WO2022170970A1 - 放疗计划的生成方法、放疗计划系统及存储介质 - Google Patents

放疗计划的生成方法、放疗计划系统及存储介质 Download PDF

Info

Publication number
WO2022170970A1
WO2022170970A1 PCT/CN2022/073821 CN2022073821W WO2022170970A1 WO 2022170970 A1 WO2022170970 A1 WO 2022170970A1 CN 2022073821 W CN2022073821 W CN 2022073821W WO 2022170970 A1 WO2022170970 A1 WO 2022170970A1
Authority
WO
WIPO (PCT)
Prior art keywords
tumor
radiotherapy
regions
generating
sub
Prior art date
Application number
PCT/CN2022/073821
Other languages
English (en)
French (fr)
Inventor
李金升
Original Assignee
西安大医集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安大医集团股份有限公司 filed Critical 西安大医集团股份有限公司
Publication of WO2022170970A1 publication Critical patent/WO2022170970A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1039Treatment planning systems using functional images, e.g. PET or MRI

Definitions

  • the present application relates to the field of medical technology, and in particular, to a method for generating a radiotherapy plan, a radiotherapy planning system and a storage medium.
  • Radiation therapy is a common tumor treatment method. Before treating a tumor in a patient, it is necessary to determine the shape and location of the tumor in the patient, and formulate a corresponding treatment plan according to the shape and location of the tumor.
  • the related art provides a method for generating a radiotherapy plan, which determines a treatment target area according to a patient's tumor image, obtains a prescribed dose of the treatment target area, and determines a treatment method suitable for the target area according to the treatment target area and the prescribed dose of the treatment target area.
  • the radiotherapy plan provided by the related technology needs to be improved in the precision of radiotherapy to the tumor.
  • the present application provides a method for generating a radiotherapy plan, a radiotherapy planning system and a storage medium, which can solve the above technical problems.
  • an embodiment of the present application provides a method for generating a radiotherapy plan, the generating method comprising:
  • a radiation therapy plan is generated.
  • the medical images include CT images, MRI images, PET images, or CBCT images.
  • the radiotherapy plan includes at least one of dose parameters, pre-collimator control parameters, multi-leaf collimator control parameters, treatment couch control parameters, and gantry control parameters.
  • the dose parameter includes the radiation dose received by the tumor within the treatment area within the set range
  • the pre-collimator control parameters include the size of the pre-collimator holes on the pre-collimator;
  • the multi-leaf collimator control parameter includes the number of leaves of the multi-leaf collimator, the position of the leaves or the speed of movement of the leaves;
  • the treatment couch control parameters include the movement position of the treatment couch, the movement direction of the treatment couch or the movement speed of the treatment couch;
  • the gantry control parameters include the rotation speed of the gantry, the rotation angle of the gantry, or the rotation direction of the gantry.
  • the medical image includes a sequence of medical images, and the outline of the tumor in the medical image is obtained to obtain the outline of the tumor, including:
  • Contouring is performed on each image in the medical image sequence to obtain a medical image sequence marked with the tumor contour.
  • the tumor contour is divided into regions to obtain multiple tumor sub-regions, including:
  • the three-dimensional structure of the tumor is divided into regions to obtain a plurality of tumor sub-regions.
  • the tumor region dividing parameters include at least one of: tumor depth, tumor thickness, and distance between the tumor and surrounding healthy tissue.
  • the obtaining a radiotherapy plan according to the plurality of tumor sub-regions includes:
  • a subregional radiotherapy plan is designed for each of the tumor subregions, and a plurality of subregional radiotherapy plans are obtained.
  • the method for generating the radiotherapy plan further includes: after acquiring multiple subregional radiotherapy plans, combining the multiple subregional radiotherapy plans to obtain an overall radiotherapy plan.
  • the method for generating a radiotherapy plan further includes:
  • the execution order of the plurality of subregional radiotherapy plans is determined.
  • the plurality of tumor sub-regions are prioritized according to at least one of the following parameters:
  • the treatment difficulty of multiple tumor sub-regions the boundary information of multiple tumor sub-regions, and the acquired radiotherapy plan.
  • the treatment difficulty of the plurality of tumor sub-regions includes: the difficulty of performing a treatment operation or the disease severity of the plurality of tumor sub-regions.
  • an embodiment of the present application also provides a radiotherapy planning system, the radiotherapy planning system is used to execute any one of the above-mentioned methods for generating a radiotherapy plan, and the radiotherapy planning system includes:
  • an acquisition module for acquiring medical images of patients
  • an outline delineation module configured to outline the tumor in the medical image to obtain the outline of the tumor
  • a region division module configured to perform region division on the tumor contour to obtain multiple tumor sub-regions
  • a generating module configured to generate a radiotherapy plan according to the plurality of tumor sub-regions.
  • the medical image includes a sequence of medical images
  • the contour delineation module is further configured to delineate each image in the medical image sequence to obtain a medical image sequence marked with the tumor contour.
  • the area division module is further configured to:
  • the three-dimensional structure of the tumor is divided into regions to obtain a plurality of tumor sub-regions.
  • the generating module is further configured to, according to the multiple tumor sub-regions, design a subregional radiotherapy plan for each of the tumor subregions, and obtain multiple subregional radiotherapy plans.
  • the radiotherapy planning system further includes: a dividing module, the dividing module is configured to prioritize multiple tumor sub-regions, and determine the priority ordering of the multiple tumor sub-regions;
  • the execution order of the plurality of subregional radiotherapy plans is determined.
  • the radiotherapy planning system further includes: a merging module, which is configured to merge the multiple subregional radiotherapy plans after acquiring the multiple subregional radiotherapy plans to obtain an overall radiotherapy plan.
  • a merging module which is configured to merge the multiple subregional radiotherapy plans after acquiring the multiple subregional radiotherapy plans to obtain an overall radiotherapy plan.
  • an embodiment of the present application also provides a computer device, the computer device includes a processor and a memory, the memory stores at least one piece of program code, the at least one piece of program code is loaded by the processor and Execute to realize the generation method of the radiotherapy plan as described above.
  • an embodiment of the present application further provides a computer-readable storage medium, where at least one piece of program code is stored in the computer-readable storage medium, and the at least one piece of program code is loaded and executed by a processor to achieve the following: The generation method of the above-mentioned radiotherapy plan.
  • the method for generating a radiotherapy plan obtained by the embodiments of the present application obtains a tumor contour that can characterize the tumor structure by delineating the tumor in the medical image of the patient. After the tumor contour is divided into regions, multi-lobed tumor sub-regions are obtained to achieve the purpose of refining the tumor structure. Compared with generating a radiotherapy plan based on the entire tumor contour, the embodiment of the present application generates a corresponding radiotherapy plan based on multiple tumor sub-regions, which is beneficial to significantly improve the accuracy of tumor radiotherapy, and is especially suitable for tumors with irregular shapes. radiotherapy.
  • FIG. 1 is a flowchart of a method for generating a radiotherapy plan according to an embodiment of the present application
  • Fig. 2 is an exemplary spiral treatment method provided by the embodiment of the present application.
  • FIG. 3 provides another exemplary spiral treatment method in the embodiment of the present application.
  • FIG. 4 is a flow chart of acquiring tumor sub-regions in a method for generating a radiotherapy plan provided by an embodiment of the present application;
  • FIG. 5 is a flowchart of generating a radiotherapy plan in a method for generating a radiotherapy plan provided by an embodiment of the present application
  • FIG. 6 is a flowchart of generating a radiotherapy plan in another method for generating a radiotherapy plan provided by an embodiment of the present application;
  • FIG. 7 provides a structural block diagram of an exemplary radiotherapy planning system according to an embodiment of the present application.
  • FIG. 8 provides a hardware structural block diagram of an exemplary computer device according to an embodiment of the present application.
  • the area A is the tumor with irregular shape
  • the area B is the irradiation area of the ray beam with a specific width.
  • the radiotherapy system Before using a radiotherapy system to treat a tumor in a patient, it is necessary to determine the shape and location of the tumor in the patient, and formulate a corresponding treatment plan according to the shape and location of the tumor.
  • the radiotherapy system includes a treatment couch, a frame and a treatment head.
  • the treatment couch can move along the axial direction of the frame.
  • the treatment head is carried on the frame.
  • the treatment head also includes a radiation source, a pre-collimator and a multi-leaf collimator. The collimator, the pre-collimator and the multi-leaf collimator are sequentially arranged on the path of the ray beam emitted by the radiation source.
  • the ray beam emitted by the radiation source is firstly conformed through the pre-collimation hole on the pre-collimator, and then is finally conformed through the final collimation hole on the multi-leaf collimator to limit the radiation range of the beam. , so that the final irradiation field is adapted to the shape of the patient's tumor.
  • a treatment target area is determined according to a patient's tumor image, a prescribed dose of the treatment target area is obtained, and a treatment mode suitable for the target area is determined according to the treatment target area and the prescribed dose of the treatment target area.
  • the accuracy of this method for radiotherapy of tumors with irregular shapes needs to be improved.
  • An embodiment of the present application provides a method for generating a radiotherapy plan. As shown in FIG. 1 , the method for generating a radiotherapy plan includes:
  • Step 101 Obtain a medical image of the patient.
  • the above-mentioned medical images include, but are not limited to, images obtained by the following techniques: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (Positron Emission Tomography, PET), cone beam computed tomography (Cone beam Computed Tomography, CBCT), the obtained medical images are correspondingly CT images, MRI images, PET images, CBCT images, etc.
  • CT Computed Tomography
  • MRI Magnetic Resonance Imaging
  • Positron Emission Tomography Positron Emission Tomography
  • PET Positron Emission Tomography
  • CBCT cone beam computed tomography
  • the acquisition method of the medical image includes but is not limited to: directly obtained after being scanned by the medical device, or, after being scanned by the medical device, the medical image is stored in a storage medium and obtained from the storage medium.
  • Step 102 Outline the tumor in the medical image to obtain the tumor contour.
  • the methods of contouring the tumor include, but are not limited to: manual contouring, automated contouring, etc.
  • automated contouring may include the following steps:
  • Preprocess medical images such as 3D reconstruction, denoising, enhancement, registration and fusion.
  • the tumor image feature information includes but is not limited to: (1) first-order statistical texture features (variance, skewness, kurtosis); ( 2) Texture features (contrast, frequency, roughness, complexity, texture intensity) based on neighborhood gray level difference matrix; (3) Texture features based on gray level run length matrix (short run advantage, long run advantage, Gray level non-uniformity, run length non-uniformity, run length percentage, low gray level run length advantage, high gray level run length advantage, short run length low gray level advantage, short run length high gray level advantage, long run length low gray level (4) Texture features based on gray-level co-occurrence matrix (energy/angular second-order moment, entropy, contrast, inverse difference moment, correlation, variance, sum of mean, sum of variance, variance of difference, entropy of sum, entropy of difference, cluster shadow, significant cluster, maximum probability); (5) texture feature based on gray level region size matrix; (6) image
  • GTVs tumor radiation therapy target volumes
  • organs at risk using deep learning, machine learning, artificial intelligence, region growing, graph theory (random walks), geometric level sets, and/or statistical theory .
  • Step 103 Divide the tumor contour into regions to obtain multiple tumor sub-regions.
  • the tumor contour is segmented according to at least one of parameters such as tumor depth, tumor thickness, and distance between the tumor and surrounding healthy tissue.
  • Step 104 Generate a radiotherapy plan according to multiple tumor sub-regions.
  • a subregional radiotherapy plan may be designed for each tumor sub-region, and multiple subregional radiotherapy plans may be obtained, and further, an overall radiotherapy plan may be obtained according to the multiple subregional radiotherapy plans.
  • the method for generating a radiotherapy plan obtained by the embodiments of the present application obtains a tumor contour that can characterize the tumor structure by delineating the tumor in the medical image of the patient. After the tumor contour is divided into regions, multiple tumor sub-regions are obtained to achieve the purpose of refining the tumor structure. Compared with generating a radiotherapy plan based on the entire tumor contour, the embodiment of the present application generates a corresponding radiotherapy plan based on multiple tumor sub-regions, which is beneficial to significantly improve the accuracy of tumor radiotherapy, and is especially suitable for tumors with irregular shapes. radiotherapy.
  • the radiotherapy plan involved in step 104 includes at least one of dose parameters, pre-collimator control parameters, multi-leaf collimator control parameters, treatment couch control parameters, and gantry control parameters.
  • the dose parameter includes but is not limited to: the radiation dose received by the tumor in the treatment area within the set range.
  • the dose parameter can be controlled by the irradiation duration of the tumor receiving radiation, and can also be controlled by the radiation dose received by the tumor per unit time.
  • the pre-collimator control parameters include, but are not limited to: the size of the pre-collimation holes on the pre-collimator.
  • the pre-collimation hole on the pre-collimator is a quadrangular frustum-shaped through hole, and the size of the pre-collimation hole can be adjusted, and the pre-collimation hole is projected on the field at the isocenter of the radiotherapy system.
  • the shape of the radiation field is elongated, and the length of the short side of the field is 5-15cm, for example, 8cm or 10cm; the length of the long side of the field is 30-50cm, for example, 40cm.
  • control parameters of the multi-leaf collimator include but are not limited to: the number of leaves of the multi-leaf collimator, the position of the leaves, the speed of movement of the leaves, and the like.
  • the multi-leaf collimator includes: a plurality of blade groups arranged side by side, each blade group including: a first blade and a second blade arranged oppositely.
  • the multi-leaf collimator further comprises: a plurality of first driving mechanisms corresponding to the first blades one-to-one, and a plurality of second driving mechanisms corresponding to the second blades one-to-one; the first driving mechanisms are connected with the corresponding first blades , for driving the first blade to move in the axial direction parallel to the frame of the radiotherapy system; the second drive mechanism is connected with the corresponding second blade for driving the second blade along the axis parallel to the frame of the radiotherapy system Movement in the axial direction.
  • the first drive mechanism is configured to enable the first blade to stop at any position within the range of motion; the second drive mechanism is configured to enable the second blade to stop at any position within the range of motion.
  • Controlling the control parameters such as the number, movement position and movement speed of the first blade and the second blade is beneficial to realize the dose intensity modulation in the treatment process.
  • the treatment couch control parameters include, but are not limited to: the movement position of the treatment couch, the movement direction of the treatment couch, the movement speed of the treatment couch, and the like.
  • the treatment couch moves along the axial direction of the gantry, and the treatment couch is used to carry the patient. Before the treatment starts, the patient lies on the treatment couch, and the treatment couch drives the patient to move to the treatment area. .
  • the movement speed of the treatment couch may be uniform or non-uniform, that is, when the treatment couch moves along the axial direction of the gantry, it may move at a uniform or non-uniform speed.
  • the movement direction of the treatment couch can be forward along the axial direction of the gantry (the direction close to the treatment head), or it can move backward along the axial direction of the gantry (the direction away from the treatment head).
  • the treatment couch can drive the patient to move in one direction, and can also reciprocate back and forth; the treatment couch can move continuously, or move a set distance at one time according to treatment requirements.
  • the gantry control parameters include but are not limited to: the rotation speed of the gantry, the rotation angle of the gantry, the rotation direction of the gantry, and the like.
  • the racks involved in the embodiments of the present application include, but are not limited to, a ring rack, a C-arm rack, a drum rack, or a robotic arm rack, where the rack is used to carry the treatment head and drive the treatment head to go around it Isometric rotation.
  • the rack is a ring rack.
  • the rotation speed of the gantry mentioned above may be a constant speed (at a constant speed, the rotation speed of the gantry may be adaptively adjusted according to actual treatment requirements), or it may be a non-uniform speed.
  • the rotation direction of the above-mentioned rack may be clockwise or counterclockwise, or, the rotation direction may be switched during rotation, for example, clockwise rotation first and then counterclockwise rotation, or counterclockwise rotation first and then counterclockwise rotation. clockwise rotation.
  • the rotation angle of the gantry mentioned above may be a preset angle range, for example, a rotation with a rotation angle of 360 degrees, or other specific angles set, such as 30°-90°.
  • a preset angle range for example, a rotation with a rotation angle of 360 degrees, or other specific angles set, such as 30°-90°.
  • the treatment couch moves synchronously along the axial direction of the gantry, so as to achieve the effect of helical treatment, which can not only reduce the treatment time, but also increase the treatment time. scope.
  • the rotation speed of the gantry can be uniform or non-uniform
  • the movement speed of the treatment couch can be uniform or non-uniform
  • the treatment couch can move along the axial direction of the gantry. It can move forward, and it can also move backward along the axis of the frame, or it can also reciprocate back and forth.
  • the treatment couch can move continuously, or it can move a certain distance at a set time interval according to the treatment needs.
  • Figures 2 and 3 respectively illustrate the irradiation situation of the ray beam on the patient's tumor when the treatment couch moves the patient with the patient at different distances during the rotation of the gantry.
  • the treatment couch moves a first specific distance in one direction each time, so that multiple tumor sub-regions are irradiated in sequence, wherein the first specific distance each time the treatment couch moves is equal to the irradiation width of the beam.
  • the treatment couch moves a second specific distance in one direction at a time, so that multiple tumor sub-regions are irradiated in sequence, wherein the second specific distance each time the treatment couch moves is a part of the irradiation width of the beam, For example, it is half the irradiation width.
  • the corresponding radiotherapy plan is obtained, and the user controls the radiotherapy system to execute the radiotherapy plan according to the radiotherapy plan, thereby achieving the purpose of treating the tumor.
  • the medical images involved in step 101 include, but are not limited to, CT images, MRI images, PET images, CBCT images, and the like.
  • acquiring a medical image of a patient includes: acquiring a medical image sequence of the patient, the multiple medical image sequences constitute a medical image, and the medical image sequence includes multiple images, so as to achieve the purpose of being able to accurately display the three-dimensional structure of the tumor .
  • the above-mentioned sequence of medical images refers to a series of images sequentially and continuously acquired by a medical imaging device on a target at different times and at different orientations.
  • contouring the tumor in the medical image involved in step 102 to obtain the tumor contour includes: contouring each image in the medical image sequence to obtain the medical image marked with the tumor contour. image sequence.
  • the tumor part in each image can be displayed with contour (that is, the tumor contour), and then the medical image sequence marked with the tumor contour can be obtained, so that the marked tumor contour can be obtained.
  • the tumor contour is displayed on each image in the sequence of medical images of the tumor contour, so that the three-dimensional shape of the tumor can be accurately determined.
  • the tumor contour involved in step 103 is divided into regions to obtain multiple tumor sub-regions, including:
  • Step 1031 Construct a three-dimensional image according to the sequence of medical images marked with tumor contours, wherein the constructed three-dimensional image includes the three-dimensional structure of the tumor.
  • Step 1032 Obtain tumor region division parameters.
  • Step 1033 Divide the three-dimensional structure of the tumor into regions according to the tumor region division parameters to obtain multiple tumor sub-regions.
  • the tumor region division parameters involved in step 1032 include at least one of: tumor depth, tumor thickness, and distance between the tumor and surrounding healthy tissue.
  • the three-dimensional structure of the tumor can be divided using the above-mentioned single tumor region division parameters: for example, according to tumor depth, according to tumor thickness, or according to the distance between the tumor and surrounding healthy tissue.
  • two or more parameters may be considered comprehensively to perform regional division of the three-dimensional structure of the tumor.
  • the three-dimensional structure of the tumor is divided into different tumor sub-regions according to the tumor depth as well as the tumor thickness.
  • the 3D structure of the tumor is divided into different tumor subregions based on tumor depth and spacing between the tumor and surrounding healthy tissue.
  • the three-dimensional structure of the tumor is divided into different tumor sub-regions based on three factors: tumor depth, tumor thickness, and distance between the tumor and surrounding healthy tissue.
  • generating a radiotherapy plan according to multiple tumor sub-regions involved in step 104 includes step 1041 : designing a subregional radiotherapy plan for each tumor sub-region according to the multiple tumor sub-regions, and obtaining multiple tumor sub-regions.
  • radiotherapy plans can be obtained in a targeted manner, and in the actual treatment process, different radiotherapy plans can be executed for different tumor sub-regions.
  • the method for generating a radiotherapy plan provided by the embodiment of the present application further includes step 1042 : after obtaining multiple subregional radiotherapy plans, merge the multiple subregional radiotherapy plans to obtain an overall radiotherapy plan.
  • the entire tumor can be treated according to the overall radiotherapy plan.
  • multiple subregional radiotherapy plans may be used to perform subregional treatment on different tumor subregions, and then the entire tumor may be treated using the overall radiotherapy plan.
  • the entire tumor can be treated first using the overall radiotherapy plan, and then multiple subregional radiotherapy plans can be used to treat different tumor sub-regions.
  • the method for generating a radiotherapy plan provided by this embodiment of the present application further includes step 105: Prioritize multiple tumor sub-regions, and determine the number of tumor sub-regions. Priority sorting; according to the priority sorting of multiple tumor sub-regions, determine the execution order of multiple subregional radiotherapy plans.
  • the execution order of multiple subregional radiotherapy plans is determined according to the priority order of multiple tumor subregions, and different tumor subregions are treated in sequence. Such setting is not only beneficial to improve the treatment effect, but also to improve the treatment efficiency.
  • the multiple tumor sub-regions are prioritized according to at least one of the following parameters: the treatment difficulty of the multiple tumor sub-regions, the boundary information of the multiple tumor sub-regions, and the acquired radiotherapy plan.
  • the treatment difficulty of multiple tumor sub-regions includes, but is not limited to: the difficulty of performing the treatment operation, the disease severity of the multiple tumor sub-regions (that is, the disease severity of the region where each part of the tumor is located), the more severe the disease is. Severe means more difficult to treat.
  • the treatment sequence of different tumor subregions is adjusted according to the radiotherapy plans and priorities. For example, a corresponding radiotherapy plan can be performed for a specific tumor sub-region by moving the couch and moving the patient to the corresponding position according to the priority order.
  • the treatment couch moves, it can be performed together with the operation of the multi-leaf collimator.
  • the multi-leaf collimator is turned off, and the radiation is aligned during the movement of the treatment couch. Masking is performed until the sub-region of the tumor to be treated is moved into position.
  • an embodiment of the present application also provides a radiotherapy planning system, and the radiotherapy planning system is used to execute any of the above-mentioned methods for generating a radiotherapy plan.
  • the radiotherapy planning system includes:
  • An acquisition module 71 the acquisition module 71 is used for acquiring a medical image of a patient.
  • the contouring module 72 is used for contouring the tumor in the medical image to obtain the contour of the tumor.
  • a region division module 73 the region division module 73 is used to perform region division on the contour of the tumor to obtain a plurality of tumor sub-regions.
  • a generating module 74 the generating module 74 is configured to generate a radiotherapy plan according to a plurality of tumor sub-regions.
  • the medical image includes a medical image sequence
  • the acquiring module 71 is further configured to acquire a medical image including a plurality of medical image sequences.
  • the delineation module 72 is further configured to delineate each image in the sequence of medical images to obtain a sequence of medical images marked with tumor contours.
  • the region division module 73 is further configured to construct a three-dimensional image according to a sequence of medical images marked with tumor contours, where the three-dimensional image includes the three-dimensional structure of the tumor; obtain tumor region division parameters; according to the tumor region division parameters, The three-dimensional structure of the tumor is divided into regions to obtain multiple tumor sub-regions.
  • the tumor region dividing parameters include at least one of: tumor depth, tumor thickness, and distance between the tumor and surrounding healthy tissue.
  • the generating module 74 is further configured to design a subregional radiotherapy plan for each tumor subregion according to multiple tumor subregions, and obtain multiple subregional radiotherapy plans.
  • the radiotherapy planning system further includes: a merging module, which is configured to merge the multiple subregional radiotherapy plans after acquiring the multiple subregional radiotherapy plans to obtain the overall radiotherapy plan.
  • a merging module which is configured to merge the multiple subregional radiotherapy plans after acquiring the multiple subregional radiotherapy plans to obtain the overall radiotherapy plan.
  • the radiotherapy planning system provided by the embodiment of the present application further includes a division module, which is used to prioritize multiple tumor sub-regions, and determine the priority ordering of the multiple tumor sub-regions; according to the multiple tumor sub-regions The prioritization determines the order in which multiple subregional radiotherapy plans are executed.
  • the priority ordering of the multiple tumor sub-regions is determined according to at least one of the following parameters: the treatment difficulty of the multiple tumor sub-regions, the boundary information of the multiple tumor sub-regions, and the acquired radiotherapy plan.
  • each of the above modules may be functional modules or program modules, and may be implemented by software or hardware.
  • the above-mentioned modules may be located in the same processor; or the above-mentioned modules may also be located in different processors in any combination.
  • FIG. 8 is a schematic diagram of the hardware structure of the computer device according to the embodiment of the present application.
  • the computer device includes a processor 81 and a memory 82 storing computer program instructions.
  • the above-mentioned processor 81 may include a central processing unit (CPU), or a specific integrated circuit (Application Specific Integrated Circuit, ASIC for short), or may be configured to implement one or more integrated circuits of the embodiments of the present application.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • memory 82 may include mass storage for data or instructions.
  • the memory 82 may include a hard disk drive (Hard Disk Drive, abbreviated as HDD), a floppy disk drive, a solid state drive (referred to as SSD), flash memory, optical disk, magneto-optical disk, magnetic tape, or universal serial A Universal Serial Bus (USB for short) drive or a combination of two or more of these.
  • Memory 82 may include removable or non-removable (or fixed) media, as appropriate. Where appropriate, memory 82 may be internal or external to the data processing device.
  • the memory 82 is a non-volatile (Non-Volatile) memory.
  • the memory 82 includes a read-only memory (Read-Only Memory, referred to as ROM for short) and a random access memory (Random Access Memory, referred to as RAM for short).
  • the ROM can be a mask-programmed ROM, a programmable ROM (Programmable Read-Only Memory, referred to as PROM), an erasable PROM (Erasable Programmable Read-Only Memory, referred to as EPROM), an electrically programmable Erasing PROM (Electrically Erasable Programmable Read-Only Memory, referred to as EEPROM), Electrically Rewritable ROM (Electrically Alterable Read-Only Memory, referred to as EAROM) or Flash (FLASH) or a combination of two or more of these.
  • the RAM may be Static Random-Access Memory (SRAM for short) or Dynamic Random Access Memory (DRAM for short), where DRAM may be a fast page Mode dynamic random access memory (Fast Page Mode Dynamic Random Access Memory, referred to as FPMDRAM), extended data output dynamic random access memory (Extended Date Out Dynamic Random Access Memory, referred to as EDODRAM), synchronous dynamic random access memory (Synchronous Dynamic Random-Access Memory, referred to as SDRAM) and so on.
  • SRAM Static Random-Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM synchronous dynamic random access memory
  • the memory 82 may be used to store or cache various data files required for processing and/or communication use, and possibly computer program instructions executed by the processor 81 .
  • the processor 81 reads and executes the computer program instructions stored in the memory 82 to implement any method for generating a radiotherapy plan in the above-mentioned embodiments.
  • the computer device may also include a communication interface 83 and a bus 80 .
  • the processor 81 , the memory 82 , and the communication interface 83 are connected through the bus 80 and complete the mutual communication.
  • the communication interface 83 is used to implement communication between modules, apparatuses, units, and/or devices in the embodiments of the present application.
  • the communication interface 83 can also implement data communication with other components such as: external devices, image/data acquisition devices, databases, external storage, and image/data processing workstations.
  • the bus 80 includes hardware, software, or both, coupling the components of the computer device to each other.
  • the bus 80 includes but is not limited to at least one of the following: a data bus (Data Bus), an address bus (Address Bus), a control bus (Control Bus), an expansion bus (Expansion Bus), and a local bus (Local Bus).
  • the bus 80 may include an Accelerated Graphics Port (AGP) or other graphics bus, an Enhanced Industry Standard Architecture (EISA) bus, a Front Side Bus (Front Side Bus) , referred to as FSB), Hyper Transport (Hyper Transport, referred to as HT) interconnect, Industry Standard Architecture (Industry Standard Architecture, referred to as ISA) bus, wireless bandwidth (InfiniBand) interconnect, Low Pin Count (Low Pin Count, referred to as LPC bus, memory bus, Micro Channel Architecture (MCA) bus, Peripheral Component Interconnect (PCI) bus, PCI-Express (PCI-X) bus, serial Serial Advanced Technology Attachment (SATA) bus, Video Electronics Standards Association Local Bus (VLB) bus or other suitable bus or a combination of two or more of these.
  • bus 80 may include one or more buses.
  • the computer device may execute the method for generating a radiotherapy plan in the embodiments of the present application based on the acquired computer program, thereby implementing the method for generating a radiotherapy plan described in conjunction with FIG. 1 .
  • the embodiments of the present application may provide a computer-readable storage medium for implementation.
  • the computer-readable storage medium stores at least one piece of program code, and the at least one piece of program code is loaded and executed by the processor to implement any method for generating a radiotherapy plan in the foregoing embodiments.

Abstract

本申请公开了放疗计划的生成方法、放疗计划系统及存储介质,属于医疗技术领域。该放疗计划的生成方法包括:获取患者的医学图像;对医学图像中的肿瘤进行轮廓勾画,得到肿瘤轮廓;对肿瘤轮廓进行区域划分,获得多个肿瘤子区域;根据多个肿瘤子区域,生成放疗计划。根据多个肿瘤子区域,来生成相应的放疗计划,利于显著提高对肿瘤放疗时的精确度,特别适用于具有不规则形状的肿瘤的放疗。

Description

放疗计划的生成方法、放疗计划系统及存储介质
本申请要求于2021年02月09日提交的申请号为202110182255.4、发明名称为“放疗计划的生成方法、放疗计划系统及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗技术领域,特别涉及放疗计划的生成方法、放疗计划系统及存储介质。
背景技术
放射治疗是一种常见的肿瘤治疗手段,在对患者体内的肿瘤进行治疗之前,需要确定患者体内的肿瘤形状与位置,并根据肿瘤形状与位置制定相应的治疗计划。
相关技术提供了一种放疗计划的生成方法,其根据患者的肿瘤图像确定治疗靶区,获取治疗靶区的处方剂量,根据治疗靶区以及治疗靶区的处方剂量,确定适合靶区的治疗方式。
然而,对于具有不规则形状的肿瘤,相关技术提供的放疗计划对肿瘤进行放疗时的精准度有待提高。
发明内容
鉴于此,本申请提供了放疗计划的生成方法、放疗计划系统及存储介质,能够解决上述技术问题。
具体而言,包括以下的技术方案:
一方面,本申请实施例提供了一种放疗计划的生成方法,所述生成方法包括:
获取患者的医学图像;
对所述医学图像中的肿瘤进行轮廓勾画,得到肿瘤轮廓;
对所述肿瘤轮廓进行区域划分,获得多个肿瘤子区域;
根据所述多个肿瘤子区域,生成放疗计划。
在一些可能的实现方式中,所述医学图像包括CT图像、MRI图像、PET图像或者CBCT图像。
在一些可能的实现方式中,所述放疗计划包括:剂量参数、预准直器控制参数、多叶准直器控制参数、治疗床控制参数、机架控制参数中的至少一种。
在一些可能的实现方式中,所述剂量参数包括在设定范围的治疗区域内,肿瘤所接受到的照射剂量大小;
所述预准直器控制参数包括预准直器上的预准直孔的尺寸;
所述多叶准直器控制参数包括多叶准直器的叶片数量、叶片位置或者叶片的运动速度;
治疗床控制参数包括治疗床的运动位置、治疗床的运动方向或者治疗床的运动速度;
机架控制参数包括机架的旋转速度、机架的旋转角度或者机架的旋转方向。
在一些可能的实现方式中,所述医学图像包括医学图像序列,所述对所述医学图像中的肿瘤进行轮廓勾画,得到肿瘤轮廓,包括:
对所述医学图像序列中的每一张图像进行轮廓勾画,得到标记有所述肿瘤轮廓的医学图像序列。
在一些可能的实现方式中,所述对所述肿瘤轮廓进行区域划分,获得多个肿瘤子区域,包括:
根据所述标记有所述肿瘤轮廓的医学图像序列,构建三维图像,所述三维图像包括肿瘤的三维结构;
获取肿瘤区域划分参数;
根据所述肿瘤区域划分参数,对所述肿瘤的三维结构进行区域划分,获得多个肿瘤子区域。
在一些可能的实现方式中,所述肿瘤区域划分参数包括:肿瘤深度、肿瘤厚度、肿瘤与周围健康组织之间的间距中的至少一种。
在一些可能的实现方式中,所述根据所述多个肿瘤子区域,获取放疗计划,包括:
根据所述多个肿瘤子区域,对每一所述肿瘤子区域分别设计一个分区放疗计划,获取多个分区放疗计划。
在一些可能的实现方式中,所述放疗计划的生成方法还包括:在获取多个 分区放疗计划之后,对多个所述分区放疗计划进行合并,获取整体放疗计划。
在一些可能的实现方式中,所述放疗计划的生成方法,还包括:
对所述多个肿瘤子区域进行优先级划分,确定所述多个肿瘤子区域的优先级排序;
根据所述多个肿瘤子区域的优先级排序,确定所述多个分区放疗计划的执行顺序。
在一些可能的实现方式中,根据以下参数中的至少一种,对所述多个肿瘤子区域进行优先级划分:
多个肿瘤子区域的治疗难易程度、多个肿瘤子区域的边界信息以及所获取的放疗计划。
在一些可能的实现方式中,所述多个肿瘤子区域的治疗难易程度包括:执行治疗操作的难易程度或者多个肿瘤子区域的病情严重程度。
另一方面,本申请实施例还提供了一种放疗计划系统,所述放疗计划系统用于执行上述任一项所述的放疗计划的生成方法,所述放疗计划系统包括:
获取模块,用于获取患者的医学图像;
轮廓勾画模块,用于对所述医学图像中的肿瘤进行轮廓勾画,得到肿瘤轮廓;
区域划分模块,用于对所述肿瘤轮廓进行区域划分,获得多个肿瘤子区域;
生成模块,用于根据所述多个肿瘤子区域,生成放疗计划。
在一些可能的实现方式中,所述医学图像包括医学图像序列;
所述轮廓勾画模块还用于,对医学图像序列中的每一张图像进行轮廓勾画,得到标记有所述肿瘤轮廓的医学图像序列。
在一些可能的实现方式中,所述区域划分模块还用于,
根据标记有所述肿瘤轮廓的医学图像序列,构建三维图像,所述三维图像包括肿瘤的三维结构;
获取肿瘤区域划分参数;
根据所述肿瘤区域划分参数,对所述肿瘤的三维结构进行区域划分,获得多个肿瘤子区域。
在一些可能的实现方式中,所述生成模块还用于,根据所述多个肿瘤子区域,对每一所述肿瘤子区域分别设计一个分区放疗计划,获取多个分区放疗计划。
在一些可能的实现方式中,所述放疗计划系统还包括:划分模块,所述划分模块用于对多个肿瘤子区域进行优先级划分,确定多个肿瘤子区域的优先级排序;
根据所述多个肿瘤子区域的优先级排序,确定所述多个分区放疗计划的执行顺序。
在一些可能的实现方式中,所述放疗计划系统还包括:合并模块,所述合并模块用于在获取多个分区放疗计划之后,对多个所述分区放疗计划进行合并,获取整体放疗计划。
再一方面,本申请实施例还提供了一种计算机设备,所述计算机设备包括处理器和存储器,所述存储器中存储有至少一条程序代码,所述至少一条程序代码由所述处理器加载并执行,以实现如上述的放疗计划的生成方法。
再一方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条程序代码,所述至少一条程序代码由处理器加载并执行,以实现如上述的放疗计划的生成方法。
本申请实施例提供的技术方案的有益效果至少包括:
本申请实施例提供的放疗计划的生成方法,通过对患者的医学图像中的肿瘤进行轮廓勾画,来获取能够表征肿瘤结构的肿瘤轮廓。对肿瘤轮廓进行区域划分后,获得多叶肿瘤子区域,来达到对肿瘤结构进行细化的目的。相比根据整个肿瘤轮廓来生成放疗计划,本申请实施例根据多个肿瘤子区域,来生成相应的放疗计划,利于显著提高对肿瘤放疗时的精确度,特别适用于具有不规则形状的肿瘤的放疗。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种放疗计划的生成方法的流程图;
图2为本申请实施例提供的一示例性螺旋治疗方式;
图3为本申请实施例提供的另一示例性螺旋治疗方式;
图4为本申请实施例提供的一种放疗计划的生成方法中获取肿瘤子区域的 流程图;
图5为本申请实施例提供的一种放疗计划的生成方法中生成放疗计划的流程图;
图6为本申请实施例提供的另一种放疗计划的生成方法中生成放疗计划的流程图;
图7为本申请实施例提供一示例性放疗计划系统的结构框图;
图8为本申请实施例提供一示例性计算机设备的硬件结构框图。
其中,图2和图3中,A区域为不规则形状的肿瘤,B区域为具有特定宽度的射线束的照射区域。
附图标记分别表示:
71-获取模块,72-轮廓勾画模块,73-区域划分模块,74-生成模块,
80-总线,81-处理器,82-存储器,83-通信接口。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在利用放射治疗系统对患者体内的肿瘤进行治疗之前,需要确定患者体内的肿瘤形状与位置,并根据肿瘤形状与位置制定相应的治疗计划。放射治疗系统包括治疗床、机架和治疗头,治疗床能够沿着机架的轴向方向移动,治疗头承载于机架上,治疗头又包括:辐射源、预准直器和多叶准直器,预准直器和多叶准直器依次设置于辐射源发出射线束的路径上。辐射源发出的射线束首先通过预准直器上的预准直孔来进行初步适形,然后再通过多叶准直器上的终准直孔进行最终适形,以限定射线束的辐射范围,从而使最终的照射野与患者的肿瘤形状适配。
相关技术提供的放疗计划的生成方法,根据患者的肿瘤图像确定治疗靶区,获取治疗靶区的处方剂量,根据治疗靶区以及治疗靶区的处方剂量,确定适合靶区的治疗方式。然而,该种方法对于具有不规则形状的肿瘤的放疗精准度有待提高。
本申请实施例提供了一种放疗计划的生成方法,如附图1所示,该放疗计划的生成方法包括:
步骤101:获取患者的医学图像。
示例地,上述医学图像包括但不限于通过以下技术获得的图像:计算机断层扫描成像(Computed Tomography,CT)、核磁共振成像(Magnetic Resonance Imaging,MRI)、正电子发射断层扫描成像(Positron Emission Tomography,PET)、锥形束计算机断层扫描成像(Cone beam Computed Tomography,CBCT),所获得的医学图像相应地为CT图像、MRI图像、PET图像、CBCT图像等。
对于医学图像的获取方式,包括但不限于:直接由医疗设备扫描后获取,或者,由医疗设备扫描后将医学图像存储在存储介质中,由存储介质中获取。
步骤102:对医学图像中的肿瘤进行轮廓勾画,得到肿瘤轮廓。
示例地,对肿瘤进行轮廓勾画的方式包括但不限于:手工勾画、自动化勾画等,以自动化勾画举例来说,其可以包括以下步骤:
对医学图像进行三维重建、去噪、增强、配准、融合等预处理。
自动地从预处理后的医学图像数据中提取一个或多个肿瘤影像特征信息,该肿瘤影像特征信息包括但不限于:(1)一阶统计纹理特征(方差、偏度、峰度);(2)基于邻域灰度级差异矩阵的纹理特征(对比度、频繁度、粗糙度、复杂度、纹理强度);(3)基于灰度级游程矩阵的纹理特征(短游程优势、长游程优势、灰度级不均匀性、游程不均匀性、游程百分比、低灰度级游程优势、高灰度级游程优势、短游程低灰度级优势、短游程高灰度级优势、长游程低灰度级优势、长游程高灰度级优势);(4)基于灰度级共生矩阵的纹理特征(能量/角二阶矩、熵、对比度、逆差矩、相关性、方差、均值和、方差和、差的方差、和的熵、差的熵、聚类阴影、显著聚类、最大概率);(5)基于灰度级区域大小矩阵的纹理特征;(6)基于自适应回归核的影像特征;(7)基于三维深度卷积神经网络深度学习获取的多层次的、隐含的肿瘤影像特征等。
采用深度学习、机器学习、人工智能、区域生长、图论(随机游走)、几何水平集、和(或)统计理论方法,进行肿瘤放射治疗靶区(GTV)和危及器官的智能、自动勾画。
步骤103:对肿瘤轮廓进行区域划分,获得多个肿瘤子区域。
示例地,根据肿瘤深度、肿瘤厚度、肿瘤与周围健康组织之间的间距等参数中的至少一种,对肿瘤轮廓进行划分。
步骤104:根据多个肿瘤子区域,生成放疗计划。
示例地,可以针对每一肿瘤子区域分别设计一个分区放疗计划,获取多个分区放疗计划,进一步地,根据多个分区放疗计划,获得整体放疗计划。
本申请实施例提供的放疗计划的生成方法,通过对患者的医学图像中的肿瘤进行轮廓勾画,来获取能够表征肿瘤结构的肿瘤轮廓。对肿瘤轮廓进行区域划分后,获得多个肿瘤子区域,来达到对肿瘤结构进行细化的目的。相比根据整个肿瘤轮廓来生成放疗计划,本申请实施例根据多个肿瘤子区域,来生成相应的放疗计划,利于显著提高对肿瘤放疗时的精确度,特别适用于具有不规则形状的肿瘤的放疗。
在一些可能的实现方式中,步骤104中涉及的放疗计划包括:剂量参数、预准直器控制参数、多叶准直器控制参数、治疗床控制参数、机架控制参数中的至少一个。
其中,剂量参数包括但不限于:在设定范围的治疗区域内,肿瘤所接受到的照射剂量大小。剂量参数可以通过肿瘤接受射线照射的照射时长进行控制,还可以通过单位时间内肿瘤接受射线照射的剂量进行控制。
预准直器控制参数包括但不限于:预准直器上的预准直孔的尺寸。举例来说,预准直器上的预准直孔为四棱台状通孔,并且,预准直孔的尺寸大小可调节,预准直孔投影在放射治疗系统的等中心处的射野的形状为长条形,射野的短边长度为5-15cm,例如为8cm或者10cm;射野的长边长度为30-50cm,例如为40cm。
多叶准直器控制参数包括但不限于:多叶准直器的叶片数量、叶片位置、叶片的运动速度等。
示例地,多叶准直器包括:多个并排设置的叶片组,每一叶片组包括:相对设置的第一叶片和第二叶片。多叶准直器还包括:与第一叶片一一对应的多个第一驱动机构、以及与第二叶片一一对应的多个第二驱动机构;第一驱动机构与相应的第一叶片连接,用于驱动第一叶片沿平行于放射治疗系统的机架的轴向方向运动;第二驱动机构与相应的第二叶片连接,用于驱动第二叶片沿平行于放射治疗系统的机架的轴向方向运动。
在一些可能的实现方式中,第一驱动机构被配置为能够使第一叶片在运动范围内任意位置处停留;第二驱动机构被配置为能够使第二叶片在运动范围内任意位置处停留。
对第一叶片和第二叶片的数量、运动位置以及运动速度等控制参数进行控制,利于实现在治疗过程中的剂量调强。
治疗床控制参数包括但不限于:治疗床的运动位置、治疗床的运动方向、 治疗床的运动速度等。
在一些可能的实现方式中,治疗床沿着机架的轴向方向运动,治疗床用于承载患者,在治疗开始之前,患者躺于治疗床上,由治疗床带动患者移动,使患者移动至治疗区域。
治疗床的运动速度可以是匀速的,也可以是非匀速的,也就是说,在治疗床沿着机架的轴向方向运动时,可以匀速移动,也可以非匀速地移动。
治疗床的运动方向可以是沿着机架的轴向向前移动(靠近治疗头的方向),也可以沿着机架的轴向向后移动(远离治疗头的方向)。并且,治疗床可以带动患者沿一个方向运动,也可以作来回的往复运动;治疗床可以连续地运动,也可以根据治疗需求一次移动设定距离。
机架控制参数包括但不限于:机架的旋转速度、机架的旋转角度、机架的旋转方向等。
示例地,本申请实施例涉及的机架包括但不限于:环形机架、C形臂机架、鼓状机架、或者机械臂机架,机架用于承载治疗头并带动治疗头绕着等中心轴旋转。例如,机架为环形机架。
上述涉及的机架的旋转速度可以是匀速的(匀速时,也可以根据实际治疗需求,来适应性地调整机架的旋转速度),也可以是非匀速的。
上述涉及的机架的旋转方向可以为顺时针旋转,也可以为逆时针旋转,或者,还可以在旋转时切换旋转方向,例如,先顺时针旋转再逆时针旋转,或者,先逆时针旋转再顺时针旋转。
上述涉及的机架的旋转角度,可以是一个预先设定的角度范围,例如,旋转角度为360度的一圈的旋转,或者设定的其他特定的角度,例如30°-90°等。可以通过控制机架的旋转角度,以满足在一个治疗区域内,使肿瘤接受到的剂量满足放疗计划的需求。
在一些可能的实现方式中,在机架进行旋转的同时,治疗床同步地沿机架的轴向方向进行移动,从而达到螺旋治疗的效果,如此不仅能减小治疗时间,还能够增大治疗范围。在该过程中,机架的旋转速度可以是匀速的,也可以是非匀速的,并且,治疗床的运动速度可以是匀速的,也可以是非匀速的,治疗床可以沿着机架的轴向向前移动,也可以沿着机架的轴向向后移动,或者,也可以来回往复运动。治疗床可以连续地运动,也可以根据治疗需求,间隔设定时间移动一定距离。
图2和图3分别示例了在机架旋转过程中,治疗床带着患者移动不同距离时,射线束在患者肿瘤上的照射情况。
如附图2所示,治疗床沿一个方向每次移动第一特定距离,使得多个肿瘤子区域被依次照射,其中,治疗床每次移动的第一特定距离与射线束的照射宽度相等。
如附图3所示,治疗床沿一个方向每次移动第二特定距离,使得多个肿瘤子区域被依次照射,其中,治疗床每次移动的第二特定距离为射线束的照射宽度的一部分,例如为照射宽度的一半。
根据放疗计划中涉及的上述各参数,来获得相应的放疗方案,用户根据该放疗方案来控制放射治疗系统来执行该放疗方案,进而达到对肿瘤进行治疗的目的。
步骤101中所涉及的医学图像包括但不限于:CT图像、MRI图像、PET图像、CBCT图像等。
步骤101中,获取患者的医学图像,包括:获取患者的医学图像序列,该多个医学图像序列构成医学图像,医学图像序列中包括多张图像,以达到能够准确地显示肿瘤的三维结构的目的。
上述医学图像序列指的是医学成像设备在不同时间、不同方位对目标依序连续获取的一系列图像。
在一些可能的实现方式中,步骤102中涉及的对医学图像中的肿瘤进行轮廓勾画,得到肿瘤轮廓,包括:对医学图像序列中的每一张图像进行轮廓勾画,得到标记有肿瘤轮廓的医学图像序列。
通过对医学图像序列中的每一张图像进行轮廓勾画,使得每一张图像中的肿瘤部分均能够获得轮廓显示(也就是肿瘤轮廓),进而得到标记有肿瘤轮廓的医学图像序列,使得标记有肿瘤轮廓的医学图像序列中的每一张图像上均显示有肿瘤轮廓,这样能够准确地确定肿瘤的三维形状。
在一些可能的实现方式中,如附图4所示,步骤103中所涉及的对肿瘤轮廓进行区域划分,获得多个肿瘤子区域,包括:
步骤1031:根据标记有肿瘤轮廓的医学图像序列,构建三维图像,其中,所构建的三维图像包括肿瘤的三维结构。
步骤1032:获取肿瘤区域划分参数。
步骤1033:根据肿瘤区域划分参数,对肿瘤的三维结构进行区域划分,获 得多个肿瘤子区域。
其中,步骤1032中涉及的肿瘤区域划分参数包括:肿瘤深度、肿瘤厚度、肿瘤与周围健康组织之间的间距中的至少一种。
在一些示例中,可以采用上述单一肿瘤区域划分参数对肿瘤的三维结构进行划分:例如根据肿瘤深度进行划分、根据肿瘤厚度进行划分、或者根据肿瘤与周围健康组织之间的距离进行划分。
在另一些示例中,可以对两个或两个以上的参数进行综合考虑,对肿瘤的三维结构进行区域划分。例如,根据肿瘤深度以及肿瘤厚度,将肿瘤的三维结构划分为不同的肿瘤子区域。或者,根据肿瘤深度和肿瘤与周围健康组织之间的间距,将肿瘤的三维结构划分为不同的肿瘤子区域。或者,根据肿瘤深度、肿瘤厚度、肿瘤与周围健康组织之间的间距三者,将肿瘤的三维结构划分为不同的肿瘤子区域。
如附图5所示,步骤104中所涉及的根据多个肿瘤子区域,生成放疗计划,包括步骤1041:根据多个肿瘤子区域,对每一肿瘤子区域分别设计一个分区放疗计划,获取多个分区放疗计划。
这样,针对不同的肿瘤子区域,能够针对性地获得相应的放疗计划,在实际治疗过程中,对于不同的肿瘤子区域,可以执行不同的放疗计划。
进一步地,如附图5所示,本申请实施例提供的放疗计划的生成方法还包括步骤1042:在获取多个分区放疗计划之后,对多个分区放疗计划进行合并,获取整体放疗计划。
这样,在实际治疗过程中,可以根据该整体放疗计划,对整个肿瘤进行治疗。
在一些可能的实现方式中,可以首先利用多个分区放疗计划,对不同的肿瘤子区域进行分区治疗,然后,再利用整体放疗计划,对整个肿瘤进行治疗。
在一些可能的实现方式中,可以首先利用整体放疗计划,对整个肿瘤进行治疗,然后,再利用多个分区放疗计划,对不同的肿瘤子区域进行分区治疗。
在一些可能的实现方式中,如附图6所示,本申请实施例提供的放疗计划的生成方法,还包括步骤105:对多个肿瘤子区域进行优先级划分,确定多个肿瘤子区域的优先级排序;根据多个肿瘤子区域的优先级排序,确定多个分区放疗计划的执行顺序。
在实际治疗过程中,根据多个肿瘤子区域的优先级的高低顺序,确定多个 分区放疗计划的执行顺序,依次地对不同的肿瘤子区域进行治疗。如此设置,不仅利于提高治疗效果,且利于提高治疗效率。
示例地,根据以下参数中的至少一种,对多个肿瘤子区域进行优先级划分:多个肿瘤子区域的治疗难易程度、多个肿瘤子区域的边界信息以及所获取的放疗计划。
其中,多个肿瘤子区域的治疗难易程度包括但不限于:执行治疗操作的难易程度、多个肿瘤子区域的病情严重程度(即,肿瘤各部分所在区域的病情严重程度),病情更严重意味着治疗难度更大。
在一些可能的实现方式中,在获取得到不同肿瘤子区域的分区放疗计划以及不同肿瘤子区域的优先级之后,根据放疗计划以及优先级,来调整不同肿瘤子区域的治疗顺序。例如,可以通过移动治疗床,根据优先级顺序,将患者移动至相应的位置,来对特定的肿瘤子区域执行对应的放疗计划。
在治疗床移动时,可以配合多叶准直器的作业一同进行,例如,当前后两个待治疗的肿瘤子区域不相邻时,关闭多叶准直器,在治疗床移动过程中对射线进行屏蔽,直至使即将进行治疗的肿瘤子区域移动至相应位置处。
另一方面,本申请实施例还提供了一种放疗计划系统,该放疗计划系统用于执行上述任一种所述的放疗计划的生成方法,如附图7所示,该放疗计划系统包括:
获取模块71,该获取模块71用于获取患者的医学图像。
轮廓勾画模块72,该轮廓勾画模块72用于对医学图像中的肿瘤进行轮廓勾画,得到肿瘤轮廓。
区域划分模块73,该区域划分模块73用于对肿瘤轮廓进行区域划分,获得多个肿瘤子区域。
生成模块74,该生成模块74用于根据多个肿瘤子区域,生成放疗计划。
在一些可能的实现方式中,医学图像包括医学图像序列,获取模块71还用于获取包括多张医学图像序列的医学图像。
在一些可能的实现方式中,轮廓勾画模块72还用于对医学图像序列中的每一张图像进行轮廓勾画,得到标记有肿瘤轮廓的医学图像序列。
在一些可能的实现方式中,区域划分模块73还用于根据标记有肿瘤轮廓的医学图像序列,构建三维图像,该三维图像包括肿瘤的三维结构;获取肿瘤区 域划分参数;根据肿瘤区域划分参数,对肿瘤的三维结构进行区域划分,获得多个肿瘤子区域。
其中,肿瘤区域划分参数包括:肿瘤深度、肿瘤厚度、肿瘤与周围健康组织之间的间距中的至少一种。
在一些可能的实现方式中,生成模块74还用于根据多个肿瘤子区域,对每一肿瘤子区域分别设计一个分区放疗计划,获取多个分区放疗计划。
在一些可能的实现方式中,放疗计划系统还包括:合并模块,该合并模块用于在获取多个分区放疗计划之后,对多个分区放疗计划进行合并,获取整体放疗计划。
进一步地,本申请实施例提供的放疗计划系统还包括划分模块,该划分模块用于对多个肿瘤子区域进行优先级划分,确定多个肿瘤子区域的优先级排序;根据多个肿瘤子区域的优先级排序,确定多个分区放疗计划的执行顺序。
其中,根据以下参数中的至少一种,来确定多个肿瘤子区域的优先级排序:多个肿瘤子区域的治疗难易程度、多个肿瘤子区域的边界信息以及所获取的放疗计划。
需要说明的是,上述各个模块可以是功能模块也可以是程序模块,既可以通过软件来实现,也可以通过硬件来实现。对于通过硬件来实现的模块而言,上述各个模块可以位于同一处理器中;或者上述各个模块还可以按照任意组合的形式分别位于不同的处理器中。
另外,结合图1描述的本申请实施例放疗计划的生成方法可以由计算机设备来实现,其中,图8为根据本申请实施例的计算机设备的硬件结构示意图。
如附图8所示,计算机设备包括处理器81以及存储有计算机程序指令的存储器82。
具体地,上述处理器81可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,简称为ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
其中,存储器82可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器82可包括硬盘驱动器(Hard Disk Drive,简称为HDD)、软盘驱动器、固态驱动器(Solid State Drive,简称为SSD)、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,简称为USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器82可包括可移除或不可移除(或 固定)的介质。在合适的情况下,存储器82可在数据处理装置的内部或外部。在特定实施例中,存储器82是非易失性(Non-Volatile)存储器。在特定实施例中,存储器82包括只读存储器(Read-Only Memory,简称为ROM)和随机存取存储器(Random Access Memory,简称为RAM)。在合适的情况下,该ROM可以是掩模编程的ROM、可编程ROM(Programmable Read-Only Memory,简称为PROM)、可擦除PROM(Erasable Programmable Read-Only Memory,简称为EPROM)、电可擦除PROM(Electrically Erasable Programmable Read-Only Memory,简称为EEPROM)、电可改写ROM(Electrically Alterable Read-Only Memory,简称为EAROM)或闪存(FLASH)或者两个或更多个以上这些的组合。在合适的情况下,该RAM可以是静态随机存取存储器(Static Random-Access Memory,简称为SRAM)或动态随机存取存储器(Dynamic Random Access Memory,简称为DRAM),其中,DRAM可以是快速页模式动态随机存取存储器(Fast Page Mode Dynamic Random Access Memory,简称为FPMDRAM)、扩展数据输出动态随机存取存储器(Extended Date Out Dynamic Random Access Memory,简称为EDODRAM)、同步动态随机存取内存(Synchronous Dynamic Random-Access Memory,简称SDRAM)等。
存储器82可以用来存储或者缓存需要处理和/或通信使用的各种数据文件,以及处理器81所执行的可能的计算机程序指令。
处理器81通过读取并执行存储器82中存储的计算机程序指令,以实现上述实施例中的任意一种放疗计划的生成方法。
在其中一些实施例中,计算机设备还可包括通信接口83和总线80。其中,如图8所示,处理器81、存储器82、通信接口83通过总线80连接并完成相互间的通信。
通信接口83用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。通信接口83还可以实现与其他部件例如:外接设备、图像/数据采集设备、数据库、外部存储以及图像/数据处理工作站等之间进行数据通信。
总线80包括硬件、软件或两者,将计算机设备的部件彼此耦接在一起。总线80包括但不限于以下至少之一:数据总线(Data Bus)、地址总线(Address Bus)、控制总线(Control Bus)、扩展总线(Expansion Bus)、局部总线(Local Bus)。举例来说而非限制,总线80可包括图形加速接口(Accelerated Graphics Port,简称为AGP)或其他图形总线、增强工业标准架构(Extended Industry Standard  Architecture,简称为EISA)总线、前端总线(Front Side Bus,简称为FSB)、超传输(Hyper Transport,简称为HT)互连、工业标准架构(Industry Standard Architecture,简称为ISA)总线、无线带宽(InfiniBand)互连、低引脚数(Low Pin Count,简称为LPC)总线、存储器总线、微信道架构(Micro Channel Architecture,简称为MCA)总线、外围组件互连(Peripheral Component Interconnect,简称为PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(Serial Advanced Technology Attachment,简称为SATA)总线、视频电子标准协会局部(Video Electronics Standards Association Local Bus,简称为VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线80可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
该计算机设备可以基于获取到的计算机程序,执行本申请实施例中的放疗计划的生成方法,从而实现结合图1描述的放疗计划的生成方法。
另外,结合上述实施例中的放疗计划的生成方法,本申请实施例可提供一种计算机可读存储介质来实现。该计算机可读存储介质存储有至少一条程序代码,该至少一条程序代码由处理器加载并执行,以实现上述实施例中的任意一种放疗计划的生成方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种放疗计划的生成方法,其特征在于,所述生成方法包括:
    获取患者的医学图像;
    对所述医学图像中的肿瘤进行轮廓勾画,得到肿瘤轮廓;
    对所述肿瘤轮廓进行区域划分,获得多个肿瘤子区域;
    根据所述多个肿瘤子区域,生成放疗计划。
  2. 根据权利要求1所述的放疗计划的生成方法,其特征在于,所述医学图像包括CT图像、MRI图像、PET图像或者CBCT图像。
  3. 根据权利要求1或2所述的放疗计划的生成方法,其特征在于,所述放疗计划包括:剂量参数、预准直器控制参数、多叶准直器控制参数、治疗床控制参数、机架控制参数中的至少一种。
  4. 根据权利要求3所述的放疗计划的生成方法,其特征在于,所述剂量参数包括在设定范围的治疗区域内,肿瘤所接受到的照射剂量大小;
    所述预准直器控制参数包括预准直器上的预准直孔的尺寸;
    所述多叶准直器控制参数包括多叶准直器的叶片数量、叶片位置或者叶片的运动速度;
    治疗床控制参数包括治疗床的运动位置、治疗床的运动方向或者治疗床的运动速度;
    机架控制参数包括机架的旋转速度、机架的旋转角度或者机架的旋转方向。
  5. 根据权利要求1-4任一项所述的放疗计划的生成方法,其特征在于,所述医学图像包括医学图像序列;
    所述对所述医学图像中的肿瘤进行轮廓勾画,得到肿瘤轮廓,包括:对所述医学图像序列中的每一张图像进行轮廓勾画,得到标记有所述肿瘤轮廓的医学图像序列。
  6. 根据权利要求1-5任一项所述的放疗计划的生成方法,其特征在于,所述 对所述肿瘤轮廓进行区域划分,获得多个肿瘤子区域,包括:
    根据标记有所述肿瘤轮廓的医学图像序列,构建三维图像,所述三维图像包括肿瘤的三维结构;
    获取肿瘤区域划分参数;
    根据所述肿瘤区域划分参数,对所述肿瘤的三维结构进行区域划分,获得多个肿瘤子区域。
  7. 根据权利要求6所述的放疗计划的生成方法,其特征在于,所述肿瘤区域划分参数包括:肿瘤深度、肿瘤厚度、肿瘤与周围健康组织之间的间距中的至少一种。
  8. 根据权利要求1-7任一项所述的放疗计划的生成方法,其特征在于,所述根据所述多个肿瘤子区域,获取放疗计划,包括:
    根据所述多个肿瘤子区域,对每一所述肿瘤子区域分别设计一个分区放疗计划,获取多个分区放疗计划。
  9. 根据权利要求8所述的放疗计划的生成方法,其特征在于,所述放疗计划的生成方法还包括:在获取多个分区放疗计划之后,对多个所述分区放疗计划进行合并,获取整体放疗计划。
  10. 根据权利要求8或9所述的放疗计划的生成方法,其特征在于,所述放疗计划的生成方法,还包括:
    对所述多个肿瘤子区域进行优先级划分,确定所述多个肿瘤子区域的优先级排序;
    根据所述多个肿瘤子区域的优先级排序,确定所述多个分区放疗计划的执行顺序。
  11. 根据权利要求10所述的放疗计划的生成方法,其特征在于,根据以下参数中的至少一种,对所述多个肿瘤子区域进行优先级划分:
    多个肿瘤子区域的治疗难易程度、多个肿瘤子区域的边界信息以及所获取 的放疗计划。
  12. 根据权利要求11所述的放疗计划的生成方法,其特征在于,所述多个肿瘤子区域的治疗难易程度包括:执行治疗操作的难易程度或者多个肿瘤子区域的病情严重程度。
  13. 一种放疗计划系统,其特征在于,所述放疗计划系统用于执行权利要求1-12任一项所述的放疗计划的生成方法,所述放疗计划系统包括:
    获取模块,用于获取患者的医学图像;
    轮廓勾画模块,用于对所述医学图像中的肿瘤进行轮廓勾画,得到肿瘤轮廓;
    区域划分模块,用于对所述肿瘤轮廓进行区域划分,获得多个肿瘤子区域;
    生成模块,用于根据所述多个肿瘤子区域,生成放疗计划。
  14. 根据权利要求13所述的放疗计划系统,其特征在于,所述医学图像包括医学图像序列;
    所述轮廓勾画模块还用于,对医学图像序列中的每一张图像进行轮廓勾画,得到标记有所述肿瘤轮廓的医学图像序列。
  15. 根据权利要求14所述的放疗计划系统,其特征在于,所述区域划分模块还用于,
    根据标记有所述肿瘤轮廓的医学图像序列,构建三维图像,所述三维图像包括肿瘤的三维结构;
    获取肿瘤区域划分参数;
    根据所述肿瘤区域划分参数,对所述肿瘤的三维结构进行区域划分,获得多个肿瘤子区域。
  16. 根据权利要求15所述的放疗计划系统,其特征在于,所述生成模块还用于,根据所述多个肿瘤子区域,对每一所述肿瘤子区域分别设计一个分区放疗计划,获取多个分区放疗计划。
  17. 根据权利要求16所述的放疗计划系统,其特征在于,所述放疗计划系统还包括:划分模块,所述划分模块用于对多个肿瘤子区域进行优先级划分,确定多个肿瘤子区域的优先级排序;
    根据所述多个肿瘤子区域的优先级排序,确定所述多个分区放疗计划的执行顺序。
  18. 根据权利要求16或17所述的放疗计划系统,其特征在于,所述放疗计划系统还包括:合并模块,所述合并模块用于在获取多个分区放疗计划之后,对多个所述分区放疗计划进行合并,获取整体放疗计划。
  19. 一种计算机设备,其特征在于,所述计算机设备包括处理器和存储器,所述存储器中存储有至少一条程序代码,所述至少一条程序代码由所述处理器加载并执行,以实现如权利要求1至12中任一项所述的放疗计划的生成方法。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一条程序代码,所述至少一条程序代码由处理器加载并执行,以实现如权利要求1至12中任一项所述的放疗计划的生成方法。
PCT/CN2022/073821 2021-02-09 2022-01-25 放疗计划的生成方法、放疗计划系统及存储介质 WO2022170970A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110182255.4 2021-02-09
CN202110182255.4A CN114904153B (zh) 2021-02-09 2021-02-09 放疗计划的生成方法、放疗计划系统及存储介质

Publications (1)

Publication Number Publication Date
WO2022170970A1 true WO2022170970A1 (zh) 2022-08-18

Family

ID=82761049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073821 WO2022170970A1 (zh) 2021-02-09 2022-01-25 放疗计划的生成方法、放疗计划系统及存储介质

Country Status (2)

Country Link
CN (1) CN114904153B (zh)
WO (1) WO2022170970A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115500646A (zh) * 2022-09-05 2022-12-23 慕思健康睡眠股份有限公司 一种螨虫检测方法及智能床垫
CN117078612A (zh) * 2023-08-09 2023-11-17 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) 一种基于cbct图像的快速三维剂量验证方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722641A (zh) * 2012-05-25 2012-10-10 南京大学 一种快速得到凹形肿瘤靶区剂量分布的方法
CN107545137A (zh) * 2017-08-16 2018-01-05 强深智能医疗科技(昆山)有限公司 肿瘤放射治疗计划智能优化方法
KR20180045473A (ko) * 2016-10-26 2018-05-04 (주)모임소프트 이미지 분석을 이용한 흑색종 검사 시스템, 방법 및 컴퓨터 프로그램
CN108815721A (zh) * 2018-05-18 2018-11-16 山东省肿瘤防治研究院(山东省肿瘤医院) 一种照射剂量确定方法及系统
CN109727245A (zh) * 2019-01-25 2019-05-07 无锡海鹰医疗科技股份有限公司 Hifu系统对病灶观察诊断的三维重建肿瘤轮廓方法
CN109793999A (zh) * 2019-01-25 2019-05-24 无锡海鹰医疗科技股份有限公司 Hifu治疗系统的静态三维轮廓体图像的构建方法
CN112263788A (zh) * 2020-11-02 2021-01-26 浙江省肿瘤医院 在放射治疗过程中形态变化的定量探测系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7096055B1 (en) * 1998-06-24 2006-08-22 Achim Schweikard Method to control delivery of radiation therapy
US7693257B2 (en) * 2006-06-29 2010-04-06 Accuray Incorporated Treatment delivery optimization
WO2010018476A2 (en) * 2008-08-14 2010-02-18 Koninklijke Philips Electronics N.V. Prospective adaptive radiation therapy planning
US8331532B2 (en) * 2010-02-18 2012-12-11 Varian Medical Systems International Ag Method and system for treating moving target
JP2011212078A (ja) * 2010-03-31 2011-10-27 Hitachi Ltd 治療計画装置
US8644571B1 (en) * 2011-12-06 2014-02-04 Loma Linda University Medical Center Intensity-modulated proton therapy
US20130316318A1 (en) * 2012-05-22 2013-11-28 Vivant Medical, Inc. Treatment Planning System
CN106682409B (zh) * 2016-12-20 2020-03-31 上海联影医疗科技有限公司 采样方法及放射治疗计划优化方法、剂量计算方法
WO2020150505A1 (en) * 2019-01-16 2020-07-23 Reflexion Medical, Inc. Methods for setup corrections in radiation therapy
CN210250051U (zh) * 2019-04-24 2020-04-07 深圳市人民医院 用于氩氦刀穿刺治疗的3d打印针道引导装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722641A (zh) * 2012-05-25 2012-10-10 南京大学 一种快速得到凹形肿瘤靶区剂量分布的方法
KR20180045473A (ko) * 2016-10-26 2018-05-04 (주)모임소프트 이미지 분석을 이용한 흑색종 검사 시스템, 방법 및 컴퓨터 프로그램
CN107545137A (zh) * 2017-08-16 2018-01-05 强深智能医疗科技(昆山)有限公司 肿瘤放射治疗计划智能优化方法
CN108815721A (zh) * 2018-05-18 2018-11-16 山东省肿瘤防治研究院(山东省肿瘤医院) 一种照射剂量确定方法及系统
CN109727245A (zh) * 2019-01-25 2019-05-07 无锡海鹰医疗科技股份有限公司 Hifu系统对病灶观察诊断的三维重建肿瘤轮廓方法
CN109793999A (zh) * 2019-01-25 2019-05-24 无锡海鹰医疗科技股份有限公司 Hifu治疗系统的静态三维轮廓体图像的构建方法
CN112263788A (zh) * 2020-11-02 2021-01-26 浙江省肿瘤医院 在放射治疗过程中形态变化的定量探测系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115500646A (zh) * 2022-09-05 2022-12-23 慕思健康睡眠股份有限公司 一种螨虫检测方法及智能床垫
CN115500646B (zh) * 2022-09-05 2023-08-25 慕思健康睡眠股份有限公司 一种螨虫检测方法及智能床垫
CN117078612A (zh) * 2023-08-09 2023-11-17 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) 一种基于cbct图像的快速三维剂量验证方法及装置

Also Published As

Publication number Publication date
CN114904153B (zh) 2024-01-12
CN114904153A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
AU2018331365B2 (en) Radiotherapy treatment plan optimization workflow
CN110740783B (zh) 用于生成放射治疗计划的系统和方法
US8073103B2 (en) Systems and methods for optimization of on-line adaptive radiation therapy
US8699664B2 (en) Systems and methods for optimization of on-line adaptive radiation therapy
US9076222B2 (en) Use of collection of plans to develop new optimization objectives
RU2603606C2 (ru) Изучение дозиметрического воздействия движения на формирование адаптивных границ для конкретного пациента при планировании наружной дистанционной лучевой терапии
WO2022170970A1 (zh) 放疗计划的生成方法、放疗计划系统及存储介质
CN111344737B (zh) 自适应放射疗法系统
AU2020312643B2 (en) Radiotherapy treatment plan optimization using machine learning
CN112566692B (zh) 用于确定弧形疗法的弧形剂量的系统和方法
US11544854B2 (en) Automatic contour adaptation using three sub-networks of a neural network
CN115485019A (zh) 自动计划的基于放射的治疗
JP6865765B2 (ja) 強度変調放射線治療における臨床目標の達成可能性を迅速に予測する事前最適化方法
US20240001148A1 (en) Methods for adaptive radiotherapy
CN113332616B (zh) 治疗计划
WO2013124780A1 (en) Method for regularizing aperture shape for milling
CN115954083A (zh) 治疗计划生成方法、计算机设备和可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752131

Country of ref document: EP

Kind code of ref document: A1