WO2022171031A1 - 显示装置、抬头显示器以及交通设备 - Google Patents

显示装置、抬头显示器以及交通设备 Download PDF

Info

Publication number
WO2022171031A1
WO2022171031A1 PCT/CN2022/074993 CN2022074993W WO2022171031A1 WO 2022171031 A1 WO2022171031 A1 WO 2022171031A1 CN 2022074993 W CN2022074993 W CN 2022074993W WO 2022171031 A1 WO2022171031 A1 WO 2022171031A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical waveguide
sub
polarized
waveguide element
Prior art date
Application number
PCT/CN2022/074993
Other languages
English (en)
French (fr)
Inventor
徐俊峰
吴慧军
方涛
Original Assignee
未来(北京)黑科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 未来(北京)黑科技有限公司 filed Critical 未来(北京)黑科技有限公司
Publication of WO2022171031A1 publication Critical patent/WO2022171031A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one

Definitions

  • At least one embodiment of the present disclosure relates to a display device, a head-up display, and a transportation device.
  • At least one embodiment of the present disclosure provides a light source device, a display device, a head-up display, and a transportation device.
  • At least one embodiment of the present disclosure provides a light source device including a light source part and an optical waveguide element.
  • the light emitted by the light source part includes first polarized light and second polarized light with different polarization states;
  • the optical waveguide element includes a plurality of light coupling out parts.
  • the light source portion is configured so that the light emitted from the light source portion propagates in the optical waveguide element after entering the optical waveguide element, and the plurality of light coupling out portions are configured to transmit the light propagating in the optical waveguide element.
  • the plurality of light coupling out parts include a first light coupling out part and a second light coupling out part, the first light coupling out part is configured to enter the first light coupling out part of the optical waveguide element
  • the polarized light is coupled out;
  • the light source device further includes a polarization conversion structure, the polarization conversion structure is configured to convert the second polarized light after entering the optical waveguide element into a first polarized light, the second polarized light
  • the decoupling part is configured to: after the polarization conversion structure converts the second polarized light entering the optical waveguide element into the first polarized light, couple out the converted first polarized light; or
  • the second light out-coupling portion is configured to couple out the second polarized light entering the optical waveguide element to the polarization conversion structure, and the coupled out second polarized light is removed by the polarization conversion structure into the first polarized light.
  • the light source device is a backlight.
  • the plurality of light out-couplers comprises an array of light out-couplers having a plurality of light-out
  • the light in the optical waveguide element is coupled out and the outcoupled light is emitted from the light exit region of the optical waveguide element.
  • the first optical out-coupling portion includes a first optical out-coupling member array having a plurality of first optical out-coupling members
  • the second optical out-coupling portion includes A second light out-coupling element array having a plurality of second light out-coupling elements.
  • At least one embodiment of the present disclosure provides a display device, comprising: a display panel including a display surface and a backside opposite to the display surface; and a backlight located on the backside of the display panel.
  • the backlight further includes a light source part, and light emitted by the light source part enters the optical waveguide element.
  • the backlight source is the light source device provided in the first aspect of the present disclosure.
  • the backlight includes an optical waveguide element including a light exit region and an array of light out-couplers configured to connect the The light in the optical waveguide element is coupled out and the outcoupled light is emitted from the light exit region of the optical waveguide element.
  • the array of optical out-coupling members includes a plurality of optical out-coupling members, and light propagating to each of the optical out-coupling members in at least part of the optical out-coupling members A part of the light is reflected by the light out-coupling members, and another part of the light that propagates to each of the light out-coupling members in at least part of the light out-coupling members passes through the light out-coupling members.
  • the part of the light is reflected out of the optical waveguide element by the light out-coupling member, and the other part of the light is in the transparent After passing through the optical coupling-out member, it continues to propagate in the optical waveguide element; or, a part of the light is transmitted out of the optical waveguide element by the optical coupling-out member, and another part of the light is transmitted by the optical coupling-out member.
  • the light out-coupling element continues to propagate in the optical waveguide element after being reflected.
  • light incident to the optical waveguide element occurs multiple times at least at the light exit surface of the optical waveguide element after entering the optical waveguide element Totally reflected and sequentially propagated to the plurality of optical out-coupling members of the optical-out-coupling member array, and a part of the light transmitted to each optical out-coupling member of the optical out-coupling member array is reflected by the optical out-coupling member After exiting the light outgoing surface of the optical waveguide element, it passes through the display panel, and another part of the light that propagates to each light coupling element of the light coupling element array passes through the light coupling out element. Propagation in the optical waveguide element continues.
  • At least one embodiment of the present disclosure provides a head-up display, including: the light source device provided by any embodiment of the present disclosure or a display device including the light source device or the display device provided by any embodiment of the present disclosure.
  • the head-up display further includes a reflection imaging unit, which is located on the light-emitting side of the display device and is configured to reflect the light emitted by the display device and then propagate it to the head-up display for observation. Area.
  • a reflection imaging unit located on the light-emitting side of the display device and is configured to reflect the light emitted by the display device and then propagate it to the head-up display for observation. Area.
  • At least one embodiment of the present disclosure provides a traffic device, including the light source device or the display device or the head-up display provided by any embodiment of the present disclosure.
  • the optical waveguide element further includes a waveguide medium, and the light emitted by the light source part enters the waveguide medium and propagates through total reflection in the waveguide medium.
  • all or part of the light propagating to the last optical out-coupling member is reflected out of the optical waveguide element by the last optical out-coupling member After the light emitting area passes through the display panel.
  • the included angle between the light coupling out member and the light outgoing region is a first included angle
  • the first included angle and the light The sum of the critical angles of total reflection is in the range of 60° to 120°.
  • the light out-coupling member includes a transflective element.
  • the optical waveguide element includes a plurality of sub-optical waveguide elements
  • the optical out-coupler array includes a plurality of optical sub-waveguide elements respectively located in the plurality of sub-optical waveguide elements.
  • the backlight further includes a light splitting element configured to divide the light incident on the light splitting element into a plurality of sub-beams, and the plurality of sub-beams enter the plurality of sub-beams respectively In the waveguide element, each sub-beam entering into each sub-optical waveguide element is reflected out of the light outgoing region of the optical waveguide element by the sub-optical coupling-out element array located in each sub-optical waveguide element.
  • the plurality of sub-optical waveguide elements are arranged overlapping in a direction perpendicular to the display surface of the display panel, and/or the plurality of sub-optical waveguide elements
  • the sub-optical waveguide elements are arranged in a direction parallel to the display surface;
  • the plurality of sub-optical waveguide elements include a first sub-optical waveguide element and a second sub-optical waveguide element.
  • the light incident on the optical waveguide element includes a first characteristic light and a second characteristic light with different characteristics
  • the light splitting element is configured to respond to the incident light.
  • the light beam to the spectroscopic element is subjected to spectral processing, the first characteristic light obtained by the spectral processing is incident on the first sub-optical waveguide element, and the first characteristic light obtained by the spectral processing is allowed to enter the first sub-optical waveguide element.
  • the second characteristic light is incident on the second sub-optical waveguide element.
  • the first characteristic light and the second characteristic light are first polarized light and second polarized light with different polarization states, respectively; or, the The first characteristic light and the second characteristic light are first color light and second color light with different wavelength distributions, respectively.
  • the plurality of sub-beams obtained by performing the spectroscopic processing on the light includes the first color light, the second color light and the third color light color light, the third color light is configured to enter one of the first sub-optical waveguide element and the second sub-optical waveguide element; or, the plurality of sub-beams include the first color light, the second color light and the third color light, the plurality of sub-optical waveguide elements further include a third sub-optical waveguide element, the third color light is configured to enter the third sub-optical waveguide element and is located in the third sub-optical waveguide element
  • the light coupling element array in the third sub-optical waveguide element reflects the third sub-optical waveguide element.
  • the reflectivity of the light coupling out member in the first sub-optical waveguide element to the first characteristic light is greater than that of the second characteristic light
  • the reflectivity of the light coupling-out member in the second sub-optical waveguide element to the second characteristic light is greater than the reflectivity to the first characteristic light
  • the light splitting element comprises a polarizing light splitting element configured to detect one of the first polarized light and the second polarized light and/or, the polarized light splitting element is configured to have a transmittance to one of the first polarized light and the second polarized light that is greater than its reflectivity to the other the transmittance.
  • the light splitting element comprises a polarizing light splitting element configured to reflect the first polarized light and the second polarized light and transmits the other of the first polarized light and the second polarized light.
  • the light splitting element further includes a reflective element configured to reflect one of the first polarized light and the second polarized light .
  • the reflectivity of the light out-coupling elements arranged in sequence along the extending direction of the light outgoing region in the light out-coupling element array is in the propagation of the light gradually increase in the direction or regionally; and/or the arrangement density of the light out-coupling elements arranged in sequence along the extending direction of the light-emitting area in the light-transmitting out-coupler array gradually increases or increases regionally. gradually increased.
  • At least one optical out-coupling element in the array of optical out-coupling elements includes a selective transmission film, and the light entering the optical waveguide element includes different characteristics.
  • the first light and the second light, the selective transmission film is configured to reflect the first light is greater than the reflectivity of the second light, and the transmittance of the second light is greater than that of the second light.
  • the transmittance of the first light ray is configured to reflect the first light.
  • the light out-coupling element array includes a first light out-coupling element group and a second light out-coupling element arranged along the extending direction of the light outgoing region
  • Each group of light out-coupling elements includes light out-coupling elements arranged along the extension direction of the light-exiting region, and the inclination direction of the light-outcoupling elements of the first light-outcoupling element group with respect to the light-exiting region is the same as that of the light outgoing element group.
  • the inclination directions of the light coupling out members of the second transflective element group with respect to the light outgoing area are not parallel.
  • the backlight further includes a light source part
  • the light source part includes a first light source part and a second light source part
  • the first light source part and the The second light source parts are respectively located on both sides of the light coupler array along the extending direction of the light output area
  • the first light coupler group is configured to The light of the optical waveguide element is reflected out of the optical waveguide element
  • the second light coupler group is configured to reflect the light emitted by the second light source part and enter the optical waveguide element out of the light a waveguide element; or the light source part is located between the first light coupler group and the second light coupler group in the extending direction of the light exit region.
  • the backlight source further includes a light source part, and at least a part of the optical couplers among the plurality of optical out-coupling elements included in the array of optical out-coupling elements
  • the output pieces are sequentially arranged along a first direction and extend along a second direction intersecting with the first direction
  • the light source part includes a plurality of sub-light sources arranged along the second direction
  • the plurality of sub-light sources are configured to emit the incoming the light of the at least part of the optical outcoupling member.
  • the display device further includes a plurality of beam expanders arranged along the second direction, the plurality of beam expanders being configured to emit the sub-light sources
  • the light beams are expanded along the second direction, and the expanded light beams are configured to be transmitted to the light coupler array.
  • the backlight source further includes a light source part, and the light emitted by the light source part includes first polarized light and second polarized light with different polarization states, so
  • the display panel is configured to generate image light using one of the first polarized light and the second polarized light.
  • the display device further includes a light conversion device, the light conversion device includes a beam splitting element and a polarization conversion element, the beam splitting element is located in the The display panel faces a side of the optical waveguide element, and is configured to split the light incident on the beam splitting element into a first polarized light beam and a second polarized light beam with different polarization states, and the polarization conversion element is configured In order to convert the first polarized light beam and the second polarized light beam that cannot be used by the display panel into a polarized light beam that can be used by the display panel before reaching the display panel.
  • the light conversion device is configured to recover light emitted by the light source portion and send the recovered light to the optical waveguide element, and /or recovering the light emitted by the optical waveguide element and sending the recovered light into the display panel.
  • the display device further includes: at least one light diffusing element configured to diffuse light emitted from at least one of the display panel and the optical waveguide element.
  • the display device further includes: a light condensing element configured to condense the light exiting from the optical waveguide element, so that the condensed light is directed toward the at least one Light diffusing element.
  • the light converging element comprises at least one lens.
  • the light condensing element and the optical waveguide element are integral structures.
  • a transparent medium layer is disposed between the light-converging element and the optical waveguide element, and the refractive index of the transparent medium layer is smaller than that of the optical waveguide element .
  • the light emitting region of the optical waveguide element and the display surface of the display panel are stacked in a direction perpendicular to the display surface, and the backlight source The included light source portion is located on the side of the optical waveguide element.
  • the backlight source includes an optical waveguide plate
  • the optical waveguide plate includes a light homogenizing part and the optical waveguide element, and is incident on the light homogenizing part The light enters the optical waveguide element after being homogenized by the homogenizing part.
  • the light incident to the light dodging part undergoes multiple reflections (eg total reflection and/or non-total reflection) in the light dodging part Then enter the optical waveguide element.
  • the optical waveguide plate is an integrated structure.
  • the reflective imaging portion includes a windshield of the traffic equipment.
  • the backlight source when the backlight source includes an optical waveguide plate and the optical waveguide plate includes a light homogenizer and an optical waveguide element, the optical waveguide element includes a light exit region , the uniform light portion and the optical waveguide element are sequentially arranged in a direction perpendicular to the light exit area; the backlight further includes a light source portion, and the light source portion is configured to emit light in the uniform light source. After multiple total reflections occur in the light portion, the light enters the optical waveguide element, and then exits from the light exit region of the optical waveguide element.
  • the light source portion is configured such that the light emitted from the light source portion is reflectively propagated in the optical waveguide element after entering the optical waveguide element, so
  • the light out-coupling portion is configured to out-couple light propagating reflectively in the optical waveguide element.
  • the main optical axis of the light passing through the optical coupling-out member intersects with the extending direction of the light-exiting region of the optical waveguide element;
  • the main optical axis of the light of the optical coupling-out member is along the extending direction of the light-emitting region of the optical waveguide element.
  • the backlight source includes a light-conducting plate, the light-conducting plate includes a light-diffusing portion and the light-conducting element, and light incident on the light-diffusing portion is The homogenizing part enters the light conducting element after homogenization; and/or, the source light of the backlight includes a first polarized light component and a second polarized light component, the first polarized light and the The polarization states of the second polarized light are different, and the outgoing light from the light outgoing side of the backlight is polarized light and includes one of the first polarized light and the second polarized light; and/or, the The display device further includes a light condensing element and a light diffusing element, and the light conducting element, the light condensing element, the light diffusing element and the display panel are arranged in sequence.
  • the light incident on the light homogenizing part enters the light conducting element after multiple reflections in the light homogenizing part, wherein the multiple The secondary reflection includes at least one total reflection and/or at least one non-total reflection, and/or the light guide plate is an integrated structure.
  • the backlight source further includes a light conversion device, the light conversion device includes a polarization beam splitting element and a polarization conversion element, the polarization beam splitting element is configured to The source light of the polarized light splitting element is divided into the first polarized light and the second polarized light, and the polarization conversion element is configured to convert one of the first polarized light and the second polarized light.
  • one of the first polarized light and the second polarized light is used to generate image light; wherein the first polarized light and the second polarized light are converted at the polarization converting element
  • the polarized light obtained after one of the second polarized lights is converted into the other is incident on the light conducting element; or, one of the first polarized light and the second polarized light is entering the The light-conducting element is then converted to the other by the polarization converting element.
  • the backlight source further includes a reflective element, and the reflective element is configured to reflect the first polarized light or the second polarized light; one of the first polarized light and the second polarized light obtained by the spectroscopic processing is converted by the polarization conversion element after being reflected by the reflective element, or converted by the polarization conversion element after being reflected by the reflective element Reflected by the reflective element after conversion, or reflected by the reflective element after a first conversion by the polarization conversion element and then converted a second time by the polarization conversion element.
  • the light-conducting element is a plurality of sub-light-conducting elements, the plurality of sub-light-conducting elements including a first sub-light-conducting element connected to or spaced apart from each other and
  • the second sub-light-conducting element, the first sub-light-conducting element and the second sub-light-conducting element are stacked along the alignment direction of the backlight source and the display panel, or are arranged along the alignment direction of the backlight source and the display panel.
  • Arrangement directions of the panels are arranged in sequence in directions perpendicular to the direction of arrangement, and the first polarized light and the second polarized light obtained after the light splitting process by the polarization beam splitting element are incident on different sub-light conducting elements; wherein, in the first When the sub-light conducting elements and the second sub-light conducting elements are stacked along the arrangement direction of the backlight and the display panel, the first sub-lights incident on the first polarized light and the second polarized light respectively
  • Both the conducting element and the second sub-light conducting element include sequentially arranged light out-coupling elements or one of them does not include sequentially arranged optical out-coupling elements.
  • the first sub-light-conducting element and the second sub-light-conducting element when the first sub-light-conducting element and the second sub-light-conducting element are arranged in layers, wherein the first sub-element is The first light-emitting area of the first sub-light-conducting element and the second light-emitting area of the second sub-light-conducting element overlap, and the light emitted from one of the first light-emitting area and the second light-emitting area propagates to The other one of the first light emitting area and the second light emitting area may propagate to the other one of the first light emitting area and the second light emitting area after passing through the polarization conversion element; or, the second light emitting area
  • the sub-light-conducting element includes a light-conducting region and a second light-exiting region sequentially arranged along the extending direction of the second sub-light-conducting element, and the polarized light in the second sub-light-conducting element is totally
  • the selectively reflective film includes a polarized reflective film, and the polarized reflective film includes a polarized transflective film and/or a polarized absorbing film; or the selected The polar reflective film includes a polarized reflective film and a wavelength selective reflective film, and the polarized reflective film includes a polarized transflective film and/or a polarized absorbing film.
  • the polarization state of the polarized light incident on the polarized reflective film is consistent with the polarization state of the outgoing light emitted from the light outgoing side of the backlight.
  • the last light out-coupling member in the sequential propagation direction of the light rays includes a reflective film
  • the reflective film includes a selective reflective film and/or a non-reflective film. Selective Reflective Film.
  • the selectively reflective film may comprise a polarized reflective film.
  • the polarizing reflective film may include a polarizing transflective film and/or a polarizing absorptive film.
  • the selective reflection film further comprises a wavelength selective reflection film.
  • a gas is formed between the plurality of light coupling-out members; or a transparent optical medium is formed between the plurality of light coupling-out members.
  • reflecting the reflective film enables the last light out-coupling member to have the greatest reflectivity among the plurality of light out-coupling members; and/ Or the reflective film substantially reflects all or all selected light rays incident thereon; and/or the reflective film is a plated reflective film or a laminated reflective film or a separate reflective film; And/or, when the last light out-coupling member includes the reflective film, the chief light ray of the light passing through the light out-coupling member intersects with the extending direction of the light-emitting region of the light-conducting element.
  • FIG. 1A is a schematic partial cross-sectional structural diagram of a display device provided according to an example of an embodiment of the present disclosure
  • FIG. 1B is a schematic partial cross-sectional structural diagram of a display device provided according to an example of an embodiment of the present disclosure
  • FIG. 2 is a schematic plan view of a backlight source according to the example shown in FIG. 1A;
  • FIG. 3 is a schematic plan view of another backlight source according to the example shown in FIG. 1A;
  • FIG. 4A is a schematic plan view of another backlight source according to the example shown in FIG. 1A;
  • 4B is a schematic plan view of another backlight source according to the example shown in FIG. 1A;
  • FIG. 5 is a schematic plan view of another backlight source according to the example shown in FIG. 1A;
  • FIG. 6 is an example in which the light emitted from the transflective element array is not perpendicular to the main surface of the waveguide medium
  • FIG. 7 is a schematic diagram of a partial structure of a backlight source in another example according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a partial structure of a backlight source in another example according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a partial structure of a backlight source in another example according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic partial structure diagram of a backlight source in another example according to an embodiment of the present disclosure.
  • FIG. 11 is a partial structural schematic diagram of a backlight source in another example according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic partial structure diagram of a backlight source in another example according to an embodiment of the present disclosure.
  • FIG. 13 is a partial structural schematic diagram of a backlight source in another example according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of a partial structure of a backlight provided according to an example of another embodiment of the present disclosure.
  • FIG. 15 is a schematic partial structure diagram of a backlight provided according to an example of another embodiment of the present disclosure.
  • FIG. 16 is an example diagram of the backlight shown in FIG. 15;
  • FIG. 17 is a partial structural schematic diagram of a backlight provided according to another example of another embodiment of the present disclosure.
  • FIG. 18 is a schematic partial structure diagram of a backlight provided according to another example of another embodiment of the present disclosure.
  • FIG. 19 is an example diagram of the backlight shown in FIG. 18;
  • 20 is a schematic partial structural diagram of a backlight provided according to yet another example of another embodiment of the present disclosure.
  • FIG. 21 is an example diagram of the backlight shown in FIG. 20;
  • FIG. 22 is a schematic diagram of a partial structure of a backlight provided according to an example of still another embodiment of the present disclosure.
  • FIG. 23 is a schematic cross-sectional structure diagram of the backlight shown in FIG. 22;
  • FIG. 24 is a schematic partial structure diagram of a backlight provided according to another example of still another embodiment of the present disclosure.
  • FIG. 25 is a schematic partial structural diagram of a display device provided according to an example of yet another embodiment of the present disclosure.
  • FIG. 26 is a schematic partial structural diagram of a display device provided according to another example of yet another embodiment of the present disclosure.
  • FIG. 27 is a schematic partial structural diagram of a display device provided according to another example of still another embodiment of the present disclosure.
  • FIG. 28 is a schematic partial structural diagram of a display device provided according to another example of still another embodiment of the present disclosure.
  • 29 is a schematic diagram of a light conversion device in a display device provided according to another example of yet another embodiment of the present disclosure.
  • FIG. 30 is a schematic diagram of a light conversion device in a display device provided according to yet another example of yet another embodiment of the present disclosure.
  • FIG. 31 is a schematic diagram of a light conversion device in a display device provided according to yet another example of yet another embodiment of the present disclosure.
  • FIG. 32 is a schematic partial structure diagram of a head-up display provided according to another embodiment of the present disclosure.
  • FIG. 33 is an exemplary block diagram of a transportation device provided in accordance with another embodiment of the present disclosure.
  • 34 is a schematic diagram of light propagating in an optical waveguide element provided according to an example of an embodiment of the present disclosure.
  • the inventors of the present application found that the backlight source in a general display device needs to be set with a long light mixing distance to ensure the uniformity of light output, and setting a long light mixing distance of the backlight source will lead to display
  • the thickness of the device is relatively large, which affects the portability of the display device.
  • Embodiments of the present disclosure provide a display device, a head-up display, and a transportation device.
  • a display device includes: a display panel including a display surface and a backside opposite to the display surface; and a backlight located on the backside of the display panel, the backlight including an optical waveguide element, and the optical waveguide element including a light outgoing region and an array of light out-coupling elements , the optical coupler array includes a plurality of optical couplers, and the light incident to the optical waveguide element occurs multiple total reflections at least at the light exit region of the optical waveguide element after entering the optical waveguide element and propagates to the optical coupler array in turn A part of the light that propagates to at least part of each of the optical out-coupling parts in the optical out-coupling part is reflected out of the light-emitting area of the optical waveguide element by the optical out-coupling part, and then passes through the display panel and propagates to at least part of the light. The other part of the light of each of the optical out-coupling members in the out-coupling member continues to propagate in the optical waveguide element after passing through the optical out
  • a display device includes a display panel and a backlight.
  • the display panel includes a display surface and a backside opposite to the display surface; the backlight source is located on the backside of the display panel.
  • the backlight source includes an optical waveguide element, the optical waveguide element includes a light exit surface and an array of transflective elements, the transflective element array includes a plurality of transflective elements, and the backlight source further includes a light source part, and the light source part is configured so that the light emitted by the light source part is configured to emit light when entering the light source.
  • the waveguide element After the waveguide element, multiple total reflections occur at least at the light-emitting surface of the optical waveguide element and sequentially propagate to a plurality of transflective elements of the transflective element array, and part of the light propagating to each transflective element of the transflective element array is reflected
  • the element reflects the light emitting surface of the optical waveguide element and passes through the display panel, and another part of the light transmitted to each transflective element of the transflective element array passes through the transflective element and continues to propagate in the optical waveguide element.
  • the brightness of the light can be uniform, and the thickness of the backlight source and the space occupied in the display device can be reduced to improve the display effect and portability of the display device.
  • FIG. 1A is a schematic partial cross-sectional structural diagram of a display device provided according to an example of an embodiment of the present disclosure.
  • the display device includes a display panel 10 and a backlight 20 .
  • the display panel 10 includes a display surface 10 - 01 and a back side 10 - 02 opposite to the display surface 10 - 01 , and the backlight source 20 is located on the back side 10 - 02 of the display panel 10 .
  • the light emitted from the backlight source 20 passes through the display panel 10 and then goes toward the viewing area 30 .
  • the side of the display panel 10 facing the backlight source 20 is the non-display side
  • the side of the display panel 10 away from the backlight source 20 is the display side
  • the viewing area 30 is located on the display side of the display panel 10, and the display side can be viewed by the user. Display the side of the image.
  • the viewing area 30 and the backlight source 20 are located on both sides of the display panel 10 .
  • the light out-coupling member includes a transflective element.
  • the array of light out-couplers includes an array of transflective elements.
  • the group of light out-coupling elements includes a group of transflective elements.
  • the light out-coupling element can also be a grating (eg, a transmissive grating or a reflective grating) or a scattering dot structure.
  • transflective elements include optical films with transmissive and reflective functions that transmit part of the light and reflect part of the light.
  • the light coupling-out member includes a transflective element as an example for explanation, but it should not be regarded as a limitation of the present disclosure.
  • the backlight 20 includes a light source part 100 and an optical waveguide element 200 .
  • the optical waveguide element 200 includes a light exit area and a transflective element array 220
  • the transflective element array 220 includes a plurality of transflective elements 221 .
  • light incident on the optical waveguide element 200 undergoes multiple total reflections at least at the light exit surface 211 of the optical waveguide element 200 after entering the optical waveguide element 200 and propagates to the multiple transflective elements 221 of the transflective element array 220 in sequence.
  • the light source part 100 is configured such that after entering the optical waveguide element 200 , the light emitted from the light source is totally reflected for multiple times at least at the light exit surface 211 of the optical waveguide element 200 and then propagates to a plurality of transflective elements in the transflective element array 220 in sequence.
  • Element 221 a part of the light transmitted to each transflective element 221 of the transflective element array 220 is reflected by the transflective element 221 out of the light-emitting area of the optical waveguide element 200, and then passes through the display panel 10 and propagates to at least some of the transflective elements.
  • Another part of the light from the transflective element 221 continues to propagate in the optical waveguide element 200 after passing through the transflective element 221 .
  • the light emitting area of the optical waveguide element 200 includes the light emitting surface 211 .
  • the light exit surface 211 may be at least one of a plane or a curved surface.
  • the light exit surface 211 may include gratings or scattering dots distributed thereon.
  • the light emitting area includes the light emitting surface 211 as an example for explanation, which should not be regarded as a limitation of the present disclosure.
  • the brightness of the light emitted can be uniform, and the thickness of the backlight source and the space occupied in the display device can be reduced, so as to improve the display effect and portability of the display device.
  • the optical waveguide element 200 further includes a waveguide medium 210 .
  • the light emitted by the light source part 100 enters the waveguide medium 210 and propagates through total reflection in the waveguide medium 210 , and propagates to each transflective element of the transflective element array 220 .
  • a part of the light from 221 is reflected out of the optical waveguide element 200 by the transflective element 221 , and the other part is transmitted through the transflective element 221 and continues to propagate through total reflection.
  • the transflective element array 220 includes a plurality of transflective elements 221 , and the light transmitted to each transflective element 221 is transmitted and reflected on the transflective element 221 .
  • a part of the light incident on the surface of the transflective element 221 is reflected out of the optical waveguide element 200 by the transflective element 221, while the other part of the light is transmitted through the transflective element 221 and then continues to be totally reflected and propagated to the next transflective element 221,
  • transmission and reflection occur on the next transflective element 221, and the transmitted light will continue to be totally reflected and propagated to one transflective element 221 farthest from the light source part 100 (for example, the light passes through the transmission of multiple transflective elements in sequence until it is farthest from the light source part. a transflective element).
  • the light propagating to the last optical coupling-out member eg, a transflective element
  • the last optical coupling-out member e.g, a transflective element
  • the display panel For example, light is converted into image light after passing through the display panel.
  • the light emitting surface 211 of the optical waveguide element 200 and the display surface 10 - 01 of the display panel 10 are stacked in a direction perpendicular to the display surface 10 - 01 , and the light source part 100 is located on the side of the optical waveguide element 200 . side.
  • the optical waveguide element is located below the display panel and the light source part is located at the side of the optical waveguide element as an example, but it is not limited to this.
  • the display panel 10 includes a display surface for displaying images, and the light-emitting surface of the optical waveguide element 200 is located on the side of the display panel 10 away from the display surface thereof, for example, below the display panel 10, rather than the side of the display panel 10;
  • the light source part 100 is located at the side of the optical waveguide element 200 , for example, the backlight 20 is an edge-lit backlight.
  • the light source section 100 is configured to output collimated light.
  • the light source part 100 includes a light source and a collimating element, and the collimating element is configured to convert the light with a certain divergence angle emitted by the light source into the collimated light.
  • the "collimated light” here refers to parallel or nearly parallel light.
  • the collimated light output from the light source part 100 can make as much light as possible meet the condition of total reflection and be utilized.
  • the light source may be a monochromatic light source or a mixed color light source, such as a red monochromatic light source, a green monochromatic light source, a blue monochromatic light source or a white mixed color light source, the monochromatic light source can finally form a monochromatic image, and the mixed color light source can form Color image.
  • the light source may be a laser light source or a light emitting diode (LED) light source.
  • the light source part may include one light source or a plurality of light sources.
  • the above-mentioned collimating element may comprise a convex lens, a concave lens or a Fresnel lens, or any combination of the above-mentioned lenses.
  • the above-mentioned collimating element may comprise a convex lens
  • the light source may be disposed near the focal point of the convex lens, whereby the divergent light emitted from the light source may be converted into parallel or nearly parallel collimated light rays after passing through the lens.
  • FIG. 2 is a schematic plan view of a backlight source according to the example shown in FIG. 1A .
  • the light emitted by the light source included in the light source part 100 may be a one-dimensional light beam, for example, a light beam extending mainly in a one-dimensional direction.
  • the light source part 100 may include a strip light strip light source, and the cross section of the light beam emitted by the light source is approximately a one-dimensional line shape, or may be a narrow strip shape.
  • FIG. 3 is a schematic plan view of another backlight source according to the example shown in FIG. 1A .
  • the transflective elements 221 in the plurality of transflective element arrays 220 included in the transflective element array 220 are sequentially arranged along the first direction and extend along the second direction intersecting with the first direction.
  • the number of transflective elements 221 may be 2 or more.
  • the first direction may be the X direction
  • the second direction may be the Z direction, but not limited thereto, the first direction and the second direction may be interchanged.
  • the light source of the light source part 100 may include a plurality of sub-light sources 101 arranged along the second direction, and the plurality of sub-light sources 101 are configured to emit light entering at least part of the transflective element 221 .
  • the sub-light source 101 may be a point light source
  • the light source part 100 may be a combination of multiple point light sources
  • the multiple sub-light sources 101 are arranged in a line shape along the second direction.
  • arranging a plurality of individual sub-light sources can facilitate the replacement and disassembly of each sub-light source. For example, when any sub-light source is damaged, it can be repaired by disassembling and replacing it separately, without the need for strip-mounted light strips. The entire replacement can save costs.
  • FIG. 4A is a schematic plan view of another backlight source according to the example shown in FIG. 1A .
  • the transflective element array 200 includes a plurality of transflective elements 220 extending along the second direction
  • the light source part 100 includes a plurality of beam expanders 102 arranged along the second direction and a plurality of beam expanders 102 located in the On one side of the sub-light source 101 in the second direction, the plurality of beam expanders 102 are configured to expand the light beam emitted by the sub-light source 101 along the second direction, and the beam-expanded light is configured to be transmitted to the transflective element array 220.
  • the light source included in the light source part 100 may be a single point light source 101 that emits a single point light beam.
  • the point light source can be a laser light source.
  • the beam cross section of the light source is very small and the light energy is highly concentrated. Therefore, the beam emitted by the point light source can be expanded in one-dimensional direction, and the expanded light can pass through the waveguide medium and The array of transflective elements is transformed into a surface light source.
  • the light emitted by the point light source 101 first passes through a plurality of beam expanders 102 to expand and expand in the second direction, and then is transmitted to the transflective element array 220 along the first direction.
  • the light emitted by the point light source 101 when extended and propagated, it can propagate along any one or more propagation modes among the reflection path, the total reflection path and the straight path.
  • the beam expander 102 may be a grating, or may also be another array of transflective elements, which is not limited in this embodiment of the present disclosure.
  • the light source can use an edge-type manner to guide light into the optical waveguide element, which can avoid further increasing the thickness of the backlight source.
  • a light source that emits a one-dimensional light beam for example, a light strip or a plurality of linearly arranged point light sources
  • High brightness can be provided for the backlight source, and the solution is simple and easy to implement.
  • FIG. 4B is a schematic structural diagram of another backlight source.
  • the difference between the backlight shown in FIG. 4B and the backlight shown in FIG. 4A is that the beam expander is located in the optical waveguide element.
  • the optical waveguide element 200 further includes an optical coupling part 230 located on the side of the transflective element array 220 facing the light source part 100 , and is configured so that the light entering the optical waveguide element 200 satisfies the total reflection condition, so that the Total reflection propagates in the waveguide medium 210 .
  • the embodiments of the present disclosure are not limited to the optical waveguide element including the optical coupling portion.
  • the optical waveguide element may not include the optical coupling portion.
  • the refractive index of the waveguide medium is n1
  • the refractive index of the optically sparser medium (such as air) other than the waveguide medium is n2
  • the incident angle of the light entering the waveguide medium or the incident angle after passing through the light coupling part is not less than the total reflection critical angle arcsin(n2/n1), the ray satisfies the condition of total reflection.
  • the light coupling part 230 in the embodiment of the present disclosure may include at least one of a surface grating, a volume grating, a blazed grating, a prism and a reflective structure, and the light emitted by the light source enters the light source through at least one of reflection, refraction and diffraction effects.
  • the waveguide medium makes it meet the condition of total internal reflection and then conduct.
  • the optical waveguide element 200 includes two first and second main surfaces 211 and 212 opposite to each other, and the light coupling part 230 may be disposed on the first and second main surfaces 211 and 212 , It can also be provided on the side connecting the two main surfaces.
  • the two main surfaces of the optical waveguide element may also be referred to as the two main surfaces of the waveguide medium.
  • an array of transflective elements is located between the first major surface and the second major surface.
  • the light rays propagate on the first main surface and/or the second main surface at least by total reflection, and there may also be partial non-total reflection, such as specular reflection.
  • the optical waveguide element includes a plurality of sub-optical waveguide elements
  • the plurality of sub-optical waveguide elements are overlapped and arranged in a direction perpendicular to the first main surface
  • the upper surface of the uppermost sub-optical waveguide element is the first main surface
  • the uppermost sub-optical waveguide element is the first main surface
  • the lower surface of the sub-optical waveguide element on the lower side is the second main surface.
  • the optical waveguide element includes a plurality of sub-optical waveguide elements
  • the plurality of sub-optical waveguide elements are arranged in a direction parallel to the display surface.
  • the plurality of sub-optical waveguide elements are arranged to overlap in a direction perpendicular to the display panel, and partially overlap in a direction parallel to the display surface.
  • the first main surface 211 and the second main surface 212 include an upper surface 211 close to the display panel 10 and a lower surface 212 away from the display panel 10 , and the light coupling part 230 may be disposed on the upper surface 211 or the lower surface 212 and located at
  • the transflective element array 220 faces the side of the light source part 100 .
  • the first direction (X direction) and the second direction (Z direction) are parallel to the above-mentioned main surface.
  • the waveguide medium 210 is made of a material that can realize a waveguide function, and is generally a transparent material with a refractive index greater than 1.
  • the material of the waveguide medium 210 may include one or more of silicon dioxide, lithium niobate, silicon-on-insulator (SOI, Silicon-on-insulator), high molecular polymers, III-V semiconductor compounds and glass, etc. kind.
  • the waveguide medium 210 may be a flat substrate, a strip substrate, a ridge substrate, or the like.
  • a planar substrate is used as the waveguide medium to form a uniform surface light source.
  • the transflective element array 220 includes a plurality of transflective elements 221 arranged along the propagation direction of total light reflection.
  • the direction for example, the first direction shown in FIG. 1A (for example, the X direction), the light entering the optical waveguide element 200 undergoes total internal reflection on the two main surfaces of the waveguide medium 210, so that the light as a whole propagates along the X direction to the transparent direction.
  • Anti-element array 220 for example, the first direction shown in FIG. 1A (for example, the X direction)
  • the transflective element 221 is configured to transmit light while reflecting light. For example, when the light transmitted by total reflection in the waveguide medium 210 is transmitted to the transflective element 221, the light is reflected at the transflective element 221, and the angle of the reflected light no longer meets the condition of total reflection, and then exits; the transmitted light is Continue to propagate along the total reflection path, continue to transmit to the next transflective element 221, continue to reflect and transmit, the light reflected by the next transflective element 221 exits from the optical waveguide element 200, passes through the next transflective element 221 The transmitted light continues to propagate along the total reflection path; and so on, until it is transmitted to the last transflective element 221 .
  • the transflective element 221 may be disposed in the waveguide medium 210 by means of plating or cladding.
  • the waveguide medium 210 can be divided into a plurality of parallelogram columns, and transflective elements 221 are arranged between the spliced columns.
  • the medium between adjacent transflective elements 221 can be the waveguide medium 210 .
  • the waveguide medium 210 includes a plurality of waveguide sub-mediums arranged along the first direction and attached to each other, a transflective element 221 is sandwiched between adjacent waveguide sub-mediums, and each waveguide sub-medium is configured to cause total internal reflection of light,
  • the transflective element is configured to couple a portion of the light out of the optical waveguide element by reflection that destroys total reflection conditions for that portion of the light.
  • the embodiment of the present disclosure is described by taking the example that the plurality of transflective elements 221 in the transflective element array 220 are all parallel to each other, for example, the light emitted from the transflective element array is parallel light.
  • the embodiments of the present disclosure are not limited to this, and the plurality of transflective elements in the transflective element array may not be parallel.
  • the angle between the plurality of transflective elements the light emitted from the transflective element array can be adjusted to Convergence or Divergence.
  • the included angle between each transflective element 221 and the light emitting surface 211 is the first included angle
  • the sum of the first included angle and the critical angle of total light reflection is in the range of 60° ⁇ 120°.
  • the above-mentioned critical angle of total reflection may be the critical angle of total reflection when light propagates in the optical waveguide element.
  • the above-mentioned critical angle of total reflection may be the critical angle at which the light rays are totally reflected on the light exit surface 211 .
  • the sum of the first included angle and the total reflection critical angle is in the range of 70° ⁇ 120°.
  • the sum of the first included angle and the total reflection critical angle is in the range of 80° ⁇ 100°.
  • the sum of the first included angle and the total reflection critical angle is in the range of 85° ⁇ 95°.
  • the light can only be A reflection occurs in each transflective element, for example, the transmission and reflection of light parallel or nearly parallel to the transflective element can be avoided, the uniformity of the light can be improved, and the generation of stray light can be reduced or avoided.
  • the included angle between each transflective element 221 and the first main surface 211 is the first included angle
  • the included angle between the light propagating through total reflection in the waveguide medium 210 and the first main surface 211 and the second main surface 212 is
  • the difference between the first included angle and the second included angle is not more than 10 degrees.
  • the difference between the first included angle and the second included angle is not more than 5 degrees.
  • the first included angle and the second included angle are equal.
  • it can be considered that the light propagating through total reflection in the waveguide medium 210 is parallel to the transflective element 221.
  • the light can be made only in each transflective element. Once reflection occurs, such as avoiding the transmission and reflection of light parallel to the transflective element, the uniformity of light can be improved, and the generation of stray light can be reduced or avoided.
  • first included angle and second included angle may both be acute angles.
  • FIG. 1B is a schematic diagram of a partial structure of another display device.
  • the reflection device 600 is provided on the side of the optical waveguide element 200 away from the display panel 10 .
  • the angle between the transflective element 221 and the light propagating through total reflection can be Without limitation, it may not be parallel, for example, greater than 10 degrees.
  • the above-mentioned reflecting device may be a reflecting layer or other structures capable of reflecting.
  • the embodiment of the present disclosure schematically shows that the orthographic projections of adjacent transflective elements 221 on the main surface are connected to each other, which can avoid the occurrence of darkness between the two transflective elements without light. area.
  • the orthographic projections of adjacent transflective elements on the main surface may partially overlap, which can avoid the weakening of light at the edges of the transflective elements, and the overlapping of the transflective elements can make the light output more uniform.
  • the plurality of transflective elements 221 are uniformly arranged and the reflectivity gradually increases.
  • the reflectance of the transflective element 221 that is closer to the light source unit 100 is smaller.
  • the reflectivity of the transflective elements arranged in sequence along the extending direction of the light exit surface in the transflective element array gradually increases (eg, increases one by one) in the propagation direction of the light, or increases regionally.
  • the arrangement density of the transflective elements sequentially arranged along the extending direction of the light exit surface gradually increases or increases regionally.
  • the regional increase may be two or more regions in which the reflectivity of the transflective element is different and gradually increases.
  • the above-mentioned uniform arrangement may refer to either an arrangement in which adjacent transflective elements are arranged with orthographic projections adjoining each other, or an arrangement in which adjacent transflective elements are arranged with orthographic projections partially overlapping. Since the light will gradually reflect out of the waveguide medium during the propagation process, the light intensity will gradually attenuate. By increasing, the intensity of the light reflected by each transflective element can be relatively uniform, and the light output from each part of the waveguide medium 210 can be relatively uniform.
  • the arrangement density of the plurality of transflective elements gradually increases.
  • the arrangement density of the partially transflective elements that are closer to the light source portion is smaller.
  • the position with a low arrangement density may be that the adjacent transflective elements are arranged so that the orthographic projections are adjacent to each other, and the position of the above-mentioned arrangement density may be that the adjacent transflective elements are arranged so that the orthographic projections partially overlap.
  • the position with a low arrangement density may be that adjacent transflective elements are set to overlap each other with orthographic projection, and the overlapping part is small, and the position with a large arrangement density can be set to the orthographic projection of adjacent transflective elements.
  • the transflective properties of the transflective elements can also be set to be the same or almost the same, and the intensity of the light reflected by the transflective elements can be made uniform by adjusting the arrangement density of the transflective elements.
  • FIG. 5 is a schematic plan view of another backlight source according to the example shown in FIG. 1A .
  • the difference between the backlight shown in FIG. 5 and the backlight shown in FIG. 3 is that the reflectance of the transflective elements in the transflective element array varies.
  • the transflective element array 220 includes at least two regions, such as region 01 and region 02 , and the average reflectivity of the transflective element 221 in one region 01 of the at least two regions is greater than that of the other regions Average reflectance of transflective elements 221 within (eg, area 02).
  • the average reflectivity of the transflective elements in the above area 01 is greater than the average reflectivity of the transflective elements in other areas, so that the light intensity in the area 01 is stronger than that in other areas.
  • the embodiment of the present disclosure is not limited to adjusting the transflective in the area.
  • the average reflectivity of the element can adjust the light intensity of the outgoing light in the area, and the intensity of the outgoing light in the area can also be adjusted in other ways.
  • the area 01 may include at least one transflective element 221
  • the other area 02 may include a plurality of transflective elements 221
  • the average reflectivity of the plurality of transflective elements 221 in the other areas is small so that the optical waveguide element can emit light.
  • the brightness of the light is uneven, and the optical waveguide element is suitable for application scenarios with uneven display, such as billboards and displays that display content in a specific area.
  • area 01 may be located in the middle area, and other areas 02 may surround area 01.
  • the embodiments of the present disclosure are not limited thereto, for example, the reflectivity of the plurality of transflective elements 221 included in the area 01 gradually increases (eg, increases one by one), while the reflectivity of the plurality of transflective elements 221 in other areas may be uniform. The same to make the brightness of the light emitted from the optical waveguide element non-uniform.
  • the transflective element 221 can transmit and reflect light without wavelength selectivity and polarization selectivity.
  • the thickness of each layer is about 10nm-1000nm, and the overall transmission and reflection properties of the inorganic dielectric layer can be adjusted by changing the layer material and/or the layer stacking method.
  • the wavelength properties and polarization properties of the light incident on the transflective element 221 are almost unchanged after being transmitted and reflected by the transflective element 221 .
  • At least one transflective element 221 in the transflective element array 220 includes a selective transmission film
  • the light entering the optical waveguide element 200 includes a first polarized light and a second polarized light
  • the selective transmission film is configured to reflect the first polarized light.
  • the reflectivity of the second polarized light is greater than that of the second polarized light
  • the transmittance of the second polarized light is greater than that of the first polarized light, so that the transflective element can gradually reflect the first polarized light out of the optical waveguide element.
  • the above-mentioned light entering the optical waveguide element may be unpolarized light, or may be directly polarized light with two polarization states.
  • the "unpolarized light” here means that the light emitted by the light source can have multiple polarization characteristics at the same time but does not exhibit a unique polarization characteristic. It can be considered that the unpolarized light emitted by the light source unit can be decomposed into light rays of two mutually perpendicular polarization states.
  • the selective transmission film may be a brightness enhancement film (BEF), which has a higher reflectivity for one polarized light and a higher transmittance for the other polarized light (eg, a selective transmission film for S-polarized light)
  • BEF brightness enhancement film
  • the light reflectivity is high, and the transmittance to P polarized light is high)
  • the transflective element can utilize the selectivity of polarization transflectance, so that the light is gradually reflected by the transflective element and out of the optical waveguide element.
  • the output direction may be a direction perpendicular to the main surface of the waveguide medium 210 .
  • FIG. 6 is an example in which the light emitted from the transflective element array is not perpendicular to the main surface of the waveguide medium. As shown in FIG. 6 , when the angle of the light incident on the transflective element is changed, and/or the angle between the transflective element and the main surface is changed, the light emitted from the transflective element array can also interact with the main surface of the waveguide medium. The surface is not vertical.
  • the light emitted from the transflective element array can be perpendicular or non-perpendicular to the main surface of the waveguide medium, and the outgoing directions of the light rays emitted from different transflective elements are parallel or nearly parallel to form a collimated beam.
  • the light output from the light source is converted into the light of the surface light source that is collimated by using an optical waveguide element with a smaller thickness, which can save the thickness of the display device.
  • FIG. 7 is a partial structural schematic diagram of a backlight source in another example according to an embodiment of the present disclosure.
  • the example shown in FIG. 7 is different from the example shown in FIG. 1A in that the number of light source parts and the arrangement of the transflective elements are different, and the positional relationship of adjacent transflective elements can be the same as the example shown in FIG. 1A .
  • the transflective element array 220 includes a first transflective element group 2201 and a second transflective element group 2202 arranged along the first direction, and each transflective element group includes a plurality of transflective element groups arranged along the first direction
  • the transflective elements 221 of different transflective element groups are not parallel.
  • FIG. 7 schematically shows that a plurality of transflective elements included in each transflective element group are parallel to each other, and the transflective elements in different transflective element groups are not parallel.
  • the backlight further includes a light source part 100
  • the light source part 100 includes a first light source part 110 and a second light source part 120
  • the first light source part 110 and the second light source part 120 are respectively located in the transflective element array 220
  • the first transflective element group 2201 is configured to reflect light entering the optical waveguide element 200 from the first light source part 110
  • the second transflective element group 2202 is configured to reflect light from the second light source part 120 light entering the optical waveguide element 200 .
  • the first transflective element group 2201 is configured to reflect only light entering from the first light source part 110
  • the second transflective element group 2202 is configured to reflect only light entering from the second light source part 120 .
  • the intensity of light emitted from the optical waveguide element can be improved.
  • one of the transflective elements 221 in the first transflective element group 2201 and the transflective elements 221 in the second transflective element group 2202 is related to the first direction (the direction indicated by the arrow of X) The angle between them is an acute angle, and the angle between the other and the first direction is an obtuse angle.
  • the first transflective element group can only reflect the light entering from the first light source part, and the second transflective element group can only reflect light from The light entered by the second light source part.
  • the transflective elements 221 in the first transflective element group 2201 and the transflective elements 221 in the second transflective element group 2202 have different inclination directions.
  • the light source part may also be located between the first transflective element group and the second transflective element group in the extending direction of the light emitting surface.
  • a reflection device may also be provided in the backlight source, and the reflection device may be arranged on the other side away from the light-emitting surface of the optical waveguide element to reflect the light leaked from the optical waveguide element back to the optical waveguide element, so that as much light as possible Convert it into collimated light and output it to improve light utilization.
  • FIG. 8 is a schematic partial structure diagram of a backlight source in another example according to an embodiment of the present disclosure.
  • the difference between the example shown in FIG. 8 and the example shown in FIG. 1A lies in the number of light source parts and the outgoing direction of light reflected from the light source part by the transflective element.
  • the light source part 100 includes a first light source part 110 and a second light source part 120 , the first light source part 110 and the second light source part 120 are respectively located on both sides of the transflective element array 220 in the first direction.
  • both side surfaces of each transflective element 221 can reflect the light entering from the first light source part 110 or the second light source part 120 , so that both sides of the main surfaces of the optical waveguide element are light emitting surfaces.
  • the reflectivity of the transflective element at and/or near the middle position is greater than that of the transflective element at both sides, so that the light emitted from the optical waveguide element has better uniformity.
  • the backlight in this example can be applied to scenes that require light to be emitted from both sides, such as billboards.
  • FIG. 9 is a schematic partial structure diagram of a backlight source in another example according to an embodiment of the present disclosure.
  • the backlight further includes a light splitting element 300 located between the light source part 100 and the optical waveguide element 200 , and the light splitting element 300 is configured to divide light incident on the light splitting element 300 into a plurality of sub-beams.
  • the spectroscopic element 300 is configured to divide the light emitted from the light source unit 100 to the optical waveguide element 200 into a plurality of sub-beams.
  • the light emitted by the light source unit 100 may be directly output to the light splitting element 300 , or may be output to the light splitting element 300 after passing through other elements.
  • the light splitting element 300 can divide the light emitted by the light source part 100 to the optical waveguide element 200 into two sub-beams or three sub-beams, the embodiment of the present disclosure is not limited thereto, and can also be divided into more sub-beams.
  • the light splitting element 300 may be a prism.
  • the optical waveguide element 200 includes a plurality of sub-optical waveguide elements 201 , and a plurality of sub-beams are configured to enter the plurality of sub-optical waveguide elements 201 and are arranged in the transflective element array in each sub-optical waveguide element 201 . 221 is reflected out of the optical waveguide element 200 .
  • the transflective element array includes a plurality of sub-transflective element arrays respectively located in a plurality of sub-optical waveguide elements.
  • a plurality of sub-transflective element arrays are in one-to-one correspondence with a plurality of sub-optical waveguide elements.
  • the number of the plurality of sub-optical waveguide elements 201 may be the same as the number of the plurality of sub-beams, and the plurality of sub-beams are configured to enter the corresponding sub-optical waveguide elements one by one.
  • the embodiment of the present disclosure is not limited thereto, and the number of the plurality of sub-optical waveguide elements may also be smaller than the number of the plurality of sub-beams, and at least two sub-beams enter the same sub-optical waveguide element.
  • the thicknesses of the plurality of sub-optical waveguide elements 201 are smaller than the thicknesses of the optical waveguide elements in the embodiment shown in FIG. 1A ; the light originally transmitted in one optical waveguide element is split into multiple beams and then coupled into multiple optical waveguide elements. With a thinner waveguide element, the light is transmitted in a waveguide element with a smaller thickness, and the number of total reflections will increase, which can make the light distribution more uniform.
  • the uniformity in this embodiment may mean that the light is evenly bright and dark.
  • the light emitted by a light source such as a point light source
  • the straight light is also bright in the middle and dark on both sides, and it is difficult to adjust the brightness of the collimated light; for example, before the light emitted by the light source enters the optical waveguide element or is coupled out from the optical waveguide element, it is
  • the uniformity of light can be used to obtain light and dark uniform surface light source light; for example, increasing the number of total reflections of light can improve the uniformity of light and dark, for example, thinner optical waveguide elements can be set to increase the number of total reflections of light.
  • the uniformity of light output from the backlight can be further improved.
  • the plurality of sub-optical waveguide elements may be independent structures, or may be integrated on the same substrate.
  • each sub-optical waveguide element may include a waveguide medium, and the refractive index of the waveguide medium in different sub-optical waveguide elements may be the same or different, which is not limited in this embodiment of the present disclosure.
  • the number and arrangement of the transflective elements included in the transflective element array in each sub-optical waveguide element may be the same or different, which is not limited in this embodiment of the present disclosure.
  • each sub-optical waveguide element may or may not include an optical coupling portion.
  • the optical coupling parts of different sub-optical waveguide elements may be the same, for example, a geometrical method (for example, non-grating coupling such as prism coupling or reflective structure coupling) can be used.
  • the entry may also be different, which is not limited in this embodiment of the present disclosure.
  • the optical waveguide element 200 includes a plurality of sub-optical waveguide elements 201
  • the transflective element array 210 includes a plurality of sub-transflective element arrays respectively located in the plurality of sub-optical waveguide elements 201
  • the backlight further includes a light splitting element 300
  • the spectroscopic element 300 is configured to divide the light emitted by the light source part 100 toward the optical waveguide element 200 into a plurality of sub-beams and make the plurality of sub-beams enter into the plurality of sub-optical waveguide elements 201 respectively, and enter each of the sub-optical waveguide elements 201
  • Each of the sub-beams is reflected out of the light-emitting surface of the optical waveguide element 200 by the sub-transflective element array located in each sub-optical waveguide element 201 .
  • the light emitted by the light source unit 100 and directed toward the optical waveguide element 200 includes first characteristic light and second characteristic light with different characteristics
  • the spectroscopic element 300 is configured to perform a ray of light emitted by the light source unit 100 toward the optical waveguide element 200 .
  • the first characteristic light obtained by the spectral processing is incident on the first sub-optical waveguide element 2011
  • the second characteristic light obtained by the spectral processing is incident on the second sub-optical waveguide element 2012 .
  • the first characteristic light and the second characteristic light are the first polarized light and the second polarized light with different polarization states, respectively; or, the first characteristic light and the second characteristic light are the first color light and the first color light with different wavelength distributions, respectively. Two color lights.
  • light with different wavelength distributions may be considered to have different colors; for example, if the wavelength distributions of the first color light and the second color light are different, the colors may also be different.
  • the light-splitting element includes a polarizing light-splitting element configured to have a greater reflectivity for one of the first polarized light and the second polarized light than for the other; and/or, the polarized light-splitting element is The transmittance of one of the first polarized light and the second polarized light is configured to be greater than the transmittance of the other.
  • the reflectivity of the polarizing beam splitting element for the first polarized light is greater than the reflectivity for the second polarized light; and/or the transmittance of the polarizing beam splitting element for the second polarized light is greater than the transmittance for the first polarized light.
  • the reflectivity of the polarizing beam splitting element to the second polarized light is greater than its reflectivity to the first polarized light; and/or, the transmittance of the polarizing beam splitting element to the first polarized light is greater than its reflectivity to the second polarized light transmittance.
  • the polarization beam splitting element is configured to reflect one of the first polarized light and the second polarized light, and transmit the other of the first polarized light and the second polarized light. For example, if one of the first polarized light and the second polarized light is reflected and the other is transmitted, it can be considered that only one of the first polarized light and the second polarized light is reflected, and only the other is transmitted; for example , the reflectivity of the polarization beam splitting element for the first polarized light is almost 100% and the transmittance for the second polarized light is almost 100%.
  • the reflectivity for one of the first polarized light and the second polarized light is high, and the reflectivity for the other is high, for example, the reflectivity of the polarizing beam splitter element for the first polarized light is 50% to 50%. 99%, and the transmittance to the second polarized light is 50% to 99%.
  • the beam splitting element further includes a reflective element configured to reflect one of the first polarized light and the second polarized light.
  • the plurality of sub-beams include a first polarized beam 1001 and a second polarized beam 1002 with different polarization directions
  • the beam splitting element 300 includes a polarizing beam splitting element 310
  • the polarizing beam splitting element 300 is configured to emit light from the light source unit 100 .
  • the light incident on the optical waveguide element 200 is subjected to polarization splitting processing, so that the plurality of sub-beams include a first polarized beam 1001 and a second polarized beam 1002 with different polarization states, and the second polarized beam 1002 is incident on the second sub-optical waveguide element 2012 , and the first polarized light beam 1001 is incident on the first sub-optical waveguide element 2011 .
  • the above-mentioned polarizing beam splitting element transmits the second polarized beam and reflects the first polarized beam, and is not limited to only reflecting the second polarized beam and transmitting the first polarized beam.
  • the polarizing beam splitting element has a high transmittance to the second polarized beam.
  • the reflectivity of a polarized light beam is high.
  • the first polarized light beam and the second polarized light beam in the embodiments of the present disclosure may be interchanged.
  • the transflective element of the first sub-optical waveguide element 2011 is configured so that the reflectivity of the first polarized light is greater than the reflectivity of the second polarized light
  • the transflective element of the second sub-optical waveguide element 2012 The element is configured so that the reflectivity of the second polarized light is greater than the reflectivity of the first polarized light, which can improve the intensity of the light emitted by the backlight source and improve the utilization rate of the light.
  • the embodiment of the present disclosure is not limited to this, and the transflective element in each sub-optical waveguide element may also have no polarization selective characteristic.
  • the spectroscopic element 300 further includes a reflection element 320 configured to reflect the first polarized light beam 1001 and propagate the reflected first polarized light beam into the first sub-optical waveguide element 2011 .
  • the reflective element may also be configured to reflect the second polarized light beam and propagate the reflected second polarized light beam into the second sub-optical waveguide element.
  • the function of the reflective element is to transmit the split first polarized light beam to the first sub-optical waveguide element, and the reflective element can be replaced by other elements with similar functions.
  • light that propagates to an element/region may directly propagate to the element/region, such as directly propagating to the above-mentioned element/region without passing through other optical elements; or, it may also pass through other optical elements, such as reflective elements, refraction elements After the action of at least one of the element, the scattering element, the diffractive element, and the condensing element, it propagates to the above-mentioned element/region.
  • the transmitted light includes P-polarized light (eg, the second polarized light), and the reflected light includes S-polarized light (eg, the first polarized light) ); or the transmitted light includes S-polarized light (eg, second polarized light), and the reflected light includes P-polarized light (eg, first polarized light), which is not limited in this embodiment of the present disclosure.
  • the polarization beam splitting element 310 may have the function of transmitting light of one characteristic and reflecting light of another characteristic, for example, the polarization beam splitting element 310 may have the characteristic of transmitting light of one polarization state and reflecting light of another polarization state , the polarization beam splitting element 310 can realize beam splitting by utilizing the above-mentioned transflective characteristics.
  • the polarized light splitting element 310 can be a transflective film, which realizes the beam splitting effect by transmitting part of the light and reflecting another part of the light.
  • the transflective film may transmit the second polarized light in the light emitted by the light source part 100 and reflect the first polarized light in the light emitted by the light source part 100 .
  • the transflective film can be an optical film with a polarized transflective function, for example, an optical film that can split unpolarized light into two different polarized lights through transmission and reflection, for example, can split light into each other
  • the optical film of two vertical polarized lights can be composed of multiple layers with different refractive indices according to a certain stacking sequence, and the thickness of each film layer is about 10-1000nm
  • Materials can be selected from inorganic dielectric materials, such as metal oxides and metal nitrides; and polymer materials can also be selected, such as polypropylene, polyvinyl chloride or polyethylene.
  • the transmitted P-polarized light enters the second sub-optical waveguide element 2012 through the second optical coupling part 232 in the second sub-optical waveguide element 2012
  • the reflected S-polarized light is reflected by the reflective element 320 and then enters the first sub-light
  • the first optical coupling part 231 in the waveguide element 2011 enters the first sub-optical waveguide element 2011 .
  • the S-polarized light and the P-polarized light are output in the state of collimated light through the transflective element arrays in their respective waveguide elements, which can realize the effect of converting an ordinary light source into a uniform surface light source.
  • a plurality of sub-optical waveguide elements are arranged to overlap in a direction perpendicular to the display surface of the display panel, thereby improving the brightness of the backlight and improving the uniformity of light.
  • the above-mentioned overlapping arrangement includes complete overlapping arrangement and partial overlapping arrangement.
  • the orthographic projections of a plurality of sub-optical waveguide elements on a plane parallel to the light-emitting surface of the optical waveguide element may completely overlap or partially overlap. The example does not limit this.
  • FIG. 9 schematically shows that the first sub-optical waveguide element and the second sub-optical waveguide element are completely overlapped.
  • the first sub-optical waveguide element 2011 and the second sub-optical waveguide element 2012 overlap in a direction perpendicular to the display surface of the display panel, for example, the first sub-optical waveguide element 2011 and the second sub-optical waveguide element 2012
  • the elements 2012 overlap in the Y direction, and the light emitted from the second sub-optical waveguide element 2012 passes through the first sub-optical waveguide element 2011 and then goes toward the display panel.
  • FIG. 9 the first sub-optical waveguide element 2011 and the second sub-optical waveguide element 2012 overlap in a direction perpendicular to the display surface of the display panel, for example, the first sub-optical waveguide element 2011 and the second sub-optical waveguide element 2012
  • the elements 2012 overlap in the Y direction, and the light emitted from the second sub-optical waveguide element 2012 passes through the first sub-optical waveguide element 2011 and then goes toward the display panel.
  • the light emitted from the second sub-optical waveguide element 2012 may pass through the transflective element array in the first sub-optical waveguide element 2011 , or may not pass through the transflective element in the first sub-optical waveguide element 2011
  • the element array is not limited in this embodiment of the present disclosure.
  • the transflective element array in the first sub-optical waveguide element has a higher transmittance to the transmitted light.
  • the angle between the first polarized light beam 1001 transmitted to the transflective element of the first sub-optical waveguide element 2011 and the transflective element is the third angle, and transmitted to the second sub-optical waveguide element 2012
  • the included angle between the second polarized light beam 1002 of the transflective element and the transflective element is the fourth included angle, and the difference between the third included angle and the fourth included angle is not greater than 5 degrees.
  • Both the third angle and the fourth angle may refer to the angle between the light incident on the surface of the transflective element and the transmitted light and the transflective element.
  • the angle of the polarized light entering the sub-optical waveguide element can be adjusted according to the inclination angle of the transflective element in each sub-optical waveguide element. For example, setting the included angles between different sub-optical waveguide elements and the corresponding polarized light to be the same can also facilitate the fabrication of the sub-optical waveguide elements and the adjustment of the angle of incident light.
  • the total reflection propagation direction of the first polarized light beam 1001 entering the first sub-optical waveguide element 2011 is the same as the total reflection propagation direction of the second polarized light beam 1002 entering the second sub-optical waveguide element 2012
  • the included angle between the transflective element in the first sub-optical waveguide element 2011 and the transflective element in the second sub-optical waveguide element 2012 may be no greater than 5 degrees, for example, the transflective element in the two sub-optical waveguide elements parallel to facilitate the fabrication of optical waveguide components.
  • the included angle between the transflective element in the first sub-optical waveguide element 2011 and the transflective element in the second sub-optical waveguide element 2012 and the first direction may be both acute angles, or both may be acute angles. is an obtuse angle.
  • the transflective elements in the first sub-optical waveguide element 2011 and the transflective elements in the second sub-optical waveguide element 2012 have the same inclination directions.
  • the inclined direction here may refer to the inclined direction of the transflective element relative to the light-emitting surface. But not limited to this, the inclined direction here may also refer to a left or right inclined direction with respect to the Y direction.
  • the direction indicated by the arrow in the X direction shown in FIG. 9 is the first direction (for example, when the above-mentioned included angle with the direction is involved, the first direction can be regarded as a vector) and enters the first sub-optical waveguide element 2011.
  • the total reflection propagation direction of a polarized light beam 1001 is the same as the total reflection propagation direction of the second polarized light beam 1002 entering the second sub-optical waveguide element 2012.
  • FIG. 10 is a schematic diagram of a partial structure of a backlight source in another example according to an embodiment of the present disclosure.
  • the example shown in FIG. 10 is different from the example shown in FIG. 9 in that the positional relationship of the plurality of sub-optical waveguide elements is different.
  • the plurality of sub-optical waveguide elements are arranged in the first direction.
  • the plurality of sub-optical waveguide elements do not overlap in the direction perpendicular to the display surface of the display panel, which can not only reduce the thickness of the backlight, but also reduce the length of the sub-optical waveguide elements by setting the length of each sub-optical waveguide element to be smaller.
  • the degree to which the edge light intensity is weakened can be weakened.
  • the plurality of sub-optical waveguide elements do not overlap in the direction perpendicular to the display surface of the display panel, and may be just adjacent to each other, or may have a certain distance, as shown in FIG. 10 .
  • the plurality of sub-optical waveguide elements may include a first sub-optical waveguide element 2011 and a second sub-optical waveguide element 2012 arranged along the first direction, and the second polarized light beam 1002 transmitted by the polarization splitting element 310 passes through the second sub-optical waveguide element 2012
  • the second optical coupling-in part 232 in the first sub-optical waveguide element 2012 enters the second sub-optical waveguide element 2012
  • the reflected first polarized light beam 1001 passes through the first optical coupling-in part 231 in the first sub-optical waveguide element 2011 and enters the first sub-optical waveguide element 2011 without being reflected by the reflective element.
  • the first polarized light beam 1001 and the second polarized light beam 1002 pass through the transflective element arrays in the respective sub-waveguide elements, and are output in the state of collimated light, which can realize the effect of converting an ordinary light source into a uniform surface light source.
  • the propagation direction of total reflection of light in the first sub-optical waveguide element 2011 is opposite to the propagation direction of total reflection of light in the second sub-optical waveguide element 2012, then the transflective element in the first sub-optical waveguide element 2011 is the same as the second sub-optical waveguide element 2011.
  • the transflective elements in the optical waveguide element 2012 are not parallel, for example, the angle between one of them and the first direction is an acute angle, and the angle between the other and the first direction is an obtuse angle, so as to realize the outcoupling of light by the transflective element .
  • the transflective elements in the first sub-optical waveguide element 2011 and the transflective elements in the second sub-optical waveguide element 2012 have different tilt directions.
  • FIG. 11 is a schematic diagram of a partial structure of a backlight source in another example according to an embodiment of the present disclosure.
  • the spectroscopic element 300 is configured to divide the light beams emitted by the light source unit 100 toward the optical waveguide element into a plurality of light beams with different wavelengths.
  • the light-splitting element 300 may include a light-splitting prism, a light-splitting grating, or the like, which may serve as elements for separating light of different wavelengths.
  • the plurality of sub-beams include first color light 1003 and second color light 1004 with different wavelengths
  • the plurality of sub-optical waveguide elements 201 include a first sub-optical waveguide element 2011 and a second sub-optical waveguide element 2012
  • the first color light 1003 is configured to enter the first sub-optical waveguide element 2011, and is reflected out of the first sub-optical waveguide element 2011 by the transflective element array located in the first sub-optical waveguide element 2011, and the second color light 1004 is reflected from the first sub-optical waveguide element 2011. It is configured to enter the second sub-optical waveguide element 2012 and be reflected out of the second sub-optical waveguide element 2012 by the transflective element array located in the second sub-optical waveguide element 2012 .
  • the transflective element of the first sub-optical waveguide element 2011 is configured so that the reflectivity for the first color light 1003 is greater than the reflectivity for the second color light 1004, and the transflective element of the second sub-optical waveguide element 2012 is configured as The reflectivity for the second color light 1004 is greater than the reflectivity for the first color light 1003 .
  • the embodiments of the present disclosure can improve the utilization rate of light incident into the corresponding sub-optical waveguide elements by adjusting the reflectivity and transmittance of the transflective elements in different sub-optical waveguide elements.
  • the first color light 1003 may be red light or green light
  • the second color light 1004 may be blue light.
  • the embodiment of the present disclosure is not limited thereto, and the first color light and the second color light may be interchanged.
  • FIG. 12 is a schematic diagram of a partial structure of a backlight source in another example according to an embodiment of the present disclosure.
  • the plurality of sub-beams further includes a third color light 1005 configured to enter one of the first sub-optical waveguide element 2011 and the second sub-optical waveguide element 2012 .
  • the first color light 1003 and the third color light 1005 enter the first sub-optical waveguide element 2011
  • the second color light 1004 enters the second sub-optical waveguide element 2012 .
  • the embodiment of the present disclosure is not limited thereto, and the third color light may also enter the same sub-optical waveguide element with the second color light.
  • the fabrication cost of the optical waveguide element can be reduced, and the thickness of the backlight source can also be reduced.
  • the first color light 1003 and the third color light 1005 may be red light and green light, respectively, and the second color light 1004 may be blue light.
  • the embodiment of the present disclosure is not limited thereto, the first color light and the third color light may also be green light and blue light, respectively, and the second color light is red light.
  • two colors of light with similar wavelengths enter the same sub-optical waveguide element, which can facilitate the adjustment of the transflective element array in the sub-optical waveguide element, and can also reduce costs.
  • FIG. 13 is a schematic diagram of a partial structure of a backlight source in another example according to an embodiment of the present disclosure.
  • the example shown in FIG. 13 is different from the example shown in FIG. 12 in that a plurality of light rays of different colors are arranged to enter a plurality of sub-optical waveguide elements one by one.
  • FIG. 13 is a schematic diagram of a partial structure of a backlight source in another example according to an embodiment of the present disclosure.
  • the example shown in FIG. 13 is different from the example shown in FIG. 12 in that a plurality of light rays of different colors are arranged to enter a plurality of sub-optical waveguide elements one by one.
  • FIG. 13 is a schematic diagram of a partial structure of a backlight source in another example according to an embodiment of the present disclosure.
  • the example shown in FIG. 13 is different from the example shown in FIG. 12 in that a plurality of light rays of different colors are arranged to enter a plurality of sub-optical waveguide
  • the plurality of sub-beams further includes a third color light 1005
  • the plurality of sub-optical waveguide elements 201 further includes a third sub-optical waveguide element 2013
  • the third color light 1005 is configured to enter the third sub-optical waveguide element 2013 , and is reflected out of the third sub-optical waveguide element 2013 by the transflective element array located in the third sub-optical waveguide element 2013 .
  • the embodiments of the present disclosure can further improve the utilization rate of light by entering light of different colors into different sub-optical waveguide elements one by one.
  • the transflective element of the first sub-optical waveguide element 2011 is configured such that the reflectivity for the first color light 1003 is greater than the reflectivity for the second color light 1004 and the third color light 1005
  • the second The transflective element of the sub-optical waveguide element 2012 is configured such that the reflectivity for the second color light 1004 is greater than the reflectivity for the first color light 1003 and the third color light 1005,
  • the embodiments of the present disclosure can improve the utilization rate of light incident into the corresponding sub-optical waveguide elements by adjusting the reflectivity and transmittance of the transflective elements in different sub-optical waveguide elements.
  • the refractive index of the waveguide medium of the first sub-optical waveguide element 2011 , the refractive index of the waveguide medium of the second sub-optical waveguide element 2012 , and the refractive index of the waveguide medium of the third sub-optical waveguide element 2013 may be are different, and each is set to accommodate the refractive index of the light entering the corresponding sub-optical waveguide element.
  • the first color light 1003, the second color light 1004 and the third color light 1005 are blue light, red light and green light respectively.
  • the medium has different refractive indices for various light rays.
  • the total reflection angles of the three wavelengths of light are different (for example, the total reflection critical angle of red light is greater than the total reflection critical angle of blue light).
  • the angle of the transflective element should also be considered. Therefore, the efficiency is low; if the total reflection angles of the three kinds of light are to be close, it is necessary to control the medium to have different refractive indices.
  • various light rays can be separated, and each sub-optical waveguide element can select a medium and a corresponding transflective element that can transmit the corresponding light rays as much as possible to satisfy the condition of total reflection, which can improve the utilization rate of light.
  • the embodiment of the present disclosure is not limited to that the sub-beams are sub-rays with different polarization directions or wavelengths.
  • Each sub-beam in the plurality of sub-beams may also be sub-rays with the same properties.
  • the spectroscopic element is only configured to An emitted light beam is divided into a plurality of sub-beams with the same properties, and the plurality of sub-beams are configured to enter the plurality of sub-optical waveguide elements one by one.
  • the embodiment of the present disclosure can improve the light output by dividing a beam of light emitted by the light source part into multiple beams of light and entering different sub-optical waveguide elements respectively. It can also improve the uniformity of the out-coupled light.
  • the plurality of sub-optical waveguide elements may or may not overlap in the direction perpendicular to the display surface of the display panel.
  • the optical waveguide element includes a plurality of sub-optical waveguide elements, and the plurality of sub-optical waveguide elements are arranged in a direction parallel to the display surface of the display panel or in a direction perpendicular to the display surface of the display panel.
  • a plurality of transflective elements are uniformly arranged and the reflectivity gradually increases.
  • the optical waveguide element includes a plurality of sub-optical waveguide elements, and the plurality of sub-optical waveguide elements are arranged in a direction parallel to the display surface of the display panel or in a direction perpendicular to the display surface of the display panel.
  • the arrangement density of the plurality of transflective elements gradually increases.
  • the inventor of the present application also found that two polarizers with different light transmission directions are arranged on both sides of the liquid crystal layer of the liquid crystal display device.
  • the light can be incident inside the liquid crystal display panel through the polarizer between the liquid crystal layer and the backlight, and be used for imaging.
  • the light emitted by the backlight is non-polarized light
  • only 50% of the light emitted by the backlight can be utilized by the liquid crystal layer at most, and the rest of the light will be wasted or absorbed by the liquid crystal layer, resulting in low light utilization. question.
  • FIG. 14 is a schematic partial structural diagram of a backlight provided according to an example of another embodiment of the present disclosure.
  • the backlight source in this embodiment can also be called a light source device, which can be applied to the display device together with the display panel, or can be used alone, which is not limited in this embodiment of the present disclosure.
  • the light source device in this embodiment may be disposed on the back side of the transmissive display panel, or may be disposed on the display side of the reflective display panel to provide light for the display panel.
  • the light source device in this embodiment (for example, a backlight source ), which can be applied to any display device that requires a light source.
  • the light source device includes: a light source part 100, the light emitted by the light source part 100 includes a first polarized light 100-1 and a second polarized light 100-2 with different polarization states; an optical waveguide element 200, including an optical coupling Section 240.
  • the light source part 100 is configured so that the light emitted by it enters the optical waveguide element 200 and propagates reflectively in the optical waveguide element 200
  • the light coupling out part 240 is configured to couple out the light propagating reflectively in the optical waveguide element 200 .
  • reflective propagation includes at least one of total reflective propagation and specular propagation.
  • the optical out-coupling part 240 includes a first optical out-coupling part 241 and a second optical out-coupling part 242 , and the first optical out-coupling part 241 is configured to couple out the first polarized light 100 - 1 entering the optical waveguide element 200
  • the light source device further includes a polarization conversion structure 400, and the polarization conversion structure 400 is configured to convert the second polarized light 100-2 after entering the optical waveguide element 200 into the first polarized light 100-1.
  • the second light coupling out part 242 is configured to: after the polarization conversion structure 400 converts the second polarized light 100 - 2 entering the optical waveguide element 200 into the first polarized light 100 - 1 , convert the converted first polarized light 100 to the first polarized light 100 - 1 . -1 out-coupling; or the second optical out-coupling part 242 is configured to: couple out the second polarized light 100-2 entering the optical waveguide element 200 to the polarization conversion structure 400, so that the out-coupled second polarized light 100 -2 is converted to the first polarized light 100-1 by the polarization conversion structure 400.
  • the backlight includes a light source unit 100 and an optical waveguide element 200 .
  • the light emitted by the light source part 100 includes a first polarized light 100-1 and a second polarized light 100-2 with different polarization states.
  • the optical waveguide element 200 includes a waveguide medium 210 and an optical coupling-out part 240 .
  • the light emitted by the light source part 100 is configured to enter the waveguide medium 210 and propagate through total reflection in the waveguide medium 210
  • the optical coupling-out part 240 is configured to transmit light in the waveguide medium 210 .
  • the light propagating through total reflection is coupled out to the predetermined area 40 .
  • the first polarized beam 1001 and the second polarized beam 1002 , and the first polarized beam 1001 and the second polarized beam 1002 can be obtained respectively after the polarized light of different polarization states emitted by the light source part 100 passes through the light splitting structure. different polarization states.
  • the first optical out-coupling part 241 is configured to out-couple the first polarized light beam 1001 entering the optical waveguide element 200 to the predetermined area 40 .
  • the backlight further includes a polarization conversion structure 400, and the polarization conversion structure 400 is configured to convert the second polarized light beam 1002 after entering the optical waveguide element 200 into a first polarized light beam 1001'.
  • the second light out-coupling part 242 is configured to couple out the converted first polarized light beam 1001 ′ to the predetermined region 40 , or to couple out the second polarized light beam 1002 to the polarization conversion structure 400 to convert the second polarized light beam 1002 into The first polarized light beam 1001 ′ is then directed to the predetermined area 40 .
  • the polarization conversion structure arranged in the backlight can convert the unpolarized light emitted from the light source into polarized light with a specific polarization state, and the polarized light can be utilized by the liquid crystal layer through the polarizer between the liquid crystal layer and the backlight to improve the utilization of light.
  • the second polarized light beam 1002 coupled out from the second light coupling out part 242 is converted into the first polarized light beam 1001 ′ after passing through the polarization conversion structure 400 , and the converted first polarized light beam 1001 ′
  • the first polarized light beam 1001 coupled out from the first light coupling part 241 is emitted to the predetermined area 40 together.
  • the above-mentioned predetermined area 40 may refer to a certain area between the backlight source and the display panel, but it is not limited thereto, and the predetermined area may be any area located on the light-emitting side of the backlight source.
  • the light source part 100 in this embodiment may have the same features as the light source part 100 in the embodiment shown in FIG. 1A to FIG. 13 , and details are not repeated here.
  • the waveguide medium 210 in this embodiment may have the same features as the waveguide medium 210 in the embodiments shown in FIGS. 1A to 13 , and details are not described herein again.
  • an optical coupling part may be provided, or an optical coupling part may not be provided.
  • the optical coupling part provided in this embodiment may have the same or similar features as the optical coupling part provided in the embodiments shown in FIG. 1A to FIG. 13 , and details are not repeated here.
  • the light emitted by the light source part 100 may be unpolarized light, and the unpolarized light includes a first polarized light beam 1001 and a second polarized light beam 1002 with different polarization directions.
  • the first polarized light beam 1001 and the second polarized light beam 1002 may be two kinds of linearly polarized light with perpendicular polarization directions, such as S-polarized light and P-polarized light.
  • the embodiment of the present disclosure is not limited thereto, and the first polarized light and the second polarized light may also be two kinds of circularly polarized light or elliptically polarized light with opposite rotation directions.
  • the embodiment of the present disclosure is not limited to the light emitted by the light source part including only two polarization states, and may also include three or more polarization states.
  • the first polarized light beam 1001 emitted from the first light coupling out part 241 does not change its characteristics during the process of being incident on the predetermined area 40 .
  • the converted first polarized light beam 1001' and the first polarized light beam 1001 in the light emitted from the light source unit 100 have the same characteristics, for example, polarized light with the same polarization state.
  • the polarization direction of the second polarized light beam 1002 emitted from the second light coupling out part 242 is changed by the polarization conversion structure 400 during the process of being incident on the predetermined area 40 .
  • some embodiments of the present disclosure are not limited to the total reflection propagation of the light entering the optical waveguide element from the light source part in the optical waveguide element.
  • the light emitted by the light source part can also be transmitted in the transflective element in a non-total reflection manner, such as It can be in a straight line.
  • total reflection propagation in the embodiments of the present disclosure may refer to when light (for example, light with a large divergence angle and satisfying the condition of total reflection) is reflected on the interface between the optical waveguide element and the air (or other medium)
  • the reflection angle is not less than the critical angle of total reflection.
  • most of the light rays incident on the optical waveguide element propagate through total reflection.
  • part of the light propagating in the optical waveguide element continues to propagate in the form of total reflection, and another part may not be totally reflected in the optical waveguide element, such as along a straight line, or in the form of non-total reflection (such as specular reflection) in the optical waveguide element reflect and propagate.
  • non-total reflection propagation in the embodiments of the present disclosure may refer to the propagation of light in the optical waveguide element in a way other than total reflection, for example, light may propagate within the optical waveguide element without reflection (eg, in a medium It is not reflected at the interface with air); alternatively, light can also be reflected and propagated in a non-total reflection manner, for example, it may not satisfy the condition of total reflection, such as the waveguide medium of the optical waveguide element and the air (or other medium) The reflection angle when reflection occurs at the interface between the two is less than the critical angle of total reflection, and it can be considered that the light has no or little total reflection propagation in the medium.
  • FIG. 15 is a schematic partial structural diagram of a backlight provided according to an example of another embodiment of the present disclosure.
  • the backlight further includes a spectroscopic element 300 configured to perform spectroscopic processing on the light emitted by the light source unit 100 and directed toward the optical waveguide element 200 .
  • the light splitting element 300 may be located between the light source part 100 and the optical waveguide element 200 and configured to divide the light emitted from the light source part 100 to the optical waveguide element 200 into a first polarized light beam 1001 and a second polarized light beam 1002 .
  • the light source part 100 emits unpolarized light
  • the beam splitting element 300 includes a polarized beam splitting element 310, and the polarized beam splitting element 310 is configured to reflect one of the first polarized light and the second polarized light, and transmit the first polarized light and the The other of the second polarized lights;
  • the beam splitter element 300 further includes a reflective element 320 configured to reflect one of the first polarized light and the second polarized light.
  • the polarization splitting element 310 is configured to split the unpolarized light emitted from the light source section 100 toward the optical waveguide element 200 into a first polarized light beam 1001 and a second polarized light beam 1002 before being incident on the optical waveguide element 200 .
  • the optical waveguide element 200 includes a first sub-element 2001 and a second sub-element 2002 , and the first sub-element 2001 is provided with a first optical coupling-out portion 241 .
  • the above-mentioned first polarized light beam 1001 is configured to enter the first sub-element 2001 and is coupled out to the predetermined area 40 by the first optical coupling part 241 , for example, the first polarized light beam 1001 output by the first optical coupling part 241 is directly Output, such as collimated output light.
  • the second polarized light beam 1002 described above is configured to enter the second sub-element 2002 .
  • the second sub-element 2002 includes a second light out-coupling part 242
  • the polarization conversion structure 400 is configured to convert the second polarized light out-coupled from the second light out-coupling part 242 into the first polarization Light.
  • the first sub-element 2001 includes a light-emitting surface
  • the first sub-element 2001 and the second sub-element 2002 overlap in a direction perpendicular to the light-emitting surface
  • the polarization conversion structure 400 is located between the first sub-element 2001 and the second sub-element 2002;
  • the first sub-element 2001 and the second sub-element 2002 do not overlap in the direction perpendicular to the light-emitting surface.
  • the second sub-element 2002 is provided with a second light coupling-out portion 242 , and the polarization conversion structure 400 is disposed on the light-emitting side of the second light coupling-out portion 242 so that the second light coupling-out portion 242 is
  • the coupled out second polarized light beam 1002 is converted into a first polarized light beam 1001'.
  • both the first sub-element and the second sub-element shown in FIG. 15 are provided with an optical outcoupling part, they may have the same structure as the sub-optical waveguide element shown in FIG. 9 , or may have different structures.
  • FIG. 15 schematically shows that the first sub-element and the second sub-element are separate structures, but not limited thereto, the first sub-element and the second sub-element may also be an integrated structure.
  • the first sub-element and the second sub-element may be connected by a connecting portion on a side away from the light source portion, which is not limited in this embodiment of the present disclosure, and may be set according to actual needs.
  • the first sub-element and the second sub-element may also be an integrated structure
  • the first sub-element and the second sub-element are the same structure made of the same material through a one-step process, or it may refer to the first sub-element and the second sub-element are connected together by fixing means such as bonding.
  • the first sub-element 2001 includes a light-emitting surface 001
  • the first sub-element 2001 and the second sub-element 2002 overlap in a direction perpendicular to the light-emitting surface 001 (eg, the Y direction shown in the figure)
  • the polarization conversion structure 400 is located between the first sub-element 2001 and the second sub-element 2002 .
  • the above-mentioned overlapping may include complete overlapping and partial overlapping, for example, the orthographic projections of the first sub-element and the second sub-element on a plane parallel to the light exit surface completely overlap or partially overlap.
  • Figure 15 schematically shows that the first sub-element and the second sub-element fully overlap in the Y direction.
  • the converted first polarized light beam 1001 ′ will be processed by the first sub-element 2001 and then radiated to a predetermined direction. area 40.
  • the converted first polarized light beam 1001' may be output after passing through the first optical coupling-out part 241, or may be output without passing through the first optical coupling-out part 241, which is not limited in this embodiment of the present disclosure.
  • the first sub-element and the second sub-element are arranged to overlap, which can improve the brightness of the backlight source and improve the uniformity of light.
  • the polarization beam splitting element 310 is configured to transmit the second polarized beam 1002 to the second sub-element 2002 of the light emitted by the light source part 100 , and to reflect the first polarized beam 1001 to the first sub-element 2002 of the light. Element 2001.
  • the polarized light splitting element in this embodiment may have the same features as the polarized light splitting element shown in FIG. 9 , and details are not described herein again.
  • the beam splitting element 300 further includes a reflective element 320, which is located on the side of the polarization beam splitting element 310 away from the optical waveguide element 200, and is configured to reflect the first polarized light beam 1001 and the reflected The first polarized light beam propagates into the first sub-element 2001 .
  • the reflective element in this embodiment may have the same features as the reflective element shown in FIG. 9 , and details are not described herein again.
  • the second polarized light is P-polarized and the first polarized light is S-polarized as an example for illustration.
  • the unpolarized light emitted by the light source part 100 has a polarization splitting function after passing through
  • the transmitted light includes P-polarized light
  • the reflected light includes S-polarized light (and vice versa).
  • the transmitted P-polarized light enters the second sub-element 2002 , and the reflected S-polarized light is reflected by the reflective element 320 and then propagates to the first sub-element 2001 .
  • the S-polarized light and the P-polarized light are coupled out by the optical outcoupling parts in the respective sub-optical waveguide elements.
  • the S-polarized light is directly coupled out by the first optical out-coupling part 241
  • the P-polarized light is coupled out by the second optical out-coupling part 242 .
  • After being coupled out it is converted into S-polarized light by the polarization conversion element 400, and then outputted by the first sub-element 2001, so that the unpolarized light emitted by the light source is converted into the same polarized light.
  • the polarization conversion element may be a 1/2 wave plate.
  • the embodiment of the present disclosure is not limited to this, and it is sufficient to convert the second polarized light into the first polarized light.
  • the first sub-element 2001 can be located on the side of the second sub-element 2002 away from the light source part 100, so that the transmitted second polarized light enters the second sub-element, and the reflected first polarized light enters the second sub-element 2002.
  • a sub-element but not limited to this.
  • the light source part can also be located between the first sub-element and the second sub-element, or located on the side of the first sub-element away from the second sub-element, and can be set according to actual requirements.
  • FIG. 16 is an example diagram of the backlight shown in FIG. 15 .
  • the light coupling-out portion 240 includes the transflective element array 220 .
  • the optical out-coupling portion 240 may also be referred to as an optical out-coupling element array.
  • Each transflective element of the transflective element array 220 is configured to reflect a part of the light propagating to the transflective element and propagate the reflected light to a predetermined area, and transmit the other part to the waveguide medium 210 to continue total reflection propagation.
  • the waveguide medium 210 includes a main surface
  • the transflective element array 220 includes a plurality of transflective elements 221 arranged along a first direction, the first direction is parallel to the main surface, and the included angle between the transflective elements 221 and the main surface is the first included angle
  • the included angle between the light rays propagating through total reflection in the waveguide medium 210 and the main surface is the second included angle, and the difference between the first included angle and the second included angle is not more than 10 degrees.
  • the included angles between each transflective element 221 and the main surface are almost equal, and all are the first included angle; for example, the included angle between at least one transflective element 221 and the main surface is the first included angle.
  • the difference between the first included angle and the second included angle is not more than 5 degrees.
  • the first included angle and the second included angle are equal, for example, the light propagating through total reflection in the waveguide medium 210 is parallel to the transflective element 221, so that the light is only reflected once in each transflective element, such as avoiding the Light rays parallel to the element are transmitted and reflected on it to improve the uniformity of the light and avoid stray light.
  • the embodiment of the present disclosure is not limited to this, and the angle between the transflective element and the light propagating through total reflection can also be greater than 5 degrees. Reflected back to improve the uniformity of light exiting the optical waveguide element.
  • the transflective element array 220 in the first light coupling-out portion 241 includes a plurality of first transflective elements 2211 arranged along the first direction, and the transflective elements in the second light coupling-out portion 242
  • the array 220 includes a plurality of second transflective elements 2212 arranged along the first direction.
  • the included angle with the first transflective element 2211 is the third included angle, and is transmitted to the second transflective element 2212
  • the included angle between the second polarized light beam 1002 and the second transflective element 2212 is the fourth included angle, and the difference between the third included angle and the fourth included angle is not greater than 5 degrees.
  • the angle of the polarized light entering the sub-elements can be adjusted according to the inclination angle of the transflective element in each sub-element. For example, setting the included angles between different sub-elements and the corresponding polarized light to be the same can also facilitate the fabrication of the sub-elements and the adjustment of the angle of incident light.
  • the first The angle between the transflective element 2211 and the second transflective element 2212 may be no greater than 5 degrees.
  • the first transflective element 2211 may be parallel to the second transflective element 2212 to facilitate the fabrication of the optical waveguide element.
  • the included angles between the first transflective element 2211 and/or the second transflective element 2212 and the first direction may all be acute angles, or may all be obtuse angles.
  • the direction indicated by the arrow in the X direction shown in FIG. 16 is the first direction and the total reflection propagation direction of the first polarized light beam 1001 entering the first sub-element 2001 and the second polarized light beam entering the second sub-element 2002
  • the total reflection propagation direction of 1002 is the same, then when the total reflection propagation direction of each polarized light is the same as the first direction, the included angle between each transflective element and the first direction can be an acute angle; the total reflection propagation direction of each polarized light is the same as the first direction.
  • the included angle between each transflective element and the first direction may be an obtuse angle.
  • the included angle between the transflective element and the first direction is related to the total reflection propagation direction of the polarized light.
  • the first transflective element 2211 is configured such that the reflectivity for the first polarized light beam 1001 is greater than the reflectivity for the second polarized light beam 1002, and the transmittance for the second polarized light beam 1002 is greater than that for the first polarized light beam 1002. Transmittance of a polarized light beam 1001.
  • the arrangement of the transflective elements in the embodiment of the present disclosure may have the same features as the arrangement of the transflective elements in the example shown in FIG. 9 , which will not be repeated here.
  • the light emitted from the second sub-element 2002 may be transmitted by the transflective element array 220 in the first sub-element 2001, or may not pass through the transflective element array 220 in the first sub-element 2001,
  • This embodiment of the present disclosure does not limit this.
  • the transflective element array in the first sub-element has a relatively strong effect on the polarized light emitted from the second sub-element. high transmittance.
  • the embodiments of the present disclosure are not limited to the light out-coupling part being a transflective element array.
  • the light out-coupling part can also be at least one of a surface grating, a volume grating, a blazed grating, a prism, a reflective structure, and a light-exiting mesh point. At least one of reflection, refraction, and diffraction effects will destroy the total reflection condition of the light, allowing the light to exit the optical waveguide element.
  • FIG. 17 is a schematic diagram of a partial structure of a backlight provided according to another example of another embodiment of the present disclosure.
  • the example shown in FIG. 17 is different from the example shown in FIG. 15 in that the positional relationship between the first sub-element and the second sub-element shown in FIG. 17 is different.
  • FIG. 17 is a schematic diagram of a partial structure of a backlight provided according to another example of another embodiment of the present disclosure.
  • the example shown in FIG. 17 is different from the example shown in FIG. 15 in that the positional relationship between the first sub-element and the second sub-element shown in FIG. 17 is different.
  • FIG. 17 is a schematic diagram of a partial structure of a backlight provided according to another example of another embodiment of the present disclosure.
  • the example shown in FIG. 17 is different from the example shown in FIG. 15 in that the positional relationship between the first sub-element and the second sub-element shown in FIG. 17 is different.
  • FIG. 17 is a schematic diagram of a partial structure of
  • the first sub-element 2001 includes a light-emitting surface
  • the first sub-element 2001 and the second sub-element 2002 do not overlap in a direction perpendicular to the light-emitting surface (for example, the Y direction) (for example, they may be exactly connected, Or there is a certain distance), which can not only reduce the thickness of the backlight source, but also reduce the degree of light intensity weakening at the edge of the optical waveguide element by setting the length of each sub-element to be smaller.
  • the first sub-element 2001 and the second sub-element 2002 are arranged along the first direction, and the light source part 100 may be located between the first sub-element 2001 and the second sub-element 2002 , but not limited thereto.
  • the total reflection propagation directions of the first polarized light beam 1001 and the second polarized light beam 1002 are opposite, in this case, the first sub-element
  • the transflective element in 2001 is not parallel to the transflective element in the second sub-element 2002, for example, one of the two is an acute angle with the first direction, and the other is an obtuse angle with the first direction, so as to achieve The outcoupling of light by the transflective element.
  • FIG. 18 is a schematic diagram of a partial structure of a backlight provided according to another example of another embodiment of the present disclosure.
  • the example shown in FIG. 18 is different from the example shown in FIG. 15 in that the position of the second optical coupling-out portion is different.
  • the first optical coupling-out part 241 and the second optical coupling-out part 242 may both be located in the first sub-element 2001 .
  • the light incident to the optical waveguide element is all polarized light as an example for description.
  • the first sub-element 2001 includes a second light coupling-out portion 242
  • the first sub-element 2001 includes a light-emitting surface
  • the first sub-element 2001 and the second sub-element 2002 intersect in a direction perpendicular to the light-emitting surface.
  • the polarization conversion structure 400 is located on the light incident side of the second light coupling out part 242
  • the second polarized light entering the second sub-element 2002 propagates through total reflection in the second sub-element and is converted into the first polarization by the polarization conversion structure 400
  • the converted first deflected light is coupled out by the second light coupling out part 242 .
  • the second sub-element 2002 is provided with a reflective structure 500 , and the second polarized light propagating through total reflection in the second sub-element 2002 enters the second sub-element 2002 after being converted by the polarization conversion structure 400 and reflected by the reflective structure 500 .
  • the polarization conversion structure can be arranged in the optical waveguide element 200 or outside the optical waveguide element 200 .
  • the coupling method of the first optical coupling-out part 241 to the first polarized beam 1001 and the coupling method of the second optical coupling-out part 242 to the second polarized beam 1002 can be the same as those shown in FIGS. 15-17 .
  • the examples are the same or different.
  • the spectroscopic element 300 in this example may have the same features as the spectroscopic element in the example shown in FIG. 15 , which will not be repeated here.
  • the waveguide medium in the optical waveguide element of this example may have the same characteristics as the waveguide medium in the example shown in FIG. 15 , and details are not described herein again.
  • the first polarized light and the second polarized light in this example may have the same characteristics as the first polarized light and the second polarized light in the example shown in FIG. 15 , and details are not repeated here.
  • the first sub-element 2001 includes a light-emitting surface
  • the first sub-element 2001 and the second sub-element 2002 partially or completely overlap in a direction perpendicular to the light-emitting surface (eg, the Y direction).
  • the polarization conversion structure 400 is located on the light-incident side of the second light coupling-out part 242 , and the second polarized light beam 1002 entering the second sub-element 2002 is configured to propagate through total reflection in the second sub-element 2002 , and pass through the polarization conversion structure 400 . After conversion, it is coupled out by the second optical coupling-out part 242 .
  • the second polarized light can be made more uniform, for example, the light and dark distribution of the second polarized light can be more uniform.
  • the first optical coupling-out part and the second optical coupling-out part are arranged in the same sub-element, which can reduce the manufacturing cost and is easy to implement.
  • the light-incident side of the first optical coupling-out part 241 is located on the side of the first optical-coupling-out part 241 away from the second optical coupling-out part 242 , and the light-incident side of the second optical coupling-out part 242 is located. It is located on the side of the second light coupling-out portion 242 away from the first light coupling-out portion 241 .
  • FIG. 18 schematically shows that a space is provided between the first optical coupling-out part 241 and the second optical coupling-out part 242 , but it is not limited to this. There may also be no spacing to prevent dark areas between the exiting two light couplers that do not allow light to appear.
  • the first light coupling-out portion and the second light coupling-out portion may also be disposed in an overlapping manner, so as to improve the uniformity of light output.
  • FIG. 18 schematically shows that the first sub-element 2001 and the second sub-element 2002 are separate structures, and the polarization conversion structure 400 is located in the second sub-element 2002, but not limited to this, the polarization conversion structure may also be located in the first sub-element 2002.
  • the polarization conversion structure may be located in the first sub-element and the second sub-element , or outside the first sub-element and the second sub-element, the polarization conversion structure can be located on the light incident side of the second light coupling out part, for example, the second polarized light propagating in the second sub-element is converted into The first polarized light can be coupled out by the second light coupling out part.
  • the second sub-element 2002 may include other optical out-coupling parts (for example, the second sub-element and the first sub-element are separate structures), or may not include an optical out-coupling part (for example, the first sub-element and the second sub-element are in separate structures) is an integrated structure), the second sub-element is mainly configured such that the second polarized light propagates in total reflection therein.
  • FIG. 18 schematically shows that the light incident side of the second optical coupling-out part 242 in the first sub-element 2001 is provided with a third optical coupling-in part 233, and the third optical coupling-in part 233 can be the same as that in the above-mentioned embodiment.
  • the first optical coupling-in part and the second optical coupling-in part have the same characteristics, but are not limited thereto, and the light-incident side of the second optical coupling-out part 242 in the first sub-element 2001 may not be provided with an optical coupling-in part.
  • the second polarized light can be converted into the first polarized light by only passing through the polarization conversion structure once, for example, the polarization conversion structure can be a 1/2 wave plate.
  • the embodiment of the present disclosure is not limited thereto, and the second polarized light may also be converted into the first polarized light after passing through the polarization conversion structure twice, for example, the polarization conversion structure may be a quarter wave plate.
  • the polarization conversion structure 400 is provided in the second sub-element 2002, and the second sub-element 2002 is further provided with a reflective structure 500, which is located on the side of the polarization conversion structure 400 away from the light source part 100, and in the second sub-element 2002.
  • the second polarized light beam 1002 propagating through total reflection in the two sub-elements 2002 is configured to pass through the polarization conversion structure 400 twice, and is reflected once by the reflection structure 500 to enter the first sub-element 2001 .
  • FIG. 19 is an example diagram of the backlight shown in FIG. 18 .
  • the unpolarized light emitted by the light source unit 100 is processed by the polarization beam splitting element 310 having the polarization beam splitting function. , transmits P-polarized light and reflects S-polarized light (and vice versa).
  • the transmitted P-polarized light is coupled into the second sub-element 2002 by the second light coupling part 232, propagates through total reflection in the waveguide medium of the second sub-element 2002, and propagates to the reflective structure 500 at the end face, and the reflected light no longer satisfies the total reflection condition, the reflected light will leave the second sub-element 2002 .
  • the reflective structure 500 here can be regarded as the light coupling-out portion of the second sub-element 2002 .
  • the light incident side of the reflection structure 500 is also provided with a polarization conversion structure 400.
  • the P-polarized light When the P-polarized light is reflected, it first passes through the polarization conversion structure 400, and the reflected light also passes through the polarization conversion structure 400 again, and then leaves the second polarization conversion structure 400.
  • the sub-element 2002 for example, after the P-polarized light passes through the polarization conversion structure 400 twice, it will be converted into S-polarized light, and the converted S-polarized light enters the waveguide medium of the first sub-element 2001 through the third entry portion 233, and is totally reflected. , is transmitted to the second optical coupling-out part 242 and is coupled out from the first sub-element 2001 .
  • the first light coupling-out portion 241 and the second light coupling-out portion 242 may each include a transflective element array 220 , and each transflective element 221 included in the transflective element array 220 is related to the incident light on its surface. The angles of the rays are approximately equal.
  • the transflective element array 220 in the first light coupling-out portion 241 includes a plurality of first transflective elements 2211 arranged along the first direction
  • the transflective element array 220 in the second light coupling-out portion 242 includes a plurality of first transflective elements 2211 arranged along the first direction.
  • a plurality of second transflective elements 2212 arranged in a direction.
  • the first The first transflective element 2211 and the second transflective element 2212 are not parallel, for example, it can be considered that the inclination directions of the two are different, for example, the sandwich between one of the first transflective element 2211 and the second transflective element 2212 and the first direction
  • the angle is an acute angle, and the other included angle with the first direction is an obtuse angle.
  • FIG. 19 schematically shows that the first sub-element and the second sub-element are at least partially overlapped in the Y direction, but not limited to this, the first sub-element and the second sub-element may also not overlap in the Y direction stack.
  • FIG. 20 is a schematic partial structure diagram of a backlight provided according to yet another example of another embodiment of the present disclosure.
  • the example shown in FIG. 20 is different from the example shown in FIG. 14 in that the light emitted from the light source unit is unpolarized light when entering the optical waveguide element.
  • the optical waveguide element 200 includes a first sub-element 2001 and a second sub-element 2002 , the first sub-element 2001 includes the first optical coupling-out portion 241 , and the second sub-element 2002 The second light coupling out part 242 is included.
  • the first sub-element and the second sub-element shown in FIG. 20 may both be provided with an optical outcoupling part, and may have the same structure as the sub-optical waveguide element shown in FIG. 9 , or may have a different structure.
  • the light source part 100 is configured so that the light emitted by the light source part 100 enters the first sub-element 2001 , and the first polarized light in the light is passed by the first light coupling-out part 241 coupled out, the second polarized light in the light is propagated to the polarization conversion structure 400 in the first sub-element 2001 to be converted into the first polarized light; The first polarized light propagates to the second light coupling-out portion 242 in the second sub-element 2002 to be coupled out by the second light coupling-out portion 242 .
  • the polarization conversion structure is provided between the first sub-element and the second sub-element; or the first sub-element is provided with the polarization conversion structure, and the polarization conversion structure is located in the first sub-element.
  • a light coupling-out part is away from the light incident side of the first sub-element; or, the second sub-element is provided with the polarization conversion structure, and the polarization conversion structure is located at the second light coupling-out the light-incident side of the part.
  • the optical waveguide element 200 includes a first sub-element 2001 and a second sub-element 2002 .
  • the first sub-element 2001 is provided with a first optical out-coupling part 241
  • the second sub-element 2002 is provided with a second optical out-coupling part 241 .
  • the unpolarized light emitted by the light source part 100 is configured to enter the first sub-element 2001, and the first polarized light beam 1001 in the light is coupled out by the first light coupling part 241, and the second polarized light beam 1002 in the light is configured to be in the light.
  • the first sub-element 2001 propagates to the polarization conversion structure 400 to be converted into a first polarized light beam 1001 ′; the first polarized light beam 1001 ′ converted by the polarization conversion structure 400 is configured to propagate in the second sub-element 2002 to the second polarized light beam 1001 ′
  • the light coupling-out portion 242 is coupled out by the second light coupling-out portion 242 .
  • the first optical out-coupling part can not only have the effect of out-coupling light, but also can split the unpolarized light entered by the light source part. Therefore, in the embodiment of the present disclosure, the optical out-coupling part located in the optical waveguide element enters the light source part.
  • the unpolarized light is polarized and split, and the setting of the splitting device can be omitted to save the volume of the backlight.
  • the coupling method of the first optical coupling-out part 241 to the first polarized beam 1001 and the coupling method of the second optical coupling-out part 242 to the second polarized beam 1002 can be the same as those shown in FIGS. 15-17 .
  • the examples are the same or different.
  • the waveguide medium in the optical waveguide element of this example may have the same characteristics as the waveguide medium in the example shown in FIG. 15 , and details are not described herein again.
  • the first polarized light and the second polarized light in this example may have the same characteristics as the first polarized light and the second polarized light in the example shown in FIG. 15 , and details are not repeated here.
  • the first light coupling-out portion 241 may have a structure with high reflectivity for the first polarized light beam 1001 and high transmittance for the second polarized light beam 1002 .
  • the first optical coupling-out part 240 is an element with high reflectivity for S-polarized light and high transmittance for P-polarized light.
  • S-polarized light Gradually leave the first sub-element 2001; the P-polarized light continues to transmit, and after passing through the polarization conversion element 400, it is converted into S-polarized light, and then enters the second sub-element 2002 for transmission, and is coupled out through the second optical coupling part 242.
  • Two sub-elements 2002 Two sub-elements 2002.
  • the first sub-element 2001 includes a light-emitting surface, and the first sub-element 2001 and the second sub-element 2002 at least partially overlap in a direction perpendicular to the light-emitting surface.
  • the first sub-element and the second sub-element may also be arranged along the total reflection propagation direction of the light, for example, arranged along the X direction.
  • first sub-element and the second sub-element may not overlap in the direction perpendicular to the light-emitting surface, and the first light coupling part located in the first sub-element may couple out the first polarized light and transmit the second polarized light
  • the second light coupling part located in the second sub-element can couple out the converted first polarized light.
  • FIG. 21 is an example diagram of the backlight shown in FIG. 20 .
  • the first light coupling-out portion 241 and the second light coupling-out portion 242 may each include a transflective element array 220 , and each transflective element 221 included in the transflective element array 220 is related to the light incident on its surface. The included angles are approximately equal.
  • the transflective element array 220 in the first light coupling-out portion 241 includes a plurality of first transflective elements 2211 arranged along the first direction
  • the transflective element array 220 in the second light coupling-out portion 242 includes a plurality of first transflective elements 2211 arranged along the first direction.
  • a plurality of second transflective elements 2212 arranged in a direction. Since the total reflection propagation direction of the first polarized light beam 1001 incident on the first light coupling out part 241 is opposite to the total reflection propagation direction of the converted first polarized light beam 1001 ′ incident on the second light coupling out part 242 , the first The first transflective element 2211 and the second transflective element 2212 are not parallel, for example, it can be considered that the inclination directions of the two are different, for example, the sandwich between one of the first transflective element 2211 and the second transflective element 2212 and the first direction The angle is an acute angle, and the other included angle with the first direction is an obtuse angle.
  • the embodiment of the present disclosure is not limited thereto.
  • the total reflection propagation direction of the first polarized light incident on the first light coupling-out portion is the same as that incident on the second light coupling-out portion.
  • the first transflective element and the second transflective element can be roughly parallel, for example, the inclination directions of the two can be considered to be the same, for example, the first transflective element and the second transflective element
  • the included angle between the second transflective element and the first direction may be an acute angle or an obtuse angle.
  • the first transflective element 2211 may be an element with high reflectivity for the first polarized light beam 1001 and high transmittance for the second polarized light beam 1002 to realize the splitting of unpolarized light.
  • the second transflective element 2212 may be either a transflective element without polarization selection characteristics, or an element having a relatively high reflectivity for the first polarized light, which is not limited in this embodiment of the present disclosure.
  • the light emitted from the light source part 100 is configured to propagate through total reflection in at least one of the first sub-element 2001 and the second sub-element 2002 .
  • FIG. 21 schematically shows that the light rays can be propagated by total reflection in the first sub-element 2001 and the second sub-element 2002, but it is not limited to this.
  • the transmission in the element is in a way of non-total internal reflection, such as propagating directly along a straight line, and in turn passes through the transflective output of the transflective element.
  • the polarization conversion structure 400 may be disposed between the first sub-element 2001 and the second sub-element 2002 .
  • the polarization conversion structure 400 may also be disposed in the first sub-element 2001 on the side of the first light coupling-out portion 241 away from the light source portion 100 .
  • the polarization conversion structure 400 may also be disposed in the second sub-element 2002 on the light incident side of the second light coupling-out portion 242 .
  • FIG. 21 schematically shows that the first sub-element and the second sub-element are an integrated structure, and the polarization conversion structure is located in the integrated structure, and is located on the light-emitting side of the first optical coupling-out part and the second optical coupling-out section the light-incident side of the part.
  • the embodiment of the present disclosure is not limited to this, and the polarization conversion structure may also be located at a position other than the first sub-element and the second sub-element, and the polarization conversion structure is located on the light-emitting side of the first optical coupling-out part and the light-incident side of the second optical coupling-out part.
  • the optical waveguide element 200 further includes a reflective structure 500 on the light incident side of the polarization conversion structure 400 , the reflective structure 500 is configured to change the propagation direction of the second polarized light beam 1002 so that it is incident on the polarized light beam 1002 . conversion structure 400.
  • the polarization conversion structure 400 may be a 1/2 wave plate.
  • the polarization conversion structure in this example may be the same as the polarization conversion structure in the examples shown in FIG. 18 to FIG. 19 , and details are not described herein again.
  • the embodiment of the present disclosure adopts the scheme of dividing the light rays emitted by the light source part into different polarization states and then separately waveguide transmission and output, so that the output light can be The uniformity of light and dark is further improved.
  • FIG. 22 is a schematic diagram of a partial structure of a backlight provided according to an example of yet another embodiment of the present disclosure.
  • the backlight includes a light source part 100 and an optical waveguide plate 2000.
  • the optical waveguide plate 2000 includes a light homogenizing part 250 and an optical waveguide element 200.
  • the optical waveguide element 200 includes a light exit surface.
  • the light-emitting surfaces are arranged in sequence in the vertical direction, for example, they are arranged in layers.
  • the light source part 100 is configured so that the light emitted from the light source part 100 enters the optical waveguide element 200 after multiple total reflections in the light homogenizing part 250 , and then exits from the light exit surface of the optical waveguide element 200 .
  • the light incident to the homogenizing part 250 enters the optical waveguide element 200 after being homogenized by the homogenizing part 250 .
  • the light incident on the light homogenizing part 250 may be the light emitted by the light source part 100 , for example, the light emitted by the light source part 100 may be directly incident on the light homogenizing part 250 , or it may be incident on the light homogenizing part 250 after being processed by other components. .
  • the number of multiple total reflections is not less than 5 times.
  • the number of multiple total reflections may be 5 to 20 times.
  • the number of multiple total reflections may be 6 to 12 times.
  • the number of multiple total reflections may be 6 to 8 times.
  • the light homogenizing part 250 includes a light entrance end and a light exit end, and the light entrance end and the light exit end are arranged along the extension direction of the light exit surface; the thickness of the light homogenization part 250 in the direction perpendicular to the light exit surface is not greater than that of the optical waveguide element 200 in the arrangement thickness in the direction.
  • the uniform light portion can be set to have a smaller thickness to increase the number of total reflections of the totally reflected light therein.
  • the optical waveguide element 200 includes a waveguide medium 210 and an optical outcoupling portion 240 .
  • the optical waveguide element 200 further includes a light homogenizing part 250.
  • the light incident on the light homogenizing part 250 for example, the light beam of the light source part 100 reaches the light coupling out part 240 after passing through the light homogenizing part 250, and the light entering the optical waveguide element 200 is It is arranged so that 8 to 11 times of total reflection propagation occurs in the uniform light portion 250 .
  • the refractive index of the homogenizing portion 250 is greater than the refractive index of the waveguide medium 210 in the optical waveguide element 200 .
  • the total reflection critical angle of the light in which total reflection occurs can be adjusted. When the total reflection critical angle is small, the number of total reflections can be increased.
  • the optical waveguide plate 2000 is an integrated structure.
  • the homogenizing portion 250 and the waveguide medium 210 are an integrated structure.
  • the homogenizing part 250 may be located between the light coupling-out part 240 and the light source part 100 .
  • the uniformity of the light transmitted to the light coupling-out portion can be improved, for example, the light is homogenized and then output to obtain light and dark Uniform area light source light.
  • the homogenizing part and the waveguide medium are an integrated structure can mean that the homogenizing part and the waveguide medium are the same structure made of the same material through a one-step process, or it can also mean that the homogenizing part and the waveguide medium are connected by a fixed method such as bonding together.
  • the homogenizing portion and the waveguide medium may be made of materials with the same refractive index, or materials with different refractive indices, which are not limited in this embodiment of the present disclosure.
  • the uniform light portion shown in FIG. 22 may also be provided in any of the examples shown in FIGS. 1A to 21 to further improve the uniformity of the light output from the backlight source.
  • the optical coupling-out portion in this embodiment may have the same features as the optical coupling-out portion in any of the examples shown in FIG. 1A to FIG. 21 , and details are not described herein again.
  • the waveguide medium in this embodiment may have the same features as the waveguide medium in any of the examples shown in FIG. 1A to FIG. 21 , and details are not described herein again.
  • the light source part in this embodiment may have the same features as the light source part in any of the examples shown in FIG. 1A to FIG. 21 , and details are not repeated here.
  • the length of the homogenizing portion 250 along the X direction may not be less than the length along the X direction of the transflective element array serving as the light coupling out portion 240 .
  • the embodiment of the present disclosure is not limited thereto, and the length of the uniform light portion 250 along the X direction may be 1/3 to 2/3 of the length of the transflective element array serving as the light coupling out portion 240 along the X direction.
  • FIG. 23 is a schematic cross-sectional structure diagram of the backlight shown in FIG. 22 .
  • an optical coupling part 230 may be provided, or an optical coupling part may not be provided.
  • the optical coupling part 230 provided in this embodiment may have the same features as the optical coupling part provided in any of the examples shown in FIG. 1A to FIG. 21 , and details are not repeated here.
  • the homogenizing portion 250 may be disposed between the light coupling portion 230 and the light coupling out portion 240 of the optical waveguide element 200 , or may be disposed between the light coupling portion and the light source portion. There is no restriction on this.
  • the light emitted by the light source part 100 first enters the homogenizing part 250 through the optical coupling part 230, and is transmitted in the homogenizing part 250 and gradually homogenized;
  • a transflective element array 240 is coupled out, for example, converted into a collimated and parallel light beam.
  • the light homogenizing part 250 can totally reflect the light entering it for many times, for example, 8 to 11 times, so as to make the light beam distribution uniform, and then realize the effect of uniform light.
  • the light after the homogenization continues to be transmitted to the optical coupling-out part 240 along the total reflection path, and is converted into collimated light through the transmission and reflection of the optical coupling-out part 240 to form a collimated parallel light with uniform brightness and darkness.
  • the homogenizing part is arranged before the light coupling-out part.
  • the light coupling-out part 240 includes a plurality of light-coupling-out sub-sections 2401 arranged along a first direction (eg, the X direction). Orientation arrangement.
  • the homogenizing part 250 and the light coupling-out part 240 are arranged on a plane parallel to the XZ plane.
  • FIG. 24 is a schematic diagram of a partial structure of a backlight provided according to another example of still another embodiment of the present disclosure.
  • the optical waveguide element 200 includes a light exit surface 001 , the light coupling out part 240 and the waveguide medium 210 can overlap the light homogenizing part 250 in a direction perpendicular to the light exit surface 001 , and the waveguide medium 210 and the light homogenizing part
  • a gap medium 260 is arranged between the 250 , and the refractive index of the waveguide medium 240 and the refractive index of the light homogenizing portion 250 may both be greater than the refractive index of the gap medium 260 .
  • the area occupied by the light homogenizing part can be saved, thereby increasing the area of the light emitting surface of the backlight source to obtain uniform light from the surface light source.
  • the homogenizing portion 250 may be located on the side of the light coupling out portion 240 away from the light emitting surface 001 .
  • the interstitial medium 260 may be air or other solid medium (eg, optical glue) with a refractive index smaller than that of the dodging part 250 and the waveguide medium 210 so that the light transmitted in the dodging part and the waveguide medium satisfies the condition of total reflection.
  • solid medium eg, optical glue
  • the gap medium 260 may be a transparent medium or a non-transparent medium, which is not limited in this embodiment of the present disclosure.
  • the length of the homogenizing portion 250 along the X direction may not be less than the length of the transflective element array serving as the light coupling out portion 240 along the X direction to achieve a better homogenizing effect.
  • the length of the uniform light portion 250 along the X direction may be 1/3 to 2/3 of the length of the transflective element array serving as the light coupling out portion 240 along the X direction.
  • a connecting portion 270 is further provided between the optical waveguide element 200 and the light homogenizing portion 250 , and the connecting portion 270 connects the light incident end of the optical waveguide element 200 and the light outgoing end of the light homogenizing portion 250 , so that the The light of the homogenizing portion 250 enters the optical waveguide element 200 through the connecting portion 270 .
  • the connecting portion 270 includes a light-adjusting portion 271 configured to destroy the total reflection condition of total reflection of the propagating light in the light-distributing portion 250 , so that the light transmitted in the light-distributing portion 250 Access to the optical waveguide element 200 is possible.
  • the connecting portion 270 further includes a reflective surface 272 configured to reflect the light in the homogenizing portion 250 into the optical waveguide element 200 .
  • the connecting portion may include at least one of a light-adjusting portion and a reflective surface.
  • FIG. 24 schematically shows that the connecting portion includes a light-adjusting portion and a reflecting surface, but is not limited thereto, and the connecting portion may only include a light-adjusting portion and a reflecting surface.
  • the light part, or the connecting part includes only the reflective surface.
  • the above-mentioned connecting portion 270 is further disposed between the waveguide medium 210 and the homogenizing portion 250.
  • the connecting portion 270 connects the waveguide medium 240 and the end of the homogenizing portion 250 away from the light incident side of the homogenizing portion 250, so that the homogenizing portion 250 is The light of 250 enters the waveguide medium 210 from the connection part 270 .
  • the connection part 270 is located on the side of the gap medium 260 away from the light source part 100 .
  • the light source part 100 and the connection part 270 are located on both sides of the gap medium 260 in the X direction.
  • the connecting portion 270 is located on the side away from the light incident side of the light-diffusing portion 250 .
  • the connection part 270 and the light source part 100 are respectively located on both sides of the uniform light part 250 .
  • the connection part 270 and the light source part 100 are located on both sides of the waveguide medium 210, respectively.
  • the connecting portion 270 is located on the light-emitting side of the light-diffusing portion 250 and on the light-incident side of the waveguide medium 210 .
  • the connecting portion 270 includes a light-adjusting portion 271 configured to destroy the total reflection condition of total reflection of the propagating light in the light-distributing portion 250 , so that the light transmitted in the light-distributing portion 250
  • the waveguide medium 210 may be entered.
  • the dimming part 271 can be an optical element with a different refractive index from the waveguide medium 210, such as optical glue, which destroys the condition of total reflection and allows the light to enter the light outcoupling part (for example, a transparent part) located on the side of the homogenizing part 250 facing the display panel. anti-element array).
  • optical glue for example, a transparent part
  • the dimming part 271 can be used as the light out-coupling part of the homogenizing part 250 and the light-coupling part of the waveguide medium, or only the light-coupling part of the homogenizing part 250, or only the light-coupling part of the waveguide medium.
  • the disclosed embodiments are not limited in this regard.
  • connection part 270 further includes a reflection surface 272 , and the reflection surface 272 is configured to reflect the light emitted from the light homogenizing part 250 toward the waveguide medium 210 .
  • the light entering the homogenizing part 250 is transmitted along the total reflection path in the homogenizing part 250, and is transmitted to the dimming part 271, and the dimming part 271 will destroy the total reflection condition of the light, for example, the light will continue to
  • the reflected light is transmitted to the reflective surface 272 and reflected, and the reflected light is transmitted to the light coupler 340 (eg, a transflective element array), and then coupled out through the light coupler 340 , for example, converted into collimated and parallel light.
  • the light coupler 340 eg, a transflective element array
  • an embodiment of the present disclosure further provides a light source device
  • the light source device includes an optical waveguide plate 2000 and a light source part 100
  • the optical waveguide plate 2000 includes a light homogenizing part 250 and an optical waveguide element 200
  • the element 250 includes a light emitting surface
  • the light homogenizing portion 250 and the optical waveguide element 200 are arranged in sequence in a direction perpendicular to the light emitting surface;
  • the optical waveguide element 200 is then emitted from the light-emitting surface of the optical waveguide element 200 .
  • the light source device can be the backlight in the above-mentioned embodiments, and is applied to the display device together with the display panel, but is not limited thereto, and can also be applied to other devices in combination with other structures.
  • the display panel provided by the embodiment of the present disclosure may be a liquid crystal display panel, such as a transmissive liquid crystal display panel or a reflective liquid crystal display panel, which can form an image in cooperation with light provided by a backlight source.
  • a liquid crystal display panel eg, a liquid crystal screen
  • the display panel may also be an electro-wetting screen or a liquid crystal display element on silicon, etc. No matter which type of display panel, it can cooperate with the backlight provided by the embodiment of the present disclosure to form a display with uniform light output and lightness device.
  • FIG. 25 is a schematic diagram of a partial structure of a display device provided according to an example of yet another embodiment of the present disclosure.
  • the display device further includes a light diffusing element 30 .
  • the light diffusing element 30 is configured to diffuse the light emitted from the optical waveguide element 200 .
  • the light diffusing element 30 is configured to disperse the light beam passing through the light diffusing element 30 . to spread.
  • the backlight source in the embodiment of the present disclosure may be the backlight source shown in any of the examples in FIGS. 1A to 24 .
  • the light diffusing element 30 is located between the light waveguide element 200 and the display panel 10 .
  • the light diffusing element 30 may also be disposed on the light emitting side of the display panel 10 to diffuse the image light emitted by the display panel 10 .
  • FIG. 25 schematically shows that the number of light diffusing elements is one, but it is not limited to this, and there may be more than one, and they are arranged at intervals to further improve the dispersion effect of the light beam.
  • the embodiment of the present disclosure schematically shows that the light diffusing element is located on the back side of the display panel, but is not limited thereto, and may also be located on the display surface side of the display panel.
  • the light diffusing element may be attached to the surface of the display surface of the display panel.
  • the light diffusing element 30 is configured to diffuse the light beam passing through the light diffusing element 30 without changing the chief ray, chief light or optical axis of the light beam.
  • the above-mentioned "main optical axis" may refer to the centerline of the light beam, and may also be regarded as the main direction of light beam propagation.
  • the energy distribution of the light spot can be uniform or non-uniform; for example, the size and shape of the light spot can be determined by Microstructural control of the surface design of the beam spreading structure 30 .
  • the above-mentioned specific shape may include, but is not limited to, at least one of a line, a circle, an ellipse, a square, and a rectangle.
  • the light diffusing element 30 may not distinguish the front and back.
  • the propagation angle and spot size of the diffused beam determine the brightness and visible area of the final image. The smaller the diffusion angle, the higher the imaging brightness and the smaller the visible area; and vice versa.
  • the light diffusing element 30 includes at least one of a diffractive optical element and a scattering optical element.
  • the light diffusing element 30 can be a scattering optical element with low cost, such as a light homogenizer, a diffuser, etc.
  • a scattering optical element such as the light homogenizer
  • scattering occurs, and a small amount of diffraction also occurs, but the scattering
  • the main function is that the light beam will form a relatively large spot after passing through the scattering optical element.
  • the light diffusing element 30 may also be a diffractive optical element (Diffractive Optical Elements, DOE) that controls the diffusing effect relatively more precisely, such as a beam shaping sheet (Beam Shaper).
  • DOE diffractive Optical Elements
  • Beam Shaper Beam Shaper
  • diffractive optical elements design specific microstructures on the surface to expand the beam mainly through diffraction, and the size and shape of the light spot are controllable.
  • FIG. 26 is a partial structural schematic diagram of a display device provided according to another example of yet another embodiment of the present disclosure.
  • the display device further includes a light condensing element 40 configured to condense the light emitted from the optical waveguide element 200 toward the display panel 10 .
  • the light condensing element 40 is located between the light waveguide element 200 and the light diffusing element 30 , and the backlight source in the embodiment of the present disclosure may be the backlight source shown in any of the examples in FIGS. 1A to 24 .
  • the light converging element 40 is configured to control the direction of the collimated light emitted from the optical waveguide element 200, and condensing the light to a predetermined range, which can further gather the light and improve the utilization rate of the light.
  • the above predetermined range can be a point, such as the focal point of a convex lens, or a small area.
  • the purpose of setting the light converging element is to uniformly adjust the direction of the collimated light output by the optical waveguide element to the predetermined range, so as to improve the utilization rate of light. .
  • the light converging element 40 may be a lens or a lens combination, such as at least one lens, such as a convex lens, a Fresnel lens, or a lens combination, etc.
  • a convex lens is used as an example for schematic illustration in FIG. 26 .
  • the light condensing element 40 can condense the collimated light output by the optical waveguide element 200 to a certain range, and the light diffusing element 30 can diffuse the condensed light.
  • the embodiments of the present disclosure can provide high light efficiency through the cooperation of the light condensing element and the light diffusing element, and also expand the visible range.
  • the light condensing element 40 can focus and orient almost all the light rays, so that the light rays can reach the user's eye box area 003 , for example, the collimated light beam output by the optical waveguide element 200 is easy to control In order to achieve convenient adjustment of the direction of the light.
  • the area where the observer watches the image can be preset according to actual needs, such as the eyebox area (eyebox) 003, the eyebox area 003 refers to the area where the observer's eyes are located and where the image displayed by the display device can be seen, for example, it can be is a planar area or a three-dimensional area.
  • the eye box area 003 may be the area where the observer's eyes are located and where the image displayed by the display device can be seen.
  • the light emitted by the light source part 100 is converted into a uniformly emitted collimated light through the optical waveguide element 200 .
  • the collimated light will be collected and fall into the center of the eye box area 003 .
  • the light is further diffused by the light diffusing element 30, and the diffused light beam can cover the eye box area 003, for example, just cover the eye box area 003, which can achieve high light efficiency and will not affect normal observation.
  • the embodiment of the present disclosure is not limited thereto, and the diffused light beam may also be larger than the eye box area, for example, at least completely cover the eye box; In this case, the light efficiency of the display device can be considered to be the highest.
  • FIG. 27 is a schematic partial structural diagram of a display device provided according to another example of yet another embodiment of the present disclosure.
  • the example shown in FIG. 27 differs from the example shown in FIG. 26 in the positional relationship between the light condensing element and the optical waveguide element.
  • the light condensing element 40 and the optical waveguide element 200 have a one-piece structure.
  • by arranging the light condensing element and the optical waveguide element in an integrated structure not only the thickness of the display device can be reduced to facilitate installation, but also light can be prevented from penetrating between the air and the optical waveguide element and/or the light condensing element. Unnecessary reflections on the interface can reduce or avoid wasted light effects.
  • a transparent medium layer 50 is disposed between the light-converging element 40 and the optical waveguide element 200 , and the refractive index of the transparent medium layer 50 is smaller than that of the optical waveguide element 200 so as to satisfy the requirement of transmission in the waveguide medium.
  • Total reflection of light may be small enough to satisfy the propagation condition of total reflection when light propagates in the waveguide medium.
  • the transparent medium layer 50 can be a medium with high transmittance such as transparent optical glue, which can not only realize the bonding of the light condensing element and the optical waveguide element, but also improve the transmittance of light.
  • transparent optical glue such as transparent optical glue
  • the light converging element 40 and the optical waveguide element 200 may be made of the same material, or may be made of different materials, which are not limited in this embodiment of the present disclosure.
  • FIG. 28 is a partial structural schematic diagram of a display device provided according to another example of still another embodiment of the present disclosure.
  • the light conversion device can be applied to a display device, in which the light emitted from the backlight is unpolarized light, or the light emitted by the light source part toward the optical waveguide element is unpolarized light, and the display panel is configured to utilize the first One of a polarized light and a second polarized light generates image light.
  • the backlight source here may be the backlight source that satisfies this condition in the above-mentioned embodiments.
  • the "unpolarized light” here means that the light emitted by the light source can have multiple polarization characteristics at the same time but does not exhibit a unique polarization characteristic.
  • the unpolarized light emitted by the light source unit can be decomposed into light rays of two mutually perpendicular polarization states.
  • the polarized light that can be used by the display panel here may refer to the polarized light that can be incident inside the display panel, or may refer to the polarized light required when the display panel forms image light of a specific polarization state, and the like.
  • the light conversion device may be provided in multiple locations, eg, configured to process the light emitted by the light source portion and propagate the processed light to the optical waveguide element.
  • the light conversion device is configured to recover the light emitted by the light source part and send the recovered light to the optical waveguide element, and/or recover the light exiting the optical waveguide element and send the recovered light to the display panel.
  • recycling light can be understood as converting some unusable light for use.
  • the liquid crystal display panel 10 may include an array substrate (not shown), an opposite substrate (not shown), and a liquid crystal layer (not shown) between the array substrate and the opposite substrate.
  • the liquid crystal display panel further includes a first polarizing layer 10-1 disposed on a side of the array substrate away from the opposite substrate and a second polarizing layer 10-2 disposed on a side of the opposite substrate away from the array substrate.
  • the backlight source 20 is configured to provide backlight to the liquid crystal display panel 10 , and the backlight is converted into image light after passing through the liquid crystal display panel 10 .
  • the polarization axis direction of the first polarizing layer 10-1 and the polarization axis direction of the second polarizing layer 10-2 are perpendicular to each other, but not limited thereto.
  • the first polarizing layer 10-1 may pass the first linearly polarized light
  • the second polarizing layer 10-2 may pass the second linearly polarized light, but not limited thereto.
  • the polarization direction of the first linearly polarized light is perpendicular to the polarization direction of the second linearly polarized light.
  • only light with a specific polarization state can pass through the first polarizing layer 10-1 between the liquid crystal layer and the backlight source 20 to be incident into the liquid crystal display panel, and be used for imaging.
  • the light emitted by the backlight source 20 is non-polarized light, at most 50% of the light emitted by the backlight source 20 can be utilized by the image generating unit, and the rest of the light will be wasted or absorbed by the liquid crystal layer to generate heat.
  • the light conversion device 50 is located on the side of the display panel 10 facing the optical waveguide element 200 .
  • 28 schematically shows that the light conversion device 50 is located between the light condensing element 40 and the optical waveguide element 200, but not limited to this, the light conversion device can also be located between the optical waveguide element and the light source part, the light condensing element and the light diffusing element. Between the light diffusing element and the display panel, the light conversion device may be located on the light incident side of the display panel so that the light incident on the display panel is of a specific polarization state.
  • the light conversion device includes a beam splitting element 51 and a polarization conversion element 53 .
  • the light conversion device includes a beam splitting element 51 , a direction changing element 52 , and a polarization converting element 53 .
  • the beam splitting element 51 is configured to split the light incident on the beam splitting element 51 into a first polarized light beam 101 and a second polarized light beam 102 having different polarization states.
  • the first polarized light beam 101 is configured to be directed toward the display panel 10
  • the second polarized light beam 102 is directed toward the direction changing element 52 .
  • the direction changing element 52 is configured to change the propagation direction of the light incident to the direction changing element 52 so as to be directed toward the display panel 10 .
  • the polarization conversion element 53 is configured to convert the polarized light that cannot be utilized by the display panel 10 in the first polarized light beam 101 and the second polarized light beam 102 into polarized light that can be utilized by the display panel 10 before reaching the display panel 10 .
  • the first polarized light beam 101 and the second polarized light beam 102 may both be linearly polarized light.
  • the first polarizing layer 10-1 included in the display panel 10 is located on the side of the display panel 10 close to the light source part 100, and the polarization axis of the first polarizing layer 10-1 is parallel to the first polarized light beam 101 or the second polarized light beam 102
  • the polarization conversion element 53 is configured to convert the polarized light whose polarization direction is not parallel to the polarization axis in the first polarized light beam 101 and the second polarized light beam 102 into a polarization whose polarization direction is parallel to the polarization axis before reaching the display panel 10 Light.
  • FIG. 28 schematically shows that the polarization direction of the second polarized light beam 102 is parallel to the polarization axis of the first polarizing layer 10-1, but it is not limited to this, and the polarization direction of the first polarized light can also be parallel to the first polarizing layer. Polarization axis.
  • the backlight source 20 emits unpolarized light
  • the display panel 10 can use S-polarized light (the second polarized light beam 102 )
  • the beam splitting element 51 reflects the S-polarized light and transmits the P-polarized light (the first polarized light beam 102 ).
  • the direction changing element 52 can reflect S-polarized light.
  • the S-polarized light in the light emitted by the backlight source 20 is reflected by the beam splitting element 51, the reflected S-polarized light is reflected by the direction changing element 52 and then exits to the display panel 10, and the P-polarized light in the light emitted by the backlight source 20 is split.
  • the beam element 51 transmits, and after transmission, passes through the polarization conversion element 53 and is converted into S-polarized light, so that the unpolarized light emitted by the backlight can be converted into S-polarized light usable by the display panel.
  • the beam splitting element 51 may have the function of transmitting light of one characteristic and reflecting light of another characteristic, for example, the beam splitting element 51 may have the characteristic of transmitting light of one polarization state and reflecting light of another polarization state , the beam splitting element can realize beam splitting by utilizing the above-mentioned transflective characteristics.
  • the beam splitting element 51 may be a transflective film, which achieves beam splitting by transmitting part of the light and reflecting another part of the light.
  • the transflective film can transmit the first polarized light beam 101 in the light emitted by the backlight 20 and reflect the second polarized light beam 102 in the light emitted by the backlight 20 .
  • the transflective film can be an optical film with polarized transflective function, such as an optical film that can split unpolarized light into two different polarized lights through transmission and reflection, for example, can split light into two
  • the optical film of mutually perpendicularly polarized light can be composed of multiple layers with different refractive indices in a certain stacking sequence, and the thickness of each film layer is about 10-1000nm
  • the material of the film layer can be Inorganic dielectric materials, such as metal oxides and metal nitrides, can be selected; polymeric materials such as polypropylene, polyvinyl chloride or polyethylene can also be selected.
  • the beam splitting element 51 may be an element formed by coating or sticking a film on a transparent substrate.
  • the beam splitting element 51 can be a transflective film with the characteristics of reflecting S polarized light and transmitting P polarized light, such as a reflective polarized brightness enhancement film (Dual Brightness Enhance Film, DBEF) or a prism film ( Brightness Enhancement Film, BEF) and so on.
  • DBEF Reflective polarized brightness enhancement film
  • BEF Brightness Enhancement Film
  • the beam splitting element may also be an integrated element.
  • the direction changing element 52 is configured to reflect the second polarized light beam 102 incident on the direction changing element 52 and propagate the reflected second polarized light beam to the display panel 10 .
  • the direction changing element 52 may be a reflective element for reflecting the second polarized light beam 102 emitted from the beam splitting element 51 and propagating the reflected second polarized light beam to the display panel 10 . Since the polarization axis of the polarizing layer 210 of the display panel 10 is parallel to the polarization direction of the second polarized light beam 102 , the second polarized light beam 102 emitted from the direction changing element 52 to the display panel 10 can be directly utilized by the display panel 10 .
  • the direction changing element 52 can be a common reflective plate, such as a metal or glass reflective plate; it can also be a reflective film with the characteristic of reflecting S-polarized light plated or pasted on the substrate.
  • the direction changing element 52 may also have transflective properties, and have the same transflective properties as the transflective film included in the beam splitting element 51 , for example, the property of reflecting S-polarized light and transmitting P-polarized light. This embodiment of the present disclosure does not limit this, as long as the direction changing element 52 can reflect the S-polarized light.
  • the polarization conversion element 53 can be a phase retardation film. By rotating the polarization direction of the first polarized light beam 101 incident thereon by 90 degrees, the light emitted from the phase retardation film to the display panel 10 can be utilized by the display panel 10 . of the second polarized light beam 102 .
  • the polarization conversion element 53 may be a 1/2 wave plate.
  • the polarization conversion element may be disposed in close contact with the beam splitting element.
  • a transparent substrate may be arranged between the beam splitting element and the polarization conversion element, and the beam splitting element and the polarization conversion element are respectively attached to two surfaces of the transparent substrate opposite to each other for convenient arrangement.
  • the beam splitting element may also be directly attached to the surface of the polarization conversion element to achieve lightness and thinness of the image source.
  • the polarization converting element 53 is located on the side of the beam splitting element 51 away from the direction changing element 50 .
  • FIG. 28 schematically shows that the beam splitting element and the direction changing element are nearly parallel, and the finally emitted and recovered light rays are nearly parallel collimated rays. But it is not limited to this, if the beam splitting element and the direction changing element are not parallel, the emitted light can be in a diffused or concentrated state, which is suitable for some special application scenarios.
  • the light conversion device processes the light exiting the optical waveguide element and propagates the processed light to the display panel.
  • the light conversion device 50 is located on the side of the display panel 10 facing the optical waveguide element 200 .
  • the light conversion device includes a beam splitting element 51 and a polarization conversion element 53, the beam splitting element 51 splits the light rays, and the polarization conversion element 53 converts one of the light rays into light rays with substantially the same properties as the other (eg, The polarization states are basically the same).
  • the light conversion device 50 may also include a polarization beam splitting element 310 and a polarization conversion structure 400.
  • the polarization beam splitter element 310 splits the light into the first polarized light and the second polarized light
  • the polarization conversion structure 400 splits the first polarized light and the second polarized light.
  • One of the polarized light is converted to substantially the same sexual polarization state as the other.
  • the light conversion device 50 may also include a polarization beam splitting element 310, a reflection element 320 and a polarization conversion structure 400.
  • the polarization beam splitter element 310 splits the light into a first polarized light and a second polarized light
  • the polarization conversion structure 400 splits the first polarized light.
  • One of the light and the second polarized light is converted into substantially the same polarized state as the other, and the reflective element 320 reflects and propagates one of the light rays to the display panel.
  • FIG. 29 is a schematic diagram of a light conversion device in a display device provided according to another example of yet another embodiment of the present disclosure. The difference between the light conversion device shown in FIG. 29 and the light conversion device shown in FIG.
  • the position of the polarization conversion element and the light of the polarization state that can be used by the display panel are different.
  • the features of the element 52 and the polarization conversion element 53 may be the same as those of the respective elements shown in FIG. 28 , and details are not repeated here.
  • FIG. 30 is a schematic diagram of a light conversion device in a display device provided according to yet another example of yet another embodiment of the present disclosure.
  • the difference between the light conversion device shown in FIG. 30 and the light conversion device shown in FIG. 28 is that the position of the polarization conversion element and the light of the polarization state that can be used by the display panel are different, and the polarized light reflected by the direction changing element 52 is different.
  • the characteristics of the beam splitting element 51 and the polarization conversion element 53 in the conversion device may be the same as those of the elements shown in FIG. 28 , and details are not repeated here.
  • FIG. 31 is a schematic diagram of a light conversion device in a display device provided according to yet another example of yet another embodiment of the present disclosure.
  • the difference between the light conversion device shown in FIG. 31 and the light conversion device shown in FIG. 29 is that the light in this example passes through the polarization conversion element 53 twice, while the light in the example shown in FIG. 29 passes through the polarization conversion element 53 only once , and the polarized light reflected by the direction changing element 52 is different.
  • FIG. 31 is a schematic diagram of a light conversion device in a display device provided according to yet another example of yet another embodiment of the present disclosure.
  • the difference between the light conversion device shown in FIG. 31 and the light conversion device shown in FIG. 29 is that the light in this example passes through the polarization conversion element 53 twice, while the light in the example shown in FIG. 29 passes through the polarization conversion element 53 only once , and the polarized light reflected by the direction changing element 52 is different.
  • FIG. 29 shows the difference between the light conversion device shown in FIG. 31
  • the polarization conversion element 53 is located between the direction change element 52 and the beam splitting element 51, and is configured to convert the second polarized light beam 102 reflected from the beam splitter element 51 toward the direction change element 52 into a second polarized light beam 102 Three polarized light beams 103 .
  • the third polarized light beam 103 is reflected by the direction changing element 52 and converted into a first polarized light beam 101 after passing through the polarization conversion element 53 , and the converted first polarized light beam 101 is directed to the display panel 10 .
  • the polarization conversion element 53 can be a phase retardation film, such as a quarter-wave plate, and can convert the second polarized light beam 102, such as linearly polarized light, incident thereon into a third polarized light beam 103, such as circularly polarized light Or elliptically polarized light, so that the polarized light incident on the direction changing element 52 after passing through the retardation film is no longer linearly polarized light.
  • a phase retardation film such as a quarter-wave plate
  • the third polarized light beam 103 incident on the direction changing element 52 is changed in the direction of propagation by the direction changing element 52 to propagate toward the display panel 10, and the third polarized light beam 103 before reaching the display panel 10 passes through the polarization converting element 53 again to be converted into The first polarized light beam 101 that can be utilized by the display panel 10 .
  • the characteristics of the beam splitting element 51 and the direction changing element 52 in the light conversion device in this example may be the same as those of the corresponding elements shown in FIG. 28 , and details are not repeated here.
  • the main optical axis of the light passing through the optical coupling-out member intersects with the extending direction of the light-emitting region of the optical waveguide element, and the propagation in FIG. 1 can be considered as is the propagation path of the main optical axis of the light, which intersects with the light-emitting area (for example, the light-emitting surface 211); or, the main optical axis of the light passing through the optical coupler is along the extension direction of the light-emitting area of the optical waveguide element, as shown in Figure 34 As shown, the main optical axis of the light can be parallel to the light emitting surface 211 . For example, light travels mainly along a straight path in the optical waveguide element 200 .
  • a portion of the light incident on the light out-coupling member is reflected by the light out-coupling member and the other portion is reflected by the light out-coupling member transmitted by the light out-coupling member.
  • the light reflected by the light out-coupling member exits from the light-emitting area of the light-conducting element and then transmits through the display panel 10, and the light transmitted by the light out-coupling member passes through the light out-coupling member and continues on or, in other embodiments, the light transmitted by the light coupling-out member exits from the light-emitting area of the light-conducting element and then passes through the display panel, and the light reflected by the light coupling-out member passes through the light After the coupling out, it continues to propagate in the light-conducting element.
  • a light-conducting element having a plurality of light-coupler-out parts it is beneficial to improve the uniformity of light.
  • the main optical axis of the light passing through at least part of the light coupler and the extension direction of the light output side of the light conducting element intersect, which is beneficial to reduce the thickness of the backlight source in the display device.
  • the propagation mode of the light in the light-conducting element can also be replaced by: the main optical axis of the light passing through at least part of the light coupling-out member is along the extending direction of the light-emitting side of the light-conducting element, as shown in FIG. 34 shown.
  • the last light outcoupling member in the sequential propagation direction of the light rays may include a transflective element and/or a reflective film.
  • the reflective film may allow the last light outcoupling member to have the greatest reflectivity among the plurality of light outcoupling members, and/or the reflective film may reflect all or substantially all light incident thereon or selected light. Substantially all reflections may be considered to be all reflections within an error tolerance.
  • the selected light may be selected polarized light, eg, may be P-polarized light or S-polarized light or other polarized light, or light of a specific wavelength, or polarized light of a specific wavelength.
  • the last optocoupler outgoing piece adopts a reflective film, which is beneficial to improve the light reflectivity of the last optocoupler outgoing piece, thereby helping to improve light efficiency, improve brightness, and reduce power consumption.
  • the reflective film includes, for example, a selectively reflective film and/or a non-selective reflective film.
  • the selectively reflective film can include a polarized reflective film, eg, the polarized reflective film can include a polarized transflective film and/or a polarized absorbing film.
  • the selective reflection film may include a polarized reflection film as well as a wavelength selective reflection film.
  • a gas eg, air
  • a transparent optical medium eg, a polymer material, glass, or quartz, etc.
  • the reflective film is a plated reflective film, an attached reflective film, or a separately provided reflective film.
  • the reflective film provided by plating or attached can be provided on the transparent optical medium of the light conducting element; the reflective film provided separately can be not attached to the transparent optical medium, for example, the reflective film provided separately can be in direct contact with gas (for example).
  • the main optical axis of the light passing through part of the light out-coupling member and the extending direction of the light-emitting side of the light conducting element may intersect or be approximately along the light-emitting side. direction of extension.
  • the display device includes a display panel and a backlight
  • the display panel includes a display surface and a backside opposite to the display surface
  • the backlight is located on the backside of the display panel, and the outgoing light emitted from the light-emitting side of the backlight passes through the display After the panel gets the image light.
  • the backlight source may be an edge-type backlight source, for example, the light source part 100 included in the backlight source is incident to the light conducting element from the side of the light conducting element.
  • the source light of the backlight includes a first polarized light component and a second polarized light component, the first polarized light and the second polarized light have different polarization states, and the outgoing light emitted from the light outgoing side of the backlight source
  • the light is polarized light and includes one of the first polarized light and the second polarized light.
  • the source light of the backlight is, for example, unpolarized light, which includes a first polarized light component and a second polarized light component.
  • the display panel includes a light incident side polarizer and a light exit side polarizer, and the unpolarized source light of the backlight is converted into polarized outgoing light, which can improve the efficiency of the outgoing light of the backlight. Display panel utilization.
  • one of the first polarized light and the second polarized light is S-polarized light, and the other is P-polarized light.
  • the first and second polarized light may also be other types of polarized light.
  • the polarization state of the polarized light incident on the polarized reflective film is the same as the polarization state of the outgoing light emitted from the light outgoing side of the backlight.
  • both the polarized light incident on the polarized reflective film and the outgoing light from the light outgoing side of the backlight are P-polarized light or both are S-polarized light.
  • the backlight source may further include a light conversion device, and the light conversion device includes a polarization beam splitting element and a polarization conversion element.
  • the polarization beam splitting element is configured to divide the source light incident to the polarization beam splitter element into first polarized light and second polarized light
  • the polarization conversion element is configured to convert one of the first polarized light and the second polarized light into the other polarized light
  • the display panel is configured to generate image light using one of the first polarized light and the second polarized light.
  • the light conversion device may further include a reflective element in addition to the polarization beam splitting element and the polarization conversion element, and the reflective element is configured to reflect the first polarized light or the second polarized light obtained by the polarization beam splitting element after spectroscopic processing .
  • the light converting device may include a first element and a second element, or a first element, a second element and a third element.
  • the first element 310 may include a polarization beam splitter element
  • the second element 320 may include a reflective element
  • one of the first element 310 and the second element 320 may include a polarization conversion element .
  • the first element 310 (not shown in FIG. 14 ) may include a polarization beam splitting element
  • the second element 320 may include a reflective element
  • the third element 400 may include a polarization conversion element .
  • the first element 51 may include a polarization beam splitting element
  • the second element 52 may include a reflective element
  • the third element 53 may include a polarization conversion element.
  • one of the first polarized light 1001 and the second polarized light 1002 obtained by the splitting process may be reflected by a reflective element (eg, see 320 in FIGS. 14 to 21 and 52 in FIG. 29 ) and then be reflected by a polarization conversion element (see, for example, 320 in FIG. 400 in FIGS. 14 to 21 and 53 in FIG. 29 ) converted, or reflected by the reflective element (see 52 in FIG. 30 ) after being converted by the polarization conversion element (see 53 in FIG. 30 ), or after being converted by the polarization conversion element (see 52 in FIG. 30 )
  • the element (see 53 in FIG. 31 ) is then reflected by the reflective element (see 52 in FIG. 31 ) after a first conversion and is then converted a second time by said polarization converting element.
  • the polarization converting element may be a half wave plate or a quarter wave plate.
  • the polarized light obtained after the polarization conversion element converts one of the first polarized light and the second polarized light to the other may be incident on the light guide element 200 ; alternatively, in some embodiments shown in FIGS. 14-21 , it may be that one of the first polarized light and the second polarized light is converted to the other by the polarization conversion element 400 after entering the light conducting element 200 By.
  • the light conducting element 200 includes a plurality of sub-light conducting elements, at least some of which may be arranged in layers or side by side.
  • the plurality of sub-light-conducting elements include a first sub-light-conducting element 2001 and a second sub-light-conducting element 2002 arranged in layers; or, as shown in FIG. 10.
  • the plurality of sub-light-conducting elements include a first sub-light-conducting element 2001 and a second sub-light-conducting element 2002 arranged side by side.
  • the first sub-light-conducting element 2001 and the second sub-light-conducting element 2002 are stacked in layers, as shown in FIGS.
  • the region overlaps with the second light emitting region of the second sub-light conducting element 2002, and the light emitted from one of the first light emitting region and the second light emitting region passes through the polarization conversion element 400 and then propagates to the first light emitting region and the second light emitting region.
  • the first light-emitting area of the first sub-light-conducting element 2001 and the second light-emitting area of the second sub-light-conducting element 2002 overlap, and from the first light-emitting area and the
  • the light emitted from one of the second light emitting regions bypasses the polarization conversion element 400 and propagates to the other of the first light emitting region and the second light emitting region; or, as shown in FIG. 18 and FIG. 2002 in FIG. 18 and the lower sub-light-conducting element in FIG. 24 ) include a light-conducting region and a second light-emitting region sequentially arranged along the extending direction of the second sub-light-conducting element.
  • the polarized light in the second sub-light-conducting element Total reflection and/or non-total reflection in the light-conducting region propagates and propagates to the first sub-light-conducting element (see 2001 in FIG. 18 and the upper sub-light-conducting element in FIG. 24 after propagating to the second light-exiting region).
  • the light-conducting region of the second sub-optical waveguide element overlaps the first light-emitting region of the first sub-optical-waveguide element.
  • the light-guiding element includes the light-guiding element 200 .
  • the first sub-light guiding element may be the first sub-light guiding element
  • the second sub-light guiding element may be the second sub-light guiding element.
  • FIG. 32 is a partial structural schematic diagram of a head-up display provided according to another embodiment of the present disclosure.
  • FIG. 32 schematically shows that the head-up display includes the display device shown in FIG. 26 , but is not limited thereto, and may also include the display device shown in any example of FIG. 25 or FIG. 27 to FIG. 31 , to which the embodiments of the present disclosure No restrictions apply.
  • the head-up display further includes a reflective imaging part 60 located on the light-emitting side of the display panel 10.
  • the reflective imaging part 60 is configured to reflect the light emitted by the display panel 10 and propagate the reflected light to the eye box area 003, and transmit ambient light.
  • the user located in the eye box area 003 can view the image 004 of the display panel 10 reflected by the reflective imaging part 60 and the environmental scene located on the side of the reflective imaging part 60 away from the eye box area 003 .
  • the image light emitted by the display panel 10 is incident on the reflective imaging part 60, and the light reflected by the reflective imaging part 60 is incident on the user, for example, the eye box area 003 where the driver's eyes are located, and the user can observe the image formed in, for example, the reflective imaging part
  • the virtual image on the outside does not affect the user's observation of the external environment.
  • the above-mentioned eye box area 003 refers to a plane area where the user's eyes are located and the image displayed by the head-up display can be seen.
  • the user's eyes deviate from the center of the eye box area by a certain distance, such as moving up and down, left and right for a certain distance, the user's eyes are still in the eye box area, and the user can still see the image displayed by the head-up display.
  • the reflective imaging portion 60 may be at least one of a windshield (eg, a windshield, such as a front windshield, a side windshield, or a rear windshield) and an imaging window of a motor vehicle
  • a windshield eg, a windshield, such as a front windshield, a side windshield, or a rear windshield
  • an imaging window of a motor vehicle e.g, a windshield head-up display (Windshield-HUD, W-HUD); for example, when the reflection imaging part 60 is an imaging window, it corresponds to a combined head-up display (Combiner-HUD, C -HUD).
  • the reflective imaging part 60 can be a flat plate, forming a virtual image through specular reflection; it can also be a curved surface, such as a windshield or a transparent imaging plate with curvature, which can provide farther imaging Distance and magnification effects.
  • the transportation equipment includes a head-up display provided by at least one embodiment of the present disclosure, or includes a display device provided by at least one embodiment of the present disclosure.
  • the viewing window of the traffic device is multiplexed into the reflection imaging section 60 of the head-up display.
  • a front window of a traffic device eg, a front windshield
  • the reflective imaging portion 60 of the head-up display is multiplexed as the reflective imaging portion 60 of the head-up display.
  • the transportation equipment may be various suitable vehicles, for example, may include various types of land transportation equipment such as automobiles, or may be water transportation equipment such as boats, or may be air transportation equipment such as airplanes.
  • front window and transmits the image onto the front window through the on-board display system.

Abstract

一种显示装置、抬头显示器以及交通设备。显示装置包括显示面板(10)以及背光源(20)。背光源(20)位于显示面板(10)的背侧,背光源(20)包括光源部(100)和光波导元件(200),光波导元件(200)包括出光区域和光耦出件阵列,光耦出件阵列包括多个光耦出件。入射至光波导元件(200)的光线在进入光波导元件(200)之后至少在光波导元件(200)的出光区域处发生多次全反射且依次传播至光耦出件阵列的多个光耦出件,传播至光耦出件阵列的各光耦出件的光线的一部分被光耦出件反射出光波导元件(200)的出光区域后透过显示面板(10),传播至光耦出件阵列的各光耦出件的光线的另一部分透过光耦出件后继续在光波导元件(200)中传播。通过在背光源(20)中设置光波导元件(200),可以提高显示装置的显示效果以及轻便性。

Description

显示装置、抬头显示器以及交通设备
本申请要求于2021年2月10日递交的中国专利申请第202110185335.5号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一个实施例涉及一种显示装置、抬头显示器以及交通设备。
背景技术
目前,用户对例如包括背光源的显示装置的使用需求越来越高,对其显示效果以及轻便性等性能也提出了更多的要求,而该显示装置中的背光源对显示装置的显示效果以及轻便性等性能具有一定程度的影响。
发明内容
本公开的至少一实施例提供一种光源装置、显示装置、抬头显示器以及交通设备。
第一方面,本公开至少一个实施例提供一种光源装置,其包括光源部和光波导元件。所述光源部发出的光线包括偏振态不同的第一偏振光和第二偏振光;光波导元件包括多个光耦出部。所述光源部被配置为使其发出的光线在进入所述光波导元件后在所述光波导元件中传播,所述多个光耦出部被配置为将在所述光波导元件中传播的光线耦出;所述多个光耦出部包括第一光耦出部和第二光耦出部,所述第一光耦出部被配置为将进入所述光波导元件的所述第一偏振光耦出;所述光源装置还包括偏振转换结构,所述偏振转换结构被配置为将进入所述光波导元件后的所述第二偏振光转换为第一偏振光,所述第二光耦出部被配置为:在所述偏振转换结构将进入所述光波导元件的所述第二偏振光转换为第一偏振光后,将转换后的所述第一偏振光耦出;或者所述第二光耦出部被配置为将进入所述光波导元件的所述第二偏振光耦出至所述偏振转换结构,并且被耦出的所述第二偏振光被所述偏振转换结构转换为所述第一偏振光。
例如,在本公开第一方面的一些实施例中,所述光源装置为背光源。
例如,在本公开第一方面的一些实施例中,所述多个光耦出部包括具有多个光耦出件的光耦出件阵列,所述光耦出件阵列被配置为将所述光波导元件中的光线耦出且被耦出的光线从所述光波导元件的出光区域出射。
例如,在本公开第一方面的一些实施例中,所述第一光耦出部包括具有多个第一光耦出件的第一光耦出件阵列,所述第二光耦出部包括具有多个第二光耦出件的第二光耦出件 阵列。
第二方面,本公开的至少一实施例提供一种显示装置,包括:显示面板,包括显示面和与所述显示面相对的背侧;以及背光源,位于所述显示面板的背侧。
例如,在本公开第二方面的一些实施例中,所述背光源还包括光源部,所述光源部发出的光线进入所述光波导元件。
例如,在本公开第二方面的一些实施例中,所述背光源为本公开第一方面提供的光源装置。
例如,在本公开第二方面的一些实施例中,所述背光源包括光波导元件,所述光波导元件包括出光区域和光耦出件阵列,所述光耦出件阵列被配置为将所述光波导元件中的光线耦出且被耦出的光线从所述光波导元件的出光区域出射。
例如,在本公开第一方面或第二方面的一些实施例中,所述光耦出件阵列包括多个光耦出件,传播至至少部分光耦出件中的各光耦出件的光线的一部分被所述光耦出件反射,传播至至少部分光耦出件中的各光耦出件的所述光线的另一部分透过所述光耦出件。
例如,在本公开第一方面或第二方面的一些实施例中,所述光线的所述一部分被所述光耦出件反射出所述光波导元件,所述光线的所述另一部分在透过所述光耦出件后继续在所述光波导元件中传播;或者,所述光线的一部分被所述光耦出件透射出所述光波导元件,所述光线的另一部分在被所述光耦出件反射后继续在所述光波导元件中传播。
例如,在本公开第一方面或第二方面一些实施例中,入射至所述光波导元件的光线在进入所述光波导元件之后至少在所述光波导元件的所述出光面处发生多次全反射且依次传播至所述光耦出件阵列的所述多个光耦出件,传播至所述光耦出件阵列的各光耦出件的光线的一部分被所述光耦出件反射出所述光波导元件的所述出光面后透过所述显示面板,传播至所述光耦出件阵列的各光耦出件的所述光线的另一部分透过所述光耦出件后继续在所述光波导元件中传播。
第三方面,本公开的至少一实施例提供一种抬头显示器,包括:本公开的任一实施例提供的光源装置或包括该光源装置的显示装置或本公开任一实施例提供的显示装置。
例如,在本公开一些实施例中,抬头显示器还包括反射成像部,其位于所述显示装置的出光侧,且被配置为将所述显示装置出射的光线反射后传播至所述抬头显示器的观察区。
第四方面,本公开的至少一实施例提供一种交通设备,包括本公开的任一实施例提供的光源装置或显示装置或抬头显示器。
例如,在本公开第一方面或第二方面的一些实施例中,所述光波导元件还包括波导介质,所述光源部发出的光线进入所述波导介质且在所述波导介质中全反射传播。
例如,在本公开第一方面或第二方面的一些实施例中,传播至最后一个光耦出件的光线全部或部分被所述最后一个光耦出件反射出所述光波导元件的所述出光区域后透过所述 显示面板。
例如,在本公开第一方面或第二方面的一些实施例中,所述光耦出件与所述出光区域之间的夹角为第一夹角,所述第一夹角和所述光线的全反射临界角之和在60°~120°范围内。
例如,在本公开第一方面或第二方面的一些实施例中,所述光耦出件包括透反元件。
例如,在本公开第一方面或第二方面的一些实施例中,所述光波导元件包括多个子光波导元件,所述光耦出件阵列包括分别位于所述多个子光波导元件中的多个子光耦出件阵列;所述背光源还包括分光元件,所述分光元件被配置为将入射至所述分光元件的光线分为多个子光束,所述多个子光束分别进入所述多个子光波导元件中,且进入各子光波导元件中的各子光束被位于各子光波导元件中的子光耦出件阵列反射出所述光波导元件的所述出光区域。
例如,在本公开第一方面或第二方面的一些实施例中,所述多个子光波导元件在垂直于所述显示面板的所述显示面的方向交叠设置,和/或,所述多个子光波导元件沿平行于所述显示面的方向排列;所述多个子光波导元件包括第一子光波导元件和第二子光波导元件。
例如,在本公开第一方面或第二方面的一些实施例中,入射至所述光波导元件的光线包括特性不同的第一特性光和第二特性光,所述分光元件被配置为对入射至所述分光元件的所述光线进行分光处理,使通过所述分光处理得到的所述第一特性光入射至所述第一子光波导元件,且使通过所述分光处理得到的所述第二特性光入射至所述第二子光波导元件。
例如,在本公开第一方面或第二方面的一些实施例中,所述第一特性光和所述第二特性光分别为偏振态不同的第一偏振光和第二偏振光;或者,所述第一特性光和所述第二特性光分别为波长分布不同的第一颜色光和第二颜色光。
例如,在本公开第一方面或第二方面的一些实施例中,通过对所述光线进行所述分光处理得到的多个子光束包括所述第一颜色光、所述第二颜色光以及第三颜色光,所述第三颜色光被配置为进入所述第一子光波导元件和所述第二子光波导元件之一中;或者,所述多个子光束包括所述第一颜色光、所述第二颜色光以及第三颜色光,所述多个子光波导元件还包括第三子光波导元件,所述第三颜色光被配置为进入所述第三子光波导元件中,且被位于所述第三子光波导元件中的所述光耦出件阵列反射出所述第三子光波导元件。
例如,在本公开第一方面或第二方面的一些实施例中,所述第一子光波导元件中的光耦出件对所述第一特性光的反射率大于对所述第二特性光的反射率,所述第二子光波导元件中的所述光耦出件对所述第二特性光的反射率大于对所述第一特性光的反射率。
例如,在本公开第一方面或第二方面的一些实施例中,所述分光元件包括偏振分光元件,所述偏振分光元件被配置为对所述第一偏振光和第二偏振光中一者的反射率,大于其对另一者的反射率;和/或,所述偏振分光元件被配置为对所述第一偏振光和第二偏振光中一者的透射率,大于其对另一者的透射率。
例如,在本公开第一方面或第二方面的一些实施例中,所述分光元件包括偏振分光元件,所述偏振分光元件被配置为反射所述第一偏振光和所述第二偏振光中的一者,且透射所述第一偏振光和所述第二偏振光中的另一者。
例如,在本公开第一方面或第二方面的一些实施例中,所述分光元件还包括反射元件,所述反射元件被配置为反射所述第一偏振光和所述第二偏振光之一。
例如,在本公开第一方面或第二方面的一些实施例中,所述光耦出件阵列中沿所述出光区域的延伸方向依次排列的光耦出件的反射率在所述光线的传播方向上逐渐增大或呈区域性地逐渐增大;和/或所述透光耦出件阵列中沿所述出光区域的延伸方向依次排列的光耦出件的排列密度逐渐增大或呈区域性地逐渐增大。
例如,在本公开第一方面或第二方面的一些实施例中,所述光耦出件阵列中的至少一个光耦出件包括选透膜,进入所述光波导元件中的光线包括特性不同的第一光线和第二光线,所述选透膜被配置为对所述第一光线的反射率大于对所述第二光线的反射率,对所述第二光线的透射率大于对所述第一光线的透射率。
例如,在本公开第一方面或第二方面的一些实施例中,所述光耦出件阵列包括沿所述出光区域的延伸方向排列的第一光耦出件组和第二光耦出件组,各光耦出件组包括沿所述出光区域的延伸方向排列的光耦出件,所述第一光耦出件组的光耦出件相对于所述出光区域的倾斜方向与所述第二透反元件组的光耦出件相对于所述出光区域的倾斜方向不平行。
例如,在本公开第一方面或第二方面的一些实施例中,所述背光源还包括光源部,所述光源部包括第一光源部和第二光源部,所述第一光源部和所述第二光源部分别位于所述光耦出件阵列沿所述出光区域的所述延伸方向的两侧,所述第一光耦出件组被配置为将所述第一光源部发出的进入所述光波导元件的光线反射出所述光波导元件,且所述第二光耦出件组被配置为将所述第二光源部发出的进入所述光波导元件的光线反射出所述光波导元件;或者所述光源部在所述出光区域的所述延伸方向上位于所述第一光耦出件组和所述第二光耦出件组之间。
例如,在本公开第一方面或第二方面的一些实施例中,所述背光源还包括光源部,所述光耦出件阵列包括的所述多个光耦出件中的至少部分光耦出件沿第一方向依次排列且沿与所述第一方向相交的第二方向延伸,所述光源部包括沿所述第二方向排列的多个子光源,所述多个子光源被配置为发出进入所述至少部分光耦出件的光线。
例如,在本公开第一方面或第二方面的一些实施例中,所述光耦出件阵列包括的所述多个光耦出件中的至少部分光耦出件沿第一方向依次排列且沿与所述第一方向相交的第二方向延伸,所述显示装置还包括沿所述第二方向排列的多个扩束部,所述多个扩束部被配置为将所述子光源发出的光线沿所述第二方向扩束,且扩束后的光线被配置为传输至所述光耦出件阵列。
例如,在本公开第一方面或第二方面的一些实施例中,所述背光源还包括光源部,所述光源部发出的光线包括偏振态不同的第一偏振光和第二偏振光,所述显示面板被配置为利用所述第一偏振光和所述第二偏振光之一生成图像光线。
例如,在本公开第一方面或第二方面的一些实施例中,所述显示装置还包括光转化装置,所述光转化装置包括分束元件以及偏振转换元件,所述分束元件位于所述显示面板面向所述光波导元件的一侧,且被配置为将入射到所述分束元件的光线分束为偏振态不同的第一偏振光束和第二偏振光束,所述偏振转换元件被配置为将所述第一偏振光束和所述第二偏振光束中不能被所述显示面板利用的偏振光束在到达所述显示面板之前转换为能够被所述显示面板利用的偏振光束。
例如,在本公开第一方面或第二方面的一些实施例中,所述光转化装置被配置为回收所述光源部发出的光并将所述回收的光送入所述光波导元件,和/或回收所述光波导元件出射的光并将所述回收的光送入所述显示面板。
例如,在本公开第二方面的实施例中,显示装置还包括:至少一个光扩散元件,被配置为将所述显示面板和所述光波导元件至少之一出射的光线进行扩散。
例如,在本公开第二方面的一些实施例中,显示装置还包括:光会聚元件,被配置为对从所述光波导元件出射的光线进行会聚后使经会聚的光线射向所述至少一个光扩散元件。
例如,在本公开第二方面的一些实施例中,所述光会聚元件包括至少一个透镜。
例如,在本公开实施例中,所述光会聚元件与所述光波导元件为一体式结构。
例如,在本公开第二方面的一些实施例中,所述光会聚元件与所述光波导元件之间设置有透明介质层,所述透明介质层的折射率小于所述光波导元件的折射率。
例如,在本公开第二方面的一些实施例中,所述光波导元件的所述出光区域与所述显示面板的显示面在垂直于所述显示面的方向上层叠设置,且所述背光源包括的光源部位于所述光波导元件的侧方。
例如,在本公开第一方面或第二方面的一些实施例中,所述背光源包括光波导板,所述光波导板包括匀光部和所述光波导元件,入射至所述匀光部的光线在被所述匀光部匀化处理后进入所述光波导元件。
例如,在本公开第一方面或第二方面的一些实施例中,入射至所述匀光部的光线在所述匀光部内发生多次反射(例如全反射和/或非全反射式反射)之后进入所述光波导元件。
例如,在本公开第一方面或第二方面的一些实施例中,所述光波导板为一体化结构。
例如,在本公开实施例中,所述反射成像部包括所述交通设备的挡风窗。
例如,在本公开第一方面或第二方面实施例中,在所述背光源包括光波导板且所述光波导板包括匀光部和光波导元件的情况下,所述光波导元件包括出光区域,所述匀光部与 所述光波导元件在与所述出光区域垂直的方向上依次排列;所述背光源还包括光源部,所述光源部被配置为使其发出的光线在所述匀光部内发生多次全反射之后进入所述光波导元件,之后从所述光波导元件的所述出光区域出射。
例如,在本公开第一方面或第二方面的一些实施例中,所述光源部被配置为使其发出的光线在进入所述光波导元件后在所述光波导元件中反射式传播,所述光耦出部被配置为将在所述光波导元件中反射式传播的光线耦出。
例如,在本公开第一方面或第二方面的一些实施例中,透过所述光耦出件的光线的主光轴与所述光波导元件的出光区域的延伸方向相交;或者,透过所述光耦出件的光线的主光轴沿所述光波导元件的出光区域的延伸方向。
例如,在本公开第二方面的一些实施例中,所述背光源包括光传导板,所述光传导板包括匀光部和所述光传导元件,入射至所述匀光部的光线在被所述匀光部匀化处理后进入所述光传导元件;和/或,所述背光源的源光线包括第一偏振光的成分和第二偏振光的成分,所述第一偏振光和所述第二偏振光的偏振态不同,并且从所述背光源的出光侧出射的出射光线为偏振光且包括所述第一偏振光和所述第二偏振光之一;和/或,所述显示装置还包括光会聚元件和光扩散元件,并且所述光传导元件、所述光会聚元件、所述光扩散元件和所述显示面板依次设置。
例如,在本公开第一方面或第二方面的一些实施例中,入射至所述匀光部的光线在所述匀光部内发生多次反射之后进入所述光传导元件,其中,所述多次反射包括至少一次全反射和/或至少一次非全反射式反射,和/或所述光传导板为一体化结构。
例如,在本公开第二方面的一些实施例中,所述背光源还包括光转化装置,所述光转化装置包括偏振分光元件和偏振转换元件,所述偏振分光元件被配置为将入射至所述偏振分光元件的所述源光线分为所述第一偏振光和所述第二偏振光,所述偏振转换元件被配置为将所述第一偏振光和所述第二偏振光中的一者转换为另一者,所述显示面板被配置为利用所述第一偏振光和所述第二偏振光之一生成图像光线;其中,在所述偏振转换元件将所述第一偏振光和所述第二偏振光中的一者转换为另一者之后得到的偏振光入射至所述光传导元件;或者,所述第一偏振光和所述第二偏振光中的一者在进入所述光传导元件之后被所述偏振转换元件转换为另一者。
例如,在本公开第二方面的一些实施例中,所述背光源还包括反射元件,所述反射元件被配置为反射所述偏振分光元件分光处理后得到的所述第一偏振光或所述第二偏振光;通过所述分光处理得到的所述第一偏振光和所述第二偏振光之一被所述反射元件反射后被所述偏振转换元件转换,或者在被所述偏振转换元件转换后被所述反射元件反射,或者在被所述偏振转换元件第一次转换后被所述反射元件反射且之后被所述偏振转换元件第二次转换。
例如,在本公开第一方面或第二方面的一些实施例中,所述光传导元件多个子光传导元件,所述多个子光传导元件包括彼此连接或彼此间隔的第一子光传导元件和第二子光传导元件,所述第一子光传导元件和所述第二子光传导元件沿所述背光源和所述显示面板的排列方向层叠设置或者沿与所述背光源和所述显示面板的排列方向相垂直的方向依次设置,所述偏振分光元件分光处理后得到的所述第一偏振光和所述第二偏振光入射至不同的子光传导元件;其中,在所述第一子光传导元件和第二子光传导元件沿所述背光源和所述显示面板的排列方向层叠设置的情况下,所述第一偏振光和所述第二偏振光分别入射的第一子光传导元件和第二子光传导元件都包括依次排列的光耦出件或者其中之一不包括依次排列的光耦出件。
例如,在本公开第一方面或第二方面的一些实施例中,在所述第一子光传导元件和所述第二子光传导元件层叠设置的情况下,其中,所述第一子所述第一子光传导元件的第一出光区域和所述第二子光传导元件第二出光区域交叠,并且从所述第一出光区域和所述第二出光区域之一出射的光线传播至所述第一出光区域和所述第二出光区域之另一或者透过所述偏振转换元件之后传播至所述第一出光区域和所述第二出光区域之另一;或者,所述第二子光传导元件包括沿所述第二子光传导元件的延伸方向依次设置的光传导区域和第二出光区域,所述第二子光传导元件中的偏振光在所述光传导区域中全反射和/或非全反射式反射传播并且传播至所述第二出光区域后传播至所述第一子光传导元件中,所述第二子光波导元件的光传导区域与所述第一子光波导元件的第一出光区域交叠。
例如,在本公开第一方面或第二方面的一些实施例中,所述选择性反射膜包括偏振反射膜,所述偏振反射膜包括偏振透反膜和/或偏振吸收膜;或者所述选择性反射膜包括偏振反射膜和波长选择性反射膜,所述偏振反射膜包括偏振透反膜和/或偏振吸收膜。
例如,在本公开第一方面或第二方面的一些实施例中,入射至所述偏振反射膜的偏振光的偏振态与从所述背光源的出光侧出射的出射光线的偏振态一致。
例如,在本公开第一方面或第二方面的一些实施例中,在所述光线依次传播方向上的最后一个光耦出件包括反射膜,所述反射膜包括选择性反射膜和/或非选择性反射膜。
例如,在本公开第一方面或第二方面的一些实施例中,选择性反射膜可以包括偏振反射膜。例如,偏振反射膜可以包括偏振透反膜和/或偏振吸收膜。
例如,在本公开第一方面或第二方面的一些实施例中,所述选择性反射膜还包括波长选择性反射膜。
例如,在本公开第一方面或第二方面的一些实施例中,所述多个光耦出件之间为气体;或者,所述多个光耦出件之间为透明光学介质。
例如,在本公开第一方面或第二方面的一些实施例中,反射所述反射膜使所述最后一个光耦出件在所述多个光耦出件中具有最大的反射率;和/或所述反射膜大致全部反射入射 至其上的全部光线或全部选定光线;和/或所述反射膜为镀设的反射膜或者为贴覆设置的反射膜或者为单独设置的反射膜;和/或,在所述最后一个光耦出件包括所述反射膜的情况下,透过所述光耦出件的光线的主光线与所述光传导元件的出光区域的延伸方向相交。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为根据本公开实施例的一示例提供的显示装置的局部截面结构示意图;
图1B为根据本公开实施例的一示例提供的显示装置的局部截面结构示意图;
图2为根据图1A所示示例中的一种背光源的平面结构示意图;
图3为根据图1A所示示例中的另一种背光源的平面结构示意图;
图4A为根据图1A所示示例中的另一种背光源的平面结构示意图;
图4B为根据图1A所示示例中的另一种背光源的平面结构示意图;
图5为根据图1A所示示例中的另一种背光源的平面结构示意图;
图6为从透反元件阵列出射的光线与波导介质的主表面不垂直的示例;
图7为根据本公开实施例的另一示例中的背光源的局部结构示意图;
图8为根据本公开实施例的另一示例中的背光源的局部结构示意图;
图9为根据本公开实施例的另一示例中的背光源的局部结构示意图;
图10为根据本公开实施例的另一示例中的背光源的局部结构示意图;
图11为根据本公开实施例的另一示例中的背光源的局部结构示意图;
图12为根据本公开实施例的另一示例中的背光源的局部结构示意图;
图13为根据本公开实施例的另一示例中的背光源的局部结构示意图;
图14为根据本公开另一实施例的一示例提供的背光源的局部结构示意图;
图15为根据本公开另一实施例的一示例提供的背光源的局部结构示意图;
图16为图15所示的背光源的是一个示例图;
图17为根据本公开另一实施例的另一示例提供的背光源的局部结构示意图;
图18为根据本公开另一实施例的另一示例提供的背光源的局部结构示意图;
图19为图18所示的背光源的是一个示例图;
图20为根据本公开另一实施例的再一示例提供的背光源的局部结构示意图;
图21为图20所示的背光源的是一个示例图;
图22为根据本公开再一实施例的一示例提供的背光源的局部结构示意图;
图23为图22所示背光源的截面结构示意图;
图24为根据本公开再一实施例的另一示例提供的背光源的局部结构示意图;
图25为根据本公开又一实施例的一示例提供的显示装置的局部结构示意图;
图26为根据本公开又一实施例的另一示例提供的显示装置的局部结构示意图;
图27为根据本公开又一实施例的另一示例提供的显示装置的局部结构示意图;
图28为根据本公开又一实施例的又一示例提供的显示装置的局部结构示意图;
图29为根据本公开又一实施例的又一示例提供的显示装置中的光转化装置示意图;
图30为根据本公开又一实施例的又一示例提供的显示装置中的光转化装置示意图;
图31为根据本公开又一实施例的又一示例提供的显示装置中的光转化装置示意图;
图32为根据本公开另一实施例提供的抬头显示器的局部结构示意图;以及
图33为根据本公开另一实施例提供的交通设备的示例性框图;以及
图34为根据本公开实施例的一示例提供的光线在光波导元件中传播的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
本公开实施例中使用的“平行”、“垂直”以及“相同”等特征均包括严格意义的“平行”、“垂直”、“相同”等特征,以及“大致平行”、“大致垂直”、“大致相同”等包含一定误差的情况,考虑到测量和与特定量的测量相关的误差(例如,测量系统的限制),表示在本领域的普通技术人员所确定的对于特定值的可接受的偏差范围内。例如,“大致”能够表示在一个或多个标准偏差内,或者在所述值的10%或者5%内。在本公开实施例的下文中没有特别指出一个成分的数量时,意味着该成分可以是一个也可以是多个,或可理解为至少一个。“至少一个”指一个或多个,“多个”指至少两个。
在研究中,本申请的发明人发现:一般的显示装置中的背光源需要设置较长的混光距离以保证出光的均匀性,而将背光源的混光距离设置的较长则会导致显示装置的厚度较大,影响显示装置的轻便性。
本公开的实施例提供一种显示装置、抬头显示器以及交通设备。
例如,显示装置包括:显示面板,包括显示面和与显示面相对的背侧;以及背光源,位于显示面板的背侧,背光源包括光波导元件,光波导元件包括出光区域和光耦出件阵列, 光耦出件阵列包括多个光耦出件,入射至光波导元件的光线在进入光波导元件之后至少在光波导元件的出光区域处发生多次全反射且依次传播至光耦出件阵列的多个光耦出件,传播至至少部分光耦出部中的各光耦出件的光线的一部分被光耦出件反射出光波导元件的出光区域后透过显示面板,传播至至少部分光耦出件中的各光耦出件的光线的另一部分透过光耦出件后继续在光波导元件中传播。
例如,显示装置包括显示面板以及背光源。显示面板包括显示面和与显示面相对的背侧;背光源位于显示面板的背侧。背光源包括光波导元件,光波导元件包括出光面和透反元件阵列,透反元件阵列包括多个透反元件,背光源还包括光源部,光源部被配置为使其发出的光线在进入光波导元件之后至少在光波导元件的出光面处发生多次全反射且依次传播至透反元件阵列的多个透反元件,传播至透反元件阵列的各透反元件的光线的一部分被透反元件反射出光波导元件的出光面后透过显示面板,传播至透反元件阵列的各透反元件的光线的另一部分透过透反元件后继续在光波导元件中传播。本公开提供的显示装置中,通过在背光源中设置光波导元件,可以使得出光亮度均匀,并且减小背光源的厚度以及占用显示装置中的空间,以提高显示装置的显示效果以及轻便性。
下面结合附图对本公开实施例提供的显示装置、抬头显示器以及交通设备进行描述。
图1A为根据本公开实施例的一示例提供的显示装置的局部截面结构示意图。如图1A所示,显示装置包括显示面板10和背光源20。显示面板10包括显示面10-01和与显示面10-01相对的背侧10-02,背光源20位于显示面板10的背侧10-02。例如,背光源20出射的光透过显示面板10后射向观察区30。例如,显示面板10面向背光源20的一侧为非显示侧,显示面板10远离背光源20的一侧为显示侧,观察区30位于显示面板10的显示侧,该显示侧是用户可以观看到显示图像的一侧。例如,观察区30和背光源20位于显示面板10的两侧。
例如,光耦出件包括透反元件。例如,光耦出件阵列包括透反元件阵列。例如,光耦出件组包括透反元件组。例如,光耦出件还可以是光栅(例如透射式光栅或者反射式光栅)或者散射网点结构。例如,透反元件包括具有透射和反射功能的光学膜,其可以透射部分光线且反射部分光线。作为示例,本公开部分实施例中,以光耦出件包括透反元件为例进行解释说明,但不应视为对本公开的限制。
如图1A所示,背光源20包括光源部100和光波导元件200,光波导元件200包括出光区域和透反元件阵列220,透反元件阵列220包括多个透反元件221。例如,入射至光波导元件200的光线在进入光波导元件200后至少在光波导元件200的出光面211处发生多次全反射且依次传播至透反元件阵列220的多个透反元件221。例如,光源部100被配置为使其发出的光线在进入光波导元件200之后至少在光波导元件200的出光面211处发生多次全反射且依次传播至透反元件阵列220的多个透反元件221,传播至透反元件阵列220的 各透反元件221的光线的一部分被透反元件221反射出光波导元件200的出光区域后透过显示面板10,传播至至少部分透反元件中的各透反元件221的光线的另一部分透过透反元件221后继续在光波导元件200中传播。
例如,光波导元件200的出光区域包括出光面211。例如,出光面211可以是平面或者曲面中的至少一种。例如,出光面211可以包括分布在其上的光栅或者散射网点。作为示例,本公开部分实施例中,以出光区域包括出光面211为例进行解释说明,但不应视为对本公开的限制。
本公开实施例中,通过在背光源中设置光波导元件,可以使得出光亮度均匀,并且减小背光源的厚度以及占用显示装置中的空间,以提高显示装置的显示效果以及轻便性。
例如,如图1A所示,光波导元件200还包括波导介质210,光源部100发出的光线进入波导介质210且在波导介质210中全反射传播,传播至透反元件阵列220的各透反元件221的光线的一部分被透反元件221反射出光波导元件200,另一部分经透反元件221的透射后继续全反射传播。
例如,透反元件阵列220包括多个透反元件221,传播至各透反元件221的光线在透反元件221上发生透射和反射。例如,入射到透反元件221表面的光线的一部分被透反元件221反射出光波导元件200,而该光线的另一部分经过透反元件221的透射后继续全反射传播至下一个透反元件221,且在下一个透反元件221上发生透射和反射,透射的光线会继续全反射传播至最远离光源部100的一个透反元件221(例如光线依次经过多个透反元件的透射直至最远离光源部的一个透反元件)。
例如,传播至最远离光源部的一个透反元件(也可以认为是沿光线传播方向的最后一个光耦出件)的光线的全部或者部分可以被该透反元件反射,本公开实施例在此不作限制。
例如,传播至最后一个光耦出件(例如透反元件)的光线,全部或者部分反射出光波导元件的出光区域后透过显示面板。例如,光线透过显示面板后转化为图像光线。
例如,如图1A所示,光波导元件200的出光面211与显示面板10的显示面10-01在垂直于显示面10-01的方向上层叠设置,且光源部100位于光波导元件200的侧方。本公开实施例中以光波导元件位于显示面板的下方,光源部位于光波导元件的侧方为例,但不限于此。例如,显示面板10包括用于显示图像的显示面,光波导元件200的出光面位于显示面板10的远离其显示面的一侧,例如显示面板10的下方,而不是显示面板10的侧方;光源部100位于光波导元件200的侧方,例如背光源20为侧入式背光源。
例如,光源部100被配置为输出准直光线。例如,光源部100包括光源和准直元件,准直元件被配置为将光源发出的具有一定发散角度的光线转化为准直光线。这里的“准直光线”指平行或近乎平行的光线,光源部100输出准直光线可以使得尽可能多的光线都能满足全反射条件进而被利用。
例如,光源可为单色光源或混色光源,例如红色单色光源、绿色单色光源、蓝色单色光源或白色混色光源,上述单色光源最终可形成单色图像,上述混色光源则可形成彩色图像。例如,光源可以是激光光源或发光二极管(LED)光源。例如,光源部可以包括一个光源或多个光源。
例如,上述准直元件可以包括凸透镜、凹透镜或菲涅尔透镜,或上述透镜的任意组合。
例如,上述准直元件可以包括凸透镜,光源可设置在凸透镜的焦点附近,由此,光源出射的发散光在经过透镜后可以转化为平行或近乎平行的准直光线。
例如,图2为根据图1A所示示例中的一种背光源的平面结构示意图。如图2所示,光源部100包括的光源发出的光线可以为一维光束,例如可以认为是主要在一维方向上延伸的光束。例如,光源部100可以包括条状灯带光源,该光源发出光束的截面近似为一维线状,或者可以是窄带状。
例如,图3为根据图1A所示示例中的另一种背光源的平面结构示意图。如图3所示,透反元件阵列220包括的多个透反元件阵列220中的至少部分透反元件221沿第一方向依次排列且沿与第一方向相交的第二方向延伸。例如,透反元件221的数量可以为2个或者更多个。第一方向可以是X方向,第二方向可以是Z方向,但不限于此,第一方向和第二方向可以互换。
例如,如图3所示,光源部100的光源可以包括沿第二方向排列的多个子光源101,多个子光源101被配置为发出进入至少部分透反元件221的光线。例如,子光源101可以为点光源,光源部100可以为多个点光源的组合,多个子光源101沿第二方向排列为线状,由此,光源发出的光束也可以认为是一维光束。本公开实施例中,将多个单独的子光源排列,可以方便各个子光源的更换和拆装,例如任一个子光源损坏时,可以通过单独拆装更换进行修复,无需像条装灯带一样整个替换,可以节省成本。
例如,图4A为根据图1A所示示例中的另一种背光源的平面结构示意图。如图4A所示,透反元件阵列200包括的多个透反元件220沿第二方向延伸,光源部100包括沿第二方向排列的多个扩束部102以及位于多个扩束部102在第二方向上的一侧的子光源101,多个扩束部102被配置为将子光源101发出的光线沿第二方向扩束,且扩束后的光线被配置为传输至透反元件阵列220。
例如,光源部100包括的光源可以为单个点光源101,该点光源发出单点光束。例如点光源可以为激光光源,该光源的光束截面很小,光能高度集中,由此,可以将点光源发出的光束在一维方向上进行扩束,扩束后的光线再经过波导介质和透反元件阵列,转变为面光源。
例如,如图4A所示,点光源101发出的光线首先经过多个扩束部102以在第二方向上进行延伸扩束,然后沿第一方向传输至透反元件阵列220。例如,点光源101发出的光线延 伸扩束传播时,可以沿反射路径、全反射路径和直线路径中的任意一种或多种传播方式传播。
例如,扩束部102可为光栅,或者也可为另一列透反元件阵列,本公开实施例对此不作限制。
例如,光源可采用侧入式的方式将光线导入光波导元件,可以避免进一步增加背光源的厚度。
例如,在本公开实施例提供的背光源应用于对亮度有较高要求的显示设备,例如抬头显示器时,采用发出一维光束的光源(例如,灯带或者多个线状排列的点光源)可以为背光源提供较高的亮度,并且方案简单易行。
例如,如图4B为另一种背光源的结构示意图。图4B所示背光源与图4A所示背光源的区别在于扩束部位于光波导元件中。
例如,如图1A所示,光波导元件200还包括位于透反元件阵列220面向光源部100一侧的光耦入部230,被配置为使得进入光波导元件200的光线满足全反射条件,以在波导介质210中全反射传播。本公开实施例不限于光波导元件包括光耦入部,例如,光波导元件还可以不包括光耦入部,在入射到波导介质的光线的角度满足全反射条件时,该光线可以实现在波导介质中的全反射传播。
例如,波导介质的折射率为n1,波导介质以外的光疏介质(例如空气)的折射率为n2,光线进入波导介质时的入射角或者经过光耦入部后的入射角不小于全反射临界角arcsin(n2/n1),则该光线满足全反射条件。
例如,本公开实施例中的光耦入部230可以包括表面光栅、体光栅、闪耀光栅、棱镜和反射结构的至少一种,通过反射、折射和衍射效应中的至少一种将光源发出的光线进入波导介质,使其满足全内反射条件进而传导。
例如,如图1A所示,光波导元件200包括两个彼此相对的第一主表面211和第二主表面212,光耦入部230可设置在第一主表面211和第二主表面212上,也可以设置在连接两个主表面的侧面上。例如,光波导元件的两个主表面也可以为称为波导介质的两个主表面。例如,透反元件阵列位于第一主表面和第二主表面之间。例如,光线在上述第一主表面和/或第二主表面上至少发生全反射传播,也可能会存在部分非全反射,如镜面反射。
例如,在光波导元件包括多个子光波导元件时,例如多个子光波导元件沿垂直于第一主表面的方向交叠设置,最上侧的子光波导元件的上表面为第一主表面,最下侧的子光波导元件的下表面为第二主表面。
例如,在光波导元件包括多个子光波导元件时,多个子光波导元件沿平行于显示面的方向排列。例如,多个子光波导元件沿垂直于显示面板的方向交叠设置,且在沿平行于显示面的方向上部分交叠。
例如,第一主表面211和第二主表面212包括靠近显示面板10的上表面211以及远离显示面板10的下表面212,光耦入部230可以设置在上表面211或下表面212上,且位于透反元件阵列220面向光源部100的一侧。例如,第一方向(X方向)和第二方向(Z方向)平行于上述主表面。
例如,波导介质210由可实现波导功能的材料制成,一般为折射率大于1的透明材料。例如,波导介质210的材料可以包括二氧化硅、铌酸锂、绝缘体上硅(SOI,Silicon-on-insulator)、高分子聚合物、Ⅲ-Ⅴ族半导体化合物和玻璃等中的一种或多种。
例如,波导介质210可为平面基板、条形基板和脊型基板等。例如,本公开实施例的至少一示例中,波导介质采用平面基板以形成均匀的面光源。
例如,如图1A至图3所示,透反元件阵列220包括沿光线全反射传播方向排列的多个透反元件221,上述“光线全反射传播方向”可以指光线传播的整体(宏观)的方向,例如这里指图1A所示的第一方向(例如X方向),进入光波导元件200的光线在波导介质210的两个主表面发生全内反射,使得该光线整体沿X方向传播至透反元件阵列220。
例如,如图1A至图3所示,透反元件221被配置为透射光线的同时反射光线。例如,在波导介质210内发生全反射传导的光线传输至透反元件221时,光线在透反元件221处发生反射,反射后的光线角度不再满足全反射条件,进而出射;透射的光线则继续沿全反射路径传播,继续传输至下一个透反元件221,继续发生反射和透射,被该下一个透反元件221反射的光线从光波导元件200中出射,经该下一个透反元件221透射的光线继续沿全反射路径传播;依次类推,直至传输至最后一个透反元件221。
例如,如图1A所示,透反元件221可采用镀设或贴覆的方式设置在波导介质210中。例如,波导介质210可被划分为多个截面为平行四边形的柱体,在拼接的柱体之间设置透反元件221,例如,相邻透反元件221之间的介质可以为波导介质210。例如,波导介质210包括沿第一方向排列且彼此贴合的多个波导子介质,相邻波导子介质之间夹设透反元件221,各波导子介质被配置为使得光线发生全内反射,透反元件被配置为通过反射破坏部分光线的全反射条件而将该部分光线耦出光波导元件。
例如,本公开实施例以透反元件阵列220中的多个透反元件221均彼此平行为例进行描述,例如从透反元件阵列出射的光线为平行光。但本公开实施例不限于此,透反元件阵列中的多个透反元件还可以不平行,通过调整多个透反元件之间的夹角,可以将从透反元件阵列出射的光线调整为会聚光或者发散光。
例如,如图1A所示,各透反元件221与出光面211之间的夹角为第一夹角,第一夹角和光线全反射临界角之和在60°~120°范围内。例如,上述全反射临界角可以是光线在光波导元件中传播时的全反射临界角。例如,上述全反射临界角可以是光线在出光面211发生 全反射的临界角。例如,第一夹角和全反射临界角之和在70°~120°范围内。例如,第一夹角和全反射临界角之和在80°~100°范围内。例如,第一夹角和全反射临界角之和在85°~95°范围内。本公开实施例通过对透反元件与出光面之间的第一夹角和光线在出光面发生全反射时的全反射临界角之和的设置,对于同一路光线而言,可以使得光线仅在各透反元件中发生一次反射,例如可以避免与透反元件平行或接近平行的光线在其上发生透射和反射,可以提高光线的均匀性,减少或避免杂散光的产生。
例如,各透反元件221与第一主表面211的夹角为第一夹角,在波导介质210中全反射传播的光线与第一主表面211和第二主表面212之间的夹角为第二夹角,第一夹角和第二夹角之差不大于10度。例如,第一夹角和第二夹角之差不大于5度。例如,第一夹角和第二夹角相等,例如可以认为在波导介质210中全反射传播的光线与透反元件221平行,对于同一路光线而言,可以使得光线仅在各透反元件中发生一次反射,如避免与透反元件平行的光线在其上发生透射和反射,可以提高光线的均匀性,减少或避免杂散光的产生。
例如,上述第一夹角和第二夹角可以均为锐角。
例如,图1B为另一种显示装置的局部结构示意图。图1B与图1A所示示例不同之处在于,光波导元件200远离显示面板10的一侧设置有反射装置600,在这种情况下透反元件221与全反射传播的光线之间的角度可以不作限制,例如可以不平行,例如大于10度,通过在光波导元件远离显示面板的一侧设置反射装置可以将漏出的杂散光反射回去以提高光波导元件出射光的均匀性。例如,上述反射装置可以为一反射层或者其他能起到反射作用的结构。
例如,如图1A至图3所示,本公开实施例示意性的示出相邻透反元件221在主表面的正投影彼此相接,可以避免两个透反元件之间出现不出光的黑暗区域。但不限于此,相邻透反元件在主表面的正投影可以部分交叠,可以避免光线在透反元件边缘的弱化,通过透反元件的交叠可以使得出光更加均匀。
例如,如图1A至图3所示,沿光线在波导介质210中全反射传播的方向,多个透反元件221均匀排列且反射率逐渐增大。例如,距光源部100越近的透反元件221的反射率越小。例如,透反元件阵列中沿出光面的延伸方向依次排列的透反元件反射率在光线的传播方向上逐渐增大(例如逐个增大)或呈区域性地逐渐增大。例如,透反元件阵列中沿出光面的延伸方向依次排列的透反元件的排列密度逐渐增大或呈区域性地逐渐增大。例如,区域性增大可以是两个或两个以上的区域,上述不同区域中透反元件的反射率不同且逐渐增大。
上述均匀排列既可以指相邻透反元件设置为正投影彼此相接的排列,也可以指相邻透反元件设置为正投影部分交叠的排列。由于光线在传播过程中会逐步反射出波导介质,光强会逐步衰减,通过将各透反元件的透反性质设置的不同,例如沿着光线全反射传播的路 径,透反元件的反射率逐渐增加,可以使得各个透反元件反射出的光线强度比较均匀,波导介质210各部分的出光较均匀。
例如,沿光线在波导介质中全反射传播的方向,多个透反元件的排列密度逐渐增大。例如,与光源部之间距离越近的部分透反元件的排列密度越小。例如,上述排列密度小的位置可以为将相邻透反元件设置为正投影彼此相接,上述排列密度大的位置可以为将相邻透反元件设置为正投影部分交叠。例如,上述排列密度小的位置可以为将相邻透反元件设置为正投影彼此交叠,且交叠的部分较小,上述排列密度大的位置可以为将相邻透反元件设置为正投影彼此交叠,且交叠的部分较大。本公开实施例也可以通过将各透反元件的透反性质设置为相同或几乎相同,通过调节透反元件的排列密度来使得各透反元件反射出的光线的强度均匀。
例如,图5为根据图1A所示示例中的另一种背光源的平面结构示意图。图5所示背光源与图3所示背光源的不同之处在于透反元件阵列中透反元件的反射率的变化不同。例如,如图5所示示例中,透反元件阵列220包括至少两个区域,例如区域01和区域02,至少两个区域中的一个区域01内的透反元件221的平均反射率大于其他区域(如区域02)内的透反元件221的平均反射率。上述区域01的透反元件的平均反射率大于其他区域的透反元件的平均反射率可以使得区域01内的光强大于其他区域的光强,当然本公开实施例不限于通过调节区域内透反元件的平均反射率来调节区域出射光的光强,还可以通过其他方式调节区域内出射光的强度。
例如,区域01中可以包括至少一个透反元件221,其他区域02中包括多个透反元件221,其他区域中的多个透反元件221的平均反射率较小以使该光波导元件出射的光线亮度不均匀,该光波导元件适用于不均匀显示的应用场景,例如广告牌、在特定区域集中显示内容的显示器。例如,区域01可以位于中间区域,其他区域02可以围绕区域01。本公开实施例不限于此,例如,区域01中包括的多个透反元件221的反射率逐渐增大(例如逐个增大),而其他区域中的多个透反元件221的反射率可以均相同以使该光波导元件出射的光线亮度不均匀。
例如,透反元件221对光线的透射和反射,可以无波长选择性及偏振选择性,例如采用无机电介质膜层,例如,由一层或多层金属氧化物/金属氮化物等膜层堆叠而成的薄膜,每层膜层的厚度约在10nm-1000nm,通过改变膜层材质和/或膜层堆叠方式就可以调控无机电介质膜层整体的透射和反射性能。由此,入射到透反元件221的光线在经过透反元件221的透射和反射后的波长性质和偏振性质几乎不变。
例如,透反元件阵列220中的至少一个透反元件221包括选透膜,进入光波导元件200中的光线包括第一偏振光和第二偏振光,选透膜被配置为对第一偏振光的反射率大于对第二偏振光的反射率,对第二偏振光的透射率大于对第一偏振光的透射率,由此,透反元件 可以逐步将第一偏振光反射出光波导元件。
上述进入光波导元件的光线可以为非偏振光,也可以直接为两种偏振态的偏振光。这里的“非偏振光”指光源部发出的光线可以同时具有多个偏振特性但不表现出唯一的偏振特性,例如光源部发出的光线可以认为是由两种互相垂直的偏振态的光线合成,可以认为光源部发出的非偏振光可以分解为两个互相垂直的偏振态的光线。
例如,选透膜可以为增亮膜(BEF,brightness enhancement film),其对一种偏振光的反射率较高且对另一种偏振光的透射率较高(例如,选透膜对S偏振光反射率较高,且对P偏振光透射率较高),透反元件可以利用偏振透反的选择性,使得光线逐步被透反元件反射出光波导元件。
例如,如图1A所示,从透反元件阵列220出射的光线在不满足全反射条件出射时,出射的方向可为垂直于波导介质210的主表面的方向。
图6为从透反元件阵列出射的光线与波导介质的主表面不垂直的示例。如图6所示,在入射至透反元件的光线的角度改变时,和/或改变透反元件与主表面之间的夹角,从透反元件阵列出射的光线还可以与波导介质的主表面不垂直。
本公开实施例中,从透反元件阵列出射的光线与波导介质的主表面可以垂直或不垂直,从不同透反元件出射的光线的出射方向平行或近乎平行,可以形成准直光束。本公开实施例中,采用厚度较小的光波导元件将光源输出的光线转化为准直的面光源光线,可以节约显示装置的厚度。
图7为根据本公开实施例的另一示例中的背光源的局部结构示意图。图7所示示例与图1A所示示例不同之处在于光源部的数量以及透反元件的排列方式不同,而相邻透反元件的位置关系可与图1A所示示例相同。如图7所示,透反元件阵列220包括沿第一方向排列的第一透反元件组2201和第二透反元件组2202,各透反元件组包括沿第一方向排列的多个透反元件221,不同透反元件组的透反元件221不平行。例如,图7示意性的示出各透反元件组包括的多个透反元件彼此平行,且不同透反元件组中的透反元件不平行。
例如,如图7所示,背光源还包括光源部100,光源部100包括第一光源部110和第二光源部120,第一光源部110和第二光源部120分别位于透反元件阵列220在第一方向的两侧,第一透反元件组2201被配置为反射从第一光源部110进入光波导元件200的光线,且第二透反元件组2202被配置为反射从第二光源部120进入光波导元件200的光线。例如,第一透反元件组2201被配置为仅反射从第一光源部110进入的光线,且第二透反元件组2202被配置为仅反射从第二光源部120进入的光线。本公开实施例通过设置两个光源部以及两组透反元件组,可以提高光波导元件出射光线的强度。
例如,如图7所示,第一透反元件组2201中的透反元件221和第二透反元件组2202中的透反元件221之一与第一方向(X的箭头所指的方向)之间的夹角为锐角,另一个与 第一方向之间的夹角为钝角,第一透反元件组可以仅反射从第一光源部进入的光线,第二透反元件组可以仅反射从第二光源部进入的光线。例如,第一透反元件组2201中的透反元件221和第二透反元件组2202中的透反元件221的倾斜方向不同。
例如,光源部在出光面的延伸方向上还可以位于第一透反元件组和第二透反元件组之间。
例如,背光源中还可以设置反射装置,反射装置设置在背离光波导元件出光面侧的另一侧,用于将从光波导元件中漏出的光线反射回光波导元件,使得尽可能多的光线转化为准直光线并输出,提高光线利用率。
例如,图8为根据本公开实施例的另一示例中的背光源的局部结构示意图。图8所示示例与图1A所示示例不同之处在于光源部的数量以及透反元件对光源部反射光线的出射方向。如图8所示,光源部100包括第一光源部110和第二光源部120,第一光源部110和第二光源部120分别位于透反元件阵列220在第一方向的两侧。例如,各透反元件221的两侧表面均可以反射第一光源部110或第二光源部120进入的光线,以使光波导元件的两侧主表面均为出光面。
例如,位于中间位置和/或靠近中间位置的透反元件的反射率大于位于两侧位置的透反元件的反射率,以使从光波导元件出射的光线具有较好的均匀性。本示例中的背光源可以应用于需要两面出射光的场景,例如广告牌等。
例如,图9为根据本公开实施例的另一示例中的背光源的局部结构示意图。如图9所示,背光源还包括位于光源部100和光波导元件200之间的分光元件300,分光元件300被配置为将入射至分光元件300的光线分为多个子光束。例如,分光元件300被配置为将光源部100射向光波导元件200的光线分为多个子光束。例如,光源部100发出的光线可以直接出射至分光元件300,也可以经过其他元件后出射至分光元件300。例如,分光元件300可以将光源部100射向光波导元件200的光线分为两束子光线或三束子光线,本公开实施例不限于此,还可以分为更多个子光束。例如,分光元件300可以为棱镜。
例如,如图9所示,光波导元件200包括多个子光波导元件201,多个子光束被配置为进入多个子光波导元件201中,且被位于各子光波导元件201中的透反元件阵列221反射出光波导元件200。例如,透反元件阵列包括分别位于多个子光波导元件中的多个子透反元件阵列。例如,多个子透反元件阵列与多个子光波导元件一一对应。
例如,多个子光波导元件201的数量可与多个子光束的数量相同,多个子光束被配置为一一进入相应的子光波导元件中。本公开实施例不限于此,多个子光波导元件的数量也可以小于多个子光束的数量,至少两束子光线进入同一子光波导元件中。
例如,多个子光波导元件201的厚度,小于如图1A所示的实施例中光波导元件的厚度;将原本在一个光波导元件中传输的光线,对光线分束后,分别耦入多个更薄的波导元件, 光线在厚度较小的波导元件中传输,全反射次数会增加,可以使得出光分布更加均匀。例如,本实施例中的均匀可以是光线明暗均匀,一般光源(如点光源)发出的光线,中间光线较强而边缘部分较暗,光源发出的光线经过光波导元件输出后,耦出的准直光线也是中间偏亮而两边偏暗的状态,而要调节准直光线的明暗程度是比较困难的;例如在光源发出的光线进入光波导元件之前,或者从光波导元件耦出之前,就改善光线的均匀度,可以获得明暗均匀的面光源光线;例如,增加光线的全反射次数可以改善明暗均匀度,例如可以设置更薄的光波导元件,用于增加光线的全反射次数。
本公开实施例中,通过将光源部的光线分为多个子光束,且设置多个子光波导元件以将进入其中的多个子光束耦出,可以进一步提高背光源出光的均匀性。
例如,多个子光波导元件可以为独立的结构,也可以集成在同一基板上。
例如,各子光波导元件可以均包括波导介质,且不同子光波导元件中的波导介质的折射率可以相同,也可以不同,本公开实施例对此不作限制。
例如,各子光波导元件中透反元件阵列包括的透反元件的数量以及排列方式可以相同,也可以不同,本公开实施例对此不作限制。
例如,各子光波导元件可以包括光耦入部,也可以不包括光耦入部。例如,各子光波导元件均包括光耦入部时,不同子光波导元件的光耦入部可以相同,例如可以均采用几何方式(例如,棱镜耦入或反射结构耦入等非光栅耦入方式)进入,也可以不同,本公开实施例对此不作限制。
例如,如图9所示,光波导元件200包括多个子光波导元件201,透反元件阵列210包括分别位于多个子光波导元件201中的多个子透反元件阵列;背光源还包括分光元件300,分光元件300被配置为将光源部100发出的射向光波导元件200的光线分为多个子光束且使多个子光束分别进入多个子光波导元件201中,且进入各子光波导元件201中的各子光束被位于各子光波导元件201中的子透反元件阵列反射出光波导元件200的出光面。
例如,光源部100发出的射向光波导元件200的光线包括特性不同的第一特性光和第二特性光,分光元件300被配置为对光源部100发出的射向光波导元件200的光线进行分光处理,使通过分光处理得到的第一特性光入射至第一子光波导元件2011,且使通过分光处理得到的第二特性光入射至第二子光波导元件2012。
例如,第一特性光和第二特性光分别为偏振态不同的第一偏振光和第二偏振光;或者,第一特性光和第二特性光分别为波长分布不同的第一颜色光和第二颜色光。
例如,波长分布不同的光线,可以认为其颜色也不同;例如,第一颜色光和第二颜色光的波长分布不同,其颜色也可以不同。
例如,分光元件包括偏振分光元件,偏振分光元件被配置为对第一偏振光和第二偏振光中一者的反射率,大于其对另一者的反射率;和/或,偏振分光元件被配置为对第一偏振 光和第二偏振光中一者的透射率,大于其对另一者的透射率。
例如,偏振分光元件对第一偏振光的反射率,大于其对第二偏振光的反射率;和/或,偏振分光元件对第二偏振光的透射率,大于其对第一偏振光的透射率;例如,偏振分光元件对第二偏振光的反射率,大于其对第一偏振光的反射率;和/或,偏振分光元件对第一偏振光的透射率,大于其对第二偏振光的透射率。
例如,偏振分光元件被配置为反射第一偏振光和第二偏振光中的一者,且透射第一偏振光和第二偏振光中的另一者。例如,上述反射第一偏振光和第二偏振光中的一者,且透射另一者,可以认为只反射第一偏振光和第二偏振光中的一者,且只透射另一者;例如,偏振分光元件对第一偏振光的反射率几乎100%且对第二偏振光的透射率几乎100%。或者,也可以认为对第一偏振光和第二偏振光中的一者的反射率高,且对另一者的反射率高,例如偏振分光元件对第一偏振光的反射率为50%~99%,且对第二偏振光的透射率为50%~99%。
分光元件还包括反射元件,反射元件被配置为反射第一偏振光和第二偏振光之一。
例如,如图9所示,多个子光束包括偏振方向不同的第一偏振光束1001和第二偏振光束1002,分光元件300包括偏振分光元件310,偏振分光元件300被配置为对光源部100发出的射向光波导元件200的光线进行偏振分光处理,以使多个子光束包括偏振态不同的第一偏振光束1001和第二偏振光束1002,使第二偏振光束1002入射至第二子光波导元件2012,且使第一偏振光束1001入射至第一子光波导元件2011。上述偏振分光元件透射第二偏振光束且反射第一偏振光束,不限定为只反射第二偏振光束且至透射第一偏振光束,例如,偏振分光元件对第二偏振光束的透射率高,对第一偏振光束的反射率高。本公开实施例中的第一偏振光束和第二偏振光束可以互换。
例如,如图9所示,第一子光波导元件2011的透反元件被配置为对第一偏振光的反射率大于对第二偏振光的反射率,第二子光波导元件2012的透反元件被配置为对第二偏振光的反射率大于对第一偏振光的反射率,可以提高背光源出射光的强度,提高光线的利用率。
当然,本公开实施例不限于此,各子光波导元件中的透反元件也可以无偏振选择特性。
例如,如图9所示,分光元件300还包括反射元件320,反射元件320被配置为将第一偏振光束1001反射且被反射后的第一偏振光束传播至第一子光波导元件2011中。本公开实施例不限于此,反射元件也可以被配置为将第二偏振光束反射且被反射后的第二偏振光束传播至第二子光波导元件中。例如,反射元件的作用是将分束后的第一偏振光束传输至第一子光波导元件,反射元件可以用其他具有类似功能的元件替代。
例如,本公开中光线传播至元件/区域,可以是直接传播至元件/区域,例如没有经过其他光学元件直接传播至上述元件/区域;或者,也可以是经过其他光学元件,例如反射元件、折射元件、散射元件、衍射元件及聚光元件中的至少一者的作用后,传播至上述元件/区域。
例如,光源部100发出的非偏振光线经过具有偏振分光功能的偏振分光元件310后,透射光线包括P偏振光(例如,第二偏振光),反射光线包括S偏振光(例如,第一偏振光);或者透射光线包括S偏振光(例如,第二偏振光),反射光线包括P偏振光(例如,第一偏振光),本公开实施例对此不做限制。
例如,偏振分光元件310可以具有透射一种特性的光线和反射另一种特性的光线的作用,例如偏振分光元件310可以具有透射一种偏振态的光线和反射另一种偏振态的光线的特性,该偏振分光元件310可以利用上述透反特性实现分束。
例如,偏振分光元件310可以为透反膜,通过透射部分光线和反射另一部分光线实现分束作用。例如,透反膜可以透射光源部100发出的光线中的第二偏振光,且反射光源部100发出的光线中的第一偏振光。
例如,该透反膜可以是具有偏振透反功能的光学膜,例如是可以将非偏振光线通过透射和反射分束为两个不同的偏振光的光学膜,例如可以是将光线分束为互相垂直的两个偏振光的光学膜;上述光学膜可以由多层具有不同折射率的膜层按照一定的堆叠顺序组合而成,每个膜层的厚度约在10~1000nm之间;膜层的材料可以选用无机电介质材料,例如,金属氧化物和金属氮化物;也可以选用高分子材料,例如聚丙烯、聚氯乙烯或聚乙烯。
例如,透射的P偏振光经过第二子光波导元件2012中的第二光耦入部232进入第二子光波导元件2012,反射的S偏振光经过反射元件320的反射后入射到第一子光波导元件2011中的第一光耦入部231以进入第一子光波导元件2011。S偏振光和P偏振光经过各自波导元件中的透反元件阵列,以准直光线的状态输出,可以实现将普通光源转化为均匀的面光源的效果。
例如,如图9所示,多个子光波导元件在垂直于显示面板的显示面的方向交叠设置,由此可以提高背光源的亮度,提升光线的均匀性。上述交叠设置包括完全交叠设置和部分交叠设置,例如多个子光波导元件在平行于光波导元件的出光面的平面上的正投影可以完全交叠,也可以部分交叠,本公开实施例对此不作限制。图9示意性的示出第一子光波导元件与第二子光波导元件完全交叠设置。
例如,如图9所示,第一子光波导元件2011和第二子光波导元件2012在垂直于显示面板的显示面的方向交叠,例如第一子光波导元件2011和第二子光波导元件2012在Y方向交叠,且从第二子光波导元件2012出射的光线经过第一子光波导元件2011后射向显示面板。例如,如图9所示,从第二子光波导元件2012出射的光线可以经过第一子光波导元件2011中的透反元件阵列,也可以不经过第一子光波导元件2011中的透反元件阵列,本公开实施例对此不作限制。
例如,当从第二子光波导元件出射的光线经过第一子光波导元件中的透反元件阵列时,第一子光波导元件中的透反元件阵列对透射的光线具有较高的透射率。
例如,如图9所示,传输至第一子光波导元件2011的透反元件的第一偏振光束1001与该透反元件的夹角为第三夹角,传输至第二子光波导元件2012的透反元件的第二偏振光束1002与该透反元件的夹角为第四夹角,第三夹角和第四夹角之差不大于5度。上述第三夹角和第四夹角均可以指入射到透反元件表面且透射的光线与该透反元件的夹角。
例如,第三夹角和第四夹角相等,则可以根据各子光波导元件中透反元件的倾斜角度来调节进入子光波导元件中的偏振光的角度。例如,将不同子光波导元件与相应偏振光之间的夹角设置为相同还可以方便子光波导元件的制作,以及入射光角度的调整。
例如,如图9所示,进入第一子光波导元件2011中的第一偏振光束1001的全反射传播方向与进入第二子光波导元件2012中的第二偏振光束1002的全反射传播方向相同时,第一子光波导元件2011中的透反元件可以与第二子光波导元件2012中的透反元件之间的夹角不大于5度,例如,两个子光波导元件中的透反元件平行,以方便光波导元件的制作。
例如,如图9所示,第一子光波导元件2011中的透反元件和第二子光波导元件2012中的透反元件与第一方向之间的夹角可以均为锐角,或者可以均为钝角。例如,第一子光波导元件2011中的透反元件和第二子光波导元件2012中的透反元件的倾斜方向相同。这里的倾斜方向可以指透反元件相对于出光面的倾斜方向。但不限于此,这里的倾斜方向还可以指相对于Y方向,向左侧或者右侧的倾斜的方向。
在图9所示的X方向的箭头所指的方向为第一方向(例如涉及上述与方向的夹角时,可以将第一方向视为矢量)且进入第一子光波导元件2011中的第一偏振光束1001的全反射传播方向与进入第二子光波导元件2012中的第二偏振光束1002的全反射传播方向相同,则各偏振光的全反射传播方向与第一方向相同时,各透反元件与第一方向的夹角可以均为锐角;各偏振光的全反射传播方向与第一方向相反时,各透反元件与第一方向的夹角可以均为钝角。例如,图10为根据本公开实施例的另一示例中的背光源的局部结构示意图。图10所示示例与图9所示示例不同之处在于多个子光波导元件的位置关系不同。如图10所示,多个子光波导元件沿第一方向排列。例如,多个子光波导元件在垂直于显示面板的显示面的方向没有交叠,既可以减少背光源的厚度,还可以通过将各子光波导元件的长度设置的较小以减小光波导元件边缘光强弱化的程度。例如,多个子光波导元件在垂直于显示面板的显示面的方向没有交叠,可以是恰好相接,也可以存在一定距离,如图10所示。
例如,多个子光波导元件可以包括沿第一方向排列的第一子光波导元件2011和第二子光波导元件2012,偏振分光元件310透射的第二偏振光束1002经过第二子光波导元件2012中的第二光耦入部232进入第二子光波导元件2012,反射的第一偏振光束1001没有被反射元件反射就经过第一子光波导元件2011中的第一光耦入部231进入第一子光波导元件2011。第一偏振光束1001和第二偏振光束1002经过各自子波导元件中的透反元件阵列,以准直光线的状态输出,可以实现将普通光源转化为均匀的面光源的效果。
例如,第一子光波导元件2011中光线的全反射传播方向与第二子光波导元件2012中光线的全反射传播方向相反,则第一子光波导元件2011中的透反元件与第二子光波导元件2012中的透反元件不平行,例如,两者之一与第一方向的夹角为锐角,另一个与第一方向的夹角为钝角,以实现透反元件对光线的耦出。例如,第一子光波导元件2011中的透反元件与第二子光波导元件2012中的透反元件的倾斜方向不同。
例如,图11为根据本公开实施例的另一示例中的背光源的局部结构示意图。如图11所示,分光元件300被配置为将光源部100射向光波导元件的光线分为多束波长不同的光线。例如,分光元件300可以包括分光棱镜、分光光栅等可以起到将不同波长光线分离的元件。
例如,如图11所示,多个子光束包括波长不同的第一颜色光1003和第二颜色光1004,多个子光波导元件201包括第一子光波导元件2011和第二子光波导元件2012,第一颜色光1003被配置为进入第一子光波导元件2011中,且被位于第一子光波导元件2011中的透反元件阵列反射出第一子光波导元件2011,第二颜色光1004被配置为进入第二子光波导元件2012中,且被位于第二子光波导元件2012中的透反元件阵列反射出第二子光波导元件2012。
本公开实施例通过将不同颜色光线进入不同子光波导元件中,有利于不同颜色光线的全反射传播调控,以提高光线的利用率。
例如,第一子光波导元件2011的透反元件被配置为对第一颜色光1003的反射率大于对第二颜色光1004的反射率,第二子光波导元件2012的透反元件被配置为对第二颜色光1004的反射率大于对第一颜色光1003的反射率。本公开实施例通过对不同子光波导元件中透反元件的反射率和透射率的调控,可以提高入射到相应子光波导元件中的光线的利用率。
例如,第一颜色光1003可以为红光或者绿光,第二颜色光1004可以为蓝光。本公开实施例不限于此,第一颜色光和第二颜色光可以互换。
例如,图12为根据本公开实施例的另一示例中的背光源的局部结构示意图。如图12所示,多个子光束还包括第三颜色光1005,第三颜色光1005被配置为进入第一子光波导元件2011和第二子光波导元件2012之一中。例如,如图12所示,第一颜色光1003和第三颜色光1005进入第一子光波导元件2011中,第二颜色光1004进入第二子光波导元件2012中。本公开实施例不限于此,第三颜色光也可以与第二颜色光进入同一子光波导元件中。
本公开实施例中,通过将两种不同颜色的光线进入同一子光波导元件中,既可以降低光波导元件制作成本,还可以减薄背光源的厚度。
例如,第一颜色光1003和第三颜色光1005可以分别为红光和绿光,第二颜色光1004可以为蓝光。本公开实施例不限于此,第一颜色光和第三颜色光还可以分别为绿光和蓝光,第二颜色光为红光。
本公开实施例中将波长相近的两种颜色光线进入同一子光波导元件中,可以方便子光波导元件中的透反元件阵列的调节,还可以降低成本。
例如,图13为根据本公开实施例的另一示例中的背光源的局部结构示意图。图13所示示例与图12所示示例不同之处在于,多束不同颜色光线被配置为一一进入多个子光波导元件中。如图13所示,多个子光束还包括第三颜色光1005,多个子光波导元件201还包括第三子光波导元件2013,第三颜色光1005被配置为进入第三子光波导元件2013中,且被位于第三子光波导元件2013中的透反元件阵列反射出第三子光波导元件2013。本公开实施例通过将不同颜色光线一一进入不同子光波导元件中,可以进一步提高光线的利用率。
例如,如图13所示,第一子光波导元件2011的透反元件被配置为对第一颜色光1003的反射率大于对第二颜色光1004和第三颜色光1005的反射率,第二子光波导元件2012的透反元件被配置为对第二颜色光1004的反射率大于对第一颜色光1003和第三颜色光1005的反射率,且第三子光波导元件2013的透反元件被配置为对第三颜色光1005的反射率大于对第一颜色光1003和第二颜色光1004的反射率。本公开实施例通过对不同子光波导元件中透反元件的反射率和透射率的调控,可以提高入射到相应子光波导元件中的光线的利用率。
例如,如图13所示,第一子光波导元件2011的波导介质的折射率、第二子光波导元件2012的波导介质的折射率以及第三子光波导元件2013的波导介质的折射率可以不同,且各自被设置为适应进入相应子光波导元件的光线的折射率。例如,第一颜色光1003、第二颜色光1004及第三颜色光1005分别为蓝光、红光和绿光,例如三种光线耦入同一光波导元件,不同波长的光线在同一介质中传播,介质对各种光线的折射率不同,一般而言三种波长光线的全反射角度不同(例如红光的全反射临界角大于蓝光的全反射临界角),透反元件设置的角度也要考虑三种角度传播的光线,因此效率较低;如果要使得三种光线的全反射角度接近,又需要调控介质具有不同的折射率。综上,可以将各种光线分开,每个子光波导元件可以选择能将对应光线尽可能满足全反射条件传播的介质和对应的透反元件,可以提高光线利用率。
例如,本公开实施例不限于多个子光束为偏振方向或者波长不同的子光线,该多个子光束中的各束子光线也可以为具有相同性质的子光线,例如分光元件仅被配置为将光源部射出的一束光线分为具有相同性质的多个子光束,且该多个子光束被配置为一一进入多个子光波导元件中。相对于将光源部射出的一束光线进入一个光波导元件中,本公开实施例通过将光源部射出的一束光线分为多束光线,且分别进入不同的子光波导元件中,可以提高光线的利用率,也可以提升耦出光线的均匀性。在多个子光束中的各束子光线具有相同性质时,多个子光波导元件可以在垂直于显示面板的显示面的方向交叠,也可以不交叠。
例如,光波导元件包括多个子光波导元件,多个子光波导元件无论在平行于显示面板 的显示面的方向上排列,还是在垂直于显示面板的显示面的方向上排列,上述多个子光波导元件中的至少一个子光波导元件中,沿光线在波导介质中全反射传播的方向,多个透反元件均匀排列且反射率逐渐增大。
例如,光波导元件包括多个子光波导元件,多个子光波导元件无论在平行于显示面板的显示面的方向上排列,还是在垂直于显示面板的显示面的方向上排列,上述多个子光波导元件中的至少一个子光波导元件中,沿光线在波导介质中全反射传播的方向,多个透反元件的排列密度逐渐增大。
在研究中,本申请的发明人还发现:液晶显示装置的液晶层两侧设置有两个透光方向不同的偏振片,其中一个偏振片设置在液晶层与背光源之间,只有特定偏振态的光线可经过液晶层与背光源之间的偏振片而入射到液晶显示面板内部,并被利用成像。例如,在背光源发出的光线为非偏振光时,背光源发出的光线中最多只有50%可被液晶层利用,其余的光线会被浪费或被液晶层吸收发热,造成光线利用率较低的问题。
图14为根据本公开另一实施例的一示例提供的背光源的局部结构示意图。也可以将本实施例中的背光源称为光源装置,既可以与显示面板一起应用到显示装置,也可以单独使用,本公开实施例对此不作限制。例如,本实施例中的光源装置可以设置在透射式显示面板的背侧,也可以设置在反射式显示面板的显示侧,为显示面板提供光线,本实施例中的光源装置(例如,背光源),可以应用于任意需要光源的显示装置。
如图14所示,光源装置包括:光源部100,光源部100发出的光线包括偏振态不同的第一偏振光100-1和第二偏振光100-2;光波导元件200,包括光耦出部240。光源部100被配置为使其发出的光线在进入光波导元件200后在光波导元件200中反射式传播,光耦出部240被配置为将在光波导元件200中反射式传播的光线耦出。例如,反射式传播包括全反射式传播和镜面反射传播中的至少一种。例如,光耦出部240包括第一光耦出部241和第二光耦出部242,第一光耦出部241被配置为将进入光波导元件200的第一偏振光100-1耦出;光源装置还包括偏振转换结构400,偏振转换结构400被配置为将进入光波导元件200后的第二偏振光100-2转换为第一偏振光100-1。第二光耦出部242被配置为:在偏振转换结构400将进入光波导元件200的第二偏振光100-2转换为第一偏振光100-1后,将转换后的第一偏振光100-1耦出;或者第二光耦出部242被配置为:将进入光波导元件200的第二偏振光100-2耦出至偏振转换结构400,以使被耦出的第二偏振光100-2被偏振转换结构转400换为第一偏振光100-1。
如图14所示,背光源包括光源部100和光波导元件200。光源部100发出的光线包括偏振态不同的第一偏振光100-1和第二偏振光100-2。光波导元件200包括波导介质210和光耦出部240,光源部100发出的光线被配置为进入波导介质210并在波导介质210中全反射传播,光耦出部240被配置为将在波导介质210中全反射传播的光线耦出至预定区域40。
例如,如图14所示,在光源部100发出的不同偏振态的偏振光经过分光结构后可以分别得到第一偏振光束1001和第二偏振光束1002,第一偏振光束1001和第二偏振光束1002的偏振态不同。
例如,第一光耦出部241被配置为将进入光波导元件200的第一偏振光束1001耦出至预定区域40。如图14所示,背光源还包括偏振转换结构400,偏振转换结构400被配置为将进入光波导元件200后的第二偏振光束1002转换为第一偏振光束1001’。第二光耦出部242被配置为将转换后的第一偏振光束1001’耦出至预定区域40,或者将第二偏振光束1002耦出至偏振转换结构400以将第二偏振光束1002转换为第一偏振光束1001’后射向预定区域40。
在背光源中设置的偏振转换结构可以将从光源部出射的非偏振光转换为具有特定偏振态的偏振光,该偏振光可以经过液晶层与背光源之间的偏振片被液晶层利用以提高光线的利用率。
例如,图14所示示例中,从第二光耦出部242耦出的第二偏振光束1002经过偏振转换结构400后转换为第一偏振光束1001’,该转换后的第一偏振光束1001’与从第一光耦出部241耦出的第一偏振光束1001一起射向预定区域40。
例如,上述预定区域40可以指背光源与显示面板之间的某一区域,但不限于此,该预定区域可以为位于背光源出光侧的任意区域。
例如,本实施例中的光源部100可以与图1A至图13所示实施例中的光源部100具有相同的特征,在此不再赘述。本实施例中的波导介质210可以与图1A至图13所示实施例中的波导介质210具有相同的特征,在此不再赘述。
例如,本实施例中可以设置光耦入部,也可以不设置光耦入部。例如,本实施例设置的光耦入部可以与图1A至图13所示实施例中设置的光耦入部具有相同或类似的特征,在此不再赘述。
例如,光源部100出射的光线可以为非偏振光,该非偏振光中包括偏振方向不同的第一偏振光束1001和第二偏振光束1002。例如,第一偏振光束1001和第二偏振光束1002可以为偏振方向垂直的两种线偏振光,例如S偏振光和P偏振光。本公开实施例不限于此,第一偏振光和第二偏振光也可以为旋向相反的两种圆偏振光或者椭圆偏振光。例如,本公开实施例不限于光源部出射的光线仅包括两种偏振态,还可以包括三种或者更多种偏振态。
例如,从第一光耦出部241出射的第一偏振光束1001在入射到预定区域40的过程中不改变其特性。例如,转换后的第一偏振光束1001’与光源部100出射的光中的第一偏振光束1001具有相同的特性,例如为具有相同偏振态的偏振光。例如,从第二光耦出部242出射的第二偏振光束1002在入射到预定区域40的过程中被偏振转换结构400改变偏振方向。
例如,本公开一些实施例不限于光源部进入光波导元件中的光线在光波导元件中进行 全反射传播,例如,光源部发出的光线也可以以非全反射方式在透反元件中传输,例如可以是沿直线传播。
例如,本公开实施例中的“全反射传播”可以指光(例如部分发散角较大且满足全反射条件的光线)在光波导元件与空气(或其他介质)之间的界面上发生反射时的反射角不小于全反射临界角。例如,入射至光波导元件的光线大部分全反射传播。例如,在光波导元件中传播的光的一部分以全反射形式继续传播,另一部分可以不全反射例如沿直线在光波导元件中传播,或者以非全反射形式(例如镜面反射)在光波导元件中反射并传播。
例如,本公开实施例中的“非全反射传播”可以指光在光波导元件中的传播为除全反射之外的传播方式,例如光可以在光波导元件内传播且不反射(例如在介质与空气之间的界面上不反射);或者,光也可以是以非全反射的方式反射传播,例如其可以不满足全反射条件,例如光波导元件的波导介质与空气(或其他介质)之间的界面上发生反射时的反射角小于全反射临界角,可以认为光线没有或很少在介质中发生全反射传播。
图15为根据本公开另一实施例的一示例提供的背光源的局部结构示意图。如图15所示,背光源还包括分光元件300,被配置为对光源部100发出的射向光波导元件200的光线进行分光处理。例如,分光元件300可以位于光源部100和光波导元件200之间,且被配置为将光源部100射向光波导元件200的光线分为第一偏振光束1001和第二偏振光束1002。
例如,光源部100出射非偏振光,分光元件300包括偏振分光元件310,偏振分光元件310被配置为反射第一偏振光和第二偏振光中的一者,且透射第一偏振光和所述第二偏振光中的另一者;分光元件300还包括反射元件320,反射元件320被配置为反射第一偏振光和所述第二偏振光之一。
例如,偏振分光元件310被配置为将光源部100射向光波导元件200的非偏振光在入射到光波导元件200之前分为第一偏振光束1001和第二偏振光束1002。
例如,如图15所示,光波导元件200包括第一子元件2001和第二子元件2002,第一子元件2001中设置有第一光耦出部241。上述第一偏振光束1001被配置为进入第一子元件2001中,且被第一光耦出部241耦出至预定区域40,例如第一光耦出部241输出的第一偏振光束1001为直接输出,例如准直输出的光线。例如,上述第二偏振光束1002被配置为进入第二子元件2002中。
例如,如图15所示,第二子元件2002包括第二光耦出部242,偏振转换结构400被配置为使从第二光耦出部242耦出的第二偏振光转换成第一偏振光。第一子元件2001包括出光面,第一子元件2001和第二子元件2002在垂直于出光面的方向交叠,且偏振转换结构400位于第一子元件2001和第二子元件2002之间;或者所第一子元件2001和第二子元件2002在垂直于出光面的方向没有交叠。
例如,如图15所示,第二子元件2002中设置有第二光耦出部242,偏振转换结构400 设置在第二光耦出部242的出光侧以使从第二光耦出部242耦出的第二偏振光束1002转换成第一偏振光束1001’。例如,图15所示的第一子元件和第二子元件均设置有光耦出部,则可以与图9所述的子光波导元件为相同的结构,也可以为不同结构。
例如,图15示意性的示出第一子元件和第二子元件为分离的结构,但不限于此,第一子元件和第二子元件还可以为一体化的结构。例如,第一子元件和第二子元件可以在远离光源部的一侧通过连接部连接起来,本公开实施例对此不作限制,可以根据实际需要进行设置。上述“第一子元件和第二子元件还可以为一体化的结构”可以指第一子元件和第二子元件为由同一材料经过一步工艺制作形成的同一结构,也可以指第一子元件和第二子元件通过粘结等固定方式连接在一起。
例如,如图15所示,第一子元件2001包括出光面001,第一子元件2001和第二子元件2002在垂直于出光面001的方向(例如图中所示的Y方向)交叠,且偏振转换结构400位于第一子元件2001和第二子元件2002之间。上述交叠可以包括完全交叠和部分交叠,例如第一子元件和第二子元件在平行于出光面的平面上的正投影完全交叠或者部分交叠。图15示意性的示出第一子元件和第二子元件在Y方向完全交叠。
例如,如图15所示,在第一子元件2001和第二子元件2002在Y方向上交叠时,转换后的第一偏振光束1001’会经过第一子元件2001的处理后射向预定区域40。例如,转换后的第一偏振光束1001’可以经过第一光耦出部241后出射,也可以不经过第一光耦出部241而出射,本公开实施例对此不作限制。
本公开一些实施例将第一子元件和第二子元件交叠设置,可以提高背光源的亮度,提升光线的均匀性。
例如,如图15所示,偏振分光元件310被配置为透射光源部100发出的光线中的第二偏振光束1002至第二子元件2002,且反射光线中的第一偏振光束1001至第一子元件2001。本实施例中的偏振分光元件可以与图9所示的偏振分光元件具有相同的特征,在此不再赘述。
例如,如图15所示,分光元件300还包括反射元件320,反射元件320位于偏振分光元件310远离光波导元件200的一侧,且被配置为将第一偏振光束1001反射且被反射后的第一偏振光束传播至第一子元件2001中。本实施例中的反射元件可以与图9所示的反射元件具有相同的特征,在此不再赘述。
例如,如图15所示,以第二偏振光为P偏振态、第一偏振光为S偏振态为例进行说明,如图15所示,光源部100发出的非偏振光线经过具有偏振分光功能的偏振分光元件310的处理后,透射光线包括P偏振光,反射光线包括S偏振光(反之亦然)。透射的P偏振光进入第二子元件2002,反射的S偏振光再被反射元件320反射后传播至第一子元件2001。S偏振光和P偏振光被各自子光波导元件中的光耦出部耦出,例如,S偏振光直接被第一光 耦出部241耦出,P偏振光被第二光耦出部242耦出后,再经偏振转换元件400后转化为S偏振光,再经第一子元件2001后输出,实现了将光源部发出的非偏振光线转化为相同偏振光。
例如,偏振转换元件可以为1/2波片。本公开实施例不限于此,其将可以把第二偏振光转换为第一偏振光就可以。
例如,如图15所示,第一子元件2001可以位于第二子元件2002远离光源部100的一侧,以使透射的第二偏振光进入第二子元件,反射的第一偏振光进入第一子元件,但不限于此。光源部也可以位于第一子元件与第二子元件之间,或者位于第一子元件远离第二子元件的一侧,可以根据实际需求进行设置。
图16为图15所示的背光源的一个示例图。如图16所示,光耦出部240包括透反元件阵列220。例如,光耦出部240也可以称为光耦出件阵列。透反元件阵列220的各透反元件被配置为将传播至透反元件的光线的一部分反射且被反射后的光线传播至预定区域,另一部分透射至波导介质210以使其继续全反射传播。波导介质210包括主表面,透反元件阵列220包括沿第一方向排列的多个透反元件221,第一方向平行于主表面,透反元件221与主表面的夹角为第一夹角,在波导介质210中全反射传播的光线与主表面的夹角为第二夹角,第一夹角和第二夹角之差不大于10度。例如,各透反元件221与主表面的夹角均几乎相等,均为第一夹角;例如,至少一个透反元件221与主表面之间的夹角为第一夹角。例如,第一夹角和第二夹角之差不大于5度。例如,第一夹角和第二夹角相等,例如在波导介质210中全反射传播的光线与透反元件221平行,以使得光线仅在各透反元件中发生一次反射,如避免与透反元件平行的光线在其上发生透射和反射,以提高光线的均匀性,避免杂散光。当然,本公开实施例不限于此,透反元件与全反射传播的光线之间的角度也可以大于5度,可以通过在光波导元件远离显示面板的一侧设置反射结构可以将漏出的杂散光反射回去以提高光波导元件出射光的均匀性。
例如,如图16所示,第一光耦出部241中的透反元件阵列220包括沿第一方向排列的多个第一透反元件2211,第二光耦出部242中的透反元件阵列220包括沿第一方向排列的多个第二透反元件2212。
例如,如图16所示,传输至第一透反元件2211的第一偏振光束1001全反射传播时与第一透反元件2211的夹角为第三夹角,传输至第二透反元件2212的第二偏振光束1002与第二透反元件2212的夹角为第四夹角,第三夹角和第四夹角之差不大于5度。例如,第三夹角和第四夹角相等,则可以根据各子元件中透反元件的倾斜角度来调节进入子元件中的偏振光的角度。例如,将不同子元件与相应偏振光之间的夹角设置的相同还可以方便子元件的制作,以及入射光角度的调整。
例如,如图16所示,进入第一子元件2001中的第一偏振光束1001的全反射传播方向 与进入第二子元件2002中的第二偏振光束1002的全反射传播方向相同时,第一透反元件2211可以与第二透反元件2212之间的夹角不大于5度,例如,第一透反元件2211可以与第二透反元件2212平行,以方便光波导元件的制作。
例如,如图16所示,第一透反元件2211和/或第二透反元件2212与第一方向之间的夹角可以均为锐角,或者可以均为钝角。在图16所示的X方向的箭头所指的方向为第一方向且进入第一子元件2001中的第一偏振光束1001的全反射传播方向与进入第二子元件2002中的第二偏振光束1002的全反射传播方向相同,则各偏振光的全反射传播方向与第一方向相同时,各透反元件与第一方向的夹角可以均为锐角;各偏振光的全反射传播方向与第一方向相反时,各透反元件与第一方向的夹角可以均为钝角。透反元件与第一方向的夹角与偏振光的全反射传播方向相关。
例如,如图16所示,第一透反元件2211被配置为对第一偏振光束1001的反射率大于对第二偏振光束1002的反射率,且对第二偏振光束1002的透射率大于对第一偏振光束1001的透射率。
本公开实施例中的透反元件的排列方式可以与图9所示的示例中的透反元件的排列方式具有相同的特征,在此不再赘述。
例如,如图16所示,从第二子元件2002出射的光线可以被第一子元件2001中的透反元件阵列220透射,也可以不经过第一子元件2001中的透反元件阵列220,本公开实施例对此不作限制。例如,当从第二子元件出射的偏振光被第一子光波导元件中的透反元件阵列透射时,第一子元件中的透反元件阵列对上述第二子元件出射的偏振光具有较高的透射率。
例如,本公开实施例不限于光耦出部为透反元件阵列,例如,光耦出部还可为表面光栅、体光栅、闪耀光栅、棱镜、反射结构和出光网点中的至少一种,通过反射、折射和衍射效应中的至少一种将破坏光线的全反射条件,使光线从光波导元件中出射。
例如,图17为根据本公开另一实施例的另一示例提供的背光源的局部结构示意图。图17所示示例与图15所示示例的不同之处在于图17所示第一子元件和第二子元件的位置关系不同。如图17所示,第一子元件2001包括出光面,第一子元件2001和第二子元件2002在垂直于出光面的方向(例如Y方向)没有交叠(例如,可以是恰好相接,或者存在一定距离),既可以减少背光源的厚度,还可以通过将各子元件的长度设置的较小以减小光波导元件边缘光强弱化的程度。
例如,如图17所示,第一子元件2001和第二子元件2002沿第一方向排列,光源部100可以位于第一子元件2001和第二子元件2002之间,但不限于此。例如,在光源部100位于第一子元件2001和第二子元件2002之间时,第一偏振光束1001和第二偏振光束1002的全反射传播方向相反,在这种情况下,第一子元件2001中的透反元件与第二子元件2002 中的透反元件不平行,例如,两者之一与第一方向的夹角为锐角,另一个与第一方向的夹角为钝角,以实现透反元件对光线的耦出。
例如,图18为根据本公开另一实施例的另一示例提供的背光源的局部结构示意图。图18所示示例与图15所示示例的不同之处在于第二光耦出部的位置不同。如图18所示,第一光耦出部241和第二光耦出部242可以均位于第一子元件2001中。本示例中以入射到光波导元件的光线均为偏振光为例进行说明。
例如,如图18所示,第一子元件2001包括第二光耦出部242,第一子元件2001包括出光面,第一子元件2001和第二子元件2002在垂直于出光面的方向交叠,偏振转换结构400位于第二光耦出部242的入光侧,进入第二子元件2002的第二偏振光在第二子元件中全反射传播且被偏振转换结构400转换成第一偏振光后,经转换得到的第一偏转光被第二光耦出部242耦出。
例如,如图18所示,第二子元件2002设置有反射结构500,在第二子元件2002中全反射传播的第二偏振光在被偏振转换结构400转换以及被反射结构500反射后进入第一子元件2001,偏振转换结构可以设置在光波导元件200中,也可以设置在光波导元件200以外。
例如,本示例中的第一光耦出部241对第一偏振光束1001的耦出方式,以及第二光耦出部242对第二偏振光束1002的耦出方式可以与图15-图17所示示例相同,也可以不同。例如,本示例中的分光元件300可以与图15所示示例中的分光元件的特征相同,在此不作赘述。例如,本示例的光波导元件中的波导介质可与图15所示示例中的波导介质具有相同的特征,在此不再赘述。例如,本示例中的第一偏振光和第二偏振光可以与图15所示示例中的第一偏振光和第二偏振光具有相同的特征,在此不再赘述。
例如,如图18所示,第一子元件2001包括出光面,第一子元件2001和第二子元件2002在垂直于出光面的方向(例如Y方向)部分交叠或者完全交叠。偏振转换结构400位于第二光耦出部242的入光侧,进入第二子元件2002的第二偏振光束1002被配置为在第二子元件2002中全反射传播,且经过偏振转换结构400的转换后被第二光耦出部242耦出。
本公开实施例中,通过将第二偏振光设置为在第二子元件中全反射传播,可以使得第二偏振光更均匀,例如,第二偏振光的明暗分布更加均匀。本公开实施例中将第一光耦出部和第二光耦出部设置在同一个子元件中,可以降低制作成本,易于实施。
例如,如图18所示,第一光耦出部241的入光侧位于第一光耦出部241远离第二光耦出部242的一侧,第二光耦出部242的入光侧位于第二光耦出部242远离第一光耦出部241的一侧。
例如,图18示意性的示出第一光耦出部241与第二光耦出部242之间设置有间隔,但不限于此,第一光耦出部与第二光耦出部之间还可以没有间隔以防止出射两个光耦出部之 间出现不出光的黑暗区域。例如,第一光耦出部和第二光耦出部还可以交叠设置,以提高出光的均匀性。
例如,图18示意性的示出第一子元件2001和第二子元件2002为分离的结构,且偏振转换结构400位于第二子元件2002中,但不限于此,偏振转换结构还可以位于第一子元件中,或者位于第一子元件与第二子元件之间,或者第一子元件和第二子元件为一体化结构时,偏振转换结构可以位于第一子元件和第二子元件内,或者位于第一子元件和第二子元件以外,偏振转换结构位于第二光耦出部的入光侧就可以,例如在第二子元件中传播的第二偏振光经过偏振转换结构转换为第一偏振光,该第一偏振光被第二光耦出部耦出就可以。
例如,第二子元件2002可以包括其他光耦出部(例如第二子元件与第一子元件为分离的结构),也可以不包括光耦出部(例如第一子元件与第二子元件为一体化结构),第二子元件主要被配置为使得第二偏振光在其中进行全反射传播。
例如,图18示意性的示出第一子元件2001中的第二光耦出部242的入光侧设置有第三光耦入部233,该第三光耦入部233可以与上述实施例中的第一光耦入部和第二光耦入部具有相同的特征,但不限于此,第一子元件2001中的第二光耦出部242的入光侧也可以不设置光耦入部。
例如,在第二偏振光可以仅经过一次偏振转换结构就转换为第一偏振光,例如,该偏振转换结构可以为1/2波片。当然,本公开实施例不限于此,第二偏振光也可以经过两次偏振转换结构后转换为第一偏振光,例如,该偏振转换结构可以为1/4波片。
例如,如图18所示,偏振转换结构400设置在第二子元件2002中,且第二子元件2002中还设置有反射结构500,位于偏振转换结构400远离光源部100的一侧,在第二子元件2002中全反射传播的第二偏振光束1002被配置为两次经过偏振转换结构400,且被反射结构500反射一次后进入第一子元件2001。
图19为图18所示的背光源的一个示例图。如图19所示,以第二偏振光束1002为P偏振光且第一偏振光为S偏振光为例进行说明,光源部100发出的非偏振光线经过具有偏振分光功能的偏振分光元件310处理后,透射P偏振光,反射S偏振光(反之亦然)。透射的P偏振光被第二光耦入部232耦入第二子元件2002,在第二子元件2002的波导介质中全反射传播,传播至端面处的反射结构500,反射光线不再满足全反射条件,反射光线会离开第二子元件2002。这里的反射结构500可以视为第二子元件2002的光耦出部。与此同时,反射结构500的入光侧还设置有偏振转换结构400,P偏振光在反射时,首先经过偏振转换结构400,反射后的光线也会再次经过偏振转换结构400,再离开第二子元件2002,例如P偏振光两次经过偏振转换结构400后,就会转换为S偏振光,转换后的S偏振光经第三进入部233进入第一子元件2001的波导介质,发生全反射,传输至第二光耦出部242并从第一子元件2001耦出。
例如,如图19所示,第一光耦出部241和第二光耦出部242可以均包括透反元件阵列220,透反元件阵列220包括的各透反元件221与入射至其表面的光线的夹角大致相等。例如,第一光耦出部241中的透反元件阵列220包括沿第一方向排列的多个第一透反元件2211,第二光耦出部242中的透反元件阵列220包括沿第一方向排列的多个第二透反元件2212。由于入射至第一光耦出部241的第一偏振光束1001的全反射传播方向与入射至第二光耦出部242的转换后的第一偏振光束1001’的全反射传播方向相反,则第一透反元件2211与第二透反元件2212不平行,例如可以认为两者的倾斜方向不同,例如,第一透反元件2211和第二透反元件2212之一与第一方向之间的夹角为锐角,另一个与第一方向的夹角为钝角。
例如,图19示意性的示出第一子元件和第二子元件在Y方向上至少部分交叠设置,但不限于此,第一子元件和第二子元件还可以在Y方向上没有交叠。
例如,图20为根据本公开另一实施例的再一示例提供的背光源的局部结构示意图。图20所示示例与图14所示示例不同之处在于光源部出射的光在进入光波导元件时为非偏振光。
如图20所示,所述光波导元件200包括第一子元件2001和第二子元件2002,所述第一子元件2001包括所述第一光耦出部241,所述第二子元件2002包括所述第二光耦出部242。例如,图20所示的第一子元件和第二子元件可以均设置有光耦出部,则可以与图9所述的子光波导元件为相同的结构,也可以为不同结构。
如图20所示,所述光源部100被配置为使其发出的光线进入所述第一子元件2001,且所述光线中的所述第一偏振光被所述第一光耦出部241耦出,所述光线中的所述第二偏振光在所述第一子元件2001中传播至所述偏振转换结构400以转换为第一偏振光;经所述偏振转换结构400转换后得到的所述第一偏振光在所述第二子元件2002中传播至所述第二光耦出部242以被所述第二光耦出部242耦出。
例如,所述偏振转换结构设置在所述第一子元件与所述第二子元件之间;或者所述第一子元件设置有所述偏振转换结构,且所述偏振转换结构位于所述第一光耦出部远离所述第一子元件的入光侧的一侧;或者,所述第二子元件设置有所述偏振转换结构,且所述偏振转换结构位于所述第二光耦出部的入光侧。
如图20所示,光波导元件200包括第一子元件2001和第二子元件2002,第一子元件2001设置有第一光耦出部241,第二子元件2002设置有第二光耦出部242。光源部100发出的非偏振光被配置为进入第一子元件2001,且光线中的第一偏振光束1001被第一光耦出部241耦出,光线中的第二偏振光束1002被配置为在第一子元件2001中传播至偏振转换结构400以转换为第一偏振光束1001’;经偏振转换结构400转换后的第一偏振光束1001’被配置为在第二子元件2002中传播至第二光耦出部242以被第二光耦出部242耦出。第一光耦出部不仅可以起到耦出光的效果,还可以对光源部进入的非偏振光进行分光,由此, 本公开实施例通过位于光波导元件中的光耦出部对光源部进入的非偏振光进行偏振分光,可以省略分光装置的设置以节省背光源的体积。
例如,本示例中的第一光耦出部241对第一偏振光束1001的耦出方式,以及第二光耦出部242对第二偏振光束1002的耦出方式可以与图15-图17所示示例相同,也可以不同。例如,本示例的光波导元件中的波导介质可与图15所示示例中的波导介质具有相同的特征,在此不再赘述。例如,本示例中的第一偏振光和第二偏振光可以与图15所示示例中的第一偏振光和第二偏振光具有相同的特征,在此不再赘述。
例如,如图20所示,第一光耦出部241可以为对第一偏振光束1001具有较高的反射率,对第二偏振光束1002具有较高透射率的结构。例如,以第一偏振光为S偏振光、第二偏振光为P偏振光为例进行说明,如图20所示,光源部100发出的非偏振光在入射到光波导元件200之前不再分光,而是直接进入第一子元件2001,第一光耦出部240为对S偏振光有较高反射率、对P偏振光有较高透射率的元件,随着光线的传播,S偏振光逐渐离开第一子元件2001;P偏振光继续传输,在其经过偏振转换元件400后,转化为S偏振光,再进入第二子元件2002中传输,经第二光耦出部242耦出第二子元件2002。
例如,如图20所示,第一子元件2001包括出光面,第一子元件2001和第二子元件2002在垂直于出光面的方向至少部分交叠。但不限于此,第一子元件和第二子元件也可以沿光线的全反射传播方向排列,例如沿X方向排列。例如,第一子元件和第二子元件也可以在垂直于出光面的方向上没有交叠,位于第一子元件中的第一光耦出部可以耦出第一偏振光且传输第二偏振光,位于第二子元件中的第二光耦出部可以耦出转换后的第一偏振光就可以。
图21为图20所示的背光源的一个示例图。如图21所示,第一光耦出部241和第二光耦出部242可以均包括透反元件阵列220,透反元件阵列220包括的各透反元件221与入射至其表面的光线的夹角大致相等。例如,第一光耦出部241中的透反元件阵列220包括沿第一方向排列的多个第一透反元件2211,第二光耦出部242中的透反元件阵列220包括沿第一方向排列的多个第二透反元件2212。由于入射至第一光耦出部241的第一偏振光束1001的全反射传播方向与入射至第二光耦出部242的转换后的第一偏振光束1001’的全反射传播方向相反,则第一透反元件2211与第二透反元件2212不平行,例如可以认为两者的倾斜方向不同,例如,第一透反元件2211和第二透反元件2212之一与第一方向之间的夹角为锐角,另一个与第一方向的夹角为钝角。
本公开实施例不限于此,在第一子元件和第二子元件沿X方向排列时,入射至第一光耦出部的第一偏振光的全反射传播方向与入射至第二光耦出部的转换后的第一偏振光的全反射传播方向相同,则第一透反元件与第二透反元件可以大致平行,例如可以认为两者的倾斜方向相同,例如,第一透反元件和第二透反元件与第一方向之间的夹角可以均为锐角 或钝角。
例如,第一透反元件2211可以为对第一偏振光束1001具有较高反射率,对第二偏振光束1002具有较高透射率的元件以实现对非偏振光的分光。例如,第二透反元件2212既可以为无偏振选择特性的透反元件,也可以为对第一偏振光具有较高反射率的元件,本公开实施例对此不作限制。
例如,如图21所示,光源部100发出的光线被配置为在第一子元件2001和第二子元件2002的至少之一中全反射传播。例如,图21示意性的示出光线在第一子元件2001和第二子元件2002中可以均全反射传播,但不限于此,光源部进入第一子元件中的光线也可以在第一子元件中以非全内反射的方式传输,如直接沿直线传播,且依次经过透反元件的透反作用输出。
例如,偏振转换结构400可以设置在第一子元件2001与第二子元件2002之间。例如,偏振转换结构400也可以设置在第一子元件2001中,且位于第一光耦出部241远离光源部100的一侧。例如,偏振转换结构400还可以设置在第二子元件2002中,且位于第二光耦出部242的入光侧。
例如,图21示意性的示出第一子元件和第二子元件为一体化结构,偏振转换结构位于该一体化结构中,且位于第一光耦出部的出光侧和第二光耦出部的入光侧。本公开实施例不限于此,偏振转换结构也可以位于第一子元件和第二子元件以外的位置,其位于第一光耦出部的出光侧和第二光耦出部的入光侧就可以。
例如,如图21所示,光波导元件200还包括位于偏振转换结构400的入光侧的反射结构500,该反射结构500被配置为改变第二偏振光束1002的传播方向以使其入射到偏振转换结构400上。
例如,偏振转换结构400可以为1/2波片。本示例中的偏振转换结构可以与图18至图19所示示例中的偏振转换结构相同,在此不再赘述。
相较于光源部发出的所有光线经过同一波导介质传输并输出的方案,本公开实施例采用将光源部出射的光线分为不同的偏振态后再分别波导传输并输出的方案可以使输出光线的明暗均匀度进一步提升。
例如,图22为根据本公开再一实施例的一示例提供的背光源的局部结构示意图。如图22所示,背光源包括光源部100和光波导板2000,光波导板2000包括匀光部250和光波导元件200,光波导元件200包括出光面,匀光部250与光波导元件200在与出光面垂直的方向上依次排列,例如层叠设置。光源部100被配置为使其发出的光线在匀光部250内发生多次全反射之后进入光波导元件200,之后从光波导元件200的出光面出射。例如,入射至匀光部250的光线在被匀光部250匀化处理后进入光波导元件200。例如,入射至匀光部250的光线可以是光源部100发出的光线,例如可以是光源部100发出的光线直接入射至匀 光部250,也可以是经过其他元件处理后入射至匀光部250。
例如,多次全反射的次数不少于5次。例如,多次全反射的次数可以为5~20次。例如,多次全反射的次数可以为6~12次。例如,多次全反射的次数可以为6~8次。
例如,匀光部250包括入光端和出光端,入光端和出光端沿出光面的延伸方向排列;匀光部250在垂直于出光面的方向上的厚度不大于光波导元件200在排列方向上的厚度。由此,匀光部可以通过设置较小的厚度而增加其中全反射光线的全反射次数。
例如,光波导元件200包括波导介质210和光耦出部240。光波导元件200还包括匀光部250,入射至匀光部250的光线,例如光源部100的光线经过匀光部250的匀光之后到达光耦出部240,进入光波导元件200的光线被配置为在匀光部250中发生8~11次全反射传播。
例如,匀光部250的折射率大于光波导元件200中的波导介质210的折射率。通过调整匀光部的折射率,可以调整在其中发生全反射传播的光线的全反射临界角,当全反射临界角较小时,可以增加全反射次数。
例如,光波导板2000为一体化结构。例如,匀光部250与波导介质210为一体化结构。例如,匀光部250可以位于光耦出部240与光源部100之间。本公开实施例通过在波导介质的光耦出部的入光侧设置匀光部,可以提高传输至光耦出部之前的光线的均匀性,例如先将光线匀化后再输出,以获得明暗均匀的面光源光线。
上述“匀光部与波导介质为一体化结构”可以指匀光部和波导介质为由同一材料经过一步工艺制作形成的同一结构,也可以指匀光部和波导介质通过粘结等固定方式连接在一起。例如,匀光部和波导介质可以选用相同折射率的材质,也可以选用不同折射率的材质,本公开实施例对此不作限制。
例如,图22所示的匀光部还可以设置在图1A至图21所示的任一示例中以进一步提高背光源输出光线的均匀性。例如,本实施例中的光耦出部可以与图1A至图21所示任一示例中的光耦出部具有相同的特征,在此不再赘述。例如,本实施例中的波导介质可以与图1A至图21所示任一示例中的波导介质具有相同的特征,在此不再赘述。例如,本实施例中的光源部可以与图1A至图21所示任一示例中的光源部具有相同的特征,在此不再赘述。
例如,如图22所示,匀光部250沿X方向的长度可以不小于作为光耦出部240的透反元件阵列沿X方向的长度。本公开实施例不限于此,匀光部250沿X方向的长度可以为作为光耦出部240的透反元件阵列沿X方向的长度的1/3~2/3。
例如,图23为图22所示背光源的截面结构示意图。如图23所示,本实施例中可以设置光耦入部230,也可以不设置光耦入部。例如,如图23所示,本实施例设置的光耦入部230可以与图1A至图21所示任一示例中设置的光耦入部具有相同的特征,在此不再赘述。
例如,如图23所示,匀光部250可以设置在光波导元件200的光耦入部230与光耦出 部240之间,也可以设置在光耦入部与光源部之间,本公开实施例对此不作限制。
例如,如图23所示,光源部100发出的光线首先经光耦入部230进入匀光部250,在匀光部250中传输并逐渐匀化;匀化后的光束再被光耦出部(例如透反元件阵列)240耦出,例如转化为准直平行的光束出射。
例如,如图23所示,匀光部250可将进入其中的光线进行多次全反射,例如8~11次,使光束分布均匀,进而实现匀光的效果。经过匀光后的光线继续沿全反射路径传输至光耦出部240,经光耦出部240的透射反射作用,转化为准直光线出射,可形成明暗均匀的准直平行光线。例如,匀光部设置在光耦出部之前。
例如,如图22和图23所示,光耦出部240包括沿第一方向(例如X方向)排列的多个光耦出子部2401,匀光部250与光耦出部240沿第一方向排列。例如,匀光部250和光耦出部240在平行于XZ面的平面上排列。
例如,图24为根据本公开再一实施例的另一示例提供的背光源的局部结构示意图。如图24所示,光波导元件200包括出光面001,光耦出部240和波导介质210可以均与匀光部250在垂直于出光面001的方向交叠,且波导介质210与匀光部250之间设置有间隙介质260,波导介质240的折射率和匀光部250的折射率可以均大于间隙介质260的折射率。本公开实施例通过将光耦出部和波导介质均与匀光部交叠设置,可以节约匀光部所占的面积,进而提高背光源的出光面的面积以获得均匀的面光源光线。
例如,如图24所示,匀光部250可以位于光耦出部240远离出光面001的一侧。
例如,间隙介质260可以是空气或者其他折射率小于匀光部250和波导介质210的固体介质(例如,光学胶)以使得在匀光部和波导介质中传输的光线满足全反射条件。
例如,间隙介质260可以为透明介质,也可以为非透明介质,本公开实施例对此不作限制。
例如,如图24所示,匀光部250沿X方向的长度可以不小于作为光耦出部240的透反元件阵列沿X方向的长度以实现更好的匀光效果,本公开实施例不限于此,匀光部250沿X方向的长度可以为作为光耦出部240的透反元件阵列沿X方向的长度的1/3~2/3。
例如,如图24所示,光波导元件200与匀光部250之间还设置有连接部270,连接部270将光波导元件200的入光端和匀光部250的出光端连接,以使匀光部250的光线经连接部270进入光波导元件200。
例如,如图24所示,连接部270包括调光部271,调光部271被配置为破坏匀光部250中全反射传播光线的全反射条件,以使在匀光部250中传输的光线可以进入光波导元件200。
例如,如图24所示,连接部270还包括反射面272,反射面272被配置为将匀光部250中的光线反射进光波导元件200。本公开实施例中,连接部可以包括调光部和反射面的至少之一,图24示意性的示出连接部包括调光部和反射面,但不限于此,还可以连接部仅包括 调光部,或者连接部仅包括反射面。
例如,波导介质210与匀光部250之间还设置有上述连接部270,连接部270将波导介质240和匀光部250远离匀光部250的入光侧的一端连接,以使匀光部250的光线从连接部270进入波导介质210。例如,连接部270位于间隙介质260远离光源部100的一侧。例如,光源部100和连接部270位于间隙介质260在X方向上的两侧。
例如,如图24所示,连接部270位于远离匀光部250的入光侧的一侧。例如,连接部270和光源部100分别位于匀光部250的两侧。例如,连接部270和光源部100分别位于波导介质210的两侧。例如,连接部270位于匀光部250的出光侧,且位于波导介质210的入光侧。
例如,如图24所示,连接部270包括调光部271,调光部271被配置为破坏匀光部250中全反射传播光线的全反射条件,以使在匀光部250中传输的光线可以进入波导介质210。
例如,调光部271可以为与波导介质210具有不同折射率的光学元件,如光学胶,破坏全反射条件并使得光线进入位于匀光部250面向显示面板一侧的光耦出部(例如透反元件阵列)。
例如,调光部271可以作为匀光部250的光耦出部和波导介质的光耦入部,也可以仅作为匀光部250的光耦出部,或仅作为波导介质的光耦入部,本公开实施例对此不作限制。
例如,如图24所示,连接部270还包括反射面272,反射面272被配置为将从匀光部250出射的光线反射向波导介质210。
例如,如图24所示,进入匀光部250的光线在匀光部250中沿全反射路径传输,传输至调光部271,调光部271会破坏光线的全反射条件,例如光线会继续传输至反射面272并反射,反射后的光线传输至光耦出部340(例如透反元件阵列),再经光耦出部340耦出,例如转化为准直平行的光线出射。
例如,如图22-24所示,本公开实施例还提供一种光源装置,该光源装置包括光波导板2000和光源部100,光波导板2000包括匀光部250和光波导元件200,光波导元件250包括出光面,匀光部250与光波导元件200在与出光面垂直的方向上依次排列;光源部100被配置为使其发出的光线在匀光部250内发生多次全反射之后进入光波导元件200,之后从光波导元件200的出光面出射。该光源装置可以为上述实施例中的背光源,与显示面板一起应用到显示装置,但不限于此,还可以与其他结构结合而应用到其他装置中。
例如,本公开实施例提供的显示面板可以为液晶显示面板,例如透射式液晶显示面板或反射式液晶显示面板,与背光源提供的光线共同作用可形成图像。例如,背光源提供的光线经过液晶显示面板(例如液晶屏)后,会转化为图像光线。本公开实施例不限于此,显示面板还可以为电润湿屏或硅基液晶显示元件等,无论哪种显示面板均可以与本公开实施例提供的背光源配合以形成出光均匀、轻薄的显示装置。
例如,图25为根据本公开又一实施例的一示例提供的显示装置的局部结构示意图。如图25所示,显示装置还包括光扩散元件30,光扩散元件30被配置为将光波导元件200的出射的光线进行扩散,例如光扩散元件30被配置为将经过光扩散元件30的光束进行扩散。本公开实施例中的背光源可以为图1A至图24的任一示例所示的背光源。
例如,光扩散元件30位于光波导元件200与显示面板10之间。例如,光扩散元件30还可以设置在显示面板10的出光侧,配置为将显示面板10出射的图像光线进行扩散,光扩散元件30例如紧贴显示面板10设置,以提升成像效果。
例如,图25示意性的示出光扩散元件的数量为1个,但是不限于此,还可以为多个,且彼此间隔设置,以进一步提高光束的分散效果。本公开实施例示意性的示出光扩散元件位于显示面板的背侧,但不限于此,还可以位于显示面板的显示面一侧。例如,光扩散元件可以贴合在显示面板的显示面的表面。
例如,光扩散元件30被配置为扩散经过光扩散元件30的光束但不或几乎不改变该光束的主光轴(chief ray,chief light or optical axis)。例如,上述“主光轴”可以指光束的中心线,也可以认为是光束传播的主方向。例如,入射光束经过光扩散元件30后,会扩散为沿传播方向具有特定大小和形状的光斑的光束,例如,光斑的能量分布可以均匀化非均匀化或者;例如,光斑的大小和形状可以由光束扩散结构30的表面设计的微结构控制。例如上述特定形状可以包括但不限于线形、圆形、椭圆形、正方形和长方形中的至少一种。
例如,光扩散元件30可以不区分正反面。例如,光束扩散后的传播角度和光斑尺寸决定了最终成像的亮度及可视区域,扩散角度越小,成像亮度越高,可视区域也越小;反之亦然。
例如,光扩散元件30包括衍射光学元件和散射光学元件中的至少之一。
例如,光扩散元件30可以为成本较低的散射光学元件,如匀光片、扩散片等,光束透过匀光片等散射光学元件时会发生散射,还会发生少量的衍射,但散射起主要作用,光束透过散射光学元件后会形成相对较大的光斑。
例如,光扩散元件30也可以为对扩散效果控制相对更加精确的衍射光学元件(Diffractive Optical Elements,DOE),例如光束整形片(Beam Shaper)等。例如,衍射光学元件通过在表面设计特定的微结构,主要通过衍射起到光扩束作用,且光斑的大小和形状可控。
例如,图26为根据本公开又一实施例的另一示例提供的显示装置的局部结构示意图。如图26所示,显示装置还包括:光会聚元件40,被配置为对从光波导元件200射向显示面板10的光线进行会聚。例如,光会聚元件40位于光波导元件200与光扩散元件30之间,本公开实施例中的背光源可以为图1A至图24任一示例所示的背光源。
例如,如图26所示,光会聚元件40被配置为对光波导元件200出射的准直光线进行 方向控制,将光线聚集至预定范围,可进一步聚拢光线,提高光线利用率。上述预定范围可以是一个点,比如凸透镜的焦点,也可以是一个较小的区域,设置光会聚元件的目的在于将光波导元件输出的准直光线统一调整方向至预定范围,提高光线的利用率。
例如,光会聚元件40可为透镜或透镜组合,例如至少一个透镜,如凸透镜、菲涅尔透镜或透镜组合等,图26中以凸透镜为例进行示意说明。
例如,如图26所示,光会聚元件40可将光波导元件200输出的准直光线聚集至一定的范围,光扩散元件30可将聚集的光线扩散。本公开实施例通过光会聚元件和光扩散元件的配合,可以提供高光效,并且也扩大了可视范围。
例如,如图26所示,本公开实施例中,光会聚元件40可以对几乎所有光线进行聚集定向,使得光线可到达用户的眼盒区域003,例如光波导元件200输出的准直光束便于控制以实现方便的调整光线的方向。例如,可以根据实际需求预设观察者观看成像的区域,例如眼盒区域(eyebox)003,该眼盒区域003是指观察者眼睛所在的、可以看到显示装置显示的图像的区域,例如可以是平面区域或者立体区域。例如,眼盒区域003可以是观察者双眼所在的、可以看到显示装置显示的图像的区域。
例如,如图26所示,光源部100发出的光线经过光波导元件200转化为均匀出射的准直光线,准直光线通过光会聚元件40后,会聚集并落入眼盒区域003的中心,进一步通过光扩散元件30将光线扩散,扩散后的光束可覆盖眼盒区域003,例如恰好覆盖眼盒区域003,可以实现高光效,并且也不会影响正常的观察。本公开实施例不限于此,扩散的光束也可大于眼盒区域,例如至少完全覆盖眼盒;例如,本公开实施例可以通过设置光扩散元件以使扩散的光束恰好覆盖眼盒区域,在这种情况下显示装置的光效可以认为是最高的。
例如,图27为根据本公开又一实施例的另一示例提供的显示装置的局部结构示意图。图27所示示例与图26所示示例的不同之处在于光会聚元件与光波导元件的位置关系。如图27所示,光会聚元件40与光波导元件200为一体式结构。本公开实施例通过将光会聚元件和光波导元件设置为一体式结构,不仅可以减小显示装置的厚度,便于实施安装,还可以防止光线在空气与光波导元件和/或光会聚元件之间的界面上产生的不必要的反射,可以减少或避免光效浪费。
例如,如图27所示,光会聚元件40与光波导元件200之间设置有透明介质层50,透明介质层50的折射率小于光波导元件200的折射率以使得满足在波导介质中传输的光线的全反射条件。例如,透明介质层的厚度可以足够小以使得光线在波导介质中传播时满足全反射传播条件就可以。
例如,透明介质层50可以为透明光学胶等具有较高透射率的介质,既可以实现对光会聚元件和光波导元件的粘结,还可以提高光线的透过率。
例如,光会聚元件40与光波导元件200可以采用相同的材料,也可以采用不同的材料, 本公开实施例对此不作限制。
例如,图28为根据本公开又一实施例的又一示例提供的显示装置的局部结构示意图。该光转化装置可以应用于一种显示装置,该显示装置中,背光源出射的光为非偏振光,或者光源部射向光波导元件的光为非偏振光,且显示面板被配置为利用第一偏振光和第二偏振光中的一者生成图像光线。这里的背光源可以为上述实施例中满足此条件的背光源。这里的“非偏振光”指光源部发出的光线可以同时具有多个偏振特性但不表现出唯一的偏振特性,例如光源部发出的光线可以认为是由两种互相垂直的偏振态的光线合成,可以认为光源部发出的非偏振光可以分解为两个互相垂直的偏振态的光线。这里的可以被显示面板利用的偏振光可以指能够入射到显示面板内部的偏振光,也可以指显示面板形成特定偏振态图像光时所需要的偏振光等。
例如,光转化装置可以设置在多个位置,例如配置为处理光源部发出的光并将处理后的光传播至光波导元件。例如,光转化装置被配置为回收光源部发出的光并将回收的光送入光波导元件,和/或回收光波导元件出射的光并将回收的光送入显示面板。例如,回收光线可以理解为将一些无法利用的光线进行转化利用。
例如,如图28所示,液晶显示面板10可以包括阵列基板(未示出)、对置基板(未示出)以及位于阵列基板和对置基板之间的液晶层(未示出)。例如,液晶显示面板还包括设置在阵列基板远离对置基板的一侧的第一偏振层10-1和设置在对置基板远离阵列基板的一侧的第二偏振层10-2。例如,背光源20被配置为向液晶显示面板10提供背光,背光通过液晶显示面板10后转变为图像光。
例如,第一偏振层10-1的偏光轴方向和第二偏振层10-2的偏光轴方向互相垂直,但不限于此。例如,第一偏振层10-1可通过第一线偏振光,第二偏振层10-2可通过第二线偏振光,但不限于此。例如,第一线偏振光的偏振方向垂直于第二线偏振光的偏振方向。
例如,只有特定偏振态的光线可经过液晶层与背光源20之间的第一偏振层10-1而入射到液晶显示面板内部,并被利用成像。例如,在背光源20发出的光线为非偏振光时,背光源20发出的光线中最多只有50%可被图像生成部利用,其余的光线会被浪费或被液晶层吸收发热。而本公开实施例中,通过在显示面板的入光侧设置光转化装置,可以将背光源发出的非偏振光几乎全部转换为能够被显示面板利用的特定偏振态的光线,有效提高背光源发出的光线的利用率。
例如,如图28所示,光转化装置50位于显示面板10面向光波导元件200的一侧。图28示意性的示出光转化装置50位于光会聚元件40与光波导元件200之间,但不限于此,光转化装置还可以位于光波导元件与光源部之间,光会聚元件与光扩散元件之间,或者光扩散元件与显示面板之间,光转化装置位于显示面板的入光侧以使入射到显示面板为特定偏振态的光线就可以。
例如,光转化装置包括分束元件51以及偏振转换元件53。例如,光转化装置包括分束元件51、方向改变元件52以及偏振转换元件53。例如,分束元件51被配置为将入射到分束元件51的光线分束为偏振态不同的第一偏振光束101和第二偏振光束102。例如,第一偏振光束101被配置为射向显示面板10,第二偏振光束102射向方向改变元件52。方向改变元件52被配置为改变入射至方向改变元件52的光线的传播方向以使其射向显示面板10。偏振转换元件53被配置为将第一偏振光束101和第二偏振光束102中不能被显示面板10利用的偏振光在到达显示面板10之前转换为能够被显示面板10利用的偏振光。
例如,如图28所示,第一偏振光束101和第二偏振光束102可以均为线偏振光。例如,显示面板10包括的第一偏振层10-1位于显示面板10靠近光源部100的一侧,且第一偏振层10-1的偏光轴平行于第一偏振光束101或第二偏振光束102的偏振方向,偏振转换元件53被配置为将第一偏振光束101和第二偏振光束102中偏振方向不平行于偏光轴的偏振光在到达显示面板10之前转换为偏振方向平行于偏光轴的偏振光。图28示意性的示出第二偏振光束102的偏振方向平行于第一偏振层10-1的偏光轴,但不限于此,还可以为第一偏振光的偏振方向平行于第一偏振层的偏光轴。
例如,如图28所示,背光源20出射非偏振光,显示面板10可利用S偏振光(第二偏振光束102),分束元件51反射S偏振光、透射P偏振光(第一偏振光束101),方向改变元件52可反射S偏振光。背光源20发出光线中的S偏振光被分束元件51反射,反射后的S偏振光再经方向改变元件52反射后出射至显示面板10,背光源20发出光线中的P偏振光则经分束元件51透射,透射后经过偏振转换元件53后转化为S偏振光,可以实现将背光源发出的非偏振光均转化为显示面板可利用的S偏振光。
例如,分束元件51可以具有透射一种特性的光线和反射另一种特性的光线的作用,例如分束元件51可以具有透射一种偏振态的光线和反射另一种偏振态的光线的特性,该分束元件可以利用上述透反特性实现分束。
例如,分束元件51可以为透反膜,通过透射部分光线和反射另一部分光线实现分束作用。例如,透反膜可以透射背光源20发出的光线中的第一偏振光束101,且反射背光源20发出的光线中的第二偏振光束102。
例如,该透反膜可以是具有偏振透反功能的光学膜,例如是可以将非偏振光线通过透射和反射分束为两个不同偏振光的光学膜,例如可以是将光线分束为两个互相垂直偏振光的光学膜;上述光学膜可以由多层具有不同折射率的膜层按照一定的堆叠顺序组合而成,每个膜层的厚度约在10~1000nm之间;膜层的材料可以选用无机电介质材料,例如,金属氧化物和金属氮化物;也可以选用高分子材料,例如聚丙烯、聚氯乙烯或聚乙烯。
例如,分束元件51可以是透明基板镀膜或贴膜形成的元件。例如,分束元件51可以是基板上镀设或贴覆具有反射S偏振光、透射P偏振光特性的透反膜,例如反射式偏光增 亮膜(Dual Brightness Enhance Film,DBEF)或棱镜膜(Brightness Enhancement Film,BEF)等。本公开实施例不限于此,例如,分束元件还可以是一体化元件。
例如,方向改变元件52被配置为将入射至方向改变元件52的第二偏振光束102反射且被反射后的第二偏振光束传播至显示面板10。
例如,方向改变元件52可以为反射元件,用于将从分束元件51出射的第二偏振光束102反射且被反射后的第二偏振光束传播至显示面板10。由于显示面板10的偏振层210的偏光轴平行于第二偏振光束102的偏振方向,则从方向改变元件52射向显示面板10的第二偏振光束102可以直接被显示面板10利用。
例如,方向改变元件52可以是普通的反射板,如金属或玻璃的反射板;也可以是基板上镀设或贴覆具有反射S偏振光特性的反射膜。例如,方向改变元件52也可以具备透反特性,与分束元件51包括的透反膜具有相同的透反特性,例如反射S偏振光且透射P偏振光的特性。本公开实施例对此不作限制,使得方向改变元件52可反射S偏振光就可以。
例如,偏振转换元件53可以为相位延迟膜,通过将入射至其上的第一偏振光束101的偏振方向旋转90度以使从相位延迟膜射向显示面板10的光线为能够被显示面板10利用的第二偏振光束102。例如,偏振转换元件53可以为1/2波片。
例如,偏振转换元件可以与分束元件贴合设置。例如,分束元件与偏振转换元件之间可以设置透明基板,分束元件和偏振转换元件分别贴合在透明基板的彼此相对的两个表面以方便设置。本公开实施例不限于此,例如,分束元件也可以直接贴合在偏振转换元件的表面以实现图像源的轻薄。
例如,如图28所示,偏振转换元件53位于分束元件51远离方向改变元件50的一侧。
例如,图28示意性的示出分束元件和方向改变元件近乎平行,最终出射和回收的光线为近乎平行的准直光线。但不限于此,分束元件和方向改变元件不平行,则出射的光线可以是扩散或者聚集状态,适用于某些特殊的应用场景。
例如,光转化装置处理光波导元件出射的光并将处理后的光传播至显示面板。例如,光转化装置50位于显示面板10面向光波导元件200的一侧。例如,光转化装置包括分束元件51和偏振转化元件53,分束元件51将光线分束,偏振转化元件53将光线中的一者转化为与另一者的性质基本相同的光线(例如,偏振态基本相同)。
例如,光转化装置50也可以包括偏振分光元件310和偏振转换结构400,偏振分光元件310将光线分束为第一偏振光和第二偏振光,偏振转化结构400将第一偏振光和第二偏振光中的一者转化为与另一者的性偏振态基本相同。
例如,光转化装置50也可以包括偏振分光元件310、反射元件320和偏振转换结构400,偏振分光元件310将光线分束为第一偏振光和第二偏振光,偏振转化结构400将第一偏振光和第二偏振光中的一者转化为与另一者的性偏振态基本相同,反射元件320将上述光线 中的一者反射传播至显示面板。例如,图29为根据本公开又一实施例的又一示例提供的显示装置中的光转化装置示意图。图29所示光转化装置与图28所示光转化装置的不同之处在于偏振转换元件的位置以及显示面板能够利用的偏振态的光线不同,该光转化装置中的分束元件51、方向改变元件52以及偏振转换元件53的特征可以与图28所示的各元件的特征相同,在此不再赘述。
例如,图30为根据本公开又一实施例的又一示例提供的显示装置中的光转化装置示意图。图30所示光转化装置与图28所示光转化装置的不同之处在于偏振转换元件的位置以及显示面板能够利用的偏振态的光线不同,且方向改变元件52反射的偏振光不同,该光转化装置中的分束元件51以及偏振转换元件53的特征可以与图28所示的各元件的特征相同,在此不再赘述。
例如,图31为根据本公开又一实施例的又一示例提供的显示装置中的光转化装置示意图。图31所示光转化装置与图29所示光转化装置的不同之处在于本示例中的光线经过偏振转换元件53两次,而图29所示的示例中的光线仅经过偏振转换元件53一次,且方向改变元件52反射的偏振光不同。例如,如图31所示,偏振转换元件53位于方向改变元件52与分束元件51之间,且被配置为将从分束元件51反射向方向改变元件52的第二偏振光束102转换为第三偏振光束103,第三偏振光束103被方向改变元件52反射且经过偏振转换元件53后转换为第一偏振光束101,转换后的第一偏振光束101射向显示面板10。
例如,偏振转换元件53可以为相位延迟膜,例如四分之一波片,可以通过将入射至其上的第二偏振光束102,例如线偏振光转换为第三偏振光束103,例如圆偏振光或椭圆偏振光,以使经相位延迟膜后入射到方向改变元件52的偏振光不再为线偏振光。入射到方向改变元件52的第三偏振光束103被方向改变元件52改变传播方向,以向显示面板10传播,而在到达显示面板10前的第三偏振光束103再次经过偏振转换元件53以转换成能够被显示面板10利用的第一偏振光束101。例如,本示例中光转化装置中的分束元件51和方向改变元件52的特征可以与图28所示的相应元件的特征相同,在此不再赘述。
例如,在本公开至少一实施例中,透过光耦出件(例如透反元件211)的光线的主光轴与光波导元件的出光区域的延伸方向相交,如图1中的传播可以认为是光线的主光轴的传播路径,其与出光区域(例如出光面211相交);或者,透过光耦出件的光线的主光轴沿光波导元件的出光区域的延伸方向,如图34所示,光线的主光轴可以与出光面211平行。例如,光线在光波导元件200中主要沿直线路径传播。
例如,对于多个光耦出件中的至少部分光耦出件中的每个光耦出件来说,入射至该光耦出件的光线中的一部分被该光耦出件反射且另一部分被该光耦出件透射。例如,在一些实施例中,被光耦出件反射的光线从光传导元件的出光区域出射后透过显示面板10,并且被光耦出件透射的光线透过该光耦出件后继续在光传导元件中传播;或者,在另一些实施 例中,被光耦出件透射的光线从光传导元件的出光区域出射后透过显示面板,并且被光耦出件反射的光线透过该光耦出件后继续在光传导元件中传播。通过采用具有多个光耦出件的光传导元件,有利于提高光的均匀性。
在一些实施例中,透过至少部分光耦出件的光线的主光轴与光传导元件的出光侧的延伸方向(部分光耦出件的排列方向,图中以水平方向为例进行说明)相交,这样有利于减小显示装置中背光源的厚度。或者,在一些实施例中,光线在光传导元件中的传播方式也可以替换为:透过至少部分光耦出件的光线的主光轴沿光传导元件的出光侧的延伸方向,如图34所示。
在一些实施例中,在所述光线依次传播方向上的最后一个光耦出件可以包括透反元件和/或包括反射膜。例如,反射膜可以使最后一个光耦出件在所述多个光耦出件中具有最大的反射率,和/或反射膜可以全部或基本上全部反射入射至其上的全部光线或选定光线。基本上全部反射可以是在误差允许范围内被认为全部反射。例如,选定光线可以是选定的偏振光线,例如可以是P偏振光或者S偏振光或者其它偏振光,或者特定波长的光线,或者特定波长的偏振光线。最后一个光耦出件采用反射膜的方式,有利于提高最后一个光耦出件的光反射率,从而有利于提高光效、提高亮度、降低功耗。
在一些实施例中,反射膜例如包括选择性反射膜和/或非选择性反射膜。例如,选择性反射膜可以包括偏振反射膜,例如,偏振反射膜可以包括偏振透反膜和/或偏振吸收膜。例如,选择性反射膜可以包括偏振反射膜以及波长选择性反射膜。
在一些实施例中,光传导元件中的多个光耦出件之间可以为气体(例如空气)或者为透明光学介质(其例如为高分子材料、玻璃或石英等)。
在一些实施例中,反射膜为镀设的反射膜或者为贴附设置的反射膜或者为单独设置的反射膜。镀设或贴附设置的反射膜可以设置于光传导元件的透明光学介质;单独设置的反射膜可以不依附于透明光学介质,例如,单独设置的反射膜可以与气体(例如)直接接触。
在一些实施例中,在最后一个光耦出件包括反射膜的情况下,透过部分光耦出件的光线的主光轴与光传导元件的出光侧的延伸方向可以相交或者大致沿出光侧的延伸方向。
在一些实施例中,显示装置包括显示面板以及背光源,显示面板包括显示面和与显示面相对的背侧,背光源位于显示面板的背侧,背光源的出光侧出射的出射光线透过显示面板后得到图像光线。
在一些实施例中,背光源可以为侧入式背光源,例如,背光源包括的光源部100从光传导元件的侧方入射至光传导元件。
在一些实施例中,背光源的源光线包括第一偏振光的成分和第二偏振光的成分,第一偏振光和第二偏振光的偏振态不同,并且从背光源的出光侧出射的出射光线为偏振光且包括第一偏振光和第二偏振光之一。背光源的源光线例如为非偏振光,其包括第一偏振光的 成分和第二偏振光的成分。在一些实施例中,显示面板包括入光侧偏光片和出光侧偏光片,并且背光源的为非偏振光的源光线被转换为为偏振光的出射光线,这样可以提高背光源的出射光线被显示面板的利用率。
例如,第一偏振光和第二偏振光之一为S偏振光,且另一为P偏振光。在一些实施例中,第一、二偏振光也可以为其它类型的偏振光。例如,入射至所述偏振反射膜的偏振光的偏振态与从所述背光源的出光侧出射的出射光线的偏振态一致。例如,入射至所述偏振反射膜的偏振光与从所述背光源的出光侧出射的出射光线都为P偏振光或者都为S偏振光。
在一些实施例中,背光源还可以包括光转化装置,光转化装置包括偏振分光元件和偏振转换元件。偏振分光元件被配置为将入射至偏振分光元件的源光线分为第一偏振光和第二偏振光,偏振转换元件被配置为将第一偏振光和第二偏振光中的一者转换为另一者,显示面板被配置为利用第一偏振光和第二偏振光之一生成图像光线。在一些实施例中,光转化装置在包括偏振分光元件和偏振转换元件的基础上还可以包括反射元件,反射元件被配置为反射偏振分光元件分光处理后得到的第一偏振光或第二偏振光。
例如,光转化装置可以包括第一元件和第二元件,或者包括第一元件、第二元件和第三元件。例如,如图9和图10所示实施例中,第一元件310可以包括偏振分光元件,第二元件320可以包括反射元件,并且第一元件310和第二元件320之一可以包括偏振转换元件。或者,如图14至图21所示实施例中,第一元件310(图14中未示出)可以包括偏振分光元件,第二元件320可以包括反射元件,第三元件400可以包括偏振转换元件。或者,例如,如图29至图31所示实施例中,第一元件51可以包括偏振分光元件,第二元件52可以包括反射元件,第三元件53可以包括偏振转换元件。
例如,通过分光处理得到的第一偏振光1001和第二偏振光1002之一可以被反射元件(例如参见图14至图21中的320和图29中的52)反射后被偏振转换元件(参见图14至21中的400和图29中的53)转换,或者在被偏振转换元件(参见图30中的53)转换后被反射元件(参见图30中的52)反射,或者在被偏振转换元件(参见图31中的53)第一次转换后被反射元件(参见图31中的52)反射且之后被所述偏振转换元件第二次转换。例如,偏振转换元件可以为二分之一波片或四分之一波片。
例如,在图9和图10所示的一些实施例中,可以是在偏振转换元件将第一偏振光和第二偏振光中的一者转换为另一者之后得到的偏振光入射至光传导元件200;或者,在图14至图21所示的一些实施例中,可以是第一偏振光和第二偏振光中的一者在进入光传导元件200之后被偏振转换元件400转换为另一者。
例如,在一些实施例中,光传导元件200包括多个子光传导元件,该多个子光传导元件中的至少部分可以层叠设置或者并排设置。例如,如图9和图11至图16、图19至图21所示,该多个子光传导元件包括层叠设置的第一子光传导元件2001和第二子光传导元件 2002;或者,如图10、图17、图18所示,该多个子光传导元件包括并排设置的第一子光传导元件2001和第二子光传导元件2002。
例如,在一些实施例中,在第一子光传导元件2001和第二子光传导元件2002层叠设置的情况下,如图14至图16所示,第一子光传导元件2001的第一出光区域和第二子光传导元件2002第二出光区域交叠,并且从第一出光区域和第二出光区域之一出射的光线透过偏振转换元件400之后传播至第一出光区域和第二出光区域之另一;或者,如图20和图21所示,第一子光传导元件2001的第一出光区域和第二子光传导元件2002的第二出光区域交叠,并且从第一出光区域和第二出光区域之一出射的光线绕开偏振转换元件400而传播至第一出光区域和第二出光区域之另一;或者,如图18、图24所示,第二子光传导元件(参见图18中的2002和图24中的下侧子光传导元件)包括沿第二子光传导元件的延伸方向依次设置的光传导区域和第二出光区域,第二子光传导元件中的偏振光在光传导区域中全反射和/或非全反射式反射传播并且传播至第二出光区域后传播至第一子光传导元件(参见图18中的2001和图24中的上侧子光传导元件)中,第二子光波导元件的光传导区域与第一子光波导元件的第一出光区域交叠。
例如,光传导元件包括光波导元件200。例如,第一子光传导元件可以是第一子光波导元件,第二子光传导元件可以是第二子光波导元件。
图32为根据本公开另一实施例提供的抬头显示器的局部结构示意图。图32示意性的示出抬头显示器包括图26所示的显示装置,但不限于此,还可以包括图25,或者图27至图31任一示例所示的显示装置,本公开实施例对此不作限制。
如图32所示,抬头显示器还包括位于显示面板10出光侧的反射成像部60,反射成像部60被配置为将显示面板10出射的光线反射且被反射后的光线传播至眼盒区域003,且透射环境光。位于眼盒区域003的用户可以观看到反射成像部60反射的显示面板10所成像004以及位于反射成像部60远离眼盒区域003一侧的环境景象。例如,显示面板10发出的图像光线入射至反射成像部60,被反射成像部60反射的光线入射至用户,例如驾驶员双眼所在的眼盒区域003,用户就可观察到形成于例如反射成像部外侧的虚像,并且也不影响用户对外界环境的观察。
例如,上述眼盒区域003是指用户双眼所在的、可以看到抬头显示器显示的图像的平面区域。例如,用户的双眼相对于眼盒区域的中心偏离一定距离,如上下、左右移动一定距离时,用户双眼仍处于眼盒区域内,用户仍然可以看到抬头显示器显示的图像。
例如,如图32所示,反射成像部60可为机动车的挡风窗(例如挡风玻璃,如前挡风玻璃、侧挡风玻璃或者后挡风玻璃)和成像窗中的至少一种,例如反射成像部60为挡风窗时,对应风挡式抬头显示器(Windshield-HUD,W-HUD);例如,例如反射成像部60为成像窗时,对应组合式抬头显示器(Combiner-HUD,C-HUD)。
例如,如图32所示,反射成像部60可以为平面板材,通过镜面反射形成虚像;也可以为曲面面形,如挡风玻璃或者带有曲率的透明成像板等,会提供较远的成像距离和放大效果。
图33为根据本公开另一实施例提供的交通设备的示例性框图。如图33所示,该交通设备包括本公开的至少一个实施例提供的抬头显示器,或者包括本公开的至少一个实施例提供的显示装置。例如,交通设备的视窗被复用为抬头显示器的反射成像部60。例如,交通设备的前窗(例如,前挡风玻璃)被复用为抬头显示器的反射成像部60。
例如,该交通设备可以是各种适当的交通工具,例如可以包括各种类型的汽车等陆上交通设备,或可以是船等水上交通设备,或可以是飞机等空中交通设备,其驾驶位置设置前窗且通过车载显示系统将图像透射到前窗上。
需要说的是,为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。虽然上文中已经用一般性说明及具体实施方式,对本公开作了详尽的描述,但在本公开实施例基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本公开精神的基础上所做的这些修改或改进,均属于本公开要求保护的范围。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (20)

  1. 一种显示装置,包括:
    显示面板,包括显示面和与所述显示面相对的背侧;以及
    背光源,位于所述显示面板的背侧,
    其中,所述背光源包括光波导元件,所述光波导元件包括出光区域和光耦出件阵列,所述光耦出件阵列包括多个光耦出件,
    入射至所述光波导元件的光线在进入所述光波导元件之后至少在所述光波导元件的所述出光区域处发生多次全反射且依次传播至所述光耦出件阵列的所述多个光耦出件,传播至至少部分光耦出件中的各光耦出件的光线的一部分被所述光耦出件反射出所述光波导元件的所述出光区域后透过所述显示面板,传播至至少部分光耦出件中的各光耦出件的所述光线的另一部分透过所述光耦出件后继续在所述光波导元件中传播。
  2. 根据权利要求1所述的显示装置,其中,传播至最后一个光耦出件的光线全部或部分被所述最后一个光耦出件反射出所述光波导元件的所述出光区域后透过所述显示面板;和/或所述光波导元件还包括波导介质,所述光源部发出的光线进入所述波导介质且在所述波导介质中全反射传播。
  3. 根据权利要求1所述的显示装置,其中,所述光耦出件与所述出光区域之间的夹角为第一夹角,所述第一夹角和所述光线的全反射临界角之和在60°~120°范围内;和/或,
    所述光耦出件包括透反元件。
  4. 根据权利要求2或3所述的显示装置,其中,所述光波导元件包括多个子光波导元件,所述光耦出件阵列包括分别位于所述多个子光波导元件中的多个子光耦出件阵列;
    所述背光源还包括分光元件,所述分光元件被配置为将入射至所述分光元件的光线分为多个子光束,所述多个子光束分别进入所述多个子光波导元件中,且进入各子光波导元件中的各子光束被位于各子光波导元件中的子光耦出件阵列反射出所述光波导元件的所述出光区域。
  5. 根据权利要求4所述的显示装置,其中,所述多个子光波导元件在垂直于所述显示面板的所述显示面的方向交叠设置,和/或,所述多个子光波导元件沿平行于所述显示面的方向排列;所述多个子光波导元件包括第一子光波导元件和第二子光波导元件;
    其中,入射至所述光波导元件的光线包括特性不同的第一特性光和第二特性光,所述分光元件被配置为对入射至所述分光元件的所述光线进行分光处理,使通过所述分光处理得到的所述第一特性光入射至所述第一子光波导元件,且使通过所述分光处理得到的所述第二特性光入射至所述第二子光波导元件;
    其中,所述第一特性光和所述第二特性光分别为偏振态不同的第一偏振光和第二偏振 光;或者,所述第一特性光和所述第二特性光分别为波长分布不同的第一颜色光和第二颜色光。
  6. 根据权利要求5所述的显示装置,其中,通过对所述光线进行所述分光处理得到的多个子光束包括所述第一颜色光、所述第二颜色光以及第三颜色光,所述第三颜色光被配置为进入所述第一子光波导元件和所述第二子光波导元件之一中;或者,
    所述多个子光束包括所述第一颜色光、所述第二颜色光以及第三颜色光,所述多个子光波导元件还包括第三子光波导元件,所述第三颜色光被配置为进入所述第三子光波导元件中,且被位于所述第三子光波导元件中的光耦出件阵列反射出所述第三子光波导元件。
  7. 根据权利要求5或6所述的显示装置,其中,所述第一子光波导元件中的光耦出件对所述第一特性光的反射率大于对所述第二特性光的反射率,所述第二子光波导元件中的所述光耦出件对所述第二特性光的反射率大于对所述第一特性光的反射率。
  8. 根据权利要求5所述的显示装置,其中,所述分光元件包括偏振分光元件,所述偏振分光元件被配置为对所述第一偏振光和第二偏振光中一者的反射率,大于其对另一者的反射率;和/或,所述偏振分光元件被配置为对所述第一偏振光和第二偏振光中一者的透射率,大于其对另一者的透射率;
    所述分光元件还包括反射元件,所述反射元件被配置为反射所述第一偏振光和所述第二偏振光之一。
  9. 根据权利要求1-8任一项所述的显示装置,其中,所述光耦出件阵列中沿所述出光区域的延伸方向依次排列的光耦出件的反射率在所述光线的传播方向上逐渐增大或呈区域性地逐渐增大;和/或所述光耦出件阵列中沿所述出光区域的延伸方向依次排列的光耦出件的排列密度逐渐增大或呈区域性地逐渐增大;或者,
    所述光耦出件阵列中的至少一个光耦出件包括选透膜,进入所述光波导元件中的光线包括特性不同的第一光线和第二光线,所述选透膜被配置为对所述第一光线的反射率大于对所述第二光线的反射率,和/或对所述第二光线的透射率大于对所述第一光线的透射率。
  10. 根据权利要求1-9任一项所述的显示装置,其中,所述光耦出件阵列包括沿所述出光区域的延伸方向排列的第一光耦出件组和第二光耦出件组,各光耦出件组包括沿所述出光面的延伸方向排列的光耦出件,所述第一光耦出件组的光耦出件相对于所述出光面的倾斜方向与所述第二光耦出件组的光耦出件相对于所述出光区域的倾斜方向不平行;
    其中,所述背光源还包括光源部,所述光源部包括第一光源部和第二光源部,所述第一光源部和所述第二光源部分别位于所述光耦出件阵列沿所述出光面的所述延伸方向的两侧,所述第一光耦出件组被配置为将所述第一光源部发出的进入所述光波导元件的光线反射出所述光波导元件,且所述第二光耦出件组被配置为将所述第二光源部发出的进入所述光波导元件的光线反射出所述光波导元件;或者,
    其中,所述光源部在所述出光区域的所述延伸方向上位于所述第一光耦出件组和所述第二光耦出件组之间。
  11. 根据权利要求1-10任一项所述的显示装置,其中,所述背光源还包括光源部,其中,
    所述光耦出件阵列包括的所述多个光耦出件中的至少部分光耦出件沿第一方向依次排列且沿与所述第一方向相交的第二方向延伸,所述光源部包括沿所述第二方向排列的多个子光源,所述多个子光源被配置为发出进入所述至少部分光耦出件的光线;或者,
    所述光耦出件阵列包括的所述多个光耦出件中的至少部分光耦出件沿第一方向依次排列且沿与所述第一方向相交的第二方向延伸,所述光源部包括子光源,所述显示装置还包括沿所述第二方向排列的多个扩束部,所述多个扩束部被配置为将所述子光源发出的光线沿所述第二方向扩束,且扩束后的光线被配置为传输至所述光耦出件阵列。
  12. 根据权利要求1-6任一项所述的显示装置,其中,所述背光源还包括光源部,所述光源部发出的光线包括偏振态不同的第一偏振光和第二偏振光,所述显示面板被配置为利用所述第一偏振光和所述第二偏振光之一生成图像光线,
    其中,所述显示装置还包括光转化装置,所述光转化装置包括分束元件以及偏振转换元件,
    所述分束元件位于所述显示面板面向所述光波导元件的一侧,且被配置为将入射到所述分束元件的光线分束为偏振态不同的第一偏振光束和第二偏振光束;
    所述偏振转换元件被配置为将所述第一偏振光束和所述第二偏振光束中不能被所述显示面板利用的偏振光束在到达所述显示面板之前转换为能够被所述显示面板利用的偏振光束;
    所述光转化装置被配置为处理所述光源部发出的光并将所述处理后的光传播至所述光波导元件,和/或处理所述光波导元件出射的光并将所述处理后的光传播至所述显示面板。
  13. 根据权利要求12所述的显示装置,还包括:
    至少一个光扩散元件,被配置为将所述显示面板和所述光波导元件至少之一出射的光线进行扩散。
  14. 根据权利要求13所述的显示装置,还包括:
    光会聚元件,其被配置为对从所述光波导元件出射的光线进行会聚后使经会聚的光线射向所述至少一个光扩散元件;其中,所述光会聚元件包括至少一个透镜。
  15. 根据权利要求14所述的显示装置,其中,所述光会聚元件与所述光波导元件为一体式结构,且所述光会聚元件与所述光波导元件之间设置有透明介质层,所述透明介质层的折射率小于所述光波导元件的折射率。
  16. 根据权利要求1-15任一项所述的显示装置,其中,所述光波导元件的所述出光区 域与所述显示面板的显示面在垂直于所述显示面的方向上层叠设置,且所述背光源包括的光源部位于所述光波导元件的侧方。
  17. 根据权利要求1-15任一项所述的显示装置,其中,所述背光源包括光波导板,所述光波导板包括匀光部和所述光波导元件,入射至所述匀光部的光线在被所述匀光部匀化处理后进入所述光波导元件。
  18. 根据权利要求1-15任一项所述的显示装置,其中,入射至所述匀光部的光线在所述匀光部内发生多次全反射之后进入所述光波导元件,所述光波导板为一体化结构。
  19. 一种抬头显示器,包括:
    权利要求1-18任一项所述的显示装置;以及
    反射成像部,被配置为将所述显示装置出射的光线反射后传播至所述抬头显示器的观察区。
  20. 一种交通设备,包括权利要求19所述的抬头显示器或如权利要求1-18中任一项所述的显示装置;其中,所述反射成像部包括所述交通设备的挡风窗或成像窗中的至少一者。
PCT/CN2022/074993 2021-02-10 2022-01-29 显示装置、抬头显示器以及交通设备 WO2022171031A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110185335.5 2021-02-10
CN202110185335.5A CN114911094A (zh) 2021-02-10 2021-02-10 显示装置、抬头显示器以及交通设备

Publications (1)

Publication Number Publication Date
WO2022171031A1 true WO2022171031A1 (zh) 2022-08-18

Family

ID=82761083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074993 WO2022171031A1 (zh) 2021-02-10 2022-01-29 显示装置、抬头显示器以及交通设备

Country Status (2)

Country Link
CN (1) CN114911094A (zh)
WO (1) WO2022171031A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180039078A1 (en) * 2016-04-12 2018-02-08 Ostendo Technologies, Inc. Split Exit Pupil Heads-Up Display Systems and Methods
CN108333749A (zh) * 2017-01-19 2018-07-27 中强光电股份有限公司 光学系统以及头戴式显示装置
CN108431640A (zh) * 2016-02-11 2018-08-21 微软技术许可有限责任公司 具有抗反射和高反射涂层的基于波导的显示器
CN111562644A (zh) * 2020-06-28 2020-08-21 杭州光粒科技有限公司 光波导装置和ar显示设备
CN211318935U (zh) * 2019-12-20 2020-08-21 深圳疆程技术有限公司 一种超薄背光装置、液晶显示器及车载抬头显示系统
CN111948812A (zh) * 2019-05-17 2020-11-17 未来(北京)黑科技有限公司 一种抬头显示系统
CN112236708A (zh) * 2018-06-15 2021-01-15 大陆汽车有限责任公司 用于显示设备的光波导

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108431640A (zh) * 2016-02-11 2018-08-21 微软技术许可有限责任公司 具有抗反射和高反射涂层的基于波导的显示器
US20180039078A1 (en) * 2016-04-12 2018-02-08 Ostendo Technologies, Inc. Split Exit Pupil Heads-Up Display Systems and Methods
CN108333749A (zh) * 2017-01-19 2018-07-27 中强光电股份有限公司 光学系统以及头戴式显示装置
CN112236708A (zh) * 2018-06-15 2021-01-15 大陆汽车有限责任公司 用于显示设备的光波导
CN111948812A (zh) * 2019-05-17 2020-11-17 未来(北京)黑科技有限公司 一种抬头显示系统
CN211318935U (zh) * 2019-12-20 2020-08-21 深圳疆程技术有限公司 一种超薄背光装置、液晶显示器及车载抬头显示系统
CN111562644A (zh) * 2020-06-28 2020-08-21 杭州光粒科技有限公司 光波导装置和ar显示设备

Also Published As

Publication number Publication date
CN114911094A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
CN110543022B (zh) 一种增强现实装置及穿戴设备
CN110596807B (zh) 波导结构、显示装置及电子设备
JP2021506055A (ja) 光学照明装置
US20080089093A1 (en) Backlight unit using particular direct backlight assembly
CN112969955A (zh) 具有二向色分束器颜色组合器的光学装置和系统
JP2002352611A (ja) 照明装置およびそれを備える表示装置
EP4025954A1 (en) Optical devices having dichroic beam combiners, optical devices for use with dichroic beam combiners, and methods of manufacture therefor
CN112462519A (zh) 一种出光均匀的光栅波导显示装置
US20240155088A1 (en) Optical systems with compact image projector
CN114911095A (zh) 光源装置、显示装置、抬头显示器以及交通设备
WO2022171031A1 (zh) 显示装置、抬头显示器以及交通设备
CN216748172U (zh) 导光装置、光源装置、抬头显示器和交通设备
CN214375582U (zh) 显示装置、近眼显示设备以及光波导元件
CN218455809U (zh) 显示装置、抬头显示器以及交通设备
CN216748171U (zh) 导光装置、光源装置、显示装置、抬头显示器和交通设备
CN216817084U (zh) 显示系统及包含其的交通工具
US20220276489A1 (en) Optical system and mixed reality device
CN215769262U (zh) 显示装置、抬头显示器、交通设备以及光源装置
CN216927135U (zh) 导光装置、光源装置以及抬头显示器
CN215769261U (zh) 光源装置、显示装置、抬头显示器以及交通设备
CN215769104U (zh) 显示装置、抬头显示器以及交通设备
CN216561303U (zh) 显示装置、抬头显示器以及交通设备
WO2022022675A1 (zh) 图像源、抬头显示器以及交通设备
CN114911096A (zh) 显示装置、抬头显示器、交通设备以及光源装置
CN220171334U (zh) 显示装置、光源装置、抬头显示器以及交通设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752192

Country of ref document: EP

Kind code of ref document: A1