WO2022172367A1 - Method for predicting occurrence of defect in epitaxial silicon wafer and method for manufacturing epitaxial silicon wafer - Google Patents

Method for predicting occurrence of defect in epitaxial silicon wafer and method for manufacturing epitaxial silicon wafer Download PDF

Info

Publication number
WO2022172367A1
WO2022172367A1 PCT/JP2021/005014 JP2021005014W WO2022172367A1 WO 2022172367 A1 WO2022172367 A1 WO 2022172367A1 JP 2021005014 W JP2021005014 W JP 2021005014W WO 2022172367 A1 WO2022172367 A1 WO 2022172367A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus
silicon
epitaxial
density
silicon wafer
Prior art date
Application number
PCT/JP2021/005014
Other languages
French (fr)
Japanese (ja)
Inventor
浩三 中村
進 前田
剛士 仙田
吉亮 安部
真吾 成松
Original Assignee
グローバルウェーハズ・ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グローバルウェーハズ・ジャパン株式会社 filed Critical グローバルウェーハズ・ジャパン株式会社
Priority to KR1020237025220A priority Critical patent/KR20230124056A/en
Priority to PCT/JP2021/005014 priority patent/WO2022172367A1/en
Publication of WO2022172367A1 publication Critical patent/WO2022172367A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/206Controlling or regulating the thermal history of growing the ingot
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a method for predicting the occurrence of defects in an epitaxial silicon wafer and a method for manufacturing an epitaxial silicon wafer.
  • Epitaxial silicon wafers for power MOS transistors require substrates with low resistivity. For this reason, silicon wafers heavily doped with phosphorus (P) are used as substrates for epitaxial growth.
  • P phosphorus
  • SF stacking faults
  • the cause of SF (stacking fault) occurring in the epitaxial film is the cluster formed by combining phosphorus and oxygen formed in the crystal growth process of the substrate crystal, and they are the epitaxial film. It is estimated that SF (stacking fault) occurs at the interface between Then, by examining the relationship with the thermal history during cooling of the crystal, the density of SF has a correlation with the residence time of the crystal passing through the temperature range of 570 ° C ⁇ 70 ° C (500 ° C to 640 ° C), and its residence When the time is 200 minutes or more, SF (stacking fault) in the epitaxial wafer increases. However, Patent Document 1 does not confirm the presence of clusters formed by combining phosphorus and oxygen.
  • Patent Document 2 when annealing is performed for 30 minutes in an argon atmosphere at 1200° C. before epitaxial growth, the density and phosphorus concentration of SF (stacking fault) generated after epitaxial growth, and the temperature range of 570° C. ⁇ 70° C. of the crystal An empirical formula for the relationship between the residence time of the argon anneal and the epitaxial growth temperature has been proposed.
  • Non-Patent Document 3 a phosphorus-doped crystal of 1.0 m ⁇ cm is subjected to additional heat treatment from 400° C. to 800° C. in steps of 25° C. for 500 hours at each step, and changes in precipitation of phosphorus are investigated.
  • SiP precipitates between 500°C and 700°C, but when heated to 775°C, the SiP generated at the low-temperature step dissolves and disappears, and only SFs and dislocations are observed.
  • Some of the present inventors believe that when epitaxial growth treatment at 1130° C.
  • Patent Document 1 states that the cause of SFs (stacking faults) occurring in an epitaxial film is clusters formed by bonding phosphorus and oxygen formed during the crystal growth process of the substrate crystal.
  • SFs stacking faults
  • some of the present inventors have reported in Non-Patent Document 1 that in a high-concentration phosphorus-doped crystal (resistivity of 0.87 m ⁇ cm), high-density SiP precipitates are formed in the as-grown state. It is reported by TEM observation that it exists.
  • SiP is a compound of silicon and phosphorus, and unlike the speculation in Patent Document 1, does not contain oxygen.
  • Patent Document 1 in an epitaxial film using a phosphorus-doped substrate having a resistivity of 0.7 m ⁇ cm or more and 0.9 m ⁇ cm or less, in order to reduce SF (stacking fault) to 0.1/cm 2 or less, states that the residence time in the temperature range from 500° C. to 640° C. in the crystal growth process of the substrate crystal must be 200 minutes or less.
  • the temperature range during crystal growth to be controlled is 500° C. to 640° C. when the phosphorus doping is 0.7 m ⁇ cm or more and 0.9 m ⁇ cm or less, if the resistivity is outside the above range
  • the temperature range to be managed is unknown.
  • the temperature range to be managed is considered to correspond to the temperature zone in which SiP precipitates are generated and grow, it is thought that it changes depending on the resistivity (phosphorus concentration). In this method, it is necessary to find the temperature range to be controlled for each resistivity by experiment, and a great number of experiments are required.
  • Patent Document 2 since the method described in Patent Document 2 is also an empirical formula, it can only be applied within the range of the sample conditions from which the empirical formula was derived. Note that the resistivities of the samples from which the empirical formula was derived in Patent Document 2 are 0.6725, 0.68375, and 0.7225 m ⁇ cm, and the applicable range is very narrow. Moreover, it can be applied only when annealing is performed in an argon atmosphere at 1200° C. for 30 minutes before epitaxial growth.
  • Patent Document 2 one of the mechanisms for reducing SF (stacking fault) by lowering the furnace temperature at the time of loading the wafer in the pre-annealing process is that the amount of interstitial silicon introduced into the wafer is reduced.
  • the amount of interstitial silicon introduced into the wafer is reduced.
  • the diffusion coefficient of interstitial atoms is several orders of magnitude larger than that of atoms at substitution sites.
  • the method described in Patent Document 2 does not consider the influence of interstitial phosphorus.
  • the present invention has been made in view of the above problems, and provides a method for predicting the occurrence of defects in an epitaxial silicon wafer and a method for manufacturing an epitaxial silicon wafer for any given phosphorus concentration and crystal thermal history. With the goal.
  • a method for predicting the occurrence of defects in an epitaxial silicon wafer according to the present invention is a method for predicting the occurrence of defects in an epitaxial silicon wafer manufactured by growing an epitaxial film using a silicon single crystal doped with phosphorus as a substrate.
  • a generation prediction method comprising: a thermal history calculation step of calculating a cooling curve of the silicon single crystal from temperature characteristics and a pulling rate including a pulling apparatus for manufacturing the silicon single crystal; a concentration calculation step of calculating at least the concentration of interstitial phosphorus in each temperature process of the cooling curve from the concentration; A precipitate calculation step of calculating the size and density of the substance, a defect estimation step of estimating the density of defects (SF: stacking fault) in the silicon wafer after epitaxial growth from the size and density of the phosphorous and silicon precipitates; including.
  • SF stacking fault
  • the precipitates of phosphorus and silicon that cause stacking faults (SFs) in the epitaxial silicon wafer are more interstitial than the phosphorus present at the substitution position.
  • Phosphorus is considered to be the cause, and the method of predicting the occurrence of defects can be improved by calculating mainly the concentration of interstitial phosphorus.
  • the concentration calculation step it is preferable to calculate not only the concentration of interstitial phosphorus but also the concentration of vacancies, interstitial silicon, and reactants between phosphorus and vacancies. This is because interstitial phosphorus undergoes various reactions with vacancies, interstitial silicon, and reactants of phosphorus and vacancies during the crystal cooling process.
  • the defect estimation step it is preferable to estimate the density of defects in the silicon wafer after the epitaxial growth using a threshold value of the size of precipitates of phosphorous and silicon to be detected determined in advance experiments. This is because the size of the SF (stacking fault) to be annealed out also changes depending on the pre-baking conditions performed in the previous stage of the epitaxial growth.
  • the threshold size of the precipitates of phosphorus and silicon is set to 12 nm
  • pre-baking is performed in a hydrogen atmosphere at 1130° C. for 60 seconds, and then an epitaxial film of 3 ⁇ m is grown at 1130° C., which is suitable for epitaxial conditions. be.
  • the occurrence of defects is predicted, and if the density of predicted defects does not satisfy a specified level, the pulling speed is adjusted to reduce the number of predicted defects. It is preferable to manufacture a phosphorus-doped silicon single crystal under the condition that the density satisfies a specified level, and grow an epitaxial film using the silicon single crystal as a substrate. Predicting defect density prior to actual manufacturing improves yield. Furthermore, it is conceivable to adjust the pre-baking conditions performed in the previous stage of epitaxial growth.
  • the present invention it is possible to provide a method for predicting the occurrence of defects in an epitaxial silicon wafer and a method for manufacturing an epitaxial silicon wafer for any phosphorus concentration and crystal thermal history.
  • FIG. 1 is a schematic diagram of an example of a single crystal pulling apparatus using the CZ method.
  • FIG. 2 is a graph showing the resistivity at each position on the straight body of Crystal 1 and Crystal 2.
  • FIG. 3 is a graph showing cooling curves at respective positions on the straight body of the crystal 1.
  • FIG. 4 is a graph showing cooling curves at respective positions on the straight body of the crystal 2.
  • FIG. 5 is a graph showing the densities of SFs (stacking faults) after epitaxial growth at each position on the straight body of Crystal 1 and Crystal 2 when the crystals were used as substrates.
  • FIG. 6 is a graph showing the SiP density calculated for crystal 1.
  • FIG. FIG. 7 is a graph showing the SiP density calculated for crystal 2.
  • FIG. 8 is a graph comparing experimental results and calculation results of the relationship between the SF (stacking fault) density of the epitaxial film in the crystal 1 and the straight body position.
  • FIG. 9 is a graph comparing experimental results and calculation results of the relationship between the SF (stacking fault) density of the epitaxial film in the crystal 2 and the straight body position.
  • FIG. 10 is a flow chart schematically showing the procedure of the defect occurrence prediction method.
  • a method for predicting the occurrence of defects in an epitaxial silicon wafer according to an embodiment of the present invention will be described below with reference to the drawings.
  • the method for predicting the occurrence of defects in an epitaxial silicon wafer according to the embodiments of the present invention is not limited to the embodiments described below.
  • the attached drawings are schematic, and the dimensions and proportions of each element may differ from the actual ones.
  • SiP is generated and grows during a temperature interval of 570° C. ⁇ 70° C. (500° C. to 640° C.) during the cooling process of the crystal.
  • SiP dissolves and SF remains in the crystal during pre-baking heating performed in the preceding stage of epitaxial growth.
  • the size of SiP is small, so the size of SF generated is also small.
  • SFs (stacking faults) near the surface layer are annealed out in the pre-baking process, and no SFs remain on the surface layer when epitaxial growth is started.
  • the residence time between the temperature intervals of 570° C. ⁇ 70° C. (500° C. to 640° C.) is long in the cooling process during crystal growth, the size of SiP increases, resulting in SF (stacking).
  • SFs (stacking faults) near the surface layer are not annealed out during the pre-baking process. Then, SF remaining on the surface layer when epitaxial growth is started propagates as SF into the epitaxial film.
  • FIG. 1 is a schematic diagram of an example of a single crystal pulling apparatus using the CZ (Czochralski) method.
  • the pulling apparatus shown in FIG. 1 has a general structure, and a quartz crucible 3 filled with a raw material melt 2 is rotatably installed in the center of the furnace 1 .
  • a side heater 4 for heating the quartz crucible 3 from the side circumference and a bottom heater 5 for heating the quartz crucible 3 from the bottom are installed around the quartz crucible 3 .
  • a radiation shield 6 is provided above the quartz crucible 3 for temperature control of the raw material melt 2 in the quartz crucible 3 and the crystal 9 to be pulled up.
  • a seed crystal 8 held at the lower end of a wire 7 is brought into contact with the liquid surface of the raw material melt 2 in the quartz crucible 3, and while the quartz crucible 3 and the seed crystal 8 are rotated, , the wire 7 is pulled up to grow the crystal 9 .
  • Model the structure of the pulling machine used for crystal growth as shown in Fig. 1 with a mesh structure enter the physical property values for each member, and enter the pulling speed corresponding to the length position of the crystal. Then, the surface temperature distribution of each member is calculated based on the amount of heat generated by the heater and the emissivity of each member. On the other hand, the internal temperature distribution of each member is calculated by solving the heat conduction equation based on the surface temperature distribution and thermal conductivity of each member. In this way, the temperature distribution inside the pulled crystal is calculated. In addition, the cooling curve of the entire crystal including the temperature distribution inside the crystal is calculated by considering the pulling speed of the crystal.
  • Non-Patent Document 2 it is believed that phosphorus atoms in silicon exist mainly at positions substituted for silicon lattice points, and partly exist at interstitial sites of silicon.
  • the diffusion coefficient of phosphorus atoms present at substitution positions is well known, and it is known that they hardly move in the temperature range where SiP is thought to occur.
  • atoms existing between lattices generally diffuse at high speed. Therefore, it is believed that it is the interstitial phosphorus, rather than the phosphorus present at the substitution sites, that forms the SiP.
  • Non-Patent Document 2 the reaction between phosphorus atoms and point defects in silicon crystals is assumed as follows.
  • P 2 S the case where it exists at a position substituting a silicon atom at a lattice point
  • P 1 the case where it exists between silicon lattices
  • V denotes atomic vacancies
  • I denotes interstitial silicon.
  • PV is the reaction product of phosphorus and vacancies
  • P s+ is the positively charged phosphorus at the substitution position
  • e is the electron
  • P i ⁇ is the negatively charged interstitial phosphorus.
  • equation (1) shows the reaction with the vacancies
  • the compound of the vacancies and phosphorus is electrically neutral.
  • equation (2) since it is assumed that the interstitial phosphorus P i is negatively charged, the charge change is considered. Reference was made to Non-Patent Document 2 for this assumption.
  • CV N/C PV K V (3)
  • CIN/ CPi KI( ni / n ) 2 (4)
  • CV is the concentration of vacancies
  • N is the concentration of phosphorus
  • CPV is the concentration of PV
  • CI is the concentration of interstitial silicon
  • CPi is the concentration of Pi
  • n is the concentration of electrons
  • ni is the intrinsic electron concentration.
  • Equation (5) ni is expressed by Equation (5).
  • n i (cm ⁇ 3 ) 1.568 ⁇ 10 15 T 3/2 exp[ ⁇ 1.17 ⁇ (4.9 ⁇ 10 ⁇ 4 T 2 /(T+655)) ⁇ /2k B T] (5)
  • T absolute temperature (K)
  • kB Boltzmann's constant 8.6257 ⁇ 10 ⁇ 5 (eV/K).
  • n N/ 2 +[ N2 /4+ ni2 ] 1/2 (6)
  • Equation (3) it can be seen from equation (3) that CPV is proportional to N.
  • Equation (8) the reaction rate of the pair annihilation reaction is shown by Equation (8).
  • C V eq and C I eq are the thermal equilibrium concentrations of vacancies and interstitial silicon, respectively.
  • K IV is represented by Formula (9).
  • ⁇ G is a barrier for pair annihilation reactions, and since ⁇ G is generally assumed to be zero, it was set to zero here.
  • CV CV eq at 1685K
  • C I C I eq at 1685K
  • PV C V eq N/K V at 1685K
  • C Pi NR at 1685K (20)
  • Changes in V and I during cooling are determined by equation (8) for each temperature drop to determine changes in C V and C I . Then, changes in CVT and CIT are determined from changes in Cv and CI , and CPV and CPi are determined from equations (12) and (19). By obtaining this for each temperature lowering step, changes in concentration of V, I , PV and Pi can be obtained.
  • each temperature-dependent parameter is set as shown in Equations (21) to (26).
  • nucleation is considered as a process that overcomes the energy barrier associated with cluster formation by thermal fluctuation.
  • SiP is a sphere.
  • the change in free energy associated with the generation of a particle of radius R is given as follows.
  • is the volume per molecule of SiP (4.08 ⁇ 10 ⁇ 23 cm 3 ).
  • f is the chemical potential of phosphorus, and -f indicates the energy change of the system when one SiP is deposited.
  • k B in Equations (27) and (28) is 1.381 ⁇ 10 ⁇ 16 (erg/K).
  • ⁇ G(R) takes a maximum value with increasing radius.
  • the radius at the maximum value is the critical radius R cri and the maximum value of ⁇ G(R) is ⁇ G*.
  • ⁇ G* represents the energy barrier associated with cluster formation.
  • the frequency of nucleation is defined as the frequency at which a nucleus with the size of R cri is generated due to thermal fluctuations and the frequency at which another atom is added to the nucleus to overcome the peak of the maximum value and form a precipitate. be.
  • the steady-state nucleation rate I is represented by equation (31).
  • is the capture rate of the element to the critical nucleus
  • Z is a factor called Zeldovich factor that corrects the ratio of the thermal equilibrium density to the steady state density.
  • ⁇ eq is the thermal equilibrium density of the critical nucleus.
  • ⁇ eq ⁇ exp ( ⁇ G*/kBT) (32) where ⁇ is the density of silicon sites (5 ⁇ 10 22 cm ⁇ 3 ).
  • each occurrence speed I is represented by the following formula (35).
  • SiP is generated at the rate shown in formula (35).
  • the density of SiP generated during every 30 seconds is integrated, and the growth of SiP and the absorption of interstitial phosphorus generated in each time interval are calculated until cooling is completed.
  • the absorption flux of phosphorus by SiP is shown in equation (37).
  • Equation (37) above represents the interstitial phosphorus absorbed by one SiP. This is integrated and added to the change in interstitial phosphorus concentration.
  • D Pi is given by equation (38).
  • the concentrations of atomic vacancies V, interstitial silicon I , phosphorus and vacancy reactants PV, and interstitial phosphorus Pi during the cooling process of the crystal are obtained, and generation and growth of SiP are calculated.
  • FIG. 2 is a graph showing the resistivity at each position on the straight body of Crystal 1 and Crystal 2.
  • crystal 1 varies in resistivity from 0.9 m ⁇ cm to 0.7 m ⁇ cm and crystal 2 varies in resistivity from 0.75 m ⁇ cm to 0.55 m ⁇ cm.
  • Crystal 1 and Crystal 2 are used to evaluate the occurrence of defects in a wide range of resistivities.
  • FIG. 3 is a graph showing the cooling curve at each position on the straight body of the crystal 1
  • FIG. 4 is a graph showing the cooling curve at each position on the straight body of the crystal 2.
  • ⁇ Epitaxial condition> The manufacturing conditions for the epitaxial film are as follows. First, as pre-baking, pre-baking is performed in a hydrogen atmosphere at 1130° C. for 60 seconds. Thereafter, an epitaxial film of 3 ⁇ m is grown at 1130° C. for epitaxial growth.
  • SF Stacking fault evaluation> An epitaxial silicon wafer produced as described above is inspected for stacking faults. SFs (stacking faults) can be detected by etching, confirmed with the naked eye or under an optical microscope, and the density can be determined.
  • FIG. 5 is a graph showing the densities of SFs (stacking faults) after epitaxial growth when the crystals at each position on the straight body of Crystal 1 and Crystal 2 are used as substrates. This experimental result is compared with the SiP obtained by the calculation method described above.
  • FIG. 6 and 7 are graphs showing SiP densities calculated by the method described above for crystal 1 and crystal 2, respectively.
  • FIG. 6 shows the relationship between the density and the position in the straight body of SiP radii of >4, >6, >8, >10, >12, >14, and >16 nm, respectively, calculated under the manufacturing conditions of crystal 1. showing relationships.
  • FIG. 7 shows the same calculation results under the manufacturing conditions of crystal 2.
  • SiP melts in the hydrogen baking process that precedes epitaxial processing, leaving SFs, but small SFs (stacking faults) near the surface disappear.
  • the size of the SF remaining after the SiP dissolves is determined by the size of the SiP. Therefore, the longer the time passed through 570° C. ⁇ 70° C., which is considered to be the generation/growth period of SiP, the larger the size of SiP and the more SFs that do not disappear in the process of hydrogen baking.
  • the size of SF generated after SiP is dissolved is equal to the size of SiP.
  • the density at which SF is partially exposed on the surface and taken over by the epitaxial film is 2rD(r), where the density of particles with a radius of r is D(r) (particles/cm 3 ). become. Also, if the radius of SiP is smaller than the threshold value R cri , it is considered that the SF generated after the dissolution of SiP disappears due to hydrogen pake. Therefore, the number per area exposed on the surface was calculated with a radius r greater than the threshold value R cri .
  • the density SF(R) (particles/cm 2 ) at which particles above the threshold value R appear on the surface is expressed by the following equation (39).
  • SF(R) in Equation (39) represents SiPs with a radius R or greater, that is, the number of SFs exposed on the surface per area.
  • 8 and 9 show the experimental results of the relationship between the SF (stacking fault) density and the straight body position of the epitaxial films in crystal 1 and crystal 2, respectively, and calculations with threshold values of 8, 10, 12, 14, and 16 nm. It compares the relationship between the SF (stacking fault) density and the straight body position. 8 and 9 that the calculated SF (stacking fault) density with a threshold of 12 nm agrees with the experimental results.
  • FIG. 10 is a flow chart schematically showing the procedure of the defect occurrence prediction method.
  • Step S1 obtain the temperature characteristics including the pulling equipment that manufactures the silicon single crystal doped with phosphorus (Step S1). Since the lifting device has a structure as shown in FIG. 1, for example, heat transfer analysis is performed using the capabilities of the side heater 4 and the bottom heater 5, the positional relationship of the radiation shield 6, etc., and the physical property values of each member. Get information for
  • the cooling curve of the crystal is calculated from the pulling speed for actually producing the silicon single crystal doped with phosphorus (Step S2).
  • Step S3 From the concentration of phosphorus doped into the silicon single crystal, at least the concentration of interstitial phosphorus in each temperature process of the cooling curve is calculated (Step S3).
  • the precipitates of phosphorus and silicon (SiP) that cause stacking faults (SF: stacking faults) in epitaxial silicon wafers have more interstitial phosphorus (P i ) than phosphorus present at substitution positions. This is because it is considered to be the cause.
  • Step S3 this is not limited to calculating only the concentration of interstitial phosphorus (P i ). This is because interstitial phosphorus (P i ) undergoes various reactions with vacancies (V), interstitial silicon (I), and reactants (PV) of phosphorus and vacancies during the crystal cooling process. Therefore, in the calculation in Step S3, not only the concentration of interstitial phosphorus but also the concentration of vacancies (V), interstitial silicon (I), and reactants (PV) between phosphorus and vacancies can be calculated. preferable.
  • Step S4 After that, from the supersaturation of interstitial phosphorus (P i ) during cooling of the crystal, the size and density of precipitates of phosphorus and silicon (SiP) at the completion of cooling are calculated (Step S4).
  • the density of defects in the silicon wafer after epitaxial growth is estimated from the size and density of precipitates of phosphorus and silicon (SiP) when cooling is completed (Step S5).
  • SiP size and density of precipitates of phosphorus and silicon
  • an experiment was conducted in advance on the relationship between the size and density of precipitates of phosphorus and silicon (SiP) and the density of defects in the silicon wafer after epitaxial growth, and the precipitates of phosphorus and silicon to be detected It is preferable to set a threshold for the size of (SiP). This is because the size of the SF (stacking fault) to be annealed out also changes depending on the pre-baking conditions performed in the previous stage of the epitaxial growth.
  • the threshold of the size of precipitates of phosphorus and silicon (SiP) is set to 12 nm.
  • the SF (stacking fault) density agrees with the experimental results.
  • defect occurrence prediction method described above can also be implemented as an epitaxial silicon wafer manufacturing method in which an epitaxial film is grown on a silicon substrate doped with phosphorus.
  • the occurrence of defects is predicted from the concentration of phosphorus doped in the silicon single crystal and the pulling speed of the crystal. It is conceivable to manufacture an epitaxial silicon wafer under the condition that the density of defects satisfies a specified level.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Provided is a method that is for predicting the occurrence of a defect (stacking fault (SF)) in an epitaxial silicon wafer when the phosphorus concentration is to be defined arbitrarily and crystal thermal hysteresis is present. This method for predicting the occurrence of a defect comprises: a step for calculating a cooling curve of a silicon monocrystal; a step for calculating the concentration of at least interstitial phosphorus in each temperature process from the concentration phosphorus contained as a dopant; a step for calculating the size and density of depositions of phosphorus and silicon at the time of completion of cooling, from the degree of supersaturation of interstitial phosphorus during cooling; and a defect estimation step for estimating the density of defects (stacking faults (SFs)) in a silicon wafer after epitaxial growth, from the size and density of the depositions of phosphorus and silicon.

Description

エピタキシャルシリコンウェーハにおける欠陥の発生予測方法およびエピタキシャルシリコンウェーハの製造方法Method for predicting occurrence of defects in epitaxial silicon wafer and method for manufacturing epitaxial silicon wafer
 本発明は、エピタキシャルシリコンウェーハにおける欠陥の発生予測方法およびエピタキシャルシリコンウェーハの製造方法に関する。 The present invention relates to a method for predicting the occurrence of defects in an epitaxial silicon wafer and a method for manufacturing an epitaxial silicon wafer.
 パワーMOSトランジスタ用のエピタキシャルシリコンウェーハには、基板の抵抗率が低いことが要求される。このために、リン(P)を高濃度にドープしたシリコンウェーハがエピタキシャル成長の基板として用いられている。 Epitaxial silicon wafers for power MOS transistors require substrates with low resistivity. For this reason, silicon wafers heavily doped with phosphorus (P) are used as substrates for epitaxial growth.
 一方、基板の抵抗率が0.9mΩcmよりも低い場合には、エピタキシャル膜に積層欠陥(Stacking faults, 以下SFと呼ぶ)が多数発生することが知られている。これらのSF(スタッキングフォルト)はエッチングにより検出することができ、肉眼や光学顕微鏡下で確認でき、密度を出すことができる。このSF(スタッキングフォルト)はパワーMOSトランジスタを作成する上で不具合を生じる。そこで、当該欠陥の発生を抑制するために各種方法が試みられている。 On the other hand, it is known that when the resistivity of the substrate is lower than 0.9 mΩcm, many stacking faults (hereinafter referred to as SF) occur in the epitaxial film. These SFs (stacking faults) can be detected by etching, can be confirmed with the naked eye or under an optical microscope, and the density can be obtained. This SF (stacking fault) causes a problem in fabricating a power MOS transistor. Therefore, various methods have been tried to suppress the occurrence of such defects.
 例えば、特許文献1では、エピタキシャル膜に発生するSF(スタッキングフォールト)の原因は、基板結晶の結晶成長の過程において形成されたリンと酸素とが結合してできたクラスターであり、それらがエピタキシャル膜との界面において、SF(スタッキングフォルト)の発生の起点になると推定している。そして、結晶の冷却中の熱履歴との関係を調べることにより、SFの密度は結晶が570℃±70℃(500℃から640℃)の温度範囲を通過する滞在時間と相関を持ち、その滞在時間が200分以上の場合にエピタキシャルウェーハにおけるSF(スタッキングフォルト)が多くなるとしている。但し、特許文献1では、リンと酸素とが結合して生じたクラスターの存在は確認されていない。また、特許文献1にてリンと酸素とが結合して生じたクラスターをSFの原因に想定した理由は、570℃±70℃の温度範囲においてリン原子は拡散できないので、拡散の可能性がある酸素原子がリン原子の周りに集まることを推測したからである。 For example, in Patent Document 1, the cause of SF (stacking fault) occurring in the epitaxial film is the cluster formed by combining phosphorus and oxygen formed in the crystal growth process of the substrate crystal, and they are the epitaxial film. It is estimated that SF (stacking fault) occurs at the interface between Then, by examining the relationship with the thermal history during cooling of the crystal, the density of SF has a correlation with the residence time of the crystal passing through the temperature range of 570 ° C ± 70 ° C (500 ° C to 640 ° C), and its residence When the time is 200 minutes or more, SF (stacking fault) in the epitaxial wafer increases. However, Patent Document 1 does not confirm the presence of clusters formed by combining phosphorus and oxygen. In addition, in Patent Document 1, the reason why the cluster formed by combining phosphorus and oxygen is assumed to be the cause of SF is that phosphorus atoms cannot diffuse in the temperature range of 570 ° C. ± 70 ° C., so there is a possibility of diffusion. This is because we speculated that the oxygen atoms clustered around the phosphorus atom.
 また、特許文献2では、エピタキシャル成長前に1200℃のアルゴン雰囲気で30分のアニールをした場合に、エピタキシャル成長後に生じるSF(スタッキングフォルト)の密度とリン濃度、結晶の570℃±70℃の温度範囲での滞在時間、アルゴンアニールでの投入温度、エピタキシャル成長温度との間の関係の実験式が提案されている。 Further, in Patent Document 2, when annealing is performed for 30 minutes in an argon atmosphere at 1200° C. before epitaxial growth, the density and phosphorus concentration of SF (stacking fault) generated after epitaxial growth, and the temperature range of 570° C.±70° C. of the crystal An empirical formula for the relationship between the residence time of the argon anneal and the epitaxial growth temperature has been proposed.
 また、非特許文献3では、リンドープの1.0mΩcmの結晶を400℃から800℃まで、25℃ステップにて温度を上げながら各ステップ500時間の追加熱処理を施し、リンの析出の変化を調べている。その結果、500℃から700℃の間ではSiPが析出するが、775℃に加熱すると低温側のステップにて発生したSiPは溶解・消滅し、SFおよび転位のみが観察されることが示されている。本発明者らの一部は高密度のSiP析出物が存在している結晶に1130℃でのエピタキシャル成長処理を加えると、ウェーハのバルク部のSiPは消滅し、As grownにおいて存在したSiPの密度と同じ密度のSF(スタッキングフォルト)が存在していることを観察している。 Further, in Non-Patent Document 3, a phosphorus-doped crystal of 1.0 mΩcm is subjected to additional heat treatment from 400° C. to 800° C. in steps of 25° C. for 500 hours at each step, and changes in precipitation of phosphorus are investigated. there is As a result, SiP precipitates between 500°C and 700°C, but when heated to 775°C, the SiP generated at the low-temperature step dissolves and disappears, and only SFs and dislocations are observed. there is Some of the present inventors believe that when epitaxial growth treatment at 1130° C. is applied to a crystal in which high-density SiP precipitates are present, the SiP in the bulk portion of the wafer disappears, and the SiP density that existed in the as-grown We observe that the same density of SFs (stacking faults) is present.
特許5890587号公報Japanese Patent No. 5890587 特開2019-142733号公報JP 2019-142733 A
 上記のように、エピタキシャル膜におけるSF(スタッキングフォルト)の発生を抑制する方法が提案されているが、以下に説明するように、まだ十分ではないという状況にある。なお、以下の分析は本発明者らによってなされたものである。 As described above, methods for suppressing the occurrence of SF (stacking faults) in epitaxial films have been proposed, but as will be explained below, they are still insufficient. The following analysis was made by the present inventors.
 例えば、特許文献1では、エピタキシャル膜に発生するSF(スタッキングフォルト)の原因は、基板結晶の結晶成長の過程において形成されたリンと酸素とが結合してできたクラスターであるとしている。しかしながら、本発明者らの一部は、非特許文献1において、高濃度のリンドープ(抵抗率0.87mΩcm)の結晶では、As grown(成長したまま)の状態において、高密度のSiP析出物が存在していることをTEM観察により報告している。ここで、SiPはシリコンとリンの化合物であり、特許文献1での推測とは異なり、酸素を含んでいない。 For example, Patent Document 1 states that the cause of SFs (stacking faults) occurring in an epitaxial film is clusters formed by bonding phosphorus and oxygen formed during the crystal growth process of the substrate crystal. However, some of the present inventors have reported in Non-Patent Document 1 that in a high-concentration phosphorus-doped crystal (resistivity of 0.87 mΩcm), high-density SiP precipitates are formed in the as-grown state. It is reported by TEM observation that it exists. Here, SiP is a compound of silicon and phosphorus, and unlike the speculation in Patent Document 1, does not contain oxygen.
 また、特許文献1では、リンドープにて抵抗率が0.7mΩcm以上0.9mΩcm以下の基板を用いたエピキタキシャル膜において、SF(スタッキングフォルト)を0.1個/cm以下にするためには、基板結晶の結晶成長過程における500℃から640℃の温度範囲の間の滞在時間を200分以下にすることが必要であるとしている。しかしながら、リンドープにて、0.7mΩcm以上0.9mΩcm以下の場合は管理すべき結晶成長中の温度範囲が500℃から640℃であることは示されているが、抵抗率が上記範囲外の場合の管理すべき温度範囲は不明である。管理すべき温度範囲は、SiP析出物が発生して成長する温度区間に対応すると考えられるため、抵抗率(リン濃度)に依存して変化すると考えられるので、特許文献1の方法を適用するには、抵抗率毎に管理すべき温度範囲を実験により求める必要があり、多大の実験回数を要する。 Further, in Patent Document 1, in an epitaxial film using a phosphorus-doped substrate having a resistivity of 0.7 mΩcm or more and 0.9 mΩcm or less, in order to reduce SF (stacking fault) to 0.1/cm 2 or less, states that the residence time in the temperature range from 500° C. to 640° C. in the crystal growth process of the substrate crystal must be 200 minutes or less. However, although it is shown that the temperature range during crystal growth to be controlled is 500° C. to 640° C. when the phosphorus doping is 0.7 mΩcm or more and 0.9 mΩcm or less, if the resistivity is outside the above range The temperature range to be managed is unknown. Since the temperature range to be managed is considered to correspond to the temperature zone in which SiP precipitates are generated and grow, it is thought that it changes depending on the resistivity (phosphorus concentration). In this method, it is necessary to find the temperature range to be controlled for each resistivity by experiment, and a great number of experiments are required.
 また、特許文献2に記載の方法も実験式であるので、実験式を導出したサンプルの条件の範囲でしか適用できない。なお、特許文献2において実験式を導出したサンプルの抵抗率は0.6725,0.68375,0.7225mΩcmであり、適用範囲は非常に狭い。また、エピタキシャル成長前に1200℃で30分のアルゴン雰囲気でのアニールをした場合にしか適用できない。 In addition, since the method described in Patent Document 2 is also an empirical formula, it can only be applied within the range of the sample conditions from which the empirical formula was derived. Note that the resistivities of the samples from which the empirical formula was derived in Patent Document 2 are 0.6725, 0.68375, and 0.7225 mΩcm, and the applicable range is very narrow. Moreover, it can be applied only when annealing is performed in an argon atmosphere at 1200° C. for 30 minutes before epitaxial growth.
 なお、特許文献2には、プレアニール工程におけるウェーハ投入時炉内温度を低くすることでSF(スタッキングフォルト)が低減するメカニズムの一つとして、ウェーハ内に導入される格子間シリコンの量が少なくなることを挙げている。しかしながら、非特許文献2に示されるように、リンドープ結晶においてはリン原子の殆どはシリコン原子が存在する格子位置を置換した位置に存在するが、一部のリン原子はシリコンの格子間に存在する。そして、一般に格子間原子の拡散係数は置換位置の原子のそれより数桁大きい。他方、特許文献2に記載の方法は、格子間リンの影響を考慮するものではない。 In addition, in Patent Document 2, one of the mechanisms for reducing SF (stacking fault) by lowering the furnace temperature at the time of loading the wafer in the pre-annealing process is that the amount of interstitial silicon introduced into the wafer is reduced. I am mentioning. However, as shown in Non-Patent Document 2, in the phosphorus-doped crystal, most of the phosphorus atoms are present at positions substituted for the lattice positions where silicon atoms are present, but some phosphorus atoms are present between silicon lattices. . In general, the diffusion coefficient of interstitial atoms is several orders of magnitude larger than that of atoms at substitution sites. On the other hand, the method described in Patent Document 2 does not consider the influence of interstitial phosphorus.
 このように、エピタキシャル膜におけるSF(スタッキングフォルト)の発生を抑制する方法が提案されているが、任意の抵抗率(すなわちリン濃度)に適用できるものではない。また、結晶の熱履歴に関する適用範囲も限定的である。 In this way, methods for suppressing the occurrence of SF (stacking faults) in epitaxial films have been proposed, but they are not applicable to arbitrary resistivities (that is, phosphorus concentrations). In addition, the scope of application regarding the thermal history of crystals is also limited.
 本発明は、上記課題に鑑みてなされたものであり、任意のリン濃度および結晶の熱履歴の場合を対象としたエピタキシャルシリコンウェーハにおける欠陥の発生予測方法およびエピタキシャルシリコンウェーハの製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a method for predicting the occurrence of defects in an epitaxial silicon wafer and a method for manufacturing an epitaxial silicon wafer for any given phosphorus concentration and crystal thermal history. With the goal.
 上記目的を達成するためになされた本発明に係るエピタキシャルシリコンウェーハにおける欠陥の発生予測方法は、リンをドープしたシリコン単結晶を基板に用いてエピタキシャル膜を成長させて製造するエピタキシャルシリコンウェーハにおける欠陥の発生予測方法であって、前記シリコン単結晶を製造する引き上げ装置を含めた温度特性と引き上げ速度から前記シリコン単結晶の冷却カーブを計算する熱履歴計算ステップと、前記シリコン単結晶にドープしたリンの濃度から、前記冷却カーブの各温度過程における少なくとも格子間リンの濃度を計算する濃度計算ステップと、前記シリコン単結晶の冷却中の格子間リンの過飽和度から、冷却完了時におけるリンとシリコンの析出物のサイズおよび密度を計算する析出物計算ステップと、前記リンとシリコンの析出物のサイズおよび密度から、エピタキシャル成長後のシリコンウェーハにおける欠陥(SF:スタッキングフォルト)の密度を推定する欠陥推定ステップと、を含む。 A method for predicting the occurrence of defects in an epitaxial silicon wafer according to the present invention, which has been made to achieve the above object, is a method for predicting the occurrence of defects in an epitaxial silicon wafer manufactured by growing an epitaxial film using a silicon single crystal doped with phosphorus as a substrate. A generation prediction method, comprising: a thermal history calculation step of calculating a cooling curve of the silicon single crystal from temperature characteristics and a pulling rate including a pulling apparatus for manufacturing the silicon single crystal; a concentration calculation step of calculating at least the concentration of interstitial phosphorus in each temperature process of the cooling curve from the concentration; A precipitate calculation step of calculating the size and density of the substance, a defect estimation step of estimating the density of defects (SF: stacking fault) in the silicon wafer after epitaxial growth from the size and density of the phosphorous and silicon precipitates; including.
 上記の構成のエピタキシャルシリコンウェーハにおける欠陥の発生予測方法は、エピタキシャルシリコンウェーハにおける積層欠陥(SF:スタッキングフォルト)の原因となるリンとシリコンの析出物は、置換位置に存在するリンよりも、格子間リンが原因であると考えられるので、格子間リンの濃度を中心に計算することで、欠陥の発生予測方法を改善することができる。 In the method for predicting the occurrence of defects in the epitaxial silicon wafer having the above configuration, the precipitates of phosphorus and silicon that cause stacking faults (SFs) in the epitaxial silicon wafer are more interstitial than the phosphorus present at the substitution position. Phosphorus is considered to be the cause, and the method of predicting the occurrence of defects can be improved by calculating mainly the concentration of interstitial phosphorus.
 また、前記濃度計算ステップでは、前記格子間リンの濃度のみではなく、空孔、格子間シリコン、リンと空孔との反応物の濃度も併せて計算することが好ましい。結晶の冷却過程では、格子間リンが、空孔、格子間シリコン、およびリンと空孔との反応物と各種の反応を行うからである。 Further, in the concentration calculation step, it is preferable to calculate not only the concentration of interstitial phosphorus but also the concentration of vacancies, interstitial silicon, and reactants between phosphorus and vacancies. This is because interstitial phosphorus undergoes various reactions with vacancies, interstitial silicon, and reactants of phosphorus and vacancies during the crystal cooling process.
 そして、前記欠陥推定ステップでは、事前の実験で定められた検出すべきリンとシリコンの析出物のサイズの閾値を用いて、前記エピタキシャル成長後のシリコンウェーハにおける欠陥の密度を推定することが好ましい。エビタキシャル成長の前段階において行われるプリベイクの条件によっては、アニールアウトされるSF(スタッキングフォルト)の大きさも変わるからである。 Then, in the defect estimation step, it is preferable to estimate the density of defects in the silicon wafer after the epitaxial growth using a threshold value of the size of precipitates of phosphorous and silicon to be detected determined in advance experiments. This is because the size of the SF (stacking fault) to be annealed out also changes depending on the pre-baking conditions performed in the previous stage of the epitaxial growth.
 例えば、前記リンとシリコンの析出物のサイズの閾値を12nmとすると、1130℃の水素雰囲気で60秒のプリベイクを行い、その後、1130℃で3μmのエピタキシャル膜を成長させるエピタキシャル条件の場合に好適である。 For example, if the threshold size of the precipitates of phosphorus and silicon is set to 12 nm, pre-baking is performed in a hydrogen atmosphere at 1130° C. for 60 seconds, and then an epitaxial film of 3 μm is grown at 1130° C., which is suitable for epitaxial conditions. be.
 また、本発明に係るエピタキシャルシリコンウェーハの製造方法では、上記欠陥の発生予測を行い、予測される欠陥の密度が規定の水準を満たさない場合、引き上げ速度の調整を行うことによって予測される欠陥の密度が規定の水準を満たす条件でリンをドープしたシリコン単結晶を製造し、前記シリコン単結晶を基板に用いてエピタキシャル膜を成長させて製造することが好ましい。実際の製造前に欠陥の密度の予測を行うことで歩留まりが向上する。さらにエビタキシャル成長の前段階において行われるプリベイクの条件を調整することも考えられる。 Further, in the method for producing an epitaxial silicon wafer according to the present invention, the occurrence of defects is predicted, and if the density of predicted defects does not satisfy a specified level, the pulling speed is adjusted to reduce the number of predicted defects. It is preferable to manufacture a phosphorus-doped silicon single crystal under the condition that the density satisfies a specified level, and grow an epitaxial film using the silicon single crystal as a substrate. Predicting defect density prior to actual manufacturing improves yield. Furthermore, it is conceivable to adjust the pre-baking conditions performed in the previous stage of epitaxial growth.
 本発明によれば、任意のリン濃度および結晶の熱履歴の場合を対象としたエピタキシャルシリコンウェーハにおける欠陥の発生予測方法およびエピタキシャルシリコンウェーハの製造方法を提供することができる。 According to the present invention, it is possible to provide a method for predicting the occurrence of defects in an epitaxial silicon wafer and a method for manufacturing an epitaxial silicon wafer for any phosphorus concentration and crystal thermal history.
図1は、CZ法による単結晶引き上げ装置の一例の概略図である。FIG. 1 is a schematic diagram of an example of a single crystal pulling apparatus using the CZ method. 図2は、結晶1および結晶2の直胴各位置における抵抗率を示すグラフである。FIG. 2 is a graph showing the resistivity at each position on the straight body of Crystal 1 and Crystal 2. In FIG. 図3は、結晶1の直胴の各位置における冷却カーブを示すグラフである。FIG. 3 is a graph showing cooling curves at respective positions on the straight body of the crystal 1. FIG. 図4は、結晶2の直胴の各位置における冷却カーブを示すグラフである。FIG. 4 is a graph showing cooling curves at respective positions on the straight body of the crystal 2. FIG. 図5は、結晶1および結晶2における直胴の各位置での結晶を基板として用いた場合のエピタキシャル成長後のSF(スタッキングフォルト)の密度を示すグラフである。FIG. 5 is a graph showing the densities of SFs (stacking faults) after epitaxial growth at each position on the straight body of Crystal 1 and Crystal 2 when the crystals were used as substrates. 図6は、結晶1について計算したSiPの密度を示すグラフである。FIG. 6 is a graph showing the SiP density calculated for crystal 1. FIG. 図7は、結晶2について計算したSiPの密度を示すグラフである。FIG. 7 is a graph showing the SiP density calculated for crystal 2. FIG. 図8は、結晶1におけるエピタキシャル膜のSF(スタッキングフォルト)の密度と直胴位置との関係の実験結果と計算結果を比較したグラフである。FIG. 8 is a graph comparing experimental results and calculation results of the relationship between the SF (stacking fault) density of the epitaxial film in the crystal 1 and the straight body position. 図9は、結晶2におけるエピタキシャル膜のSF(スタッキングフォルト)の密度と直胴位置との関係の実験結果と計算結果を比較したグラフである。FIG. 9 is a graph comparing experimental results and calculation results of the relationship between the SF (stacking fault) density of the epitaxial film in the crystal 2 and the straight body position. 図10は、欠陥の発生予測方法の手順を概略的に示すフローチャートである。FIG. 10 is a flow chart schematically showing the procedure of the defect occurrence prediction method.
 以下、本発明の実施形態に係るエピタキシャルシリコンウェーハにおける欠陥の発生予測方法につき、図面に基づいて説明する。ただし、本発明の実施形態に係るエピタキシャルシリコンウェーハにおける欠陥の発生予測方法が以下で説明する実施形態に限定されるものではない。添付の図面は模式的なものであり、各要素の寸法や比率などが実際と異なる場合がある。 A method for predicting the occurrence of defects in an epitaxial silicon wafer according to an embodiment of the present invention will be described below with reference to the drawings. However, the method for predicting the occurrence of defects in an epitaxial silicon wafer according to the embodiments of the present invention is not limited to the embodiments described below. The attached drawings are schematic, and the dimensions and proportions of each element may differ from the actual ones.
 まず、非特許文献1および非特許文献3の結果、および特許文献1の結果を合わせて考えると、リンドープにて0.9mΩcm以下の基板ウェーハを用いた場合のエピタキシャル膜におけるSF(スタッキングフォルト)の発生は次のような過程により生成されると推察される。 First, considering the results of Non-Patent Document 1 and Non-Patent Document 3 together with the results of Patent Document 1, SF (stacking fault) in an epitaxial film when using a phosphorus-doped substrate wafer of 0.9 mΩcm or less. It is presumed that generation is generated by the following process.
(1)リンドープにて0.9mΩcm以下の結晶においては、結晶の冷却過程の570℃±70℃(500℃から640℃)の温度区間の間でSiPが発生し成長する。
(2)エビタキシャル成長の前段階において行われるプリベイクの加熱中において、SiPは溶解し、SFが結晶に残る。
(3)結晶成長における冷却過程において570℃±70℃(500℃から640℃)の温度区間の間の滞在時間が短い場合には、SiPのサイズが小さいので、発生するSFのサイズも小さく、プリベイクの過程において表層付近のSF(スタッキングフォルト)はアニールアウトされ、エピタキシャル成長を開始した時には表層にSFは残らない。
(4)一方、結晶成長における冷却過程において570℃±70℃(500℃から640℃)の温度区間の間の滞在時間が長い場合には、SiPのサイズが大きくなるので、発生するSF(スタッキングフォルト)のサイズも大きく、プリベイクの過程において表層付近のSF(スタッキングフォルト)はアニールアウトされない。そして、エピタキシャル成長を開始した時に表層に残ったSFは、エピタキシャル膜の中にSFとして伝搬する。
(1) In a phosphorus-doped crystal with a resistivity of 0.9 mΩcm or less, SiP is generated and grows during a temperature interval of 570° C.±70° C. (500° C. to 640° C.) during the cooling process of the crystal.
(2) SiP dissolves and SF remains in the crystal during pre-baking heating performed in the preceding stage of epitaxial growth.
(3) In the cooling process of crystal growth, when the residence time between the temperature intervals of 570°C ± 70°C (500°C to 640°C) is short, the size of SiP is small, so the size of SF generated is also small. SFs (stacking faults) near the surface layer are annealed out in the pre-baking process, and no SFs remain on the surface layer when epitaxial growth is started.
(4) On the other hand, when the residence time between the temperature intervals of 570° C.±70° C. (500° C. to 640° C.) is long in the cooling process during crystal growth, the size of SiP increases, resulting in SF (stacking). SFs (stacking faults) near the surface layer are not annealed out during the pre-baking process. Then, SF remaining on the surface layer when epitaxial growth is started propagates as SF into the epitaxial film.
 このような過程で低抵抗率基板におけるエビキタシャル膜のSFが形成されると考えると、エビタキシャル膜にSFとして伝搬する核となるSiP析出物の密度を予測することが重要である。そして、予測されるSiPのサイズ分布と、エピタキシャル膜のスタッキングフォルト密度との関係を求め、その関係から、エピタキシャル膜のスタッキングフォルトを推定する。 Considering that SFs are formed in the epitaxial film on the low-resistivity substrate in such a process, it is important to predict the density of SiP precipitates that act as nuclei that propagate as SFs to the epitaxial film. Then, the relationship between the predicted SiP size distribution and the stacking fault density of the epitaxial film is obtained, and the stacking fault of the epitaxial film is estimated from the relationship.
 まず、予測されるSiPのサイズ分布と、エピタキシャル膜のSF(スタッキングフォルト)密度との関係を求める方法を説明する。
(1)結晶成長中の冷却カーブを計算により求める。
(2)リン濃度と冷却カーブにより、冷却中におけるSiPの発生と成長を計算する。
(3)冷却後のSiPのサイズ分布を求める。
(4)対応するリン濃度と冷却カーブについてのエピタキシャル膜のSF(スタッキングフォルト)の密度を実験により評価する。
(5)SiPのサイズ分布とエピタキシャル膜におけるSF(スタッキングフォルト)との関係を把握する。
First, a method for obtaining the relationship between the predicted SiP size distribution and the SF (stacking fault) density of the epitaxial film will be described.
(1) Calculate the cooling curve during crystal growth.
(2) Calculate the generation and growth of SiP during cooling from the phosphorus concentration and the cooling curve.
(3) Determine the size distribution of SiP after cooling.
(4) Experimentally evaluate the SF (stacking fault) density of the epitaxial film for the corresponding phosphorus concentration and cooling curve.
(5) Understanding the relationship between SiP size distribution and SF (stacking fault) in the epitaxial film.
 以下、(1)から(5)の過程のそれぞれを説明する。 Each of the processes (1) to (5) will be explained below.
 図1は、CZ(Czochralski;チョクラルスキー)法による単結晶引き上げ装置の一例の概略図である。図1に示す引き上げ装置は、一般的な構造であり、炉1内の中央には、原料融液2が充填された石英ルツボ3が回転可能に設置されている。石英ルツボ3の周囲には、石英ルツボ3を側周から加熱するためサイドヒータ4及び底部から加熱するためのボトムヒータ5が設置されている。また、石英ルツボ3の上方には、石英ルツボ3内の原料融液2や引き上げられる結晶9の温度制御等のための輻射シールド6が設けられている。 FIG. 1 is a schematic diagram of an example of a single crystal pulling apparatus using the CZ (Czochralski) method. The pulling apparatus shown in FIG. 1 has a general structure, and a quartz crucible 3 filled with a raw material melt 2 is rotatably installed in the center of the furnace 1 . A side heater 4 for heating the quartz crucible 3 from the side circumference and a bottom heater 5 for heating the quartz crucible 3 from the bottom are installed around the quartz crucible 3 . A radiation shield 6 is provided above the quartz crucible 3 for temperature control of the raw material melt 2 in the quartz crucible 3 and the crystal 9 to be pulled up.
 CZ法による単結晶引き上げ装置では、石英ルツボ3内の原料融液2の液面にワイヤ7の下端に保持された種結晶8を着液させ、石英ルツボ3及び種結晶8をそれぞれ回転させながら、ワイヤ7を引き上げていくことにより結晶9を成長させる。 In the single crystal pulling apparatus using the CZ method, a seed crystal 8 held at the lower end of a wire 7 is brought into contact with the liquid surface of the raw material melt 2 in the quartz crucible 3, and while the quartz crucible 3 and the seed crystal 8 are rotated, , the wire 7 is pulled up to grow the crystal 9 .
 図1に示すような結晶成長に用いた引上げ機の構造をメッシュ構造によりモデル化し、各部材毎の物性値を入力し、また結晶の長さ位置に対応する引き上げ速度を入力する。そして、ヒータの発熱量及び各部材の輻射率に基づいて各部材の表面温度分布を計算する。一方、各部材の内部温度分布は、各部材の表面温度分布及び熱伝導率に基づいて熱伝導方程式を解くことにより計算する。このようにして、引き上げられる結晶の内部の温度分布を計算する。また、結晶の引き上げ速度を考慮することにより、結晶の内部の温度分布を含めた、結晶全体の冷却カーブを計算する。 Model the structure of the pulling machine used for crystal growth as shown in Fig. 1 with a mesh structure, enter the physical property values for each member, and enter the pulling speed corresponding to the length position of the crystal. Then, the surface temperature distribution of each member is calculated based on the amount of heat generated by the heater and the emissivity of each member. On the other hand, the internal temperature distribution of each member is calculated by solving the heat conduction equation based on the surface temperature distribution and thermal conductivity of each member. In this way, the temperature distribution inside the pulled crystal is calculated. In addition, the cooling curve of the entire crystal including the temperature distribution inside the crystal is calculated by considering the pulling speed of the crystal.
 これらの計算プロセスは、当該技術者において一般的に用いられている総合伝熱解析のソフトウェアを用いて計算することができる。総合伝熱解析のソフトウェアは、例えば、1)CGSim(STR社),2)CrysMAS(Crystal Growth Laboratory of the Fraunhofer Institute of Integrated Systems and Device Technology),3)FEMAG(FEMAG soft社)など、3種類のものを例示することができる。なお、以下で説明する計算例ではCGSimを用いている。 These calculation processes can be calculated using comprehensive heat transfer analysis software commonly used by the engineer. There are three types of comprehensive heat transfer analysis software, such as 1) CGSim (STR), 2) CrysMAS (Crystal Growth Laboratory of the Fraunhofer Institute of Integrated Systems and Device Technology), 3) FEMAG (FEMAG soft). can be exemplified. Note that CGSim is used in the calculation examples described below.
 次に冷却過程においてリン原子が凝集してSiPを形成する過程を計算する。非特許文献2に示されているように、シリコン中のリン原子は主としてシリコン格子点を置換した位置に存在し、一部がシリコンの格子間サイトに存在すると考えられている。置換位置に存在するリン原子の拡散係数は良く知られており、SiPが発生すると考えられる温度領域では殆ど動かないことは分かっている。一方、格子間に存在する原子は一般的に高速拡散する。したがって、SiPを形成するのは、置換位置に存在するリンよりも、格子間リンであると考えられる。 Next, the process of forming SiP by aggregation of phosphorus atoms during the cooling process is calculated. As shown in Non-Patent Document 2, it is believed that phosphorus atoms in silicon exist mainly at positions substituted for silicon lattice points, and partly exist at interstitial sites of silicon. The diffusion coefficient of phosphorus atoms present at substitution positions is well known, and it is known that they hardly move in the temperature range where SiP is thought to occur. On the other hand, atoms existing between lattices generally diffuse at high speed. Therefore, it is believed that it is the interstitial phosphorus, rather than the phosphorus present at the substitution sites, that forms the SiP.
 そこでまず、結晶の冷却中のリンの反応を非特許文献2に従い説明する。ここではリン原子とシリコン結晶中の点欠陥との反応を次のように仮定する。シリコン中でのリンの形態として格子点におけるシリコン原子を置換する位置に存在する場合をPとし、シリコンの格子間にある場合をPとした。また、原子空孔をV、格子間シリコンをIとしている。 Therefore, first, the reaction of phosphorus during cooling of the crystal will be explained according to Non-Patent Document 2. Here, the reaction between phosphorus atoms and point defects in silicon crystals is assumed as follows. As for the form of phosphorus in silicon, the case where it exists at a position substituting a silicon atom at a lattice point is defined as P 2 S , and the case where it exists between silicon lattices is defined as P 1 . In addition, V denotes atomic vacancies, and I denotes interstitial silicon.
 P+V=PV ・・・(1)
 PS++I+2e=Pi- ・・・(2)
PS +V=PV (1)
P S+ +I+2e =P i− (2)
 ここで、PVはリンと空孔との反応物、Ps+はプラスに荷電した置換位置のリン、eは電子、Pi-はマイナスに荷電した格子間のリンである。また、空孔との反応を示す式(1)においては、空孔とリンとの化合物は電気的にニュートラルであることを仮定している。そして、式(2)においては、格子間リンPは負にチャージしていると仮定したので、電荷の変化を考慮している。この仮定は、非特許以文献2を参照した。 Here, PV is the reaction product of phosphorus and vacancies, P s+ is the positively charged phosphorus at the substitution position, e is the electron, and P i− is the negatively charged interstitial phosphorus. Also, in the formula (1) showing the reaction with the vacancies, it is assumed that the compound of the vacancies and phosphorus is electrically neutral. In equation (2), since it is assumed that the interstitial phosphorus P i is negatively charged, the charge change is considered. Reference was made to Non-Patent Document 2 for this assumption.
 式(1)および式(2)における反応定数をそれぞれK,Kとすると、質量作用の法則により、以下の式(3)および式(4)の関係が得られる。 Assuming that the reaction constants in equations (1) and (2) are K V and K I respectively, the following equations (3) and (4) are obtained according to the law of mass action.
 CN/CPV=K ・・・(3)
 CN/CPi=K(n/n) ・・・(4)
 ここで、Cは空孔濃度、Nはリンの濃度、CPVはPVの濃度であり、Cは格子間シリコンの濃度、CPiはPの濃度、nは電子の濃度、nはイントリンシックな電子濃度である。ここで、nは式(5)により表される。
CV N/C PV =K V (3)
CIN/ CPi = KI( ni / n ) 2 (4)
where CV is the concentration of vacancies, N is the concentration of phosphorus, CPV is the concentration of PV , CI is the concentration of interstitial silicon, CPi is the concentration of Pi , n is the concentration of electrons, ni is the intrinsic electron concentration. Here, ni is expressed by Equation (5).
 n(cm-3)=1.568×10153/2exp[-{1.17-(4.9×10-4/(T+655))}/2kT] ・・・(5)
 ここで、Tは絶対温度(K)、kはボルツマン定数8.6257×10-5(eV/K)である。
n i (cm −3 )=1.568×10 15 T 3/2 exp[−{1.17−(4.9×10 −4 T 2 /(T+655))}/2k B T] (5)
Here, T is absolute temperature (K) and kB is Boltzmann's constant 8.6257 ×10 −5 (eV/K).
 電子濃度nとドナー型不純物濃度Nとの関係は、以下の式(6)になる。
 n=N/2+[N/4+n 1/2 ・・・(6)
The relationship between the electron concentration n and the donor-type impurity concentration N is given by the following equation (6).
n=N/ 2 +[ N2 /4+ ni2 ] 1/2 (6)
 ここで、式(3)からCPVはNに比例することが分かる。一方、式(4)及び式(6)から、CPiは次のように変化する。式(6)から、電子濃度nは、N<<nでは、n=nとなり、N>>nでは、n=Nになる。よって、リン濃度が低い場合、N<<nでは、CPiはNに比例し、リン濃度が高い場合、N>>nでは、CPiはNの3乗に比例することが分かる。つまり、リン濃度Nがイントリンシックな電子濃度を超えた場合に格子間リンの濃度CPiが急激に増加することが予想される。これは本発明にて問題にするリン濃度Nでは、格子間リンの濃度CPiが支配的になることを示している。 Here, it can be seen from equation (3) that CPV is proportional to N. On the other hand, from equations (4) and (6), C Pi changes as follows. From equation (6), the electron concentration n becomes n=n i when N<<n i , and n=N when N>>n i . Therefore, when the phosphorus concentration is low, C Pi is proportional to N when N<<n i , and when the phosphorus concentration is high, N>>n i , C Pi is proportional to the third power of N. That is, when the phosphorus concentration N exceeds the intrinsic electron concentration, the interstitial phosphorus concentration CPi is expected to increase sharply. This indicates that the interstitial phosphorus concentration CPi becomes dominant at the phosphorus concentration N to be considered in the present invention.
 さて、結晶成長中に生じるもう一つの反応は式(7)に示される空孔と格子間シリコンとの対消滅反応である。
 V+I=0 ・・・(7)
Another reaction that occurs during crystal growth is the pair annihilation reaction between vacancies and interstitial silicon shown in Equation (7).
V+I=0 (7)
 そして、対消滅反応の反応速度は式(8)により示される。
 dC/dt=dC/dt=-KIV(C-C eq C eq) ・・・(8)
 ここで、C eq,C eqは、それぞれ空孔と格子間シリコンの熱平衡濃度である。
Then, the reaction rate of the pair annihilation reaction is shown by Equation (8).
dC V /dt=dC I /dt=-K IV (C V C I -C V eq C I eq ) (8)
Here, C V eq and C I eq are the thermal equilibrium concentrations of vacancies and interstitial silicon, respectively.
 また、KIVは式(9)により表される。
 KIV=4πa(D+D)exp(-ΔG/kT) ・・・(9)
 ここで、a=0.543×10-7cmであり,DとDはそれぞれ空孔と格子間シリコンの拡散係数である。ΔGは対消滅反応のバリアであり、一般にΔGはゼロとされるのでここではゼロとした。
Moreover, K IV is represented by Formula (9).
K IV =4πa c (D V +D I ) exp(−ΔG/k B T) (9)
where a c =0.543×10 −7 cm and D V and D I are the diffusion coefficients of vacancies and interstitial silicon, respectively. ΔG is a barrier for pair annihilation reactions, and since ΔG is generally assumed to be zero, it was set to zero here.
 次に結晶の冷却過程におけるC,C,CPV,CPiの濃度の変化を示す。V,PV,I,Pは、式(1)及び式(2)の反応が常に定常バランスした状態を保ちながら変化すると仮定した。つまり、式(3)及び式(4)を常に満足することになる。 Next, changes in the concentrations of C V , C I , C PV and C Pi during the cooling process of the crystal are shown. It is assumed that V, PV, I , and Pi change while the reactions of equations (1) and (2) always maintain a steady state of balance. That is, the equations (3) and (4) are always satisfied.
 まず、CとCPVの関係について示す。ここで、CPV<<Nであるので、PVが形成されたことによるリン濃度Nの変化は無視する。そして、VとPVの濃度の和を式(10)のようにC とする。
 C =C+CPV ・・・(10)
First, the relationship between CV and CPV will be shown. Here, since C PV <<N, the change in the phosphorus concentration N due to the formation of PV is ignored. The sum of the densities of V and PV is defined as C V T as in equation (10).
CV T = CV + CPV (10)
 すると、式(3)は式(11)になる。
 (C -CPV)N/CPV=K ・・・(11)
Then, equation (3) becomes equation (11).
( CVT-CPV ) N/ CPV = KV (11)
 つまり、C が分かれば式(12)を用いてCPVを得ることができる。
 CPV=C /(K/N+1) ・・・(12)
That is, if CVT is known, CPV can be obtained using equation (12).
CPV = CVT /( KV / N+1) (12)
 次に、式(4)から、C,CPiの濃度の関係を求める。ここで、CPi<<Nであるので、Pが形成されたことによるリン濃度Nの変化は無視する。また、Pの平衡濃度とPとの濃度比を式(13)のようにRとする。
 R=CPi eq/N ・・・(13)
Next, the relationship between the concentrations of C I and C Pi is obtained from equation (4). Here, since C Pi <<N, the change in the phosphorus concentration N due to the formation of P i is ignored. Also, the concentration ratio between the equilibrium concentration of P i and P S is defined as R as in equation (13).
R=C Pi eq /N (13)
 ここで、Rという新しいパラメターを示したので、Kとの関係を以下に示す。まず、式(4)は、それぞれの成分が平衡濃度の時も成り立つので式(14)のように書くことができる。
 CN/CPi=C eqN/CPi eq ・・・(14)
Now that we have shown a new parameter, R, the relationship to KI is shown below. First, equation (4) holds true even when each component has an equilibrium concentration, so it can be written as equation (14).
C IN /C Pi =C I eq N/C Pi eq (14)
 よって、
 CN/CPi=C eq/R ・・・(15)
Therefore,
CIN/CPi=CIeq / R ( 15)
 また、式(13)及び式(14)から、RとKとの関係は式(16)になることが分かる。
 R=C eq(n/n/K ・・・(16)
Also, from equations (13) and (14), it can be seen that the relationship between R and KI is expressed by equation (16).
R=C I eq (n/n i ) 2 /K I (16)
 また、IとPの濃度の和を式(17)のようにC とする。
 C =C+CPi ・・・(17)
The sum of the densities of I and P i is defined as C I T as in equation (17).
C I T = C I + C Pi (17)
 すると、式(15)から、式(18)を得る。
 CPi/N=R(C -CPi)/C eq ・・・(18)
Then, formula (18) is obtained from formula (15).
C Pi /N=R(C I T −C Pi )/C I eq (18)
 これを展開して整理すると、式(19)を得る。
 CPi=C /{C eq/(NR)+1} ・・・(19)
When this is expanded and rearranged, the formula (19) is obtained.
C Pi =C I T /{C I eq /(NR)+1} (19)
 さて、ここまでに導出した式により、冷却中のV,I,PV,Pの変化を計算することができる。次に、具体的な計算の手順を示す。ここでは、固液界面つまり1685Kにおける濃度を初期条件とする。そして、固液界面では、全ての濃度が熱平衡濃度であると仮定する。すなわち、初期濃度は下記式(20)により与えられる。 Now, with the equations derived so far, the changes in V, I , PV, and Pi during cooling can be calculated. Next, a specific calculation procedure is shown. Here, the concentration at the solid-liquid interface, ie, 1685K, is the initial condition. Then, at the solid-liquid interface, all concentrations are assumed to be thermal equilibrium concentrations. That is, the initial density is given by the following equation (20).
 C=C eq       at 1685K
 C=C eq       at 1685K
 CPV=C eqN/K  at 1685K
 CPi=NR        at 1685K ・・・(20)
CV = CV eq at 1685K
C I =C I eq at 1685K
C PV =C V eq N/K V at 1685K
C Pi =NR at 1685K (20)
 冷却中のV,Iの変化は、温度の低下毎に式(8)により求め、C,Cの変化を決定する。そして、C,Cの変化からC ,C の変化を求め、式(12)および式(19)から、CPV,CPiが求められる。これを温度の低下ステップ毎に求めることにより、V,I,PV,Pの濃度変化が求められる。 Changes in V and I during cooling are determined by equation (8) for each temperature drop to determine changes in C V and C I . Then, changes in CVT and CIT are determined from changes in Cv and CI , and CPV and CPi are determined from equations (12) and (19). By obtaining this for each temperature lowering step, changes in concentration of V, I , PV and Pi can be obtained.
 なお、温度依存の各パラメターは式(21)から式(26)のように設定する。 It should be noted that each temperature-dependent parameter is set as shown in Equations (21) to (26).
 C eq=6.49×1014exp[-3.94{1/(kT)-1/(1685k)}] ・・・(21)
 C eq=4.84×1014exp[-4.05{1/(kT)-1/(1685k)}] ・・・(22)
 D=4.45×10-5exp[-0.3{1/(kT)-1/(1685k)}] ・・・(23)
 D=5.0×10-4exp[-0.9{1/(kT)-1/(1685k)}] ・・・(24)
 K=9.61×1019exp[-1.0{1/(kT)-1/(1685k)}] ・・・(25)
 K=3.5×1020exp[-1.2{1/(kT)-1/(1685k)}] ・・・(26)
 ここでのkは、8.6257×10-5 (eV/K)である。
C V eq =6.49×10 14 exp[−3.94{1/(k B T)−1/(1685 k B )}] (21)
C I eq =4.84×10 14 exp[−4.05{1/(k B T)−1/(1685 k B )}] (22)
D V =4.45×10 −5 exp[−0.3{1/(k B T)−1/(1685 k B )}] (23)
D I =5.0×10 −4 exp[−0.9{1/(k B T)−1/(1685 k B )}] (24)
K V =9.61×10 19 exp[−1.0{1/(k B T)−1/(1685 k B )}] (25)
K I =3.5×10 20 exp[−1.2{1/(k B T)−1/(1685 k B )}] (26)
k B here is 8.6257×10 −5 (eV/K).
 次にSiPの核発生と成長過程を表すモデルを説明する。核発生速度モデルとしては、非特許文献4に提案されている空孔のクラスターに関するモデルを参考にして、SiPに対して適用する。 Next, a model representing the nucleation and growth process of SiP will be explained. As a nucleation rate model, the model regarding clusters of vacancies proposed in Non-Patent Document 4 is referred to and applied to SiP.
 古典的核形成理論において核発生はクラスター形成に伴うエネルギー障壁を熱揺らぎにより超える過程として考える。ここではSiPを球体と仮定する。核を球体と仮定すると半径Rの粒子の発生に伴う自由エネルギー変化は次のように与えられる。 In the classical nucleation theory, nucleation is considered as a process that overcomes the energy barrier associated with cluster formation by thermal fluctuation. Here we assume that the SiP is a sphere. Assuming that the nucleus is a sphere, the change in free energy associated with the generation of a particle of radius R is given as follows.
 ΔG(R)=-(4πR/3Ω)f+4πRσ ・・・(27)
 f=kTln(CPi/CPi eq) ・・・(28)
ΔG(R)=−(4πR 3 /3Ω)f+4πR 2 σ (27)
f=k B Tln(C Pi /C Pi eq ) (28)
 ここで、Ωは、SiPの1分子当たりの体積である(4.08×10-23cm)。また、fはリンのケミカルポテンシャルであり、-fは1個のSiPが析出した時の系のエネルギー変化を示す。4πRσの項は表面エネルギーを示し、σは、SiPの単位面積当たりの表面エネルギーである(σ=556erg/cm)。また、式(27)及び式(28)におけるkは、1.381×10-16 (erg/K)である。 where Ω is the volume per molecule of SiP (4.08×10 −23 cm 3 ). Also, f is the chemical potential of phosphorus, and -f indicates the energy change of the system when one SiP is deposited. The term 4πR 2 σ indicates the surface energy, where σ is the surface energy per unit area of SiP (σ=556 erg/cm 2 ). Also, k B in Equations (27) and (28) is 1.381×10 −16 (erg/K).
 ΔG(R)は、半径の増加に伴い極大値を取る。極大値における半径が臨界半径Rcriであり、ΔG(R)の極大値がΔG*となる。ΔG*はクラスター形成に伴うエネルギー障壁を表す。 ΔG(R) takes a maximum value with increasing radius. The radius at the maximum value is the critical radius R cri and the maximum value of ΔG(R) is ΔG*. ΔG* represents the energy barrier associated with cluster formation.
 RCri=2σΩ/f ・・・(29)
 ΔG*=16πσΩ/(3f) ・・・(30)
R Cri =2σΩ/f (29)
ΔG*=16πσ 3 Ω 2 /(3f) 2 (30)
 核発生の頻度は熱揺らぎによりRcriのサイズの核が発生する頻度と、その核に対してさらにもう一つの原子が加わることにより、極大値の山を乗り越えて析出物になる頻度として定義される。その時、定常核発生速度Iは、式(31)で表される。 The frequency of nucleation is defined as the frequency at which a nucleus with the size of R cri is generated due to thermal fluctuations and the frequency at which another atom is added to the nucleus to overcome the peak of the maximum value and form a precipitate. be. At that time, the steady-state nucleation rate I is represented by equation (31).
 I=βZρeq ・・・(31)
 ここで、βは臨界核への元素の捕獲速度であり、Zは、Zeldovich因子と呼ばれ熱平衡密度と定常状態における密度の比を補正する係数である。ρeqは臨界核の熱平衡密度である。
I= βZρeq (31)
Here, β is the capture rate of the element to the critical nucleus, and Z is a factor called Zeldovich factor that corrects the ratio of the thermal equilibrium density to the steady state density. ρ eq is the thermal equilibrium density of the critical nucleus.
 ρeq=ρexp(-ΔG*/kT) ・・・(32)
 ここで、ρはシリコンサイトの密度である(5×1022cm-3)。
ρeq = ρexp (−ΔG*/kBT) (32)
where ρ is the density of silicon sites (5×10 22 cm −3 ).
 β=4πRcriPiPi ・・・(33)
 ここで、DPiは格子間リンの拡散係数である。
β=4πR cri D Pi C Pi (33)
where D Pi is the diffusion coefficient of interstitial phosphorus.
 Z=f(12πΔG*kT)-1/2 ・・・(34) Z=f( 12πΔG *kB T) −1/2 (34)
 よって、各発生速度Iは、下記式(35)で表される。 Therefore, each occurrence speed I is represented by the following formula (35).
 I=(4πRcriPiPi)Zρexp(-ΔG*/kT)  (1/sec・cm) ・・・(35) I=(4πR cri D Pi C Pi ) Zρexp (−ΔG*/kB T) (1/sec·cm 3 ) (35)
 つまり、結晶の冷却中、式(35)に示す速度にてSiPが発生する。30秒毎にその間に発生したSiPの密度を積算し、それぞれの時間区間において発生したSiPの成長および格子間リンの吸収を冷却が終了するまで計算する。 That is, during cooling of the crystal, SiP is generated at the rate shown in formula (35). The density of SiP generated during every 30 seconds is integrated, and the growth of SiP and the absorption of interstitial phosphorus generated in each time interval are calculated until cooling is completed.
 SiPの成長速度を式(36)に示す。
 dR/dt =ΩDPi(CPi-CPi eq)/R ・・・(36)
The SiP growth rate is shown in equation (36).
dR/dt=ΩD Pi (C Pi −C Pi eq )/R (36)
 初期サイズをRCriとして、時間ステップ毎の半径の変化dRを式(36)により求めて、半径をR=R+dRとして求めた。SiPによるリンの吸収フラックスを式(37)に示す。 With R Cri as the initial size, the change dR of the radius at each time step was obtained by Equation (36), and the radius was obtained as R=R+dR. The absorption flux of phosphorus by SiP is shown in equation (37).
 J=4πRDPi(CPi-CPi eq) ・・・(37) J=4πRD Pi (C Pi −C Pi eq ) (37)
 上記式(37)は1個のSiPにより吸収された格子間リンを表す。これを積算して格子間リンの濃度の変化に加える。ここで、DPiは式(38)により与えられる。 Equation (37) above represents the interstitial phosphorus absorbed by one SiP. This is integrated and added to the change in interstitial phosphorus concentration. where D Pi is given by equation (38).
 DPi=3×10-7exp[-1.1{1/(kT)-1/(1685k)}] ・・・(38)
 ここでkは、8.6257×10-5 (eV/K)である。
D Pi =3×10 −7 exp[−1.1{1/(k B T)−1/(1685 k B )}] (38)
Here k B is 8.6257×10 −5 (eV/K).
 以上のようにして、結晶の冷却過程における原子空孔V,格子間シリコンI,リンと空孔の反応物PV,格子間リンPの濃度を求め、SiPの発生と成長を計算する。 As described above, the concentrations of atomic vacancies V, interstitial silicon I , phosphorus and vacancy reactants PV, and interstitial phosphorus Pi during the cooling process of the crystal are obtained, and generation and growth of SiP are calculated.
 次に、計算により推定されるSiPのサイズ分布と対応する実験条件におけるエピタキシャル膜におけるSF(スタッキングフォルト)の密度との関係を調べる。 Next, the relationship between the SiP size distribution estimated by calculation and the SF (stacking fault) density in the epitaxial film under the corresponding experimental conditions is examined.
<実験>
 評価に用いた結晶は、結晶1および結晶2の2本の結晶であり、直径は200mmである。図2は、結晶1および結晶2の直胴各位置における抵抗率を示すグラフである。図2に示されるように、結晶1は、抵抗率が0.9mΩcmから0.7mΩcmに変化し、結晶2は、抵抗率が0.75mΩcmから0.55mΩcmに変化する。結晶1および結晶2を用いることにより、広範囲の抵抗率における欠陥の発生を評価する。
<Experiment>
The crystals used for the evaluation are two crystals, crystal 1 and crystal 2, and have a diameter of 200 mm. FIG. 2 is a graph showing the resistivity at each position on the straight body of Crystal 1 and Crystal 2. In FIG. As shown in FIG. 2, crystal 1 varies in resistivity from 0.9 mΩcm to 0.7 mΩcm and crystal 2 varies in resistivity from 0.75 mΩcm to 0.55 mΩcm. Crystal 1 and Crystal 2 are used to evaluate the occurrence of defects in a wide range of resistivities.
 図3は、結晶1の直胴の各位置における冷却カーブを示すグラフであり、図4は、結晶2の直胴の各位置における冷却カーブを示すグラフである。 FIG. 3 is a graph showing the cooling curve at each position on the straight body of the crystal 1, and FIG. 4 is a graph showing the cooling curve at each position on the straight body of the crystal 2.
<エピタキシャル条件 >
 エピタキシャル膜の製造条件は、以下のとおりである。まず、プリベイクとして、1130℃の水素雰囲気で60秒のプリベイクを行う。その後、エピタキシャル成長として、1130℃で3μmのエピタキシャル膜を成長させる。
<Epitaxial condition>
The manufacturing conditions for the epitaxial film are as follows. First, as pre-baking, pre-baking is performed in a hydrogen atmosphere at 1130° C. for 60 seconds. Thereafter, an epitaxial film of 3 μm is grown at 1130° C. for epitaxial growth.
<SF:スタッキングフォルト評価>
 上記のように作成したエピタキシャルシリコンウェーハにおけるスタッキングフォルトの検査行う。エッチングによりSF(スタッキングフォルト)は検出でき、肉眼や光学顕微鏡下で確認でき、密度が分かる。
<SF: Stacking fault evaluation>
An epitaxial silicon wafer produced as described above is inspected for stacking faults. SFs (stacking faults) can be detected by etching, confirmed with the naked eye or under an optical microscope, and the density can be determined.
 図5は、結晶1および結晶2における直胴の各位置での結晶を基板として用いた場合のエピタキシャル成長後のSF(スタッキングフォルト)の密度を示すグラフである。この実験結果と、上記説明した計算方法により求めたSiPとを比較する。 FIG. 5 is a graph showing the densities of SFs (stacking faults) after epitaxial growth when the crystals at each position on the straight body of Crystal 1 and Crystal 2 are used as substrates. This experimental result is compared with the SiP obtained by the calculation method described above.
 図6及び図7は、それぞれ結晶1および結晶2について上記説明した方法で計算したSiPの密度を示すグラフである。図6は、結晶1の製造条件での計算によるSiPの半径が、それぞれ>4,>6,>8,>10,>12,>14,>16nmであるものの密度と直胴における位置との関係を表示している。図7は、結晶2の製造条件での同じ計算結果を示している。 6 and 7 are graphs showing SiP densities calculated by the method described above for crystal 1 and crystal 2, respectively. FIG. 6 shows the relationship between the density and the position in the straight body of SiP radii of >4, >6, >8, >10, >12, >14, and >16 nm, respectively, calculated under the manufacturing conditions of crystal 1. showing relationships. FIG. 7 shows the same calculation results under the manufacturing conditions of crystal 2. FIG.
 なお、図6及び図7は、単位体積当たりのSiPの数(個/cm)を示しているのに対して、実験結果である図5は単位面積当たりのSF(スタッキングフォルト)の密度(個/cm)である。したがって、両者を直接比較することができない。そこで次のように考える。 6 and 7 show the number of SiPs per unit volume (pieces/cm 3 ), whereas the experimental results shown in FIG. pieces/cm 2 ). Therefore, the two cannot be directly compared. Consider the following.
 まず、SiPはエピタキシャル処理に先立って行われる水素ベークの過程で溶解し、SFを残すが、表層付近の小さなSF(スタッキングフォルト)は消滅する。そして、SiPが溶解した後に残るSFのサイズはSiPの大きさにより決まる。よって、SiPの発生・成長区間と考えられる570℃±70℃を通過する時間が長いほどSiPのサイズが大きくなり、水素ベークの過程で消滅しないSFが多くなる。ここで、SiPが溶解後に発生するSFのサイズは、SiPのサイズと等しいと仮定する。 First, SiP melts in the hydrogen baking process that precedes epitaxial processing, leaving SFs, but small SFs (stacking faults) near the surface disappear. The size of the SF remaining after the SiP dissolves is determined by the size of the SiP. Therefore, the longer the time passed through 570° C.±70° C., which is considered to be the generation/growth period of SiP, the larger the size of SiP and the more SFs that do not disappear in the process of hydrogen baking. Here, it is assumed that the size of SF generated after SiP is dissolved is equal to the size of SiP.
 すると、表面にその一部を露出し、エピタキシャル膜にSFが引き継がれる密度は、半径rの粒子の密度がD(r)(個/cm)とすると、表面に現れる数は2rD(r)になる。また、SiPの半径が閾値Rcriより小さければ、SiPの溶解後に発生したSFは水素ペークにより消滅すると考えられる。そこで、半径rが閾値Rcriより、大きなものが表面に露出する面積当たりの数を計算した。閾値R以上の粒子が表面に現れる密度SF(R)(個/cm)は、以下の式(39)のように示される。 Then, the density at which SF is partially exposed on the surface and taken over by the epitaxial film is 2rD(r), where the density of particles with a radius of r is D(r) (particles/cm 3 ). become. Also, if the radius of SiP is smaller than the threshold value R cri , it is considered that the SF generated after the dissolution of SiP disappears due to hydrogen pake. Therefore, the number per area exposed on the surface was calculated with a radius r greater than the threshold value R cri . The density SF(R) (particles/cm 2 ) at which particles above the threshold value R appear on the surface is expressed by the following equation (39).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、式(39)におけるSF(R)は半径R以上のSiPを表し、つまりSFが表面に露出する面積当たりの個数を表している。 Here, SF(R) in Equation (39) represents SiPs with a radius R or greater, that is, the number of SFs exposed on the surface per area.
 図8及び図9は、それぞれ結晶1および結晶2におけるエピタキシャル膜のSF(スタッキングフォルト)の密度と直胴位置との関係の実験結果と、閾値を8,10,12,14,16nmとした計算によるSF(スタッキングフォルト)密度と直胴位置との関係とを比較したものである。図8及び図9から、閾値を12nmとした計算によるSF(スタッキングフォルト)密度が実験結果と一致することが分かる。 8 and 9 show the experimental results of the relationship between the SF (stacking fault) density and the straight body position of the epitaxial films in crystal 1 and crystal 2, respectively, and calculations with threshold values of 8, 10, 12, 14, and 16 nm. It compares the relationship between the SF (stacking fault) density and the straight body position. 8 and 9 that the calculated SF (stacking fault) density with a threshold of 12 nm agrees with the experimental results.
 以上の結果から、リンをドープしたシリコンを基板としてエピタキシャル膜を成長させて製造するエピタキシャルシリコンウェーハにおいて、以下のような欠陥の発生予測方法が有効であることが分かる。図10は、欠陥の発生予測方法の手順を概略的に示すフローチャートである。 From the above results, it can be seen that the following defect generation prediction method is effective for epitaxial silicon wafers manufactured by growing an epitaxial film using silicon doped with phosphorus as a substrate. FIG. 10 is a flow chart schematically showing the procedure of the defect occurrence prediction method.
 まず、準備段階として、リンをドープしたシリコン単結晶を製造する引き上げ装置を含めた温度特性を取得する(Step S1)。引き上げ装置は、例えば図1に示すような構造を有しているので、サイドヒータ4やボトムヒータ5の能力や輻射シールド6などの位置関係、各部材毎の物性値を用いて伝熱解析をするための情報を取得する。 First, as a preparatory step, obtain the temperature characteristics including the pulling equipment that manufactures the silicon single crystal doped with phosphorus (Step S1). Since the lifting device has a structure as shown in FIG. 1, for example, heat transfer analysis is performed using the capabilities of the side heater 4 and the bottom heater 5, the positional relationship of the radiation shield 6, etc., and the physical property values of each member. Get information for
 その後、実際にリンをドープしたシリコン単結晶を製造するための引き上げ速度から、結晶の冷却カーブを計算する(Step S2)。 After that, the cooling curve of the crystal is calculated from the pulling speed for actually producing the silicon single crystal doped with phosphorus (Step S2).
 一方、シリコン単結晶にドープしたリンの濃度から、冷却カーブの各温度過程における少なくとも格子間リンの濃度を計算する(Step S3)。上記説明したように、エピタキシャルシリコンウェーハにおける積層欠陥(SF:スタッキングフォルト)の原因となるリンとシリコンの析出物(SiP)は、置換位置に存在するリンよりも、格子間リン(P)が原因であると考えられるからである。 On the other hand, from the concentration of phosphorus doped into the silicon single crystal, at least the concentration of interstitial phosphorus in each temperature process of the cooling curve is calculated (Step S3). As described above, the precipitates of phosphorus and silicon (SiP) that cause stacking faults (SF: stacking faults) in epitaxial silicon wafers have more interstitial phosphorus (P i ) than phosphorus present at substitution positions. This is because it is considered to be the cause.
 ただし、これは格子間リン(P)の濃度のみを計算することに限定するものではない。結晶の冷却過程では、格子間リン(P)が空孔(V)、格子間シリコン(I)、リンと空孔との反応物(PV)と各種の反応を行うからである。したがって、Step S3における計算では、格子間リンの濃度のみではなく、空孔(V)、格子間シリコン(I)、リンと空孔との反応物(PV)の濃度も併せて計算することが好ましい。 However, this is not limited to calculating only the concentration of interstitial phosphorus (P i ). This is because interstitial phosphorus (P i ) undergoes various reactions with vacancies (V), interstitial silicon (I), and reactants (PV) of phosphorus and vacancies during the crystal cooling process. Therefore, in the calculation in Step S3, not only the concentration of interstitial phosphorus but also the concentration of vacancies (V), interstitial silicon (I), and reactants (PV) between phosphorus and vacancies can be calculated. preferable.
 その後、結晶の冷却中の格子間リン(P)の過飽和度から、冷却完了時におけるリンとシリコンの析出物(SiP)のサイズおよび密度を計算する(Step S4)。 After that, from the supersaturation of interstitial phosphorus (P i ) during cooling of the crystal, the size and density of precipitates of phosphorus and silicon (SiP) at the completion of cooling are calculated (Step S4).
 そして、冷却完了時におけるリンとシリコンの析出物(SiP)のサイズおよび密度から、エピタキシャル成長後のシリコンウェーハにおける欠陥の密度を推定する(Step S5)。なお、この推定には、リンとシリコンの析出物(SiP)のサイズおよび密度と、エピタキシャル成長後のシリコンウェーハにおける欠陥の密度との関係について事前に実験を行い、検出すべきリンとシリコンの析出物(SiP)のサイズの閾値を定めておくことが好ましい。エビタキシャル成長の前段階において行われるプリベイクの条件によっては、アニールアウトされるSF(スタッキングフォルト)の大きさも変わるからである。 Then, the density of defects in the silicon wafer after epitaxial growth is estimated from the size and density of precipitates of phosphorus and silicon (SiP) when cooling is completed (Step S5). In addition, for this estimation, an experiment was conducted in advance on the relationship between the size and density of precipitates of phosphorus and silicon (SiP) and the density of defects in the silicon wafer after epitaxial growth, and the precipitates of phosphorus and silicon to be detected It is preferable to set a threshold for the size of (SiP). This is because the size of the SF (stacking fault) to be annealed out also changes depending on the pre-baking conditions performed in the previous stage of the epitaxial growth.
 なお、エピタキシャル条件として、1130℃の水素雰囲気で60秒のプリベイクを行い、その後、1130℃で3μmのエピタキシャル膜を成長させる場合には、リンとシリコンの析出物(SiP)のサイズの閾値を12nmとすると、SF(スタッキングフォルト)密度が実験結果と一致する。 As for the epitaxial conditions, when pre-baking is performed in a hydrogen atmosphere at 1130° C. for 60 seconds and then an epitaxial film of 3 μm is grown at 1130° C., the threshold of the size of precipitates of phosphorus and silicon (SiP) is set to 12 nm. , the SF (stacking fault) density agrees with the experimental results.
 上記説明した欠陥の発生予測方法は、リンをドープしたシリコンを基板としてエピタキシャル膜を成長させるエピタキシャルシリコンウェーハの製造方法として実施することも可能である。 The defect occurrence prediction method described above can also be implemented as an epitaxial silicon wafer manufacturing method in which an epitaxial film is grown on a silicon substrate doped with phosphorus.
 すなわち、シリコン単結晶にドープしたリンの濃度と結晶の引き上げ速度から欠陥の発生予測を行い、予測される欠陥の密度が規定の水準を満たさない場合、引き上げ速度の調整を行うことによって予測される欠陥の密度が規定の水準を満たす条件でエピタキシャルシリコンウェーハの製造を行うことが考えられる。 That is, the occurrence of defects is predicted from the concentration of phosphorus doped in the silicon single crystal and the pulling speed of the crystal. It is conceivable to manufacture an epitaxial silicon wafer under the condition that the density of defects satisfies a specified level.
 予測される欠陥の密度が規定の水準を満たさない場合、エビタキシャル成長の前段階において行われるプリベイクの条件を調整することも考えられる。 If the predicted defect density does not meet the prescribed level, it is possible to adjust the pre-baking conditions performed in the previous stage of epitaxial growth.
 以上、本発明を実施形態に基づいて説明してきたが、本発明は上記の実施形態よって限定されるものではない。 Although the present invention has been described above based on the embodiments, the present invention is not limited by the above embodiments.
 1  炉
 2  原料融液
 3  石英ルツボ
 4  サイドヒータ
 5  ボトムヒータ
 6  輻射シールド
 7  ワイヤ
 8  種結晶
 9  結晶
REFERENCE SIGNS LIST 1 furnace 2 raw material melt 3 quartz crucible 4 side heater 5 bottom heater 6 radiation shield 7 wire 8 seed crystal 9 crystal

Claims (6)

  1.  リンをドープしたシリコン単結晶を基板に用いてエピタキシャル膜を成長させて製造するエピタキシャルシリコンウェーハにおける欠陥の発生予測方法であって、
     前記シリコン単結晶を製造する引き上げ装置を含めた温度特性と引き上げ速度から前記シリコン単結晶の冷却カーブを計算する熱履歴計算ステップと、
     前記シリコン単結晶にドープしたリンの濃度から、前記冷却カーブの各温度過程における少なくとも格子間リンの濃度を計算する濃度計算ステップと、
     前記シリコン単結晶の冷却中の格子間リンの過飽和度から、冷却完了時におけるリンとシリコンの析出物のサイズおよび密度を計算する析出物計算ステップと、
     前記リンとシリコンの析出物のサイズおよび密度から、エピタキシャル成長後のシリコンウェーハにおける欠陥の密度を推定する欠陥推定ステップと、
     を含むエピタキシャルシリコンウェーハにおける欠陥の発生予測方法。
    A method for predicting the occurrence of defects in an epitaxial silicon wafer manufactured by growing an epitaxial film using a silicon single crystal doped with phosphorus as a substrate, comprising:
    a thermal history calculation step of calculating a cooling curve of the silicon single crystal from temperature characteristics and a pulling rate including a pulling apparatus for manufacturing the silicon single crystal;
    a concentration calculation step of calculating at least the concentration of interstitial phosphorus in each temperature process of the cooling curve from the concentration of phosphorus doped in the silicon single crystal;
    a precipitate calculation step of calculating the size and density of phosphorus and silicon precipitates at the completion of cooling from the interstitial phosphorus supersaturation during cooling of the silicon single crystal;
    a defect estimation step of estimating the density of defects in a silicon wafer after epitaxial growth from the size and density of the precipitates of phosphorus and silicon;
    A method for predicting the occurrence of defects in an epitaxial silicon wafer containing
  2.  前記濃度計算ステップでは、前記格子間リンの濃度のみではなく、空孔、格子間シリコン、リンと空孔との反応物の濃度も併せて計算する、請求項1に記載のエピタキシャルシリコンウェーハにおける欠陥の発生予測方法。 2. The defect in the epitaxial silicon wafer according to claim 1, wherein in said concentration calculation step, not only the concentration of interstitial phosphorus but also the concentration of vacancies, interstitial silicon, and reaction products between phosphorus and vacancies are calculated. occurrence prediction method.
  3.  前記欠陥推定ステップでは、事前の実験で定められた検出すべきリンとシリコンの析出物のサイズの閾値を用いて、前記エピタキシャル成長後のシリコンウェーハにおける欠陥の密度を推定する、請求項1または請求項2に記載のエピタキシャルシリコンウェーハにおける欠陥の発生予測方法。 2. In the defect estimation step, the density of defects in the silicon wafer after epitaxial growth is estimated using a threshold value of the size of precipitates of phosphorous and silicon to be detected determined in advance experiments. 3. The method for predicting occurrence of defects in the epitaxial silicon wafer according to 2.
  4.  前記リンとシリコンの析出物のサイズの閾値を12nmとする、請求項3に記載のエピタキシャルシリコンウェーハにおける欠陥の発生予測方法。 The method for predicting occurrence of defects in an epitaxial silicon wafer according to claim 3, wherein the threshold size of the precipitates of phosphorus and silicon is 12 nm.
  5.  請求項1から請求項4のいずれか1項に記載の欠陥の発生予測を行い、予測される欠陥の密度が規定の水準を満たさない場合、引き上げ速度の調整を行うことによって予測される欠陥の密度が規定の水準を満たす条件でリンをドープしたシリコン単結晶を製造し、前記シリコン単結晶を基板に用いてエピタキシャル膜を成長させて製造するエピタキシャルシリコンウェーハの製造方法。 The defect occurrence prediction according to any one of claims 1 to 4 is performed, and if the predicted defect density does not meet a specified level, the pulling speed is adjusted to predict the number of defects. A method for producing an epitaxial silicon wafer, comprising: producing a silicon single crystal doped with phosphorus under a condition that the density satisfies a specified level; and growing an epitaxial film using the silicon single crystal as a substrate.
  6.  さらにエビタキシャル成長の前段階において行われるプリベイクの条件を調整する請求項5に記載のエピタキシャルシリコンウェーハの製造方法。 The method for manufacturing an epitaxial silicon wafer according to claim 5, further comprising adjusting the pre-baking conditions performed in the pre-stage of epitaxial growth.
PCT/JP2021/005014 2021-02-10 2021-02-10 Method for predicting occurrence of defect in epitaxial silicon wafer and method for manufacturing epitaxial silicon wafer WO2022172367A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237025220A KR20230124056A (en) 2021-02-10 2021-02-10 Method for predicting occurrence of defects in epitaxial silicon wafer and manufacturing method for epitaxial silicon wafer
PCT/JP2021/005014 WO2022172367A1 (en) 2021-02-10 2021-02-10 Method for predicting occurrence of defect in epitaxial silicon wafer and method for manufacturing epitaxial silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/005014 WO2022172367A1 (en) 2021-02-10 2021-02-10 Method for predicting occurrence of defect in epitaxial silicon wafer and method for manufacturing epitaxial silicon wafer

Publications (1)

Publication Number Publication Date
WO2022172367A1 true WO2022172367A1 (en) 2022-08-18

Family

ID=82838476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005014 WO2022172367A1 (en) 2021-02-10 2021-02-10 Method for predicting occurrence of defect in epitaxial silicon wafer and method for manufacturing epitaxial silicon wafer

Country Status (2)

Country Link
KR (1) KR20230124056A (en)
WO (1) WO2022172367A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5890587B2 (en) * 2013-04-24 2016-03-22 Sumco Techxiv株式会社 Single crystal manufacturing method and silicon wafer manufacturing method
JP2019186449A (en) * 2018-04-13 2019-10-24 信越半導体株式会社 Method for manufacturing epitaxial wafer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6835006B2 (en) 2018-02-16 2021-02-24 株式会社Sumco Method for predicting the occurrence of stacking defects in epitaxial silicon wafers and method for manufacturing epitaxial silicon wafers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5890587B2 (en) * 2013-04-24 2016-03-22 Sumco Techxiv株式会社 Single crystal manufacturing method and silicon wafer manufacturing method
JP2019186449A (en) * 2018-04-13 2019-10-24 信越半導体株式会社 Method for manufacturing epitaxial wafer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NAKAMURA, KOZO ET AL.: "Formation mechanism of the As-grown SiP in CZ -Si crystals with heavily doped phosphorus", PROCEEDINGS OF THE 67TH JSAP SPRING MEETING, 2020 *
NAKAMURA, KOZO ET AL.: "Point defect reaction in the heavily doped n type CZ -Si during crystal growth process", PROCEEDINGS OF THE 80TH JSAP AUTUMN MEETING, 2019 *
SENDA, TAKESHI ET AL.: "Atomic structures of grown-in Si-P precipitates in red-phosphorus heavily doped CZ -Si crystals", PROCEEDINGS OF THE 78TH JSAP AUTUMN MEETING, 2017 *
SENDA, TAKESHI ET AL.: "Formation behavior of SiP precipitates in CZ -Si crystals with heavily doped phosphorus", PROCEEDINGS OF THE 67TH JSAP SPRING MEETING, 2020 *

Also Published As

Publication number Publication date
KR20230124056A (en) 2023-08-24

Similar Documents

Publication Publication Date Title
JP4805681B2 (en) Epitaxial wafer and method for manufacturing epitaxial wafer
TWI278040B (en) Silicon epitaxial wafer and manufacturing method for same
EP1928016B1 (en) Silicon wafer and method for manufacturing the same
JPWO2006003812A1 (en) Silicon wafer manufacturing method and silicon wafer manufactured by this method
KR101461531B1 (en) Silicon wafer, method for manufacturing same, and method for manufacturing semiconductor device
Abe Generation and annihilation of point defects by doping impurities during FZ silicon crystal growth
Lehmann et al. Clarification of the relation between the grain structure of industrial grown mc-Si and the area fraction of electrical active defects by means of statistical grain structure evaluation
TW201527610A (en) Silicon wafer and manufacturing method for the same
CN107532325B (en) Silicon epitaxial wafer and its manufacturing method
TWI732898B (en) Single crystal silicon plate-shaped body and manufacturing method thereof
JP2713310B2 (en) Method for manufacturing high-strength silicon wafer
WO2022172367A1 (en) Method for predicting occurrence of defect in epitaxial silicon wafer and method for manufacturing epitaxial silicon wafer
DE112017003486T5 (en) METHOD FOR EVALUATING AND PRODUCING A SILICON WAFER
JP7437165B2 (en) Method for predicting occurrence of defects in epitaxial silicon wafers and method for manufacturing epitaxial silicon wafers
TWI746374B (en) Method for predicting occurrence of defects in epitaxial silicon wafer and method for manufacturing epitaxial silicon wafer
JP7429122B2 (en) Manufacturing method of silicon single crystal
JP4270713B2 (en) Manufacturing method of silicon epitaxial wafer
Dornberger et al. Silicon crystals for future requirements of 300 mm wafers
Talanin et al. Modeling of defect formation processes in dislocation-free silicon single crystals
JP5655319B2 (en) Silicon wafer, manufacturing method thereof, and manufacturing method of semiconductor device
Sueoka Application of DFT calculation for the development of high quality Si and Ge substrates: from ultra large diameter crystal pulling to metal gettering
Conley et al. Stability of pseudomorphic and compressively strained Ge1-xSnx thin films under rapid thermal annealing
TW201909246A (en) Wafer-manufacturing method and wafer
WO2021166895A1 (en) Semiconductor silicon wafer manufacturing method
JP2021109806A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237025220

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP