WO2022171028A1 - 传输方法及装置 - Google Patents

传输方法及装置 Download PDF

Info

Publication number
WO2022171028A1
WO2022171028A1 PCT/CN2022/074941 CN2022074941W WO2022171028A1 WO 2022171028 A1 WO2022171028 A1 WO 2022171028A1 CN 2022074941 W CN2022074941 W CN 2022074941W WO 2022171028 A1 WO2022171028 A1 WO 2022171028A1
Authority
WO
WIPO (PCT)
Prior art keywords
group information
qos flow
synchronization group
qos
synchronization
Prior art date
Application number
PCT/CN2022/074941
Other languages
English (en)
French (fr)
Inventor
韩立锋
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to US18/264,647 priority Critical patent/US20240056873A1/en
Priority to EP22752189.5A priority patent/EP4294074A1/en
Publication of WO2022171028A1 publication Critical patent/WO2022171028A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a transmission method and device.
  • Multimodal services can contain multiple data streams, where multiple data streams have different quality of service (QoS) requirements.
  • the data stream can be video, such as Video, Audio media; data obtained by sensors, such as Brightness, temperature, humidity; tactile data, such as pressure, vibration, temperature, gravity, pull forces, etc.
  • QoS quality of service
  • the data stream can be video, such as Video, Audio media
  • data obtained by sensors such as Brightness, temperature, humidity
  • tactile data such as pressure, vibration, temperature, gravity, pull forces, etc.
  • the embodiments of the present application propose a transmission method and device, which can realize synchronous transmission and/or synchronous reception of different QoS flows of multimodal services, and ensure synchronous transmission of air interfaces.
  • an embodiment of the present application provides a transmission method, which is applied to a terminal device, and the method includes:
  • the synchronization group information is used to instruct to send and/or receive the multiple QoS flows synchronously.
  • an embodiment of the present application provides a transmission method, which is applied to a first network device, and the method includes:
  • the terminal device According to the synchronization group information, receive multiple QoS flows from the terminal device;
  • the synchronization group information is used for synchronously sending and/or receiving the multiple QoS flows.
  • an embodiment of the present application provides a transmission method, which is applied to a first network device, and the method includes:
  • the synchronization group information being used to transmit and/or receive the plurality of QoS flows synchronously;
  • an embodiment of the present application provides a transmission method, which is applied to a core network control plane network element, and the method includes:
  • synchronization group information is used for synchronously sending and/or receiving the multiple QoS flows
  • a second message is sent to the first network device, the second message including the synchronization group information.
  • an embodiment of the present application provides a transmission apparatus, which is applied to a terminal device, and the apparatus includes:
  • a transceiver unit configured to send multiple QoS flows to the first network device according to the synchronization group information; or receive multiple QoS flows from the first network device according to the synchronization group information; wherein the synchronization group information is used for to instruct to transmit and/or receive the plurality of QoS flows synchronously.
  • an embodiment of the present application provides a transmission apparatus, which is applied to a first network device, and the apparatus includes:
  • a transceiver unit configured to send multiple QoS flows to the terminal device according to the synchronization group information; or receive multiple QoS flows from the terminal device according to the synchronization group information; wherein the synchronization group information is used for synchronously sending and/or The plurality of QoS flows are received.
  • an embodiment of the present application provides a transmission apparatus, which is applied to a first network device, and the apparatus includes:
  • a transceiver unit configured to receive synchronization group information, where the synchronization group information is used for synchronously sending and/or receiving the multiple QoS flows; and sending the synchronization group information.
  • an embodiment of the present application provides a transmission device, which is applied to a network element of a control plane of a core network, and the device includes:
  • a processing unit configured to acquire synchronization group information, where the synchronization group information is used for synchronously sending and/or receiving the multiple QoS flows;
  • a transceiver unit configured to send a second message to the first network device, where the second message includes the synchronization group information.
  • an embodiment of the present application provides a chip, which is used for outputting a plurality of QoS flows sent to the first network device according to synchronization group information; or, the chip is used for obtaining information from a Multiple QoS flows of the first network device; wherein the synchronization group information is used to indicate synchronously sending and/or receiving the multiple QoS flows.
  • an embodiment of the present application provides a chip module, including a transceiver component and a chip, wherein the chip is configured to output a plurality of QoS sent to a first network device through the transceiver component according to synchronization group information Alternatively, the chip is configured to obtain, through the transceiver component, multiple QoS flows from the first network device according to the synchronization group information; wherein the synchronization group information is used to instruct the synchronous transmission and/or reception of all QoS streams. describe multiple QoS flows.
  • an embodiment of the present application provides a chip, which is used to output and send multiple QoS flows to a terminal device according to synchronization group information; or, the chip is used to obtain information from a terminal device according to the synchronization group information The multiple QoS flows; wherein, the synchronization group information is used for synchronously sending and/or receiving the multiple QoS flows.
  • an embodiment of the present application provides a chip module, including a transceiver component and a chip, wherein the chip is configured to output and send multiple QoS flows to a terminal device through the transceiver component according to synchronization group information; Alternatively, the chip is configured to acquire multiple QoS flows from the terminal device according to the synchronization group information through the transceiver component; wherein the synchronization group information is used for synchronously sending and/or receiving the multiple QoS flows.
  • an embodiment of the present application provides a chip, where the chip is used for acquiring synchronization group information, where the synchronization group information is used for synchronously sending and/or receiving the multiple QoS flows; the chip is also used for The synchronization group information is output.
  • an embodiment of the present application provides a chip module, including a transceiver component and a chip, wherein the chip is used to obtain synchronization group information through the transceiver component, and the synchronization group information is used for synchronously sending and receiving /or receiving the multiple QoS flows; the chip is further configured to output the synchronization group information.
  • an embodiment of the present application provides a chip, where the chip is used for acquiring synchronization group information, where the synchronization group information is used for synchronously sending and/or receiving the multiple QoS flows; the chip is also used for A second message is sent to the first network device, the second message including the synchronization group information.
  • an embodiment of the present application provides a chip module, including a transceiver component and a chip, wherein the chip is used to obtain synchronization group information through the transceiver component, and the synchronization group information is used for synchronously sending and receiving /or receiving the multiple QoS flows; the chip is further configured to send a second message to the first network device, where the second message includes the synchronization group information.
  • embodiments of the present application provide an electronic device, including a processor, a memory, a communication interface, and one or more programs, where the one or more programs are stored in the memory and configured by The processor executes the program comprising instructions for performing the steps in the method of any one of the above-mentioned first, second, third and fourth aspects.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes a computer to execute the above-mentioned first aspect.
  • an embodiment of the present application provides a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to execute the program as described in the present application. Part or all of the steps described in any one of the first aspect, the second aspect, the third aspect, and the fourth aspect.
  • the computer program product may be a software installation package.
  • the terminal device sends multiple QoS flows to the first network device according to the synchronization group information; or, according to the synchronization group information, receives multiple QoS flows from the first network device, and the synchronization group information is used to indicate Send and/or receive multiple QoS flows simultaneously.
  • the terminal device can realize synchronous transmission and/or synchronous reception of different QoS flows of multi-modal services according to the synchronization group information, thereby ensuring synchronous transmission of the air interface.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a transmission method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another transmission method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another transmission method provided by an embodiment of the present application.
  • FIG. 7 is a block diagram of functional units of a transmission device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the terminal device in this embodiment of the present application is a device with a wireless communication function, which may be referred to as a terminal (terminal), user equipment (UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT) ), access terminal equipment, vehicle terminal equipment, industrial control terminal equipment, UE unit, UE station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE proxy or UE device, etc.
  • Terminal devices can be stationary or mobile.
  • the terminal device may support at least one wireless communication technology, such as LTE, new radio (NR), wideband code division multiple access (WCDMA), and the like.
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (pad), a desktop computer, a notebook computer, an all-in-one computer, a vehicle terminal, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, transportation safety Wireless terminals in (transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless Wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, wearable devices, future mobile communications
  • the terminal device may also be a device with a transceiving function, such as a chip system
  • the access network device is a device that provides a wireless communication function for terminal devices, and may also be referred to as a radio access network (radio access network, RAN) device, or an access network element, or the like.
  • the access network device may support at least one wireless communication technology, such as LTE, NR, and the like.
  • the access network equipment includes, but is not limited to: a next-generation base station (generation nodeB, gNB), an evolved node B (evolved node B, eNB), wireless Network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved node B, or home node B, HNB), baseband unit (BBU), transmitting and receiving point (TRP), transmitting point (TP), mobile switching center, etc.
  • generation nodeB, gNB next-generation base station
  • evolved node B, eNB evolved node B
  • wireless Network controller radio network controller
  • node B node B
  • base station controller base station controller
  • BTS base transceiver station
  • home base station for example, home evolved node B, or home node B, HNB
  • BBU baseband unit
  • TRP transmitting and receiving point
  • the network device may also be a wireless controller, centralized unit (centralized unit, CU), and/or distributed unit (distributed unit, DU) in a cloud radio access network (cloud radio access network, CRAN) scenario, or an access network
  • the device may be a relay station, an access point, a vehicle-mounted device, a terminal device, a wearable device, and an access network device in future mobile communications or an access network device in a future evolved PLMN, and the like.
  • the access network device may also be an apparatus having a wireless communication function for the terminal device, such as a chip system.
  • the system-on-chip may include chips, and may also include other discrete devices.
  • the access network device may also communicate with an Internet Protocol (Internet Protocol, IP) network, such as the Internet (internet), a private IP network, or other data networks.
  • IP Internet Protocol
  • the core network in the embodiment of the present application is composed of core network network elements.
  • the core network element may also be referred to as a core network device, and is a network element deployed in the core network, such as a core network control plane network element or a core network user plane network element.
  • the core network in this embodiment of the present application may be an evolved packet core network (Evolved Packet Core, EPC), a 5G core network (5G Core Network), or may be a new type of core network in a future communication system.
  • EPC evolved Packet Core
  • 5G Core Network 5G core network
  • the 5G core network consists of a set of network elements, and implements access and mobility management functions (Access and Mobility Management Function, AMF) for functions such as mobility management, provides packet routing and forwarding and QoS (Quality of Service) management User Plane Function (UPF), which provides functions such as session management, IP address allocation and management, and Session Management Function (SMF), etc.
  • AMF Access and Mobility Management Function
  • UPF Quality of Service management User Plane Function
  • SMF Serving Gateway
  • PDN Gateway PDN Gateway that provides functions such as terminal address allocation and rate control.
  • the core network may include several new network elements to implement packet forwarding, MBS conference management, QoS management, and transmission mode switching (unicast and multicast/broadcast transmission). switch between modes). Another way is that the functions can be implemented by existing core network elements.
  • uplink communication may also be referred to as uplink transmission, which refers to unidirectional communication from a terminal device to an access network device, where a communication link used for uplink communication is an uplink.
  • Data transmitted on the uplink is uplink data.
  • the transmission direction of upstream data is the upstream direction.
  • downlink communication may also be referred to as downlink transmission, which refers to unidirectional communication from an access network device to a terminal device, where a communication link used for downlink communication is an uplink. Data transmitted on the downlink is downlink data. The transmission direction of downlink data is the downlink direction.
  • Transmission resources include frequency domain resources and time domain resources, and the transmission resources are used for data transmission in the communication system.
  • a DRB data radio bearer refers to a wireless bearer in wireless communication, which is used to transmit one or more QoS streams.
  • the transmission resources corresponding to a DRB can be dynamically scheduled by the network side, that is, each data transmission is performed by The network indicates the transmission resources used; the transmission resources corresponding to a DRB may also be statically configured on the network side, that is, periodic transmission resources pre-configured by the network side, and the data carried in the DRB is transmitted on the corresponding transmission resources.
  • the interval between different transmission resources in the time domain specifically refers to the interval between the end times of different transmission resource blocks constituting different transmission resources in the time domain, that is, the time interval between the transmission resources.
  • transmission resource 1 consists of multiple transmission resource blocks 1
  • transmission resource 2 consists of multiple transmission resource blocks 2; a certain transmission resource block 1 and corresponding transmission resource block 2 are used for synchronization of data packets of multimodal services
  • the interval between the end times of the transmission resource block 1 and the transmission resource block 2 is the time interval between the transmission resources.
  • transmission resource block 1 is used to transmit data packet 1 and data packet 2 of QoS flow 1 of multimodal service 1
  • corresponding transmission resource block 2 is used to transmit data packet 3 of QoS flow 2 of multimodal service 1 and packet 4, in which packet 1, packet 2, packet 3 and packet 4 need to be transmitted synchronously.
  • QoS flow refers to data flows with the same QoS requirements.
  • a service may include multiple QoS flows, and one QoS flow may include one or more data flows, wherein the data flows may be IP data flows or non-IP data flows.
  • the multimodal service in the embodiment of the present application includes various QoS flows, wherein the QoS of multiple QoS flows are different, and the data generation sources of different QoS flows may be different, for example, from different data collectors or sensors.
  • There is a certain relationship between different QoS flows included in a multi-modal service such as requiring synchronous transmission and having different priorities.
  • a multimodal service includes multiple QoS flows (flows), and a multimodal service can belong to the same session.
  • the session refers to the link between the terminal and the user plane network element of the core network, and the session can be a PDU. session, MBS session and other types of sessions.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or which describes the relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, it can indicate that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an "or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c may represent: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c Each can be an element itself, or a collection containing one or more elements.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, sequence, priority or priority of multiple objects. Importance.
  • the first information and the second information are only for distinguishing different information, and do not indicate the difference in content, priority, transmission order, or importance of the two kinds of information.
  • connection in the embodiments of the present application refers to various connection modes such as direct connection or indirect connection, so as to realize communication between devices, which is not limited in the embodiments of the present application.
  • the technical solutions of the embodiments of the present application can be applied to the Global System for Mobile Communication (CSM), the Code Division Multiple Access (Code Division Multiple Access, CDMA) system, the Wideband Code Division Multiple Access (Wideband Code Division Multiple Access, WCDMA) system, Worldwide Interoperability for Microwave Access (Wi-MAX) system, Long Term Evolution (LTE) system, 5G communication system (such as New Radio (NR)), various
  • CSM Global System for Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • Wi-MAX Worldwide Interoperability for Microwave Access
  • LTE Long Term Evolution
  • 5G communication system such as New Radio (NR)
  • a communication system integrated with communication technologies eg, a communication system integrated with LTE technology and NR technology
  • 6G communication system e.g, a communication system integrated with LTE technology and NR technology
  • the technical solutions of the embodiments of the present application are also applicable to different network architectures, including but not limited to a relay network architecture, a dual-link architecture, a vehicle-to-everything (Vehicle-to-Everything) architecture, and the like.
  • a relay network architecture including but not limited to a relay network architecture, a dual-link architecture, a vehicle-to-everything (Vehicle-to-Everything) architecture, and the like.
  • FIG. 1 it is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • the communication system may further include a core network 130 , wherein the core network 130 is connected to the access network device 110 .
  • FIG. 1 is for illustration only, and does not constitute a limitation to the embodiments of the present application.
  • the embodiments of the present application do not limit the form and quantity of access network devices, terminal devices, and the like.
  • QoS is a schematic flowchart of a transmission method provided by an embodiment of the present application, which specifically includes the following steps:
  • the first network device sends synchronization group information to the terminal device, where the synchronization group information is used for synchronously sending and/or receiving multiple QoS flows.
  • the first network device may carry the synchronization group information of the multimodal service in the first message to send to the terminal device, and the multimodal service includes multiple QoS flows.
  • the first message may be a radio resource control (radio resourse control, RRC) message, for example, RRC Reconfiguration, RRC Setup, RRC Resume, RRC Reestablishment, and the like.
  • RRC radio resource control
  • the first network device can perform air interface transmission configuration and air interface resource scheduling based on the synchronization group information, thereby helping to improve multiple Possibility of simultaneous transmission of QoS flows.
  • the synchronization group information includes at least one of the following: synchronization time granularity, primary QoS flow indication, and synchronization group identifier, where the synchronization time granularity is used to indicate synchronization transmission between different QoS flows in the synchronization transmission group
  • the main QoS flow indication is used to indicate the main QoS flow in the multiple QoS flows, and the main QoS flow is the reference QoS flow calculated by the transmission time interval in the synchronous transmission group.
  • a multi-modal service in the process of data transmission, can be divided into one or more synchronous transmission groups, and each synchronous transmission group can include a group of multiple QoS flows that need to be transmitted synchronously.
  • Each isochronous transmission group can be represented by a isochronous group identifier, and according to the isochronous group identifier, the terminal device and/or the first network device can acquire the isochronous transmission group that needs to be sent and/or received.
  • the synchronization group identifier may be a synchronization group ID, an APP ID, or the like.
  • the synchronization group information includes the synchronization time granularity of the synchronization transmission group, and the synchronization time granularity may refer to the maximum transmission interval of synchronization transmission between different QoS flows in the same synchronization transmission group, that is, when the transmission When the interval is less than or equal to the synchronization time granularity, it can be considered that the different QoS flows belong to the synchronization transmission.
  • the synchronization transmission granularity may be 1ms, 5ms or 10ms, etc.
  • the transmission time difference between data packet 1 and data packet 2 needs to be less than or equal to the synchronization time granularity.
  • the synchronous group information also includes a primary QoS flow indicator (Primary flow indicator) for indicating the primary QoS flow in the synchronous transmission group, where the primary QoS flow refers to the QoS with the synchronization time granularity as the transmission time benchmark.
  • Flow that is, based on the transmission time of the main QoS flow, calculate the transmission time difference between other QoS flows and the main QoS flow, so as to judge whether the QoS flows meet the requirements of synchronous transmission.
  • the terminal and the access network device have the data packet 1 of the QoS flow 1 and the data packet 2 of the QoS flow 1 to be transmitted, wherein.
  • QoS flow 1 is the main QoS flow
  • the transmission time difference of data packet 2 is calculated based on the transmission time of data packet 1.
  • the moment when the data packet starts to be sent or the data packet is successfully sent is regarded as the transmission time, so as to calculate the transmission time difference of different QoS flows.
  • the time when the data packet is successfully received is taken as the transmission time, so as to calculate the transmission time difference of different QoS flows.
  • the terminal device receives the synchronization group information from the first network device.
  • the terminal device can send multiple QoS flows in the synchronous transmission group and/or receive multiple QoS flows sent by the network device according to the synchronization group information in the first message. stream, so that the multiple QoS streams meet the requirement of synchronous transmission, thereby ensuring synchronous transmission of the air interface.
  • the first network device can send the synchronization group information to the terminal device, it is possible to realize the synchronous transmission and/or synchronous reception of different QoS flows of the multi-modal service according to the synchronization group information, thereby The synchronous transmission of the air interface is guaranteed.
  • the synchronization group information may be sent by the core network control plane network element to the first network device.
  • the first network device receives a second message from a control plane network element of the core network, and then sends the first message to the terminal device, where the second message includes synchronization group information of the multimodal service.
  • the second message may be the process of establishing and modifying the session between the first network device and the control plane network element of the core network, or the process of establishing and modifying the UE context, or the process of cell handover, sent by the control plane network element of the core network to the second message.
  • a network device message for example, PDU SESSION RESOURCE SETUP REQUEST, PDU SESSION RESOURCE MODIFY REQUEST, INITIAL CONTEXT SETUP REQUEST, UE CONTEXT MODIFICATION REQUEST, HANDOVER REQUEST, MBS SESSION RESOURCE SETUP REQUEST, MBS SESSION RESOURCE MODIFY REQUEST, etc.
  • the core network control plane network elements may include network elements such as AMF (Access and Mobility Management Function) or SMF (Session Management Function), policy control function (Policy Control function, PCF).
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • Policy Control function Policy Control function
  • the core network control plane network element may further configure the synchronization group information for multiple QoS flows for uplink transmission and/or multiple QoS flows for downlink transmission.
  • the core network control plane network element can configure the synchronization group information for uplink transmission of multiple QoS flows;
  • the NE of the core network control plane can configure the synchronization group information for downlink transmission of multiple QoS streams; for some multi-modal services that require interaction, such as video calls, voice For calls, etc., the core network control plane network element can configure the synchronization group information that can be used for multiple QoS flows of downlink transmission and downlink transmission at the same time.
  • the core network control plane network element may configure synchronization group information of the multimodal service, and send the synchronization group information to the first network device.
  • the first network device receives the synchronization group information of the multiple QoS flows from the core network control plane network element, it may send the synchronization group information to the terminal device through the first message.
  • the synchronization group information in the first message is configured according to DRB or LCH (Logical Channel), that is, the synchronization group information of the multimodal service is configured through DRB or LCH. Specifically, at least one item of synchronization time granularity between different DRBs or LCHs, primary DRB/LCH indication and synchronization group identification is configured.
  • DRB or LCH Logical Channel
  • the first message includes a non-access stratum NAS message
  • the synchronization group information is carried in the NAS message.
  • the core network control plane network element sends a non-access stratum (Non-access stratum, NAS) message to the first network device, where the NAS message includes synchronization group information, that is, the synchronization group information is carried in the NAS message.
  • NAS non-access stratum
  • the first network device may carry the NAS message in the first message and forward the synchronization group information to the terminal device.
  • the method further includes: generating synchronization group information to a second network device, where the second network device is a network device that receives a handover request sent by the first network device.
  • the first network device may carry the synchronization group information in the third message and send it to the second network device (target base station), so that after the terminal device switches to the second network device, the second network device can perform air interface transmission configuration and air interface resource scheduling according to the synchronization group information, thereby ensuring air interface synchronous transmission.
  • the third message may be a HANDOVER REQUEST message
  • the HANDOVER REQUEST message is a handover request message sent by the first network device to the second network device, and is used by the first network device to request the terminal connected to the first network device to switch to the second network device.
  • the second network device may also decide whether to confirm the handover request (handover decision) according to the synchronization group information. For example, if the second network device does not meet the synchronization transmission requirements of the synchronization transmission group corresponding to the synchronization group information, the second network device may reject the handover request; if all other conditions are met, and the second network device satisfies the synchronization group information The second network device may confirm the handover request according to the synchronous transmission requirement of the corresponding synchronous transmission group. Further, the second network device may send the first message to the terminal device, wherein the first message includes the synchronization group information.
  • the sending the synchronization group information includes: receiving the synchronization group information from a third network device, and sending the synchronization group information to a second network device, and the third network device
  • the device is a network device that sends a handover request to the first network device.
  • the third network device may carry the synchronization group information in the third message and send it to the third network device.
  • a network device (relay base station). Then the first network device forwards the synchronization group information to the second network device (target base station), so that after the terminal device switches to the second network device, the second network device can perform air interface transmission configuration and air interface according to the synchronization group information resource scheduling, so as to ensure the synchronous transmission of the air interface.
  • the first network device is an access network device that establishes a control plane connection with a control plane network element of the core network.
  • the method further includes: sending the synchronization information group to a fourth network device, where the fourth network device has established a connection with the terminal device or has not established a connection, and has not established a control plane network element with the core network The network device to which the control plane is connected.
  • the first network device sends a third message to the fourth network device, where the third message is used by the first network device to request the fourth device to establish a link with the terminal, that is, the terminal device simultaneously communicates with the first network device A connection is established with the fourth network device.
  • the third message is also used by the first network device to request modification of the existing link between the fourth device and the terminal.
  • the first network device may send the synchronization group information bearer and a third message to the fourth network device, so that the fourth network device Air interface transmission configuration and air interface resource scheduling can be performed according to the synchronization group information.
  • the third message may be S-NODE ADDITION REQUEST, S-NODE MODIFICATION REQUEST, or S-NODE CHANGE CONFIRM message or the like.
  • the second network device may send the first message to the terminal device, wherein the first message includes the synchronization group information.
  • the first network device notifies other network devices (the second network device and/or the fourth network device) or the terminal device of the synchronization group information of the multi-modal service, which can ensure the synchronous transmission of the air interface.
  • FIG. 3 is a schematic flowchart of another transmission method provided by an embodiment of the present application. As shown in FIG. 3, the transmission method includes the following steps:
  • the core network control plane network element sends a second message to the first network device, where the second message includes synchronization group information, where the synchronization group information is used for synchronously sending and/or receiving multiple QoS flows.
  • the first network device receives the second message from the core network control plane network element.
  • the first network device sends synchronization group information to the terminal device.
  • the terminal device receives the synchronization group information from the first network device.
  • the network element of the core network control plane sends the second message to the first network device to notify the first network device and the terminal device to transmit the synchronization group information of the multimodal service, thereby enabling the terminal device and/or the terminal device to transmit the synchronization group information of the multimodal service.
  • the first network device implements synchronous transmission and/or synchronous reception of different QoS flows of the multimodal service according to the synchronization group information, thereby ensuring synchronous transmission of the air interface.
  • FIG. 4 is a schematic flowchart of another transmission method provided by an embodiment of the present application. As shown in FIG. 4, the transmission method includes the following steps:
  • the core network control plane network element sends a second message to the first network device, where the second message includes synchronization group information, where the synchronization group information is used to send and/or receive multiple QoS flows synchronously.
  • the first network device receives the second message from the core network control plane network element.
  • the first network device sends synchronization group information to the terminal device.
  • the terminal device receives the synchronization group information from the first network device.
  • the terminal device sends multiple QoS flows to the first network device according to the synchronization group information.
  • the terminal device after receiving the synchronization group information, the terminal device can synchronously transmit to the first network device a plurality of QoS flows to be transmitted in the buffer of the terminal device according to the synchronization group information.
  • the first QoS flow group is mapped to the first data bearer DRB
  • the second QoS flow group is mapped to the second data bearer DRB
  • the time interval between the transmission resources of the first DRB and the second DRB is less than or equal to the synchronization time granularity
  • the first QoS flow group and the second QoS flow group include at least one QoS flow.
  • mapping relationship between the multiple QoS flows and multiple data resource bearing DRBs that is, one or more QoS flows are mapped to one DRB, and the time interval between the transmission resources of the multiple DRBs is less than or equal to all the DRBs. the synchronization time granularity.
  • a terminal device when a terminal device sends QoS flow data of a multi-modal service, if multiple QoS flows of a multi-modal service are mapped to multiple data radio bearers (Data Radio Bearers, DRBs), that is, multiple QoS flows can be Mapping to a DRB or a QoS flow to a DRB, the terminal device can transmit the QoS flow data in the synchronous transmission group on the transmission resources that are relatively close in time, that is, the QoS flow data in the synchronous transmission group can be relatively close in time. is sent on the configuration resource.
  • DRBs Data Radio Bearers
  • the first network device configures DRB1 to use the resources of configured grant1 to send, and the first network device configures DRB2 to send the resources of configured grant2, then the configured grant1 and The time interval of configured grant2 is smaller than the synchronization time granularity.
  • the configured grant refers to a transmission resource pre-configured on the network side for sending uplink or downlink data.
  • the method further includes: adjusting the sending time of the first QoS flow to a first time, where the difference between the first time and the sending time of the second QoS flow is less than or equal to the synchronization time granularity, the The first QoS flow and the second QoS flow are any two QoS flows in the plurality of QoS flows.
  • the terminal device can adjust the priority of QoS flow data transmission, that is, adjust the transmission resources of the QoS flow.
  • the first network device configures QoS flow 1 to be mapped to DRB1, and QoS flow 2 to be mapped to DRB2.
  • the terminal device can adjust the sending time of the QoS flow 2 data packet, for example, by occupying the transmission resources of other data to be transmitted or using other scheduling resources, etc., so that the QoS flow 2 data packet Sent before t2, where (t2-t1) is less than the synchronization time granularity.
  • the terminal device can adjust the sending time of QoS flow 2 data packets, and can temporarily set the logical channel priority of DRB2 Adjusted to priority 3, and priority 3 is higher than or equal to priority 1.
  • the method further includes: sending a buffer status report BSR to the first network device, where the BSR includes synchronous transmission indication information, where the synchronous transmission indication information is used to instruct the terminal device
  • the current buffer of QoS flows to be sent synchronously.
  • the terminal device can actively report a buffer status report (Buffer Status Report) to the first network device, and the BSR, the BSR can carry synchronous transmission indication information, and the indication information is used to indicate whether there is pending synchronous transmission in the current buffer of the terminal device QoS flow data. If the synchronous transmission indication information indicates that there is QoS flow data to be synchronously transmitted in the current buffer, the first network device may first allocate transmission resources to the QoS flow to be synchronously transmitted in the current buffer, so that the current buffer to be synchronously transmitted has transmission resources. The QoS flow data can be sent first.
  • Buffer Status Report Buffer Status Report
  • the first network device may configure or schedule transmission resources for transmitting QoS flow 1 and QoS flow 2 .
  • the synchronous transmission indication information in the BSR may be indicated according to a logical channel or a logical channel group.
  • the terminal device can adjust the transmission time of the QoS flow for synchronous transmission by adjusting the transmission resources of the QoS flow for synchronous transmission, so that all QoS flows used for synchronous transmission can meet the requirements of synchronous transmission.
  • the first network device receives multiple QoS flows from the terminal device.
  • the protocol layer of the first network device is responsible for transmitting the received QoS flow data packets to the upper layer, wherein the protocol layer may be PDCP layer, SDAP layer or other protocol layer.
  • the method further includes: the multiple QoS flows include a third QoS flow and a fourth QoS flow, the third QoS flow and the fourth QoS flow belong to the same synchronous transmission group, and the third QoS flow and the fourth QoS flow belong to the same synchronous transmission group.
  • the three QoS streams are the main QoS streams; after receiving the third QoS stream, deliver the data packets of the third QoS stream to the upper layer; if the receiving time of the fourth QoS stream is the same as the receiving time of the third QoS stream The interval between times is greater than the synchronization time granularity, and the data packets of the fourth QoS flow are discarded.
  • the protocol layer can transmit the main QoS flow data packet first, if the time difference between the receiving time of other QoS flow data packets and the receiving time of the main QoS flow exceeds the synchronization time granularity, other QoS flow packets can be dropped.
  • the method further includes: if the interval between the receiving time of the fourth QoS flow and the receiving time of the third QoS flow is less than or equal to the synchronization time granularity, after receiving the fourth QoS flow After the QoS flow, the third QoS flow and the fourth QoS flow are transmitted to the upper layer.
  • the first network device may configure whether the terminal device discards other QoS flow data packets when the synchronization time granularity is exceeded. If the first network device is configured not to discard other QoS flow data packets, when the main QoS flow data packet arrives first, the protocol layer can transmit the main QoS flow data packet first, and wait for a preset time period. For other QoS flow data packets, the protocol layer can transmit other QoS flow data packets; if no other QoS flow data packets are received within the preset time period, other QoS flow data packets received after the preset time period can be discarded.
  • the other QoS flow data packets are directly discarded when the time difference between the receiving time of the other QoS flow data packets and the receiving time of the main QoS flow exceeds the synchronization time granularity.
  • the method further includes: if the interval between the receiving time of the fourth QoS flow and the receiving time of the third QoS flow is less than or equal to the synchronization time granularity, after receiving the fourth QoS flow After the QoS flow, the third QoS flow and the fourth QoS flow are transmitted to the upper layer.
  • the protocol layer of the first network device if other QoS flow data packets arrive first, waiting may be performed until the main QoS flow data packets are received.
  • the protocol layer then transmits the main QoS flow packet to the upper layer together with other QoS flow packets.
  • the synchronization group information when the first network device receives the synchronously transmitted QoS flow data packets, the synchronization group information is considered to realize the upward transmission or discard of the data packets, which can realize the data packets in different QoS flows of multimodal services. Synchronous up-transfer.
  • the core network control plane network element sends the synchronization group information to the first network device, and the first network device sends the synchronization group information to the terminal device to notify the first network device and the terminal device.
  • the device transmits the synchronization group information of the multimodal service, so that the terminal device can realize the synchronous transmission of different QoS flows of the multimodal service according to the synchronization group information, and the first network device can realize the different QoS of the multimodal service according to the synchronization group information.
  • the synchronous reception of the stream ensures the synchronous transmission of the air interface.
  • FIG. 5 is a schematic flowchart of another transmission method provided by an embodiment of the present application. As shown in FIG. 5, the transmission method includes the following steps:
  • the core network control plane network element sends a second message to the first network device, where the second message includes synchronization group information, where the synchronization group information is used to send and/or receive multiple QoS flows synchronously.
  • the first network device receives the second message from the core network control plane network element.
  • the first network device sends synchronization group information to the terminal device.
  • the terminal device receives the synchronization group information from the first network device.
  • the first network device sends multiple QoS flows to the terminal device according to the synchronization group information.
  • the first network device after receiving the synchronization group information, can synchronously transmit the plurality of QoS streams to be transmitted in the buffer of the first network device to the terminal device according to the synchronization group information.
  • mapping relationship between the multiple QoS flows and the multiple data radio bearer DRBs there is a mapping relationship between the multiple QoS flows and the multiple data radio bearer DRBs, and the time interval between the transmission resources of the multiple DRBs is less than or equal to the synchronization time granularity.
  • the first QoS flow group is mapped to the first DRB
  • the second QoS flow group is mapped to the second DRB
  • the time interval between the transmission resources of the first DRB and the second DRB is less than or equal to the Synchronization time granularity
  • the first QoS flow group and the QoS flow group include at least one QoS flow.
  • the first network device when the first network device sends QoS flow data of a multimodal service, if multiple QoS flows of a multimodal service are mapped to multiple data radio bearers (Data Radio Bearers, DRBs), that is, multiple QoS flows A flow can be mapped to a DRB or a QoS flow can be mapped to a DRB, and the first network device can transmit the QoS flow data in the synchronous transmission group, that is, the QoS flow data in the synchronous transmission group, on the transmission resources that are relatively close in time. Sent on a configuration resource that is relatively close in time.
  • DRBs Data Radio Bearers
  • the time interval between configured grant1 and configured grant2 needs to be smaller than the synchronization time granularity .
  • the method further includes: adjusting the sending time of the first QoS flow to a first time, where the difference between the first time and the sending time of the second QoS flow is less than or equal to the synchronization time granularity, the The first QoS flow and the second QoS flow are any two QoS flows in the plurality of QoS flows.
  • the first network device can adjust the priority of QoS flow data transmission, that is, adjust the transmission resources of the QoS flow. For example, when QoS flow 1 is mapped on DRB1 and QoS flow 2 is mapped on DRB2, when When the QoS flow 1 data packet is sent at time t1, the first network device may adjust the sending time of the QoS flow 2 data packet, for example, configure the transmission resources of other data to be transmitted to the QoS flow 2, or use other scheduling resources, etc., Make QoS flow 2 packets sent before t2, where (t2-t1) is less than the synchronization time granularity.
  • the first network device may first allocate transmission resources to the QoS flow to be synchronously transmitted in the current cache, so that the current cache The QoS flow data to be transmitted synchronously can be sent first.
  • the first network device may adjust the transmission time of the QoS flow by adjusting the transmission resources of the QoS flow for synchronous transmission, so that all QoS flows used for synchronous transmission can meet the requirements of synchronous transmission.
  • the terminal device receives multiple QoS flows from the first network device according to the synchronization group information.
  • the protocol layer of the terminal device is responsible for transmitting the received QoS flow data packets to the upper layer, wherein the protocol layer may be the PDCP layer, SDAP layer or other protocol layers.
  • the method further includes: the multiple QoS flows include a third QoS flow and a fourth QoS flow, the third QoS flow and the fourth QoS flow belong to the same synchronization group, and the third QoS flow and the fourth QoS flow belong to the same synchronization group.
  • the QoS flow is the main QoS flow;
  • the receiving, according to the synchronization group information, multiple QoS flows from the first network device includes: after receiving the third QoS flow, delivering the data packets of the third QoS flow to the upper layer; The interval between the receiving time of the fourth QoS flow and the receiving time of the third QoS flow is greater than the synchronization time granularity, and the data packets of the fourth QoS flow are discarded.
  • the protocol layer can transmit the main QoS flow data packet first. If the time difference between the reception time of other QoS flow data packets and the main QoS flow data packet exceeds the synchronization time granularity , other QoS flow packets can be discarded.
  • the method further includes: if the interval between the receiving time of the fourth QoS flow and the receiving time of the third QoS flow is less than or equal to the synchronization time granularity, after receiving the fourth QoS flow After the QoS flow, the third QoS flow and the fourth QoS flow are transmitted to the upper layer.
  • the terminal device can configure whether to discard other QoS flow data packets when the synchronization time granularity is exceeded, or receive configuration information from the first network device, and the configuration information can indicate whether the terminal device discards when the synchronization time granularity is exceeded. Other QoS flow packets. If the terminal device or the first network device is configured not to discard other QoS flow data packets, when the main QoS flow data packet arrives first, the protocol layer of the terminal device can transmit the main QoS flow data packet first, and wait for a preset time period.
  • the protocol layer of the terminal device can transmit other QoS flow data packets; if no other QoS flow data packets are received within the preset time period, the packets received after the preset time period can be discarded other QoS flow packets. If the terminal device or the first network device is configured to discard other QoS flow data packets, when the time difference between the receiving time of the other QoS flow data packets and the receiving time of the main QoS flow exceeds the synchronization time granularity, the other QoS flow data packets are directly discarded. .
  • the method further includes: if the receiving time of the fourth QoS flow is earlier than or equal to the receiving time of the third QoS flow, sending the third QoS flow and the fourth QoS flow to an upper layer. transmission.
  • the protocol layer of the first network device if other QoS flow data packets arrive first, waiting may be performed until the main QoS flow data packets are received.
  • the protocol layer then transmits the main QoS flow packet to the upper layer together with other QoS flow packets.
  • the synchronization group information is considered to realize the upward transmission or discard of the data packets, which can realize the synchronous upward transmission of the data packets in different QoS flows of the multimodal service. transmission.
  • the core network sends the synchronization group information to the first network device, and the first network device sends the synchronization group information to the terminal device, so as to notify the first network device and the terminal device to transmit multi-mode transmission.
  • Synchronization group information of the modal service so that the first network device can realize the synchronous transmission of different QoS streams of the multimodal service according to the synchronization group information, and the terminal device can realize the synchronous reception of different QoS streams of the multimodal service according to the synchronization group information. , thus ensuring the synchronous transmission of the air interface.
  • FIG. 6 is a schematic flowchart of another transmission method provided by an embodiment of the present application. As shown in FIG. 6, the transmission method includes the following steps:
  • the core network control plane network element sends a second message to the first network device, where the second message includes synchronization group information, where the synchronization group information is used to send and/or receive multiple QoS flows synchronously.
  • the first network device receives the second message from the core network control plane network element.
  • the first network device sends the synchronization group information to the terminal device.
  • the terminal device receives the synchronization group information from the first network device.
  • the first network device sends multiple QoS flows to the terminal device according to the synchronization group information.
  • the terminal device receives multiple QoS flows from the first network device according to the synchronization group information.
  • the terminal device sends multiple QoS flows to the first network device according to the synchronization group information.
  • the first network device receives multiple QoS flows from the terminal device.
  • the core network sends the synchronization group information to the first network device, and the first network device sends the synchronization group information to the terminal device, so as to notify the first network device and the terminal device to transmit synchronization of multimodal services.
  • group information so that the first network device and the terminal device can realize synchronous transmission and synchronous reception of different QoS flows of multi-modal services according to the synchronization group information, thereby ensuring synchronous transmission of the air interface.
  • the electronic device includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or in the form of a combination of hardware and computer software, in combination with the units and algorithm steps of each example described in the embodiments provided herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • FIG. 7 is a block diagram of functional units of a transmission apparatus 700 provided by an embodiment of the present application.
  • the apparatus 700 may be a terminal device, the apparatus 700 may also be a first network device, and the apparatus 700 may also be a , the core network control plane network element, the apparatus 700 includes: a transceiver unit 710 and a processing unit 720 .
  • the apparatus 700 is configured to execute each process and step corresponding to the terminal device in the above-mentioned transmission method.
  • the transceiver unit 710 is configured to send multiple QoS flows to the first network device according to the synchronization group information; or receive multiple QoS flows from the first network device according to the synchronization group information; wherein the synchronization group information Used to instruct to transmit and/or receive the plurality of QoS flows synchronously.
  • the transceiver unit 710 is further configured to: receive a first message from a first network device, where the first message includes the synchronization group information.
  • the synchronization group information includes at least one of the following: synchronization time granularity, primary QoS flow indication, and synchronization group identifier, where the synchronization time granularity is used to indicate the maximum transmission of synchronization transmission between different QoS flows in the synchronization transmission group.
  • the main QoS flow indication is used to indicate the main QoS flow in the plurality of QoS flows, and the main QoS flow is the reference QoS flow calculated by the transmission time interval in the synchronous transmission group.
  • the first QoS flow group is mapped to the first data bearer DRB
  • the second QoS flow group is mapped to the second data bearer DRB
  • the time interval between the transmission resources of the first DRB and the second DRB is less than or equal to the synchronization time granularity
  • the first QoS flow group and the second QoS flow group include at least one QoS flow.
  • the processing unit 720 is configured to: adjust the sending time of the first QoS flow to a first time, where the difference between the first time and the sending time of the second QoS flow is less than or equal to the synchronization time granularity,
  • the first QoS flow and the second QoS flow are any two QoS flows in the plurality of QoS flows.
  • the transceiver unit 710 is further configured to: send a buffer status report BSR to the first network device, where the BSR includes synchronous transmission indication information, and the synchronous transmission indication information is used to indicate the current status of the terminal device. There are QoS flows to be sent synchronously in the buffer.
  • the multiple QoS flows include a third QoS flow and a fourth QoS flow, the third QoS flow and the fourth QoS flow belong to the same synchronous transmission group, and the third QoS flow is the main QoS flow flow;
  • the transceiver unit 710 is further configured to:
  • the transceiver unit 710 is further configured to: if the interval between the receiving time of the fourth QoS flow and the receiving time of the third QoS flow is less than or equal to the synchronization time granularity, after receiving the After the fourth QoS flow is generated, the third QoS flow and the fourth QoS flow are transmitted to the upper layer.
  • the transceiver unit 710 is further configured to: if the receiving time of the fourth QoS flow is earlier than or equal to the receiving time of the third QoS flow, send the third QoS flow to the fourth QoS flow.
  • QoS flows to upper layers.
  • the first message is a message of the radio resource control RRC protocol layer.
  • the first message includes a non-access stratum NAS message, and the synchronization group information is carried in the NAS message.
  • the apparatus 700 is configured to execute each process and step corresponding to the first network device in the above transmission method.
  • the transceiver unit 710 is configured to send multiple QoS flows to the terminal device according to the synchronization group information; or receive multiple QoS flows from the terminal device according to the synchronization group information; wherein the synchronization group information is used for synchronous transmission and/or receiving the plurality of QoS flows.
  • the transceiver unit 710 is further configured to: send a first message to the terminal device, where the first message includes the synchronization group information.
  • the transceiver unit 710 is further configured to: receive a second message from a core network control network element, where the second message includes the synchronization group information.
  • the first network device is an access network device that establishes a control plane connection with a control plane network element of the core network.
  • the synchronization group information includes at least one of the following: synchronization time granularity, primary QoS flow indication, and synchronization group identifier, where the synchronization time granularity is used to indicate the maximum transmission of synchronization transmission between different QoS flows in the synchronization transmission group.
  • the main QoS flow indication is used to indicate the main QoS flow in the plurality of QoS flows, and the main QoS flow is the reference QoS flow calculated by the transmission time interval in the synchronous transmission group.
  • the first QoS flow group is mapped to the first DRB
  • the second QoS flow group is mapped to the second DRB
  • the time interval between the transmission resources of the first DRB and the second DRB is less than or equal to the Synchronization time granularity
  • the first QoS flow group and the second QoS flow group include at least one QoS flow.
  • the transceiver unit 710 is further configured to: adjust the sending time of the first QoS flow to a first time, where the difference between the first time and the sending time of the second QoS flow is less than or equal to the synchronization time granularity , the first QoS flow and the second QoS flow are any two QoS flows in the multiple QoS flows.
  • the multiple QoS flows include a third QoS flow and a fourth QoS flow, the third QoS flow and the fourth QoS flow belong to the same synchronization group, and the third QoS flow is the main QoS flow ;
  • the transceiver unit 710 is further configured to:
  • the transceiver unit 710 is further configured to: if the interval between the receiving time of the fourth QoS flow and the receiving time of the third QoS flow is less than or equal to the synchronization time granularity, after receiving the After the fourth QoS flow is generated, the third QoS flow and the fourth QoS flow are transmitted to the upper layer.
  • the transceiver unit 710 is further configured to: if the receiving time of the fourth QoS stream is earlier than or equal to the receiving time of the third QoS stream, send the third QoS stream to the fourth QoS stream. The flow is transported to the upper layers.
  • the first message is a message of the radio resource control RRC protocol layer.
  • the first message includes a non-access stratum NAS message, and the synchronization group information is carried in the NAS message.
  • the apparatus 700 is configured to execute each process and step corresponding to the first network device in the above transmission method.
  • the transceiver unit 710 is configured to receive synchronization group information, where the synchronization group information is used for synchronously sending and/or receiving the multiple QoS flows; and sending the synchronization group information.
  • the transceiver unit 710 is specifically configured to: receive the synchronization group information from the core network control plane network element, and send the synchronization group information to the terminal device and/or the second network device.
  • the second network device is a network device that receives a handover request sent by the first network device.
  • the transceiver unit 710 is further configured to: send a third message to a second network device, where the third message includes the synchronization group information, and the second network device is used for receiving the sending by the first network device.
  • the handover requesting network device is further configured to: send a third message to a second network device, where the third message includes the synchronization group information, and the second network device is used for receiving the sending by the first network device.
  • the handover requesting network device is further configured to: send a third message to a second network device, where the third message includes the synchronization group information, and the second network device is used for receiving the sending by the first network device.
  • the handover requesting network device is further configured to: send a third message to a second network device, where the third message includes the synchronization group information, and the second network device is used for receiving the sending by the first network device.
  • the handover requesting network device is further configured to: send a third message to a second network device, where the third message includes the synchronization
  • the first network device is an access network device that establishes a control plane connection with a control plane network element of the core network.
  • the transceiver unit 710 is specifically configured to: receive the synchronization group information from the third network device, and send the synchronization group information to the second network device.
  • the third network device is a network device that sends a handover request to the first network device.
  • the transceiver unit 710 is further configured to: send a third message to a fourth network device, where the third message includes the synchronization information group, and the fourth network device has established/ A network device that has not established a connection and that has not established a control plane connection with the core network control plane network element.
  • the apparatus 700 is configured to execute each process and step corresponding to the network element of the core network control plane in the above transmission method.
  • the processing unit 720 configured to acquire synchronization group information, where the synchronization group information is used for synchronously sending and/or receiving the multiple QoS flows;
  • the transceiver unit 710 is configured to send a second message to the first network device, where the second message includes the synchronization group information.
  • the synchronization group information includes at least one of the following: synchronization time granularity, primary QoS flow indication, and synchronization group identifier; the synchronization time granularity is used to indicate the maximum transmission of synchronous transmission between different QoS flows in the synchronization transmission group.
  • the main QoS flow indication is used to indicate the main QoS flow in the plurality of QoS flows, and the main QoS flow is the reference QoS flow calculated by the transmission time interval in the synchronous transmission group.
  • the apparatus 700 here is embodied in the form of functional units.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (eg, a shared processor, a dedicated processor, or a group of processors, etc.) and memory, merge logic, and/or other suitable components to support the described functions.
  • ASIC application specific integrated circuit
  • the apparatus 700 may be specifically the terminal equipment and network equipment in the foregoing embodiments, and the apparatus 700 may be configured to perform the communication with the terminal equipment, the first network equipment,
  • the various processes and/or steps corresponding to the network elements of the core network control plane are not repeated here to avoid repetition.
  • the apparatus 700 of each of the above solutions has the function of implementing the corresponding steps performed by the terminal device, the first network device, and the core network control plane network element in the above method; the function may be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the processing unit 720 may be replaced by a processor, and the transceiver unit 710 may be replaced by a transmitter and a receiver, respectively performing the transceiver operations in each method embodiment. and related processing operations.
  • the apparatus 700 in FIG. 7 may also be a chip, a chip module, a UE, or a chip system, such as a system on chip (system on chip, SoC).
  • the transceiver unit 710 may be a transceiver circuit of the chip, which is not limited herein.
  • FIG. 8 is an electronic device provided by an embodiment of the present application.
  • the electronic device includes: one or more processors, one or more memories, one or more communication interfaces, and one or more programs ; the one or more programs are stored in the memory and are configured to be executed by the one or more processors.
  • the electronic device is a terminal device
  • the above program includes instructions for executing the following steps:
  • Receive a first message from a first network device the first message includes synchronization group information of a multimodal service, the multimodal service includes multiple QoS flows, and the synchronization group information is used to indicate synchronization sending and/or or receiving the plurality of QoS flows.
  • the electronic device is a first network device
  • the above program includes instructions for executing the following steps:
  • the electronic device is a first network device
  • the above program includes instructions for performing the following steps:
  • the synchronization group information being used to transmit and/or receive the plurality of QoS flows synchronously;
  • the electronic device is a core network control plane network element, and the above program includes instructions for executing the following steps:
  • synchronization group information is used for synchronously sending and/or receiving the multiple QoS flows
  • a second message is sent to the first network device, the second message including the synchronization group information.
  • the memory described above may include read-only memory and random access memory and provide instructions and data to the processor.
  • a portion of the memory may also include non-volatile random access memory.
  • the memory may also store device type information.
  • the processor of the above device may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs) , Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU Central Processing Unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software units in the processor.
  • the software unit may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor executes the instructions in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • An embodiment of the present application further provides a chip, where the chip is configured to acquire a first message from a first network device, where the first message includes synchronization group information of a multimodal service, where the multimodal service includes multiple QoS flow, the synchronization group information is used to indicate that the multiple QoS flows are sent and/or received synchronously.
  • An embodiment of the present application further provides a chip module, including a transceiver component and a chip, wherein the chip is configured to receive a first message from a first network device through the transceiver component, and the first message includes a multi-mode Synchronization group information of a modal service, the multimodal service includes multiple QoS flows, and the synchronization group information is used to indicate synchronously sending and/or receiving the multiple QoS flows.
  • An embodiment of the present application further provides a chip, where the chip is configured to output a first message for sending to a terminal device, where the first message includes synchronization group information of a multimodal service, and the multimodal service includes A plurality of QoS flows, the synchronization group information is used to indicate that the plurality of QoS flows are sent and/or received synchronously.
  • An embodiment of the present application further provides a chip module, including a transceiver component and a chip, wherein the chip is configured to send a first message to a terminal device through the transceiver component, where the first message includes a multimodal service
  • the synchronization group information of the multimodal service includes multiple QoS flows, and the synchronization group information is used to indicate that the multiple QoS flows are sent and/or received synchronously.
  • Embodiments of the present application further provide a computer storage medium, wherein the computer storage medium stores a computer program for electronic data exchange, and the computer program causes the computer to execute part or all of the steps of any method described in the above method embodiments .
  • Embodiments of the present application further provide a computer program product, where the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to execute any one of the method embodiments described above. some or all of the steps of the method.
  • the computer program product may be a software installation package.
  • the disclosed apparatus may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the above units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical or other forms.
  • the units described above as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solutions of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the above-mentioned integrated units if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable memory.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art, or all or part of the technical solution, and the computer software product is stored in a memory.
  • a computer device which may be a personal computer, a server, or a TRP, etc.
  • the aforementioned memory includes: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本申请实施例提供了一种传输方法及装置,该方法包括:终端设备根据同步组信息,向第一网络设备发送多个QoS流;或者,根据同步组信息,接收来自第一网络设备的多个QoS流,同步组信息用于指示同步发送和/或接收多个QoS流。在本申请中,终端设备根据同步组信息可实现多模态业务的不同QoS流的同步传输和/或同步接收,从而保证了空口的同步传输。

Description

传输方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种传输方法及装置。
背景技术
多模态业务中可以包含多个数据流,其中多个数据流具有不同的服务质量(quality of service,QoS)需求,例如数据流可以是视频,如Video、Audio media;传感器获取的数据,如亮度(brightness)、温度(temperature)、湿度(humidity);触觉数据,如压力(pressure)、振动(vibration)、温度(temperature)、重力(gravity)、牵引力(pull forces)等。针对一个多模态业务,如何在通信网络中实现多个数据流同步传输是目前需要解决的问题。
发明内容
本申请实施例提出了一种传输方法及装置,能够实现多模态业务的不同QoS流的同步传输和/或同步接收,保证空口的同步传输。
第一方面,本申请实施例提供一种传输方法,应用于终端设备,所述方法包括:
根据同步组信息,向第一网络设备发送多个QoS流;或者,
根据同步组信息,接收来自所述第一网络设备的多个QoS流;
其中,所述同步组信息用于指示同步发送和/或接收所述多个QoS流。
第二方面,本申请实施例提供一种传输方法,应用于第一网络设备,所述方法包括:
根据同步组信息,向终端设备发送多个QoS流;或者,
根据同步组信息,接收来自终端设备的多个QoS流;
其中,所述同步组信息用于同步发送和/或接收所述多个QoS流。
第三方面,本申请实施例提供一种传输方法,应用于第一网络设备,所述方法包括:
接收同步组信息,所述同步组信息用于同步发送和/或接收所述多个QoS流;
发送所述同步组信息。
第四方面,本申请实施例提供一种传输方法,应用于核心网控制面网元,所述方法包括:
获取同步组信息,所述同步组信息用于同步发送和/或接收所述多个QoS流;
向第一网络设备发送第二消息,所述第二消息包括所述同步组信息。
第五方面,本申请实施例提供一种传输装置,应用于终端设备,所述装置包括:
收发单元,用于根据同步组信息,向第一网络设备发送多个QoS流;或者,根据同步组信息,接收来自所述第一网络设备的多个QoS流;其中,所述同步组信息用于指示同步发送和/或接收所述多个QoS流。
第六方面,本申请实施例提供一种传输装置,应用于第一网络设备,所述装置包括:
收发单元,用于根据同步组信息,向终端设备发送多个QoS流;或者,根据同步组信息,接收来自终端设备的多个QoS流;其中,所述同步组信息用于同步发送和/或接收所述多个QoS流。
第七方面,本申请实施例提供一种传输装置,应用于第一网络设备,所述装置包括:
收发单元,用于接收同步组信息,所述同步组信息用于同步发送和/或接收所述多个QoS流;发送所述同步组信息。
第八方面,本申请实施例提供一种传输装置,应用于核心网控制面网元,所述装置包括:
处理单元,用于获取同步组信息,所述同步组信息用于同步发送和/或接收所述多个QoS流;
收发单元,用于向第一网络设备发送第二消息,所述第二消息包括所述同步组信息。
第九方面,本申请实施例提供一种芯片,所述芯片用于根据同步组信息,输出向第一网络设备发送的多个QoS流;或者,所述芯片用于根据同步组信息,获取来自所述第一网络设备的多个QoS流;其中,所述同步组信息用于指示同步发送和/或接收所述多个QoS流。
第十方面,本申请实施例提供一种芯片模组,包括收发组件和芯片,其中,所述芯片,用于通过所述收发组件根据同步组信息,输出向第一网络设备发送的多个QoS流;或者,所述芯片用于通过所述收发组件根据同步组信息,获取来自所述第一网络设备的多个QoS流;其中,所述同步组信息用于指示同步发送和/或接收所述多个QoS流。
第十一方面,本申请实施例提供一种芯片,所述芯片用于根据同步组信息,输出向终端设备发送多个QoS流;或者,所述芯片用于根据同步组信息,获取来自终端设备的多个QoS流;其中,所述同步组信息用于同步发送和/或接收所述多个QoS流。
第十二方面,本申请实施例提供一种芯片模组,包括收发组件和芯片,其中,所述芯片,用于通过所述收发组件根据同步组信息,输出向终端设备发送多个QoS流;或者,所述芯片用于通过所述收发组件根据同步组信息,获取来自终端设备的多个QoS流;其中,所述同步组信息用于同步发送和/或接收所述多个QoS流。
第十三方面,本申请实施例提供一种芯片,所述芯片用于获取同步组信息,所述同步组信息用于同步发送和/或接收所述多个QoS流;所述芯片还用于输出所述同步组信息。
第十四方面,本申请实施例提供一种芯片模组,包括收发组件和芯片,其中,所述芯片,用于通过所述收发组件获取同步组信息,所述同步组信息用于同步发送和/或接收所述多个QoS流;所述芯片还用于输出所述同步组信息。
第十五方面,本申请实施例提供一种芯片,所述芯片用于获取同步组信息,所述同步组信息用于同步发送和/或接收所述多个QoS流;所述芯片还用于向第一网络设备发送第二消息,所述第二消息包括所述同步组信息。
第十六方面,本申请实施例提供一种芯片模组,包括收发组件和芯片,其中,所述芯片,用于通过所述收发组件获取同步组信息,所述同步组信息用于同步发送和/或接收所述多个QoS流;所述芯片还用于向第一网络设备发送第二消息,所述第二消息包括所述同步组信息。
第十七方面,本申请实施例提供一种电子设备,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行上述第一方面、第二方面、第三方面、第四方面中的任一方面所述的方法中的步骤的指令。
第十八方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述第一方面第二方面、第三方面、第四方面中的任一方面的任一项所述的方法的步骤。
第十九方面,本申请实施例提供了一种计算机程序产品,其中,上述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如本申请实施例第一方面、第二方面、第三方面、第四方面中的任一方面所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本申请提供的技术方案,终端设备根据同步组信息,向第一网络设备发送多个QoS流;或者,根据同步组信息,接收来自第一网络设备的多个QoS流,同步组信息用于指示同步发送和/或接收多个QoS流。在本申请中,终端设备根据同步组信息可实现多模态业务的不同QoS流的同步传输和/或同步接收,从而保证了空口的同步传输。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种传输方法的流程示意图;
图3是本申请实施例提供的另一种传输方法的流程示意图;
图4是本申请实施例提供的另一种传输方法的流程示意图;
图5是本申请实施例提供的另一种传输方法的流程示意图;
图6是本申请实施例提供的另一种传输方法的流程示意图
图7是本申请实施例提供的一种传输装置的功能单元组成框图;
图8是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
首先,对本申请实施例涉及的部分名词进行解释,以便于本领域技术人员理解。
1、终端设备。本申请实施例的终端设备是一种具有无线通信功能的设备,可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端设备、车载终端设备、工业控制终端设备、UE单元、UE站、移动站、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端设备可以是固定的或者移动的。需要说明的是,终端设备可以支持至少一种无线通信技术,例如LTE、新空口(new radio,NR)、宽带码分多址(wideband code division multiple access,WCDMA)等。例如,终端设备可以是手机(mobile phone)、平板电脑(pad)、台式机、笔记本电脑、一体机、车载终端、虚拟现实(virtual reality,VR)终端设备、增强现 实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备、未来移动通信网络中的终端设备或者未来演进的公共移动陆地网络(public land mobile network,PLMN)中的终端设备等。在本申请的一些实施例中,终端设备还可以是具有收发功能的装置,例如芯片系统。其中,芯片系统可以包括芯片,还可以包括其它分立器件。
2、接入网设备。本申请实施例中接入网设备是一种为终端设备提供无线通信功能的设备,也可称之为无线接入网(radio access network,RAN)设备、或接入网网元等。其中,接入网设备可以支持至少一种无线通信技术,例如LTE、NR等。示例的,接入网设备包括但不限于:第五代移动通信系统(5th-generation,5G)中的下一代基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved node B、或home node B,HNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)、和/或分布单元(distributed unit,DU),或者接入网设备可以为中继站、接入点、车载设备、终端设备、可穿戴设备以及未来移动通信中的接入网设备或者未来演进的PLMN中的接入网设备等。在一些实施例中,接入网设备还可以为具有为终端设备提供无线通信功能的装置,例如芯片系统。示例的,芯片系统可以包括芯片,还可以包括其它分立器件。
在一些实施例中,接入网设备还可以与互联网协议(Internet Protocol,IP)网络进行通信,例如因特网(internet),私有的IP网,或其他数据网等。
3、核心网。本申请实施例核心网是由核心网网元组成的。其中,核心网网元又可以称之为核心网设备,为核心网中部署的网元,例如核心网控制面网元或核心网用户面网元。本申请实施例的核心网可以是演进型分组核心网(Evolved Packet Core,EPC)、5G核心网(5G Core Network),还可以是未来通信系统中的新型核心网。例如,5G核心网由一组网元组成,并实现移动性管理等功能的接入和移动性管理功能(Access and Mobility Management Function,AMF)、提供数据包路由转发和QoS(Quality of Service)管理等功能的用户面功能(User Plane Function,UPF)、提供会话管理、IP地址分配和管理等功能的会话管理功能(Session Management Function,SMF)等。EPC可由提供移动性管理、网关选择等功能的移动管理实体(Mobility Management Entity,MME)、提供数据包转发等功能的Serving Gateway(S-GW)、提供终端地址分配、速率控制等功能的PDN Gateway(P-GW)组成。对于多播广播业务(Multicast Broadcast Service,MBS),核心网中可包含若干新的网元,来实现数据包的转发、MBS会议管理、QoS管理、传输模式切换(单播和组播/广播 传输模式之间的切换)等功能。另一种方式是所述功能可以由现有的核心网网元来实现。
4、上行通信。本申请实施例中上行通信又可以称之为上行传输,指的是终端设备到接入网设备的单向通信,其中,用于上行通信的通信链路为上行链路。在上行链路上传输的数据为上行数据。上行数据的传输方向为上行方向。
5、下行通信。本申请实施例中下行通信又可以称之为下行传输,指的是接入网设备到终端设备的单向通信,其中,用于下行通信的通信链路为上行链路。在下行链路上传输的数据为下行数据。下行数据的传输方向为下行方向。
6、传输资源。传输资源包括频域资源和时域资源,所述传输资源用于通信系统中数据的传输。一个DRB(data radio bearer)是指无线通信中的一个无线承载,用于传输一个或多个QoS流,一个DRB对应的传输资源可以是网络侧动态调度的,即每次数据的传输都是由网络指示采用的传输资源;一个DRB对应的传输资源还可以是网络侧静态配置的,即网络侧预先配置的周期性的传输资源,DRB中承载的数据在对应的传输资源上传输。不同的传输资源在时域上的间隔,具体指的是组成不同传输资源的不同传输资源块在时域上结束时刻的间隔,即为传输资源之间的时间间隔。例如传输资源一由多个传输资源块1组成,传输资源二由多个传输资源块2组成;其中某一传输资源块1和对应的传输资源块2用于多模态业务的数据包的同步传输,则传输资源块1和传输资源块2的结束时刻的间隔即为传输资源之间的时间间隔。其中,传输资源块1用于传输多模态业务1的QoS流1的数据包1和数据包2,而对应的传输资源块2用于传输多模态业务1的QoS流2的数据包3和数据包4,其中数据包1、数据包2、数据包3和数据包4需要同步传输。
7、QoS流。本申请实施例的QoS流指的是具有相同QoS要求的的数据流。例如。一个业务可包含多个QoS流,其中一个QoS流中可包含一个或多个数据流,其中数据流可以是IP数据流或非IP数据流。
8、多模态业务。本申请实施例中的多模态业务包括各种QoS流(flow),其中多个QoS流的QoS不同,不同QoS流的数据产生来源可能不同,例如来自不同的数据采集器或传感器。一个多模态业务包含的不同QoS流间存在一定的相互关系,例如需要同步传输、具备不同的优先级等。示例性地,一个多模态业务包含多个QoS流(flow),一个多模态业务可以归属于同一个session,所述session是指终端和核心网用户面网元间的链接,session可以PDU session,MBS session等各种类型的session。
9、本申请实施例中涉及的“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a、b、c中的每一个本身可以是元素,也可以是包含一个或多个元素的集合。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一信息和第二信息,只是为了区分不同的信息,而并不是表示这两种信息的内容、优先级、发 送顺序或者重要程度等的不同。
本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,本申请实施例对此不做任何限定。
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请实施例的技术方案可以应用于全球移动通信系统(Global System for Mobile Communication,CSM)、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple access,WCDMA)系统、全球微波互联接入(Worldwide Interoperability for Microwave Access,Wi-MAX)系统、长期演进(Long Term Evolution,LTE)系统、5G通信系统(例如新空口(New Radio,NR))、多种通信技术融合的通信系统(例如LTE技术和NR技术融合的通信系统)、或者适用于未来新的各种通信系统,例如6G通信系统、7G通信系统等,本申请实施例对此不作限定。本申请实施例的技术方案也适用于不同的网络架构,包括但不限于中继网络架构、双链接架构、车辆到任何物体的通信(Vehicle-to-Everything)架构等。
示例的,如图1所示,为本申请实施例提供的一种通信系统架构的示意图。如图1所示,通信系统包括接入网设备110和终端设备120,此处以b=3为例进行说明。在一些实施例中,通信系统还可以包括核心网130,其中,核心网130与接入网设备110连接。
需要说明的是,图1所示的通信系统仅为举例说明,并不构成对本本申请实施例的限定。例如,本申请实施例不限定接入网设备、终端设备等的形态和数量。
结合图1所示的通信系统,对本申请实施例的传输方法进行介绍。
示例的,如图2所示,QoS为本申请实施例提供的一种传输方法的流程示意图,具体包括如下步骤:
S210、第一网络设备向终端设备发送同步组信息,同步组信息用于同步发送和/或接收多个QoS流。
其中,第一网络设备可以将多模态业务的同步组信息承载于第一消息中来发送给终端设备,多模态业务包括多个QoS流。该第一消息可以为无线资源控制(radio resourse control,RRC)消息,例如,RRC Reconfiguration、RRC Setup、RRC Resume、RRC Reestablishment等。
在本申请实施例中,由于引入了多模态业务的同步组信息,从而使得第一网络设备可以基于该同步组信息,进行空口传输的配置和空口的资源调度,从而有助于提高多个QoS流实现同步传输的可能性。
在本申请的一些实施例中,同步组信息包括以下至少一项:同步时间粒度、主QoS流指示和同步组标识,所述同步时间粒度用于指示同步传输组中不同QoS流之间同步传输的最大传输间隔,所述主QoS流指示用于指示所述多个QoS流中的主QoS流,所述主QoS流为同步传输组中传输时间间隔计算的基准QoS流。
其中,在数据传输的过程中,可将一个多模态业务划分成一个或多个同步传输组,每个同步传输组可包括一组需要同步传输的多个QoS流。每个同步传输组可用一个同步组标识来表示,根据该同步组标识,终端设备和/或第一网络设备可获取需要发送和/或接收的同 步传输组。该同步组标识可以为同步组ID、APP ID等。
示例性地,同步组信息中包含同步传输组的同步时间粒度,该同步时间粒度可以指同一个同步传输组中不同QoS流之间同步传输的最大传输间隔,即当不同QoS流之间的传输间隔小于或小于等于同步时间粒度时,则可认为该不同QoS流是属于同步传输。该同步传输粒度可以是1ms,5ms或10ms等。例如,终端和接入网设备存在待传输的QoS流1的数据包1和QoS流1的数据包2,那么数据包1和数据包2的传输时间差需要小于或等于同步时间粒度。
示例性地,所述同步组信息中还包含主QoS流指示(Primary flow indicator),用于指示同步传输组中的主QoS流,该主QoS流是指以同步时间粒度为传输时间基准的QoS流,即以主QoS流的传输时间为基准,计算其他QoS流和主QoS流的传输时间差,从而来判断QoS流之间是否符合同步传输的要求。例如,终端和接入网设备存在待传输的QoS流1的数据包1和QoS流1的数据包2,其中。QoS流1为主QoS流,那么以数据包1的传输时间为基准来计算数据包2的传输时间差。其中,在发送端,数据包开始发送或数据包发送成功的时刻作为传输时间,从而计算不同QoS流的传输时间差。在接收端,按照数据包成功接收的时刻作为传输时间,从而计算不同QoS流的传输时间差。
S220、终端设备接收来自第一网络设备的同步组信息。
进一步的,在一些实施例中,终端设备接收到第一消息,可以根据第一消息中的同步组信息,发送同步传输组中的多个QoS流、和/或接收网络设备发送的多个QoS流,从而使得该多个QoS流满足同步传输的需求,进而保证空口的同步传输。
因而,在本申请实施例中,由于第一网络设备可以将同步组信息发送给终端设备,从而使得可以根据同步组信息实现多模态业务的不同QoS流的同步传输和/或同步接收,从而保证了空口的同步传输。
在一种可能的实现方式中,该同步组信息可以是由核心网控制面网元发送给第一网络设备的。示例的,第一网络设备接收来自核心网控制面网元的第二消息,然后向终端设备发送第一消息,所述第二消息包括所述多模态业务的同步组信息。
示例的,第二消息可以是第一网络设备与核心网控制面网元在session建立修改的过程,或UE context建立修改的过程,或小区切换过程中,由核心网控制面网元发送给第一网络设备的消息,例如,PDU SESSION RESOURCE SETUP REQUEST、PDU SESSION RESOURCE MODIFY REQUEST、INITIAL CONTEXT SETUP REQUEST、UE CONTEXT MODIFICATION REQUEST、HANDOVER REQUEST、MBS SESSION RESOURCE SETUP REQUEST、MBS SESSION RESOURCE MODIFY REQUEST等消息。
例如,在本申请实施例中,该核心网控制面网元可以包括AMF(Access and Mobility Management Function)或SMF(Session Management Function)、策略控制功能(Policy Control function,PCF)等网元。
在本申请的另一些实施例中,核心网控制面网元还可配置该同步组信息用于上行传输的多个QoS流和/或下行传输的多个QoS流。具体地,对于一些用于上行传输的多模态业务,例如传感器获取的数据、触觉数据等,核心网控制面网元可配置该同步组信息用于上行传输多个QoS流;对于一些用于下行传输的多模态业务,例如音视频下载等,核心网控 制面网元可配置该同步组信息用于下行传输多个QoS流;对于一些需要交互的多模态业务,例如视频通话、语音通话等,核心网控制面网元可配置该同步组信息可同时用于下行传输和下行传输的多个QoS流。
具体地,核心网控制面网元可以配置多模态业务的同步组信息,并向第一网络设备发送该同步组信息。第一网络设备接收到来自核心网控制面网元的多个QoS流的同步组信息时,可以通过第一消息将该同步组信息发送给终端设备。
一种可能的实施方式中,所述第一消息中的同步组信息是按照DRB或LCH(Logical Channel)配置的,即通过DRB或LCH来配置所述多模态业务的同步组信息。具体为配置不同DRB或LCH间的同步时间粒度、主DRB/LCH指示和同步组标识中的至少一项。
一种可能的实施方式中,所述第一消息包括非接入层NAS消息,所述同步组信息承载于所述NAS消息中。
其中,核心网控制面网元配置好多模态业务的同步组信息后,可直接发送给终端设备(通过基站转发)。因此,核心网控制面网元向第一网络设备发送非接入层(Non-access stratum,NAS)消息,该NAS消息中包括同步组信息,即同步组信息承载于NAS消息中。第一网络设备接收到该NAS消息后,可将该NAS消息承载于第一消息中将同步组信息转发给终端设备。
在一种可能的实现方式中,所述方法还包括:向第二网络设备发生同步组信息,所述第二网络设备为接收所述第一网络设备发送的切换请求的网络设备。
在终端的切换过程中,若第一网络设备(源基站)接收到核心网控制面网元发送的同步组信息,第一网络设备可以将同步组信息承载于第三消息来发送给第二网络设备(目标基站),以使得终端设备切换到第二网络设备后,第二网络设备可以根据该同步组信息进行空口传输的配置和空口的资源调度,从而来保证空口的同步传输。
其中,该第三消息可以是HANDOVER REQUEST消息,该HANDOVER REQUEST消息是第一网络设备发送到第二网络设备的切换请求消息,用于第一网络设备请求与第一网络设备连接的终端切换到第二网络设备。
进一步地,第二网络设备接收到携带同步组信息的HANDOVER REQUEST消息后,第二网络设备也可根据该同步组信息来决定是否进行切换请求的确认(切换判决)。例如,若第二网络设备不满足该同步组信息对应的同步传输组的同步传输需求,第二网络设备可拒绝该切换请求;若在其他条件均满足,且第二网络设备满足该同步组信息对应的同步传输组的同步传输需求,第二网络设备可进行切换请求的确认。进一步地,所述第二网络设备可发送所述第一消息到终端设备,其中所述第一消息中包含所述同步组信息。
在一种可能的实现方式中,所述发送所述同步组信息,包括:接收来自第三网络设备的所述同步组信息,向第二网络设备发送所述同步组信息,所述第三网络设备为向所述第一网络设备发送切换请求的网络设备。
其中,在终端的切换过程中,若第三网络设备(源基站)接收到核心网控制面网元发送的同步组信息,第三网络设备可以将同步组信息承载于第三消息来发送给第一网络设备(中继基站)。然后第一网络设备在将同步组信息转发给第二网络设备(目标基站),以使得终端设备切换到第二网络设备后,第二网络设备可以根据该同步组信息进行空口传输 的配置和空口的资源调度,从而来保证空口的同步传输。
在一种可能的实现方式中,所述第一网络设备为与所述核心网控制面网元建立控制面连接的接入网设备。
所述方法还包括:向第四网络设备发送所述同步信息组,所述第四网络设备为与所述终端设备已经建立连接或未建立连接、且与所述核心网控制面网元未建立控制面连接的网络设备。
在双连接的场景下,第一网络设备向第四网络设备发送第三消息,所述第三消息用于第一网络设备请求第四设备与终端建立链接,即终端设备同时与第一网络设备和第四网络设备都建立连接。所述第三消息也用于第一网络设备请求第四设备与终端间已有链接的修改。
若第一网络设备接收到核心网控制面网元发送的同步组信息,第一网络设备可以将该同步组信息承载与第三消息中发送给所述第四网络设备,以使得第四网络设备可根据该同步组信息进行空口传输的配置和空口的资源调度。所述第三消息可以是S-NODE ADDITION REQUEST、S-NODE MODIFICATION REQUEST或S-NODE CHANGE CONFIRM消息等。
进一步地,所述第二网络设备可发送所述第一消息到终端设备,其中所述第一消息中包含所述同步组信息。
在本申请实施例中,第一网络设备通知其他网络设备(第二网络设备和/或第四网络设备)或终端设备的多模态业务的同步组信息,可以保证空口的同步传输。
请参阅图3,图3为本申请实施例提供的另一种传输方法的流程示意图,如图3所示,该传输方法包括如下步骤:
S310、核心网控制面网元向第一网络设备发送第二消息,该第二消息包括同步组信息,同步组信息用于同步发送和/或接收多个QoS流。
S320、第一网络设备接收来自核心网控制面网元的第二消息。
S330、第一网络设备向终端设备发送同步组信息。
S340、终端设备接收来自第一网络设备的同步组信息。
可以理解的是,上述S310-S330的具体实现方式可参照图2所示实施例的具体实现方式,在此不在赘述。
在本申请实施例中,核心网控制面网元通过向第一网络设备发送第二消息,以通知第一网络设备和终端设备传输多模态业务的同步组信息,进而可使得终端设备和/或第一网络设备根据同步组信息实现多模态业务的不同QoS流的同步传输和/或同步接收,从而保证了空口的同步传输。
请参阅图4,图4为本申请实施例提供的另一种传输方法的流程示意图,如图4所示,该传输方法包括如下步骤:
S410、核心网控制面网元向第一网络设备发送第二消息,该第二消息包括同步组信息,同步组信息用于同步发送和/或接收多个QoS流。
S420、第一网络设备接收来自核心网控制面网元的第二消息。
S430、第一网络设备向终端设备发送同步组信息。
S440、终端设备接收来自第一网络设备的同步组信息。
其中,上述S410-S440的具体实现方式可参照图2所示实施例的具体实现方式,在此不在赘述。
S450、终端设备根据同步组信息向第一网络设备发送多个QoS流。
其中,终端设备接收到同步组信息后,可根据同步组信息将终端设备缓存中待传输的多个QoS流同步传输给第一网络设备。
可选的,第一QoS流组映射到第一数据承载DRB,第二QoS流组映射到第二数据承载DRB,所述第一DRB和所述第二DRB的传输资源之间的时间间隔小于或等于所述同步时间粒度,其中所述第一QoS流组和所述第二QoS流组中包含至少一个QoS流。
具体的,所述多个QoS流与多个数据资源承载DRB存在映射关系,即一个或多个QoS流映射到一个DRB中,所述多个DRB的传输资源之间的时间间隔小于或等于所述同步时间粒度。
具体地,终端设备在发送多模态业务的QoS流数据时,如果一个多模态业务的多个QoS流映射到多个数据无线承载(Data Radio Bearer,DRB)中,即多个QoS流可映射到一个DRB上或一个QoS流映射到一个DRB上,终端设备可以时间上比较临近的传输资源上传输同步传输组中QoS流数据,即同步传输组中的QoS流数据,可以在时间比较临近的配置资源上发送。例如,若QoS流1映射在DRB1上,QoS流2映射在DRB2上,第一网络设备配置DRB1采用configured grant1的资源发送,第一网络设备配置DRB2采用configured grant2的资源发送,则需要configured grant1和configured grant2的时间间隔小于同步时间粒度。所述configured grant是指网络侧预先配置的用于上行或下行数据发送的传输资源。
可选的,所述方法还包括:将第一QoS流的发送时间调整至第一时间,所述第一时间与第二QoS流的发送时间的差小于或等于所述同步时间粒度,所述第一QoS流和所述第二QoS流为所述多个QoS流中的任意两个QoS流。
对于采用动态调度的传输资源,终端设备可以调整QoS流数据发送的优先级,即调整QoS流的传输资源,例如,第一网络设备配置QoS流1映射在DRB1上,QoS流2映射在DRB2上,当QoS流1数据包在t1时刻发送时,终端设备可以调整QoS流2数据包的发送时间,例如,强占其它待传输数据的传输资源或者采用其他调度资源等方式,使得QoS流2数据包在t2之前发送,其中(t2-t1)小于同步时间粒度。例如,DRB1的逻辑信道优先级为优先级1,而DRB2的逻辑信道优先级为优先级2,所述终端设备可以调整QoS流2数据包的发送时间,可以是将DRB2的逻辑信道优先级暂时调整为优先级3,且优先级3高于或等于优先级1。
在一种可能的实施方式中,所述方法还包括:向所述第一网络设备发送缓存状态报告BSR,所述BSR包括同步传输指示信息,所述同步传输指示信息用于指示所述终端设备的当前缓存有待同步发送的QoS流。
具体实现中,终端设备可以主动向第一网络设备上报缓存状态报告(Buffer Status Report),BSR,BSR中可携带同步传输指示信息,该指示信息用于指示终端设备当前缓 存中是否存在待同步传输的QoS流数据。若同步传输指示信息指示当前缓存中存在待同步传输的QoS流数据,则第一网络设备可以优先先给当前的缓存中待同步传输的QoS流分配传输资源,以使得当前的缓存中待同步传输的QoS流数据可以先发送。例如,终端设备的当前缓存中有QoS流1、QoS流2和QoS流3,其中QoS流1和QoS流2需要同步传输,当终端设备上报的同步传输指示信息指示终端设备当前缓存有QoS流1和QoS流2待同步传输时,第一网络设备可配置或调度用于传输QoS流1和QoS流2的传输资源。
进一步地,所述BSR中的同步传输指示信息可以按照逻辑信道或逻辑信道组来指示。
在本申请实施例中,终端设备可通过调整同步传输的QoS流的传输资源来调整QoS流的发送时间,从而使得用于同步传输的QoS流均能够满足同步传输的需求。
S460、第一网络设备接收来自终端设备的多个QoS流。
其中,第一网络设备接收到终端设备发送的多模态业务的多个QoS流数据包时,第一网络设备的协议层负责将接收的QoS流数据包向上层传输,其中协议层可以是PDCP层,SDAP层或其他协议层。
可选的,所述方法还包括:所述多个QoS流包括第三QoS流和第四QoS流,所述第三QoS流与所述第四QoS流属于同一同步传输组,且所述第三QoS流为主QoS流;在接收到所述第三QoS流后,将第三QoS流的数据包向上层投递;若所述第四QoS流的接收时间与所述第三QoS流的接收时间之间的间隔大于所述同步时间粒度,丢弃所述第四QoS流的数据包。
在第一网络设备的协议层,若主QoS流数据包先到,协议层可先传输主QoS流数据包,若其他QoS流数据包的接收时间与主QoS流的接收时间的时间差超过了同步时间粒度,则可丢弃其他QoS流数据包。
可选的,所述方法还包括:若所述第四QoS流的接收时间与所述第三QoS流的接收时间之间的间隔小于或等于所述同步时间粒度,在接收到所述第四QoS流后,将所述第三QoS流和所述第四QoS流向上层传输。
进一步的,第一网络设备可以配置终端设备在超过同步时间粒度的情况下是否丢弃其他QoS流数据包。若第一网络设备配置为不丢弃其他QoS流数据包,则当主QoS流数据包先到时,协议层可先传输主QoS流数据包,并等待预设时长,若在该预设时长内接收其他QoS流数据包,协议层可传输其他QoS流数据包;若在预设时长内未接收到其他QoS流数据包,则可丢弃在预设时长后接收到的其他QoS流数据包。若第一网络设备配置为丢弃其他QoS流数据包,则当其他QoS流数据包的接收时间与主QoS流的接收时间的时间差超过了同步时间粒度,直接丢弃其他QoS流的数据包。
可选的,所述方法还包括:若所述第四QoS流的接收时间与所述第三QoS流的接收时间之间的间隔小于或等于所述同步时间粒度,在接收到所述第四QoS流后,将所述第三QoS流和所述第四QoS流向上层传输。
其中,在第一网络设备的协议层,若其他QoS流数据包先到,可以进行等待,直至接收到主QoS流数据包。然后协议层将主QoS流数据包和其他QoS流数据包一起向上层传输。
在本申请实施例中,第一网络设备接收同步传输的QoS流数据包时,考虑同步组信息 来实现对数据包的向上传输或丢弃,可以实现多模态业务的不同QoS流中数据包的同步向上传输。
由此可见,本申请实施例提出的传输方法,核心网控制面网元通过向第一网络设备发送同步组信息、第一网络设备向终端设备发送同步组信息,以通知第一网络设备和终端设备传输多模态业务的同步组信息,进而可使得终端设备根据同步组信息实现多模态业务的不同QoS流的同步传输、以及第一网络设备根据同步组信息实现多模态业务的不同QoS流的同步接收,从而保证了空口的同步传输。
请参阅图5,图5为本申请实施例提供的另一种传输方法的流程示意图,如图5所示,该传输方法包括如下步骤:
S510、核心网控制面网元向第一网络设备发送第二消息,该第二消息包括同步组信息,同步组信息用于同步发送和/或接收多个QoS流。
S520、第一网络设备接收来自核心网控制面网元的第二消息。
S530、第一网络设备向终端设备发送同步组信息。
S540、终端设备接收来自第一网络设备的同步组信息。
其中,上述S510-S540的具体实现方式可参照图2所示实施例的具体实现方式,在此不在赘述。
S550、第一网络设备根据同步组信息向终端设备发送多个QoS流。
其中,第一网络设备接收到同步组信息后,可根据同步组信息将第一网络设备缓存中待传输的多个QoS流同步传输给终端设备。
具体的,所述多个QoS流与多个数据无线承载DRB存在映射关系,所述多个DRB的传输资源之间的时间间隔小于或等于所述同步时间粒度。
可选的,第一QoS流组映射到第一DRB,第二QoS流组映射到第二DRB,所述第一DRB和所述第二DRB的传输资源之间的时间间隔小于或等于所述同步时间粒度,其中所述第一QoS流组和所述QoS流组中包含至少一个QoS流。
具体地,第一网络设备在发送多模态业务的QoS流数据时,如果一个多模态业务的多个QoS流映射到多个数据无线承载(Data Radio Bearer,DRB)中,即多个QoS流可映射到一个DRB上或一个QoS流映射到一个DRB上,第一网络设备可以时间上比较临近的传输资源上传输同步传输组中QoS流数据,即同步传输组中的QoS流数据,可以在时间比较临近的配置资源上发送。例如,若QoS流1映射在DRB1上,QoS流2映射在DRB2上,配置DRB1采用configured grant1的资源发送、DRB2采用configured grant2的资源发送,则需要configured grant1和configured grant2的时间间隔小于同步时间粒度。
可选的,所述方法还包括:将第一QoS流的发送时间调整至第一时间,所述第一时间与第二QoS流的发送时间的差小于或等于所述同步时间粒度,所述第一QoS流和所述第二QoS流为所述多个QoS流中的任意两个QoS流。
对于采用动态调度的传输资源,第一网络设备可以调整QoS流数据发送的优先级,即调整QoS流的传输资源,例如,当QoS流1映射在DRB1上,QoS流2映射在DRB2上,当QoS流1数据包在t1时刻发送时,第一网络设备可以调整QoS流2数据包的发送时间,例如,将其他待传输数据的传输资源配置给QoS流2、或者采用其他调度资源等方式,使 得QoS流2数据包在t2之前发送,其中(t2-t1)小于同步时间粒度。
具体实现中,当第一网络设备的当前缓存中存在待同步传输的QoS流数据时,第一网络设备可以优先先给当前的缓存中待同步传输的QoS流分配传输资源,以使得当前的缓存中待同步传输的QoS流数据可以先发送。
在本申请实施例中,第一网络设备可通过调整同步传输的QoS流的传输资源来调整QoS流的发送时间,从而使得用于同步传输的QoS流均能够满足同步传输的需求。
S560、终端设备根据同步组信息接收来自第一网络设备的多个QoS流。
其中,终端设备接收到第一网络设备发送的多模态业务的多个QoS流数据包时,终端设备的协议层负责将接收的QoS流数据包向上层传输,其中协议层可以是PDCP层,SDAP层或其他协议层。
可选的,所述方法还包括:所述多个QoS流包括第三QoS流和第四QoS流,所述第三QoS流与所述第四QoS流属于同一同步组,且所述第三QoS流为主QoS流;
所述根据所述同步组信息,接收来自所述第一网络设备的多个QoS流,包括:在接收到所述第三QoS流后,将第三QoS流的数据包向上层投递;若所述第四QoS流的接收时间与所述第三QoS流的接收时间之间的间隔大于所述同步时间粒度,丢弃所述第四QoS流的数据包。
在终端设备的协议层,若主QoS流数据包先到,协议层可先传输主QoS流数据包,若其他QoS流数据包的接收时间与主QoS流的接收时间的时间差超过了同步时间粒度,则可丢弃其他QoS流数据包。
可选的,所述方法还包括:若所述第四QoS流的接收时间与所述第三QoS流的接收时间之间的间隔小于或等于所述同步时间粒度,在接收到所述第四QoS流后,将所述第三QoS流和所述第四QoS流向上层传输。
进一步的,终端设备可以配置在超过同步时间粒度的情况下是否丢弃其他QoS流数据包、或者接收来自第一网络设备配置信息,该配置信息可指示终端设备在超过同步时间粒度的情况下是否丢弃其他QoS流数据包。若终端设备或第一网络设备配置为不丢弃其他QoS流数据包,则当主QoS流数据包先到时,终端设备的协议层可先传输主QoS流数据包,并等待预设时长,若在该预设时长内接收其他QoS流数据包,终端设备的协议层可传输其他QoS流数据包;若在预设时长内未接收到其他QoS流数据包,则可丢弃在预设时长后接收到的其他QoS流数据包。若终端设备或第一网络设备配置为丢弃其他QoS流数据包,则当其他QoS流数据包的接收时间与主QoS流的接收时间的时间差超过了同步时间粒度,直接丢弃其他QoS流的数据包。
可选的,所述方法还包括:若所述第四QoS流的接收时间早于或等于所述第三QoS流的接收时间,将所述第三QoS流和所述第第四QoS流向上层传输。
其中,在第一网络设备的协议层,若其他QoS流数据包先到,可以进行等待,直至接收到主QoS流数据包。然后协议层将主QoS流数据包和其他QoS流数据包一起向上层传输。
在本申请实施例中,终端设备接收同步传输的QoS流数据包时,考虑同步组信息来实现对数据包的向上传输或丢弃,可以实现多模态业务的不同QoS流中数据包的同步向上传 输。
由此可见,本申请实施例提出的传输方法,核心网通过向第一网络设备发送同步组信息、第一网络设备向终端设备发送同步组信息,以通知第一网络设备和终端设备传输多模态业务的同步组信息,进而可使得第一网络设备根据同步组信息实现多模态业务的不同QoS流的同步传输,以及终端设备根据同步组信息实现多模态业务的不同QoS流的同步接收,从而保证了空口的同步传输。
请参阅图6,图6为本申请实施例提供的另一种传输方法的流程示意图,如图6所示,该传输方法包括如下步骤:
S610、核心网控制面网元向第一网络设备发送第二消息,该第二消息包括同步组信息,同步组信息用于同步发送和/或接收多个QoS流。
S620、第一网络设备接收来自核心网控制面网元的第二消息。
S630、第一网络设备向终端设备发送同步组信息。
S640、终端设备接收来自第一网络设备的同步组信息。
S650、第一网络设备根据同步组信息向终端设备发送多个QoS流。
S660、终端设备根据同步组信息接收来自第一网络设备的多个QoS流。
S670、终端设备根据同步组信息向第一网络设备发送多个QoS流。
S680、第一网络设备接收来自终端设备的多个QoS流。
可以理解的是,上述S610-S680的具体实现方式可参照图2、图4和图5所示实施例的具体实现方式,在此不在赘述。
本申请实施例提出的传输方法,核心网通过向第一网络设备发送同步组信息、第一网络设备向终端设备发送同步组信息,以通知第一网络设备和终端设备传输多模态业务的同步组信息,进而可使得第一网络设备和终端设备根据同步组信息实现多模态业务的不同QoS流的同步传输和同步接收,从而保证了空口的同步传输。
上述主要从方法侧执行过程的角度对本申请实施例的方案进行了介绍。可以理解的是,电子设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所提供的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
请参阅图7,图7是本申请实施例提供的一种传输装置700的功能单元组成框图,该装置700可以是终端设备,该装置700也可以是第一网络设备,该装置700还可以是,核心网控制面网元,所述装置700包括:收发单元710和处理单元720。
在一种可能的实现方式中,装置700用于执行上述传输方法中终端设备对应的各个流程和步骤。
收发单元710,用于根据同步组信息,向第一网络设备发送多个QoS流;或者,根据同步组信息,接收来自所述第一网络设备的多个QoS流;其中,所述同步组信息用于指示同步发送和/或接收所述多个QoS流。
可选的,所述收发单元710还用于:接收来自第一网络设备的第一消息,所述第一消息包括所述同步组信息。
可选的,所述同步组信息包括以下至少一项:同步时间粒度、主QoS流指示和同步组标识,所述同步时间粒度用于指示同步传输组中不同QoS流之间同步传输的最大传输间隔,所述主QoS流指示用于指示所述多个QoS流中的主QoS流,所述主QoS流为同步传输组中传输时间间隔计算的基准QoS流。
可选的,第一QoS流组映射到第一数据承载DRB,第二QoS流组映射到第二数据承载DRB,所述第一DRB和所述第二DRB的传输资源之间的时间间隔小于或等于所述同步时间粒度,其中所述第一QoS流组和第二QoS流组中包含至少一个QoS流。
可选的,所述处理单元720用于:将第一QoS流的发送时间调整至第一时间,所述第一时间与第二QoS流的发送时间的差小于或等于所述同步时间粒度,所述第一QoS流和所述第二QoS流为所述多个QoS流中的任意两个QoS流。
可选的,所述收发单元710还用于:向所述第一网络设备发送缓存状态报告BSR,所述BSR包括同步传输指示信息,所述同步传输指示信息用于指示所述终端设备的当前缓存中有待同步发送的QoS流。
可选的,所述多个QoS流包括第三QoS流和第四QoS流,所述第三QoS流与所述第四QoS流属于同一同步传输组,且所述第三QoS流为主QoS流;
在根据所述同步组信息,接收来自所述第一网络设备的多个QoS流方面,所述收发单元710还用于:
在接收到所述第三QoS流后,将第三QoS流的数据包向上层投递;若所述第四QoS流的接收时间与所述第三QoS流的接收时间之间的间隔大于所述同步时间粒度,丢弃所述第四QoS流的数据包。
可选的,所述收发单元710还用于:若所述第四QoS流的接收时间与所述第三QoS流的接收时间之间的间隔小于或等于所述同步时间粒度,在接收到所述第四QoS流后,将所述第三QoS流和所述第四QoS流向上层传输。
可选的,所述收发单元710还用于:若所述第四QoS流的接收时间早于或等于所述第三QoS流的接收时间,将所述第三QoS流和所述第第四QoS流向上层传输。
可选的,所述第一消息为无线资源控制RRC协议层的消息。
可选的,所述第一消息包括非接入层NAS消息,所述同步组信息承载于所述NAS消息中。
在另一种可能的实现方式中,装置700用于执行上述传输方法中第一网络设备对应的各个流程和步骤。
所述收发单元710,用于根据同步组信息,向终端设备发送多个QoS流;或者,根据同步组信息,接收来自终端设备的多个QoS流;其中,所述同步组信息用于同步发送和/或接收所述多个QoS流。
可选的,所述收发单元710还用于:向终端设备发送第一消息,所述第一消息包括所述同步组信息。
可选的,所述收发单元710还用于:接收来自核心网控制网元的第二消息,所述第二 消息包括所述同步组信息。可选的,所述第一网络设备为与所述核心网控制面网元建立控制面连接的接入网设备。
可选的,所述同步组信息包括以下至少一项:同步时间粒度、主QoS流指示和同步组标识,所述同步时间粒度用于指示同步传输组中不同QoS流之间同步传输的最大传输间隔,所述主QoS流指示用于指示所述多个QoS流中的主QoS流,所述主QoS流为同步传输组中传输时间间隔计算的基准QoS流。
可选的,第一QoS流组映射到第一DRB,第二QoS流组映射到第二DRB,所述第一DRB和所述第二DRB的传输资源之间的时间间隔小于或等于所述同步时间粒度,其中所述第一QoS流组和所述第二QoS流组中包含至少一个QoS流。
可选的,所述收发单元710还用于:将第一QoS流的发送时间调整至第一时间,所述第一时间与第二QoS流的发送时间的差小于或等于所述同步时间粒度,所述第一QoS流和所述第二QoS流为所述多个QoS流中的任意两个QoS流。
可选的,所述多个QoS流包括第三QoS流和第四QoS流,所述第三QoS流与所述第四QoS流属于同一同步组,且所述第三QoS流为主QoS流;
在根据同步组信息,接收来自终端设备的多个QoS流方面,所述收发单元710还用于:
在接收到所述第三QoS流后,将第三QoS流的数据包向上层投递;若所述第四QoS流的接收时间与所述第三QoS流的接收时间之间的间隔大于所述同步时间粒度,丢弃所述第四QoS流的数据包。
可选的,所述收发单元710还用于:若所述第四QoS流的接收时间与所述第三QoS流的接收时间之间的间隔小于或等于所述同步时间粒度,在接收到所述第四QoS流后,将所述第三QoS流和所述第四QoS流向上层传输。
可选的,所述收发单元710还用于:若所述第四Qos流的接收时间早于或等于所述第三Qos流的接收时间,将所述第三Qos流和所述第四Qos流向上层传输。
可选的,所述第一消息为无线资源控制RRC协议层的消息。
可选的,所述第一消息包括非接入层NAS消息,所述同步组信息承载于所述NAS消息中。
在另一种可能的实现方式中,装置700用于执行上述传输方法中第一网络设备对应的各个流程和步骤。
所述收发单元710,用于接收同步组信息,所述同步组信息用于同步发送和/或接收所述多个QoS流;发送所述同步组信息。
可选的,在发送所述同步组信息方面,所述收发单元710具体用于:接收自核心网控制面网元的所述同步组信息,向终端设备和/或第二网络设备发送所述同步组信息,所述第二网络设备为接收所述第一网络设备发送的切换请求的网络设备。
可选的,所述收发单元710还用于:向第二网络设备发送第三消息,所述第三消息包括所述同步组信息,所述第二网络设备为接收所述第一网络设备发送的切换请求的网络设备。
可选的,所述第一网络设备为与所述核心网控制面网元建立控制面连接的接入网设备。
可选的,在发送所述同步组信息方面,所述收发单元710具体用于:接收来自第三网 络设备的所述同步组信息,向第二网络设备发送所述同步组信息,所述第三网络设备为向所述第一网络设备发送切换请求的网络设备。
可选的,所述收发单元710还用于:向第四网络设备发送第三消息,所述第三消息包括所述同步信息组,所述第四网络设备为与所述终端设备已建立/未建立连接、且与所述核心网控制面网元未建立控制面连接的网络设备。
在另一种可能的实现方式中,装置700用于执行上述传输方法中核心网控制面网元对应的各个流程和步骤。
所述处理单元720,用于获取同步组信息,所述同步组信息用于同步发送和/或接收所述多个QoS流;
所述收发单元710,用于向第一网络设备发送第二消息,所述第二消息包括所述同步组信息。
可选的,所述同步组信息包括以下至少一项:同步时间粒度、主QoS流指示和同步组标识;所述同步时间粒度用于指示同步传输组中不同QoS流之间同步传输的最大传输间隔,所述主QoS流指示用于指示所述多个QoS流中的主QoS流,所述主QoS流为同步传输组中传输时间间隔计算的基准QoS流。
可以理解的是,本申请实施例的传输装置的各程序模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
应理解,这里的装置700以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置700可以具体为上述实施例中的终端设备和网络设备,装置700可以用于执行上述方法实施例中与终端设备、第一网络设备、核心网控制面网元对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置700具有实现上述方法中终端设备、第一网络设备、核心网控制面网元执行的相应步骤的功能;所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如处理单元720可以由处理器替代,收发单元710可以由发射机和接收机替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
在本申请的实施例,图7中的装置700也可以是芯片、芯片模组、UE或者芯片系统,例如:片上系统(system on chip,SoC)。对应的,收发单元710可以是该芯片的收发电路,在此不做限定。
请参阅图8,图8是本申请实施例提供的一种电子设备,该电子设备包括:一个或多个处理器、一个或多个存储器、一个或多个通信接口,以及一个或多个程序;所述一个或多个程序被存储在所述存储器中,并且被配置由所述一个或多个处理器执行。
在一种可能的实现方式中,该电子设备为终端设备,上述程序包括用于执行以下步骤的指令:
接收来自第一网络设备的第一消息,所述第一消息包括多模态业务的同步组信息,所 述多模态业务包括多个QoS流,所述同步组信息用于指示同步发送和/或接收所述多个QoS流。
在另一种可能的实现方式中,该电子设备为第一网络设备,上述程序包括用于执行以下步骤的指令:
向终端设备发送第一消息,所述第一消息包括多模态业务的同步组信息,所述多模态业务包括多个QoS流,所述同步组信息用于同步发送和/或接收所述多个QoS流。
在一种可能的实现方式中,该电子设备为第一网络设备,上述程序包括用于执行以下步骤的指令:
接收同步组信息,所述同步组信息用于同步发送和/或接收所述多个QoS流;
发送所述同步组信息。
在一种可能的实现方式中,该电子设备为核心网控制面网元,上述程序包括用于执行以下步骤的指令:
获取同步组信息,所述同步组信息用于同步发送和/或接收所述多个QoS流;
向第一网络设备发送第二消息,所述第二消息包括所述同步组信息。
其中,上述方法实施例涉及的各场景的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
应理解,上述存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
在本申请实施例中,上述装置的处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本申请实施例还提供一种芯片,所述芯片用于获取来自第一网络设备的第一消息,所述第一消息包括多模态业务的同步组信息,所述多模态业务包括多个QoS流,所述同步组信息用于指示同步发送和/或接收所述多个QoS流。
本申请实施例还提供一种芯片模组,包括收发组件和芯片,其中,所述芯片,用于通过所述收发组件接收来自第一网络设备的第一消息,所述第一消息包括多模态业务的同步组信息,所述多模态业务包括多个QoS流,所述同步组信息用于指示同步发送和/或接收所述多个QoS流。
本申请实施例还提供了一种芯片,所述芯片用于输出用于向终端设备发送的第一消息,所述第一消息包括多模态业务的同步组信息,所述多模态业务包括多个QoS流,所述同步 组信息用于指示同步发送和/或接收所述多个QoS流。
本申请实施例还提供了一种芯片模组,包括收发组件和芯片,其中,所述芯片,用于通过所述收发组件向终端设备发送第一消息,所述第一消息包括多模态业务的同步组信息,所述多模态业务包括多个QoS流,所述同步组信息用于指示同步发送和/或接收所述多个QoS流。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储用于电子数据交换的计算机程序,该计算机程序使得计算机执行如上述方法实施例中记载的任一方法的部分或全部步骤。
本申请实施例还提供一种计算机程序产品,上述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如上述方法实施例中记载的任一方法的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者TRP等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、ROM、RAM、磁盘或光盘等。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (44)

  1. 一种传输方法,其特征在于,应用于终端设备,所述方法包括:
    根据同步组信息,向第一网络设备发送多个QoS流;或者,
    根据同步组信息,接收来自所述第一网络设备的多个QoS流;
    其中,所述同步组信息用于指示同步发送和/或接收所述多个QoS流。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收来自第一网络设备的第一消息,所述第一消息包括所述同步组信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述同步组信息包括以下至少一项:同步时间粒度、主QoS流指示和同步组标识;
    所述同步时间粒度用于指示同步传输组中不同QoS流之间同步传输的最大传输间隔,所述主QoS流指示用于指示所述多个QoS流中的主QoS流,所述主QoS流为同步传输组中传输时间间隔计算的基准QoS流。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,第一QoS流组映射到第一数据承载DRB,第二QoS流组映射到第二数据承载DRB,所述第一DRB和所述第二DRB的传输资源之间的时间间隔小于或等于所述同步时间粒度,其中所述第一QoS流组和所述第二QoS流组中包含至少一个QoS流。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    将第一QoS流的发送时间调整至第一时间,所述第一时间与第二QoS流的发送时间的差小于或等于所述同步时间粒度,所述第一QoS流和所述第二QoS流为所述多个QoS流中的任意两个QoS流。
  6. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一网络设备发送缓存状态报告BSR,所述BSR包括同步传输指示信息,所述同步传输指示信息用于指示所述终端设备的当前缓存有待同步发送的QoS流。
  7. 根据权利要求1-3任一项所述的方法,其特征在于,所述多个QoS流包括第三QoS流和第四QoS流,所述第三QoS流与所述第四QoS流属于同一同步传输组,且所述第三QoS流为主QoS流;
    所述根据所述同步组信息,接收来自所述第一网络设备的多个QoS流,包括:
    在接收到所述第三QoS流后,将第三QoS流的数据包向上层投递;
    若所述第四QoS流的接收时间与所述第三QoS流的接收时间之间的间隔大于所述同步时间粒度,丢弃所述第四QoS流的数据包。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    若所述第四QoS流的接收时间与所述第三QoS流的接收时间之间的间隔小于或等于所述同步时间粒度,在接收到所述第四QoS流后,将所述第三QoS流和所述第四QoS流向上层传输。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    若所述第四QoS流的接收时间早于或等于所述第三QoS流的接收时间,将所述第三QoS流和所述第四QoS流向上层传输。
  10. 根据权利要求2所述的方法,其特征在于,所述第一消息为无线资源控制RRC协 议层的消息。
  11. 根据权利要求2或10所述的方法,其特征在于,所述第一消息包括非接入层NAS消息,所述同步组信息承载于所述NAS消息中。
  12. 一种传输方法,其特征在于,应用于第一网络设备,所述方法包括:
    根据同步组信息,向终端设备发送多个QoS流;或者,
    根据同步组信息,接收来自终端设备的多个QoS流;
    其中,所述同步组信息用于同步发送和/或接收所述多个QoS流。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    向终端设备发送第一消息,所述第一消息包括所述同步组信息。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    接收来自核心网控制网元的第二消息,所述第二消息包括所述同步组信息。
  15. 根据权利要求14所述的方法,其特征在于,所述第一网络设备为与所述核心网控制面网元建立控制面连接的接入网设备。
  16. 根据权利要求12-15任一项所述的方法,其特征在于,所述同步组信息包括以下至少一项:同步时间粒度、主QoS流指示和同步组标识,所述同步时间粒度用于指示同步传输组中不同QoS流之间同步传输的最大传输间隔,所述主QoS流指示用于指示所述多个QoS流中的主QoS流,所述主QoS流为同步传输组中传输时间间隔计算的基准QoS流。
  17. 根据权利要求12-16任一项所述的方法,其特征在于,第一QoS流组映射到第一DRB,第二QoS流组映射到第二DRB,所述第一DRB和所述第二DRB的传输资源之间的时间间隔小于或等于所述同步时间粒度,其中所述第一QoS流组和所述第二QoS流组中包含至少一个QoS流。
  18. 根据权利要求12-16任一项所述方法,其特征在于,所述方法还包括:
    将第一QoS流的发送时间调整至第一时间,所述第一时间与第二QoS流的发送时间的差小于或等于所述同步时间粒度,所述第一QoS流和所述第二QoS流为所述多个QoS流中的任意两个QoS流。
  19. 根据权利要求12-16任一项所述方法,其特征在于,所述多个QoS流包括第三QoS流和第四QoS流,所述第三QoS流与所述第四QoS流属于同一同步传输组,且所述第三QoS流为主QoS流;
    所述根据同步组信息,接收来自终端设备的多个QoS流,包括:
    在接收到所述第三QoS流后,将第三QoS流的数据包向上层投递;
    若所述第四QoS流的接收时间与所述第三QoS流的接收时间之间的间隔大于所述同步时间粒度,丢弃所述第四QoS流的数据包。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    若所述第四QoS流的接收时间与所述第三QoS流的接收时间之间的间隔小于或等于所述同步时间粒度,在接收到所述第四QoS流后,将所述第三QoS流和所述第四QoS流向上层传输。
  21. 根据权利要19或20所述的方法,其特征在于,所述方法还包括:
    若所述第四Qos流的接收时间早于或等于所述第三Qos流的接收时间,将所述第三Qos 流和所述第四Qos流向上层传输。
  22. 根据权利要求13所述的方法,其特征在于,所述第一消息为无线资源控制RRC协议层的消息。
  23. 根据权利要求13或22所述的方法,其特征在于,所述第一消息包括非接入层NAS消息,所述同步组信息承载于所述NAS消息中。
  24. 一种传输方法,其特征在于,应用于第一网络设备,所述方法包括:
    接收同步组信息,所述同步组信息用于同步发送和/或接收所述多个QoS流;
    发送所述同步组信息。
  25. 根据权利要求24所述的方法,其特征在于,所述发送所述同步组信息,包括:
    接收来自核心网控制面网元的所述同步组信息,向终端设备和/或第二网络设备发送所述同步组信息,所述第二网络设备为接收所述第一网络设备发送的切换请求的网络设备。
  26. 根据权利要求25所述的方法,其特征在于,所述第一网络设备为与所述核心网控制面网元建立控制面连接的网络设备。
  27. 根据权利要求24所述的方法,其特征在于,所述发送所述同步组信息,包括:
    接收来自第三网络设备的所述同步组信息,向第二网络设备发送所述同步组信息,所述第三网络设备为向所述第一网络设备发送切换请求的网络设备。
  28. 根据权利要求24至26任一项所述的方法,其特征在于,所述方法还包括:
    向第四网络设备发送所述同步信息组,所述第四网络设备为与所述终端设备已建立/未建立连接、且与所述核心网控制面网元未建立控制面连接的网络设备。
  29. 一种传输方法,其特征在于,应用于核心网控制面网元,所述方法包括:
    获取同步组信息,所述同步组信息用于同步发送和/或接收所述多个QoS流;
    向第一网络设备发送第二消息,所述第二消息包括所述同步组信息。
  30. 根据权利要求29所述的方法,其特征在于,所述同步组信息包括以下至少一项:同步时间粒度、主QoS流指示和同步组标识;
    所述同步时间粒度用于指示同步传输组中不同QoS流之间同步传输的最大传输间隔,所述主QoS流指示用于指示所述多个QoS流中的主QoS流,所述主QoS流为同步传输组中传输时间间隔计算的基准QoS流。
  31. 一种传输装置,其特征在于,应用于终端设备,所述装置包括:
    收发单元,用于根据同步组信息,向第一网络设备发送多个QoS流;或者,根据同步组信息,接收来自所述第一网络设备的多个QoS流;其中,所述同步组信息用于指示同步发送和/或接收所述多个QoS流。
  32. 一种传输装置,其特征在于,应用于第一网络设备,所述装置包括:
    收发单元,用于根据同步组信息,向终端设备发送多个QoS流;或者,根据同步组信息,接收来自终端设备的多个QoS流;其中,所述同步组信息用于同步发送和/或接收所述多个QoS流。
  33. 一种传输装置,其特征在于,应用于第一网络设备,所述装置包括:
    收发单元,用于接收同步组信息,所述同步组信息用于同步发送和/或接收所述多个QoS流;发送所述同步组信息。
  34. 一种传输装置,其特征在于,应用于核心网控制面网元,所述装置包括:
    处理单元,用于获取同步组信息,所述同步组信息用于同步发送和/或接收所述多个QoS流;
    收发单元,用于向第一网络设备发送第二消息,所述第二消息包括所述同步组信息。
  35. 一种芯片,其特征在于,所述芯片用于根据同步组信息,输出向第一网络设备发送的多个QoS流;或者,所述芯片用于根据同步组信息,获取来自所述第一网络设备的多个QoS流;其中,所述同步组信息用于指示同步发送和/或接收所述多个QoS流。
  36. 一种芯片模组,其特征在于,包括收发组件和芯片,其中,所述芯片,用于通过所述收发组件根据同步组信息,输出向第一网络设备发送的多个QoS流;或者,所述芯片用于通过所述收发组件根据同步组信息,获取来自所述第一网络设备的多个QoS流;其中,所述同步组信息用于指示同步发送和/或接收所述多个QoS流。
  37. 一种芯片,其特征在于,所述芯片用于根据同步组信息,输出向终端设备发送多个QoS流;或者,所述芯片用于根据同步组信息,获取来自终端设备的多个QoS流;其中,所述同步组信息用于同步发送和/或接收所述多个QoS流。
  38. 一种芯片模组,其特征在于,包括收发组件和芯片,其中,所述芯片,用于通过所述收发组件根据同步组信息,输出向终端设备发送多个QoS流;或者,所述芯片用于通过所述收发组件根据同步组信息,获取来自终端设备的多个QoS流;其中,所述同步组信息用于同步发送和/或接收所述多个QoS流。
  39. 一种芯片,其特征在于,所述芯片用于获取同步组信息,所述同步组信息用于同步发送和/或接收所述多个QoS流;所述芯片还用于输出所述同步组信息。
  40. 一种芯片模组,其特征在于,包括收发组件和芯片,其中,所述芯片,用于通过所述收发组件获取同步组信息,所述同步组信息用于同步发送和/或接收所述多个QoS流;所述芯片还用于输出所述同步组信息。
  41. 一种芯片,其特征在于,所述芯片用于获取同步组信息,所述同步组信息用于同步发送和/或接收所述多个QoS流;所述芯片还用于向第一网络设备发送第二消息,所述第二消息包括所述同步组信息。
  42. 一种芯片模组,其特征在于,包括收发组件和芯片,其中,所述芯片,用于通过所述收发组件获取同步组信息,所述同步组信息用于同步发送和/或接收所述多个QoS流;所述芯片还用于向第一网络设备发送第二消息,所述第二消息包括所述同步组信息。
  43. 一种电子设备,其特征在于,所述电子设备包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-11任一项所述的方法中的步骤的指令、或如权利要求12-23任一项所述的方法中的步骤的指令、或如权利要求24-28任一项所述的方法中的步骤的指令、或如权利要求29-30任一项所述的方法中的步骤的指令。
  44. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-11任一项所述的方法的步骤或权利要求12-23任一项所述的方法的步骤,或如权利要求24-28任一项所述的方法的步骤、或如权利要求29-30任一项所述的方法的步骤。
PCT/CN2022/074941 2021-02-09 2022-01-29 传输方法及装置 WO2022171028A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/264,647 US20240056873A1 (en) 2021-02-09 2022-01-29 Transmission method, terminal device, and storage medium
EP22752189.5A EP4294074A1 (en) 2021-02-09 2022-01-29 Transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110182894.0A CN114916005A (zh) 2021-02-09 2021-02-09 传输方法及装置
CN202110182894.0 2021-02-09

Publications (1)

Publication Number Publication Date
WO2022171028A1 true WO2022171028A1 (zh) 2022-08-18

Family

ID=82762178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074941 WO2022171028A1 (zh) 2021-02-09 2022-01-29 传输方法及装置

Country Status (4)

Country Link
US (1) US20240056873A1 (zh)
EP (1) EP4294074A1 (zh)
CN (1) CN114916005A (zh)
WO (1) WO2022171028A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1518278A (zh) * 2003-01-16 2004-08-04 ��Ϊ�������޹�˾ 网络通信中实现资源分配的系统及其方法
US20170289047A1 (en) * 2016-04-05 2017-10-05 Nokia Technologies Oy METHOD AND APPARATUS FOR END-TO-END QoS/QoE MANAGEMENT IN 5G SYSTEMS
WO2020199397A1 (en) * 2019-03-29 2020-10-08 Telefonaktiebolaget Lm Ericsson (Publ) Method, apparatus for synchronization of status of qos flow in communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1518278A (zh) * 2003-01-16 2004-08-04 ��Ϊ�������޹�˾ 网络通信中实现资源分配的系统及其方法
US20170289047A1 (en) * 2016-04-05 2017-10-05 Nokia Technologies Oy METHOD AND APPARATUS FOR END-TO-END QoS/QoE MANAGEMENT IN 5G SYSTEMS
WO2020199397A1 (en) * 2019-03-29 2020-10-08 Telefonaktiebolaget Lm Ericsson (Publ) Method, apparatus for synchronization of status of qos flow in communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Modification of PDU Session to Always-on PDU Session for URLLC QoS Flow", 3GPP DRAFT; S2-2000887, vol. SA WG2, 7 January 2020 (2020-01-07), Incheon, South Korea, pages 1 - 7, XP051842941 *

Also Published As

Publication number Publication date
CN114916005A (zh) 2022-08-16
EP4294074A1 (en) 2023-12-20
US20240056873A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
US11700509B2 (en) Communication system, communication method, and apparatus thereof
CN109982266B (zh) 一种通信方法、及相关产品
US11071167B2 (en) Method, apparatus, system, and device for managing a session corresponding to multiple session management function network elements
US11937128B2 (en) Communication method and communications apparatus for determining latency of transmission between network elements
WO2022012212A1 (zh) 一种资源调度方法、通信装置及系统
WO2019196810A1 (zh) 一种数据传输的方法、相关设备及通信系统
WO2019057154A1 (zh) 数据传输方法、终端设备和网络设备
KR20070094563A (ko) 무선통신시스템에 사용되는 일대다 mbms 처리방법 및장치
US20200100213A1 (en) Dynamic switching of streaming service between broadcast and unicast delivery
WO2014040573A1 (zh) 一种集群业务快速建立方法及相关设备、系统
WO2019141273A1 (zh) 用于确定性传输的通信方法和相关装置
JP2007251945A (ja) ポイント・ツー・マルチポイントmbmsサービス情報を取得する方法及び装置
WO2021097858A1 (zh) 一种通信方法及装置
JP2023547080A (ja) 接続確立方法、装置、通信機器及び記憶媒体
WO2022171028A1 (zh) 传输方法及装置
US20220210690A1 (en) Data transmission method and apparatus, system, and storage medium
WO2021228066A1 (zh) 一种通信方法、装置及存储介质
WO2022063186A1 (zh) 传输链路的切换方法及相关产品
WO2021163832A1 (zh) 数据传输的方法和装置
CN115396823A (zh) 一种传输业务数据的方法和通信装置
WO2022222736A1 (zh) 业务处理方法、装置、系统、可读取存储介质和电子设备
WO2022206775A1 (zh) 一种多播广播业务的传输切换方法及装置
WO2023125723A1 (zh) 协作通信方法及装置、计算机可读存储介质
WO2022227587A1 (zh) 共享业务的建立方法及相关产品
WO2024007895A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752189

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18264647

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022752189

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022752189

Country of ref document: EP

Effective date: 20230911