WO2022172114A1 - 発光デバイスの製造装置 - Google Patents
発光デバイスの製造装置 Download PDFInfo
- Publication number
- WO2022172114A1 WO2022172114A1 PCT/IB2022/050738 IB2022050738W WO2022172114A1 WO 2022172114 A1 WO2022172114 A1 WO 2022172114A1 IB 2022050738 W IB2022050738 W IB 2022050738W WO 2022172114 A1 WO2022172114 A1 WO 2022172114A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cluster
- load lock
- lock chamber
- light
- substrate
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 96
- 238000005530 etching Methods 0.000 claims abstract description 24
- 238000001459 lithography Methods 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims description 324
- 230000008569 process Effects 0.000 claims description 274
- 239000000758 substrate Substances 0.000 claims description 140
- 230000007246 mechanism Effects 0.000 claims description 24
- 239000011261 inert gas Substances 0.000 claims description 22
- 238000004140 cleaning Methods 0.000 claims description 19
- 238000004544 sputter deposition Methods 0.000 claims description 19
- 238000007740 vapor deposition Methods 0.000 claims description 14
- 238000001312 dry etching Methods 0.000 claims description 12
- 238000001039 wet etching Methods 0.000 claims description 10
- 238000001179 sorption measurement Methods 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 8
- 230000003028 elevating effect Effects 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 39
- 239000011241 protective layer Substances 0.000 abstract description 37
- 238000007789 sealing Methods 0.000 abstract description 5
- 238000012546 transfer Methods 0.000 description 162
- 239000010410 layer Substances 0.000 description 158
- 239000010408 film Substances 0.000 description 136
- 238000005401 electroluminescence Methods 0.000 description 99
- 239000004065 semiconductor Substances 0.000 description 29
- 238000010586 diagram Methods 0.000 description 28
- 230000001681 protective effect Effects 0.000 description 25
- 229910052751 metal Inorganic materials 0.000 description 24
- 239000002184 metal Substances 0.000 description 22
- 150000002894 organic compounds Chemical class 0.000 description 20
- 238000000231 atomic layer deposition Methods 0.000 description 19
- 238000002347 injection Methods 0.000 description 18
- 239000007924 injection Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 18
- 239000010409 thin film Substances 0.000 description 14
- 239000011701 zinc Substances 0.000 description 14
- 238000005229 chemical vapour deposition Methods 0.000 description 13
- 238000004380 ashing Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 9
- 230000005525 hole transport Effects 0.000 description 9
- 238000012545 processing Methods 0.000 description 8
- 238000000151 deposition Methods 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 7
- 101000743788 Homo sapiens Zinc finger protein 92 Proteins 0.000 description 6
- 102100039046 Zinc finger protein 92 Human genes 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000005477 sputtering target Methods 0.000 description 3
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910001868 water Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000012864 cross contamination Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 229910052756 noble gas Inorganic materials 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- -1 etc.) Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000007687 exposure technique Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000005247 gettering Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000005499 laser crystallization Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/16—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
- H10K71/166—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/841—Self-supporting sealing arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67161—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
- C23C14/042—Coating on selected surface areas, e.g. using masks using masks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/564—Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
- C23C14/566—Means for minimising impurities in the coating chamber such as dust, moisture, residual gases using a load-lock chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/568—Transferring the substrates through a series of coating stations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/54—Apparatus specially adapted for continuous coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67207—Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67703—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
- H01L21/67718—Changing orientation of the substrate, e.g. from a horizontal position to a vertical position
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67739—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
- H01L21/67742—Mechanical parts of transfer devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/68—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
- H01L21/682—Mask-wafer alignment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/1201—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
Definitions
- One aspect of the present invention relates to an apparatus and method for manufacturing a light-emitting device.
- one embodiment of the present invention is not limited to the above technical field.
- a technical field of one embodiment of the invention disclosed in this specification and the like relates to a product, a method, or a manufacturing method.
- one aspect of the invention relates to a process, machine, manufacture, or composition of matter. Therefore, the technical field of one embodiment of the present invention disclosed in this specification more specifically includes semiconductor devices, display devices, liquid crystal display devices, light-emitting devices, lighting devices, power storage devices, storage devices, imaging devices, and the like. Methods of operation or methods of their manufacture may be mentioned as an example.
- Devices that require high-definition display panels include, for example, smartphones, tablet terminals, and notebook computers.
- stationary display devices such as television devices and monitor devices are also required to have higher definition accompanying higher resolution.
- devices that require the highest definition include, for example, devices for virtual reality (VR) or augmented reality (AR).
- VR virtual reality
- AR augmented reality
- Display devices that can be applied to display panels typically include liquid crystal display devices, light-emitting devices equipped with light-emitting elements such as organic EL (Electro Luminescence) elements or light-emitting diodes (LEDs), and electrophoretic display devices.
- Examples include electronic paper that performs display by, for example.
- An organic EL element has a structure in which a layer containing a light-emitting organic compound is sandwiched between a pair of electrodes. By applying a voltage to this device, light can be obtained from the light-emitting organic compound.
- a display device to which such an organic EL element is applied does not require a backlight, which is required in a liquid crystal display device or the like.
- Patent Document 1 describes an example of a display device using an organic EL element.
- Organic EL display devices capable of full-color display are known to have a configuration in which a white light emitting element and a color filter are combined, and a configuration in which RGB light emitting elements are formed on the same surface.
- the latter structure is ideal in terms of power consumption, and currently, in the manufacture of small and medium-sized panels, metal masks or the like are used to separate the luminescent materials.
- metal masks or the like are used to separate the luminescent materials.
- the alignment accuracy is low in the process using a metal mask, the area occupied by the light emitting element in the pixel must be reduced, making it difficult to increase the aperture ratio.
- a light-emitting element also referred to as a light-emitting device
- a vacuum evaporation method using a metal mask there is a problem that multiple lines of manufacturing apparatuses are required. For example, because it is necessary to periodically clean metal masks, it is necessary to prepare at least two manufacturing lines, and it is necessary to use the other manufacturing equipment during maintenance of one manufacturing equipment, so mass production is not possible. Taking this into account, multiple lines of manufacturing equipment are required. Therefore, there is a problem that the initial investment for introducing the manufacturing equipment becomes very large.
- an object of one embodiment of the present invention is to provide a light-emitting device manufacturing apparatus capable of continuously performing processes from formation of a light-emitting element to sealing without exposing the light-emitting element to the atmosphere. Another object is to provide a light-emitting device manufacturing apparatus that can form a light-emitting element without using a metal mask. Another object is to provide a method for manufacturing a light-emitting device.
- One aspect of the present invention relates to an apparatus for manufacturing a light-emitting device.
- One aspect of the present invention has first to eleventh clusters and first to tenth load-lock chambers, wherein the first cluster is connected via the second cluster and the first load-lock chamber.
- the second cluster is connected to the third cluster via the second load lock chamber
- the third cluster is connected to the fourth cluster via the third load lock chamber
- the fourth cluster is connected to the fifth cluster via a fourth load lock chamber
- the fifth cluster is connected to the sixth cluster via a fifth load lock chamber
- the sixth cluster is connected to is connected to the seventh cluster via a sixth load-lock chamber
- the seventh cluster is connected to the eighth cluster via a seventh load-lock chamber
- the eighth cluster is connected to the ninth
- the ninth cluster is connected to the tenth cluster via a ninth load-lock chamber
- the tenth cluster is connected to the eleventh cluster and the ninth load-lock chamber.
- the first cluster, third cluster, fourth cluster, sixth cluster, seventh cluster, ninth cluster, and eleventh cluster are The second cluster, the fifth cluster, the eighth cluster, and the tenth cluster are controlled in an inert gas atmosphere, and the first cluster to the eleventh cluster each have a transport device , the first cluster, the fourth cluster, the seventh cluster, and the eleventh cluster each have a face-up type deposition apparatus and a face-down type deposition apparatus, and the third cluster, A sixth cluster and a ninth cluster each have an etching device, and a second cluster, a fifth cluster, and an eighth cluster each have a plurality of devices for performing a lithography process.
- the tenth cluster has an etching device, and the face-down type film forming device is a light-emitting device manufacturing device having a substrate reversing device.
- an atmospherically controlled twelfth cluster can have a cleaning apparatus and a baking apparatus.
- the twelfth cluster can have a load chamber and the eleventh cluster can have an unload chamber.
- the thirteenth cluster is connected to the third cluster and the third load-lock the thirteenth cluster is connected via the fourth cluster and the twelfth load-lock chamber;
- the fourteenth cluster is connected via the sixth cluster and the sixth load-lock chamber;
- the 14th cluster is connected to the 7th cluster via a 13th load lock chamber, the 13th cluster and the 14th cluster are controlled to an inert gas atmosphere, and the 13th cluster and A fourteenth cluster may have a cleaning apparatus and a baking apparatus.
- the face-down type film forming apparatus is preferably one or more selected from a vapor deposition apparatus and a sputtering apparatus.
- the face-up type film forming apparatus is preferably one or more selected from a CVD apparatus and an ALD apparatus.
- the etching devices of the third cluster, the sixth cluster, and the ninth cluster are preferably dry etching devices.
- the etching device of the tenth cluster is preferably a wet etching device.
- a coating device, an exposure device, a development device, and a baking device can be provided as a plurality of devices for performing the lithography process.
- a coating device and a nanoimprinting device can be provided as a plurality of devices that perform a lithography process.
- the substrate reversing device has an electrostatic chucking unit, an electromagnet unit, and a cylinder unit, which are stacked in this order, and a rotating mechanism.
- the electrostatic chucking unit can hold the substrate, and the rotating mechanism reverses the stage. be able to.
- the cylinder unit has a function of moving up and down a plurality of pusher pins, and the pusher pins can be provided in through holes provided in the electrostatic adsorption unit and the electromagnet unit.
- a face-down type deposition apparatus is provided with a mask jig and an alignment mechanism.
- the alignment mechanism is connected to an elevating mechanism. After reversing the stage, the mask jig is aligned and brought into contact with the substrate. A mask jig can be brought into close contact with the substrate.
- an apparatus for manufacturing a light-emitting device that can continuously perform processes from formation of a light-emitting element to sealing without exposure to the atmosphere.
- a light emitting device manufacturing apparatus capable of forming a light emitting element without using a metal mask.
- a method for manufacturing a light emitting device can be provided.
- FIG. 1 is a block diagram illustrating a manufacturing apparatus.
- FIG. 2 is a diagram for explaining the manufacturing apparatus.
- FIG. 3 is a diagram for explaining the manufacturing apparatus.
- FIG. 4 is a diagram for explaining the manufacturing apparatus.
- FIG. 5 is a diagram for explaining the manufacturing apparatus.
- FIG. 6 is a block diagram illustrating the manufacturing equipment.
- FIG. 7 is a diagram explaining a manufacturing apparatus.
- FIG. 8 is a diagram explaining a manufacturing apparatus.
- FIG. 9 is a block diagram illustrating a manufacturing apparatus;
- FIG. 10 is a diagram explaining a manufacturing apparatus.
- FIGS. 13A to 13C are diagrams for explaining loading of the substrate into the film forming apparatus and operation of the film forming apparatus.
- 14A and 14B are diagrams for explaining the operation of the film forming apparatus.
- FIG. 14C is a diagram illustrating a mask unit;
- FIG. 15 is a diagram illustrating a display device.
- 16A to 16C are diagrams illustrating a display device.
- 17A to 17D are diagrams illustrating a method for manufacturing a display device.
- 18A to 18D are diagrams illustrating a method for manufacturing a display device.
- 19A to 19E are diagrams illustrating a method for manufacturing a display device.
- FIG. 20 is a diagram explaining a manufacturing apparatus.
- One embodiment of the present invention is a manufacturing apparatus mainly used for forming a display device having a light-emitting device such as an organic EL element.
- a lithography process is preferably used to miniaturize the organic EL element or increase the area occupied by the pixel.
- impurities such as water, oxygen, and hydrogen enter the organic EL element, the reliability is impaired. Therefore, it is necessary to devise ways to prevent the surface and side surfaces of the patterned organic layer from being exposed to the air, and to control the atmosphere from the manufacturing stage to a low dew point.
- a manufacturing apparatus of one embodiment of the present invention can continuously perform a film formation step, a lithography step, an etching step, and a sealing step for forming an organic EL element without exposure to the atmosphere. Therefore, it is possible to form a fine, high-brightness, and highly-reliable organic EL device. Further, the manufacturing apparatus of one embodiment of the present invention is an in-line type in which the apparatuses are arranged in the order of the steps of the light-emitting device, and can be manufactured with high throughput.
- a large substrate such as a glass substrate can be used as a support substrate for forming the organic EL element.
- a glass substrate on which pixel circuits and the like are formed in advance can be used as a support substrate, and organic EL elements can be formed on these circuits.
- the glass substrate for example, a large rectangular substrate such as G5 to G10 can be used. Note that the substrate is not limited to these, and a round substrate, a small substrate, or the like can also be used.
- FIG. 1 is a block diagram illustrating a light-emitting device manufacturing apparatus that is one embodiment of the present invention.
- a manufacturing apparatus has a plurality of clusters arranged in the order of processes.
- a device group that shares a transport device or the like is called a cluster.
- a substrate forming a light-emitting device is sequentially moved through the cluster and subjected to each process.
- the manufacturing apparatus shown in FIG. 1 is an example having clusters C1 to C14.
- the clusters C1 to C14 are connected in order, and the substrate 60a put into the cluster C1 can be taken out from the cluster C14 as the substrate 60b on which the light emitting device is formed.
- clusters C1, C3, C5, C7, C9, C11, C13 have equipment groups for performing processes under atmospheric control.
- Clusters C2, C4, C6, C8, C10, C12, and C14 each have a device group for performing a vacuum process (reduced pressure process).
- Clusters C1, C5, and C9 mainly have devices for cleaning and baking substrates.
- Clusters C2, C6, and C10 mainly have devices for forming organic compounds that light-emitting devices have.
- Clusters C3, C7, and C11 mainly have apparatuses and the like for performing the lithography process.
- Clusters C4, C8, and C12 mainly have devices for performing the etching process and the ashing process.
- the cluster C13 has an etching process, a device for cleaning the substrate, and the like.
- the cluster C14 mainly has an apparatus for forming an organic compound possessed by the light emitting device, an apparatus for forming a protective film that seals the light emitting device, and the like.
- FIG. 1 Details of the clusters C1 to C14 will be described with reference to FIGS. 2 to 5.
- FIG. 2 is a top view for explaining the clusters C1 to C4.
- Cluster C1 is connected to cluster C2 via load lock chamber B1.
- Cluster C2 is connected to cluster C3 via load lock chamber B2.
- Cluster C3 is connected to cluster C4 via load lock chamber B3.
- Cluster C4 is connected to cluster C5 (see FIG. 3) via load lock chamber B4.
- Cluster C1 and cluster C3 have atmospheric process equipment A;
- the cluster C1 has a transfer chamber TF1 and normal pressure process equipment A (normal pressure process equipment A1, A2) that mainly performs processes under normal pressure.
- Cluster C3 has a transfer chamber TF3 and atmospheric process equipment A (atmospheric process equipment A3 to A7).
- a load chamber LD is provided in the cluster C1.
- the number of atmospheric pressure process apparatuses A included in each cluster may be one or more depending on the purpose. Further, the normal pressure process apparatus A is not limited to the process under normal pressure, and may be controlled to a slightly negative or positive pressure relative to normal pressure. Further, when a plurality of normal pressure process apparatuses A are provided, the pressure may be different for each.
- a valve for introducing an inert gas (IG) is connected to the transfer chambers TF1, TF3 and the normal pressure process apparatus A, so that the inert gas atmosphere can be controlled.
- Nitrogen or noble gases such as argon and helium can be used as the inert gas.
- the inert gas preferably has a low dew point (for example, minus 50° C. or lower). By performing the process in an inert gas atmosphere with a low dew point, it is possible to prevent contamination of impurities and form a highly reliable organic EL device.
- a cleaning device, a baking device, or the like can be applied as the atmospheric pressure process device A of the cluster C1.
- a spin cleaning device, a hot plate type baking device, or the like can be applied.
- the baking apparatus may be a vacuum baking apparatus.
- a device for performing a lithography process can be applied as the normal pressure process device A of the cluster C3.
- a resin (photoresist) coating device for example, a resin (photoresist) coating device, an exposure device, a developing device, a baking device, etc. may be applied.
- An apparatus, a nanoimprinting apparatus, or the like may be applied.
- a cleaning device, a wet etching device, a coating device, a resist stripping device, or the like may be applied to the normal pressure process device A depending on the application.
- Cluster C1 shows an example in which normal pressure process apparatuses A1 and A2 are each connected to transfer chamber TF1 via a gate valve.
- cluster C3 shows an example in which each of normal pressure process apparatuses A3 to A7 is connected to transfer chamber TF3 via a gate valve.
- Transfer chamber TF1 is connected to load chamber LD via a gate valve. Also, it is connected to the load lock chamber B1 via another gate valve.
- a transfer device 70a is provided in the transfer chamber TF1. The transfer device 70a can transfer the substrate from the load chamber LD to the normal pressure process apparatus A. FIG. Also, the substrate taken out from the normal pressure process apparatus A can be carried out to the load lock chamber B1.
- Transfer chamber TF3 is connected to load lock chamber B2 via a gate valve. Also, it is connected to the load lock chamber B3 via another gate valve.
- a transfer device 70c is provided in the transfer chamber TF3. The transfer device 70c can transfer the substrate from the load lock chamber B2 to the atmospheric pressure process device A. Further, the substrate taken out from the normal pressure process apparatus A can be carried out to the load lock chamber B3.
- Cluster C2 and cluster C4 have a vacuum process device V.
- Cluster C2 has transfer chamber TF2 and vacuum process equipment V (vacuum process equipment V1 to V4).
- Cluster C4 has transfer chamber TF4 and vacuum process equipment V (vacuum process equipment V5, V6).
- the number of vacuum process apparatuses V included in each cluster may be one or more according to the purpose.
- a vacuum pump VP is connected to the vacuum process apparatus V, and gate valves are provided between the transfer chambers TF (transfer chambers TF2 and TF4). Therefore, each vacuum process apparatus V can perform different processes in parallel.
- the vacuum process means processing in an environment controlled under reduced pressure. Therefore, the vacuum process includes not only processing under high vacuum but also processing in which a process gas is introduced and pressure is controlled under reduced pressure.
- the transfer chambers TF2 and TF4 are also provided with independent vacuum pumps VP, so that cross-contamination in the process performed in the vacuum process apparatus V can be prevented.
- a deposition device for example, a deposition device, a sputtering device, a CVD (Chemical Vapor Deposition) device, an ALD (Atomic Layer Deposition) device, or the like can be applied.
- a thermal CVD apparatus using heat a PECVD apparatus using plasma (Plasma Enhanced CVD apparatus), or the like can be used.
- a thermal ALD apparatus using heat or a PEALD apparatus (Plasma Enhanced ALD apparatus) using a plasma-excited reactant can be used.
- a dry etching device, an ashing device, or the like can be applied as the vacuum process device V included in the cluster C4.
- an apparatus in which a substrate is placed with its film formation surface facing downward is called a face-down type apparatus.
- An apparatus in which a substrate is placed with the film formation surface facing upward is called a face-up type apparatus.
- the face-down type apparatus includes, for example, a deposition apparatus such as a vapor deposition apparatus and a sputtering apparatus.
- face-up type equipment includes film forming equipment such as CVD equipment and ALD equipment, as well as dry etching equipment, ashing equipment, baking equipment, and equipment related to lithography.
- the manufacturing apparatus in the present embodiment may have an apparatus that is not limited to the above.
- a face-up type sputtering apparatus or the like can be used.
- Transfer chamber TF2 is connected to load lock chamber B1 via a gate valve. Also, it is connected to the load lock chamber B2 via another gate valve. A transfer device 70b is provided in the transfer chamber TF2. The transfer device 70b can transfer the substrate placed in the load lock chamber B1 to the vacuum process device V. FIG. Moreover, the substrate taken out from the vacuum process apparatus V can be carried out to the load lock chamber B2.
- Transfer chamber TF4 is connected to load lock chamber B3 via a gate valve. Also, it is connected to the load lock chamber B4 via another gate valve. A transfer device 70d is provided in the transfer chamber TF4. The transfer device 70d can transfer from the load-lock chamber B3 to the vacuum process device V and unload it to the load-lock chamber B4.
- the load lock chambers B1, B2, B3, and B4 are provided with a vacuum pump VP and a valve for introducing an inert gas. Therefore, the load lock chambers B1, B2, B3 and B4 can be controlled to have a reduced pressure or an inert gas atmosphere. For example, when transferring a substrate from the cluster C2 to the cluster C3, the load lock chamber B2 is depressurized, the substrate is transferred from the cluster C2, the load lock chamber B2 is set to an inert gas atmosphere, and then the substrate is transferred to the cluster C3. It can be carried out.
- the transport devices 70a, 70b, 70c, and 70d each have a mechanism for transporting the substrate while placing it on the hand portion. Since the transfer devices 70a and 70c are operated under normal pressure, the hand portion may be provided with a vacuum suction mechanism or the like. Since the conveying devices 70b and 70d are operated under reduced pressure, the hand portion may be provided with an electrostatic adsorption mechanism or the like.
- stages 80a, 80b, 80c, 80d are provided on which the substrate can be placed on the pins. Note that these are only examples, and stages with other configurations may be used.
- FIG. 3 is a top view for explaining the clusters C5 to C8.
- Cluster C5 is connected to cluster C6 via load lock chamber B5.
- Cluster C6 is connected to cluster C7 via load lock chamber B6.
- Cluster C7 is connected to cluster C8 via load lock chamber B7.
- Cluster C8 is connected to cluster C9 (see FIG. 4) through load lock chamber B8.
- clusters C5 to C8 are similar to clusters C1 to C4, cluster C5 corresponds to cluster C1, cluster C6 corresponds to cluster C2, cluster C7 corresponds to cluster C3, and cluster C5 corresponds to cluster C1 to cluster C4.
- C8 corresponds to cluster C4.
- the load chamber LD in the cluster C1 is replaced with the load lock chamber B4 in the cluster C5.
- the load-lock chamber B5 corresponds to the load-lock chamber B1
- the load-lock chamber B6 corresponds to the load-lock chamber B2
- the load-lock chamber B7 corresponds to the load-lock chamber B3
- the load-lock chamber B8 corresponds to the load-lock chamber B4.
- Cluster C5 and cluster C7 have atmospheric process equipment A;
- Cluster C5 has transfer chamber TF5 and normal pressure process equipment A (normal pressure process equipment A8, A9) that mainly performs processes under normal pressure.
- Cluster C7 has a transfer chamber TF7 and atmospheric process equipment A (atmospheric process equipment A10 to A14).
- Transfer chamber TF5 is connected to load lock chamber B4 via a gate valve. Also, it is connected to the load lock chamber B5 via another gate valve.
- a transfer device 70e is provided in the transfer chamber TF5. The transfer device 70e can transfer the substrate from the load lock chamber B4 to the normal pressure process device A. Further, the substrate taken out from the normal pressure process apparatus A can be carried out to the load lock chamber B5.
- the transfer chamber TF7 is connected to the load lock chamber B6 via a gate valve. Also, it is connected to the load lock chamber B7 via another gate valve.
- a transfer device 70g is provided in the transfer chamber TF7. The transfer device 70g can transfer the substrate from the load lock chamber B6 to the normal pressure process device A. Also, the substrate taken out from the normal pressure process apparatus A can be carried out to the load lock chamber B7.
- Cluster C6 and cluster C8 have vacuum process equipment V.
- Cluster C6 has transfer chamber TF6 and vacuum process equipment V (vacuum process equipment V7 to V10).
- Cluster C8 has transfer chamber TF8 and vacuum process equipment V (vacuum process equipment V11, V12).
- Transfer chamber TF6 is connected to load lock chamber B5 via a gate valve. Also, it is connected to the load lock chamber B6 via another gate valve.
- a transfer device 70f is provided in the transfer chamber TF6. The transfer device 70f can transfer the substrate placed in the load lock chamber B5 to the vacuum process device V. FIG. Also, the substrate taken out from the vacuum process apparatus V can be carried out to the load lock chamber B6.
- Transfer chamber TF8 is connected to load lock chamber B7 via a gate valve. Also, it is connected to the load lock chamber B8 via another gate valve.
- a transfer device 70h is provided in the transfer chamber TF8. The transfer device 70h can transfer the substrate from the load lock chamber B7 to the vacuum process device V. FIG. Also, the substrate taken out from the vacuum process apparatus V can be carried out to the load lock chamber B8.
- stages 80e, 80f, 80g, 80h are provided on which the substrate can be placed on the pins.
- FIG. 4 is a top view for explaining the clusters C9 to C12.
- Cluster C9 is connected to cluster C10 via load lock chamber B9.
- Cluster C10 is connected to cluster C11 via load lock chamber B10.
- Cluster C11 is connected to cluster C12 via load lock chamber B11.
- Cluster C12 is connected to cluster C13 (see FIG. 5) through load lock chamber B12.
- clusters C9 to C12 are the same as clusters C1 to C4, cluster C9 corresponds to cluster C1, cluster C10 corresponds to cluster C2, cluster C11 corresponds to cluster C3, and cluster C9 corresponds to cluster C1 to cluster C4.
- C12 corresponds to cluster C4.
- the load chamber LD in the cluster C1 is replaced with the load lock chamber B8 in the cluster C5.
- Load-lock chamber B9 corresponds to load-lock chamber B1
- load-lock chamber B10 corresponds to load-lock chamber B2
- load-lock chamber B11 corresponds to load-lock chamber B3
- load-lock chamber B12 corresponds to load-lock chamber B4.
- Cluster C9 and cluster C11 have atmospheric process equipment A; Cluster C9 has transfer chamber TF9 and normal pressure process equipment A (normal pressure process equipment A15, A16) that mainly performs processes under normal pressure.
- Cluster C11 has transfer chamber TF11 and normal pressure process equipment A (normal pressure process equipment A17 to A21).
- Transfer chamber TF9 is connected to load lock chamber B8 via a gate valve. Also, it is connected to the load lock chamber B9 via another gate valve.
- a transfer device 70i is provided in the transfer chamber TF9. The transfer device 70i can transfer the substrate from the load lock chamber B8 to the atmospheric pressure process device A. Further, the substrate taken out from the normal pressure process apparatus A can be carried out to the load lock chamber B9.
- the transfer chamber TF11 is connected to the load lock chamber B10 via a gate valve. Also, it is connected to the load lock chamber B11 via another gate valve.
- a transfer device 70k is provided in the transfer chamber TF11. The transfer device 70k can transfer the substrate from the load lock chamber B10 to the atmospheric pressure process device A. FIG. Further, the substrate taken out from the normal pressure process apparatus A can be carried out to the load lock chamber B11.
- a cluster C10 and a cluster C12 have a vacuum process apparatus V.
- FIG. The cluster C10 has a transfer chamber TF10 and vacuum process equipment V (vacuum process equipment V13 to V16).
- Cluster C12 has transfer chamber TF12 and vacuum process equipment V (vacuum process equipment V17, V18).
- Transfer chamber TF10 is connected to load lock chamber B9 via a gate valve. It is also connected to the load lock chamber B10 via another gate valve. A transfer device 70j is provided in the transfer chamber TF10. The transfer device 70j can transfer the substrate placed in the load lock chamber B9 to the vacuum process device V. FIG. Also, the substrate taken out from the vacuum process apparatus V can be carried out to the load lock chamber B10.
- Transfer chamber TF12 is connected to load lock chamber B11 via a gate valve. Also, it is connected to the load lock chamber B12 via another gate valve. A transfer device 70m is provided in the transfer chamber TF12. The substrate can be transferred from the load-lock chamber B11 to the vacuum process apparatus V and unloaded to the load-lock chamber B12 by the transfer device 70m.
- Stages 80i, 80j, 80k, 80m on which substrates can be placed on pins are provided in load lock chambers B9, B10, B11, B12.
- FIG. 5 is a top view for explaining the clusters C13 and C14.
- Cluster C13 is connected to cluster C14 via load lock chamber B13. Description common to the clusters C1, C2, etc. will be omitted.
- Cluster C13 has atmospheric process equipment A.
- the cluster C13 has a transfer chamber TF13 and normal pressure process equipment A (normal pressure process equipment A22, A23) that mainly performs processes under normal pressure.
- An etching device, a baking device, or the like can be applied as the atmospheric pressure process device A that the cluster C13 has.
- a wet etching device, a hot plate type baking device, or the like can be used.
- the baking apparatus may be a vacuum baking apparatus.
- Transfer chamber TF13 is connected to load lock chamber B12 via a gate valve. Also, it is connected to the load lock chamber B13 via another gate valve. A transfer device 70n is provided in the transfer chamber TF13. The transfer device 70n can transfer the substrate from the load lock chamber B12 to the atmospheric pressure process device A. Further, the substrate taken out from the normal pressure process apparatus A can be carried out to the load lock chamber B13.
- a deposition device for example, a deposition device, a sputtering device, a CVD device, an ALD device, and other film forming devices, and a counter substrate bonding device can be applied.
- the load lock chamber B13 is provided with a vacuum pump VP and a valve for introducing an inert gas. Therefore, the load lock chamber B13 can be controlled to have a reduced pressure or an inert gas atmosphere. Further, the load lock chamber B13 is provided with a stage 80n on which the substrate can be placed on the pins.
- Transfer chamber TF14 is connected to load lock chamber B13 via a gate valve. It is also connected to the unload chamber ULD through another gate valve.
- a transfer device 70p is provided in the transfer chamber TF14. The transfer device 70p can transfer the substrate from the load lock chamber B13 to the vacuum process device V. FIG. Also, the substrate taken out from the vacuum process apparatus V can be unloaded to the unload chamber ULD.
- clusters C1 to C4 form an organic EL element that emits light of a first color
- clusters C5 to C8 form an organic EL element that emits light of a second color
- clusters C9 to C12 form a third color light.
- a series of steps can be performed in an atmosphere-controlled apparatus to form an organic EL device that emits colored light, remove unnecessary elements in cluster C13, and form a protective film in cluster C14. Details of these steps will be described later.
- FIG. 6 is a block diagram illustrating a light-emitting device manufacturing apparatus different from that in FIG.
- the manufacturing apparatus shown in FIG. 6 is an example having clusters C1, C2, C3, C4, C6, C7, C8, C10, C11, C12, C13, and C14. It is omitted.
- Clusters C1, C2, C3, C4, C6, C7, C8, C10, C11, C12, C13, and C14 are connected in order, and substrate 60a introduced into cluster C1 serves as substrate 60b on which a light emitting device is formed. can be taken out from
- clusters C5 and C9 have cleaning apparatuses and baking apparatuses.
- the processes before the cleaning process are etching (dry etching) and ashing processes. If residual gas components, residues, deposits, etc. in these processes do not adversely affect subsequent processes, the cleaning process can be omitted.
- the configuration of FIG. 6 may be used by omitting the clusters C5 and C9 from the manufacturing apparatus shown in FIG. By omitting clusters C5 and C9, the total number of clusters and the number of load lock chambers can be reduced.
- Cluster C1 to Cluster C4 The configuration of clusters C1 to C4 can be the same as the configuration shown in FIG. However, load lock chamber B4 is connected to cluster C6.
- FIG. 7 is a top view illustrating clusters C6, C7, C8, and C10.
- Cluster C6 is connected to cluster C7 via load lock chamber B6.
- Cluster C7 is connected to cluster C8 via load lock chamber B7.
- Cluster C8 is connected to cluster C10 via load lock chamber B9.
- Cluster C10 is connected to cluster C11 (see FIG. 8) via load lock chamber B10.
- a transfer chamber TF6 of cluster C6 is connected to load lock chamber B4 via a gate valve. Also, it is connected to the load lock chamber B6 via another gate valve.
- a transfer device 70f is provided in the transfer chamber TF6. The transfer device 70f can transfer the substrate placed in the load lock chamber B4 to the vacuum process device V. FIG. Also, the substrate taken out from the vacuum process apparatus V can be carried out to the load lock chamber B6.
- a transfer chamber TF7 of cluster C7 is connected to load lock chamber B6 via a gate valve. Also, it is connected to the load lock chamber B7 via another gate valve.
- a transfer device 70g is provided in the transfer chamber TF7. The transfer device 70g can transfer the substrate from the load lock chamber B6 to the normal pressure process device A. Also, the substrate taken out from the normal pressure process apparatus A can be carried out to the load lock chamber B7.
- a transfer chamber TF8 of cluster C8 is connected to load lock chamber B7 via a gate valve. Also, it is connected to the load lock chamber B9 via another gate valve.
- a transfer device 70h is provided in the transfer chamber TF8. The transfer device 70h can transfer the substrate from the load lock chamber B7 to the vacuum process device V. FIG. Moreover, the substrate taken out from the vacuum process apparatus V can be carried out to the load lock chamber B9.
- a transfer chamber TF10 of the cluster C10 is connected to the load lock chamber B9 via a gate valve. It is also connected to the load lock chamber B10 via another gate valve.
- a transfer device 70j is provided in the transfer chamber TF10. The transfer device 70j can transfer the substrate placed in the load lock chamber B9 to the vacuum process device V. FIG. Also, the substrate taken out from the vacuum process apparatus V can be carried out to the load lock chamber B10.
- FIG. 8 is a top view illustrating clusters C11, C12, C13, and C14.
- Cluster C11 is connected to cluster C12 via load lock chamber B11.
- Cluster C12 is connected to cluster C13 via load lock chamber B12.
- Cluster C13 is connected to cluster C14 via load lock chamber B13.
- a transfer chamber TF11 of the cluster C11 is connected to the load lock chamber B10 via a gate valve. Also, it is connected to the load lock chamber B11 via another gate valve.
- a transfer device 70k is provided in the transfer chamber TF11. The transfer device 70k can transfer the substrate from the load lock chamber B10 to the atmospheric pressure process device A. FIG. Further, the substrate taken out from the normal pressure process apparatus A can be carried out to the load lock chamber B11.
- a transfer chamber TF12 of the cluster C12 is connected to the load lock chamber B11 via a gate valve. Also, it is connected to the load lock chamber B12 via another gate valve.
- a transfer device 70m is provided in the transfer chamber TF12. The transfer device 70m can transfer the substrate from the load lock chamber B11 to the vacuum process device V. FIG. Moreover, the substrate taken out from the vacuum process apparatus V can be carried out to the load lock chamber B12.
- a transfer chamber TF13 of the cluster C13 is connected to the load lock chamber B12 via a gate valve. Also, it is connected to the load lock chamber B13 via another gate valve.
- a transfer device 70n is provided in the transfer chamber TF13. The transfer device 70n can transfer the substrate from the load lock chamber B12 to the atmospheric pressure process device A. Further, the substrate taken out from the normal pressure process apparatus A can be carried out to the load lock chamber B13.
- a transfer chamber TF14 of the cluster C14 is connected to the load lock chamber B13 via a gate valve. It is also connected to the unload chamber ULD through another gate valve.
- a transfer device 70p is provided in the transfer chamber TF14. The transfer device 70p can transfer the substrate from the load lock chamber B13 to the vacuum process device V. FIG. Also, the substrate taken out from the vacuum process apparatus V can be unloaded to the unload chamber ULD.
- FIG. 9 is a block diagram showing a modification of the light-emitting device manufacturing apparatus shown in FIG.
- the manufacturing apparatus shown in FIG. 9 has clusters C4 and C6 as one cluster, and clusters C8 and C10 as one cluster.
- the names of these integrated clusters are cluster C4+C6 and cluster C8+C10.
- cluster C4 is connected to cluster C6 via load lock chamber B4. That is, the process is performed by transferring the substrate from the cluster C4 to the cluster C6.
- both cluster C4 and cluster C6 are clusters having a vacuum process apparatus V.
- FIG. Although there is an upper limit to the number of vacuum process apparatuses that can be connected to the transfer chamber, if the number of vacuum process apparatuses V possessed by cluster C4 and cluster C6 is equal to or less than the upper limit, both can be integrated. The same applies to cluster C8 and cluster C10. By combining cluster C4 and cluster C6, the total number of clusters and load lock chambers can be reduced.
- FIG. 10 is a top view illustrating clusters C1, C2, C3, C4+C6.
- the connection configuration of clusters C1 to C3 is the same as the configuration shown in FIG.
- Cluster C3 is connected to clusters C4+C6 via load lock chamber B5.
- Clusters C4+C6 are connected to cluster C7 (see FIG. 11) through load lock chamber B6.
- Cluster C4+C6 has transfer chamber TF46 and vacuum process equipment V.
- vacuum process equipment V vacuum process equipment V5 to V10
- a vapor deposition equipment for example, a vapor deposition equipment, a sputtering equipment, a CVD equipment, an ALD equipment, an etching equipment, an ashing equipment, etc.
- a vapor deposition equipment for example, a vapor deposition equipment, a sputtering equipment, a CVD equipment, an ALD equipment, an etching equipment, an ashing equipment, etc.
- the load lock chambers B5 and B6 are provided with a vacuum pump VP and a valve for introducing an inert gas. Therefore, the load lock chambers B5 and B6 can be controlled to have a reduced pressure or an inert gas atmosphere.
- Transfer chamber TF46 is connected to load lock chamber B5 via a gate valve. Also, it is connected to the load lock chamber B6 via another gate valve. A transfer device 70d is provided in the transfer chamber TF46. The transfer device 70d can transfer the substrate from the load lock chamber B5 to the vacuum process device V. FIG. Also, the substrate taken out from the vacuum process apparatus V can be carried out to the load lock chamber B6.
- FIG. 11 is a top view illustrating clusters C7, C8+C10, C11, and C12.
- the connection configuration of clusters C11 and C12 is the same as the configuration shown in FIG.
- Cluster C7 is connected to clusters C8+C10 via load lock chamber B9.
- Cluster C8+C10 is connected to cluster C11 via load lock chamber B10.
- Cluster C8+C10 has transfer chamber TF810 and vacuum process equipment V.
- vacuum process equipment V vacuum process equipment V11 to V16
- a vapor deposition equipment for example, a vapor deposition equipment, a sputtering equipment, a CVD equipment, an ALD equipment, an etching equipment, an ashing equipment, etc.
- a vapor deposition equipment for example, a vapor deposition equipment, a sputtering equipment, a CVD equipment, an ALD equipment, an etching equipment, an ashing equipment, etc.
- a vapor deposition equipment for example, a vapor deposition equipment, a sputtering equipment, a CVD equipment, an ALD equipment, an etching equipment, an ashing equipment, etc.
- the load lock chambers B9 and B10 are provided with a vacuum pump VP and a valve for introducing an inert gas. Therefore, the load lock chambers B9 and B10 can be controlled to have a reduced pressure or an inert gas atmosphere.
- Transfer chamber TF810 is connected to load lock chamber B9 via a gate valve. It is also connected to the load lock chamber B10 via another gate valve. A transfer device 70h is provided in the transfer chamber TF810. The transfer device 70h can transfer the substrate from the load lock chamber B9 to the vacuum process device V. FIG. Also, the substrate taken out from the vacuum process apparatus V can be carried out to the load lock chamber B10.
- Cluster C13, C14 The configuration of clusters C13 and C14 can be the same as the configuration shown in FIG.
- FIG. 12A is a diagram for explaining a vacuum process apparatus V (face-down type film forming apparatus) in which the film formation surface of a substrate faces downward, and the film forming apparatus 30 is illustrated here.
- V face-down type film forming apparatus
- the diagram is a transparent diagram of the chamber wall, and the gate valve is omitted.
- the film forming apparatus 30 has a film forming material supply unit 31 , a mask unit 32 and a stage 50 for setting the substrate 60 .
- the film forming material supply unit 31 is a portion where a vapor deposition source is installed.
- the film-forming apparatus 30 is a sputtering apparatus, it is a part in which a target (cathode) is installed.
- stage 50 Details of stage 50 are shown in the exploded view of FIG. 12B.
- the stage 50 has a configuration in which the cylinder unit 33, the electromagnet unit 34, and the electrostatic adsorption unit 35 are stacked in that order.
- the cylinder unit 33 has multiple cylinders 40 .
- the cylinder 40 has a function of vertically moving a cylinder rod connected to the pusher pin 41 .
- Pusher pin 41 is inserted into through hole 42 provided in electromagnet unit 34 and electrostatic attraction unit 35 .
- the tip of the pusher pin 41 contacts the substrate 60 by the operation of the cylinder 40, and the substrate 60 can be raised and lowered.
- FIG. 12A shows the substrate 60 placed on the raised pusher pins 41 .
- FIG. 12B shows a configuration in which one pusher pin 41 is connected to one cylinder 40
- a configuration in which a plurality of pusher pins 41 are connected to one cylinder 40 may be employed.
- the number and positions of the pusher pins 41 may be appropriately determined at positions that do not interfere with the hand portion of the conveying device.
- the electromagnet unit 34 can generate magnetic force when energized, and has a function of bringing a mask jig, which will be described later, into close contact with the substrate 60 .
- the mask jig is preferably made of a ferromagnetic material such as stainless steel.
- the electrostatic chucking unit 35 has a function of applying a voltage to the substrate 60 from the internal electrodes of the electrostatic chucking unit 35, thereby causing the charges in the electrostatic chucking unit 35 and the charges in the substrate 60 to attract each other, thereby causing chucking. have Therefore, unlike the vacuum adsorption mechanism, the substrate can be adsorbed and held even under vacuum. Moreover, it is preferable that the electrostatic adsorption unit is formed of dielectric ceramics or the like and does not contain a ferromagnetic material.
- a rotating mechanism 36 such as a motor is connected to a first end face of the stage 50 and a second end face opposite to the first end face, so that the stage 50 can be vertically inverted.
- the combination of stage 50 and rotation mechanism 36 can be called a substrate reversing device.
- the mask unit 32 is provided with an elevating mechanism 37 connected to the first end surface of the mask unit 32 and the second end surface facing the first end surface.
- the mask unit 32 has a mask jig and an alignment mechanism, and can align and bring the mask jig into close contact with the substrate 60 .
- 13A to 14B a description will be given from carrying the substrate into the film forming apparatus 30 to the film forming process. 13A to 14B, chamber walls, gate valves, and the like are omitted for clarity.
- the substrate 60 placed on the hand portion of the transfer device 70 is moved onto the electrostatic attraction unit 35 . Then, the substrate 60 is lifted by the pusher pins 41 . Alternatively, the substrate 60 is placed on the raised pusher pins 41 by lowering the hand portion of the transfer device 70 (see FIG. 13A).
- the pusher pin 41 is lowered, the substrate 60 is placed on the electrostatic adsorption unit 35, and the electrostatic adsorption unit 35 is operated to adsorb the substrate 60 (see FIG. 13B).
- stage 50 is rotated by the rotating mechanism 36 to reverse the substrate 60 (see FIGS. 13C and 14A).
- the mask unit 32 is lifted by the lifting mechanism 37 and the mask jig is aligned and brought into contact with the substrate 60 .
- the electromagnet unit 34 is energized to bring the mask jig into close contact with the substrate 60 (see FIG. 14B).
- a mask jig 39 included in the mask unit 32 is shown in FIG. 14C.
- a circuit or the like is provided in advance on the surface of the substrate 60, and the substrate 60 and the mask jig 39 are brought into close contact so that no film is formed on unnecessary regions.
- the mask unit 32 has an alignment mechanism including a camera 55 and can perform positional adjustment (X, Y, ⁇ directions) between a portion of the substrate 60 on which film formation is required and the opening of the mask jig 39 .
- the substrate After performing the film forming process in the state shown in FIG. 14B, the substrate can be taken out by performing operations in the reverse order of the above.
- a substrate reversing device may be provided only in a film forming apparatus (a face-down type film forming apparatus) that requires substrate reversal. Therefore, there is no need to provide a substrate reversing mechanism in the substrate transfer device or the load lock chamber, and the cost of the entire apparatus can be reduced. In particular, it is useful for a manufacturing apparatus in which a face-down type apparatus (film formation apparatus) and a face-up type apparatus (film formation apparatus, lithography apparatus, etc.) are mixed, like the manufacturing apparatus of one embodiment of the present invention. .
- a device manufactured using a metal mask or FMM fine metal mask, high-definition metal mask
- a device with an MM (metal mask) structure is sometimes referred to as a device with an MML (metal maskless) structure.
- a structure in which a light-emitting layer is separately formed or a light-emitting layer is separately painted in each color light-emitting device is referred to as SBS (Side By Side) structure.
- SBS Side By Side
- a light-emitting device capable of emitting white light is sometimes referred to as a white light-emitting device.
- a white light emitting device can be combined with a colored layer (for example, a color filter) to realize a full-color display device.
- light-emitting devices can be broadly classified into a single structure and a tandem structure.
- a single-structure device preferably has one light-emitting unit between a pair of electrodes, and the light-emitting unit preferably includes one or more light-emitting layers.
- the light-emitting unit preferably includes one or more light-emitting layers.
- the luminescent color of the first luminescent layer and the luminescent color of the second luminescent layer have a complementary color relationship, it is possible to obtain a configuration in which the entire light emitting device emits white light.
- a device with a tandem structure preferably has two or more light-emitting units between a pair of electrodes, and each light-emitting unit includes one or more light-emitting layers.
- each light-emitting unit includes one or more light-emitting layers.
- a structure in which white light emission is obtained by combining light from the light emitting layers of a plurality of light emitting units may be employed. Note that the structure for obtaining white light emission is the same as the structure of the single structure.
- the white light emitting device when comparing the white light emitting device (single structure or tandem structure) and the light emitting device having the SBS structure, the light emitting device having the SBS structure can consume less power than the white light emitting device. If it is desired to keep power consumption low, it is preferable to use a light-emitting device with an SBS structure. On the other hand, the white light emitting device is preferable because the manufacturing process is simpler than that of the SBS structure light emitting device, so that the manufacturing cost can be lowered or the manufacturing yield can be increased.
- the tandem structure device may have a structure (BB, GG, RR, etc.) having light-emitting layers that emit light of the same color.
- a tandem structure in which light is emitted from a plurality of layers, requires a high voltage for light emission, but requires a smaller current value to obtain the same light emission intensity as a single structure. Therefore, in the tandem structure, the current stress per light emitting unit can be reduced, and the device life can be extended.
- FIG. 15 shows a schematic top view of a display device 100 manufactured using the light-emitting device manufacturing apparatus of one embodiment of the present invention.
- the display device 100 has a plurality of light-emitting elements 110R that emit red, light-emitting elements 110G that emit green, and light-emitting elements 110B that emit blue.
- the light emitting region of each light emitting element is labeled with R, G, and B.
- the light emitting elements 110R, 110G, and 110B are arranged in a matrix.
- FIG. 15 shows a so-called stripe arrangement in which light emitting elements of the same color are arranged in one direction. Note that the arrangement method of the light emitting elements is not limited to this, and an arrangement method such as a delta arrangement or a zigzag arrangement may be applied, or a pentile arrangement may be used.
- EL elements such as OLEDs (Organic Light Emitting Diodes) or QLEDs (Quantum-dot Light Emitting Diodes) are preferably used as the light emitting elements 110R, 110G, and 110B.
- Examples of light-emitting substances that EL devices have include substances that emit fluorescence (fluorescent materials), substances that emit phosphorescence (phosphorescent materials), inorganic compounds (quantum dot materials, etc.), and substances that exhibit heat-activated delayed fluorescence (heat-activated delayed fluorescence (thermally activated delayed fluorescence: TADF) material) and the like.
- FIG. 16A is a schematic cross-sectional view corresponding to the dashed-dotted line A1-A2 in FIG. 15.
- FIG. 16A is a schematic cross-sectional view corresponding to the dashed-dotted line A1-A2 in FIG. 15.
- FIG. 16A shows cross sections of light emitting element 110R, light emitting element 110G, and light emitting element 110B.
- the light-emitting element 110R, the light-emitting element 110G, and the light-emitting element 110B are each provided on a pixel circuit and have a pixel electrode 111 and a common electrode 113.
- FIG. 16A shows cross sections of light emitting element 110R, light emitting element 110G, and light emitting element 110B.
- the light-emitting element 110R, the light-emitting element 110G, and the light-emitting element 110B are each provided on a pixel circuit and have a pixel electrode 111 and a common electrode 113.
- the light emitting element 110R has an EL layer 112R between the pixel electrode 111 and the common electrode 113. As shown in FIG.
- the EL layer 112R contains a light-emitting organic compound that emits light having a peak in at least the red wavelength range.
- the EL layer 112G included in the light-emitting element 110G contains at least a light-emitting organic compound that emits light having a peak in the green wavelength range.
- the EL layer 112B included in the light-emitting element 110B contains at least a light-emitting organic compound that emits light having a peak in the blue wavelength range.
- a structure in which the EL layer 112R, the EL layer 112G, and the EL layer 112B emit light of different colors may be referred to as an SBS (side-by-side) structure.
- Each of the EL layer 112R, the EL layer 112G, and the EL layer 112B includes a layer containing a light-emitting organic compound (light-emitting layer), an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer. You may have one or more of them. Further, each of the EL layer 112R, the EL layer 112G, and the EL layer 112B may have a tandem structure having a plurality of light-emitting layers that emit light of the same color.
- a pixel electrode 111 is provided for each light emitting element. Further, the common electrode 113 is provided as a continuous layer common to each light emitting element. A conductive film that transmits visible light is used for one of the pixel electrode 111 and the common electrode 113, and a conductive film that reflects visible light is used for the other. By making the pixel electrode 111 translucent and the common electrode 113 reflective, a bottom emission type display device can be obtained. By making the display device light, a top emission display device can be obtained. Note that by making both the pixel electrode 111 and the common electrode 113 transparent, a dual-emission display device can be obtained. In this embodiment mode, an example of manufacturing a top emission display device will be described.
- An insulating layer 131 is provided to cover the edge of the pixel electrode 111 .
- the ends of the insulating layer 131 are preferably tapered.
- Each of the EL layer 112R, the EL layer 112G, and the EL layer 112B has a region in contact with the top surface of the pixel electrode 111 and a region in contact with the surface of the insulating layer 131 . Further, end portions of the EL layer 112R, the EL layer 112G, and the EL layer 112B are located on the insulating layer 131. FIG.
- a gap is provided between the two EL layers between the light emitting elements of different colors.
- EL layer 112R, EL layer 112G, and EL layer 112B are preferably provided so as not to touch each other. This can suitably prevent current from flowing through two EL layers adjacent to each other and unintended light emission from occurring. Therefore, the contrast can be increased, and a display device with high display quality can be realized.
- a protective layer 121 is provided on the common electrode 113 to cover the light emitting elements 110R, 110G, and 110B.
- the protective layer 121 has a function of preventing impurities from diffusing into each light emitting element from above.
- the protective layer 121 has a function of capturing (also referred to as gettering) impurities (typically, impurities such as water and hydrogen) that can enter each light-emitting element.
- the protective layer 121 can have, for example, a single-layer structure or a laminated structure including at least an inorganic insulating film.
- inorganic insulating films include oxide films and nitride films such as silicon oxide films, silicon oxynitride films, silicon nitride oxide films, silicon nitride films, aluminum oxide films, aluminum oxynitride films, and hafnium oxide films. .
- a semiconductor material such as indium gallium oxide or indium gallium zinc oxide may be used for the protective layer 121 .
- the protective layer 121 is preferably formed using the ALD apparatus described in Embodiment Mode 1. FIG. Further, when the protective layer 121 is formed using the ALD apparatus, it is preferable to use, for example, an aluminum oxide film.
- the pixel electrode 111 is electrically connected to one of the source and drain of the transistor 116 .
- the transistor 116 is a transistor forming a pixel circuit.
- the transistor 116 for example, a transistor including a metal oxide in a channel formation region (hereinafter referred to as an OS transistor) can be used.
- OS transistors have higher mobility and better electrical characteristics than amorphous silicon.
- the crystallization process in the manufacturing process of polycrystalline silicon is unnecessary, and the film can be formed with good uniformity in the film forming process or the like.
- a metal oxide with an energy gap of 2 eV or more, preferably 2.5 eV or more, more preferably 3 eV or more can be used.
- OS transistors Since an OS transistor has a large energy gap in a semiconductor layer, it exhibits extremely low off-current characteristics of several yA/ ⁇ m (current value per 1 ⁇ m channel width).
- OS transistors have different characteristics from transistors having silicon in the channel formation region (hereafter referred to as Si transistors), such as impact ionization, avalanche breakdown, short channel effects, etc., and have high breakdown voltage and high reliability. A circuit can be formed.
- variations in electrical characteristics due to non-uniform crystallinity, which is a problem in Si transistors are less likely to occur in OS transistors.
- a semiconductor layer included in the OS transistor includes, for example, indium, zinc, and M (M is one or more of metals such as aluminum, titanium, gallium, germanium, yttrium, zirconium, lanthanum, cerium, tin, neodymium, and hafnium).
- M is one or more of metals such as aluminum, titanium, gallium, germanium, yttrium, zirconium, lanthanum, cerium, tin, neodymium, and hafnium.
- M is one or more of metals such as aluminum, titanium, gallium, germanium, yttrium, zirconium, lanthanum, cerium, tin, neodymium, and hafnium.
- An In-M-Zn-based oxide can be typically formed by a sputtering method. Alternatively, it may be formed using an ALD (atomic layer deposition) method.
- the atomic ratio of the metal elements in the sputtering target used for forming the In-M-Zn-based oxide by sputtering preferably satisfies In ⁇ M and Zn ⁇ M.
- the atomic ratio of the semiconductor layers to be deposited includes a variation of plus or minus 40% of the atomic ratio of the metal element contained in the sputtering target.
- an oxide semiconductor with low carrier density is used for the semiconductor layer.
- the semiconductor layer is 1 ⁇ 10 17 /cm 3 or less, preferably 1 ⁇ 10 15 /cm 3 or less, more preferably 1 ⁇ 10 13 /cm 3 or less, more preferably 1 ⁇ 10 11 /cm 3 or less, More preferably, the carrier density is less than 1 ⁇ 10 10 /cm 3 , and an oxide semiconductor with a carrier density of 1 ⁇ 10 ⁇ 9 /cm 3 or more can be used.
- Such an oxide semiconductor is called a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor. It can be said that the oxide semiconductor has a low defect state density and stable characteristics.
- the oxide semiconductor is not limited to these, and an oxide semiconductor having an appropriate composition may be used according to required semiconductor characteristics and electrical characteristics (field-effect mobility, threshold voltage, and the like) of the transistor.
- the semiconductor layer has appropriate carrier density, impurity concentration, defect density, atomic ratio between metal element and oxygen, interatomic distance, density, and the like. .
- FIG. 16A illustrates the configuration in which the light-emitting layers of the R, G, and B light-emitting elements are different from each other, but the present invention is not limited to this.
- an EL layer 112W that emits white light is provided, and colored layers 114R (red), 114G (green), and 114B (blue) are provided so as to overlap the EL layer 112W.
- a method of forming 110G and 110B and colorizing them may be used.
- the EL layer 112W can have, for example, a tandem structure in which EL layers that emit light of R, G, and B are connected in series. Alternatively, a structure in which light-emitting layers emitting light of R, G, and B are connected in series may be used.
- the colored layers 114R, 114G, and 114B for example, red, green, and blue color filters can be used.
- a pixel circuit may be formed by a Si transistor (transistor 117) on the substrate 60, and one of the source or drain of the transistor 117 and the pixel electrode 111 may be electrically connected.
- Amorphous silicon, microcrystalline silicon, polycrystalline silicon, monocrystalline silicon, or the like can be used for the channel formation region of the Si transistor. Note that in the case of providing a transistor over an insulating surface such as a glass substrate, polycrystalline silicon is preferably used.
- High-quality polycrystalline silicon can be easily obtained by using a laser crystallization process or the like, and a high-mobility transistor can be formed.
- High-quality polycrystalline silicon can also be obtained by a solid-phase growth method in which a metal catalyst such as nickel or palladium is added to amorphous silicon and heated.
- a metal catalyst such as nickel or palladium
- polycrystalline silicon formed by solid phase growth using a metal catalyst may be irradiated with a laser to further increase the crystallinity. Note that since the metal catalyst remains in the polycrystalline silicon and deteriorates the electrical characteristics of the transistor, it is preferable to provide a region to which phosphorus or a noble gas is added in addition to the channel formation region so that the metal catalyst is trapped in the region. .
- Example of manufacturing method> An example of a method for manufacturing a light-emitting device that can be manufactured with the manufacturing apparatus of one embodiment of the present invention is described below.
- a light-emitting device included in the display device 100 shown in the above configuration example will be described as an example.
- 17A to 19E are cross-sectional schematic diagrams in each step of a method for manufacturing a light-emitting device illustrated below. 17A to 19E omit the transistor 116, which is a component of the pixel circuit shown in FIG. 16A.
- Thin films (insulating films, semiconductor films, conductive films, etc.) that constitute a display device can be formed using a sputtering method, a chemical vapor deposition (CVD) method, a vacuum deposition method, an atomic layer deposition (ALD) method, or the like.
- the CVD method includes a plasma enhanced CVD (PECVD) method, a thermal CVD method, and the like.
- PECVD plasma enhanced CVD
- thermal CVD methods is the metal organic CVD (MOCVD) method.
- a manufacturing apparatus of one embodiment of the present invention can include an apparatus for forming a thin film by the above method.
- a manufacturing apparatus of one embodiment of the present invention can include an apparatus for forming a thin film by the above method. Further, the manufacturing apparatus of one embodiment of the present invention can include an apparatus for applying resin by the above method.
- a photolithography method or the like can be used when processing a thin film forming a display device.
- the thin film may be processed by using a nanoimprint method.
- a method of directly forming an island-shaped thin film may be used in combination with a film forming method using a shielding mask.
- a thin film processing method using the photolithographic method there are typically the following two methods.
- One is a method of forming a resist mask on a thin film to be processed, processing the thin film by etching or the like, and removing the resist mask.
- the other is a method of forming a photosensitive thin film, then performing exposure and development to process the thin film into a desired shape.
- the light used for exposure can be, for example, i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or a mixture thereof.
- ultraviolet rays, KrF laser light, ArF laser light, or the like can also be used.
- the exposure may be performed by an immersion exposure technique.
- extreme ultraviolet (EUV: Extreme Ultra-violet) light or X-rays may be used.
- An electron beam can also be used instead of the light used for exposure. The use of extreme ultraviolet light, X-rays, or electron beams is preferable because extremely fine processing is possible.
- a photomask is not necessary when exposure is performed by scanning a beam such as an electron beam.
- a dry etching method, a wet etching method, or the like can be used for etching the thin film.
- a manufacturing apparatus of one embodiment of the present invention can have an apparatus for processing a thin film by the above method.
- a substrate having heat resistance that can withstand at least subsequent heat treatment can be used.
- a substrate having heat resistance that can withstand at least subsequent heat treatment can be used.
- a glass substrate, a quartz substrate, a sapphire substrate, a ceramic substrate, an organic resin substrate, or the like can be used.
- a semiconductor substrate such as a single crystal semiconductor substrate, a polycrystalline semiconductor substrate, a compound semiconductor substrate made of silicon germanium or the like, or an SOI substrate can be used.
- the substrate 60 it is preferable to use a substrate in which a semiconductor circuit including a semiconductor element such as a transistor is formed on the above semiconductor substrate or insulating substrate.
- the semiconductor circuit preferably constitutes, for example, a pixel circuit, a gate line driver circuit (gate driver), a source line driver circuit (source driver), and the like.
- gate driver gate line driver
- source driver source driver
- an arithmetic circuit, a memory circuit, and the like may be configured.
- a plurality of pixel circuits are formed on the substrate 60, and pixel electrodes 111 are formed in each pixel circuit.
- a conductive film to be the pixel electrode 111 is formed, a resist mask is formed by photolithography, and unnecessary portions of the conductive film are removed by etching. After that, the pixel electrode 111 can be formed by removing the resist mask.
- the pixel electrode 111 it is preferable to use a material (for example, silver or aluminum) that has the highest possible reflectance over the entire wavelength range of visible light.
- the pixel electrode 111 formed of the material can be said to be an electrode having light reflectivity. Thereby, not only can the light extraction efficiency of the light emitting element be improved, but also the color reproducibility can be improved.
- an insulating layer 131 is formed to cover the edge of the pixel electrode 111 (see FIG. 17A).
- an organic insulating film or an inorganic insulating film can be used as the insulating layer 131.
- the insulating layer 131 preferably has a tapered end in order to improve the step coverage of the subsequent EL film.
- it is preferable to use a photosensitive material because the shape of the end portion can be easily controlled depending on the exposure and development conditions.
- the EL film 112Rf has a film containing at least a red light-emitting organic compound.
- a structure in which an electron injection layer, an electron transport layer, a charge generation layer, a hole transport layer, and a hole injection layer are laminated may be employed.
- the EL film 112Rf can be formed by vapor deposition, sputtering, or the like, for example. Note that the method is not limited to this, and the film forming method described above can be used as appropriate.
- a protective film 125Rf which later becomes the protective layer 125R, is formed on the EL film 112Rf (see FIG. 17B).
- the protective layer 125R is a temporary protective layer used to prevent deterioration and disappearance of the EL layer 112R during the manufacturing process of the organic EL element, and is also called a sacrificial layer.
- the protective film 125Rf has a high barrier property against moisture and the like, and is preferably formed by a film formation method that does not easily damage the organic compound during film formation.
- an inorganic film such as a metal film, an alloy film, a metal oxide film, a semiconductor film, an inorganic insulating film, or an organic film can be used.
- a resist mask 143a is formed on the pixel electrode 111 corresponding to the light emitting element 110R (see FIG. 17C).
- the resist mask 143a can be formed by a lithography process.
- ⁇ Formation of EL layer 112R and protective layer 125R> Subsequently, using the resist mask 143a as a mask, the protective film 125Rf and the EL film 112Rf are etched to form the protective layer 125R and the EL layer 112R in an island shape (see FIG. 17D). A dry etching method or a wet etching method can be used for the etching process. After that, the resist mask 143a is removed by ashing or a resist remover.
- an EL film 112Gf which will later become the EL layer 112G, is formed on the exposed pixel electrodes 111, the insulating layer 131, and the protective layer 125R.
- the EL film 112Gf has a film containing at least a green light-emitting organic compound.
- a structure in which an electron injection layer, an electron transport layer, a charge generation layer, a hole transport layer, and a hole injection layer are laminated may be employed.
- a protective film 125Gf which later becomes the protective layer 125G, is formed on the EL film 112Gf (see FIG. 18A).
- the protective film 125Gf can be made of the same material as the protective film 125Rf.
- a resist mask 143b is formed on the pixel electrode 111 corresponding to the light emitting element 110G (see FIG. 18B).
- the resist mask 143b can be formed by a lithography process.
- the protective layer 125G and the EL film 112Gf are etched using the resist mask 143b as a mask to form the protective layer 125G and the EL layer 112G in an island shape (see FIG. 18C).
- a dry etching method or a wet etching method can be used for the etching process.
- the resist mask 143b is removed by ashing or a resist remover.
- an EL film 112Bf which will later become the EL layer 112B, is formed on the exposed pixel electrodes 111 and insulating layer 131, and on the protective layers 125R and 125G.
- the EL film 112Bf has a film containing at least a blue light-emitting organic compound.
- a structure in which an electron injection layer, an electron transport layer, a charge generation layer, a hole transport layer, and a hole injection layer are laminated may be employed.
- a protective film 125Bf which later becomes the protective layer 125B, is formed on the EL film 112Bf (see FIG. 18D).
- the protective film 125Bf can be made of the same material as the protective film 125Rf.
- a resist mask 143c is formed on the pixel electrode 111 corresponding to the light emitting element 110B (see FIG. 19A).
- the resist mask 143c can be formed by a lithography process.
- ⁇ Formation of EL layer 112B and protective layer 125B> Subsequently, using the resist mask 143c as a mask, the protective film 125Bf and the EL film 112Bf are etched to form the protective layer 125B and the EL layer 112G in an island shape (see FIG. 19B). A dry etching method or a wet etching method can be used for the etching process. After that, the resist mask 143b is removed by ashing or resist remover (see FIG. 19C).
- a conductive layer that becomes the common electrode 113 of the organic EL element is formed on the EL layer 112R, the EL layer 112G, the EL layer 112B, and the insulating layer 131 exposed in the previous step.
- a thin metal film for example, an alloy of silver and magnesium
- a translucent conductive film for example, indium tin oxide, or indium, gallium, zinc, or the like.
- a single film or a laminated film of both can be used.
- the common electrode 113 made of such a film can be said to be an electrode having light transmission properties.
- An evaporation apparatus and/or a sputtering apparatus, or the like can be used for the step of forming the conductive layer to be the common electrode 113 .
- a layer having the function of any one of an electron injection layer, an electron transport layer, a charge generation layer, a hole transport layer, and a hole injection layer is used as a common layer. It may be provided over the layer 112R, the EL layer 112G, and the EL layer 112B.
- a light-reflective electrode as the pixel electrode 111 and a light-transmitting electrode as the common electrode 113 , light emitted from the light-emitting layer can be emitted to the outside through the common electrode 113 . That is, a top emission type light emitting device is formed.
- a protective layer 121 is formed on the common electrode 113 (see FIG. 19E).
- a sputtering apparatus, a CVD apparatus, an ALD apparatus, or the like can be used in the step of forming the protective layer.
- FIG. 20 shows an example of a manufacturing apparatus that can be used for the manufacturing steps from the formation of the EL film 112Rf to the formation of the protective layer 121 described above.
- the basic configuration of the manufacturing apparatus shown in FIG. 20 is the same as that of the manufacturing apparatus shown in FIG.
- FIG. 20 is a schematic perspective view of the entire manufacturing apparatus, omitting illustrations of utilities, gate valves, and the like. Also, the insides of the transfer chambers TF1 to TF14 and the load lock chambers B1 to B13 are visualized for clarity.
- the cluster C1 has a load chamber LD and normal pressure process devices A1 and A2.
- the atmospheric process apparatus A1 can be a cleaning apparatus, and the atmospheric process apparatus A2 can be a baking apparatus.
- a cleaning process is performed before forming the EL film 112Rf.
- the vacuum process apparatuses V1 to V4 are a vapor deposition apparatus for forming the EL film 112Rf and a film forming apparatus (for example, vapor deposition apparatus, ALD apparatus, etc.) for forming the protective film 125Rf.
- the vacuum process apparatus V1 can be used as an apparatus for forming an organic compound layer that serves as the light emitting layer (R).
- the vacuum process apparatuses V2 and V3 can be assigned to forming apparatuses for forming organic compound layers such as an electron injection layer, an electron transport layer, a charge generation layer, a hole transport layer, and a hole injection layer.
- the vacuum process apparatus V4 can be assigned to the apparatus for forming the protective film 125Rf.
- Cluster C3 has atmospheric process equipment A3 to A7.
- the atmospheric pressure process apparatuses A3 to A7 can be apparatuses used in the lithography process.
- the normal pressure process equipment A3 is a resin (photoresist) coater
- the normal pressure process equipment A4 is a prebake equipment
- the normal pressure process equipment A5 is an exposure equipment
- the normal pressure process equipment A6 is a development equipment
- the normal pressure process equipment A7 is a post. It can be a baking device.
- the normal pressure process apparatus A5 may be used as a nanoimprint apparatus.
- Cluster C4 has vacuum process equipment V5 and V6.
- the vacuum process equipment V5 can be a dry etching equipment for forming the EL layer 112R.
- the vacuum process equipment V6 can be an ashing equipment for removing the resist mask.
- Cluster C5 has atmospheric process units A8 and A9.
- the atmospheric process apparatus A8 can be a cleaning apparatus, and the atmospheric process apparatus A9 can be a baking apparatus.
- cluster C5 a cleaning process is performed before forming the EL film 112Gf.
- Cluster C6 has vacuum process equipment V7 to V10.
- the vacuum process apparatuses V7 to V10 are a vapor deposition apparatus for forming the EL film 112Gf and a film forming apparatus (for example, a sputtering apparatus) for forming the protective film 125Gf.
- the vacuum process apparatus V7 can be used as an apparatus for forming an organic compound layer that serves as a light-emitting layer (G).
- the vacuum process apparatuses V8 and V9 can be assigned to forming apparatuses for forming organic compound layers such as an electron injection layer, an electron transport layer, a charge generation layer, a hole transport layer, and a hole injection layer.
- the vacuum process apparatus V10 can be assigned to the apparatus for forming the protective film 125Gf.
- Cluster C7 has atmospheric process equipment A10 to A14.
- the atmospheric pressure process apparatuses A10 to A14 can be apparatuses used for lithography processes.
- the device allocation can be similar to cluster C3.
- Cluster C8 has vacuum process equipment V11 and V12.
- the vacuum process equipment V11 can be a dry etching equipment for forming the EL layer 112G.
- the vacuum process equipment V12 can be an ashing equipment for removing the resist mask.
- Cluster C9 has atmospheric process equipment A15 and A16.
- the atmospheric process apparatus A15 can be a cleaning apparatus, and the atmospheric process apparatus A16 can be a baking apparatus.
- cluster C9 a cleaning process is performed before forming the EL film 112Bf.
- Cluster C10 has vacuum process equipment V13 to V16.
- the vacuum process apparatuses V13 to V16 are a vapor deposition apparatus for forming the EL film 112Bf and a film forming apparatus (for example, a sputtering apparatus) for forming the protective film 125Bf.
- the vacuum process apparatus V13 can be used as an apparatus for forming an organic compound layer that serves as a light-emitting layer (G).
- the vacuum process apparatuses V14 and V15 can be assigned to forming apparatuses for forming organic compound layers such as an electron injection layer, an electron transport layer, a charge generation layer, a hole transport layer, and a hole injection layer.
- the vacuum process apparatus V16 can be assigned to the apparatus for forming the protective film 125Bf.
- Cluster C11 has atmospheric process equipment A17 to A21.
- the atmospheric pressure process equipment A17 to A21 can be equipment used in the lithography process.
- the device allocation can be similar to cluster C3.
- Cluster C12 has vacuum process equipment V17 and V18.
- the vacuum process apparatus V17 can be a dry etching apparatus for forming the EL layer 112B.
- the vacuum process equipment V18 can be an ashing equipment for removing the resist mask.
- Cluster C13 has atmospheric process equipment A22 and A23.
- the atmospheric pressure process equipment A22 can be a wet etching equipment, and the atmospheric pressure process equipment A23 can be a baking equipment.
- an etching process of protective layers 125R, 125G, and 125B is performed.
- Cluster C14 has vacuum process equipment V19 to V21 and unload chamber ULD.
- the vacuum process apparatus V19 can be assigned to an apparatus (for example, a vapor deposition apparatus) for forming any one of organic compound layers such as an electron injection layer, an electron transport layer, a charge generation layer, a hole transport layer, and a hole injection layer.
- the vacuum process device V20 can be a film forming device (for example, a sputtering device) that forms the common electrode 113 .
- the vacuum process device V21 can be a film forming device (for example, a sputtering device) that forms the protective layer 121 .
- a vacuum process apparatus V may be provided separately, a plurality of different film forming apparatuses (eg, a vapor deposition apparatus, an ALD apparatus, etc.) may be provided, and the common electrode 113 and the protective layer 121 may be formed of laminated films.
- a vapor deposition apparatus e.g., a vapor deposition apparatus, an ALD apparatus, etc.
- the common electrode 113 and the protective layer 121 may be formed of laminated films.
- Table 1 summarizes the steps using the manufacturing apparatus shown in FIG. 20, the processing apparatus, and the elements corresponding to the manufacturing method described above. It should be noted that the loading and unloading of substrates into and out of the load lock chamber and each device are omitted.
- a manufacturing apparatus includes process Nos. shown in Table 1. 1 to process No. It has a function to automatically process up to 47.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Robotics (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Physical Vapour Deposition (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
図2は、製造装置を説明する図である。
図3は、製造装置を説明する図である。
図4は、製造装置を説明する図である。
図5は、製造装置を説明する図である。
図6は、製造装置を説明するブロック図である。
図7は、製造装置を説明する図である。
図8は、製造装置を説明する図である。
図9は、製造装置を説明するブロック図である。
図10は、製造装置を説明する図である。
図11は、製造装置を説明する図である。
図12A乃至図12Cは、成膜装置を説明する図である。
図13A乃至図13Cは、成膜装置への基板の搬入および成膜装置の動作を説明する図である。
図14Aおよび図14Bは、成膜装置の動作を説明する図である。図14Cは、マスクユニットを説明する図である。
図15は、表示装置を説明する図である。
図16A乃至図16Cは、表示装置を説明する図である。
図17A乃至図17Dは、表示装置の作製方法を説明する図である。
図18A乃至図18Dは、表示装置の作製方法を説明する図である。
図19A乃至図19Eは、表示装置の作製方法を説明する図である。
図20は、製造装置を説明する図である。
本実施の形態では、本発明の一態様である発光デバイスの製造装置について、図面を参照して説明する。
図1は、本発明の一態様である発光デバイスの製造装置を説明するブロック図である。製造装置は、工程順に配置された複数のクラスタを有する。なお、本明細書において、搬送装置などを共有する装置群をクラスタと呼ぶ。発光デバイスを形成する基板は、当該クラスタを順に移動して各工程が施される。
図2は、クラスタC1乃至クラスタC4を説明する上面図である。クラスタC1は、ロードロック室B1を介してクラスタC2と接続される。クラスタC2は、ロードロック室B2を介してクラスタC3と接続される。クラスタC3は、ロードロック室B3を介してクラスタC4と接続される。クラスタC4は、ロードロック室B4を介してクラスタC5(図3参照)と接続される。
クラスタC1およびクラスタC3は、常圧プロセス装置Aを有する。クラスタC1は、トランスファー室TF1と、主に常圧下で工程を行う常圧プロセス装置A(常圧プロセス装置A1、A2)を有する。クラスタC3は、トランスファー室TF3と、常圧プロセス装置A(常圧プロセス装置A3乃至A7)を有する。また、クラスタC1には、ロード室LDが設けられる。
クラスタC2およびクラスタC4は、真空プロセス装置Vを有する。クラスタC2は、トランスファー室TF2と、真空プロセス装置V(真空プロセス装置V1乃至V4)を有する。クラスタC4は、トランスファー室TF4と、真空プロセス装置V(真空プロセス装置V5、V6)を有する。
図3は、クラスタC5乃至クラスタC8を説明する上面図である。クラスタC5は、ロードロック室B5を介してクラスタC6と接続される。クラスタC6は、ロードロック室B6を介してクラスタC7と接続される。クラスタC7は、ロードロック室B7を介してクラスタC8と接続される。クラスタC8は、ロードロック室B8を介してクラスタC9(図4参照)と接続される。
図4は、クラスタC9乃至クラスタC12を説明する上面図である。クラスタC9は、ロードロック室B9を介してクラスタC10と接続される。クラスタC10は、ロードロック室B10を介してクラスタC11と接続される。クラスタC11は、ロードロック室B11を介してクラスタC12と接続される。クラスタC12は、ロードロック室B12を介してクラスタC13(図5参照)と接続される。
図5は、クラスタC13、C14を説明する上面図である。クラスタC13は、ロードロック室B13を介してクラスタC14と接続される。なお、クラスタC1、C2等と共通する説明は省略する。
図6は、図1とは異なる発光デバイスの製造装置を説明するブロック図である。図6に示す製造装置は、クラスタC1、C2、C3、C4、C6、C7、C8、C10、C11、C12、C13、C14を有する例であり、図1に示す製造装置からクラスタC5、C9を省いた構成となっている。クラスタC1、C2、C3、C4、C6、C7、C8、C10、C11、C12、C13、C14は順に接続され、クラスタC1に投入された基板60aは、発光デバイスが形成された基板60bとしてクラスタC14から取り出すことができる。
クラスタC1乃至クラスタC4の構成は、図2に示す構成と同様とすることができる。ただし、ロードロック室B4は、クラスタC6と接続される。
図7は、クラスタC6、C7、C8、C10を説明する上面図である。クラスタC6は、ロードロック室B6を介してクラスタC7と接続される。クラスタC7は、ロードロック室B7を介してクラスタC8と接続される。クラスタC8は、ロードロック室B9を介してクラスタC10と接続される。クラスタC10は、ロードロック室B10を介してクラスタC11(図8参照)と接続される。
図8は、クラスタC11、C12、C13、C14を説明する上面図である。クラスタC11は、ロードロック室B11を介してクラスタC12と接続される。クラスタC12は、ロードロック室B12を介してクラスタC13と接続される。クラスタC13は、ロードロック室B13を介してクラスタC14と接続される。
図9は、図6に示す発光デバイスの製造装置の変形例を示すブロック図である。図9に示す製造装置は、クラスタC4およびクラスタC6を一つのクラスタとし、クラスタC8およびクラスタC10を一つのクラスタとしている。なお、これらの統合したクラスタの名称は、クラスタC4+C6、クラスタC8+C10としている。
図10は、クラスタC1、C2、C3、C4+C6を説明する上面図である。クラスタC1乃至C3の接続構成は、図2に示す構成と同様である。クラスタC3は、ロードロック室B5を介してクラスタC4+C6と接続される。クラスタC4+C6は、ロードロック室B6を介してクラスタC7(図11参照)と接続される。
図11は、クラスタC7、C8+C10、C11、C12を説明する上面図である。クラスタC11、C12の接続構成は、図4に示す構成と同様である。クラスタC7は、ロードロック室B9を介してクラスタC8+C10と接続される。クラスタC8+C10は、ロードロック室B10を介してクラスタC11と接続される。
クラスタC13、C14の構成は、図5に示す構成と同様とすることができる。
図12Aは、基板の被成膜面を下向きに設置する真空プロセス装置V(フェイスダウン型の成膜装置)を説明する図であり、ここでは成膜装置30を例示している。なお、図の明瞭化のため、チャンバー壁を透過した図とし、ゲートバルブは省略している。
本実施の形態では、本発明の一態様の発光デバイスの製造装置を用いて作製される発光素子(有機EL素子)の具体例を説明する。
図15に、本発明の一態様の発光デバイスの製造装置を用いて作製される表示装置100の上面概略図を示す。表示装置100は、赤色を呈する発光素子110R、緑色を呈する発光素子110G、および青色を呈する発光素子110Bをそれぞれ複数有する。図15では、各発光素子の区別を簡単にするため、各発光素子の発光領域内にR、G、Bの符号を付している。
が、互いに接しないように設けられていることが好ましい。これにより、互いに隣接する2つのEL層を介して電流が流れ、意図しない発光が生じることを好適に防ぐことができる。そのため、コントラストを高めることができ、表示品位の高い表示装置を実現できる。
以下では、本発明の一態様の製造装置で作製できる発光デバイスの作製方法の例について説明する。ここでは、上記構成例で示した表示装置100が有する発光デバイスを例に挙げて説明する。
基板60としては、少なくとも後の熱処理に耐えうる程度の耐熱性を有する基板を用いることができる。基板60として、絶縁性基板を用いる場合には、ガラス基板、石英基板、サファイア基板、セラミクス基板、有機樹脂基板などを用いることができる。また、シリコンまたは炭化シリコンなどを材料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体基板、SOI基板などの半導体基板を用いることができる。
続いて、基板60上に複数の画素回路を形成し、それぞれの画素回路に画素電極111を形成する。まず画素電極111となる導電膜を成膜し、フォトリソグラフィ法によりレジストマスクを形成し、導電膜の不要な部分をエッチングにより除去する。その後、レジストマスクを除去することで、画素電極111を形成することができる。
続いて、画素電極111の端部を覆って、絶縁層131を形成する(図17A参照)。絶縁層131としては、有機絶縁膜または無機絶縁膜を用いることができる。絶縁層131は、後のEL膜の段差被覆性を向上させるために、端部をテーパー形状とすることが好ましい。特に、有機絶縁膜を用いる場合には、感光性の材料を用いると、露光および現像の条件により端部の形状を制御しやすいため好ましい。
続いて、画素電極111および絶縁層131上に、後にEL層112RとなるEL膜112Rfを成膜する。
続いて、EL膜112Rf上に、後に保護層125Rとなる保護膜125Rfを成膜する(図17B参照)。
続いて、発光素子110Rに対応する画素電極111上にレジストマスク143aを形成する(図17C参照)。レジストマスク143aは、リソグラフィ工程で形成することができる。
続いて、レジストマスク143aをマスクとして保護膜125RfおよびEL膜112Rfのエッチングを行い、保護層125RおよびEL層112Rを島状に形成する(図17D参照)。エッチング工程にはドライエッチング法またはウェットエッチング法を用いることができる。その後、レジストマスク143aをアッシングまたはレジスト剥離液にて取り除く。
続いて、露出している画素電極111および絶縁層131上、ならびに保護層125R上に後にEL層112GとなるEL膜112Gfを成膜する。
続いて、EL膜112Gf上に、後に保護層125Gとなる保護膜125Gfを成膜する(図18A参照)。保護膜125Gfは、保護膜125Rfと同様の材料で形成することができる。
続いて、発光素子110Gに対応する画素電極111上にレジストマスク143bを形成する(図18B参照)。レジストマスク143bは、リソグラフィ工程で形成することができる。
続いて、レジストマスク143bをマスクとして保護層125GおよびEL膜112Gfのエッチングを行い、保護層125GおよびEL層112Gを島状に形成する(図18C参照)。エッチング工程にはドライエッチング法またはウェットエッチング法を用いることができる。その後、レジストマスク143bをアッシングまたはレジスト剥離液にて取り除く。
続いて、露出している画素電極111および絶縁層131上、ならびに保護層125R、125G上に、後にEL層112BとなるEL膜112Bfを成膜する。
続いて、EL膜112Bf上に、後に保護層125Bとなる保護膜125Bfを成膜する(図18D参照)。保護膜125Bfは、保護膜125Rfと同様の材料で形成することができる。
続いて、発光素子110Bに対応する画素電極111上にレジストマスク143cを形成する(図19A参照)。レジストマスク143cは、リソグラフィ工程で形成することができる。
続いて、レジストマスク143cをマスクとして保護膜125BfおよびEL膜112Bfのエッチングを行い、保護層125BおよびEL層112Gを島状に形成する(図19B参照)。エッチング工程にはドライエッチング法またはウェットエッチング法を用いることができる。その後、レジストマスク143bをアッシングまたはレジスト剥離液にて取り除く(図19C参照)。
続いて、保護層125R、125G、125Bを除去する(図19D参照)。保護層の除去には、保護層の材料に適したエッチャントを用いたウェットエッチング法などを用いることが好ましい。
続いて、前の工程で露出したEL層112R、EL層112G、EL層112B、および絶縁層131上に有機EL素子の共通電極113となる導電層を形成する。共通電極113としては、発光層から発する光を透過する薄い金属膜(例えば銀およびマグネシウムの合金など)、透光性導電膜(例えば、インジウムスズ酸化物、またはインジウム、ガリウム、亜鉛などを一つ以上含む酸化物など)のいずれか単膜または両者の積層膜を用いることができる。このような膜からなる共通電極113は、光透過性を有する電極ということができる。共通電極113となる導電層を形成する工程には、蒸着装置および/またはスパッタリング装置などを用いることができる。
続いて、共通電極113上に保護層121を形成する(図19E参照)。保護層を形成する工程には、スパッタリング装置、CVD装置、またはALD装置などを用いることができる。
上述したEL膜112Rfの形成から保護層121形成までの作製工程に用いることができる製造装置の例を図20に示す。図20に示す製造装置の基本構成は、図1に示す製造装置と同じである。
クラスタC1は、ロード室LD、常圧プロセス装置A1、A2を有する。常圧プロセス装置A1は洗浄装置、常圧プロセス装置A2はベーク装置とすることができる。クラスタC1では、EL膜112Rfを成膜する前の洗浄工程が行われる。
クラスタC2は、真空プロセス装置V1乃至V4を有する。真空プロセス装置V1乃至V4は、EL膜112Rfを形成するための蒸着装置、および保護膜125Rfを形成するための成膜装置(例えば、蒸着装置、ALD装置など)である。例えば、真空プロセス装置V1を発光層(R)となる有機化合物層の形成装置とすることができる。また、真空プロセス装置V2、V3を電子注入層、電子輸送層、電荷発生層、正孔輸送層、正孔注入層などの有機化合物層の形成装置に割り当てることができる。また、真空プロセス装置V4を保護膜125Rfの形成装置に割り当てることができる。
クラスタC3は、常圧プロセス装置A3乃至A7を有する。常圧プロセス装置A3乃至A7は、リソグラフィ工程に用いる装置とすることができる。例えば、常圧プロセス装置A3を樹脂(フォトレジスト)塗布装置、常圧プロセス装置A4をプリベーク装置、常圧プロセス装置A5を露光装置、常圧プロセス装置A6を現像装置、常圧プロセス装置A7をポストベーク装置とすることができる。または、常圧プロセス装置A5をナノインプリント装置としてもよい。
クラスタC4は、真空プロセス装置V5、V6を有する。真空プロセス装置V5は、EL層112Rの形成を行うドライエッチング装置とすることができる。真空プロセス装置V6は、レジストマスク除去を行うアッシング装置とすることができる。
クラスタC5は、常圧プロセス装置A8、A9を有する。常圧プロセス装置A8は洗浄装置、常圧プロセス装置A9はベーク装置とすることができる。クラスタC5では、EL膜112Gfを成膜する前の洗浄工程が行われる。
クラスタC6は、真空プロセス装置V7乃至V10を有する。真空プロセス装置V7乃至V10は、EL膜112Gfを形成するための蒸着装置、および保護膜125Gfを形成するための成膜装置(例えば、スパッタリング装置)である。例えば、真空プロセス装置V7を発光層(G)となる有機化合物層の形成装置とすることができる。また、真空プロセス装置V8、V9を電子注入層、電子輸送層、電荷発生層、正孔輸送層、正孔注入層などの有機化合物層の形成装置に割り当てることができる。また、真空プロセス装置V10を保護膜125Gfの形成装置に割り当てることができる。
クラスタC7は、常圧プロセス装置A10乃至A14を有する。常圧プロセス装置A10乃至A14は、リソグラフィ工程に用いる装置とすることができる。装置の割り当ては、クラスタC3と同様とすることができる。
クラスタC8は、真空プロセス装置V11、V12を有する。真空プロセス装置V11は、EL層112Gの形成を行うドライエッチング装置とすることができる。真空プロセス装置V12は、レジストマスク除去を行うアッシング装置とすることができる。
クラスタC9は、常圧プロセス装置A15、A16を有する。常圧プロセス装置A15は洗浄装置、常圧プロセス装置A16はベーク装置とすることができる。クラスタC9では、EL膜112Bfを成膜する前の洗浄工程が行われる。
クラスタC10は、真空プロセス装置V13乃至V16を有する。真空プロセス装置V13乃至V16は、EL膜112Bfを形成するための蒸着装置、および保護膜125Bfを形成するための成膜装置(例えば、スパッタリング装置)である。例えば、真空プロセス装置V13を発光層(G)となる有機化合物層の形成装置とすることができる。また、真空プロセス装置V14、V15を電子注入層、電子輸送層、電荷発生層、正孔輸送層、正孔注入層などの有機化合物層の形成装置に割り当てることができる。また、真空プロセス装置V16を保護膜125Bfの形成装置に割り当てることができる。
クラスタC11は、常圧プロセス装置A17乃至A21を有する。常圧プロセス装置A17乃至A21は、リソグラフィ工程に用いる装置とすることができる。装置の割り当ては、クラスタC3と同様とすることができる。
クラスタC12は、真空プロセス装置V17、V18を有する。真空プロセス装置V17は、EL層112Bの形成を行うドライエッチング装置とすることができる。真空プロセス装置V18は、レジストマスク除去を行うアッシング装置とすることができる。
クラスタC13は、常圧プロセス装置A22、A23を有する。常圧プロセス装置A22はウェットエッチング装置、常圧プロセス装置A23はベーク装置とすることができる。クラスタC9では、保護層125R、125G、125Bのエッチング工程が行われる。
クラスタC14は、真空プロセス装置V19乃至V21、およびアンロード室ULDを有する。真空プロセス装置V19は、電子注入層、電子輸送層、電荷発生層、正孔輸送層、正孔注入層のいずれかの有機化合物層の形成装置(例えば、蒸着装置)に割り当てることができる。真空プロセス装置V20は、共通電極113を形成する成膜装置(例えば、スパッタリング装置)とすることができる。真空プロセス装置V21は、保護層121を形成する成膜装置(例えば、スパッタリング装置)とすることができる。または、真空プロセス装置Vを別途設けて、異なる成膜装置(例えば、蒸着装置、ALD装置など)を複数設け、共通電極113および保護層121を積層膜で形成してもよい。
Claims (13)
- 第1乃至第11のクラスタと、第1乃至第10のロードロック室と、を有し、
前記第1のクラスタは、前記第2のクラスタと前記第1のロードロック室を介して接続され、
前記第2のクラスタは、前記第3のクラスタと前記第2のロードロック室を介して接続され、
前記第3のクラスタは、前記第4のクラスタと前記第3のロードロック室を介して接続され、
前記第4のクラスタは、前記第5のクラスタと前記第4のロードロック室を介して接続され、
前記第5のクラスタは、前記第6のクラスタと前記第5のロードロック室を介して接続され、
前記第6のクラスタは、前記第7のクラスタと前記第6のロードロック室を介して接続され、
前記第7のクラスタは、前記第8のクラスタと前記第7のロードロック室を介して接続され、
前記第8のクラスタは、前記第9のクラスタと前記第8のロードロック室を介して接続され、
前記第9のクラスタは、前記第10のクラスタと前記第9のロードロック室を介して接続され、
前記第10のクラスタは、前記第11のクラスタと前記第10のロードロック室を介して接続され、
前記第1のクラスタ、前記第3のクラスタ、前記第4のクラスタ、前記第6のクラスタ、前記第7のクラスタ、前記第9のクラスタ、および前記第11のクラスタは、減圧に制御され、
前記第2のクラスタ、前記第5のクラスタ、前記第8のクラスタ、および前記第10のクラスタは、不活性ガス雰囲気に制御され、
前記第1のクラスタ乃至前記第11のクラスタは、それぞれ搬送装置を有し、
前記第1のクラスタ、前記第4のクラスタ、前記第7のクラスタおよび前記第11のクラスタは、それぞれフェイスアップ型の成膜装置と、フェイスダウン型の成膜装置と、を有し、
前記第3のクラスタ、前記第6のクラスタ、および前記第9のクラスタは、それぞれエッチング装置と、を有し、
前記第2のクラスタ、前記第5のクラスタ、および前記第8のクラスタは、それぞれリソグラフィ工程を行うための複数の装置を有し、
前記第10のクラスタは、エッチング装置を有し、
前記フェイスダウン型の成膜装置は、基板反転装置を有する発光デバイスの製造装置。 - 請求項1において、
第12のクラスタと、第11のロードロック室を有し、
前記第12のクラスタは、前記第1のクラスタと前記第11のロードロック室を介して接続され、
前記第12のクラスタは、不活性ガス雰囲気に制御され、
前記第12のクラスタは、洗浄装置と、ベーク装置と、を有する発光デバイスの製造装置。 - 請求項2において、
前記第12のクラスタは、ロード室を有し、
前記第11のクラスタは、アンロード室を有する発光デバイスの製造装置。 - 請求項1乃至3のいずれか一項において、
第13のクラスタと、第14のクラスタと、第12のロードロック室と、第13のロードロック室と、を有し、
前記第13のクラスタは、前記第3のクラスタと前記第3のロードロック室を介して接続され、
前記第13のクラスタは、前記第4のクラスタと前記第12のロードロック室を介して接続され、
前記第14のクラスタは、前記第6のクラスタと前記第6のロードロック室を介して接続され、
前記第14のクラスタは、前記第7のクラスタと前記第13のロードロック室を介して接続され、
前記第13のクラスタおよび前記第14のクラスタは、不活性ガス雰囲気に制御され、
前記第13のクラスタおよび前記第14のクラスタは、洗浄装置と、ベーク装置と、を有する発光デバイスの製造装置。 - 請求項1乃至4のいずれか一項において、
前記フェイスダウン型の成膜装置は、蒸着装置、スパッタリング装置から選ばれる一つ以上である発光デバイスの製造装置。 - 請求項1乃至5のいずれか一項において、
前記フェイスアップ型の成膜装置は、CVD装置、ALD装置から選ばれる一つ以上である発光デバイスの製造装置。 - 請求項1乃至6のいずれか一項において、
前記第3のクラスタ、前記第6のクラスタ、および前記第9のクラスタが有する前記エッチング装置は、ドライエッチング装置である発光デバイスの製造装置。 - 請求項1乃至7のいずれか一項において、
前記第10のクラスタが有する前記エッチング装置は、ウェットエッチング装置である発光デバイスの製造装置。 - 請求項1乃至8のいずれか一項において、
前記リソグラフィ工程を行う複数の装置として、塗布装置、露光装置、現像装置、ベーク装置を有する発光デバイスの製造装置。 - 請求項1乃至8のいずれか一項において、
前記リソグラフィ工程を行う複数の装置として、塗布装置、ナノインプリント装置を有する発光デバイスの製造装置。 - 請求項1乃至10のいずれか一項において、
前記基板反転装置は、静電吸着ユニット、電磁石ユニットおよびシリンダーユニットの順で重畳するステージ、ならびに回転機構を有し、
前記静電吸着ユニットは基板を保持することができ、
前記回転機構は、前記ステージを反転させることができる発光デバイスの製造装置。 - 請求項11において、
前記シリンダーユニットは、複数のプッシャーピンを上下させる機能を有し、
前記プッシャーピンは、前記静電吸着ユニットおよび前記電磁石ユニットに設けられた貫通孔に備えられている発光デバイスの製造装置。 - 請求項11または12において、
前記フェイスダウン型の成膜装置には、マスク治具およびアライメント機構が設けられ、
前記アライメント機構は昇降機構に接続され、前記ステージを反転させた後に前記マスク治具をアライメントして前記基板に接触させ、前記電磁石ユニットで前記マスク治具を前記基板に密着させることができる発光デバイスの製造装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/275,431 US20240107865A1 (en) | 2021-02-12 | 2022-01-28 | Manufacturing equipment for light-emitting device |
CN202280012774.9A CN116848949A (zh) | 2021-02-12 | 2022-01-28 | 发光器件的制造装置 |
JP2022581025A JPWO2022172114A1 (ja) | 2021-02-12 | 2022-01-28 | |
KR1020237026856A KR20230142497A (ko) | 2021-02-12 | 2022-01-28 | 발광 디바이스의 제조 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021020546 | 2021-02-12 | ||
JP2021-020546 | 2021-02-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022172114A1 true WO2022172114A1 (ja) | 2022-08-18 |
Family
ID=82837501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2022/050738 WO2022172114A1 (ja) | 2021-02-12 | 2022-01-28 | 発光デバイスの製造装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240107865A1 (ja) |
JP (1) | JPWO2022172114A1 (ja) |
KR (1) | KR20230142497A (ja) |
CN (1) | CN116848949A (ja) |
WO (1) | WO2022172114A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001102170A (ja) * | 1999-07-23 | 2001-04-13 | Semiconductor Energy Lab Co Ltd | El表示装置の作製方法及び薄膜形成装置 |
JP2004307976A (ja) * | 2003-04-10 | 2004-11-04 | Semiconductor Energy Lab Co Ltd | マスク、容器、および製造装置 |
JP2007335203A (ja) * | 2006-06-14 | 2007-12-27 | Tokyo Electron Ltd | 発光素子および発光素子の製造方法 |
WO2008066103A1 (fr) * | 2006-11-29 | 2008-06-05 | Tokyo Electron Limited | Appareil de traitement de substrat |
JP2010040956A (ja) * | 2008-08-08 | 2010-02-18 | Tokyo Electron Ltd | 基板の処理装置 |
JP2013149961A (ja) * | 2011-12-23 | 2013-08-01 | Semiconductor Energy Lab Co Ltd | 半導体装置、およびその作製方法 |
JP2015090810A (ja) * | 2013-11-06 | 2015-05-11 | 王子ホールディングス株式会社 | El表示装置、および、el表示装置の製造方法 |
JP2018521459A (ja) * | 2015-06-29 | 2018-08-02 | アイメック・ヴェーゼットウェーImec Vzw | 有機層の高分解能パターニングのための方法 |
KR101926386B1 (ko) * | 2017-09-29 | 2018-12-07 | 인하대학교 산학협력단 | 고불소계 용제로 가공이 가능한 고불소화 포지티브형 포토레지스트 및 이를 이용한 유기전자소자의 제조방법 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG118118A1 (en) | 2001-02-22 | 2006-01-27 | Semiconductor Energy Lab | Organic light emitting device and display using the same |
-
2022
- 2022-01-28 CN CN202280012774.9A patent/CN116848949A/zh active Pending
- 2022-01-28 WO PCT/IB2022/050738 patent/WO2022172114A1/ja active Application Filing
- 2022-01-28 KR KR1020237026856A patent/KR20230142497A/ko unknown
- 2022-01-28 JP JP2022581025A patent/JPWO2022172114A1/ja active Pending
- 2022-01-28 US US18/275,431 patent/US20240107865A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001102170A (ja) * | 1999-07-23 | 2001-04-13 | Semiconductor Energy Lab Co Ltd | El表示装置の作製方法及び薄膜形成装置 |
JP2004307976A (ja) * | 2003-04-10 | 2004-11-04 | Semiconductor Energy Lab Co Ltd | マスク、容器、および製造装置 |
JP2007335203A (ja) * | 2006-06-14 | 2007-12-27 | Tokyo Electron Ltd | 発光素子および発光素子の製造方法 |
WO2008066103A1 (fr) * | 2006-11-29 | 2008-06-05 | Tokyo Electron Limited | Appareil de traitement de substrat |
JP2010040956A (ja) * | 2008-08-08 | 2010-02-18 | Tokyo Electron Ltd | 基板の処理装置 |
JP2013149961A (ja) * | 2011-12-23 | 2013-08-01 | Semiconductor Energy Lab Co Ltd | 半導体装置、およびその作製方法 |
JP2015090810A (ja) * | 2013-11-06 | 2015-05-11 | 王子ホールディングス株式会社 | El表示装置、および、el表示装置の製造方法 |
JP2018521459A (ja) * | 2015-06-29 | 2018-08-02 | アイメック・ヴェーゼットウェーImec Vzw | 有機層の高分解能パターニングのための方法 |
KR101926386B1 (ko) * | 2017-09-29 | 2018-12-07 | 인하대학교 산학협력단 | 고불소계 용제로 가공이 가능한 고불소화 포지티브형 포토레지스트 및 이를 이용한 유기전자소자의 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
US20240107865A1 (en) | 2024-03-28 |
KR20230142497A (ko) | 2023-10-11 |
JPWO2022172114A1 (ja) | 2022-08-18 |
CN116848949A (zh) | 2023-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104966723B (zh) | 一种有机发光二极管阵列基板、制备方法及显示装置 | |
KR100542993B1 (ko) | 고효율 평판표시장치 및 그의 제조방법 | |
CN100546421C (zh) | 显示装置及其制造方法 | |
US8686629B2 (en) | Organic light emitting display device with partition wall having first and second tapered structures | |
US20130178004A1 (en) | Method for Manufacturing Light-Emitting Device | |
WO2015096391A1 (zh) | 阵列基板及其制作方法、显示装置 | |
JP2004342455A (ja) | フラットパネルディスプレイ製造装置 | |
US9547252B2 (en) | Organic light emitting device | |
CN103872076A (zh) | 显示设备及制造该显示设备的方法 | |
KR20190112226A (ko) | 초소형 led 전극 어셈블리 및 이의 제조 방법 | |
US20220285454A1 (en) | Display panel, manufacturing method thereof and display device | |
JP2016021380A (ja) | 有機発光装置及びその製造方法 | |
US20100006827A1 (en) | Electroluminescent Device | |
WO2022172114A1 (ja) | 発光デバイスの製造装置 | |
CN100440530C (zh) | 有机el显示装置 | |
WO2022214907A1 (ja) | 発光デバイスの製造装置 | |
WO2022200906A1 (ja) | 発光デバイスの製造装置 | |
WO2022153151A1 (ja) | 発光デバイスの製造装置 | |
WO2023285913A1 (ja) | 発光デバイスの製造装置 | |
WO2022137022A1 (ja) | 表示装置の製造装置 | |
WO2022123381A1 (ja) | 発光デバイスの製造装置 | |
CN117016044A (zh) | 发光器件的制造装置 | |
JP2023021074A (ja) | 発光デバイスおよび受光デバイスの製造装置 | |
KR20110061419A (ko) | 산화물 박막 트랜지스터의 제조방법 | |
KR101847978B1 (ko) | 유기발광소자 제조장비 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22752409 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022581025 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280012774.9 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18275431 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22752409 Country of ref document: EP Kind code of ref document: A1 |