WO2022172533A1 - Light detection unit and brain function measuring apparatus using same - Google Patents

Light detection unit and brain function measuring apparatus using same Download PDF

Info

Publication number
WO2022172533A1
WO2022172533A1 PCT/JP2021/040945 JP2021040945W WO2022172533A1 WO 2022172533 A1 WO2022172533 A1 WO 2022172533A1 JP 2021040945 W JP2021040945 W JP 2021040945W WO 2022172533 A1 WO2022172533 A1 WO 2022172533A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
flexible substrate
light
photodetector
measurement
Prior art date
Application number
PCT/JP2021/040945
Other languages
French (fr)
Japanese (ja)
Inventor
隆 佐々木
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2022581186A priority Critical patent/JPWO2022172533A1/ja
Priority to CN202180088214.7A priority patent/CN116709984A/en
Publication of WO2022172533A1 publication Critical patent/WO2022172533A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Definitions

  • the present invention relates to a photodetection unit and a brain function measurement device using the same, and more particularly to a brain function measurement device provided with a photodetection unit arranged on the head of a subject.
  • Such a brain function measuring device that observes the state of brain activity by irradiating the subject's head with light (for example, Patent Document 1).
  • a brain function measuring device includes a measuring unit attached to the head of a subject, and a main unit connected to the measuring unit via an optical fiber.
  • the measurement unit includes a light irradiation unit that irradiates the subject's brain with near-infrared light of multiple wavelengths, and a light-receiving unit that receives the near-infrared light emitted from the brain after passing through the brain.
  • a light irradiation unit that irradiates the subject's brain with near-infrared light of multiple wavelengths
  • a light-receiving unit that receives the near-infrared light emitted from the brain after passing through the brain.
  • the main unit includes a light source, such as a light-emitting diode, a light detection unit, and a main control section that controls each component.
  • the photodetection unit includes a photodetector for detecting light, an amplifier for amplifying the detected optical signal, and an A/D converter for converting the amplified optical signal into a digital signal.
  • amplifiers and A/D converters are mounted on printed circuit boards.
  • the light source is connected via an optical fiber to a light irradiation mechanism such as a light transmitting probe, and the photodetector is connected via an optical fiber to a light receiving unit. That is, the near-infrared light emitted from the light source is sent to the measurement unit side via the optical fiber, and is irradiated to the subject's brain from the light irradiation mechanism. Near-infrared light emitted from the subject's brain is received by a light receiving unit provided in the measurement unit, and the received near-infrared light is sent to the main unit side via an optical fiber. The near-infrared light sent to the main unit side is detected by the photodetector. That is, an optical signal is amplified by an amplifier on a printed circuit board and then converted from an analog signal to a digital signal by an A/D converter. Information on brain activity can be obtained by analyzing the digitally converted optical signal.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a photodetection unit capable of improving the S/N ratio of an optical signal and a brain function measuring device provided with the same.
  • the photodetection unit includes a photodetector for detecting light, a cylindrical housing container for housing the photodetector, and an optical signal detected by the photodetector for converting from an analog signal to a digital signal.
  • the flexible substrate can be bent and deformed to have a smaller shape.
  • Both the photodetector and the A/D converter are arranged inside the housing container by placing the flexible substrate in a bent state inside the housing container. That is, since the photodetector and the A/D converter can be arranged closer to each other, the optical signal detected by the photodetector can be quickly converted from an analog signal to a digital signal. Therefore, since it is possible to avoid a decrease in optical signal intensity due to transmission of the optical signal in the form of an analog signal, it is possible to improve the S/N ratio of the optical signal while downsizing the photodetector unit.
  • the flexible substrate includes a first portion connected to the photodetector, a second portion mounted with a signal processing circuit including the A/D converter, and the first portion. a connecting portion that connects the second portion to the flexible substrate by bending the connecting portion so that the first portion and the second portion are perpendicular to each other and bending and deforming the second portion; It is preferable that the container is deformed into a cylindrical shape along the inner surface of the container.
  • the connecting portion that connects the first portion and the second portion constituting the flexible substrate is bent, and the second portion is bent and deformed so that the flexible substrate is bent.
  • the flat flexible substrate can be deformed into a smaller cylindrical shape.
  • the flexible substrate exerts a pressing force on the inner surface of the container. Since the flexible substrate is held inside the container by the pressing force, the flexible substrate can be stably held inside the container without using fixing tools such as screws.
  • the flexible substrate includes a first portion connected to the photodetector, a second portion mounted with a signal processing circuit including the A/D converter, and the first portion. a connecting part for connecting the second part, wherein the flexible substrate is folded inside the container by bending the connecting part so that the first part and the second part overlap each other. is preferably transformed into
  • the first and second portions of the flexible substrate are overlapped by bending the connection portion that connects the first and second portions.
  • the flexible substrate can be transformed into a folded state inside the container. Therefore, the flat flexible substrate can be deformed into a smaller shape. Therefore, the volume occupied by the flexible substrate can be further reduced, so that the light detection unit can be further miniaturized.
  • a brain function measuring apparatus has the above-described light detection unit and a light irradiation unit for irradiating light onto the brain of the subject, and the measurement unit is mounted on the head of the subject. and a main body electrically connected to the measurement unit and having a brain function measurement unit that acquires measurement data relating to brain activity of the subject based on the optical signal digitally converted by the A/D converter. and a unit.
  • the board on which the A/D converter is mounted is a flexible board so that the board can be arranged inside the container provided with the photodetection unit. It can be bent and deformed. Therefore, the photodetection unit can be miniaturized, so that the photodetection unit can be arranged on the side of the measurement unit attached to the head of the subject, not on the side of the main unit.
  • the light irradiated from the light irradiation unit and transmitted through the subject's brain is detected by the photodetector provided in the photodetection unit, and then quickly converted into a digital signal by the A/D converter. be. Therefore, it is possible to avoid reduction in optical signal intensity due to transmission of the optical signal in the form of an analog signal, thereby improving the S/N ratio of the optical signal. As a result, the accuracy of brain function measurement data can be further improved.
  • the signal processing circuit including the A/D converter is mounted on the flexible substrate.
  • the flexible substrate can be Both the photodetector and the A/D converter are arranged inside the housing container by placing the flexible substrate in a bent state inside the housing container. That is, since the photodetector and the A/D converter can be arranged closer to each other, the optical signal detected by the photodetector can be quickly converted from an analog signal to a digital signal. Therefore, since it is possible to avoid a reduction in optical signal intensity caused by transmitting the optical signal in the state of an analog signal, it is possible to improve the S/N ratio of the optical signal detected by the optical detection unit while downsizing the optical detection unit. be able to.
  • FIG. 1 is a perspective view illustrating the overall configuration of a brain function measuring device according to Example 1.
  • FIG. 1 is a functional block diagram illustrating the configuration of a brain function measuring device according to Example 1;
  • FIG. FIG. 2 is a cross-sectional view showing the positional relationship between a pair of light-transmitting probe and light-receiving probe according to Example 1 and the measurement site of the brain.
  • 4 is a cross-sectional view for explaining the configuration of the probe unit holder according to Example 1.
  • FIG. 4 is a perspective view showing a state in which a cover member is attached to the main body of the probe unit according to the first embodiment;
  • FIG. 4 is a perspective view showing a state in which a cover member is removed from the main body of the probe unit according to Example 1.
  • FIG. 7 is a cross-sectional view along line AA in FIG. 6 in the main body of the probe unit according to Example 1;
  • FIG. 4 is a perspective view illustrating the configuration of a holding member of the probe unit according to Example 1;
  • FIG. 4 is a perspective view illustrating a state in which a holding member and a main body of the probe unit according to Example 1 are combined;
  • 2 is a vertical cross-sectional view of a photodetection unit according to Example 1.
  • FIG. 1 is a plan view of a flexible substrate according to Example 1.
  • FIG. FIG. 4 is a perspective view showing a state in which a second portion of the flexible substrate according to Example 1 is erected;
  • FIG. 2 is a vertical cross-sectional view of a photodetection unit according to Example 1.
  • FIG. 10 is a plan view of a flexible substrate according to Example 2;
  • FIG. 11 is a perspective view showing a state in which the second portion of the flexible substrate according to Example 2 is erected;
  • FIG. 10 is a perspective view showing a state in which the second portion of the flexible substrate according to Example 2 is curved into a tubular shape;
  • FIG. 10 is a vertical cross-sectional view of a photodetection unit according to Example 2;
  • FIG. 11 is a plan view of a flexible substrate according to Example 3;
  • FIG. 11 is a perspective view showing a state in which the flexible board according to Example 2 is deformed into a columnar shape as a whole by bending each connecting portion;
  • FIG. 10 is a vertical cross-sectional view of a photodetection unit according to Example 3;
  • FIG. 11 is a vertical cross-sectional view of a photodetector unit according to a modified example;
  • Embodiment 1 of the present invention will be described below with reference to the drawings.
  • a brain function measuring device 1 according to Example 1 includes a measuring unit 3 and a main unit 5, as shown in FIG.
  • the measuring unit 3 and the main unit 5 are electrically connected via a cable 6 .
  • the measurement unit 3 is attached to the subject M's head.
  • a laptop computer is used as the main unit 5 .
  • the measurement unit 3 includes a probe unit 7 and a probe unit holder 8.
  • the probe unit holder 8 holds the probe unit 7 .
  • the probe unit holder 8 has a shape that covers the head of the subject M, and is made of a light-shielding material. As an example of a constituent material of the probe unit holder 8, resin having a helmet shape is given. By mounting the probe unit holder 8 on the head of the subject M, the probe unit 7 is held on the head of the subject M. As shown in FIG.
  • the position and number of the probe units 7 arranged in the probe unit holder 8 are changed according to the part of the brain of the subject M whose function is to be measured.
  • four probe units 7 are held by a probe unit holder 8, as shown in FIG.
  • the probe unit holder 8 has a fixing belt (not shown). With the probe unit holder 8 mounted on the head of the subject M, the probe unit holder 8 is fixed to the head of the subject M by attaching a fixing belt to the head of the subject M.
  • the main unit 5 includes a main control section 9, an operation section 11, a storage section 13, and a display section 15, as shown in FIGS.
  • the main control unit 9 includes information processing means such as a central processing unit (CPU), for example.
  • the main control unit 9 centrally controls various components of the brain function measuring device 1 .
  • the operation unit 11 is for inputting operator's instructions regarding the operation of the brain function measuring device 1 , and the main control unit 9 performs overall control according to the instructions input by the operator to the operation unit 11 .
  • a keyboard provided in the computer is used as the operation unit 11 .
  • Examples of the operation unit 11 include a touch panel, a mouse, a dial switch, a push button switch, etc., in addition to the keyboard.
  • the storage unit 13 stores various programs executed by the main control unit 9 and various information such as various data measured by the measurement unit 3 .
  • An example of the storage unit 13 is a nonvolatile memory.
  • the display unit 15 displays various information such as the conditions for measurement by the measurement unit 3 and various data measured by the measurement unit 3 .
  • An example of the display unit 15 is a liquid crystal monitor.
  • the probe unit 7 as shown in FIG.
  • the probe unit 7 comprises two light-transmitting probes 19 and two light-receiving probes 21 .
  • the number of light-transmitting probes 19 and light-receiving probes 21 included in the probe unit 7 may be changed as appropriate.
  • the light output device 17 is a light source that generates light, and outputs near-infrared light with wavelengths of 780 nm, 805 nm, and 830 nm, for example.
  • An example of the light output device 17 is a light emitting diode (LED) or a semiconductor laser.
  • the light output device 17 is connected to the light transmission probe 19 by a light transmission member such as an optical fiber, and the light generated by the light output device 17 is transmitted to the light transmission probe 19. .
  • the light transmission probe 19 has a shape extending in one direction. One end side of the light transmitting probe 19 is connected to the light output device 17 , and the other end side of the light transmitting probe 19 is configured to be able to contact the head skin 25 of the subject M.
  • FIG. The light transmitting probe 19 emits light to the subject M while being in contact with the head skin 25 of the subject M, as shown in FIG.
  • the light emitted from the light transmitting probe 19 is transmitted to the brain region 29 of the subject M via the head epidermis 25 and the skull 27 .
  • An example of a material that forms the light transmitting probe 19 is a light guide that includes a columnar glass member. Accordingly, the light output device 17 and the light transmitting probe 19 constitute a light irradiation unit 20 for irradiating the brain of the subject M with light.
  • the light-receiving probe 21 has a configuration similar to that of the light-transmitting probe 19 . That is, the light-receiving probe 21 has a shape extending in one direction, and is configured by, for example, a ride guide having a columnar glass member. One end side of the light-receiving probe 21 is connected to the light detection unit 23 , and the other end side of the light-receiving probe 21 is configured to be able to contact the head skin 25 of the subject M.
  • the light receiving probe 21 is configured to receive light and transmit the received light to the light detection unit 23 .
  • the diameter of one end side of the light receiving probe 21 is configured to be larger than the diameter of a through hole 72, which will be described later.
  • the diameter of the light receiving probe 21 on the other end side is configured to be equal to or smaller than the diameter of the through hole 72 . That is, the other end side of the light receiving probe 21 is configured so as to be able to be inserted through the through hole 72 provided in the container 71 .
  • the photodetection unit 23 includes a photodetector 31 and an A/D converter 33 .
  • the photodetector 31 detects the light received by the light receiving probe 21 and amplifies the optical signal. Examples of the photodetector 31 include a photomultiplier tube or a photodiode.
  • the A/D converter 33 converts the optical signal detected and amplified by the photodetector 31 from an analog signal to a digital signal.
  • the A/D converter 33 is mounted on a flexible substrate 73 as will be described later.
  • the A/D converter 33 corresponds to the A/D converter in the present invention.
  • the measurement unit 3 further includes a measurement unit control section 35.
  • the measurement unit control section 35 is configured by a computer including a processor and memory.
  • the measurement unit control section 35 controls various configurations in the measurement unit 3, for example, the light output device 17 and the light detection unit 23.
  • the measurement unit control section 35 receives control from the main control section 9 and controls various configurations in the measurement unit 3 .
  • the measurement unit control section 35 is connected to the light irradiation unit 20 via the cable 18 .
  • the measurement unit control section 35 is also connected to the light detection unit 23 via the cable 18 .
  • the direction toward the head skin 25 with respect to the probe unit 7 held by the probe unit holder 8 is the z1 direction
  • the direction away from the head skin 25 is the z2 direction.
  • the z1 direction and the z2 direction are collectively referred to as the z direction.
  • a plane perpendicular to the z direction is defined as an xy plane
  • two directions perpendicular to each other on the xy plane are defined as an x direction and a y direction.
  • the measurement light L emitted to the head epidermis 25 reaches the brain region 29 via the skull 27 , and part of the measurement light L passes through the brain region 29 . Then, the measurement light L transmitted through the brain region 29 and emitted from the epidermis 25 of the head is made incident on the light receiving probe 21 . At this time, one measurement channel CH having a banana shape is formed by a region serving as a path of the measurement light L between one light transmitting probe 19 and one light receiving probe 21 .
  • the measurement light L received by the light receiving probe 21 is transmitted to the light detection unit 23 .
  • the measurement light L is detected by the photodetector 31 provided in the photodetection unit 23 . Further, the detection signal of the measurement light L is amplified in the photodetector 31 .
  • the amplified detection signal of the measurement light L is converted into a digital signal by the A/D converter 33 .
  • the digital-converted detection signal is transmitted to the main unit 5 via the cable 6 .
  • the main control unit 9 calculates measurement data indicating the brain activity of the subject M based on the digital signal data.
  • the brain function measuring apparatus 1 performs measurement using measurement light L of multiple wavelengths (for example, wavelengths of 780 nm, 805 nm, and 830 nm) considering the difference in light absorption characteristics.
  • the main control unit 9 calculates the temporal change in the concentration of oxyhemoglobin and the temporal change in the concentration of deoxyhemoglobin based on the intensity of the measurement light L of each wavelength received by the light receiving probe 21 . Based on the time change of each hemoglobin concentration calculated for the time change, changes in the blood flow in the brain of the subject M and the activation state of oxygen metabolism can be acquired noninvasively.
  • the main control section 9 corresponds to the brain function measuring section in the present invention.
  • the measurement unit 3 includes a plurality of light transmitting probes 19 and a plurality of light receiving probes 21.
  • a plurality of measurement channels CH By measuring the brain region 29 with a plurality of measurement channels CH using a plurality of light-transmitting probes 19 and a plurality of light-receiving probes 21, it is possible to obtain data indicating a two-dimensional distribution of brain activity.
  • Brain function measurement is started by an input operation using the operation unit 11, for example.
  • the main control section 9 controls the measurement unit control section 35 to start measurement.
  • the measurement unit control section 35 controls the light output device 17 so that the measurement light L is sequentially output to each of the light transmitting probes 19 at a predetermined cycle.
  • the measurement unit control section 35 controls the light detection unit 23 in synchronization with the output of the measurement light L from the light output device 17 . That is, the measurement unit control section 35 controls the light detection unit 23 so that the light transmission probe 19 that outputs the measurement light L and the light reception probe 21 that constitutes the measurement channel CH detect the measurement light L. FIG. Further, the measurement unit control section 35 causes the detection signal of the measurement light L detected by the light detection unit 23 to be transmitted to the main control section 9 .
  • the main control unit 9 analyzes changes in the amount of hemoglobin associated with brain activity based on the detection signal of the measurement light L, and causes the display unit 15 to display the measurement results. After the predetermined task is executed, the operator inputs an instruction to the operation unit 11 to end the brain function measurement. When an input operation to end measurement is performed, the main control section 9 controls the measurement unit control section 35 to end the measurement, and this control ends a series of operations related to brain function measurement.
  • FIG. 4 is a longitudinal sectional view of the probe unit holder 8.
  • the probe unit 7 includes a main body portion 39, a holding member 41, and a connecting member 43.
  • the probe unit holder 8 has a connection member holding portion 47 and an opening portion 49 .
  • the body portion 39 has a cylindrical configuration as a whole, and accommodates the light output device 17 and the light detection unit 23 therein. A detailed configuration of the body portion 39 will be described later.
  • the holding member 41 holds the body portion 39 .
  • the connecting member 43 is arranged on the holding member 41 and is a curved plate-like member.
  • connection member holding portion 47 is arranged on the back side of the top of the probe unit holder 8 and holds the connection member 43 . That is, the plate-shaped connection member 43 is connected to the holding member 41 at one end thereof, and is connected to the connection member holding portion 47 at the other end thereof. Therefore, the probe unit 7 and the probe unit holder 8 are connected via the connecting member 43 .
  • the opening 49 is provided in the probe unit holder 8 near the position where each probe unit 7 is arranged, and the connection member 43 is inserted through the opening 49 .
  • connection member 43 is arranged in a curved state so as to protrude in the direction indicated by symbol P1.
  • the direction indicated by P1 is the direction from the head surface 25 of the subject M toward the inner peripheral surface of the probe unit holder 8, in other words, it corresponds to the direction opposite to the head skin 25 of the subject M.
  • the direction from the inner circumferential surface of the probe unit holder 8 to the head surface 25 of the subject M is indicated by P2.
  • the direction P2 corresponds to the direction opposite to the direction P1.
  • connection member 43 is configured to be elastically deformable in directions P1 and P2. Therefore, when the subject M wears the measurement unit 3, when the head skin 25 of the subject M presses the probe unit 7 in the direction P1, the restoring force caused by the elastic deformation causes the pressing force in the direction P2 to be applied to the probe. Granted to Unit 7. That is, the probe unit 7 is pressed against the head skin 25 of the subject M by generating a pressing force in the direction P2 due to the elastic deformation of the connecting member 43 . As a result, the light-transmitting probe 19 and the light-receiving probe 21 can be reliably brought into contact with the head skin 25 .
  • the body portion 39 of the probe unit 7 includes a base member 51, a cover member 53, a central shaft 55, a rotating shaft 57, a comb member 59, and a grip portion 61. I have.
  • a base member 51 holds the light output device 17 and the light detection unit 23 .
  • a disk-shaped member is used as the base member 51 .
  • the base member 51 holds the light output device 17 and the light detection unit 23 so that the direction in which the light output device 17 and the light detection unit 23 extend is the z direction. there is At this time, the surface of the base member 51 is parallel to the xy plane.
  • the cover member 53 is a tubular member having an opening in the z1 direction, and is provided so as to cover the light output device 17 and the light detection unit 23 held by the base member 51 from the outside.
  • a groove portion 51a is formed in the peripheral portion of the base member 51, and the side of the cover member 53 having the opening is configured to fit into the groove portion 51a.
  • the central shaft 55 is erected in the center of the base member 51 .
  • the body portion 39 is configured to be rotatable around the central axis 55 .
  • the rotating shaft 57 is arranged on the side surface of the base member 51 and is configured to protrude outward from the base member 51 .
  • the rotating shaft 57 is configured to be rotatable around an axis 58 of the rotating shaft 57 .
  • the base member 51 is configured to rotate about an axis line 58 together with a rotation shaft 57 . That is, by rotating the rotating shaft 57 around the axis 58, the body portion 39 can be displaced so as to be inclined with respect to the xy plane.
  • the comb-shaped member 59 is composed of a plurality of pin-shaped members.
  • the comb-shaped member 59 is arranged so as to protrude from the base member 51 of the body portion 39 in the direction z1.
  • the comb-shaped member 59 is configured to push through the hair 26 of the subject M as shown in FIG. 3 and the like.
  • the comb member 59 is made of an elastically deformable material.
  • An example of a constituent material of the comb-shaped member 59 is an elongated rod-shaped resin that can suitably push the hair 26 aside.
  • the comb member 59 When measuring the brain function, the comb member 59 separates the hair 26 of the subject M by rotating the main body 39 around the central axis 55 .
  • the comb-shaped member 59 pushes the hair 26 aside, so that the light-sending probe 19 and the light-receiving probe 21 can reliably contact the head skin 25 without being obstructed by the hair 26 .
  • the tip of the comb-like member 59 has a rounded smooth surface. By having a rounded smooth surface, it is possible to avoid scratching the head skin 25 when the comb member 59 separates the hair 26 .
  • the gripping portion 61 is composed of two arc-shaped members, and the two members are arranged at positions facing each other with the central axis 55 as the center. By gripping the grip portion 61 , the operator can rotate the body portion 39 around the central axis 55 .
  • FIG. 7 is a cross-sectional view of the body portion 39 shown in FIG. 6 taken along the line AA.
  • the base member 51 has the same number of through-holes 51b as the light transmitting probes 19 and the light receiving probes 21, as shown in FIG.
  • An elastic member 51c is arranged on the inner peripheral surface of the through hole 51b of the base member 51. As shown in FIG.
  • Each of the light-sending probe 19 and the light-receiving probe 21 is held by the base member 51 by fitting a later-described fitting portion 71b into a through hole 51b in which the elastic member 51c is arranged.
  • the elastic member 51c is configured to be elastically deformable in the z direction inside the through hole 51b.
  • a spring or the like can be given as an example of a constituent material of the elastic member 51c.
  • a restoring force caused by the elastic deformation of the elastic member 51c imparts an urging force in the z direction to each of the light transmitting probe 19 and the light receiving probe 21 .
  • the holding member 41 of the probe unit 7 has an opening 41a as shown in FIG.
  • the holding member 41 is configured to hold the body portion 39 inside the opening portion 41a.
  • the holding member 41 has an annular shape in this embodiment, the shape of the holding member 41 can be changed as appropriate.
  • the holding member 41 is configured to be divided into a first member 63 and a second member 64 in the direction in which the body portion 39 is inserted (the z-direction in this embodiment). By dividing the holding member 41 into the first member 63 and the second member 64 , the body portion 39 is configured to be detachable from the holding member 41 .
  • the connecting member 43 is connected to the first member 63 of the holding member 41 .
  • a concave portion 65 is formed in the peripheral edge portion of the first member 63 and the second member 64 .
  • the recesses 65 provided in each are combined to form the insertion hole 66 .
  • the insertion hole 66 is configured so that the rotation shaft 57 is inserted therethrough.
  • the first member 63 and the second member 64 are configured to sandwich and hold the rotating shaft 57 in the direction in which the body portion 39 is inserted.
  • the rotating shaft 57 can be rotated around the axis 58 in a state where the holding member 41 holds the body portion 39 .
  • the body part 39 can be moved in a direction inclined with respect to the xy plane.
  • the direction in which the main body portion 39 is tilted by the rotation of the rotation shaft 57 is indicated by the symbol F in FIG.
  • FIG. 15 is a longitudinal sectional view of the photodetector unit 23, the photodetector 31 and the flexible substrate 73 are exceptionally cut away in sectional view.
  • the storage container 71 has a structure in which a body portion 71a and a fitting portion 71b are connected.
  • the fitting portion 71b is a tubular member having a diameter smaller than that of the body portion 71a.
  • the fitting portion 71b is fitted into the through hole 51b of the base member 51, and the lower surface of the body portion 71a is in contact with the upper surface of the base member 51, so that the base member 51 stably holds the container 71 of the light detection unit 23. Hold.
  • FIG. 10 is a vertical cross-sectional view of the photodetector unit 23.
  • the photodetector 31 and the flexible substrate 73 are shown in a side view.
  • the flexible substrate 73 is arranged on the photodetector 31 while being deformed into a cylindrical shape along the inner surface of the container 71 .
  • a through hole 72 is formed in the lower portion of the fitting portion 71b.
  • the container 71 holds the light receiving probe 21 by inserting the light receiving probe 21 into the through hole 72 .
  • the light receiving probe 21 is inserted through the through hole 72 of the fitting portion 71b so as to come into contact with the photodetector 31. As shown in FIG. That is, in the photodetection unit 23 , the light receiving probe 21 is in contact with the photodetector 31 , and the photodetector 31 is in contact with the flexible substrate 73 .
  • FIG. 11 is a plan view of the flexible substrate 73 in the initial state.
  • the flexible substrate 73 has a flat plate shape as a whole.
  • the flexible substrate 73 is made of a flexible material, and each portion of the flexible substrate 73 is configured to be bendable and deformable.
  • the flexible substrate 73 has a first portion 75 , a second portion 77 and a connecting portion 79 .
  • the first portion 75 is a portion connected to the photodetector 31 and has a mounting portion 75a.
  • the mounting portion 75a is a portion to which the wiring 81 included in the photodetector 31 is soldered.
  • the photodetector 31 is mounted on the first portion 75 of the flexible substrate 73 by soldering the wiring 81 to the mounting portion 75a.
  • the first portion 75 constitutes the bottom portion of the flexible substrate 73 which has a tubular shape.
  • the first portion 75 is configured to be shaped and sized so that it can be placed on the inner bottom surface of the container 71 . In Example 1, it is assumed that the first portion 75 has a disk shape.
  • the A/D converter 33, the transfer circuit 83, and the connector section 85 are mounted on the surface (circuit mounting surface) of the second portion 77.
  • FIG. When the flexible substrate 73 is deformed into a tubular shape, the second portion 77 constitutes the side peripheral portion of the flexible substrate 73 which is tubular. In the first embodiment, it is assumed that the second portion 77 has a rectangular shape extending in the y direction.
  • the connecting portion 79 connects the first portion 75 and the second portion 77 .
  • the connecting portion 79 has a rectangular shape extending in the x direction.
  • the shapes of the first portion 75 , the second portion 77 , and the connecting portion 79 may be changed as appropriate according to the shape of the inner surface of the container 71 .
  • the second portion 77 also includes a wiring 82 for connecting each circuit and a signal processing circuit for processing the detection signal of the measurement light L as appropriate.
  • the signal processing circuit is an amplifier circuit that amplifies the detection signal of the measurement light L, or the like.
  • the transfer circuit 83 is a data transfer circuit that transfers the detection signal of the measurement light L digitally converted by the A/D converter 33 .
  • a serial peripheral interface SPI: Serial Peripheral Interface
  • the connector section 85 is a device that connects the measurement unit control section 35 and the flexible substrate 73 with the cable 18 .
  • a detection signal of the measurement light L detected by the photodetector 31 is transmitted to the flexible substrate 73 and then quickly converted into a digital signal by the A/D converter 33 .
  • the digital-converted detection signal is transmitted to the main unit 5 via the transfer circuit 83 , the connector section 85 and the cable 6 .
  • FIG. 12 shows flexible substrate 73 with second portion 77 in an upright position.
  • the second part 77 After placing the second part 77 in the upright state, the second part 77 is deformed so that both wings (both ends in the longitudinal direction) of the second part 77 are curved inward. By curving both wings of the second portion 77, the second portion 77 is deformed into a cylindrical shape as shown in FIG. By deforming the second portion 77 into a tubular shape, the flexible substrate 73 is deformed into a tubular body having the opening portion 76 with the first portion 75 as the bottom surface and the second portion 77 as the side surface.
  • the circuit mounting surface on which the A/D converter 33 and the like are mounted is configured to be the inner peripheral surface of the cylindrical body made up of the second portion 77 . Therefore, the outer peripheral surface of the tubular body composed of the second portion 77 is a flat surface on which no circuit is mounted.
  • the flexible substrate 73 deformed into a cylindrical body has an opening 76 on the z2 direction side. Therefore, the cable 18 can be connected to the connector portion 85 from the outside of the flexible substrate 73 by passing through the opening portion 76 .
  • the light detection unit 23 is formed by combining the light receiving probe 21, the photodetector 31, the flexible substrate 73, and the container 71, as shown in FIG. First, the other end side of the light receiving probe 21 is inserted from above the container 71 into the through hole 72 of the fitting portion 71 b of the container 71 . Since the diameter of one end side of the light receiving probe 21 is larger than the diameter of the through hole 72, as shown in FIG. . Therefore, the light-receiving probe 21 is stably held by the container 71 .
  • the photodetector 31 After combining the light receiving probe 21 and the storage container 71, the photodetector 31 is mounted on the inner bottom surface of the storage container 71 extending in the z direction. The mounted photodetector 31 is connected to one end side of the light receiving probe 21 projecting upward from the through hole 72 . After the photodetector 31 is mounted on the inner bottom surface of the container 71 extending in the z-direction, the flexible substrate 73 deformed into a cylindrical body is accommodated inside the container 71 from the z-direction. At this time, the photodetector 31 and the flexible substrate 73 are connected by soldering the wiring 81 provided in the photodetector 31 and the mounting portion 75 a of the first portion 75 .
  • a restoring force G acts to restore the plate shape. That is, in a state in which the flexible substrate 73 deformed into a cylindrical body is accommodated inside the container 71 , a restoring force G acts on the inner surface of the container 71 from the flexible substrate 73 .
  • the restoring force G acts in a direction to press the inner surface of the container 71 outward. Therefore, due to the action of the restoring force G, the flexible substrate 73 can be stably held inside the container 71 without using a fixing tool such as a screw for the flexible substrate 73 .
  • the photodetection unit 23 includes a photodetector 31 that detects the measurement light L and transmits a detection signal, and an A/D converter 33 that converts the detection signal of the measurement light L from an analog signal to a digital signal. It has a configuration in which the flexible substrate 73 provided therein is housed inside the housing container 71 . Therefore, since the photodetector 31 and the A/D converter 33 in the photodetection unit 23 are in close proximity, the detection signal of the measurement light L received by the light receiving probe 21 can be rapidly converted into a digital signal.
  • the distance over which the measurement light L is transmitted before digital conversion is performed can be greatly shortened, reduction in the measurement light L due to transmission of the measurement light L in the form of an analog signal can be avoided. As a result, the S/N ratio of the signal detected by the photodetection unit 23 can be improved.
  • the measurement unit attached to the head of the subject M is required to be small and lightweight. Therefore, in the brain function measuring device 1 according to the present invention, by deforming the flexible substrate 73 into a cylindrical body, the area occupied by the flexible substrate 73, which was flat in the initial state, can be greatly reduced. That is, since the flexible substrate 73 having the A/D converter 33 can be accommodated inside the photodetection unit 23 while maintaining the size of the photodetection unit 23 small, the S/N ratio in the photodetection unit 23 can be improved and the photodetection can be performed. Both miniaturization of the unit 23 can be realized.
  • the storage container 71 has a cylindrical shape extending in the z direction, and stores the photodetector 31 and the flexible substrate 73 deformed into a cylindrical body extending in the z direction while being connected in the z direction.
  • the photodetection unit 23 as a whole has a shape extending in the z-direction, so that the area occupied by the flexible substrate 73 and the photodetection unit 23 in the xy plane can be reduced.
  • the number of measurement channels CH for measuring the brain function of the subject M in the brain function measuring device 1 is increased. be able to.
  • the flexible substrate 73 on which the A/D converter 33 is mounted is deformed into a small size and accommodated in the accommodation container 71 of the photodetection unit 23 . Therefore, in the brain function measuring apparatus 1 , the photodetector 31 and the A/D converter 33 can be arranged on the side of the measurement unit 3 attached to the head of the subject M, not on the side of the main unit 5 .
  • the brain function measuring device 1 in the brain function measuring device 1, a series of signal processing such as detection of the measurement light L, amplification of the light detection signal, and digital conversion of the light detection signal can be executed on the measurement unit 3 side. Therefore, unlike the conventional device in which the photodetection signal is digitally converted on the main unit side, the brain function measuring device 1 according to the first embodiment does not need to connect the measurement unit 3 and the main unit 5 with an optical fiber. That is, since a general electric signal transmission cable can be used as the cable 6, it is possible to avoid an increase in cost and a decrease in the durability of the signal transmission member due to the use of a large amount of optical fibers.
  • FIG. The second embodiment differs from the first embodiment in the configuration of the flexible substrate 73 . Accordingly, the flexible substrate 73 according to the second embodiment is distinguished from the flexible substrate 73 according to the first embodiment by attaching a reference numeral 73A. On the other hand, the same reference numerals are assigned to the configurations common to the first embodiment, and the description thereof is omitted. Similar to FIG. 15, FIG. 19 is a partially cutaway cross-sectional view of the photodetector 31 and the flexible substrate 73A.
  • FIG. 16 is a plan view of a flexible substrate 73A according to Example 2.
  • the flexible substrate 73A has a cross-shaped plate shape as a whole.
  • the flexible substrate 73A includes a third portion 91 and a connecting portion 93 in addition to a first portion 75, a second portion 77 and a connecting portion 79.
  • the first portion 75 has a mounting portion 75 a connected to the photodetector 31 .
  • the second part 77 has a rectangular shape extending in the y-direction, and has the A/D converter 33 and the transfer circuit 83 on the top side.
  • the third portion 91 has a rectangular shape and has a connector portion 85 on the lower surface side.
  • the connecting portion 93 connects the second portion 77 and the third portion 91 .
  • FIG. 17 shows the flexible substrate 73A with the second portion 77 and the third portion 91 in an upright state.
  • the second part 77 is deformed so that both wings of the second part 77 are curved inward in the same manner as in the first embodiment.
  • the second portion 77 is deformed into a cylindrical shape as shown in FIG.
  • the flexible substrate 73A is deformed into a cylindrical body having the opening portion 76 with the first portion 75 as the bottom surface and the second portion 77 as the side surface.
  • the third portion 91 is arranged above the second portion 77 deformed into a tubular shape. Further, by bending the connecting portion 93, the third portion 91 has a shape protruding from the side peripheral portion to the central portion of the flexible substrate 73A.
  • the flexible substrate 73A After deforming the flexible substrate 73A into a cylindrical body, the light receiving probe 21, the photodetector 31, the flexible substrate 73A and the container 71 are combined to form the photodetection unit 23 as shown in FIG. Since the process of combining is the same as that of the first embodiment, detailed description is omitted. As described above, even with the configuration of the flexible substrate 73A as shown in FIG. 16, the flexible substrate 73A is deformed from the initial flat plate shape into a cylindrical shape, as in the first embodiment, to form a compact shape. The flexible substrate 73 ⁇ /b>A that has been deformed into a shape can be accommodated in the accommodation container 71 .
  • FIG. 20 is a plan view of a flexible substrate 73B according to Example 3.
  • FIG. 22 is a cross-sectional view of the photodetector unit 23, the photodetector 31 is exceptionally a partially cutaway cross-sectional view.
  • a flexible board 73B includes a first portion 75, a second portion 77, a third portion 103, a fourth portion 105, a connecting portion 79, a connecting portion 109, and a connecting portion 111. ing.
  • the first portion 75 has a mounting portion 75 a connected to the photodetector 31 .
  • the second part 77 has the A/D converter 33 on the top side.
  • the third portion 103 has a transfer circuit 83 on the upper surface side.
  • Example 3 the first portion 75, the second portion 77, and the third portion 103 are all disk-shaped.
  • the fourth portion 105 has a rectangular shape and has a connector portion 85 on the upper surface side.
  • the connecting portion 79 connects the first portion 75 and the second portion 77 .
  • the connecting portion 109 connects the second portion 77 and the third portion 103 .
  • the connecting portion 111 connects the third portion 103 and the fourth portion 105 .
  • the second part 77 and the third part 103 are configured to have the same shape and size as the inner bottom surface of the container 71, like the first part 75.
  • a gap is generated between the flexible substrate 73B and the container 71. can be reduced. Therefore, the flexible substrate 73B can be held inside the container 71 more stably.
  • the flexible substrate 73B having a flat plate shape as shown in FIG. 20 is deformed by bending the connection portion 79 so that the first portion 75 and the second portion 77 overlap in the z-direction.
  • the connecting portion 109 the flexible substrate 73B is deformed so that the second portion 77 and the third portion 103 overlap in the z direction.
  • the fourth portion 105 is made to stand above the central portion of the third portion 103 .
  • FIG. 21 shows the configuration of the flexible substrate 73B deformed into a columnar shape by bending the connecting portions 79-111.
  • the disc-shaped first portion 75, second portion 77, and third portion 103 overlap in the z-direction, so that the flexible substrate 73B is folded and deformed into a cylindrical shape as a whole.
  • the flexible substrate 73B as shown in FIG. 20 can be transformed from the initial flat plate shape into a columnar shape, and the flexible substrate 73B deformed into a compact shape can be accommodated in the container 71. can.
  • the flexible substrate 73B is bent at the three connecting portions 79, 109, and 111, but by increasing the number of portions to be bent and deformed, the flexible substrate 73B can be deformed into a smaller compressed shape.
  • the photodetection unit 23 includes a photodetector 31 that detects light, a cylindrical container 71 that accommodates the photodetector 31, and an optical signal detected by the photodetector 31. and a flexible substrate 73 on which a signal processing circuit including an A/D converter 33 for converting from an analog signal to a digital signal is mounted. .
  • the signal processing circuit including the A/D converter 33 is mounted on the flexible substrate 73, the flexible substrate 73 is bent and deformed to have a smaller shape. can be done.
  • Both the photodetector 31 and the A/D converter 33 are arranged inside the container 71 by placing the flexible substrate 73 inside the container 71 while being bent and deformed. That is, since the photodetector 31 and the A/D converter 33 can be arranged closer to each other, the optical signal detected by the photodetector 31 can be quickly converted from an analog signal to a digital signal. Therefore, since it is possible to avoid a decrease in optical signal intensity due to transmission of the optical signal in the form of an analog signal, it is possible to improve the S/N ratio of the optical signal while downsizing the photodetector unit 23 .
  • the flexible substrate 73 has a first portion 75 connected to the photodetector 31 and a signal processing circuit including the A/D converter 33 mounted thereon. and a connecting portion 79 connecting the first portion 75 and the second portion 77.
  • the connecting portion 79 is bent so that the first portion 75 and the second portion 77 are orthogonal to each other, and the second portion By bending and deforming the portion 77 , the flexible substrate 73 is deformed into a cylindrical shape along the inner surface of the container 71 .
  • the connecting portion 79 connecting the first portion 75 and the second portion 77 constituting the flexible substrate 73 is bent, and the second portion 77 is bent and deformed.
  • the flexible substrate 73 can be deformed into a cylindrical shape along the inner surface of the container 71 . Therefore, the flat flexible substrate 73 can be deformed into a smaller cylindrical shape.
  • a pressing force G is applied from the flexible substrate 73 to the inner surface of the container 71 due to the restoring force that causes the second portion 77 to return to its original shape. Since the flexible substrate 73 is held inside the container 71 by the pressing force G, the flexible substrate 73 can be stably held inside the container 71 without using fixing tools such as screws.
  • the flexible substrate 73B has a first portion 75 connected to the photodetector 31 and a signal processing circuit including the A/D converter 33 mounted thereon. and a connecting portion 79 connecting the first portion 75 and the second portion 77, and by bending the connecting portion so that the first portion 75 and the second portion 77 overlap each other, the flexible The substrate 73B is deformed into a folded state inside the container 71 .
  • the first portion 75 and the second portion 77 are separated by bending the connecting portion 79 that connects the first portion 75 and the second portion 77 constituting the flexible substrate 73B. are superimposed on each other, the flexible substrate 73B can be deformed into a folded state inside the container 71 . Therefore, the flat flexible substrate 73B can be deformed into a smaller shape. Therefore, the volume occupied by the flexible substrate 73B can be further reduced, so that the light detection unit 23 can be further miniaturized.
  • the brain function measuring apparatus 1 includes the light detection unit 23 according to any one of the first to third items and the light irradiation unit for irradiating the brain of the subject M with the measurement light L. 20 , and is electrically connected to a measurement unit 3 attached to the head of the subject M, and is electrically connected to the measurement unit 3 . and a main unit 5 having a main control unit 9 for acquiring measurement data on the brain activity of the specimen M.
  • the substrate is bent and deformed so that it can be arranged inside the container provided with the photodetection unit. can do. Therefore, the photodetection unit can be miniaturized, so that the photodetection unit can be arranged on the side of the measurement unit attached to the head of the subject, not on the side of the main unit.
  • the measurement light L emitted from the light irradiation unit 20 and transmitted through the brain of the subject M is detected by the photodetector 31 provided in the photodetection unit 23, and then promptly detected by the A/D converter 33. is converted into a digital signal. Therefore, it is possible to avoid reduction in optical signal intensity due to transmission of the optical signal in the form of an analog signal, thereby improving the S/N ratio of the optical signal. As a result, the accuracy of brain function measurement data can be further improved.
  • a laptop computer is used as the main unit 5, but it is not limited to this.
  • Other examples of the main unit 5 include a desktop computer or a trolley containing a computer.
  • the measurement unit 3 and the main unit 5 are connected by the cable 6, and brain function measurement data is transmitted from the measurement unit 3 to the main unit 5 via the cable 6.
  • the configuration for connecting the measurement unit 3 and the main unit 5 is not limited to a wired connection, and the measurement unit 3 and the main unit 5 may be connected wirelessly.
  • the detection signal of the measurement light L is rapidly converted into a digital signal by the photodetection unit 23 arranged on the side of the measurement unit 3, the detection signal of the digitally converted measurement light L is wirelessly transmitted to the main unit. 5 can be sent.
  • the measurement unit 3 and the main unit 5 it is possible to expand the actionable range of the subject M when measuring brain function.
  • the activity status of brain function can be measured in various situations.
  • Example 3 when the flexible substrate 73 is deformed into a columnar shape, the first portion 75, the second portion 77, and the third portion 103 are superimposed so as to be parallel to each other. Not limited. That is, as shown in FIG. 23, the first portion 75 is arranged parallel to the inner bottom surface (here, the xy plane) of the container 71, while the second portion 77 and the third portion 103 are arranged in the container 71.
  • the connecting portion 79 and the connecting portion 109 may be bent so as to be inclined with respect to the inner bottom surface.
  • the second portion 77 and the third portion 103 are not limited to the configuration having the same size as the first portion 75, and the second portion 77 and the third portion 103 are smaller in size than the first portion 75. It may be configured as Also, the second portion 77 and the third portion 103 may have different shapes from the first portion 75 .

Abstract

A light detection unit (23) is provided with: a light detector (31) for detecting light; a cylindrical storage container (71) for storing the light detector (31); and a flexible substrate (73) having a signal processing circuit mounted thereon, the signal processing circuit including an A/D converter (33) for converting an optical signal detected by the light detector (31) from an analog signal to a digital signal. The flexible substrate (73) is placed within the storage container (71) in a bent and deformed state.

Description

光検出ユニットおよびこれを用いた脳機能計測装置Optical detection unit and brain function measuring device using the same
 本発明は、光検出ユニットおよびこれを用いた脳機能計測装置に係り、特に被検体の頭部に配設される光検出ユニットを備える脳機能計測装置に関する。 The present invention relates to a photodetection unit and a brain function measurement device using the same, and more particularly to a brain function measurement device provided with a photodetection unit arranged on the head of a subject.
 従来、被検体の頭部に光を照射することにより脳の活動状況を観察する脳機能計測装置が知られている(例えば、特許文献1)。このような脳機能計測装置は、被検体の頭部に装着される計測ユニットと、光ファイバを介して計測ユニットと接続されている本体ユニットとを備えている。 Conventionally, there is known a brain function measuring device that observes the state of brain activity by irradiating the subject's head with light (for example, Patent Document 1). Such a brain function measuring device includes a measuring unit attached to the head of a subject, and a main unit connected to the measuring unit via an optical fiber.
 計測ユニットは、被検体の脳に複数波長の近赤外光を照射する光照射ユニットと、脳内を透過して脳から放出された近赤外光を受光する受光ユニットとを備えている。光照射ユニットが照射した光の強度と光検出ユニットが検出した光の強度とを比較し、光の強度変化を測定することによって脳血流の活動状況を計測できる。 The measurement unit includes a light irradiation unit that irradiates the subject's brain with near-infrared light of multiple wavelengths, and a light-receiving unit that receives the near-infrared light emitted from the brain after passing through the brain. By comparing the intensity of the light emitted by the light irradiation unit and the intensity of the light detected by the light detection unit and measuring the intensity change of the light, the cerebral blood flow activity can be measured.
 本体ユニットは、発光ダイオードを例とする光源と、光検出ユニットと、各構成を統括制御する主制御部とを備えている。光検出ユニットは、光を検出する光検出器と、検出された光信号を増幅する増幅器と、増幅された光信号をデジタル信号へと変換するA/D変換器を備えている。一般的に、増幅器およびA/D変換器はプリント基板に配設される。 The main unit includes a light source, such as a light-emitting diode, a light detection unit, and a main control section that controls each component. The photodetection unit includes a photodetector for detecting light, an amplifier for amplifying the detected optical signal, and an A/D converter for converting the amplified optical signal into a digital signal. Typically, amplifiers and A/D converters are mounted on printed circuit boards.
 光源は光ファイバを介して送光プローブを例とする光照射機構と接続されており、光検出器は光ファイバを介して受光ユニットと接続されている。すなわち、光源から出射された近赤外光は光ファイバを介して計測ユニット側へと送られ、光照射機構から被検体の脳へと照射される。被検体の脳から放出された近赤外光は計測ユニットが備える受光ユニットで受光され、受光された近赤外光は光ファイバを介して本体ユニット側へ送られる。本体ユニット側へ送られた近赤外光は光検出器によって検出される。すなわち、光信号はプリント基板において増幅器によって増幅され、さらにA/D変換器によってアナログ信号からデジタル信号へと変換される。デジタル変換された光信号を解析することにより、脳の活動状況に関する情報を取得できる。 The light source is connected via an optical fiber to a light irradiation mechanism such as a light transmitting probe, and the photodetector is connected via an optical fiber to a light receiving unit. That is, the near-infrared light emitted from the light source is sent to the measurement unit side via the optical fiber, and is irradiated to the subject's brain from the light irradiation mechanism. Near-infrared light emitted from the subject's brain is received by a light receiving unit provided in the measurement unit, and the received near-infrared light is sent to the main unit side via an optical fiber. The near-infrared light sent to the main unit side is detected by the photodetector. That is, an optical signal is amplified by an amplifier on a printed circuit board and then converted from an analog signal to a digital signal by an A/D converter. Information on brain activity can be obtained by analyzing the digitally converted optical signal.
特開2017-080479号公報JP 2017-080479 A
 しかしながら、このような構成を有する従来例の場合には、次のような問題がある。 However, the conventional example having such a configuration has the following problems.
 従来の構成では、計測ユニット側で受光した光を本体ユニット側へ送信した後、アナログ信号である光信号に対して増幅処理およびデジタル変換処理を行う。そのため、本体ユニット側へ送信する間に光の低減が発生する。光信号の強度が低減するとノイズの比率が高くなるので、結果としてS/N比(信号雑音比)が低下するという問題が懸念される。また、計測ユニットから本体ユニットへ光を送信するためには数m程度の長さの光ファイバを必要とするので、コストの上昇を招く。また光ファイバは一般的なケーブルに比べて耐久性が低いので、脳機能計測装置を慎重に取り扱う必要がある。 In the conventional configuration, after the light received by the measurement unit side is transmitted to the main unit side, amplification processing and digital conversion processing are performed on the optical signal, which is an analog signal. Therefore, light reduction occurs during transmission to the main unit side. Since the noise ratio increases as the intensity of the optical signal decreases, there is a concern that the S/N ratio (signal-to-noise ratio) will decrease as a result. In addition, since an optical fiber with a length of several meters is required to transmit light from the measurement unit to the main unit, the cost is increased. Also, since optical fibers are less durable than general cables, it is necessary to handle brain function measuring devices with care.
 本発明は、このような事情に鑑みてなされたものであって、光信号のS/N比を向上できる光検出ユニットおよびこれを備える脳機能計測装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a photodetection unit capable of improving the S/N ratio of an optical signal and a brain function measuring device provided with the same.
 本発明は、このような目的を達成するために、次のような構成をとる。
 すなわち本発明に係る光検出ユニットは、光を検出する光検出器と、前記光検出器を収容する筒状の収容容器と、前記光検出器が検出した光信号をアナログ信号からデジタル信号へと変換するA/D変換器を含む信号処理回路を搭載するフレキシブル基板と、を備え、前記フレキシブル基板は曲げ変形された状態で前記収容容器の内部に配置されるものである。
In order to achieve these objects, the present invention has the following configuration.
That is, the photodetection unit according to the present invention includes a photodetector for detecting light, a cylindrical housing container for housing the photodetector, and an optical signal detected by the photodetector for converting from an analog signal to a digital signal. a flexible substrate on which a signal processing circuit including an A/D converter for conversion is mounted, and the flexible substrate is arranged inside the container in a state of being bent and deformed.
 当該構成において、A/D変換器を含む信号処理回路はフレキシブル基板に搭載されているので、当該フレキシブル基板を曲げ変形させてより小さい形状とすることができる。そしてフレキシブル基板を曲げ変形させた状態で収容容器の内部に配置させることにより、光検出器とA/D変換器との両方を収容容器の内部に配置される。すなわち、光検出器とA/D変換器とをより近い位置に配置できるので、光検出器が検出した光信号を速やかにアナログ信号からデジタル信号へと変換できる。従って、光信号をアナログ信号の状態で送信することに起因する光信号強度の低減を回避できるので、光検出ユニットを小型化しつつ光信号のS/N比を向上させることができる。 In this configuration, since the signal processing circuit including the A/D converter is mounted on the flexible substrate, the flexible substrate can be bent and deformed to have a smaller shape. Both the photodetector and the A/D converter are arranged inside the housing container by placing the flexible substrate in a bent state inside the housing container. That is, since the photodetector and the A/D converter can be arranged closer to each other, the optical signal detected by the photodetector can be quickly converted from an analog signal to a digital signal. Therefore, since it is possible to avoid a decrease in optical signal intensity due to transmission of the optical signal in the form of an analog signal, it is possible to improve the S/N ratio of the optical signal while downsizing the photodetector unit.
 また、上述した発明において、前記フレキシブル基板は、前記光検出器と接続される第1部位と、前記A/D変換器を含む信号処理回路が搭載される第2部位と、前記第1部位と前記第2部位とを連結させる連結部位と、を備え、前記第1部位および前記第2部位が直交するように前記連結部位を折り曲げるとともに前記第2部位を曲げ変形させることによって、前記フレキシブル基板は前記収容容器の内面に沿った筒状に変形されることが好ましい。 In the above-described invention, the flexible substrate includes a first portion connected to the photodetector, a second portion mounted with a signal processing circuit including the A/D converter, and the first portion. a connecting portion that connects the second portion to the flexible substrate by bending the connecting portion so that the first portion and the second portion are perpendicular to each other and bending and deforming the second portion; It is preferable that the container is deformed into a cylindrical shape along the inner surface of the container.
 [作用・効果]本発明に係る光検出ユニットによれば、フレキシブル基板を構成する第1部位と第2部位とを連結する連結部位を折り曲げるとともに、第2部位を曲げ変形させることによって、フレキシブル基板を収容容器の内面に沿った筒状に変形できる。そのため、平板状となっているフレキシブル基板をより小さい形状である筒状へと変形できる。また、このような構成により、第2部位が元の形状に戻ろうとする復元力に起因して、フレキシブル基板から収容容器の内面に対して押圧力が作用する。当該押圧力によってフレキシブル基板は収容容器の内部で保持されるので、ネジなどの固定具を用いることなくフレキシブル基板を収容容器の内部で安定に保持させることができる。 [Action and Effect] According to the photodetector unit of the present invention, the connecting portion that connects the first portion and the second portion constituting the flexible substrate is bent, and the second portion is bent and deformed so that the flexible substrate is bent. can be deformed into a cylindrical shape along the inner surface of the container. Therefore, the flat flexible substrate can be deformed into a smaller cylindrical shape. Further, with such a configuration, due to the restoring force that causes the second part to return to its original shape, the flexible substrate exerts a pressing force on the inner surface of the container. Since the flexible substrate is held inside the container by the pressing force, the flexible substrate can be stably held inside the container without using fixing tools such as screws.
 また、上述した発明において、前記フレキシブル基板は、前記光検出器と接続される第1部位と、前記A/D変換器を含む信号処理回路が搭載される第2部位と、前記第1部位と前記第2部位とを連結させる連結部位と、を備え、前記第1部位および前記第2部位が重畳するように前記連結部位を折り曲げることによって、前記フレキシブル基板は前記収容容器の内部で折り畳んだ状態に変形されることが好ましい。 In the above-described invention, the flexible substrate includes a first portion connected to the photodetector, a second portion mounted with a signal processing circuit including the A/D converter, and the first portion. a connecting part for connecting the second part, wherein the flexible substrate is folded inside the container by bending the connecting part so that the first part and the second part overlap each other. is preferably transformed into
 [作用・効果]本発明に係る光検出ユニットによれば、フレキシブル基板を構成する第1部位と第2部位とを連結する連結部位を折り曲げることにより、第1部位および第2部位が重畳するので、フレキシブル基板を収容容器の内部で折り畳んだ状態に変形できる。そのため、平板状となっているフレキシブル基板をより小さい形状へと変形できる。従って、フレキシブル基板が占める容積をより低減できるので光検出ユニットをさらに小型化することができる。 [Action and Effect] According to the photodetection unit of the present invention, the first and second portions of the flexible substrate are overlapped by bending the connection portion that connects the first and second portions. , the flexible substrate can be transformed into a folded state inside the container. Therefore, the flat flexible substrate can be deformed into a smaller shape. Therefore, the volume occupied by the flexible substrate can be further reduced, so that the light detection unit can be further miniaturized.
 また、本発明はこのような目的を達成するために、次のような構成をとってもよい。
 すなわち本発明に係る脳機能計測装置は、上記に記載の光検出ユニットおよび前記被検体の脳に光を照射する光照射ユニットを有しており、前記被検体の頭部に装着される計測ユニットと、前記計測ユニットと電気的に接続されており、前記A/D変換器によってデジタル変換された前記光信号に基づいて前記被検体の脳活動に関する計測データを取得する脳機能計測部を有する本体ユニットと、を備えるものである。
Moreover, in order to achieve such an object, the present invention may adopt the following configuration.
That is, a brain function measuring apparatus according to the present invention has the above-described light detection unit and a light irradiation unit for irradiating light onto the brain of the subject, and the measurement unit is mounted on the head of the subject. and a main body electrically connected to the measurement unit and having a brain function measurement unit that acquires measurement data relating to brain activity of the subject based on the optical signal digitally converted by the A/D converter. and a unit.
 [作用・効果]本発明に係る脳機能計測装置によれば、A/D変換器を搭載する基板をフレキシブル基板とすることによって、光検出ユニットが備える収容容器の内部に配置できるように基板を曲げ変形することができる。そのため、光検出ユニットを小型化できるので光検出ユニットを本体ユニット側ではなく被検体の頭部に装着される計測ユニット側に配設できる。 [Action and Effect] According to the brain function measuring apparatus of the present invention, the board on which the A/D converter is mounted is a flexible board so that the board can be arranged inside the container provided with the photodetection unit. It can be bent and deformed. Therefore, the photodetection unit can be miniaturized, so that the photodetection unit can be arranged on the side of the measurement unit attached to the head of the subject, not on the side of the main unit.
 このような構成により、光照射ユニットから照射されて被検体の脳を透過した光は、光検出ユニットが備える光検出器で検出された後、速やかにA/D変換器でデジタル信号に変換される。従って、光信号をアナログ信号の状態で送信することに起因する光信号強度の低減を回避できるので、光信号のS/N比を向上させることができる。その結果、脳機能計測データの精度をさらに向上できる。 With such a configuration, the light irradiated from the light irradiation unit and transmitted through the subject's brain is detected by the photodetector provided in the photodetection unit, and then quickly converted into a digital signal by the A/D converter. be. Therefore, it is possible to avoid reduction in optical signal intensity due to transmission of the optical signal in the form of an analog signal, thereby improving the S/N ratio of the optical signal. As a result, the accuracy of brain function measurement data can be further improved.
 本発明に係る光検出ユニットおよびこれを備える脳機能計測装置によれば、A/D変換器を含む信号処理回路はフレキシブル基板に搭載されているので、当該フレキシブル基板を曲げ変形させてより小さい形状とすることができる。そしてフレキシブル基板を曲げ変形させた状態で収容容器の内部に配置させることにより、光検出器とA/D変換器との両方を収容容器の内部に配置される。すなわち、光検出器とA/D変換器とをより近い位置に配置できるので、光検出器が検出した光信号を速やかにアナログ信号からデジタル信号へと変換できる。従って、光信号をアナログ信号の状態で送信することに起因する光信号強度の低減を回避できるので、光検出ユニットを小型化しつつ光検出ユニットに検出される光信号のS/N比を向上させることができる。 According to the photodetection unit and the brain function measuring device having the same according to the present invention, the signal processing circuit including the A/D converter is mounted on the flexible substrate. can be Both the photodetector and the A/D converter are arranged inside the housing container by placing the flexible substrate in a bent state inside the housing container. That is, since the photodetector and the A/D converter can be arranged closer to each other, the optical signal detected by the photodetector can be quickly converted from an analog signal to a digital signal. Therefore, since it is possible to avoid a reduction in optical signal intensity caused by transmitting the optical signal in the state of an analog signal, it is possible to improve the S/N ratio of the optical signal detected by the optical detection unit while downsizing the optical detection unit. be able to.
実施例1に係る脳機能計測装置の全体構成を説明する斜視図である。1 is a perspective view illustrating the overall configuration of a brain function measuring device according to Example 1. FIG. 実施例1に係る脳機能計測装置の構成を説明する機能ブロック図である。1 is a functional block diagram illustrating the configuration of a brain function measuring device according to Example 1; FIG. 実施例1に係る一対の送光プローブおよび受光プローブと、脳の測定部位との位置関係を示す断面図である。FIG. 2 is a cross-sectional view showing the positional relationship between a pair of light-transmitting probe and light-receiving probe according to Example 1 and the measurement site of the brain. 実施例1に係るプローブユニットホルダの構成を説明する断面図である。4 is a cross-sectional view for explaining the configuration of the probe unit holder according to Example 1. FIG. 実施例1に係るプローブユニットの本体部について、カバー部材を装着した状態を示す斜視図である。4 is a perspective view showing a state in which a cover member is attached to the main body of the probe unit according to the first embodiment; FIG. 実施例1に係るプローブユニットの本体部について、カバー部材を外した状態を示す斜視図である。4 is a perspective view showing a state in which a cover member is removed from the main body of the probe unit according to Example 1. FIG. 実施例1に係るプローブユニットの本体部における、図6のA-A線に沿った断面図である。FIG. 7 is a cross-sectional view along line AA in FIG. 6 in the main body of the probe unit according to Example 1; 実施例1に係るプローブユニットの保持部材の構成を説明する斜視図である。FIG. 4 is a perspective view illustrating the configuration of a holding member of the probe unit according to Example 1; 実施例1に係るプローブユニットの保持部材および本体部を組み合わせる状態を説明する斜視図である。FIG. 4 is a perspective view illustrating a state in which a holding member and a main body of the probe unit according to Example 1 are combined; 実施例1に係る光検出ユニットの縦断面図である。2 is a vertical cross-sectional view of a photodetection unit according to Example 1. FIG. 実施例1に係るフレキシブル基板の平面図である。1 is a plan view of a flexible substrate according to Example 1. FIG. 実施例1に係るフレキシブル基板について、第2部位を起立させた状態を示す斜視図である。FIG. 4 is a perspective view showing a state in which a second portion of the flexible substrate according to Example 1 is erected; 実施例1に係るフレキシブル基板について、第2部位を筒状に湾曲させた状態を示す斜視図である。FIG. 5 is a perspective view showing a state in which a second portion of the flexible substrate according to Example 1 is curved into a tubular shape; 実施例1に係る光検出ユニットを組み立てる状態を示す斜視図である。4 is a perspective view showing a state in which the photodetection unit according to the first embodiment is assembled; FIG. 実施例1に係る光検出ユニットの縦断面図である。2 is a vertical cross-sectional view of a photodetection unit according to Example 1. FIG. 実施例2に係るフレキシブル基板の平面図である。FIG. 10 is a plan view of a flexible substrate according to Example 2; 実施例2に係るフレキシブル基板について、第2部位を起立させた状態を示す斜視図である。FIG. 11 is a perspective view showing a state in which the second portion of the flexible substrate according to Example 2 is erected; 実施例2に係るフレキシブル基板について、第2部位を筒状に湾曲させた状態を示す斜視図である。FIG. 10 is a perspective view showing a state in which the second portion of the flexible substrate according to Example 2 is curved into a tubular shape; 実施例2に係る光検出ユニットの縦断面図である。FIG. 10 is a vertical cross-sectional view of a photodetection unit according to Example 2; 実施例3に係るフレキシブル基板の平面図である。FIG. 11 is a plan view of a flexible substrate according to Example 3; 実施例2に係るフレキシブル基板について、各連結部位を折り曲げることによってフレキシブル基板を全体として柱状に変形させた状態を示す斜視図である。FIG. 11 is a perspective view showing a state in which the flexible board according to Example 2 is deformed into a columnar shape as a whole by bending each connecting portion; 実施例3に係る光検出ユニットの縦断面図である。FIG. 10 is a vertical cross-sectional view of a photodetection unit according to Example 3; 変形例に係る光検出ユニットの縦断面図である。FIG. 11 is a vertical cross-sectional view of a photodetector unit according to a modified example;
 以下、図面を参照してこの発明の実施例1を説明する。 Embodiment 1 of the present invention will be described below with reference to the drawings.
<全体構成の説明>
 実施例1に係る脳機能計測装置1は図1に示すように、計測ユニット3と本体ユニット5とを備えている。計測ユニット3と本体ユニット5とは、ケーブル6を介して電気的に接続されている。計測ユニット3は、被検体Mの頭部に装着される。本実施例において、本体ユニット5としてラップトップ型のコンピュータが用いられている。
<Explanation of overall configuration>
A brain function measuring device 1 according to Example 1 includes a measuring unit 3 and a main unit 5, as shown in FIG. The measuring unit 3 and the main unit 5 are electrically connected via a cable 6 . The measurement unit 3 is attached to the subject M's head. In this embodiment, a laptop computer is used as the main unit 5 .
 計測ユニット3は、プローブユニット7とプローブユニットホルダ8とを備えている。プローブユニットホルダ8は、プローブユニット7を保持する。プローブユニットホルダ8は、被検体Mの頭部を被覆する形状を有しており、遮光性を有する材料で構成されている。プローブユニットホルダ8の構成材料の一例として、ヘルメット形状を有する樹脂が挙げられる。プローブユニットホルダ8が被検体Mの頭部に装着されることにより、プローブユニット7は被検体Mの頭部に保持される。 The measurement unit 3 includes a probe unit 7 and a probe unit holder 8. The probe unit holder 8 holds the probe unit 7 . The probe unit holder 8 has a shape that covers the head of the subject M, and is made of a light-shielding material. As an example of a constituent material of the probe unit holder 8, resin having a helmet shape is given. By mounting the probe unit holder 8 on the head of the subject M, the probe unit 7 is held on the head of the subject M. As shown in FIG.
 プローブユニットホルダ8に配設されるプローブユニット7の位置および数は、被検体Mの脳のうち機能を測定する部分に応じて変更される。本実施例では図1に示すように、4つのプローブユニット7がプローブユニットホルダ8に保持されている。プローブユニットホルダ8は図示しない固定用ベルトを備えている。被検体Mがプローブユニットホルダ8を頭部に搭載した状態で、さらに固定用ベルトを被検体Mの頭部に装着することによって、プローブユニットホルダ8は被検体Mの頭部に固定される。 The position and number of the probe units 7 arranged in the probe unit holder 8 are changed according to the part of the brain of the subject M whose function is to be measured. In this embodiment, four probe units 7 are held by a probe unit holder 8, as shown in FIG. The probe unit holder 8 has a fixing belt (not shown). With the probe unit holder 8 mounted on the head of the subject M, the probe unit holder 8 is fixed to the head of the subject M by attaching a fixing belt to the head of the subject M. FIG.
 本体ユニット5は図1および図2に示すように、主制御部9と、操作部11と、記憶部13と、表示部15とを備えている。主制御部9は一例として中央処理演算装置(CPU:Central Processing Unit)などの情報処理手段を備えている。主制御部9は、脳機能計測装置1の各種構成を統括制御する。 The main unit 5 includes a main control section 9, an operation section 11, a storage section 13, and a display section 15, as shown in FIGS. The main control unit 9 includes information processing means such as a central processing unit (CPU), for example. The main control unit 9 centrally controls various components of the brain function measuring device 1 .
 操作部11は、脳機能計測装置1の操作に関する操作者の指示を入力するものであり、操作者が操作部11に入力する指示に従って主制御部9は統括制御を行う。本実施例において、コンピュータに備えられたキーボードが操作部11として用いられる。操作部11の例として、キーボードの他にタッチパネル、マウス、ダイヤル式スイッチ、押しボタン式スイッチなどが挙げられる。 The operation unit 11 is for inputting operator's instructions regarding the operation of the brain function measuring device 1 , and the main control unit 9 performs overall control according to the instructions input by the operator to the operation unit 11 . In this embodiment, a keyboard provided in the computer is used as the operation unit 11 . Examples of the operation unit 11 include a touch panel, a mouse, a dial switch, a push button switch, etc., in addition to the keyboard.
 記憶部13は、主制御部9が実行する各種プログラム、および計測ユニット3によって計測された各種データを例とする各種情報を記憶する。記憶部13の一例として、不揮発性メモリが挙げられる。表示部15は、計測ユニット3による計測の条件、および計測ユニット3によって計測された各種データを例とする各種情報を表示する。表示部15の一例として、液晶モニタなどが挙げられる。 The storage unit 13 stores various programs executed by the main control unit 9 and various information such as various data measured by the measurement unit 3 . An example of the storage unit 13 is a nonvolatile memory. The display unit 15 displays various information such as the conditions for measurement by the measurement unit 3 and various data measured by the measurement unit 3 . An example of the display unit 15 is a liquid crystal monitor.
 プローブユニット7は図2に示すように、光出力器17と、送光プローブ19と、受光プローブ21と、光検出ユニット23とを備えている。本実施例において、プローブユニット7は2つの送光プローブ19と2つの受光プローブ21とを備えている。プローブユニット7が備える送光プローブ19および受光プローブ21の数は適宜変更してよい。 The probe unit 7, as shown in FIG. In this embodiment, the probe unit 7 comprises two light-transmitting probes 19 and two light-receiving probes 21 . The number of light-transmitting probes 19 and light-receiving probes 21 included in the probe unit 7 may be changed as appropriate.
 光出力器17は光を発生させる光源であり、一例として780nm、805nm、および830nmの波長の近赤外光を出力する。光出力器17の一例として、発光ダイオード(LED:Light Emitting Diode)または半導体レーザなどが挙げられる。光出力器17は光ファイバを例とする光伝達部材によって送光プローブ19と接続されており、光出力器17が発生させた光は送光プローブ19へと伝達されるように構成されている。 The light output device 17 is a light source that generates light, and outputs near-infrared light with wavelengths of 780 nm, 805 nm, and 830 nm, for example. An example of the light output device 17 is a light emitting diode (LED) or a semiconductor laser. The light output device 17 is connected to the light transmission probe 19 by a light transmission member such as an optical fiber, and the light generated by the light output device 17 is transmitted to the light transmission probe 19. .
 送光プローブ19は一方向に延びる形状を有している。送光プローブ19の一端側は光出力器17と接続されており、送光プローブ19の他端側は被検体Mの頭部表皮25に接触できるように構成されている。送光プローブ19は図3に示すように、被検体Mの頭部表皮25に接触した状態で光を被検体Mへと出射する。送光プローブ19から出射された光は、頭部表皮25および頭蓋骨27を経由して、被検体Mの脳領域29へと伝達される。送光プローブ19を構成する材料の例として、柱状のガラス部材を備えるライトガイドが挙げられる。従って、光出力器17および送光プローブ19は、被検体Mの脳へ光を照射する光照射ユニット20を構成する。 The light transmission probe 19 has a shape extending in one direction. One end side of the light transmitting probe 19 is connected to the light output device 17 , and the other end side of the light transmitting probe 19 is configured to be able to contact the head skin 25 of the subject M. FIG. The light transmitting probe 19 emits light to the subject M while being in contact with the head skin 25 of the subject M, as shown in FIG. The light emitted from the light transmitting probe 19 is transmitted to the brain region 29 of the subject M via the head epidermis 25 and the skull 27 . An example of a material that forms the light transmitting probe 19 is a light guide that includes a columnar glass member. Accordingly, the light output device 17 and the light transmitting probe 19 constitute a light irradiation unit 20 for irradiating the brain of the subject M with light.
 受光プローブ21は送光プローブ19と同様の構成を有している。すなわち受光プローブ21は一方向に延びる形状を有しており、一例として柱状のガラス部材を備えるライドガイドによって構成される。受光プローブ21の一端側は光検出ユニット23と接続されており、受光プローブ21の他端側は被検体Mの頭部表皮25に接触できるように構成されている。受光プローブ21は光を受光するとともに、受光した光が光検出ユニット23へ伝達されるように構成される。 The light-receiving probe 21 has a configuration similar to that of the light-transmitting probe 19 . That is, the light-receiving probe 21 has a shape extending in one direction, and is configured by, for example, a ride guide having a columnar glass member. One end side of the light-receiving probe 21 is connected to the light detection unit 23 , and the other end side of the light-receiving probe 21 is configured to be able to contact the head skin 25 of the subject M. The light receiving probe 21 is configured to receive light and transmit the received light to the light detection unit 23 .
 受光プローブ21の一端側の径は、後述する貫通孔72の径より大きくなるように構成されている。そして受光プローブ21の他端側の径は、貫通孔72の径以下となるように構成されている。すなわち、受光プローブ21の他端側は収容容器71に設けられている貫通孔72を挿通できるように構成されている。 The diameter of one end side of the light receiving probe 21 is configured to be larger than the diameter of a through hole 72, which will be described later. The diameter of the light receiving probe 21 on the other end side is configured to be equal to or smaller than the diameter of the through hole 72 . That is, the other end side of the light receiving probe 21 is configured so as to be able to be inserted through the through hole 72 provided in the container 71 .
 光検出ユニット23は、光検出器31とA/Dコンバータ33とを備えている。光検出器31は受光プローブ21が受光した光を検出するとともに、光信号の増幅を行う。光検出器31の一例として光電子増倍管またはフォトダイオードなどが挙げられる。A/Dコンバータ33は、光検出器31によって検出および増幅された光信号をアナログ信号からデジタル信号へと変換する。A/Dコンバータ33は後述するように、フレキシブル基板73に搭載されている。A/Dコンバータ33は本発明におけるA/D変換器に相当する。 The photodetection unit 23 includes a photodetector 31 and an A/D converter 33 . The photodetector 31 detects the light received by the light receiving probe 21 and amplifies the optical signal. Examples of the photodetector 31 include a photomultiplier tube or a photodiode. The A/D converter 33 converts the optical signal detected and amplified by the photodetector 31 from an analog signal to a digital signal. The A/D converter 33 is mounted on a flexible substrate 73 as will be described later. The A/D converter 33 corresponds to the A/D converter in the present invention.
 計測ユニット3は、さらに計測ユニット制御部35を備えている。計測ユニット制御部35は、プロセッサおよびメモリを含むコンピュータにより構成されている。計測ユニット制御部35は、光出力器17および光検出ユニット23を例とする計測ユニット3における各種構成を制御する。計測ユニット制御部35は主制御部9による制御を受け、計測ユニット3における各種構成の制御を行う。計測ユニット制御部35は、ケーブル18を介して光照射ユニット20と接続されている。また計測ユニット制御部35は、ケーブル18を介して光検出ユニット23と接続されている。 The measurement unit 3 further includes a measurement unit control section 35. The measurement unit control section 35 is configured by a computer including a processor and memory. The measurement unit control section 35 controls various configurations in the measurement unit 3, for example, the light output device 17 and the light detection unit 23. FIG. The measurement unit control section 35 receives control from the main control section 9 and controls various configurations in the measurement unit 3 . The measurement unit control section 35 is connected to the light irradiation unit 20 via the cable 18 . The measurement unit control section 35 is also connected to the light detection unit 23 via the cable 18 .
<脳機能計測装置を用いた計測操作>
 ここで、脳機能計測装置1を用いて被検体Mの脳機能を計測する操作について説明する。脳機能計測装置1を用いて計測を行う場合、図3に示すように送光プローブ19および受光プローブ21を被検体Mの頭部表皮25に接触させる。そして光出力器17から出力された近赤外光領域の計測光Lを送光プローブ19から頭部表皮25へと出射させる。
<Measurement operation using brain function measuring device>
Here, an operation for measuring the brain function of the subject M using the brain function measuring device 1 will be described. When performing measurement using the brain function measuring apparatus 1, the light transmitting probe 19 and the light receiving probe 21 are brought into contact with the head skin 25 of the subject M as shown in FIG. Then, the measurement light L in the near-infrared region output from the light output device 17 is emitted from the light transmission probe 19 to the head skin 25 .
 なお図3などに示すように、プローブユニットホルダ8に保持されているプローブユニット7を基準として頭部表皮25に向かう方向をz1方向とし、頭部表皮25から離れる方向をz2方向とする。以下、z1方向およびz2方向を合わせてz方向とする。またz方向に直交する平面をxy平面とし、xy平面上で直交する2つの方向をx方向およびy方向とする。 Note that as shown in FIG. 3 and the like, the direction toward the head skin 25 with respect to the probe unit 7 held by the probe unit holder 8 is the z1 direction, and the direction away from the head skin 25 is the z2 direction. Hereinafter, the z1 direction and the z2 direction are collectively referred to as the z direction. A plane perpendicular to the z direction is defined as an xy plane, and two directions perpendicular to each other on the xy plane are defined as an x direction and a y direction.
 頭部表皮25へと出射された計測光Lは頭蓋骨27を経由して脳領域29へと到達し、一部の計測光Lが脳領域29を透過する。そして、脳領域29を透過して頭部表皮25から放出される計測光Lを受光プローブ21に入射させる。このとき、1つの送光プローブ19と1つの受光プローブ21との間で計測光Lの経路となる領域により、バナナ形状となっている1つの計測チャンネルCHが構成される。 The measurement light L emitted to the head epidermis 25 reaches the brain region 29 via the skull 27 , and part of the measurement light L passes through the brain region 29 . Then, the measurement light L transmitted through the brain region 29 and emitted from the epidermis 25 of the head is made incident on the light receiving probe 21 . At this time, one measurement channel CH having a banana shape is formed by a region serving as a path of the measurement light L between one light transmitting probe 19 and one light receiving probe 21 .
 受光プローブ21によって受光された計測光Lは光検出ユニット23に送信される。光検出ユニット23に設けられている光検出器31によって計測光Lが検出される。また光検出器31において計測光Lの検出信号の増幅が行われる。増幅された計測光Lの検出信号は、A/Dコンバータ33によってデジタル信号へと変換される。デジタル変換された検出信号は、ケーブル6を介して本体ユニット5へと送信される。主制御部9はデジタル信号のデータに基づいて、被検体Mの脳活動を示す計測データを算出する。 The measurement light L received by the light receiving probe 21 is transmitted to the light detection unit 23 . The measurement light L is detected by the photodetector 31 provided in the photodetection unit 23 . Further, the detection signal of the measurement light L is amplified in the photodetector 31 . The amplified detection signal of the measurement light L is converted into a digital signal by the A/D converter 33 . The digital-converted detection signal is transmitted to the main unit 5 via the cable 6 . The main control unit 9 calculates measurement data indicating the brain activity of the subject M based on the digital signal data.
 具体的には、被検体Mの脳活動を反映して、脳内の血中ヘモグロビン量が活性化部位で増大すると、ヘモグロビンによる計測光Lの吸収量が増大する。このため、取得した計測光Lの強度に基づいて脳活動に伴うヘモグロビン量の変化を取得することが可能である。なお、ヘモグロビンは酸素と結合したオキシヘモグロビンと、酸素と結合していないデオキシヘモグロビンとは互いに吸光特性が異なる。このため、脳機能計測装置1は、吸光特性の相違を考慮した複数波長(一例として780nm、805nmおよび830nmの波長)の計測光Lを用いて計測を行う。 Specifically, reflecting the brain activity of the subject M, when the amount of blood hemoglobin in the brain increases at the activated site, the amount of measurement light L absorbed by hemoglobin increases. Therefore, it is possible to acquire changes in the amount of hemoglobin associated with brain activity based on the intensity of the measurement light L acquired. Oxyhemoglobin, which is bound to oxygen, and deoxyhemoglobin, which is not bound to oxygen, have different absorption characteristics. Therefore, the brain function measuring apparatus 1 performs measurement using measurement light L of multiple wavelengths (for example, wavelengths of 780 nm, 805 nm, and 830 nm) considering the difference in light absorption characteristics.
 主制御部9は、受光プローブ21が受光した各々の波長の計測光Lの強度に基づいて、オキシヘモグロビンの濃度の時間変化およびデオキシヘモグロビンの濃度の時間変化を算出する。当該時間変化を算出された各ヘモグロビンの濃度の時間変化に基づいて、被検体Mの脳内における血流量の変化および酸素代謝の活性化状態を非侵襲で取得できる。主制御部9は本発明における脳機能計測部に相当する。 The main control unit 9 calculates the temporal change in the concentration of oxyhemoglobin and the temporal change in the concentration of deoxyhemoglobin based on the intensity of the measurement light L of each wavelength received by the light receiving probe 21 . Based on the time change of each hemoglobin concentration calculated for the time change, changes in the blood flow in the brain of the subject M and the activation state of oxygen metabolism can be acquired noninvasively. The main control section 9 corresponds to the brain function measuring section in the present invention.
 計測ユニット3は、複数の送光プローブ19と複数の受光プローブ21とを備えている。複数の送光プローブ19と複数の受光プローブ21とを用いて脳領域29を複数箇所の計測チャンネルCHで計測することにより、脳の活動状況について2次元的な分布を示すデータを取得できる。 The measurement unit 3 includes a plurality of light transmitting probes 19 and a plurality of light receiving probes 21. By measuring the brain region 29 with a plurality of measurement channels CH using a plurality of light-transmitting probes 19 and a plurality of light-receiving probes 21, it is possible to obtain data indicating a two-dimensional distribution of brain activity.
 脳機能の計測は、一例として操作部11を用いた入力操作により開始される。操作者が操作部11を用いて計測に関する各種指示を入力すると、主制御部9は計測ユニット制御部35に対して、計測を開始するための制御を行う。計測が開始されると、各々の送光プローブ19に対して所定周期で順番に計測光Lを出力するように、計測ユニット制御部35からは光出力器17を制御する。 Brain function measurement is started by an input operation using the operation unit 11, for example. When the operator uses the operation section 11 to input various instructions regarding measurement, the main control section 9 controls the measurement unit control section 35 to start measurement. When the measurement is started, the measurement unit control section 35 controls the light output device 17 so that the measurement light L is sequentially output to each of the light transmitting probes 19 at a predetermined cycle.
 光出力器17が計測光Lを出力することと同期して、計測ユニット制御部35は光検出ユニット23を制御する。すなわち、計測光Lを出力した送光プローブ19と計測チャンネルCHを構成する受光プローブ21が計測光Lを検出するように、計測ユニット制御部35は光検出ユニット23を制御する。さらに計測ユニット制御部35は、光検出ユニット23によって検出された計測光Lの検出信号を主制御部9へ送信させる。 The measurement unit control section 35 controls the light detection unit 23 in synchronization with the output of the measurement light L from the light output device 17 . That is, the measurement unit control section 35 controls the light detection unit 23 so that the light transmission probe 19 that outputs the measurement light L and the light reception probe 21 that constitutes the measurement channel CH detect the measurement light L. FIG. Further, the measurement unit control section 35 causes the detection signal of the measurement light L detected by the light detection unit 23 to be transmitted to the main control section 9 .
 主制御部9は、計測光Lの検出信号に基づいて脳活動に伴うヘモグロビン量の変化の分析を行い、計測結果を表示部15に表示させる。所定のタスクが実行された後、操作者は操作部11に対して脳機能の計測を終了させる指示を入力する。計測終了の入力操作が行われると、主制御部9が計測ユニット制御部35に対して計測を終了する制御を行い、当該制御によって脳機能計測に関する一連の動作が終了する。 The main control unit 9 analyzes changes in the amount of hemoglobin associated with brain activity based on the detection signal of the measurement light L, and causes the display unit 15 to display the measurement results. After the predetermined task is executed, the operator inputs an instruction to the operation unit 11 to end the brain function measurement. When an input operation to end measurement is performed, the main control section 9 controls the measurement unit control section 35 to end the measurement, and this control ends a series of operations related to brain function measurement.
<プローブユニットホルダの構成>
 ここで、プローブユニットホルダ8の構成と、プローブユニットホルダ8とプローブユニット7とを接続する構成とについて、図4を用いて説明する。図4はプローブユニットホルダ8の縦断面図である。
<Structure of probe unit holder>
Here, the configuration of the probe unit holder 8 and the configuration for connecting the probe unit holder 8 and the probe unit 7 will be described with reference to FIG. 4 . 4 is a longitudinal sectional view of the probe unit holder 8. FIG.
 プローブユニット7は、本体部39と、保持部材41と、接続部材43とを備えている。プローブユニットホルダ8は、接続部材保持部47と、開口部49とを備えている。本体部39は全体として筒状の構成を有しており、内部に光出力器17および光検出ユニット23が収納されている。本体部39の詳細な構成については後述する。保持部材41は本体部39を保持する。接続部材43は保持部材41に配設されており、湾曲した板状部材である。 The probe unit 7 includes a main body portion 39, a holding member 41, and a connecting member 43. The probe unit holder 8 has a connection member holding portion 47 and an opening portion 49 . The body portion 39 has a cylindrical configuration as a whole, and accommodates the light output device 17 and the light detection unit 23 therein. A detailed configuration of the body portion 39 will be described later. The holding member 41 holds the body portion 39 . The connecting member 43 is arranged on the holding member 41 and is a curved plate-like member.
 接続部材保持部47はプローブユニットホルダ8の頭頂部裏面側に配設されており、接続部材43を保持する。すなわち板状である接続部材43は、その一端側において保持部材41と接続されており、他端側において接続部材保持部47と接続される。そのため、プローブユニット7およびプローブユニットホルダ8は接続部材43を介して接続される。開口部49はプローブユニットホルダ8において、各々のプローブユニット7が配置される位置の近傍に設けられており、接続部材43は開口部49に挿通される。 The connection member holding portion 47 is arranged on the back side of the top of the probe unit holder 8 and holds the connection member 43 . That is, the plate-shaped connection member 43 is connected to the holding member 41 at one end thereof, and is connected to the connection member holding portion 47 at the other end thereof. Therefore, the probe unit 7 and the probe unit holder 8 are connected via the connecting member 43 . The opening 49 is provided in the probe unit holder 8 near the position where each probe unit 7 is arranged, and the connection member 43 is inserted through the opening 49 .
 接続部材43は図4に示すように、符号P1で示される方向へ突出するように湾曲した状態で配設される。符号P1で示される方向は、被検体Mの頭部表面25からプローブユニットホルダ8の内周面に向かう方向であり、言い換えると被検体Mの頭部表皮25と反対方向に相当する。なお、プローブユニットホルダ8の内周面から被検体Mの頭部表面25へと向かう方向を符号P2で示す。方向P2は方向P1と逆の方向に相当する。 As shown in FIG. 4, the connection member 43 is arranged in a curved state so as to protrude in the direction indicated by symbol P1. The direction indicated by P1 is the direction from the head surface 25 of the subject M toward the inner peripheral surface of the probe unit holder 8, in other words, it corresponds to the direction opposite to the head skin 25 of the subject M. The direction from the inner circumferential surface of the probe unit holder 8 to the head surface 25 of the subject M is indicated by P2. The direction P2 corresponds to the direction opposite to the direction P1.
 接続部材43は、方向P1および方向P2へ弾性変形可能に構成されている。そのため、被検体Mが計測ユニット3を装着する際に被検体Mの頭部表皮25がプローブユニット7を方向P1へ押圧すると、弾性変形に起因する復元力によって、方向P2へ向かう押圧力がプローブユニット7に対して付与される。すなわち接続部材43が弾性変形することによって方向P2へ向かう押圧力が発生することにより、プローブユニット7は被検体Mの頭部表皮25へ押し当てられることとなる。その結果、送光プローブ19および受光プローブ21を確実に頭部表皮25へと接触させることができる。 The connection member 43 is configured to be elastically deformable in directions P1 and P2. Therefore, when the subject M wears the measurement unit 3, when the head skin 25 of the subject M presses the probe unit 7 in the direction P1, the restoring force caused by the elastic deformation causes the pressing force in the direction P2 to be applied to the probe. Granted to Unit 7. That is, the probe unit 7 is pressed against the head skin 25 of the subject M by generating a pressing force in the direction P2 due to the elastic deformation of the connecting member 43 . As a result, the light-transmitting probe 19 and the light-receiving probe 21 can be reliably brought into contact with the head skin 25 .
<プローブユニットの構成>
 プローブユニット7の構成について、さらに詳細に説明する。プローブユニット7の本体部39は図5および図6に示すように、ベース部材51と、カバー部材53と、中心軸55と、回動軸57と、櫛状部材59と、把持部61とを備えている。
<Structure of probe unit>
The configuration of the probe unit 7 will be explained in more detail. As shown in FIGS. 5 and 6, the body portion 39 of the probe unit 7 includes a base member 51, a cover member 53, a central shaft 55, a rotating shaft 57, a comb member 59, and a grip portion 61. I have.
 ベース部材51は光出力器17および光検出ユニット23を保持する。本実施例において、ベース部材51は円板状の部材が用いられる。また本実施例においては図6に示すように、光出力器17および光検出ユニット23が延びる方向がz方向となるように、ベース部材51は光出力器17および光検出ユニット23を保持している。このとき、ベース部材51の面はxy平面に平行となっている。 A base member 51 holds the light output device 17 and the light detection unit 23 . In this embodiment, a disk-shaped member is used as the base member 51 . In this embodiment, as shown in FIG. 6, the base member 51 holds the light output device 17 and the light detection unit 23 so that the direction in which the light output device 17 and the light detection unit 23 extend is the z direction. there is At this time, the surface of the base member 51 is parallel to the xy plane.
 カバー部材53はz1方向に開口を有する筒状の部材であり、ベース部材51に保持されている光出力器17および光検出ユニット23を外側から覆うように設けられている。ベース部材51の周縁部には溝部51aが形成されており、カバー部材53のうち開口を有する側は溝部51aに嵌合するように構成されている。 The cover member 53 is a tubular member having an opening in the z1 direction, and is provided so as to cover the light output device 17 and the light detection unit 23 held by the base member 51 from the outside. A groove portion 51a is formed in the peripheral portion of the base member 51, and the side of the cover member 53 having the opening is configured to fit into the groove portion 51a.
 中心軸55は、ベース部材51の中央に立設されている。本体部39は、中心軸55の軸周りに回動可能に構成されている。回動軸57はベース部材51の側面に配設されており、ベース部材51の外側に向けて突出するように構成されている。回動軸57は回動軸57の軸線58の周りに回動可能に構成されている。ベース部材51は回動軸57とともに軸線58の周りに回動するように構成されている。すなわち、本体部39は回動軸57を軸線58の周りに回動させることによって、xy平面に対して傾斜するように変位できる。 The central shaft 55 is erected in the center of the base member 51 . The body portion 39 is configured to be rotatable around the central axis 55 . The rotating shaft 57 is arranged on the side surface of the base member 51 and is configured to protrude outward from the base member 51 . The rotating shaft 57 is configured to be rotatable around an axis 58 of the rotating shaft 57 . The base member 51 is configured to rotate about an axis line 58 together with a rotation shaft 57 . That is, by rotating the rotating shaft 57 around the axis 58, the body portion 39 can be displaced so as to be inclined with respect to the xy plane.
 櫛状部材59は、複数のピン状部材によって構成されている。櫛状部材59は、本体部39のベース部材51から方向z1側に突出するように配設されている。櫛状部材59は図3などに示すように、被検体Mの毛髪26を掻き分けられるように構成されている。櫛状部材59は弾性変形可能な材料で構成されている。櫛状部材59の構成材料の例として、毛髪26を好適に掻き分けることができる細長い棒状の樹脂が挙げられる。 The comb-shaped member 59 is composed of a plurality of pin-shaped members. The comb-shaped member 59 is arranged so as to protrude from the base member 51 of the body portion 39 in the direction z1. The comb-shaped member 59 is configured to push through the hair 26 of the subject M as shown in FIG. 3 and the like. The comb member 59 is made of an elastically deformable material. An example of a constituent material of the comb-shaped member 59 is an elongated rod-shaped resin that can suitably push the hair 26 aside.
 脳機能を計測する際において、本体部39を中心軸55の軸周りに回動させることにより、櫛状部材59は被検体Mの毛髪26を掻き分ける。櫛状部材59が毛髪26を掻き分けることにより、送光プローブ19および受光プローブ21は毛髪26に阻害されることなく確実に頭部表皮25に接触することができる。櫛状部材59の先端は、丸みを帯びた平滑面を有している。丸みを帯びた平滑面を有することにより、櫛状部材59が頭髪26を掻き分ける際において頭部表皮25に傷などが発生することを回避できる。 When measuring the brain function, the comb member 59 separates the hair 26 of the subject M by rotating the main body 39 around the central axis 55 . The comb-shaped member 59 pushes the hair 26 aside, so that the light-sending probe 19 and the light-receiving probe 21 can reliably contact the head skin 25 without being obstructed by the hair 26 . The tip of the comb-like member 59 has a rounded smooth surface. By having a rounded smooth surface, it is possible to avoid scratching the head skin 25 when the comb member 59 separates the hair 26 .
 把持部61は円弧形状を有する2つの部材によって構成されており、当該2つの部材は中心軸55を中心として互いに対向する位置に配設されている。操作者は把持部61を把持することによって、本体部39を中心軸55の軸周りに回動させることができる。 The gripping portion 61 is composed of two arc-shaped members, and the two members are arranged at positions facing each other with the central axis 55 as the center. By gripping the grip portion 61 , the operator can rotate the body portion 39 around the central axis 55 .
 図7は、図6に示されている本体部39のA-A断面図である。ベース部材51は図7に示すように、送光プローブ19および受光プローブ21と同数の貫通孔51bを備えている。また、ベース部材51の貫通孔51bの内周面には弾性部材51cが配設されている。送光プローブ19および受光プローブ21の各々は、弾性部材51cが配設されている貫通孔51bに対して後述する嵌合部71bを嵌合させることによって、ベース部材51に保持される。 FIG. 7 is a cross-sectional view of the body portion 39 shown in FIG. 6 taken along the line AA. The base member 51 has the same number of through-holes 51b as the light transmitting probes 19 and the light receiving probes 21, as shown in FIG. An elastic member 51c is arranged on the inner peripheral surface of the through hole 51b of the base member 51. As shown in FIG. Each of the light-sending probe 19 and the light-receiving probe 21 is held by the base member 51 by fitting a later-described fitting portion 71b into a through hole 51b in which the elastic member 51c is arranged.
 弾性部材51cは、貫通孔51bの内部においてz方向に弾性変形可能となるように構成されている。弾性部材51cの構成材料の例として、バネなどが挙げられる。弾性部材51cの弾性変形に起因する復元力によって、送光プローブ19および受光プローブ21の各々に対してz方向の付勢力が付与される。 The elastic member 51c is configured to be elastically deformable in the z direction inside the through hole 51b. A spring or the like can be given as an example of a constituent material of the elastic member 51c. A restoring force caused by the elastic deformation of the elastic member 51c imparts an urging force in the z direction to each of the light transmitting probe 19 and the light receiving probe 21 .
 プローブユニット7の保持部材41は図8に示すように、開口部41aを有している。保持部材41は開口部41aの内側において、本体部39を保持するように構成されている。本実施例において保持部材41は円環形状を有しているが、保持部材41の形状は適宜変更できる。保持部材41は図9に示すように、本体部39を挿通させる方向(本実施例ではz方向)において、第1部材63と第2部材64とに分割できるよう構成されている。保持部材41を第1部材63と第2部材64とに分割することによって、本体部39は保持部材41に対して着脱可能に構成されている。接続部材43は、保持部材41のうち第1部材63に接続されている。 The holding member 41 of the probe unit 7 has an opening 41a as shown in FIG. The holding member 41 is configured to hold the body portion 39 inside the opening portion 41a. Although the holding member 41 has an annular shape in this embodiment, the shape of the holding member 41 can be changed as appropriate. As shown in FIG. 9, the holding member 41 is configured to be divided into a first member 63 and a second member 64 in the direction in which the body portion 39 is inserted (the z-direction in this embodiment). By dividing the holding member 41 into the first member 63 and the second member 64 , the body portion 39 is configured to be detachable from the holding member 41 . The connecting member 43 is connected to the first member 63 of the holding member 41 .
 第1部材63および第2部材64の周縁部には凹部65が形成されている。第1部材63および第2部材64を組み合わせることにより、各々に設けられている凹部65が組み合わされて挿通孔66が形成される。挿通孔66は回動軸57が挿通されるように構成されている。 A concave portion 65 is formed in the peripheral edge portion of the first member 63 and the second member 64 . By combining the first member 63 and the second member 64 , the recesses 65 provided in each are combined to form the insertion hole 66 . The insertion hole 66 is configured so that the rotation shaft 57 is inserted therethrough.
 すなわち第1部材63および第2部材64は、本体部39が挿通される方向において回動軸57を挟むように保持するように構成されている。そして回動軸57を挟むように第1部材63および第2部材64を組み合わせることにより、保持部材41が本体部39を保持している状態において、回動軸57を軸線58の周りに回動させることができる。回動軸57を回動させることにより、本体部39はxy平面に対して傾く方向に移動できる。回動軸57の回動によって本体部39が傾斜する方向については図4において符号Fを用いて示している。 That is, the first member 63 and the second member 64 are configured to sandwich and hold the rotating shaft 57 in the direction in which the body portion 39 is inserted. By combining the first member 63 and the second member 64 so as to sandwich the rotating shaft 57 , the rotating shaft 57 can be rotated around the axis 58 in a state where the holding member 41 holds the body portion 39 . can be made By rotating the rotating shaft 57, the body part 39 can be moved in a direction inclined with respect to the xy plane. The direction in which the main body portion 39 is tilted by the rotation of the rotation shaft 57 is indicated by the symbol F in FIG.
<光検出ユニットの構成>
 図10ないし図15を用いて、光検出ユニット23の構成について説明する。光検出ユニット23は、収容容器71とフレキシブル基板73とを備えている。収容容器71は全体として筒状の部材であり、内部に光検出器31とフレキシブル基板73とを収容する。本実施例において、収容容器71は円筒形状の部材が用いられるものとする。なお図15は光検出ユニット23の縦断面図であるが、例外的に光検出器31およびフレキシブル基板73は一部切り欠き断面図となっている。
<Structure of light detection unit>
The configuration of the photodetection unit 23 will be described with reference to FIGS. 10 to 15. FIG. The light detection unit 23 has a container 71 and a flexible substrate 73 . The housing container 71 is a tubular member as a whole, and houses the photodetector 31 and the flexible substrate 73 therein. In this embodiment, the storage container 71 is assumed to be a cylindrical member. Although FIG. 15 is a longitudinal sectional view of the photodetector unit 23, the photodetector 31 and the flexible substrate 73 are exceptionally cut away in sectional view.
 収容容器71は、胴体部71aと嵌合部71bとが連結した構造を有している。嵌合部71bは胴体部71aと比べて径が小さい筒状部材である。嵌合部71bがベース部材51の貫通孔51bに嵌合するとともに胴体部71aの下面がベース部材51の上面に当接することによって、ベース部材51は光検出ユニット23が備える収容容器71を安定に保持する。 The storage container 71 has a structure in which a body portion 71a and a fitting portion 71b are connected. The fitting portion 71b is a tubular member having a diameter smaller than that of the body portion 71a. The fitting portion 71b is fitted into the through hole 51b of the base member 51, and the lower surface of the body portion 71a is in contact with the upper surface of the base member 51, so that the base member 51 stably holds the container 71 of the light detection unit 23. Hold.
 図10に示すように、光検出器31は収容容器71の内部底面に配置されており、光検出器31の上にフレキシブル基板73が半田付けされた状態で配設される。図10は光検出ユニット23の縦断面図であるが、説明の便宜上、光検出器31およびフレキシブル基板73は側面図となっている。フレキシブル基板73は後述するように、収容容器71の内面に沿った筒状に変形された状態で、光検出器31の上に配設される。 As shown in FIG. 10, the photodetector 31 is arranged on the inner bottom surface of the container 71, and the flexible substrate 73 is arranged on the photodetector 31 in a soldered state. FIG. 10 is a vertical cross-sectional view of the photodetector unit 23. For convenience of explanation, the photodetector 31 and the flexible substrate 73 are shown in a side view. As will be described later, the flexible substrate 73 is arranged on the photodetector 31 while being deformed into a cylindrical shape along the inner surface of the container 71 .
 嵌合部71bの下部には貫通孔72が形成されている。受光プローブ21を貫通孔72に挿通させることによって、収容容器71は受光プローブ21を保持する。また受光プローブ21は光検出器31と当接するように、嵌合部71bが有する貫通孔72に挿通されている。すなわち、光検出ユニット23において、受光プローブ21は光検出器31に当接しており、光検出器31はフレキシブル基板73に当接している。 A through hole 72 is formed in the lower portion of the fitting portion 71b. The container 71 holds the light receiving probe 21 by inserting the light receiving probe 21 into the through hole 72 . The light receiving probe 21 is inserted through the through hole 72 of the fitting portion 71b so as to come into contact with the photodetector 31. As shown in FIG. That is, in the photodetection unit 23 , the light receiving probe 21 is in contact with the photodetector 31 , and the photodetector 31 is in contact with the flexible substrate 73 .
 フレキシブル基板73の構成について、図11ないし図15を用いて説明する。図11は、初期状態におけるフレキシブル基板73の平面図である。初期状態において、フレキシブル基板73は全体として平板状となっている。フレキシブル基板73は可撓性を有する材料で構成されており、フレキシブル基板73の各部は折り曲げ変形可能となるように構成されている。 The configuration of the flexible substrate 73 will be explained using FIGS. 11 to 15. FIG. FIG. 11 is a plan view of the flexible substrate 73 in the initial state. In the initial state, the flexible substrate 73 has a flat plate shape as a whole. The flexible substrate 73 is made of a flexible material, and each portion of the flexible substrate 73 is configured to be bendable and deformable.
 フレキシブル基板73は、第1部位75と、第2部位77と、連結部位79とを備えている。第1部位75は光検出器31と接続される部位であり、実装部75aを有している。実装部75aは、光検出器31が備える配線81が半田付けされる部位である。実装部75aにおいて配線81が半田付けされることにより、光検出器31はフレキシブル基板73の第1部位75に実装される。またフレキシブル基板73を筒状に変形させた場合、第1部位75は筒状となっているフレキシブル基板73の底部を構成する。第1部位75は収容容器71の内部底面に配置できるような形状およびサイズとなるように構成される。実施例1において、第1部位75は円板形状を有しているものとする。 The flexible substrate 73 has a first portion 75 , a second portion 77 and a connecting portion 79 . The first portion 75 is a portion connected to the photodetector 31 and has a mounting portion 75a. The mounting portion 75a is a portion to which the wiring 81 included in the photodetector 31 is soldered. The photodetector 31 is mounted on the first portion 75 of the flexible substrate 73 by soldering the wiring 81 to the mounting portion 75a. Further, when the flexible substrate 73 is deformed into a tubular shape, the first portion 75 constitutes the bottom portion of the flexible substrate 73 which has a tubular shape. The first portion 75 is configured to be shaped and sized so that it can be placed on the inner bottom surface of the container 71 . In Example 1, it is assumed that the first portion 75 has a disk shape.
 第2部位77の表面(回路搭載面)には、A/Dコンバータ33と、転送回路83と、コネクタ部85とが搭載されている。フレキシブル基板73を筒状に変形させた場合、第2部位77は筒状となっているフレキシブル基板73の側周部を構成する。実施例1において、第2部位77はy方向に延びた矩形状となっているものとする。 The A/D converter 33, the transfer circuit 83, and the connector section 85 are mounted on the surface (circuit mounting surface) of the second portion 77. FIG. When the flexible substrate 73 is deformed into a tubular shape, the second portion 77 constitutes the side peripheral portion of the flexible substrate 73 which is tubular. In the first embodiment, it is assumed that the second portion 77 has a rectangular shape extending in the y direction.
 連結部位79は第1部位75と第2部位77とを連結する。実施例1において、連結部位79はx方向に延びた矩形状となっているものとする。第1部位75、第2部位77、および連結部位79の形状は、収容容器71の内面の形状に応じて適宜変更してよい。また第2部位77はA/Dコンバータ33、転送回路83、およびコネクタ部85に加えて、各回路を接続する配線82、および計測光Lの検出信号の処理を行う信号処理回路を適宜搭載している。信号処理回路の例として、計測光Lの検出信号を増幅させる増幅回路などが挙げられる。 The connecting portion 79 connects the first portion 75 and the second portion 77 . In Example 1, it is assumed that the connecting portion 79 has a rectangular shape extending in the x direction. The shapes of the first portion 75 , the second portion 77 , and the connecting portion 79 may be changed as appropriate according to the shape of the inner surface of the container 71 . In addition to the A/D converter 33, the transfer circuit 83, and the connector portion 85, the second portion 77 also includes a wiring 82 for connecting each circuit and a signal processing circuit for processing the detection signal of the measurement light L as appropriate. ing. An example of the signal processing circuit is an amplifier circuit that amplifies the detection signal of the measurement light L, or the like.
 転送回路83は、A/Dコンバータ33によってデジタル変換された計測光Lの検出信号を転送させる、データ転送用の回路である。実施例1では転送回路83として、シリアル通信を行うシリアル・ペリフェラル・インターフェース(SPI:Serial Peripheral Interphase)が用いられる。コネクタ部85は、計測ユニット制御部35とフレキシブル基板73とをケーブル18で接続させるデバイスである。光検出器31によって検出された計測光Lの検出信号はフレキシブル基板73に送信された後、A/Dコンバータ33によって速やかにデジタル信号へと変換される。デジタル変換された検出信号は転送回路83、コネクタ部85、およびケーブル6を経由して本体ユニット5へと送信される。 The transfer circuit 83 is a data transfer circuit that transfers the detection signal of the measurement light L digitally converted by the A/D converter 33 . In the first embodiment, a serial peripheral interface (SPI: Serial Peripheral Interface) that performs serial communication is used as the transfer circuit 83 . The connector section 85 is a device that connects the measurement unit control section 35 and the flexible substrate 73 with the cable 18 . A detection signal of the measurement light L detected by the photodetector 31 is transmitted to the flexible substrate 73 and then quickly converted into a digital signal by the A/D converter 33 . The digital-converted detection signal is transmitted to the main unit 5 via the transfer circuit 83 , the connector section 85 and the cable 6 .
<フレキシブル基板の収納過程>
 フレキシブル基板73を変形させて収容容器71に収容させる過程について、図12ないし図15を用いて説明する。まず、図11に示すような平板状のフレキシブル基板73に対し、連結部位79を折り曲げることによって第2部位77を起立状態にさせる。第2部位77が起立した状態となっているフレキシブル基板73は図12に示されている。
<Accommodation process of flexible substrate>
The process of deforming the flexible substrate 73 and accommodating it in the container 71 will be described with reference to FIGS. 12 to 15. FIG. First, the connecting portion 79 of the flat flexible substrate 73 as shown in FIG. 11 is bent to bring the second portion 77 into an upright state. FIG. 12 shows flexible substrate 73 with second portion 77 in an upright position.
 第2部位77を起立状態にさせた後、第2部位77の両翼部(長手方向の両端部)が内側に湾曲するように、第2部位77を変形させる。第2部位77の両翼部を湾曲させることにより、図13に示すように、第2部位77は筒状に変形する。第2部位77を筒状に変形させることにより、フレキシブル基板73は第1部位75を底面とし、第2部位77を側面とする、開口部76を有する筒状体へと変形される。 After placing the second part 77 in the upright state, the second part 77 is deformed so that both wings (both ends in the longitudinal direction) of the second part 77 are curved inward. By curving both wings of the second portion 77, the second portion 77 is deformed into a cylindrical shape as shown in FIG. By deforming the second portion 77 into a tubular shape, the flexible substrate 73 is deformed into a tubular body having the opening portion 76 with the first portion 75 as the bottom surface and the second portion 77 as the side surface.
 筒状に変形した第2部位77において、A/Dコンバータ33などが搭載されている回路搭載面は、第2部位77からなる筒状体の内周面となるよう構成される。よって、第2部位77からなる筒状体の外周面は回路が搭載されていない平坦面となっている。また、筒状体に変形されたフレキシブル基板73はz2方向側に開口部76を有している。そのため、開口部76を経由させることによってフレキシブル基板73の外部からケーブル18をコネクタ部85へ接続させることができる。 In the cylindrically deformed second portion 77 , the circuit mounting surface on which the A/D converter 33 and the like are mounted is configured to be the inner peripheral surface of the cylindrical body made up of the second portion 77 . Therefore, the outer peripheral surface of the tubular body composed of the second portion 77 is a flat surface on which no circuit is mounted. The flexible substrate 73 deformed into a cylindrical body has an opening 76 on the z2 direction side. Therefore, the cable 18 can be connected to the connector portion 85 from the outside of the flexible substrate 73 by passing through the opening portion 76 .
 フレキシブル基板73を筒状体に変形させた後、図14に示すように、受光プローブ21と光検出器31とフレキシブル基板73と収容容器71とを組み合わせて光検出ユニット23を形成させる。まず、収容容器71の嵌合部71bが有する貫通孔72に対して、収容容器71の上方から受光プローブ21の他端側を挿通させる。受光プローブ21の一端側の径は貫通孔72の径より大きいので、図10に示すように受光プローブ21の一端側が貫通孔72を通過して受光プローブ21が収容容器71から抜け落ちることを回避できる。そのため、受光プローブ21は収容容器71によって安定に保持される。 After deforming the flexible substrate 73 into a cylindrical body, the light detection unit 23 is formed by combining the light receiving probe 21, the photodetector 31, the flexible substrate 73, and the container 71, as shown in FIG. First, the other end side of the light receiving probe 21 is inserted from above the container 71 into the through hole 72 of the fitting portion 71 b of the container 71 . Since the diameter of one end side of the light receiving probe 21 is larger than the diameter of the through hole 72, as shown in FIG. . Therefore, the light-receiving probe 21 is stably held by the container 71 .
 受光プローブ21と収容容器71とを組み合わせた後、z方向に延びる収容容器71の内部底面に光検出器31を搭載させる。搭載された光検出器31は、貫通孔72から上方に突出している状態となっている受光プローブ21の一端側と接続される。z方向に延びる収容容器71の内部底面に光検出器31を搭載させた後、筒状体に変形されたフレキシブル基板73をz方向から収容容器71の内部に収納させる。このとき、光検出器31が備える配線81と第1部位75の実装部75aとを半田付けすることによって、光検出器31とフレキシブル基板73とを接続させる。 After combining the light receiving probe 21 and the storage container 71, the photodetector 31 is mounted on the inner bottom surface of the storage container 71 extending in the z direction. The mounted photodetector 31 is connected to one end side of the light receiving probe 21 projecting upward from the through hole 72 . After the photodetector 31 is mounted on the inner bottom surface of the container 71 extending in the z-direction, the flexible substrate 73 deformed into a cylindrical body is accommodated inside the container 71 from the z-direction. At this time, the photodetector 31 and the flexible substrate 73 are connected by soldering the wiring 81 provided in the photodetector 31 and the mounting portion 75 a of the first portion 75 .
 フレシキブル基板73の材料として弾性力を有する材料を用いることにより、初期状態では平板状であるフレキシブル基板73を筒状体に変形させると、筒状に湾曲変形されている第2部位77に対して平板状に復元しようとする復元力Gが作用する。すなわち、収容容器71の内部に筒状体に変形されたフレキシブル基板73を収納させた状態において、フレキシブル基板73から収容容器71の内面に対して復元力Gが作用する。当該復元力Gは、収容容器71の内面に対して外側へ押しつける方向に作用する。従って、復元力Gが作用することにより、フレキシブル基板73に対してネジを例とする固定具を用いることなく、フレキシブル基板73を収容容器71の内部で安定に保持させることができる。 By using a material having elasticity as the material of the flexible substrate 73, when the flexible substrate 73, which is flat in the initial state, is deformed into a cylindrical body, the second portion 77, which is curved and deformed into a cylindrical shape, is deformed. A restoring force G acts to restore the plate shape. That is, in a state in which the flexible substrate 73 deformed into a cylindrical body is accommodated inside the container 71 , a restoring force G acts on the inner surface of the container 71 from the flexible substrate 73 . The restoring force G acts in a direction to press the inner surface of the container 71 outward. Therefore, due to the action of the restoring force G, the flexible substrate 73 can be stably held inside the container 71 without using a fixing tool such as a screw for the flexible substrate 73 .
 実施例1に係る光検出ユニット23は、計測光Lを検出して検出信号を発信する光検出器31と、計測光Lの検出信号をアナログ信号からデジタル信号へ変換するA/Dコンバータ33を備えるフレキシブル基板73とを収容容器71の内部に収納させた構成を有している。そのため、光検出ユニット23において光検出器31とA/Dコンバータ33とは近接した状態であるので、受光プローブ21によって受光された計測光Lの検出信号を速やかにデジタル変換させることができる。つまり、デジタル変換を行うまでに計測光Lを送信させる距離を大幅に短縮できるので、計測光Lをアナログ信号の状態で送信させることに起因する計測光Lの低減を回避できる。その結果、光検出ユニット23によって検出される信号のS/N比を向上できる。 The photodetection unit 23 according to the first embodiment includes a photodetector 31 that detects the measurement light L and transmits a detection signal, and an A/D converter 33 that converts the detection signal of the measurement light L from an analog signal to a digital signal. It has a configuration in which the flexible substrate 73 provided therein is housed inside the housing container 71 . Therefore, since the photodetector 31 and the A/D converter 33 in the photodetection unit 23 are in close proximity, the detection signal of the measurement light L received by the light receiving probe 21 can be rapidly converted into a digital signal. In other words, since the distance over which the measurement light L is transmitted before digital conversion is performed can be greatly shortened, reduction in the measurement light L due to transmission of the measurement light L in the form of an analog signal can be avoided. As a result, the S/N ratio of the signal detected by the photodetection unit 23 can be improved.
 なお脳機能計測装置において、被検体Mの頭部に装着させる計測ユニットは小型かつ軽量であることが求められる。そこで本発明に係る脳機能計測装置1では、フレキシブル基板73を筒状体に変形させることにより、初期状態では平板状であったフレキシブル基板73が占める領域を大きく低減できる。すなわち光検出ユニット23のサイズを小型に維持しつつ、A/Dコンバータ33を備えるフレキシブル基板73を光検出ユニット23の内部に収納できるので、光検出ユニット23におけるS/N比の向上と光検出ユニット23の小型化との両方を実現できる。 In addition, in the brain function measurement device, the measurement unit attached to the head of the subject M is required to be small and lightweight. Therefore, in the brain function measuring device 1 according to the present invention, by deforming the flexible substrate 73 into a cylindrical body, the area occupied by the flexible substrate 73, which was flat in the initial state, can be greatly reduced. That is, since the flexible substrate 73 having the A/D converter 33 can be accommodated inside the photodetection unit 23 while maintaining the size of the photodetection unit 23 small, the S/N ratio in the photodetection unit 23 can be improved and the photodetection can be performed. Both miniaturization of the unit 23 can be realized.
 収容容器71はz方向に延びる筒状であり、光検出器31とz方向に延びる筒状体に変形されたフレキシブル基板73とをz方向に連結させた状態で収納する。このような構成により、光検出ユニット23は全体としてz方向に延びた形状となるので、xy平面においてフレキシブル基板73および光検出ユニット23が占める領域を小さくすることができる。言い換えると、被検体Mの頭部表皮25の面において光検出ユニット23が占める領域を小さくできるので、脳機能計測装置1において被検体Mの脳機能を計測する計測チャンネルCHの数をより多くすることができる。 The storage container 71 has a cylindrical shape extending in the z direction, and stores the photodetector 31 and the flexible substrate 73 deformed into a cylindrical body extending in the z direction while being connected in the z direction. With such a configuration, the photodetection unit 23 as a whole has a shape extending in the z-direction, so that the area occupied by the flexible substrate 73 and the photodetection unit 23 in the xy plane can be reduced. In other words, since the area occupied by the light detection unit 23 on the surface of the head skin 25 of the subject M can be reduced, the number of measurement channels CH for measuring the brain function of the subject M in the brain function measuring device 1 is increased. be able to.
 実施例1に係る脳機能計測装置1では、A/Dコンバータ33を搭載するフレキシブル基板73を小型に変形させて光検出ユニット23の収容容器71に収容している。そのため、脳機能計測装置1では光検出器31およびA/Dコンバータ33を本体ユニット5の側ではなく被検体Mの頭部に装着する計測ユニット3の側に配設することができる。 In the brain function measuring device 1 according to Example 1, the flexible substrate 73 on which the A/D converter 33 is mounted is deformed into a small size and accommodated in the accommodation container 71 of the photodetection unit 23 . Therefore, in the brain function measuring apparatus 1 , the photodetector 31 and the A/D converter 33 can be arranged on the side of the measurement unit 3 attached to the head of the subject M, not on the side of the main unit 5 .
 すなわち脳機能計測装置1では計測光Lの検出、光検出信号の増幅、および光検出信号のデジタル変換などの一連の信号処理を計測ユニット3の側において実行できる。よって、本体ユニット側で光検出信号のデジタル変換を行う従来の装置とは異なり、実施例1に係る脳機能計測装置1では計測ユニット3と本体ユニット5とを光ファイバで接続する必要がない。すなわちケーブル6として一般的な電気信号送信用のケーブルを用いることができるので、光ファイバを大量に用いることに起因するコストの上昇および信号送信部材の耐久力の低下を回避できる。 That is, in the brain function measuring device 1, a series of signal processing such as detection of the measurement light L, amplification of the light detection signal, and digital conversion of the light detection signal can be executed on the measurement unit 3 side. Therefore, unlike the conventional device in which the photodetection signal is digitally converted on the main unit side, the brain function measuring device 1 according to the first embodiment does not need to connect the measurement unit 3 and the main unit 5 with an optical fiber. That is, since a general electric signal transmission cable can be used as the cable 6, it is possible to avoid an increase in cost and a decrease in the durability of the signal transmission member due to the use of a large amount of optical fibers.
 次に、本発明の実施例2について図16ないし図19を用いて説明する。実施例2では、フレキシブル基板73の構成が実施例1と異なる。従って、実施例2に係るフレキシブル基板73については符号73Aを付して実施例1に係るフレキシブル基板73と区別する。一方、実施例1と共通する構成については同一の符号を付して図示し、その説明を省略する。図19は図15と同様に、光検出器31およびフレキシブル基板73Aは一部切り欠き断面図となっている。 Next, Embodiment 2 of the present invention will be described with reference to FIGS. 16 to 19. FIG. The second embodiment differs from the first embodiment in the configuration of the flexible substrate 73 . Accordingly, the flexible substrate 73 according to the second embodiment is distinguished from the flexible substrate 73 according to the first embodiment by attaching a reference numeral 73A. On the other hand, the same reference numerals are assigned to the configurations common to the first embodiment, and the description thereof is omitted. Similar to FIG. 15, FIG. 19 is a partially cutaway cross-sectional view of the photodetector 31 and the flexible substrate 73A.
 図16は、実施例2に係るフレキシブル基板73Aの平面図である。フレキシブル基板73Aは初期状態において、全体として十字型の平板形状を有している。フレキシブル基板73Aは、第1部位75と、第2部位77と、連結部位79とに加えて、第3部位91と連結部位93とを備えている。第1部位75は光検出器31と接続される実装部75aを有している。第2部位77はy方向に延びた矩形状を有しており、上面側にA/Dコンバータ33と、転送回路83とを備えている。第3部位91は矩形状を有しており、下面側にコネクタ部85を備えている。連結部位93は第2部位77と第3部位91とを連結する。 FIG. 16 is a plan view of a flexible substrate 73A according to Example 2. FIG. In the initial state, the flexible substrate 73A has a cross-shaped plate shape as a whole. The flexible substrate 73A includes a third portion 91 and a connecting portion 93 in addition to a first portion 75, a second portion 77 and a connecting portion 79. As shown in FIG. The first portion 75 has a mounting portion 75 a connected to the photodetector 31 . The second part 77 has a rectangular shape extending in the y-direction, and has the A/D converter 33 and the transfer circuit 83 on the top side. The third portion 91 has a rectangular shape and has a connector portion 85 on the lower surface side. The connecting portion 93 connects the second portion 77 and the third portion 91 .
 実施例2においてフレキシブル基板73Aを変形させて収容容器71に収納させる過程について説明する。まず、図16に示すような平板状のフレキシブル基板73Aに対し、連結部位79を折り曲げることによって第2部位77を起立状態にさせる。次に、連結部位93を折り曲げることにより、第3部位91を第2部位77と比べて第1部位75の中央部に近い側へと突出した起立状態にさせる。第2部位77および第3部位91が起立した状態となっているフレキシブル基板73Aは、図17に示されている。 A process of deforming the flexible substrate 73A and storing it in the container 71 in the second embodiment will be described. First, the connecting portion 79 is bent with respect to the flat flexible substrate 73A as shown in FIG. 16 so that the second portion 77 is raised. Next, by bending the connecting portion 93 , the third portion 91 is brought into an upright state in which the third portion 91 protrudes closer to the central portion of the first portion 75 than the second portion 77 . FIG. 17 shows the flexible substrate 73A with the second portion 77 and the third portion 91 in an upright state.
 第2部位77および第3部位91を起立状態にさせた後、実施例1と同様に、第2部位77の両翼部が内側に湾曲するように、第2部位77を変形させる。第2部位77の両翼部を湾曲させることにより、図18に示すように、第2部位77は筒状に変形する。第2部位77を筒状に変形させることにより、フレキシブル基板73Aは第1部位75を底面とし、第2部位77を側面とする、開口部76を有する筒状体へと変形される。当該筒状体において、第3部位91は筒状に変形した第2部位77の上方に配置される。また連結部位93を折り曲げることにより、第3部位91はフレキシブル基板73Aの側周部から中央部へ突出した形状となっている。 After placing the second part 77 and the third part 91 in the upright state, the second part 77 is deformed so that both wings of the second part 77 are curved inward in the same manner as in the first embodiment. By curving both wings of the second portion 77, the second portion 77 is deformed into a cylindrical shape as shown in FIG. By deforming the second portion 77 into a cylindrical shape, the flexible substrate 73A is deformed into a cylindrical body having the opening portion 76 with the first portion 75 as the bottom surface and the second portion 77 as the side surface. In the tubular body, the third portion 91 is arranged above the second portion 77 deformed into a tubular shape. Further, by bending the connecting portion 93, the third portion 91 has a shape protruding from the side peripheral portion to the central portion of the flexible substrate 73A.
 フレキシブル基板73Aを筒状体に変形させた後、受光プローブ21と光検出器31とフレキシブル基板73Aと収容容器71とを組み合わせ、図19に示すような光検出ユニット23を形成させる。組み合わせる過程は実施例1と同様であるので詳細な説明は省略する。このように、図16に示すようなフレキシブル基板73Aの構成であっても実施例1と同様に、平板状となっている初期状態から筒状体へとフレキシブル基板73Aを変形させ、コンパクトな形状に変形されたフレキシブル基板73Aを収容容器71へと収容させることができる。 After deforming the flexible substrate 73A into a cylindrical body, the light receiving probe 21, the photodetector 31, the flexible substrate 73A and the container 71 are combined to form the photodetection unit 23 as shown in FIG. Since the process of combining is the same as that of the first embodiment, detailed description is omitted. As described above, even with the configuration of the flexible substrate 73A as shown in FIG. 16, the flexible substrate 73A is deformed from the initial flat plate shape into a cylindrical shape, as in the first embodiment, to form a compact shape. The flexible substrate 73</b>A that has been deformed into a shape can be accommodated in the accommodation container 71 .
 次に、本発明の実施例3について、図20ないし図22を用いて説明する。実施例3に係るフレキシブル基板については符号73Bを付して実施例1に係るフレキシブル基板73などと区別する。図20は、実施例3に係るフレキシブル基板73Bの平面図である。フレキシブル基板73Bは初期状態において、全体として一方向に延びる平板形状を有している。なお図22は光検出ユニット23の断面図であるが、例外的に光検出器31は一部切り欠き断面図となっている。 Next, Example 3 of the present invention will be described with reference to FIGS. 20 to 22. FIG. The flexible substrate according to the third embodiment is denoted by reference numeral 73B to distinguish it from the flexible substrate 73 according to the first embodiment. FIG. 20 is a plan view of a flexible substrate 73B according to Example 3. FIG. In the initial state, the flexible board 73B has a flat plate shape extending in one direction as a whole. Although FIG. 22 is a cross-sectional view of the photodetector unit 23, the photodetector 31 is exceptionally a partially cutaway cross-sectional view.
 実施例3に係るフレキシブル基板73Bは、第1部位75と、第2部位77と、第3部位103と、第4部位105と、連結部位79と、連結部位109と、連結部位111とを備えている。第1部位75は光検出器31と接続される実装部75aを有している。第2部位77は上面側にA/Dコンバータ33を備えている。第3部位103は上面側に転送回路83を備えている。 A flexible board 73B according to the third embodiment includes a first portion 75, a second portion 77, a third portion 103, a fourth portion 105, a connecting portion 79, a connecting portion 109, and a connecting portion 111. ing. The first portion 75 has a mounting portion 75 a connected to the photodetector 31 . The second part 77 has the A/D converter 33 on the top side. The third portion 103 has a transfer circuit 83 on the upper surface side.
 実施例3において、第1部位75、第2部位77、および第3部位103はいずれも円板形状を有しているものとする。第4部位105は矩形状を有しており、上面側にコネクタ部85を備えている。連結部位79は、第1部位75と第2部位77とを連結する。連結部位109は、第2部位77と第3部位103とを連結する。連結部位111は、第3部位103と第4部位105とを連結する。 In Example 3, the first portion 75, the second portion 77, and the third portion 103 are all disk-shaped. The fourth portion 105 has a rectangular shape and has a connector portion 85 on the upper surface side. The connecting portion 79 connects the first portion 75 and the second portion 77 . The connecting portion 109 connects the second portion 77 and the third portion 103 . The connecting portion 111 connects the third portion 103 and the fourth portion 105 .
 第2部位77および第3部位103は第1部位75と同様に、収容容器71の内部底面と同様の形状およびサイズとなるように構成されている。収容容器71の内部底面と同様の形状およびサイズに構成することにより、フレキシブル基板73Bを柱状に変形させて収容容器71に収容させた場合、フレキシブル基板73Bと収容容器71との間に発生する間隙を少なくできる。よって、フレキシブル基板73Bをより安定に収容容器71の内部で保持させることができる。 The second part 77 and the third part 103 are configured to have the same shape and size as the inner bottom surface of the container 71, like the first part 75. By forming the same shape and size as the inner bottom surface of the container 71, when the flexible substrate 73B is deformed into a columnar shape and accommodated in the container 71, a gap is generated between the flexible substrate 73B and the container 71. can be reduced. Therefore, the flexible substrate 73B can be held inside the container 71 more stably.
 実施例3においてフレキシブル基板73Bを変形させて収容容器71に収容させる過程について説明する。まず、図20に示すような平板状のフレキシブル基板73Bに対し、連結部位79を折り曲げることによって第1部位75および第2部位77がz方向に重畳するようにフレキシブル基板73Bを変形させる。次に、連結部位109を折り曲げることにより、第2部位77および第3部位103がz方向に重畳するようにフレキシブル基板73Bを変形させる。最後に、連結部位111を折り曲げることにより、第4部位105を第3部位103の中央部上方において起立した状態にさせる。 A process of deforming the flexible substrate 73B and accommodating it in the container 71 in Example 3 will be described. First, the flexible substrate 73B having a flat plate shape as shown in FIG. 20 is deformed by bending the connection portion 79 so that the first portion 75 and the second portion 77 overlap in the z-direction. Next, by bending the connecting portion 109, the flexible substrate 73B is deformed so that the second portion 77 and the third portion 103 overlap in the z direction. Finally, by bending the connecting portion 111 , the fourth portion 105 is made to stand above the central portion of the third portion 103 .
 第1部位75、第2部位77、および第3部位103がz方向に重畳するようにフレキシブル基板73Bを変形させることにより、フレキシブル基板73Bは全体としてz方向に延びる柱状に変形される。各々の連結部位79~111を折り曲げることによって柱状に変形されたフレキシブル基板73Bの構成は、図21に示す通りである。実施例3では円板状の第1部位75、第2部位77、および第3部位103がz方向に重畳することにより、フレキシブル基板73Bは折りたたまれて全体として円柱状に変形する。 By deforming the flexible substrate 73B so that the first portion 75, the second portion 77, and the third portion 103 overlap in the z-direction, the flexible substrate 73B as a whole is deformed into a columnar shape extending in the z-direction. FIG. 21 shows the configuration of the flexible substrate 73B deformed into a columnar shape by bending the connecting portions 79-111. In Example 3, the disc-shaped first portion 75, second portion 77, and third portion 103 overlap in the z-direction, so that the flexible substrate 73B is folded and deformed into a cylindrical shape as a whole.
 フレキシブル基板73Bを柱状体に変形させた後、実施例1と同様に受光プローブ21と光検出器31とフレキシブル基板73Bと収容容器71とを組み合わせ、図22に示すような光検出ユニット23を形成させる。このように、図20に示すようなフレキシブル基板73Bを平板状となっている初期状態から柱状体へと変形させ、コンパクトな形状に変形されたフレキシブル基板73Bを収容容器71へと収容させることができる。実施例3では3カ所の連結部位79、109、111において折り曲げているが、折り曲げ変形させる部位の数を増やすことにより、フレシキブル基板73Bをより小さく圧縮した形状に変形させることができる。 After deforming the flexible substrate 73B into a columnar body, the light receiving probe 21, the photodetector 31, the flexible substrate 73B, and the container 71 are combined in the same manner as in the first embodiment to form the photodetection unit 23 as shown in FIG. Let In this manner, the flexible substrate 73B as shown in FIG. 20 can be transformed from the initial flat plate shape into a columnar shape, and the flexible substrate 73B deformed into a compact shape can be accommodated in the container 71. can. In the third embodiment, the flexible substrate 73B is bent at the three connecting portions 79, 109, and 111, but by increasing the number of portions to be bent and deformed, the flexible substrate 73B can be deformed into a smaller compressed shape.
 <実施形態の構成による効果>
 (第1項)本実施形態に係る光検出ユニット23は、光を検出する光検出器31と、光検出器31を収容する筒状の収容容器71と、光検出器31が検出した光信号をアナログ信号からデジタル信号へと変換するA/Dコンバータ33を含む信号処理回路を搭載するフレキシブル基板73と、を備え、フレキシブル基板73は曲げ変形された状態で収容容器71の内部に配置される。
<Effects of Configuration of Embodiment>
(Section 1) The photodetection unit 23 according to the present embodiment includes a photodetector 31 that detects light, a cylindrical container 71 that accommodates the photodetector 31, and an optical signal detected by the photodetector 31. and a flexible substrate 73 on which a signal processing circuit including an A/D converter 33 for converting from an analog signal to a digital signal is mounted. .
 第1項に記載の光検出ユニット23によれば、A/Dコンバータ33を含む信号処理回路はフレキシブル基板73に搭載されているので、当該フレキシブル基板73を曲げ変形させてより小さい形状とすることができる。そしてフレキシブル基板73を曲げ変形させた状態で収容容器71の内部に配置させることにより、光検出器31とA/Dコンバータ33との両方を収容容器71の内部に配置される。すなわち、光検出器31とA/Dコンバータ33とをより近い位置に配置できるので、光検出器31が検出した光信号を速やかにアナログ信号からデジタル信号へと変換できる。従って、光信号をアナログ信号の状態で送信することに起因する光信号強度の低減を回避できるので、光検出ユニット23を小型化しつつ光信号のS/N比を向上させることができる。 According to the photodetection unit 23 of the first aspect, since the signal processing circuit including the A/D converter 33 is mounted on the flexible substrate 73, the flexible substrate 73 is bent and deformed to have a smaller shape. can be done. Both the photodetector 31 and the A/D converter 33 are arranged inside the container 71 by placing the flexible substrate 73 inside the container 71 while being bent and deformed. That is, since the photodetector 31 and the A/D converter 33 can be arranged closer to each other, the optical signal detected by the photodetector 31 can be quickly converted from an analog signal to a digital signal. Therefore, since it is possible to avoid a decrease in optical signal intensity due to transmission of the optical signal in the form of an analog signal, it is possible to improve the S/N ratio of the optical signal while downsizing the photodetector unit 23 .
 (第2項)また第1項に記載の光検出ユニット23において、フレキシブル基板73は、光検出器31と接続される第1部位75と、A/Dコンバータ33を含む信号処理回路が搭載される第2部位77と、第1部位75と第2部位77とを連結させる連結部位79と、を備え、第1部位75および第2部位77が直交するように連結部位79を折り曲げるとともに第2部位77を曲げ変形させることによって、フレキシブル基板73は収容容器71の内面に沿った筒状に変形される。 (Section 2) In the photodetection unit 23 described in Section 1, the flexible substrate 73 has a first portion 75 connected to the photodetector 31 and a signal processing circuit including the A/D converter 33 mounted thereon. and a connecting portion 79 connecting the first portion 75 and the second portion 77. The connecting portion 79 is bent so that the first portion 75 and the second portion 77 are orthogonal to each other, and the second portion By bending and deforming the portion 77 , the flexible substrate 73 is deformed into a cylindrical shape along the inner surface of the container 71 .
 第2項に記載の光検出ユニット23によれば、フレキシブル基板73を構成する第1部位75と第2部位77とを連結する連結部位79を折り曲げるとともに、第2部位77を曲げ変形させることによって、フレキシブル基板73を収容容器71の内面に沿った筒状に変形できる。そのため、平板状となっているフレキシブル基板73をより小さい形状である筒状へと変形できる。また、このような構成により、第2部位77が元の形状に戻ろうとする復元力に起因して、フレキシブル基板73から収容容器71の内面に対して押圧力Gが作用する。当該押圧力Gによってフレキシブル基板73は収容容器71の内部で保持されるので、ネジなどの固定具を用いることなくフレキシブル基板73を収容容器71の内部で安定に保持させることができる。 According to the photodetector unit 23 described in the second item, the connecting portion 79 connecting the first portion 75 and the second portion 77 constituting the flexible substrate 73 is bent, and the second portion 77 is bent and deformed. , the flexible substrate 73 can be deformed into a cylindrical shape along the inner surface of the container 71 . Therefore, the flat flexible substrate 73 can be deformed into a smaller cylindrical shape. Further, with such a configuration, a pressing force G is applied from the flexible substrate 73 to the inner surface of the container 71 due to the restoring force that causes the second portion 77 to return to its original shape. Since the flexible substrate 73 is held inside the container 71 by the pressing force G, the flexible substrate 73 can be stably held inside the container 71 without using fixing tools such as screws.
 (第3項)また第1項に記載の光検出ユニット23において、フレキシブル基板73Bは、光検出器31と接続される第1部位75と、A/Dコンバータ33を含む信号処理回路が搭載される第2部位77と、第1部位75と第2部位77とを連結させる連結部位79と、を備え、第1部位75および第2部位77が重畳するように連結部位を折り曲げることによって、フレキシブル基板73Bは収容容器71の内部で折り畳んだ状態に変形される。 (Section 3) In the photodetection unit 23 described in Section 1, the flexible substrate 73B has a first portion 75 connected to the photodetector 31 and a signal processing circuit including the A/D converter 33 mounted thereon. and a connecting portion 79 connecting the first portion 75 and the second portion 77, and by bending the connecting portion so that the first portion 75 and the second portion 77 overlap each other, the flexible The substrate 73B is deformed into a folded state inside the container 71 .
 第3項に記載の光検出ユニット23によれば、フレキシブル基板73Bを構成する第1部位75と第2部位77とを連結する連結部位79を折り曲げることにより、第1部位75および第2部位77が重畳するので、フレキシブル基板73Bを収容容器71の内部で折り畳んだ状態に変形できる。そのため、平板状となっているフレキシブル基板73Bをより小さい形状へと変形できる。従って、フレキシブル基板73Bが占める容積をより低減できるので光検出ユニット23をさらに小型化することができる。 According to the light detection unit 23 described in the third item, the first portion 75 and the second portion 77 are separated by bending the connecting portion 79 that connects the first portion 75 and the second portion 77 constituting the flexible substrate 73B. are superimposed on each other, the flexible substrate 73B can be deformed into a folded state inside the container 71 . Therefore, the flat flexible substrate 73B can be deformed into a smaller shape. Therefore, the volume occupied by the flexible substrate 73B can be further reduced, so that the light detection unit 23 can be further miniaturized.
 (第4項)また本実施形態に係る脳機能計測装置1は、第1項ないし第3項のいずれかに係る光検出ユニット23および被検体Mの脳に計測光Lを照射する光照射ユニット20を有しており、被検体Mの頭部に装着される計測ユニット3と、計測ユニット3と電気的に接続されており、A/Dコンバータ33によってデジタル変換された光信号に基づいて被検体Mの脳活動に関する計測データを取得する主制御部9を有する本体ユニット5と、を備える。 (Section 4) Further, the brain function measuring apparatus 1 according to the present embodiment includes the light detection unit 23 according to any one of the first to third items and the light irradiation unit for irradiating the brain of the subject M with the measurement light L. 20 , and is electrically connected to a measurement unit 3 attached to the head of the subject M, and is electrically connected to the measurement unit 3 . and a main unit 5 having a main control unit 9 for acquiring measurement data on the brain activity of the specimen M.
 第4項に記載の脳機能計測装置1によれば、A/D変換器を搭載する基板をフレキシブル基板とすることによって、光検出ユニットが備える収容容器の内部に配置できるように基板を曲げ変形することができる。そのため、光検出ユニットを小型化できるので光検出ユニットを本体ユニット側ではなく被検体の頭部に装着される計測ユニット側に配設できる。 According to the brain function measuring device 1 described in Item 4, by using a flexible substrate as the substrate on which the A/D converter is mounted, the substrate is bent and deformed so that it can be arranged inside the container provided with the photodetection unit. can do. Therefore, the photodetection unit can be miniaturized, so that the photodetection unit can be arranged on the side of the measurement unit attached to the head of the subject, not on the side of the main unit.
 このような構成により、光照射ユニット20から照射されて被検体Mの脳を透過した計測光Lは、光検出ユニット23が備える光検出器31で検出された後、速やかにA/Dコンバータ33でデジタル信号に変換される。従って、光信号をアナログ信号の状態で送信することに起因する光信号強度の低減を回避できるので、光信号のS/N比を向上させることができる。その結果、脳機能計測データの精度をさらに向上できる。 With such a configuration, the measurement light L emitted from the light irradiation unit 20 and transmitted through the brain of the subject M is detected by the photodetector 31 provided in the photodetection unit 23, and then promptly detected by the A/D converter 33. is converted into a digital signal. Therefore, it is possible to avoid reduction in optical signal intensity due to transmission of the optical signal in the form of an analog signal, thereby improving the S/N ratio of the optical signal. As a result, the accuracy of brain function measurement data can be further improved.
<他の実施例>
 なお、今回開示された実施例は、すべての点で例示であって制限的なものではない。本発明の範囲は、特許請求の範囲、並びに、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。例として、本発明は下記のように変形実施することができる。
<Other Examples>
Note that the embodiments disclosed this time are illustrative in all respects and are not restrictive. The scope of the present invention includes the claims and all changes within the meaning and range of equivalents to the claims. As an example, the present invention can be modified and implemented as follows.
 (1)上述した実施例において、本体ユニット5としてラップトップ型のコンピュータが用いられているがこれに限られない。本体ユニット5の他の例として、デスクトップ型のコンピュータまたはコンピュータを内蔵する台車などが挙げられる。 (1) In the above-described embodiment, a laptop computer is used as the main unit 5, but it is not limited to this. Other examples of the main unit 5 include a desktop computer or a trolley containing a computer.
 (2)上述した実施例または変形例において、計測ユニット3と本体ユニット5とをケーブル6で接続し、ケーブル6を介して脳機能計測データを計測ユニット3から本体ユニット5へ送信する構成を例として説明している。しかし、脳機能計測装置1において、計測ユニット3と本体ユニット5とを接続する構成は有線式に限ることはなく、計測ユニット3と本体ユニット5とを無線で接続してもよい。 (2) In the above-described embodiment or modified example, the measurement unit 3 and the main unit 5 are connected by the cable 6, and brain function measurement data is transmitted from the measurement unit 3 to the main unit 5 via the cable 6. is explained as However, in the brain function measuring device 1, the configuration for connecting the measurement unit 3 and the main unit 5 is not limited to a wired connection, and the measurement unit 3 and the main unit 5 may be connected wirelessly.
 本発明の実施形態では計測ユニット3の側に配設させた光検出ユニット23において計測光Lの検出信号を速やかにデジタル変換するので、デジタル変換された計測光Lの検出信号を無線によって本体ユニット5へと送信できる。計測ユニット3と本体ユニット5とを無線で接続することにより、脳機能の計測を行う際に被検体Mの行動可能範囲を拡大できるので、運動時または長距離移動時などを例とする、より多様な状況において脳機能の活動状況を計測できる。 In the embodiment of the present invention, since the detection signal of the measurement light L is rapidly converted into a digital signal by the photodetection unit 23 arranged on the side of the measurement unit 3, the detection signal of the digitally converted measurement light L is wirelessly transmitted to the main unit. 5 can be sent. By wirelessly connecting the measurement unit 3 and the main unit 5, it is possible to expand the actionable range of the subject M when measuring brain function. The activity status of brain function can be measured in various situations.
 (3)上述した実施例3において、フレキシブル基板73を柱状に変形させた場合、第1部位75、第2部位77、および第3部位103は互いに平行となるように重畳しているがこれに限られない。すなわち図23に示すように、第1部位75は収容容器71の内部底面(ここではxy平面)に平行となるように配置される一方、第2部位77および第3部位103は収容容器71の内部底面に対して傾斜するように連結部位79および連結部位109を折り曲げてもよい。また、第2部位77および第3部位103は第1部位75とサイズが同じである構成に限ることはなく、第2部位77および第3部位103は第1部位75と比べてサイズが小さくなるように構成してもよい。また、第2部位77および第3部位103は第1部位75と異なる形状であってもよい。 (3) In Example 3 described above, when the flexible substrate 73 is deformed into a columnar shape, the first portion 75, the second portion 77, and the third portion 103 are superimposed so as to be parallel to each other. Not limited. That is, as shown in FIG. 23, the first portion 75 is arranged parallel to the inner bottom surface (here, the xy plane) of the container 71, while the second portion 77 and the third portion 103 are arranged in the container 71. The connecting portion 79 and the connecting portion 109 may be bent so as to be inclined with respect to the inner bottom surface. In addition, the second portion 77 and the third portion 103 are not limited to the configuration having the same size as the first portion 75, and the second portion 77 and the third portion 103 are smaller in size than the first portion 75. It may be configured as Also, the second portion 77 and the third portion 103 may have different shapes from the first portion 75 .
 1   …脳機能計測装置
 3   …計測ユニット
 5   …本体ユニット
 6   …ケーブル
 7   …プローブユニット
 8   …プローブユニットホルダ
 9   …主制御部
 11  …操作部
 13  …記憶部
 15  …表示部
 17  …光出力部
 19  …送光プローブ
 20  …光照射ユニット
 21  …受光プローブ
 23  …光検出ユニット
 25  …頭部表皮
 29  …脳領域
 31  …光検出器
 39  …本体部
 41  …保持部材
 43  …接続部材
 51  …ベース部材
 53  …カバー部材
 57  …回動軸
 59  …櫛状部材
 71  …収容容器
 73  …フレキシブル基板
 75  …第1部位
 77  …第2部位
 79  …連結部位
 83  …転送回路
 85  …コネクタ部
 
 
DESCRIPTION OF SYMBOLS 1... Brain function measuring device 3... Measurement unit 5... Main unit 6... Cable 7... Probe unit 8... Probe unit holder 9... Main control part 11... Operation part 13... Storage part 15... Display part 17... Optical output part 19... Light transmitting probe 20 Light irradiation unit 21 Light receiving probe 23 Light detecting unit 25 Head epidermis 29 Brain region 31 Photodetector 39 Main body 41 Holding member 43 Connecting member 51 Base member 53 Cover Member 57 ... Rotating shaft 59 ... Comb-shaped member 71 ... Container 73 ... Flexible substrate 75 ... First part 77 ... Second part 79 ... Connection part 83 ... Transfer circuit 85 ... Connector part

Claims (4)

  1.  光を検出する光検出器と、
     前記光検出器を収容する筒状の収容容器と、
     前記光検出器が検出した光信号をアナログ信号からデジタル信号へと変換するA/D変換器を含む信号処理回路を搭載するフレキシブル基板と、
     を備え、
     前記フレキシブル基板は曲げ変形された状態で前記収容容器の内部に配置される光検出ユニット。
    a photodetector for detecting light;
    a cylindrical storage container that stores the photodetector;
    a flexible substrate mounted with a signal processing circuit including an A/D converter that converts the optical signal detected by the photodetector from an analog signal to a digital signal;
    with
    The photodetector unit, wherein the flexible substrate is arranged inside the housing container in a state of being bent and deformed.
  2.  請求項1に記載の光検出ユニットにおいて、
     前記フレキシブル基板は、
     前記光検出器と接続される第1部位と、
     前記A/D変換器を含む信号処理回路が搭載される第2部位と、
     前記第1部位と前記第2部位とを連結させる連結部位と、
     を備え、
     前記第1部位および前記第2部位が直交するように前記連結部位を折り曲げるとともに前記第2部位を曲げ変形させることによって、前記フレキシブル基板は前記収容容器の内面に沿った筒状に変形される光検出ユニット。
    The photodetection unit according to claim 1,
    The flexible substrate is
    a first portion connected to the photodetector;
    a second portion mounted with a signal processing circuit including the A/D converter;
    a connecting portion that connects the first portion and the second portion;
    with
    By bending the connecting portion so that the first portion and the second portion are perpendicular to each other and bending and deforming the second portion, the flexible substrate is deformed into a cylindrical shape along the inner surface of the container. detection unit.
  3.  請求項1に記載の光検出ユニットにおいて、
     前記フレキシブル基板は、
     前記光検出器と接続される第1部位と、
     前記A/D変換器を含む信号処理回路が搭載される第2部位と、
     前記第1部位と前記第2部位とを連結させる連結部位と、
     を備え、
     前記第1部位および前記第2部位が重畳するように前記連結部位を折り曲げることによって、前記フレキシブル基板は前記収容容器の内部で折り畳んだ状態に変形される光検出ユニット。
    The photodetection unit according to claim 1,
    The flexible substrate is
    a first portion connected to the photodetector;
    a second portion mounted with a signal processing circuit including the A/D converter;
    a connecting portion that connects the first portion and the second portion;
    with
    A light detection unit in which the flexible substrate is deformed into a folded state inside the receiving container by bending the connecting portion so that the first portion and the second portion overlap each other.
  4.  請求項1ないし請求項3のいずれかに記載の光検出ユニットおよび被検体の脳に光を照射する光照射ユニットを有しており、前記被検体の頭部に装着される計測ユニットと、
     前記計測ユニットと電気的に接続されており、前記A/D変換器によってデジタル変換された前記光信号に基づいて前記被検体の脳活動に関する計測データを取得する脳機能計測部を有する本体ユニットと、
     を備える脳機能計測装置。
    a measurement unit that has a light detection unit according to any one of claims 1 to 3 and a light irradiation unit that irradiates light onto the brain of a subject, and that is mounted on the head of the subject;
    a main body unit electrically connected to the measurement unit and having a brain function measurement unit that acquires measurement data relating to brain activity of the subject based on the optical signal digitally converted by the A/D converter; ,
    A brain function measuring device.
PCT/JP2021/040945 2021-02-09 2021-11-08 Light detection unit and brain function measuring apparatus using same WO2022172533A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022581186A JPWO2022172533A1 (en) 2021-02-09 2021-11-08
CN202180088214.7A CN116709984A (en) 2021-02-09 2021-11-08 Light detection unit and brain function measuring device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021018946 2021-02-09
JP2021-018946 2021-02-09

Publications (1)

Publication Number Publication Date
WO2022172533A1 true WO2022172533A1 (en) 2022-08-18

Family

ID=82838619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040945 WO2022172533A1 (en) 2021-02-09 2021-11-08 Light detection unit and brain function measuring apparatus using same

Country Status (3)

Country Link
JP (1) JPWO2022172533A1 (en)
CN (1) CN116709984A (en)
WO (1) WO2022172533A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231744A (en) * 2000-02-21 2001-08-28 Asahi Optical Co Ltd Capsule endoscope
JP2013013547A (en) * 2011-07-04 2013-01-24 Hitachi Ltd Optical measurement apparatus
JP2014215341A (en) * 2013-04-23 2014-11-17 キヤノン株式会社 Imaging device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231744A (en) * 2000-02-21 2001-08-28 Asahi Optical Co Ltd Capsule endoscope
JP2013013547A (en) * 2011-07-04 2013-01-24 Hitachi Ltd Optical measurement apparatus
JP2014215341A (en) * 2013-04-23 2014-11-17 キヤノン株式会社 Imaging device

Also Published As

Publication number Publication date
JPWO2022172533A1 (en) 2022-08-18
CN116709984A (en) 2023-09-05

Similar Documents

Publication Publication Date Title
US5313940A (en) Photo-electric pulse wave measuring probe
US9226703B2 (en) Holder and light measurement device employing same
JP5370497B2 (en) Holder and optical biometric apparatus using the same
US20130158413A1 (en) Optical measurement of physiological blood parameters
WO2006040841A1 (en) Instrument for noninvasively measuring blood sugar level
JP4214324B2 (en) Biological tissue measurement device
JP2009168670A (en) Optical measurement unit
JPH04106748U (en) Optical biomeasuring device
JP6146475B2 (en) Brain function measuring device and probe holder for brain function measuring device
US7139076B1 (en) Stable optical diffuse reflection measurement
JP2001037741A (en) Noninvasive blood glucose measurement method and noninvasive glycemic meter
JP5049415B2 (en) Optical measuring device, optical measuring system and calibration module
WO2022172533A1 (en) Light detection unit and brain function measuring apparatus using same
EP2323542A1 (en) Analysis by photo acoustic displacement and interferometryl
JP2009106376A (en) Sensing apparatus for biological surface tissue
JPWO2004110275A1 (en) Biological information measuring device and biological information measuring method
US10307062B2 (en) Holder and light measuring device using same
JP2023550206A (en) Raman probes and apparatus and methods for non-invasive in vivo measurement of analyte presence or concentration
JP2008289807A (en) Sensing apparatus for biological surface tissue
JP2008154687A (en) Optical measurement unit and optical measurement method using it
JP2017093808A (en) Portable biological information measurement device
JP6793944B2 (en) Portable measuring instrument
JP4325179B2 (en) Non-invasive biological component quantification device
JP4365827B2 (en) Biometric optical probe
JP2012075628A (en) Body fluid component measuring apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581186

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180088214.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925778

Country of ref document: EP

Kind code of ref document: A1