafter referred to as a "participation request") requesting participation in the MBS session (or PTP session or PTM session).
  • the join request message may be, for example, an IGMP or MLD join message.
  • step S405 the base station 20A determines whether or not the terminals 10A to 10C are in the HO state based on the terminal state information in response to participation requests from the terminals 10A to 10C, and/or , determine whether the target base station 20B supports MBS based on the support information.
  • a specific determination method is the same as that of step S107 in FIG. Note that the terminal state information may be held in the base station 20A. Support information may also be obtained from the target base station 20B as described in steps S204 and S205 of FIG.
  • step S406a the base station 20A requests the terminals 10A to 10C to participate in step S404. to send an acceptance message (hereinafter referred to as "acceptance") to accept the
  • acceptance an acceptance message
  • step S407a the transmission modes of all terminals 10A-10C are switched from individual mode to shared mode.
  • Step S408a is the same as step S109a in FIG.
  • step S406b the base station 20A transmits an acceptance of the participation request in step S404 to the terminals 10B and 10C that are not in the HO state.
  • step S406c the base station 20A transmits a rejection message (hereinafter referred to as "rejection") to the terminal 10A in step S404 to reject the participation request in step S404.
  • rejection a rejection message
  • step S407b the transmission modes of terminals 10B and 10C are switched from individual mode to shared mode, but the transmission mode of terminal 10A is maintained in individual mode.
  • Steps S409b and S409c are the same as steps S109b and S109c in FIG. Also, "cases other than the above" are as described in step S107 of FIG.
  • At least one of steps S1085 to S1089 in FIG. 5 may be performed in steps S407a and S407b.
  • the base station 20 in response to a participation request from the terminal 10, determines whether the terminal 10 in the individual mode is in the HO state, and/or determines whether the target base station of the terminal 10 20 determines whether it supports MBS, and accepts or rejects the participation request based on the determination result. Therefore, it is possible to prevent interruption of MBS data reception in the terminal 10 due to switching from the individual mode to the shared mode, an increase in C-plane overhead due to frequent switching between the individual mode and the shared mode, and the like.
  • the base station 20 determines whether or not to actually perform the switching in response to the participation request from the terminal 10 . Therefore, the switching process can be made more efficient than the first or second switching control that triggers the switching via the MB-SMF 34 after making the determination.
  • the base station 20 instead of the AMF 31 detects that a plurality of terminals 10 in the individual mode are present in the same cell, and allows the terminals 10 to share from the individual mode. It differs from the fourth switching control in that switching to the mode is triggered. In the fifth switching control, differences from the first to fourth switching controls will be mainly described.
  • FIG. 9 is a diagram showing an example of fifth switching control from the individual mode to the shared mode according to this embodiment. Steps S501 and S502 are the same as steps S201 and S202 in FIG.
  • the base station 20A transmits a request to switch to the shared mode to the terminals 10A to 10C located in the cell CA.
  • the switching request corresponds to a switching trigger by the base station 20A.
  • the switching request may include, for example, identification information of the terminal 10, TMGI, and the like.
  • a switch request may be, for example, an RRC message.
  • the terminals 10A-10 perform measurement and generate terminal state information.
  • the terminal state information includes, for example, RSRP, RSRQ, CSI, information regarding the target base station 20, and the like.
  • the terminals 10A to 10C determine whether they are in the HO state based on the terminal state information generated at step S504. For example, the terminals 10A-10C may determine whether or not they are in the HO state based on the history of measurements. In step S505, terminal 10A is determined to be in the HO state, and terminals 10B and 10C are determined not to be in the HO state. 9 does not show the subsequent processing when it is determined that the terminals 10B and 10C are in the HO state (step S505: YES), but it goes without saying that the terminals 10B and 10C can operate similarly to the terminal 10A. is.
  • step S506 the terminal 10A determined to be in the HO state in step S505 sends a message (hereinafter referred to as " HO information request”).
  • the base station 20A transmits a message including the HO information of the terminal 10 (hereinafter referred to as "HO status response") in response to the HO information request from the terminal 10A.
  • the HO information may include, for example, a handover command from the base station 20A, information about the target base station 20, MBS support information of the target base station 20B (not shown in FIG. 9), and the like.
  • the HO Information Request and HO Information Response may be, for example, RRC messages.
  • step S508 the terminal 10A determines whether the target base station 20B supports MBS based on the support information from the base station 20A.
  • step S509a the terminals 10B and 10C determined not to be in the HO state in step S505, and the terminal 10A determined in step S508 that the target base station 20B supports MBS, respectively, to the base station 20A.
  • Acceptance Send an acceptance message (hereinafter referred to as "acceptance") to accept the switching request in .
  • step S510a the transmission modes of all terminals 10A-10C are switched from individual mode to shared mode.
  • Step S511a is the same as step S109a in FIG.
  • step S509b the terminals 10B and 10C transmit consent to the base station 20A, similar to step S509a.
  • step S509c the terminal 10A determined to be in the HO state in step S505 or the terminal 10 (not shown) determined in step S508 that the target base station 20B does not support MBS is switched in step S503.
  • a refusal message (hereinafter referred to as "refusal") for refusing the request is transmitted, and the transmission mode of terminal 10A is maintained in individual mode.
  • step 511b the transmission modes of terminals 10B and 10C are switched from individual mode to shared mode. Steps S511b and S511c are the same as steps S109b and S109c in FIG.
  • At least one of steps S1085 to S1089 in FIG. 5 may be performed in steps S510a and S501b.
  • the terminal 10 responds to a switching request from the base station 20 to determine whether the terminal 10 in the individual mode is in the HO state and/or determines whether the terminal 10 is in the target base station. 20 determines whether it supports MBS, and accepts or rejects the switching request based on the determination result. Therefore, it is possible to prevent interruption of MBS data reception in the terminal 10 due to switching from the individual mode to the shared mode, an increase in C-plane overhead due to frequent switching between the individual mode and the shared mode, and the like.
  • the terminal 10 determines whether or not to actually perform the switching. Therefore, the switching process can be made more efficient than the first or second switching control that triggers the switching via the MB-SMF 34 after making the determination.
  • FIG. 10 is a diagram showing an example of the hardware configuration of each device in the communication system according to this embodiment.
  • Each device within the communication system 1 can be any device shown in FIG.
  • Reference numeral “30” in FIG. 10 denotes a core network device within the CN 30, and collectively refers to AMF 31, SMF 32, UPF 33, MB-SMF 34, MB-UPF 35, NEF/MBSF 36, AF 37, and MBSU 38.
  • Each device in the communication system 1 includes a processor 11, a storage device 12, a communication device 13 for wired or wireless communication, an input device for receiving various input operations, and an input/output device 14 for outputting various information.
  • the processor 11 is, for example, a CPU (Central Processing Unit) and controls each device within the communication system 1 .
  • the processor 11 may read and execute the program from the storage device 12 to execute various processes described in this embodiment.
  • Each device within the communication system 1 may be configured with one or more processors 11 .
  • Each device may also be called a computer.
  • the storage device 12 is composed of storage such as memory, HDD (Hard Disk Drive) and/or SSD (Solid State Drive).
  • the storage device 12 may store various types of information necessary for execution of processing by the processor 11 (for example, programs executed by the processor 11, etc.).
  • the communication device 13 is a device that communicates via a wired and/or wireless network, and may include, for example, network cards, communication modules, chips, antennas, and the like. Further, the communication device 13 may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
  • RF Radio Frequency
  • BB BaseBand
  • the RF device generates a radio signal to be transmitted from antenna A by performing D/A conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A/D conversion, etc. on the radio signal received from the antenna, and transmits the digital baseband signal to the BB device.
  • the BB device performs a process of converting a digital baseband signal into a packet and a process of converting the packet into a digital baseband signal.
  • the input/output device 14 includes input devices such as keyboards, touch panels, mice and/or microphones, and output devices such as displays and/or speakers.
  • Each device in the communication system 1 may omit part of the hardware shown in FIG. 11, or may include hardware not shown in FIG. Also, the hardware shown in FIG. 11 may be configured by one or a plurality of chips.
  • FIG. 11 is a diagram showing an example of a functional block configuration of a terminal according to this embodiment.
  • terminal 10 includes receiver 101 , transmitter 102 , and controller 103 .
  • All or part of the functions realized by the receiving unit 101 and the transmitting unit 102 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 101 and the transmitting unit 102 and the control unit 103 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium.
  • the storage medium storing the program may be a non-transitory computer readable medium.
  • the non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
  • the receiving unit 101 receives MBS data. Specifically, in the individual mode, the receiving unit 101 receives MBS data from the UPF 33 via a PDU session. On the other hand, in the shared mode, receiving section 101 receives MBS data transmitted from MB-UPF 35 to base station 20 via the shared tunnel from base station 20 .
  • the receiving unit 101 receives various messages from the core network device in the base station 20 or CN30.
  • the receiving unit 101 receives a message regarding switching of the transmission mode of the terminal 10 from the individual mode to the shared mode (for example, the message regarding the change of AN resource in FIG. 5, the switching request in FIG. 7, and the acceptance or rejection of the participation request in FIG. 8). , HO information response in FIG.
  • the receiving unit 101 also receives a message regarding the switching (for example, the switching request in FIG. 8) from the AMF 31 .
  • receiving may include, for example, performing processing related to reception, such as at least one of signal reception, demapping, demodulation, decoding, and measurement.
  • receiving section 101 may measure a downlink signal and generate the terminal state information based on the result of the measurement.
  • the transmission unit 102 transmits various messages to the core network device in the base station 20 or CN30.
  • the transmission unit 102 sends a message regarding switching of the transmission mode of the terminal 10 from the individual mode to the shared mode (for example, the message regarding the change of the AN resource in FIG. 5, the participation request in FIG. 8, and the acceptance or rejection of the switching request in FIG. 9). , HO information request in FIG. 9, etc.) to the base station 20 .
  • the transmission unit 102 may transmit a message (for example, a service request, etc.) regarding the switching to the AMF 31 .
  • “transmitting” may include performing processing related to transmission, such as at least one of encoding, modulation, mapping, and signal transmission.
  • the control unit 103 performs various controls in the terminal 10. Specifically, the control unit 103 performs individual Switching from the mode to the shared mode may be controlled (fifth switching control).
  • control unit 103 determines whether the terminal 10 is in an HO state in which execution of handover is imminent based on the terminal state information, and/or determines whether the target base station 20 is MBS based on the support information. (shared mode) may be determined (eg, FIG. 9). The control unit 103 may decide whether to accept or reject the switching request from the base station 20 based on the result of the determination.
  • FIG. 12 is a diagram showing an example of the functional block configuration of the base station according to this embodiment.
  • base station 20 includes receiver 201 , transmitter 202 , and controller 203 .
  • All or part of the functions realized by the receiving unit 201 and the transmitting unit 202 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 201 and the transmitting unit 202 and the control unit 203 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium.
  • the storage medium storing the program may be a computer-readable non-temporary storage medium.
  • the non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
  • the receiving unit 201 receives MBS data. Specifically, in the shared mode, the receiver 201 receives MBS data from the MB-UPF 35 via the shared tunnel.
  • the receiving unit 201 receives various messages from the terminal 10, another base station 20, or a core network device in the CN30. Specifically, the receiving unit 201 receives a message regarding the switching of the transmission mode of the terminal 10 from the individual mode to the shared mode (for example, the participation request in FIG. 8, the HO information request in FIG. 9, the acceptance of the switching request in FIG. denial, terminal status information, etc.) may be received from the terminal 10 . Also, the receiving unit 201 may receive a message regarding the switching (for example, the terminal state information request in FIG. 4, the switching notification in FIG. 5, the switching request in FIG. 7, etc.) from the AMF 31 . Also, the receiving unit 201 may receive a message regarding the switching (for example, support information response, terminal state information, etc. in FIGS. 6 and 7) from another base station 20 .
  • a message regarding the switching of the transmission mode of the terminal 10 from the individual mode to the shared mode for example, the participation request in FIG. 8, the HO information request in FIG. 9, the acceptance of the switching request
  • the transmission unit 202 transmits MBS data. Specifically, in the shared mode, the transmitter 202 may transmit the MBS data received from the MB-UPF 35 via the shared tunnel using PTP or PTM.
  • the transmission unit 202 transmits various messages to the terminal 10, another base station 20, or a core network device in the CN30.
  • the transmission unit 202 sends a message regarding switching of the transmission mode of the terminal 10 from the individual mode to the shared mode (for example, the switching request in FIGS. 7 and 9, the acceptance or rejection of the participation request in FIG. 8, the HO information response in FIG. 9, etc.) may be transmitted to the terminal 10.
  • the transmitting unit 202 may transmit a message regarding the switching (for example, the terminal state information response in FIG. 4, the switching notification response in FIG. 5, etc.) to the AMF 31 .
  • the transmitting unit 202 may transmit a message regarding the switching (for example, request for support information in FIGS. 6 and 7) to another base station 20 .
  • the control unit 203 performs various controls in the base station 20. Specifically, the control unit 203 performs individual Switching from mode to shared mode may be controlled (second, third and fourth switching controls).
  • control unit 203 determines whether the terminal 10 is in an HO state in which execution of handover is imminent based on the terminal state information, and/or determines whether the target base station 20 is MBS based on the support information. (shared mode) may be determined (eg, FIGS. 6, 7 and 8).
  • the control unit 203 may determine whether to transmit the switching request to the AMF 31 or the terminal 10 based on the result of the determination (eg, FIG. 6). Also, the control unit 203 may determine whether to transfer the switching request from the AMF 31 to the terminal 10 based on the result of the determination (eg, FIG. 7). Also, the control unit 203 may determine whether to accept or reject the participation request from the terminal 10 based on the result of the determination (eg, FIG. 8).
  • control unit 203 may detect that a plurality of terminals 10 in individual mode are present in the same cell (second and fifth switching control, eg, FIGS. 6 and 9).
  • FIG. 13 is a diagram showing an example of a functional block configuration of a core network device according to this embodiment. Although FIG. 13 illustrates the functional block configuration of AMF 31, other core network devices in CN 30 may have similar functional block configurations.
  • AMF 31 includes receiver 301 , transmitter 302 , and controller 303 .
  • All or part of the functions realized by the receiving unit 301 and the transmitting unit 302 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 301 and the transmitting unit 302 and the control unit 303 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium.
  • the storage medium storing the program may be a computer-readable non-temporary storage medium.
  • the non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
  • the receiving unit 301 receives various messages from the terminal 10, the base station 20, or other core network devices. Specifically, the receiving unit 301 may receive from the terminal 10 a message (for example, a service request) regarding switching of the transmission mode of the terminal 10 from the individual mode to the shared mode. Also, the receiving unit 201 may receive a message regarding the switching (for example, the terminal state information response in FIG. 4, the support information response in FIG. 4, the switching request in FIG. 5, etc.) from the base station 20 . Also, the receiving unit 201 may receive a message regarding the switching (for example, the switching notification in FIG. 5) from the MB-SMF 34 .
  • a message for example, a service request
  • the transmission unit 302 transmits various messages to the terminal 10, base station 20, or other core network device. Specifically, the transmitting unit 302 may transmit to the terminal 10 a message regarding switching of the transmission mode of the terminal 10 from the individual mode to the shared mode (for example, the switching request in FIG. 8, etc.). Also, the transmitting section 302 may transmit a message regarding the switching (for example, the terminal state information request in FIG. 4, the switching request in FIG. 7, etc.) to the base station 20 . Further, the transmitting unit 302 may transmit a message regarding the switching (for example, switching request, switching notification response, etc. in FIG. 5) to the MB-SMF 34 . Further, the transmission unit 302 may transmit a message regarding the switching (for example, the switching request in FIG. 5) to the MB-UPF 35.
  • the control unit 303 performs various controls in the AMF 31. Specifically, the control unit 303 performs individual Switching from the mode to the shared mode may be controlled (first switching control).
  • control unit 303 determines whether the terminal 10 is in an HO state in which execution of handover is imminent based on the terminal state information, and/or determines whether the target base station 20 is MBS based on the support information. (shared mode) may be determined (eg, FIG. 4). The control unit 303 may determine whether to transmit the switching request based on the result of the determination (eg, FIG. 5).
  • control unit 303 may detect that a plurality of terminals 10 in individual mode are present in the same cell (first, third and fourth switching control, for example, FIGS. 4, 7 and 8). ).
  • whether or not the terminal 10 in the individual mode is in the HO state and/or whether or not the target base station 20 of the terminal 10 supports MBS Switching of the terminal 10 from the individual mode to the shared mode is controlled based on the determination result. Therefore, problems due to switching from the individual mode to the shared mode (for example, MBS data reception interruption in the terminal 10, an increase in C-plane overhead due to frequent switching between the individual mode and the shared mode, etc.) can be prevented. can be prevented.
  • Various signals, information and parameters in the above embodiments may be signaled in any layer. That is, the above-mentioned various signals, information, parameters are higher layers (eg, Non Access Stratum (NAS) layer, RRC layer, MAC layer, etc.), lower layers (eg, physical layer), etc. Signals, information, may be replaced by parameters. Further, the notification of the predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, by not notifying the information or using other information).
  • a slot may be named any unit of time having a predetermined number of symbols.
  • RB may be any name as long as it is a frequency unit having a predetermined number of subcarriers.
  • the use of the terminal 10 in the above embodiment is not limited to those illustrated, as long as it has similar functions, any use (for example, eMBB, URLLC, Device-to- Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • the format of various information is not limited to the above embodiment, and may be appropriately changed to bit representation (0 or 1), true/false value (Boolean: true or false), integer value, character, or the like.
  • singularity and plurality in the above embodiments may be interchanged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

通信方法は、UPF33と端末10との間のプロトコルデータユニット(PDU)セッションを用いる個別モード、又は、MB-UPF35と基地局20との間の共有トンネルを用いる共有モードを用いて、MBSデータを伝送する。当該端末10の状態に関する端末状態情報、及び/又は、端末10のターゲット基地局20Bにおける共有モードのサポートに関するサポート情報に基づいて、端末10についての個別モードから共有モードへの切り替えが制御される。

Description

基地局、コアネットワーク装置、端末及び通信方法 関連出願の相互参照
 本出願は、2021年2月12日に出願された日本国特許出願2021-021254号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。
 本開示は、基地局、コアネットワーク装置、端末及び通信方法に関する。
 国際標準化団体であるThird Generation Partnership Project(3GPP)では、第3.9世代の無線アクセス技術(Radio Access Technology:RAT)であるLong Term Evolution(LTE)、第4世代のRATであるLTE-Advancedの後継として、第5世代(Fifth Generation:5G)のRATであるNew Radio(NR)のリリース15が仕様化されている(例えば、非特許文献1)。
 また、第4世代のコアネットワーク(Core Network:CN)であるEvolved Packet Core(EPC)の後継として、第5世代のCNである5G Core Network(5GC)のリリース15も仕様化されている(例えば、非特許文献2)。
3GPP TS 38.300 V15.2.0 (2018-06) 3GPP TS 23.501 V15.2.0 (2018-06)
 現在、3GPPでは、マルチキャストデータ及び/又はブロードキャストデータの伝送サービスであるMulticast Broadcast Service(MBS)をサポートすることが検討されている。5GCにおけるMBSは、5MBS等とも呼ばれる。
 MBSにおいて、マルチキャストデータ及び/又はブロードキャストデータ(以下、「MBSデータ」という)を伝送するモード(以下、「伝送モード(delivery mode)」という)として、CNと各端末との間の個別のプロトコルデータユニット(Protocol Data Unit:PDU)セッションとを介してMBSデータが伝送される個別モード(Individual mode)と、CNと基地局との間の共有トランスポート(Shared Transport)トンネルを介してMBSデータが伝送される共有モード(Shared mode)と、をサポートすることが検討されている。なお、MBSデータは、MBSストリーム等と呼ばれてもよい。
 共有モードでは、多数の端末に対するMBSデータが一つのストリームに束ねられるため、同一のセル内に在圏する各端末の伝送モードを個別モードから共有モードに切り替える(switch)ことによって、CNにおけるユーザプレーン(User plane;Uプレーン)のオーバヘッドの削減が期待できる。なお、Uプレーンのオーバヘッドは、トラフィックオーバヘッド等とも呼ばれる。
 しかしながら、端末に対するMBSデータの伝送モードを個別モードから共有モードに単純に切り替えると、例えば、当該端末におけるMBSデータの受信が中断したり、及び/又は、個別モードと共有モードとの間の頻繁な切り替えによる制御プレーン(Control plane:Cプレーン)のオーバヘッドが増加したりする等の不具合が生じる恐れがある。
 本開示は、MBSデータの伝送モードの切り替えを適切に制御可能な基地局、コアネットワーク装置、端末及び通信方法を提供することを目的の一つとする。
 本開示の一態様に係る通信方法は、第1のユーザプレーン装置と各端末との間のプロトコルデータユニット(PDU)セッションを用いる第1の伝送モード、又は、第2のユーザプレーン装置と基地局との間の共有トンネルを用いる第2の伝送モードを用いて、マルチキャストブロードキャストサービス(MBS)データを伝送する通信方法であって、前記基地局、コアネットワーク装置、又は、前記第1の伝送モードの端末において、該端末の状態に関する端末状態情報、及び/又は、前記端末のターゲット基地局における前記第2の伝送モードのサポートに関するサポート情報に基づいて、前記端末についての前記第1の伝送モードから前記第2の伝送モードへの切り替えを制御する工程と、前記第2の伝送モードに切り替えられた端末において、前記第2のユーザプレーン装置から前記共有トンネルを介して送信された前記MBSデータを、前記基地局から受信する工程と、を有する。
 本開示の一態様によれば、MBSデータの伝送モードの切り替えを適切に制御できる。
図1は、本実施形態に係る通信システムの概要の一例を示す図である。 図2は、本実施形態に係るMBSデータの伝送モードの一例を示す図である。 図3は、MBSデータの伝送モードの切り替え制御の一例を示す図である。 図4は、本実施形態に係る個別モードから共有モードへの第1の切り替え制御の一例を示す図である。 図5は、本実施形態に係る個別モードから共有モードへの切り替え処理の一例を示す図である。 図6は、本実施形態に係る個別モードから共有モードへの第2の切り替え制御の一例を示す図である。 図7は、本実施形態に係る個別モードから共有モードへの第3の切り替え制御の一例を示す図である。 図8は、本実施形態に係る個別モードから共有モードへの第4の切り替え制御の一例を示す図である。 図9は、本実施形態に係る個別モードから共有モードへの第5の切り替え制御の一例を示す図である。 図10は、本実施形態に係る通信システム内の各装置のハードウェア構成の一例を示す図である。 図11は、本実施形態に係る端末の機能ブロック構成の一例を示す図である。 図12は、本実施形態に係る基地局の機能ブロック構成の一例を示す図である。 図13は、本実施形態に係るコアネットワーク装置の機能ブロック構成の一例を示す図である。
 添付図面を参照して、本開示の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有してもよい。
 図1は、本実施形態に係る通信システムの概要の一例を示す図である。図1に示すように、通信システム1は、端末10と、基地局20と、コアネットワーク(CN)30と、を含み、MBSを提供する。
 端末10は、例えば、スマートフォンや、パーソナルコンピュータ、車載端末、車載装置、静止装置、テレマティクス制御ユニット(Telematics control unit:TCU)等、所定の端末又は装置である。端末10は、ユーザ装置(User Equipment:UE)、移動局(Mobile Station:MS)、端末(User Terminal)、無線装置(Radio apparatus)、加入者端末、アクセス端末等と呼ばれてもよい。端末10は、移動型であってもよいし、固定型であってもよい。
 端末10は、基地局20に対する無線アクセス技術(Radio Access Technology:RAT)RATとして、例えば、LTE、LTE-Advanced、NR等の少なくとも一つを用いて通信可能に構成されるが、これに限られず、第6世代以降のRATを用いて通信可能に構成されてもよい。また、端末10は、上記のような3GPPが規定したアクセス網(3GPP access network)に限られず、例えば、Wi-Fi等の非3GPPアクセス網(non-3GPP access network)を介して基地局20にアクセスしてもよい。
 基地局20は、一以上のセルを形成し、当該セルを用いて端末10と通信する。基地局20は、gNodeB(gNB)、en-gNB、無線アクセスネットワーク(Radio Access Network:RAN)、アクセスネットワーク(Access Network:AN)、次世代無線アクセスネットワーク(Next Generation‐Radio Access Network:NG-RAN)ノード、低電力ノード(low-power node)、中央ユニット(Central Unit:CU)、分散ユニット(Distributed Unit:DU)、gNB-DU、リモート無線ヘッド(Remote Radio Head:RRH)、統合アクセス及びバックホール(Integrated Access and Backhaul/Backhauling:IAB)ノード等と呼ばれてもよい。基地局20は、一つのノードに限られず、複数のノード(例えば、DU等の下位ノードとCU等の上位ノードの組み合わせ)で構成されてもよい。
 なお、図1に示す端末10及び基地局20の数は、一以上であればよい。一つの基地局20に一以上の端末10が接続されてもよいことは勿論である。また、複数の基地局20(例えば、図3の基地局20A及び20B)は、Xnインタフェースを介して接続される。また、複数の基地局20は、それぞれ、N2インタフェースを介してAMF31に接続される。
 CN30は、例えば、5GCであるが、これに限られず、EPC又は第6世代以降のコアネットワーク等であってもよい。CN30は、例えば、Access and Mobility Management Function(AMF)31、Session Management Function(SMF)32、User Plane Function(UPF)33、Multicast Broadcast(MB)-SMF34、Multicast Broadcast(MB)-UPF35、Network Exposure Function(NEF)/Multicast Broadcast Service Function(MBSF)36、Application Function(AF)37、Multicast Broadcast Service User plane(MBSU)38等を含む。
 なお、CN30に含まれる装置(CN30上の装置(以下、「コアネットワーク装置」ともいう)は、図1に示すものに限られず、一部のコアネットワーク装置が省略されてもよいし、不図示のコアネットワーク装置(例えば、PCF等)が含まれてもよい。また、図1に示すコアネットワーク装置及びインタフェースの名称は例示にすぎず、図1に示すものに限られず、同等又は類似の機能を有すれば、他の名称が用いられてもよい。また、図1に示す複数のコアネットワーク装置が単一の装置内に設けられてもよいし、図1に示す一つのコアネットワーク装置が複数の装置で構成されてもよい。
 AMF31は、端末10のアクセス及び/又はモビリティ(mobility)を管理するコアネットワーク装置である。AMF31は、N2インタフェースで基地局20に接続されるとともに、N1インタフェースで端末10に接続される。AMF31は、Cプレーンに関する処理(例えば、登録管理、コネクション管理、モビリティ管理)等を行う。また、AMF31は、Non-access stratum(NAS)に関する処理を行い、NASメッセージを端末10との間で送信及び/又は受信する。
 SMF32は、セッションを管理するコアネットワーク装置であり、例えば、セッションの確立、更新及び解放等を制御する。SMF32は、N11インタフェースを介してAMF31に接続されるとともに、N4インタフェースを介してUPF33に接続される。
 UPF33は、データネットワーク(Data Network:DN)(不図示)に対する接続ポイントとなるコアネットワーク装置であり、例えば、パケットのルーティング、転送等を行う。UPF33は、N4インタフェースを介してSMF32に接続されるとともに、N3インタフェースを介して基地局20に接続される。UPF33は、端末10との間でPDUセッションを確立する。UPF33は、Uプレーンに関する処理を行う第1のユーザプレーン装置である。
 DNからの下りデータは、UPF33からN3トンネルを介して基地局20に伝送され、基地局20から無線ベアラを介して端末10に伝送される。一方、端末10からの上りデータは、無線ベアラを介して端末10から基地局20に伝送され、基地局20からN3トンネルを介してUPF33に伝送され、UPF33からDNに伝送される。なお、N3トンネルは、カプセル化されたIP(Encapsulated Internet Protocol)パケットを伝送するトンネルであり、Uプレーントンネル等と呼ばれてもよい。上記端末10とUPF33との間のPDUセッションは、端末10と基地局20との間の無線ベアラと、基地局20とUPF33との間のN3トンネルとを連結するものと言い換えることもできる。
 MB-SMF34は、MBS用のセッション(以下、「MBSセッション」という)を管理するコアネットワーク装置であり、例えば、MBSセッションの確立、更新及び解放等を制御する。MB-SMF34は、N11インタフェースを介してAMF31に接続されるとともに、N4インタフェースを介してMB-UPF35に接続される。なお、MBSセッションは、マルチキャストブロードキャスト(Multicast Broadcast:MB)セッション等とも呼ばれる。
 なお、MBSセッションへの参加(join)は、端末10からAMF31へのNASメッセージ(例えば、UL NAS MB Session Join Request)、AMF31からMB-SMF34への要求メッセージ(例えば、MB Session Request)、当該要求メッセージに応じたMB-SMF34からAMF31への応答メッセージ(例えば、MB Session Response)、当該応答メッセージに応じたAMF31から端末10に対するNASメッセージ(例えば、DL NAS MB Session Join Accept)により、受付られてもよい。MBSセッション又はMBSデータのストリームは、所定の識別子(例えば、Temporary Mobile Group Identity(TMGI))によって識別されてもよい。
 MB-UPF35は、MBSU38又は不図示のDNからのMBSデータの伝送を制御するコアネットワーク装置である。MBSU38又は不図示のDNからの下りのMBSデータは、MB-UPF35から基地局20又はUPF33に伝送される。MB-UPF35は、N3インタフェースを介して基地局20に接続され、N6インタフェースを介してAF37に接続される。また、MB-UPF35は、N9インタフェースを介してUPF33に接続される。MB-UPF35は、Uプレーンに関する処理を行う第2のユーザプレーン装置である。
 NEF/MBSF36は、ポジショニング、MBSセッション及びQoS管理を含むMBS手順(MBS procedure)用のAF37に対するインタフェースを提供する。NEF/MBSF36は、N29インタフェースを介してMB-SMF34に接続され、N33インタフェースを介してAF37に接続される。
 AF37は、MBSに関する情報を提供する。MBSU38は、サービスレベルの機能及び管理のためにペイロードを管理する。MBSU38は、N6インタフェースを介してMB-UPF35に接続され、NxMB-Uインタフェースを介してAF37に接続され、Nyインタフェースを介してNEF/MBSF36に接続される。
 以上のような通信システム1において、MBSデータは、マルチキャストの配信制御用のプロトコル(例えば、Internet Group Management Protocol(IGMP)又はMulticast Listener Discovery(MLD))のメッセージ(例えば、join又はleaveメッセージ)により登録(register)された端末10に配信される。MBSデータの伝送モードとしては、個別モードと共有モードとをサポートすることが検討されている。
 個別モードでは、CN30で受信されたMBSデータ(a single copy of MBS data)は、端末10毎のPDUセッション(例えば、各端末10との単一のユニキャストPDUセッション)を介して、各端末10に伝送される。個別伝送モードは、第1の伝送モード、Individual MBS Traffic delivery、Ind-mode等とも呼ばれる。個別モードの端末10は、在圏セルを形成する基地局20がMBSをサポートするか否かに関係なく、MBSデータを受信できる。
 共有モードでは、CN30で受信されたMBSデータ(a single copy of MBS data)は、基地局20との共有トランスポート(Shared Transport)を介して基地局20に伝送され、基地局20から配下の端末10に対して、ポイント・ツー・ポイント(Point To Point:PTP)又はポイント・ツー・マルチキャスト(Point To Multi-point:PTM)により伝送される。共有モードは、第2の伝送モード、Shared MBS Traffic delivery、Shared-mode等とも呼ばれる。共有モードの端末10は、在圏セルを形成する基地局20がMBSをサポートする場合に、MBSデータを受信できる。
 図2は、本実施形態に係るMBSデータの伝送モードの一例を示す図である。図2に示すように、MBSU38又は不図示のDNからのMBSデータは、CN30内のMB-UPF35で受信される。
 個別モードでは、MB-UPF35は、受信したMBSデータを、N9トンネルを介してUPF33に転送する。なお、N9トンネルは、N9インタフェースのトンネルである。UPF33は、MB-UPF35から受信したMBSデータを複製(replicate)して、各端末10と個別に設定されるPDUセッションを介して各端末10に送信する。個別モードでは、MBSをサポートしていない基地局20に端末10がハンドオーバーする場合であっても、端末10は継続してMBSデータを受信できる。
 一方、共有モードでは、MB-UPF35は、受信したMBSデータを、共有トランスポートを介して基地局20に送信する。共有トランスポートは、CN30内の共有トンネルであり、共有下りCNトンネル(Shred downlink CN Tunnel)、N3トンネル等とも呼ばれる。基地局20は、共有トランスポートを介してMB-UPF35から受信したMBSデータを、PTM又はPTPにより配下の端末10に送信する。共有モードでは、多数の端末10に対するMBSデータが一つのストリームに束ねられるため、CN30内のUプレーンのオーバヘッドを個別モードに比べて減少できる。
 しかしながら、端末10に対するMBSデータの伝送モードを個別モードから共有モードに単純に切り替えると、例えば、当該端末10におけるMBSデータの受信が中断したり、及び/又は、個別モードと共有モードとの間の頻繁な切り替えによるCプレーンのオーバヘッドが増加したりする等の不具合が生じる恐れがある。
 図3は、MBSデータの伝送モードの切り替え制御の一例を示す図である。なお、以下に示すタイミングTi(0≦i≦4)は時系列のタイミングであり、iの増加について時間が経過するものとする。また、基地局20A及び20Bは、それぞれ、セルCA及びCBを形成する。当該セルCA及びCBは、カバレッジ等と呼ばれてもよい。また、基地局20AはMBSをサポートするが、基地局20BはMBSをサポートしていないものとする。
 例えば、図3では、タイミングT0において、端末10A~10Cは、それぞれ、個別モードを用いて、同一ストリームのMBSデータを受信しているものとする。また、タイミングT0において、端末10AはセルCA内に在圏し、端末10B及び10Cは、セルCA及びCB以外のセル(不図示)内に在圏する。
 タイミングT1において、端末10B及び10Cは、セルCA内に移動し、不図示の基地局20から基地局20Aにハンドオーバーする。
 タイミングT2において、個別モードにおいて端末10A~10Cのそれぞれと確立されているPDUセッションが、同一のセルCAに在圏する端末10A~10Cに対するものであることを検知され、端末10A~10Cの伝送モードは個別モードから共有モードに切り替えられる。
 タイミングT3において、端末10Aは、セルCAからセルCBに移動し、基地局20Aから基地局20Bにハンドオーバーする。端末10Aは、ハンドオーバー先の基地局(以下、「ターゲット基地局」という)20BがMBSをサポートしていないので、共有モードでの通信を継続できない。このため、タイミングT4において、端末10Aの伝送モードは、共有モードから個別モードに再度切り替えられる。
 図3に示すように、同一のセルCA内に在圏する端末10A~10Cの伝送モードを個別モードに共有モードを切り替えると、端末10A~10Cに共通の共有トンネルを利用できるので、CN30におけるUプレーンのオーバヘッドを削減できる。一方、セルCA及びCBの境界に位置する端末10Aが、MBSをサポートしない基地局20Bにハンドオーバーする場合、共有モードから個別モードへの再切り替えが終了するまで、端末10AにおけるMBSデータの受信が中断する恐れがある。また、タイミングT2及びT4で示されるように、端末10Aの個別モードと共有モードとの間の頻繁な切り替えが生じると、Cプレーンのオーバヘッドが増加する恐れもある。
 そこで、本実施形態では、個別モードの端末10の状態に関する情報(以下、「端末状態情報」という)、及び/又は、当該端末10のターゲット基地局20におけるMBSのサポートに関する情報(以下、「サポート情報」という)に基づいて、当該端末10についての個別モードから共有モードへの切り替えが制御される。
 これにより、個別モードの端末10がセル端に位置し、ハンドオーバーが差し迫った状態である、又は、ターゲット基地局20がMBSをサポートしない(すなわち、共有モードをサポートしない)場合には、当該端末10の伝送モードは、共有モードに切り替えられずに個別モードに維持される。したがって、個別モードから共有モードへの切り替えによる不具合(例えば、当該端末10におけるMBSデータの受信中断や、図3のタイミングT2及びT4における頻繁な切り替えによるCプレーンのオーバヘッドの増加等)の発生を防止できる。
 なお、本実施形態において、上記端末状態情報に基づいて、端末10がハンドオーバー(Hand Over:HO)の実行が差し迫った状態(以下、「HO状態」という)であるか否かが判断される。当該端末状態情報は、例えば、以下の(a)~(g)の少なくとも一つを含んでもよい。また、当該端末状態情報は、端末10のターゲット基地局20に関する情報として、例えば、セルの識別子(以下、「セルID」等ともいう)を含んでもよい。
(a)端末10からの測定報告(Measurement Report)
(b)端末10における基地局20からの信号の受信電力(例えば、参照信号受信電力(Reference Signal Received Power:RSRP)
(c)端末10における基地局20からの信号の受信品質(例えば、参照信号受信品質(Reference Signal Received Quality:RSRQ))
(d)端末10における基地局20からの信号の受信強度(例えば、参照信号受信強度(Reference Signal Strength Indicator:RSSI))
(e)UEコンテクスト(UE Context)
(f)端末10から基地局20にフィードバックされるチャネル状態情報(Channel State Information:CSI)
(g)上記測定報告、受信電力、受信品質、受信強度及びCSIの少なくとも一つに基づく上記HO状態であるか否かの判断結果を示す情報
 また、ターゲット基地局20におけるMBSのサポートに関するサポート情報は、例えば、MBSをサポートするか否かを示す情報であってもよいし、又は、ターゲット基地局20Bがサポートする3GPP仕様のリリースを示す情報等であってもよい。上記の通り、共有モードは基地局20がMBSをサポートする場合に利用可能であるので、「MBSのサポート」は「共有モードのサポート」と言い換えることができる。
 以下、端末10の伝送モードを個別モードから共有モードへの切り替える場合における第1~第5の切り替え制御について説明する。なお、図4~9では、図3のタイミングT1において端末10B及び10CがセルCA内に移動した後、3つの端末10A~10Cが個別モードでセルCAに在圏している状態を前提とする。また、端末10A~10C、基地局20A及び20Bを区別しない場合は、端末10、基地局20と総称する。
 (第1の切り替え制御)
 第1の切り替え制御では、AMF31が、基地局20の同一のセル内に個別モードの複数の端末10が在圏すること検知する。また、AMF31は、各端末10の端末状態情報、及び/又は、各端末10のターゲット基地局20における共有モードのサポートに関するサポート情報に基づいて、各端末10についての個別モードから共有モードへの切り替えをトリガー(trigger)する。
 図4は、本実施形態に係る個別モードから共有モードへの第1の切り替え制御の一例を示す図である。なお、図4では、端末10B及び10Cの動作を共通に示しているが、端末10B及び10Cのそれぞれで当該動作を行うことは勿論である。
 ステップS101において、MBSデータが端末10A~10Cに対して個別モードで伝送される。具体的には、UPF33は、MB-UPF35から受信したMBSデータを、端末10A~10Cの各々と個別に確立されたPDUセッションを用いて、端末10A~10Cの各々に送信する。
 ステップS102において、AMF31は、端末10A~10Cが基地局20AのセルCAに在圏することを検知し、端末10A~10Cの伝送モードを個別モードから共有モードに切り替えることを決定する。例えば、AMF31は、基地局20Aから通知される在圏情報により、端末10A~10Cが同一のセルCAに在圏することを検知する。在圏情報は、基地局20Aのセルに在圏する端末10を示す情報である。
 ステップS103において、AMF31は、端末10A~10Cが接続する基地局20Aに対して、上記端末状態情報を要求するメッセージ(以下、「端末状態情報要求」という)を送信する。端末状態情報要求は、例えば、N2メッセージ等であってもよい。
 ステップS104において、基地局20Aは、AMF31からの端末状態情報要求に応じて、自局配下の端末10A~10Cの端末状態情報を含む応答メッセージ(以下、「端末状態情報応答」という)をAMF31に対して送信する。端末状態情報応答は、例えば、N2メッセージ等であってもよい。AMF31は、端末状態情報(に含まれるターゲット基地局20に関する情報)に基づいて、端末10のターゲット基地局20Bを決定する。
 ステップS105において、AMF31は、ターゲット基地局20Bに対して、MBSのサポートに関する上記サポート情報を要求するメッセージ(以下、「サポート情報要求」)を送信してもよい。サポート情報要求は、例えば、N2メッセージ等であってもよい。
 ステップS106において、基地局20Bは、AMF31からのサポート情報要求に応じて、AMF31に対して、上記サポート情報を含むメッセージ(以下、「サポート情報応答」という)を送信する。サポート情報応答は、例えば、N2メッセージ等であってもよい。
 なお、上記ステップS105では、AMF31は、ターゲット基地局20Bに対してサポート情報要求を送信するものしたが、これに限られない。AMF31は、ステップS105において上記サポート情報要求を基地局20Aに送信し、基地局20Aが、ターゲット基地局20Bに対するサポート情報の問い合わせの結果をステップS106のサポート情報応答としてAMF31に送信してもよい。また、AMF31がターゲット基地局20BのMBSのサポート情報を認識できる場合は、ステップS105及びS106は省略されてもよい。
 ステップS107において、AMF31は、端末状態情報に基づいて端末10A~10CがHO状態であるか否かを判断、及び/又は、サポート情報に基づいてターゲット基地局20BがMBSをサポートするか否かを判断する。端末状態情報が所定条件を満たす場合(例えば、端末10における基地局20Aからの信号の受信電力、受信品質又は受信強度が所定閾値以下又は未満であり、かつ、端末10における基地局20Bからの信号の受信電力、受信品質又は受信強度が所定閾値より大きい又は以上である場合)、端末10はHO状態であると判断されてもよい。
 HO状態の端末10が存在しない、又は、ターゲット基地局20BがMBSをサポートする場合(ステップS107;YES)、ステップS108aにおいて、端末10A~10Cの全ての伝送モードが個別モードから共有モードに切り替えられる。ステップS109aにおいて、MBSデータが端末10A~10Cに対して共有モードで伝送される。具体的には、MB-UPF35は、端末10A~10Cが在圏する基地局20Aに対して共有トンネルを介してMBSデータを送信する。基地局20Aは、共有トンネルを介して受信したMBSデータをPTP又はPTMにより送信する。なお、HO状態の端末10が存在しても(例えば、端末10AがHO状態であっても)、ターゲット基地局20BがMBSをサポートする場合は、当該端末10は、ターゲット基地局20Bで共有モードを継続できるので、HO状態でない端末10とHO状態の端末10の双方の伝送モードが個別モードから共有モードに切り替えられてもよい。
 一方、上記以外の場合、ステップS108bにおいて、HO状態ではない端末10(ここでは、端末10B及び10C)の伝送モードが個別モードから共有モードに切り替えられ、HO状態である端末10(ここでは、端末10A)の伝送モードは個別モードに維持される。なお、ステップS107において、端末10A~10CがHO状態であるか否かだけが判断される場合、「上記以外の場合」とは、例えば、「HO状態の端末10が存在する場合」である。また、ステップS107において、端末10A~10CがHO状態であるか否か及びターゲット基地局20BがMBSをサポートするか否かの双方が判断される場合、「上記以外の場合」とは、例えば、「HO状態の端末10が存在し、かつ、ターゲット基地局20BがMBSをサポートしない場合」である。また、ステップS107において、ターゲット基地局20BがMBSをサポートするか否かだけが判断される場合、「上記以外の場合」とは、例えば、「ターゲット基地局20BがMBSをサポートしない場合」である。このとき、ターゲット基地局20BがMBSをサポートしない端末10の伝送モードは、当該端末10がHO状態であるか否かに関係なく、個別モードに維持されてもよい。
 ステップS109bにおいて、共有モードに切り替えられた端末10B及び10Cに対するMBSデータが、MB-UPF35と基地局20Aとの間の共有トンネルを介して伝送される。ステップ109cにおいて、個別モードに維持される端末10Aに対するMBSデータが、UPF33と端末10Aとの間のPDUセッションを介して伝送される。
 図5を参照し、図4のステップS108a及びS108bにおける個別モードから共有モードへの切り替えについて詳細に説明する。図5は、本実施形態に係る個別モードから共有モードへの切り替え処理の一例を示す図である。なお、図5における端末10は、例えば、図4のステップS108aでは端末10A~10Cであり、ステップS108bでは端末10B及び10Cである。
 図5のステップS1081において、AMF31は、MB-SMF34に対して、端末10についての個別モードから共有モードへの切り替えを要求する要求(request)メッセージ(以下、「切り替え要求」という)を送信してもよい。切り替え要求は、例えば、端末10の識別情報、TMGI等を含んでもよい。当該切り替え要求は、例えば、N11メッセージ等であってもよい。
 ステップS1082において、MB-SMF34は、MB-UPF35に対して、MB-SMF34からの切り替え要求を転送する。ステップS1083において、MB-SMF34は、新たな(切り替え後の)伝送モードに関する情報(例えば、セッションID等)を含む切り替え通知をAMF31に送信する。AMF31は、基地局20Aに対して、MB-SMF34からの切り替え通知を転送する。当該切り替え通知は、例えば、N2メッセージ又はNASメッセージ等であってもよい。
 ステップS1085において、基地局20Aは、端末10との間で、新たな伝送モードに応じて、セッション(例えば、MBSセッション)に対するリソース(例えば、アクセスノード(access node:AN)リソース等)の変更を行ってもよい。ステップS1086において、基地局20Aは、AMF31に対して、ステップS1084における切り替え通知に対する応答メッセージ(以下、「切り替え通知応答」)を送信する。ステップS1087において、AMF31は、当該セッションに関する情報、端末10の位置情報等を当該切り替え通知応答に含めて、MB-SMF34に転送する。
 ステップS1088において、端末10は、サービス要求(Service Request)を送信する。当該サービス要求は、MBSセッションへの参加要求(join request)、又は、共有モードへの切り替え要求等とも言い換えることができる。サービス要求は、例えば、TMGI、及び/又は、個別モードで用いているPDUセッションの識別子(以下、「PDUセッションID」という)等を含んでもよい。
 当該端末10からのサービス要求に応じて、MB-SMF34に対して、MBSセッションの更新処理が行われる。具体的には、AMF31からのMB-SMF34に対する更新要求に応じて、MB-SMF34とMB-UPF35との間でMBSセッションの更新処理が行われる。これにより、MB-UPF35と基地局20との間の共有トンネルが利用可能となる。
 ステップS1089において、端末10とUPF33との間のPDUセッションがディアクテイベイト(deactivate)される。ステップS1088により共有モード用の共有トンネルが利用可能となるため、個別モード用のPDUセッションをディアクティベイトすることでCN30におけるリソースの利用効率を向上できる。なお、ステップS1089におけるPDUセッションのディアクティベイトは、図4のステップS109a又はS109bにおける共有モードでのMBSデータの伝送の開始後に実施されてもよいし、又は、当該伝送の開始前に実施されてもよい。
 以上のように、AMF31は、切り替え要求をMB-SMF34又は端末10に対して送信することにより、端末10の個別モードから共有モードへの切り替えをトリガーする。
 以上の第1の切り替え制御によれば、AMF31が、個別モードの端末10がHO状態であるか否か、及び/又は、端末10のターゲット基地局20がMBSをサポートするか否かの判断結果に基づいて、当該端末10の個別モードから共有モードへの切り替えを制御する。したがって、個別モードから共有モードへの切り替えに起因する該端末10におけるMBSデータの受信中断や、個別モードと共有モードとの間の頻繁な切り替えによるCプレーンのオーバヘッドの増加等を防止できる。
 (第2の切り替え制御)
 第2の切り替え制御では、第1の切り替え制御のAMF31の代わりに、基地局20が、同一のセル内に個別モードの複数の端末10が在圏すること検知する。また、第1の切り替え制御のAMF31の代わりに、基地局20が、各端末10の端末状態情報、及び/又は、各端末10のターゲット基地局20における共有モードのサポートに関するサポート情報に基づいて、各端末10についての個別モードから共有モードへの切り替えをトリガーする。第2の切り替え制御では、第1の切り替え制御との相違点を中心に説明する。
 図6は、本実施形態に係る個別モードから共有モードへの第2の切り替え制御の一例を示す図である。図6のステップS201は、図4のステップS101と同様である。
 ステップS202において、基地局20Aは、セルCA内に端末10A~10Cが在圏することを検知し、端末10A~10Cの伝送モードを個別モードから共有モードに切り替えることを決定する。例えば、基地局20Aは、複数のPDUセッションが同一のセルCAに在圏する端末10A~10CとUPF33との間に確立されていることを検知する。
 ステップS203において、基地局20Aは、伝送モードの切り替え対象の端末10A~10Cの端末状態情報を取得する。なお、端末10A~10Cは基地局20AのセルCAに在圏するので、当該端末状態情報は、基地局20A自身で保持されていてもよい。
 ステップS204において、基地局20Aは、HO状態の端末10のターゲット基地局20Bに対して、上記サポート情報要求を送信する。ステップS205において、基地局20Bは、ターゲット基地局20Bからの上記サポート情報要求に応じたサポート情報応答を受信する。なお、基地局20Aが、基地局20BのMBSのサポート情報を事前に保持している場合又はHO状態の端末が存在しない場合、ステップS204及びS205は省略されてもよい。
 ステップS206において、基地局20Aは、端末状態情報に基づいて端末10A~10CがHO状態であるか否かを判断、及び/又は、サポート情報に基づいてターゲット基地局20BがMBSをサポートするか否かを判断する。具体的な判断手法は、図4のステップS107と同様である。
 HO状態の端末10が存在しない、又は、ターゲット基地局20BがMBSをサポートする場合(ステップS206;YES)、ステップS207aにおいて、端末10A~10Cの全ての伝送モードが個別モードから共有モードに切り替えられる。ステップS208aは、図4のステップS109aと同様である。
 一方、上記以外の場合(ステップS206;NO)、ステップS207bにおいて、HO状態ではない端末10(ここでは、端末10B及び10C)の伝送モードが個別モードから共有モードに切り替えられ、HO状態である端末10(ここでは、端末10A)の伝送モードは個別モードに維持される。ステップS208b及び208cは、図4のステップS109b及びS109cと同様である。また、「上記以外の場合」については、図4のステップS107で説明した通りである。
 図6のステップS207a及びS207bにおける個別モードから共有モードへの切り替えでは、図5のステップS1081~S1087が実施される。ただし、図6のステップS207a及びS207bにおいては、図5のステップS1081の前に、基地局20AがAMF31に対して切り替え要求を送信するステップが追加されてもよい。
 以上のように、基地局20Aは、切り替え要求をAMF31経由でMB-SMF34に対して送信、又は、切り替え要求を直接端末10に対して送信することにより、端末10の個別モードから共有モードへの切り替えをトリガーする。
 以上の第2の切り替え制御によれば、基地局20が、個別モードの端末10がHO状態であるか否か、及び/又は、端末10のターゲット基地局20がMBSをサポートするか否かの判断結果に基づいて、当該端末10の個別モードから共有モードへの切り替えを制御する。したがって、個別モードから共有モードへの切り替えに起因する該端末10におけるMBSデータの受信中断や、個別モードと共有モードとの間の頻繁な切り替えによるCプレーンのオーバヘッドの増加等を防止できる。
 また、第2の切り替え制御では、第1の切り替え制御のように端末状態情報を基地局20とAMF31との間で送受信する必要がないので、第1の切り替え制御と比較してCプレーンのオーバヘッドを削減できる。
 (第3の切り替え制御)
 第3の切り替え制御では、AMF31が、同一のセル内に個別モードの複数の端末10が在圏すること検知すると、当該複数の端末10についての個別モードから共有モードへの切り替えをトリガーする。一方、基地局20は、AMF31からのトリガーに応じて、各端末10の端末状態情報、及び/又は、各端末10のターゲット基地局20における共有モードのサポートに関するサポート情報に基づいて、各端末10を個別モードから共有モードに実際に切り替えるか否かを判断する。
 このように、第3の切り替え制御では、AMF31が上記切り替えをトリガーしてから基地局20が当該切り替えを実際に行うか否かを判断する点で、当該判断をしてから当該切り替えをトリガーする第1又は第2の切り替え制御と異なる。第3の切り替え制御では、第1又は第2の切り替え制御との相違点を中心に説明する。
 図7は、本実施形態に係る個別モードから共有モードへの第3の切り替え制御の一例を示す図である。ステップS301及びS302は、図4のステップS101及びS102と同様である。
 ステップS303において、AMF31は、基地局20Aに対して、端末10A~10Cについての個別モードから共有モードへの切り替え要求を送信する。当該切り替え要求は、当該切り替えの確認(check)を要求するメッセージ、確認要求等と言い換えることもできる。当該切り替え要求は、上記AMF31からのトリガーに相当し、例えば、端末10の識別情報、TMGI等を含んでもよい。切り替え要求は、例えば、NASメッセージを含むN2メッセージであってもよい。
 ステップS304において、基地局20Aは、AMF31からの切り替え要求に応じて、端末状態情報を取得する。なお、端末10A~10Cは基地局20AのセルCAに在圏するので、当該端末状態情報は、基地局20A自身で保持されていてもよい。ステップS305~S307は、図6のステップS204~S206と同様である。
 ステップS307においてHO状態の端末10が存在しない、又は、ターゲット基地局20BがMBSをサポートする場合(ステップS307;YES)、ステップS308aにおいて、基地局20Aは、AMF31からの切り替え要求を端末10A~10Cに転送する。ステップS309aにおいて、端末10A~10Cの全ての伝送モードが個別モードから共有モードに切り替えられる。ステップS310aは、図4のステップS109aと同様である。
 一方、上記以外の場合(ステップS307;NO)、ステップS308bにおいて、基地局20Aは、AMF31からの切り替え要求を、HO状態ではない端末10B及び10Cに転送するが、HO状態である端末10Aには転送しない。ステップS309bにおいて、端末10B及び10Cの伝送モードが個別モードから共有モードに切り替えられ、HO状態である端末10Aの伝送モードは個別モードに維持される。ステップS310b及びS310cは、図4のステップS109b及びS109cと同様である。また、「上記以外の場合」については、図4のステップS107で説明した通りである。
 なお、ステップS309a及びS309bでは、図5のステップS1085~S1089の少なくとも一つのステップが実施されてもよい。
 以上の第3の切り替え制御によれば、基地局20が、AMF31からの個別モードから共有モードへの切り替え要求に応じて、個別モードの端末10がHO状態であるか否か、及び/又は、端末10のターゲット基地局20がMBSをサポートするか否かを判断し、判断結果に基づいてAMF31からの切り替え要求が当該端末10に転送される。したがって、個別モードから共有モードへの切り替えに起因する該端末10におけるMBSデータの受信中断や、個別モードと共有モードとの間の頻繁な切り替えによるCプレーンのオーバヘッドの増加等を防止できる。
 また、第3の切り替え制御では、AMF31が切り替え要求により上記切り替えをトリガーしてから、基地局20が上記切り替えを実際に行うか否かを判断する。したがって、当該判断を行ってからMB-SMF34を経由して上記切り替えをトリガーする第1又は第2の切り替え制御と比較して、切り替え処理を効率化できる。
 (第4の切り替え制御)
 第4の切り替え制御では、AMF31が、同一のセル内に個別モードの複数の端末10が在圏することを検知すると、基地局20の代わりに当該複数の端末10に対して、個別モードから共有モードへの切り替えをトリガーする点で第3の切り替え制御と異なる。第4の切り替え制御では、第1~第3の切り替え制御との相違点を中心に説明する。
 図8は、本実施形態に係る個別モードから共有モードへの第4の切り替え制御の一例を示す図である。ステップS401及びS402は、図4のステップS101及びS102と同様である。
 ステップS403において、AMF31は、基地局20Aに対してではなく、セルCAに在圏する端末10A~10Cに対して、上記切り替え要求を送信する。
 ステップS404において、端末10A~10Cは、AMF31からの切り替え要求に応じて、MBSセッション(又は、PTPセッション、PTMセッション)への参加を要求する参加要求メッセージ(以下、「参加要求」という)を基地局20Aに送信する。当該参加要求メッセージは、例えば、IGMP又はMLDのjoinメッセージであってもよい。
 ステップS405において、基地局20Aは、端末10A~10Cからの参加要求に応じて、基地局20Aは、端末状態情報に基づいて端末10A~10CがHO状態であるか否かを判断、及び/又は、サポート情報に基づいてターゲット基地局20BがMBSをサポートするか否かを判断する。具体的な判断手法は、図4のステップS107と同様である。なお、端末状態情報は、基地局20Aで保持されていてもよい。また、サポート情報は、図6のステップS204及びS205で説明したように、ターゲット基地局20Bから取得されてもよい。
 HO状態の端末10が存在しない、又は、ターゲット基地局20BがMBSをサポートする場合(ステップS405;YES)、ステップS406aにおいて、基地局20Aは、端末10A~10Cに対して、ステップS404における参加要求を承諾(accept)する承諾メッセージ(以下、「承諾」という)を送信する。ステップS407aにおいて、端末10A~10Cの全ての伝送モードが個別モードから共有モードに切り替えられる。ステップS408aは、図4のステップS109aと同様である。
 一方、上記以外の場合(ステップS405;NO)、ステップS406bにおいて、基地局20Aは、HO状態ではない端末10B及び10Cに対して、ステップS404における参加要求に対する承諾を送信する。ステップS406cにおいて、基地局20Aは、HO状態である端末10Aに対して、ステップS404における参加要求に対する拒否(Reject)する拒否メッセージ(以下、「拒否」という)を送信する。ステップS407bにおいて、端末10B及び10Cの伝送モードが個別モードから共有モードに切り替えられるが、端末10Aの伝送モードは個別モードに維持される。ステップS409b及びS409cは、図4のステップS109b及びS109cと同様である。また、「上記以外の場合」については、図4のステップS107で説明した通りである。
 なお、ステップS407a及びS407bでは、図5のステップS1085~S1089の少なくとも一つのステップが実施されてもよい。
 以上の第4の切り替え制御によれば、基地局20が、端末10からの参加要求に応じて、個別モードの端末10がHO状態であるか否か、及び/又は、端末10のターゲット基地局20がMBSをサポートするか否かを判断し、判断結果に基づいて当該参加要求を承諾又は拒否する。したがって、個別モードから共有モードへの切り替えに起因する該端末10におけるMBSデータの受信中断や、個別モードと共有モードとの間の頻繁な切り替えによるCプレーンのオーバヘッドの増加等を防止できる。
 また、第4の切り替え制御では、AMF31が上記切り替えをトリガーしてから、端末10からの参加要求に応じて基地局20が上記切り替えを実際に行うか否かを判断する。したがって、当該判断を行ってからMB-SMF34を経由して上記切り替えをトリガーする第1又は第2の切り替え制御と比較して、切り替え処理を効率化できる。
 (第5の切り替え制御)
 第5の切り替え制御では、AMF31の代わりに基地局20が、同一のセル内に個別モードの複数の端末10が在圏すること検知して、当該複数の端末10に対して、個別モードから共有モードへの切り替えをトリガーする点で第4の切り替え制御と異なる。第5の切り替え制御では、第1~第4の切り替え制御との相違点を中心に説明する。
 図9は、本実施形態に係る個別モードから共有モードへの第5の切り替え制御の一例を示す図である。ステップS501及びS502は、図6のステップS201及びS202と同様である。
 ステップS503において、基地局20Aは、セルCAに在圏する端末10A~10Cに対して、共有モードへの切り替え要求を送信する。当該切り替え要求は、基地局20Aによる切り替えのトリガーに相当する。当該切り替え要求は、例えば、端末10の識別情報、TMGI等を含んでもよい。切り替え要求は、例えば、RRCメッセージであってもよい。
 ステップS504において、端末10A~10は、測定(measurement)を行い、端末状態情報を生成する。上記の通り、端末状態情報は、例えば、RSRP、RSRQ、CSI、ターゲット基地局20に関する情報等を含む。
 ステップS505において、端末10A~10Cは、ステップS504で生成された端末状態情報に基づいて、自身がHO状態であるか否かを判断する。例えば、端末10A~10Cは、測定のヒストリーに基づいて、HO状態であるか否かを判断してもよい。ステップS505において、端末10Aは、HO状態であると判断され、端末10B及び10CはHO状態ではないと判断されるものとする。なお、図9では、端末10B及び10CについてHO状態であると判断される場合(ステップS505:YES)の後続処理の図示は省略しているが、端末10Aと同様に動作可能であることは勿論である。
 ステップS506において、ステップS505においてHO状態であると判断された端末10Aは、基地局20Aに対して、端末10Aのハンドオーバーに関する情報(以下、「HO情報」という)を要求するメッセージ(以下、「HO情報要求」)を送信する。
 ステップS507において、基地局20Aは、当該端末10AからのHO情報要求に応じて、当該端末10のHO情報を含むメッセージ(以下、「HO状態応答」という)を送信する。HO情報は、例えば、基地局20Aからのハンドオーバーコマンド、ターゲット基地局20に関する情報、ターゲット基地局20B(図9では、不図示)のMBSのサポート情報等を含んでもよい。HO情報要求及びHO情報応答は、例えば、RRCメッセージであってもよい。
 ステップS508において、端末10Aは、基地局20Aからのサポート情報に基づいて、ターゲット基地局20BがMBSをサポートするか否かを判断する。
 ステップS509aにおいて、ステップS505においてHO状態ではないと判断される端末10B及び10C、ステップS508においてターゲット基地局20BがMBSをサポートすると判断される端末10Aは、それぞれ、基地局20Aに対して、ステップS503における切り替え要求を承諾する承諾メッセージ(以下、「承諾」という)を送信する。ステップS510aにおいて、端末10A~10Cの全ての伝送モードが個別モードから共有モードに切り替えられる。ステップS511aは、図4のステップS109aと同様である。
 ステップS509bにおいて、端末10B及び10Cは、ステップS509aと同様に、基地局20Aに対して、承諾を送信する。一方、ステップS509cにおいて、ステップS505においてHO状態であると判断される端末10A、又は、ステップS508においてターゲット基地局20BがMBSをサポートしないと判断される端末10(不図示)は、ステップS503における切り替え要求を拒否する拒否メッセージ(以下、「拒否」という)を送信し、端末10Aの伝送モードは個別モードに維持される。ステップ511bでは、端末10B及び10Cの伝送モードが個別モードから共有モードに切り替えられる。ステップS511b及びS511cは、図4のステップS109b及びS109cと同様である。
 なお、ステップS510a及びS501bでは、図5のステップS1085~S1089の少なくとも一つのステップが実施されてもよい。
 以上の第5の切り替え制御によれば、端末10が、基地局20からの切り替え要求に応じて、個別モードの端末10がHO状態であるか否か、及び/又は、端末10のターゲット基地局20がMBSをサポートするか否かを判断し、判断結果に基づいて当該切り替え要求を承諾又は拒否する。したがって、個別モードから共有モードへの切り替えに起因する該端末10におけるMBSデータの受信中断や、個別モードと共有モードとの間の頻繁な切り替えによるCプレーンのオーバヘッドの増加等を防止できる。
 また、第5の切り替え制御では、基地局20が上記切り替えをトリガーしてから、端末10が上記切り替えを実際に行うか否かを判断する。したがって、当該判断を行ってからMB-SMF34を経由して上記切り替えをトリガーする第1又は第2の切り替え制御と比較して、切り替え処理を効率化できる。
 (通信システムの構成)
 次に、以上のような通信システム1の各装置の構成について説明する。なお、以下の構成は、本実施形態の説明において必要な構成を示すためのものであり、各装置が図示以外の機能ブロックを備えることを排除するものではない。
 <ハードウェア構成>
 図10は、本実施形態に係る通信システム内の各装置のハードウェア構成の一例を示す図である。通信システム1内の各装置は、図1に示されるどの装置であってもよく、例えば、端末10、基地局20、CN30内のコアネットワーク装置である。図10における符号「30」は、CN30内のコアネットワーク装置を意味し、AMF31、SMF32、UPF33、MB-SMF34、MB-UPF35、NEF/MBSF36、AF37、MBSU38を総称するものとする。
 通信システム1内の各装置は、プロセッサ11、記憶装置12、有線又は無線通信を行う通信装置13、各種の入力操作を受け付ける入力装置や各種情報の出力を行う入出力装置14を含む。
 プロセッサ11は、例えば、CPU(Central Processing Unit)であり、通信システム1内の各装置を制御する。プロセッサ11は、プログラムを記憶装置12から読み出して実行することで、本実施形態で説明する各種の処理を実行してもよい。通信システム1内の各装置は、1又は複数のプロセッサ11により構成されていてもよい。また、当該各装置は、コンピュータと呼ばれてもよい。
 記憶装置12は、例えば、メモリ、HDD(Hard Disk Drive)及び/又はSSD(Solid State Drive)等のストレージから構成される。記憶装置12は、プロセッサ11による処理の実行に必要な各種情報(例えば、プロセッサ11によって実行されるプログラム等)を記憶してもよい。
 通信装置13は、有線及び/又は無線ネットワークを介して通信を行う装置であり、例えば、ネットワークカード、通信モジュール、チップ、アンテナ等を含んでもよい。また、通信装置13には、アンプ、無線信号に関する処理を行うRF(Radio Frequency)装置と、ベースバンド信号処理を行うBB(BaseBand)装置とを含んでいてもよい。
 RF装置は、例えば、BB装置から受信したデジタルベースバンド信号に対して、D/A変換、変調、周波数変換、電力増幅等を行うことで、アンテナAから送信する無線信号を生成する。また、RF装置は、アンテナから受信した無線信号に対して、周波数変換、復調、A/D変換等を行うことでデジタルベースバンド信号を生成してBB装置に送信する。BB装置は、デジタルベースバンド信号をパケットに変換する処理、及び、パケットをデジタルベースバンド信号に変換する処理を行う。
 入出力装置14は、例えば、キーボード、タッチパネル、マウス及び/又はマイク等の入力装置と、例えば、ディスプレイ及び/又はスピーカ等の出力装置とを含む。
 以上説明したハードウェア構成は一例に過ぎない。通信システム1内の各装置は、図11に記載したハードウェアの一部が省略されていてもよいし、図11に記載されていないハードウェアを備えていてもよい。また、図11に示すハードウェアが1又は複数のチップにより構成されていてもよい。
 <機能ブロック構成>
 ≪端末≫
 図11は、本実施形態に係る端末の機能ブロック構成の一例を示す図である。図11に示すように、端末10は、受信部101と、送信部102と、制御部103と、を備える。
 なお、受信部101と送信部102とが実現する機能の全部又は一部は、通信装置13を用いて実現することができる。また、受信部101と送信部102とが実現する機能の全部又は一部と、制御部103とは、プロセッサ11が、記憶装置12に記憶されたプログラムを実行することにより実現することができる。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体(Non-transitory computer readable medium)であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリ又はCD-ROM等の記憶媒体であってもよい。
 受信部101は、MBSデータを受信する。具体的には、受信部101は、個別モードの場合、UPF33からPDUセッションを介してMBSデータを受信する。一方、受信部101は、共有モードの場合、MB-UPF35から共有トンネルを介して基地局20に伝送されたMBSデータを、基地局20から受信する。
 受信部101は、基地局20又はCN30内のコアネットワーク装置から、各種メッセージを受信する。受信部101は、当該端末10の伝送モードの個別モードから共有モードへの切り替えに関するメッセージ(例えば、図5のANリソースの変更に関するメッセージ、図7の切り替え要求、図8の参加要求に対する承諾又は拒否、図9のHO情報応答等)を基地局20から受信する。また、受信部101は、当該切り替えに関するメッセージ(例えば、図8の切り替え要求)をAMF31から受信する。
 なお、「受信する」とは、例えば、信号の受信、デマッピング、復調、復号、測定の少なくとも一つ等の受信に関する処理を行うことを含んでもよい。例えば、受信部101は、下り信号を測定し、当該測定の結果に基づいて上記端末状態情報を生成してもよい。
 送信部102は、基地局20又はCN30内のコアネットワーク装置に対して、各種メッセージを送信する。送信部102は、当該端末10の伝送モードの個別モードから共有モードへの切り替えに関するメッセージ(例えば、図5のANリソースの変更に関するメッセージ、図8の参加要求、図9の切り替え要求に対する承諾または拒否、図9のHO情報要求等)を基地局20に対して送信する。また、送信部102は、当該切り替えに関するメッセージ(例えば、サービス要求等)をAMF31に対して送信してもよい。なお、「送信する」とは、例えば、符号化、変調、マッピング、信号の送信の少なくとも一つ等の送信に関する処理を行うことを含んでもよい。
 制御部103は、端末10における各種制御を行う。具体的には、制御部103は、端末10の状態に関する端末状態情報、及び/又は、端末10のターゲット基地局20におけるMBS(共有モード)のサポートに関するサポート情報に基づいて、端末10についての個別モードから共有モードへの切り替えを制御してもよい(第5の切り替え制御)。
 例えば、制御部103は、上記端末状態情報に基づいて端末10がハンドオーバーの実行が差し迫ったHO状態であるか否かを判断、及び/又は、上記サポート情報に基づいてターゲット基地局20がMBS(共有モード)をサポートするか否かを判断してもよい(例えば、図9)。制御部103は、当該判断の結果に基づいて、基地局20からの切り替え要求を承諾するか又は拒否するかを決定してもよい。
 ≪基地局≫
 図12は、本実施形態に係る基地局の機能ブロック構成の一例を示す図である。図12に示すように、基地局20は、受信部201と、送信部202と、制御部203と、を備える。
 なお、受信部201と送信部202とが実現する機能の全部又は一部は、通信装置13を用いて実現することができる。また、受信部201と送信部202とが実現する機能の全部又は一部と、制御部203とは、プロセッサ11が、記憶装置12に記憶されたプログラムを実行することにより実現することができる。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリ又はCD-ROM等の記憶媒体であってもよい。
 受信部201は、MBSデータを受信する。具体的には、受信部201は、共有モードの場合、MB-UPF35から共有トンネルを介してMBSデータを受信する。
 受信部201は、端末10、他の基地局20又はCN30内のコアネットワーク装置からの各種メッセージを受信する。具体的には、受信部201は、端末10の伝送モードの個別モードから共有モードへの切り替えに関するメッセージ(例えば、図8の参加要求、図9のHO情報要求、図9の切り替え要求に対する承諾又は拒否、端末状態情報等)を、端末10から受信してもよい。また、受信部201は、当該切り替えに関するメッセージ(例えば、図4の端末状態情報要求、図5の切り替え通知、図7の切り替え要求等)を、AMF31から受信してもよい。また、受信部201は、当該切り替えに関するメッセージ(例えば、図6、7のサポート情報応答、端末状態情報等)を、他の基地局20から受信してもよい。
 送信部202は、MBSデータを送信する。具体的には、送信部202は、共有モードの場合、MB-UPF35から共有トンネルを介して受信したMBSデータを、PTP又はPTMにより送信してもよい。
 送信部202は、端末10、他の基地局20又はCN30内のコアネットワーク装置に対して、各種メッセージを送信する。送信部202は、端末10の伝送モードの個別モードから共有モードへの切り替えに関するメッセージ(例えば、図7、9の切り替え要求、図8の参加要求に対する承諾または拒否、図9のHO情報応答等)を、端末10に対して送信してもよい。また、送信部202は、当該切り替えに関するメッセージ(例えば、図4の端末状態情報応答、図5の切り替え通知応答等)を、AMF31に対して送信してもよい。また、送信部202は、当該切り替えに関するメッセージ(例えば、図6、7のサポート情報要求等)を、他の基地局20に対して送信してもよい。
 制御部203は、基地局20における各種制御を行う。具体的には、制御部203は、端末10の状態に関する端末状態情報、及び/又は、端末10のターゲット基地局20におけるMBS(共有モード)のサポートに関するサポート情報に基づいて、端末10についての個別モードから共有モードへの切り替えを制御してもよい(第2、第3及び第4の切り替え制御)。
 例えば、制御部203は、上記端末状態情報に基づいて端末10がハンドオーバーの実行が差し迫ったHO状態であるか否かを判断、及び/又は、上記サポート情報に基づいてターゲット基地局20がMBS(共有モード)をサポートするか否かを判断してもよい(例えば、図6、7及び8)。
 制御部203は、当該判断の結果に基づいて、上記切り替え要求をAMF31又は端末10に送信するか否かを決定してもよい(例えば、図6)。また、制御部203は、当該判断の結果に基づいて、AMF31からの切り替え要求を端末10に転送するか否かを決定してもよい(例えば、図7)。また、制御部203は、当該判断の結果に基づいて、端末10からの参加要求を承諾するか又は拒否するかを決定してもよい(例えば、図8)。
 また、制御部203は、同一のセルに個別モードの複数の端末10が在圏することを検知してもよい(第2及び第5の切り替御、例えば、図6及び9)。
 ≪コアネットワーク装置≫
 図13は、本実施形態に係るコアネットワーク装置の機能ブロック構成の一例を示す図である。図13では、AMF31の機能ブロック構成を例示するが、CN30内の他のコアネットワーク装置が同様の機能ブロック構成を備えてもよい。AMF31は、受信部301と、送信部302と、制御部303と、を備える。
 なお、受信部301と送信部302とが実現する機能の全部又は一部は、通信装置13を用いて実現することができる。また、受信部301と送信部302とが実現する機能の全部又は一部と、制御部303とは、プロセッサ11が、記憶装置12に記憶されたプログラムを実行することにより実現することができる。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリ又はCD-ROM等の記憶媒体であってもよい。
 受信部301は、端末10、基地局20又は他のコアネットワーク装置からの各種メッセージを受信する。具体的には、受信部301は、端末10の伝送モードの個別モードから共有モードへの切り替えに関するメッセージ(例えば、サービス要求等)を、端末10から受信してもよい。また、受信部201は、当該切り替えに関するメッセージ(例えば、図4の端末状態情報応答、図4のサポート情報応答、図5の切り替え要求等)を、基地局20から受信してもよい。また、受信部201は、当該切り替えに関するメッセージ(例えば、図5の切り替え通知等)を、MB-SMF34から受信してもよい。
 送信部302は、端末10、基地局20又は他のコアネットワーク装置に対して、各種メッセージを送信する。具体的には、送信部302は、端末10の伝送モードの個別モードから共有モードへの切り替えに関するメッセージ(例えば、図8の切り替え要求等)を、端末10に対して送信してもよい。また、送信部302は、当該切り替えに関するメッセージ(例えば、図4の端末状態情報要求、図7の切り替え要求等)を、基地局20に対して送信してもよい。また、送信部302は、当該切り替えに関するメッセージ(例えば、図5の切り替え要求、切り替え通知応答等)を、MB-SMF34に対して送信してもよい。また、送信部302は、当該切り替えに関するメッセージ(例えば、図5の切り替え要求等)を、MB-UPF35に対して送信してもよい。
 制御部303は、AMF31における各種制御を行う。具体的には、制御部303は、端末10の状態に関する端末状態情報、及び/又は、端末10のターゲット基地局20におけるMBS(共有モード)のサポートに関するサポート情報に基づいて、端末10についての個別モードから共有モードへの切り替えを制御してもよい(第1の切り替え制御)。
 例えば、制御部303は、上記端末状態情報に基づいて端末10がハンドオーバーの実行が差し迫ったHO状態であるか否かを判断、及び/又は、上記サポート情報に基づいてターゲット基地局20がMBS(共有モード)をサポートするか否かを判断してもよい(例えば、図4)。制御部303は、当該判断の結果に基づいて、上記切り替え要求を送信するか否かを決定してもよい(例えば、図5)。
 また、制御部303は、同一のセルに個別モードの複数の端末10が在圏することを検知してもよい(第1、第3及び第4の切り替え制御、例えば、図4、7及び8)。
 以上のように、本実施形態に係る通信システム1によれば、個別モードの端末10がHO状態であるか否か、及び/又は、端末10のターゲット基地局20がMBSをサポートするか否かの判断結果に基づいて、当該端末10の個別モードから共有モードへの切り替えが制御される。したがって、個別モードから共有モードへの切り替えによる不具合(例えば、当該端末10におけるMBSデータの受信中断や、個別モードと共有モードとの間の頻繁な切り替えによるCプレーンのオーバヘッドの増加等)の発生を防止できる。
 (その他の実施形態)
 上記実施形態における各種の信号、情報、パラメータは、どのようなレイヤでシグナリングされてもよい。すなわち、上記各種の信号、情報、パラメータは、上位レイヤ(例えば、Non Access Stratum(NAS)レイヤ、RRCレイヤ、MACレイヤ等)、下位レイヤ(例えば、物理レイヤ)等のどのレイヤの信号、情報、パラメータに置き換えられてもよい。また、所定情報の通知は明示的に行うものに限られず、黙示的に(例えば、情報を通知しないことや他の情報を用いることによって)行われてもよい。
 また、上記実施形態における各種の信号、情報、パラメータ、IE、チャネル、時間単位及び周波数単位の名称は、例示にすぎず、他の名称に置き換えられてもよい。例えば、スロットは、所定数のシンボルを有する時間単位であれば、どのような名称であってもよい。また、RBは、所定数のサブキャリアを有する周波数単位であれば、どのような名称であってもよい。
 また、上記実施形態における端末10の用途(例えば、RedCap、IoT向け等)は、例示するものに限られず、同様の機能を有する限り、どのような用途(例えば、eMBB、URLLC、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)等)で利用されてもよい。また、各種情報の形式は、上記実施形態に限られず、ビット表現(0又は1)、真偽値(Boolean:true又はfalse)、整数値、文字等適宜変更されてもよい。また、上記実施形態における単数、複数は相互に変更されてもよい。
 以上説明した実施形態は、本開示の理解を容易にするためのものであり、本開示を限定して解釈するためのものではない。実施形態で説明したフローチャート、シーケンス、実施形態が備える各要素並びにその配置、インデックス、条件等は、例示したものに限定されるわけではなく適宜変更することができる。また、上記実施形態で説明した少なくとも一部の構成を部分的に置換し又は組み合わせることが可能である。

Claims (9)

  1.  第1のユーザプレーン装置と各端末との間のプロトコルデータユニット(PDU)セッションを用いる第1の伝送モード、又は、第2のユーザプレーン装置と基地局との間の共有トンネルを用いる第2の伝送モードを用いて、マルチキャストブロードキャストサービス(MBS)データを伝送する通信システム内の前記基地局であって、
     前記第1の伝送モードの端末の状態に関する端末状態情報、及び/又は、前記端末のターゲット基地局における前記第2の伝送モードのサポートに関するサポート情報に基づいて、前記端末についての前記第1の伝送モードから前記第2の伝送モードへの切り替えを制御する制御部と、
     前記第2の伝送モードに切り替えられた端末に対して、前記共有トンネルを介して受信された前記MBSデータを送信する送信部と、
    を備える基地局。
  2.  前記制御部は、前記端末状態情報に基づいて前記端末がハンドオーバーの実行が差し迫ったハンドオーバー状態であるか否かを判断、及び/又は、前記サポート情報に基づいて前記ターゲット基地局が前記第2の伝送モードをサポートするか否かを判断し、前記判断の結果に基づいて、前記切り替えの要求メッセージをコアネットワーク装置に送信するか否かを決定する、
     請求項1に記載の基地局。
  3.  前記制御部は、コアネットワーク装置からの前記切り替えの要求メッセージに応じて、前記端末状態情報に基づいて前記端末がハンドオーバーの実行が差し迫ったハンドオーバー状態であるか否かを判断、及び/又は、前記サポート情報に基づいて前記ターゲット基地局が前記第2の伝送モードをサポートするか否かを判断し、前記判断の結果に基づいて、前記要求メッセージを前記端末に転送するか否かを決定する、
     請求項1に記載の基地局。
  4.  前記制御部は、コアネットワーク装置からの前記切り替えの要求メッセージに基づく前記端末からの参加要求メッセージに応じて、前記端末状態情報に基づいて前記端末がハンドオーバーの実行が差し迫ったハンドオーバー状態であるか否かを判断、及び/又は、前記サポート情報に基づいて前記ターゲット基地局が前記第2の伝送モードをサポートするか否かを判断し、前記判断の結果に基づいて、前記参加要求メッセージを承諾するか又は拒否するかを決定する、
     請求項1に記載の基地局。
  5.  第1のユーザプレーン装置と各端末との間のプロトコルデータユニット(PDU)セッションを用いる第1の伝送モード、又は、第2のユーザプレーン装置と基地局との間の共有トンネルを用いる第2の伝送モードを用いて、マルチキャストブロードキャストサービス(MBS)データを伝送する通信システム内のコアネットワーク装置であって、
     前記第1の伝送モードの端末の状態に関する端末状態情報、及び/又は、前記端末のターゲット基地局における前記第2の伝送モードのサポートに関するサポート情報に基づいて、前記端末についての前記第1の伝送モードから前記第2の伝送モードへの切り替えを制御する制御部と、
     前記切り替えの要求メッセージを、他のコアネットワーク装置に対して送信する送信部と、
    を備えるコアネットワーク装置。
  6.  前記制御部は、前記端末状態情報に基づいて前記端末がハンドオーバーの実行が差し迫ったハンドオーバー状態であるか否かを判断、及び/又は、前記サポート情報に基づいて前記ターゲット基地局が前記第2の伝送モードをサポートするか否かを判断し、前記判断の結果に基づいて、前記切り替えの要求メッセージを前記他のコアネットワーク装置に送信するか否かを決定する、
     請求項5に記載のコアネットワーク装置。
  7.  第1のユーザプレーン装置と各端末との間のプロトコルデータユニット(PDU)セッションを用いる第1の伝送モード、又は、第2のユーザプレーン装置と基地局との間の共有トンネルを用いる第2の伝送モードを用いて、マルチキャストブロードキャストサービス(MBS)データを受信する端末であって、
     前記端末の状態に関する端末状態情報、及び/又は、前記端末のターゲット基地局における前記第2の伝送モードのサポートに関するサポート情報に基づいて、前記端末についての前記第1の伝送モードから前記第2の伝送モードへの切り替えを制御する制御部と、
     前記切り替えの要求メッセージに対する承諾メッセージ又は拒否メッセージを、前記基地局に送信する送信部と、
    を備える端末。
  8.  前記制御部は、前記端末状態情報に基づいて前記端末がハンドオーバーの実行が差し迫ったハンドオーバー状態であるか否かを判断、及び/又は、前記サポート情報に基づいて前記ターゲット基地局が前記第2の伝送モードをサポートするか否かを判断し、前記判断の結果に基づいて、前記要求メッセージを承諾するか又は拒否するかを決定する、
     請求項7に記載の端末。
  9.  第1のユーザプレーン装置と各端末との間のプロトコルデータユニット(PDU)セッションを用いる第1の伝送モード、又は、第2のユーザプレーン装置と基地局との間の共有トンネルを用いる第2の伝送モードを用いて、マルチキャストブロードキャストサービス(MBS)データを伝送する通信方法であって、
     前記基地局、コアネットワーク装置、又は、前記第1の伝送モードの端末において、該端末の状態に関する端末状態情報、及び/又は、前記端末のターゲット基地局における前記第2の伝送モードのサポートに関するサポート情報に基づいて、前記端末についての前記第1の伝送モードから前記第2の伝送モードへの切り替えを制御する工程と、
     前記第2の伝送モードに切り替えられた端末において、前記第2のユーザプレーン装置から前記共有トンネルを介して送信された前記MBSデータを、前記基地局から受信する工程と、
    を有する通信方法。
PCT/JP2022/003959 2021-02-12 2022-02-02 基地局、コアネットワーク装置、端末及び通信方法 WO2022172820A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-021254 2021-02-12
JP2021021254A JP2022123747A (ja) 2021-02-12 2021-02-12 基地局、コアネットワーク装置、端末及び通信方法

Publications (1)

Publication Number Publication Date
WO2022172820A1 true WO2022172820A1 (ja) 2022-08-18

Family

ID=82838793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003959 WO2022172820A1 (ja) 2021-02-12 2022-02-02 基地局、コアネットワーク装置、端末及び通信方法

Country Status (2)

Country Link
JP (1) JP2022123747A (ja)
WO (1) WO2022172820A1 (ja)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on architectural enhancements for 5G multicast-broadcast services (Release 17)", 3GPP DRAFT; 23757-120, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 28 November 2020 (2020-11-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051960380 *

Also Published As

Publication number Publication date
JP2022123747A (ja) 2022-08-24

Similar Documents

Publication Publication Date Title
CN108141900B (zh) 电信设备和方法
EP3716658B1 (en) Base station and user terminal in mobile communication system
JP6473225B2 (ja) ユーザ装置
US8170556B2 (en) Method for initiating uplink signaling proactively by MBMS UE
US20190053094A1 (en) Signal transmission method and device
WO2016158996A1 (ja) ユーザ装置、及び基地局
EP2497202B1 (en) Method and apparatus for setting up uplink common bearer in wireless communication network
US8885545B2 (en) Radio communication system, communication apparatus, method for controlling simultaneous transmission from multiple base stations, and non-transitory computer readable medium
US20170325076A1 (en) Base station, user terminal and apparatus
US20110044290A1 (en) Communication terminal apparatus and handover method
WO2022012426A1 (zh) Uu路径到直接通信路径的切换及候选中继UE指示方法、装置、存储介质、终端、基站
CN112262590B (zh) 小区全球身份报告
KR20090045200A (ko) 네트워크 선택
WO2022239690A1 (ja) 通信制御方法及びユーザ装置
WO2016061791A1 (zh) 接口建立方法及装置
EP2385743B1 (en) Method, system and drnc for transporting cell capacity by crossing iur interface
WO2022172820A1 (ja) 基地局、コアネットワーク装置、端末及び通信方法
WO2018028412A1 (zh) 一种区域控制的方法及设备
WO2021241663A1 (ja) 通信制御方法及びユーザ装置
WO2023008469A1 (ja) 装置及び通信方法
WO2023008468A1 (ja) 装置、基地局及び通信方法
WO2023008520A1 (ja) コアネットワーク装置及び通信方法
WO2023140283A1 (ja) 通信方法
WO2023182189A1 (en) Communication system for the provision of multicast and broadcast services in cellular mobile radio networks
WO2022104652A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752648

Country of ref document: EP

Kind code of ref document: A1