WO2022170959A1 - 储能系统、储能系统的检测方法 - Google Patents

储能系统、储能系统的检测方法 Download PDF

Info

Publication number
WO2022170959A1
WO2022170959A1 PCT/CN2022/073597 CN2022073597W WO2022170959A1 WO 2022170959 A1 WO2022170959 A1 WO 2022170959A1 CN 2022073597 W CN2022073597 W CN 2022073597W WO 2022170959 A1 WO2022170959 A1 WO 2022170959A1
Authority
WO
WIPO (PCT)
Prior art keywords
power conversion
control unit
battery
input voltage
battery cluster
Prior art date
Application number
PCT/CN2022/073597
Other languages
English (en)
French (fr)
Inventor
李琳
吴志鹏
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP22752120.0A priority Critical patent/EP4287448A1/en
Priority to AU2022220921A priority patent/AU2022220921A1/en
Publication of WO2022170959A1 publication Critical patent/WO2022170959A1/zh
Priority to US18/447,043 priority patent/US20230400520A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]

Definitions

  • the present application relates to the field of electronic technology, and in particular, to an energy storage system and a detection method for an energy storage system.
  • An energy storage system includes multiple battery clusters and multiple power conversion units.
  • the battery cluster and the power conversion unit are usually integrated as a whole, and the wiring mode between the battery cluster and the power conversion unit has been fixed, which is not conducive to maintenance and system expansion. If the battery cluster and the power conversion unit are made into two modules, there may be wiring errors during the installation process. If there is a wrong wiring in the system, it will cause the system function disorder at light level, and cause the explosion machine to be damaged after the energy storage system is turned on. Therefore, in the case where the battery cluster and the power conversion unit are made into two modules, how to identify the connection relationship between the battery cluster and the power conversion unit in the energy storage system is an urgent problem to be solved when the system installation or commissioning is completed. question.
  • the present application provides an energy storage system and an energy storage system detection method, which can detect the connection relationship between multiple battery clusters and multiple power conversion units in the energy storage system.
  • an energy storage system comprising: a first control unit, a plurality of battery clusters, and a plurality of power conversion units, the plurality of battery clusters being configured to output voltage to the plurality of power conversion units ; the plurality of power conversion units are used for receiving the input voltages from the plurality of battery clusters, and outputting electric energy after DC conversion; the first control unit is used for: sending a first instruction to the first battery cluster, the first The instruction is used to instruct to change the output voltage of the first battery cluster, and the first battery cluster is any one of the multiple battery clusters; obtain the first input of each power transformation unit in the multiple power transformation units voltage and a second input voltage, the first input voltage is the input voltage of each power conversion unit before the first command is sent, and the second input voltage is the input voltage of each power conversion unit after the first command is sent input voltage; according to the first command, the first input voltage and the second input voltage of each power conversion unit in the plurality of power conversion units, determine the relationship between each power conversion
  • the first control unit in the energy storage system can detect whether the first battery cluster is connected to each of the multiple power transformation units, and then determine whether the first battery cluster is connected to the multiple power transformation units. connections between units.
  • the first battery cluster includes a second control unit, a plurality of battery packs, and at least one switch circuit, wherein the plurality of battery packs form a series circuit, and the The second control unit is used for: receiving the first instruction; and controlling the on-off of the at least one switch circuit according to the first instruction, so that some battery packs in the first battery cluster are switched in or out of the series circuit.
  • the output voltage of the first battery cluster can be changed rapidly, so that the solution provided by the present application can be realized.
  • the first control unit is specifically configured to: determine the first voltage difference before and after the output voltage of the first battery cluster indicated by the first instruction is changed; The first voltage difference determines a first threshold value, the first threshold value is less than or equal to the first voltage difference; determining a second voltage difference between the first input voltage and the second input voltage of the first power conversion unit, the first voltage difference A power conversion unit is any one of the plurality of power conversion units; when the second voltage difference is greater than the first threshold, it is determined that the first power conversion unit is connected to the first battery cluster; When the second voltage difference is less than or equal to the first threshold, it is determined that the first power conversion unit is not connected to the first battery cluster.
  • each power conversion unit in the plurality of power conversion units is further configured to send the information of the first input voltage and the second power conversion unit to the first control unit Input voltage information.
  • the first control unit is further configured to: acquire first information, where the first information includes the relationship between the first battery cluster and the plurality of power conversion units A preset connection relationship; when the actual connection relationship between the first battery cluster and the plurality of power conversion units is different from the preset connection relationship, perform alarm processing.
  • the first control unit determines the connection relationship between the first battery cluster and multiple power conversion units in the energy storage system, it can further determine whether there is a wiring error in the energy storage system according to the first information Therefore, the problems existing in the system can be found in time, and the potential security risks existing in the system can be eliminated.
  • a method for detecting an energy storage system includes: a first control unit, a plurality of battery clusters, and a plurality of power conversion units, and the plurality of battery clusters are used to convert the power to the plurality of power conversion units.
  • unit output voltage, the plurality of power conversion units are used for receiving the input voltages from the plurality of battery clusters, and after performing DC conversion, output electric energy, the method includes: the first control unit sends the first battery cluster to the first battery cluster.
  • the first control unit obtains the output voltage of the multiple power conversion units the first input voltage and the second input voltage of each power conversion unit, the first input voltage is the input voltage of each power conversion unit before the first command is sent, and the second input voltage is The input voltage of the unit after the first command is sent; according to the first command, the first input voltage and the second input voltage of each power conversion unit in the plurality of power conversion units, determine the plurality of power conversion units Whether each power conversion unit in is connected to the first battery cluster.
  • the first control unit in the energy storage system can detect whether the first battery cluster is connected to each of the multiple power transformation units, and then determine whether the first battery cluster is connected to the multiple power transformation units. connections between units.
  • the first battery cluster includes a second control unit, a plurality of battery packs, and at least one switch circuit, and the plurality of battery packs form a series circuit; the first battery pack
  • the control unit sending the first command to the first battery cluster includes: the first control unit sending the first command to the second control unit, so that the second control unit controls the on-off of the at least one switch circuit according to the first command, Part of the battery packs in the first battery cluster are cut in or out of the series circuit.
  • the first control unit determining whether each power conversion unit in the plurality of power conversion units is connected to the first battery cluster includes: the first control unit Determine the first voltage difference before and after the output voltage of the first battery cluster indicated by the first instruction is changed; the first control unit determines a first threshold value according to the first voltage difference, and the first threshold value is less than or equal to the first voltage difference; the first control unit determines a second voltage difference between the first input voltage and the second input voltage of the first power conversion unit, where the first power conversion unit is any one of the plurality of power conversion units a power conversion unit; when the second voltage difference is greater than the first threshold, the first control unit determines that the first power conversion unit is connected to the first battery cluster; when the second voltage difference is less than or equal to the first In the case of a threshold, the first control unit determines that the first power conversion unit is not connected to the first battery cluster.
  • the method further includes: the first control unit acquiring first information, where the first information includes a relationship between the first battery cluster and the plurality of power conversion units The preset connection relationship; when the actual connection relationship between the first battery cluster and the plurality of power conversion units is different from the preset connection relationship, the first control unit performs alarm processing.
  • the first control unit determines the connection relationship between the first battery cluster and multiple power conversion units in the energy storage system, it can further determine whether there is a wiring error in the energy storage system according to the first information Therefore, the problems existing in the system can be found in time, and the potential security risks existing in the system can be eliminated.
  • a first control unit of an energy storage system further includes: a plurality of battery clusters and a plurality of power conversion units, the plurality of battery clusters being configured to output voltages to the plurality of power conversion units , the plurality of power conversion units are used for receiving the input voltages from the plurality of battery clusters, and after performing DC conversion, output electric energy, the first control unit includes: a transceiver unit, used for sending the first battery cluster to the first battery cluster.
  • the transceiver unit is also used to obtain the multiple power conversion units
  • the first input voltage and second input voltage of each power conversion unit in the first input voltage is the input voltage of each power conversion unit before the first command is sent, and the second input voltage is the An input voltage after the command is sent;
  • a processing unit configured to determine the plurality of power conversion units according to the first command, the first input voltage and the second input voltage of each power conversion unit in the plurality of power conversion units Whether each power conversion unit in is connected to the first battery cluster.
  • the first battery cluster includes a second control unit, a plurality of battery packs, and at least one switch circuit, and the plurality of battery packs form a series circuit; the transceiver unit, It is used to send a first instruction to the second control unit, so that the second control unit controls the on-off of the at least one switch circuit according to the first instruction, so that some battery packs in the first battery cluster are switched in or out of the series circuit.
  • the processing unit is further configured to determine the first voltage difference before and after the output voltage of the first battery cluster indicated by the first instruction is changed; the processing unit, is further configured to determine a first threshold value according to the first voltage difference, where the first threshold value is less than or equal to the first voltage difference; the processing unit is further configured to determine the first input voltage and the second input voltage of the first power conversion unit the second voltage difference between the input voltages, and the first power conversion unit is any one of the plurality of power conversion units; when the second voltage difference is greater than the first threshold, the processing unit, It is also used to determine that the first power conversion unit is connected to the first battery cluster; in the case that the second voltage difference is less than or equal to the first threshold, the processing unit is also used to determine that the first power conversion unit is connected to the first power conversion unit. The first cell cluster is not connected.
  • the transceiver unit is further configured to acquire first information, where the first information includes presets between the first battery cluster and the plurality of power conversion units connection relationship; in the case that the actual connection relationship between the first battery cluster and the plurality of power conversion units is different from the preset connection relationship, the processing unit is further configured to perform alarm processing.
  • FIG. 1 is a schematic diagram of an energy storage system architecture according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an improved manner of the battery cluster according to the embodiment of the present application.
  • FIG. 3 is a schematic diagram of another improved manner of the battery cluster according to the embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a detection method provided by the present application.
  • FIG. 5 is a schematic flow chart of another detection method provided by the present application.
  • FIG. 6 is a schematic block diagram of the first control unit provided by the present application.
  • the energy storage system includes:
  • the first control unit N battery clusters, and Q power conversion units, wherein N is greater than or equal to 2, and Q is greater than or equal to 2.
  • the battery cluster is used to output voltage to the power conversion unit.
  • a battery cluster usually includes m battery packs, the m battery packs form a series circuit, and m is greater than or equal to 1.
  • the structure of the battery cluster is improved, so that the output voltage of the battery cluster can be changed rapidly.
  • the improved method of the battery cluster is described below.
  • the first switch circuit includes a series circuit composed of SPST switch S1i and battery pack #i, and a parallel circuit composed of SPST switch S2i, battery pack #i and switch S1i.
  • the switch S1i is open and switch S2i is closed, battery pack #i can be cut out of the series circuit.
  • the switch S1i is closed and the switch S2i is open, the battery pack #i can be switched into the series circuit.
  • cutting out a battery pack in this application means removing the battery pack from the series circuit, thereby reducing the number of battery packs included in the series circuit.
  • switching in a battery pack in this application means connecting the battery pack into a series circuit, thereby increasing the number of battery packs included in the series circuit.
  • a second control unit and at least one second switch circuit are provided in the battery cluster, and the second control unit may be one or more.
  • the second switch circuit includes a circuit composed of the SPDT switch S3i and the battery pack #i.
  • the battery pack #i can be cut out from the series circuit.
  • the moving terminal of the switch S3i is switched to be connected to the non-moving terminal #3i, the battery pack #i can be switched into the series circuit.
  • circuit connection modes in the above-mentioned modes 1-2 are only schematic descriptions, and those skilled in the art can choose whether to carry out the above improvement for each battery pack in the battery cluster according to the actual situation, or to carry out the above-mentioned improvement for every two battery packs. Improvement, or the above improvement is performed on every other battery pack, which is not limited in this application.
  • the power conversion unit is used for receiving the input voltage from the battery cluster, and after performing DC conversion, it outputs electric energy.
  • the power conversion unit in the system may be a DC-DC converter, and the DC-DC converter may also be referred to as a DC-DC converter. It should be understood that the sampled value of the input voltage of the power conversion unit can be used to indicate the output voltage of the battery cluster.
  • Buck converter is a buck converter
  • Boost converter is a boost converter
  • Buckboost converter For the lift converter.
  • those skilled in the art can select a suitable type of DC-DC converter according to the actual situation.
  • the number of power conversion units is Q
  • the connection relationship between the battery cluster and the power conversion unit can be that one battery cluster is connected to one power conversion unit, or one battery cluster is connected to multiple power conversion units , or multiple battery clusters are connected to one power conversion unit, that is, Q may be less than, equal to, or greater than N, which is not limited in this application.
  • a first control unit is usually provided in an energy storage system.
  • the first control unit is respectively connected with the N battery clusters and the Q power conversion units through communication lines.
  • the first control unit may send an instruction to the battery cluster through a communication line.
  • the second control unit in the battery cluster receives the instruction, and controls the output voltage of the battery cluster according to the instruction.
  • the power conversion unit may send the input voltage sample value to the first control unit through the communication line.
  • the first control unit receives the input voltage sample value of the power conversion unit.
  • the present application provides an energy storage system, which includes a first control unit, N battery clusters, and Q power conversion units.
  • the first control unit may be used to detect the connection relationship between the N battery clusters and the Q power conversion units.
  • the detection method provided by this application is described below by taking the detection of the connection relationship between the first battery cluster and the Q power conversion units in the N battery clusters as an example, where the first battery cluster is the first battery cluster in the N battery clusters.
  • An arbitrary battery cluster as shown in Figure 4.
  • Each of the Q power conversion units sends first voltage information to the first control unit respectively.
  • the first control unit acquires the first voltage information of each power conversion unit.
  • first voltage information of each power conversion unit is used to indicate the first input voltage of each power conversion unit before the first command is sent.
  • the first control unit sends a first command to the first battery cluster, where the first command is used to instruct to change the output voltage of the first battery cluster. Accordingly, the first battery cluster receives the first instruction.
  • the second control unit in the first battery cluster receives the first instruction and reduces the output voltage of the first battery cluster.
  • the switches S11-S1m in the first battery cluster are all in the closed state, and the switches S21-S2m in the first battery cluster are all in the open state, that is, m switches
  • the battery packs are all cut into series circuits.
  • the second control unit #1 turns off the switch S11 and turns on the switch S21, that is, cuts the battery pack #1 out of the series circuit.
  • the switches S31-S3i in the first battery cluster are connected to the stationary terminal #3i corresponding to each switch, that is, m batteries
  • the packages are all cut into series circuits.
  • the second control unit #1 receives the first instruction, and switches the switch S31 to be connected to the stationary terminal #41, that is, to disconnect the battery pack #1 from the series circuit.
  • the number of battery packs in the series circuit is reduced, thereby reducing the output voltage of the first battery cluster.
  • the amount of decrease in the output voltage of the first battery cluster is associated with the output voltage of the battery pack #1, eg, the amount of decrease in the output voltage of the first battery cluster is equal to the output voltage of the battery pack #1.
  • the way of changing the output voltage of the first battery cluster can also be that the second control unit #1 and the second control unit #2 in the first battery cluster receive the first instruction, and in the above manner, connect the battery pack #1 and the battery Package #2 cuts out the series circuit.
  • the second control unit in the first battery cluster receives the first instruction and increases the output voltage of the first battery cluster.
  • the switch S11 in the first battery cluster is opened, the switch S21 is closed, the switches S12-S1m are closed, and the switches S22-S2m are closed. It is in the disconnected state, that is, the battery pack #1 is not switched into the series circuit.
  • the second control unit #1 closes the switch S11 and opens the switch S21, that is, switches the battery pack #1 into the series circuit.
  • the switch S31 in the first battery cluster is connected to the corresponding stationary terminal #41, and the switches S32-S3m are connected to the corresponding switch terminals #41.
  • the stationary terminal #3i is connected, that is, the battery pack #1 is not switched into the series circuit.
  • the second control unit #1 receives the first instruction, and switches the switch S31 to be connected to the stationary terminal #31, that is, switches the battery pack #1 into the series circuit.
  • the number of battery packs in the series circuit is increased, thereby raising the output voltage of the first battery cluster.
  • the amount of increase in the output voltage of the first battery cluster is associated with the output voltage of the battery pack #1, eg, the amount of increase in the output voltage of the first battery cluster is equal to the output voltage of the battery pack #1.
  • the way of changing the output voltage of the first battery cluster may also be that, before receiving the first command, battery pack #1 and battery pack #2 in the first battery cluster are not switched to the series circuit, and the second control unit #1 and the second control unit #1 and the second battery pack #2 are not switched to the series circuit. According to the received first instruction, the control unit #2 switches the battery pack #1 and the battery pack #2 into the series circuit in the above-mentioned manner.
  • Each of the Q power conversion units sends the second voltage information to the first control unit respectively. Accordingly, the first control unit acquires the second voltage information of each power conversion unit.
  • the second voltage information of each power conversion unit is used to indicate the second input voltage of each power conversion unit after the first command is sent.
  • S130 is performed immediately after S120.
  • a time interval T may be waited, for example, T is 2 seconds, and then S130 is performed.
  • the time interval T is set to wait for the output voltage of the first battery cluster to become stable, so as to improve the accuracy of the second input voltage of each power conversion unit obtained by the first control unit.
  • the first control unit determines whether each power conversion unit is connected to the first battery cluster according to the first instruction and the first voltage information and the second voltage information of each power conversion unit.
  • the first control unit determines the first voltage difference before and after the voltage change of the first battery cluster indicated by the first instruction.
  • the first voltage difference is associated with the battery pack cutting out the series circuit.
  • the first instruction in Mode 3 instructs the second control unit #1 in the first battery cluster to cut the battery pack #1 out of the series circuit.
  • the output voltage of the battery pack #1 is 50V
  • the first control unit determines that the first voltage difference is 50V.
  • the first control unit determines a first threshold value according to the first voltage difference, where the first threshold value is less than or equal to the first voltage difference.
  • the first threshold value may be determined to be 47V.
  • the first control unit determines whether the amount of decrease (an example of the second voltage difference) of the second input voltage of each power conversion unit compared to the first input voltage is greater than a first threshold.
  • a power conversion unit whose decrease in the second input voltage compared to the first input voltage is greater than the first threshold is determined to be connected to the first battery cluster.
  • the first control unit determines the first voltage difference before and after the voltage change of the first battery cluster indicated by the first instruction.
  • the first voltage difference is associated with the battery pack switched into the series circuit.
  • the first instruction in Mode 4 instructs the second control unit #1 in the first battery cluster to switch the battery pack #1 into the series circuit.
  • the output voltage of the battery pack #1 is 50V
  • the first control unit determines that the first voltage difference is 50V.
  • the first control unit determines a first threshold value according to the first voltage difference, where the first threshold value is less than or equal to the first voltage difference.
  • the first threshold value may be determined as 47V.
  • the first control unit determines whether or not an increase (an example of a second voltage difference) of the second input voltage of each power conversion unit compared to the first input voltage is greater than a first threshold.
  • a power conversion unit whose increase in the second input voltage compared to the first input voltage is greater than the first threshold is determined to be connected to the first battery cluster.
  • the first control unit can determine the connection relationship between the first battery cluster and the Q power conversion units. Similarly, the first control unit may determine the connection relationship between other battery clusters in the energy storage system and the Q power conversion units.
  • the detection method further includes:
  • the first control unit sends a second command to the first battery cluster, where the second command is used to restore the output voltage of the first battery cluster to the value before the change.
  • the second control unit #1 in the first battery cluster cuts out the battery pack #1 from the series circuit according to the received first instruction.
  • the second control unit #1 in the first battery cluster switches the battery pack #1 into the series circuit according to the received second instruction.
  • the second control unit #1 in the first battery cluster switches the battery pack #1 into the series circuit according to the received first command.
  • the second control unit #1 in the first battery cluster cuts the battery pack #1 out of the series circuit according to the received second instruction.
  • the first control unit acquires first information, where the first information includes a preset connection relationship between the N battery clusters and the Q power conversion units, that is, the first information includes the first battery cluster and the Q power conversion units The preset connection relationship between.
  • the first information may be manually configured.
  • the preset connection relationship between the first battery cluster and the Q power conversion units included in the first information is that the first battery cluster is connected to one power conversion unit. If, according to the above S110-S140, the first control unit determines that the first battery cluster is connected to two power conversion units, it performs an alarm process.
  • the preset connection relationship between the first battery cluster and the Q power transformation units included in the first information is that the first battery cluster is connected to the power transformation unit #1. If, according to the above S110-S140, the first control unit determines that the first battery cluster is connected to the power conversion unit #2, an alarm process is performed.
  • the actual connection relationship between the first battery cluster and the Q power conversion units in the energy storage system can be further judged Whether the connection relationship with the preset is the same, so that the wrong wiring in the system can be found in time, and the potential safety hazards in the system can be eliminated.
  • Another method for detecting the connection relationship between the first battery cluster and the Q power conversion units provided by the present application is introduced below, as shown in FIG. 5 .
  • Each of the Q power conversion units sends first voltage information to the first control unit respectively.
  • the first control unit acquires the first voltage information of each power conversion unit.
  • the process may be similar to S110.
  • the first control unit sends a first command to the first battery cluster, where the first command is used to instruct to change the output voltage of the first battery cluster. Accordingly, the first battery cluster receives the first instruction.
  • the manner of changing the output voltage of the first battery cluster may be similar to that in S120.
  • Each of the Q power conversion units sends the second voltage information to the first control unit respectively. Accordingly, the first control unit acquires the second voltage information of each power conversion unit.
  • the first control unit determines whether each power conversion unit is connected to the first battery cluster according to a plurality of first commands, first voltage information of each power conversion unit and a plurality of second voltage information.
  • the first control unit determines a second threshold associated with the number of repetitions of S220-S230. For example, if S220-S230 are repeated 3 times, the second threshold may be determined to be 2.
  • the battery pack #1-battery pack #m in the first battery cluster are switched into the series circuit according to the method of FIG. 2 or FIG. 3 .
  • the output voltage of each battery pack is 50V.
  • the second control unit #1 receives the first instruction, and cuts the battery pack #1 out of the series circuit.
  • the first control unit acquires the second input voltage #1 of each power conversion unit.
  • the second control unit #2 When executing S220-S230 for the second time, the second control unit #2 receives the first instruction, and cuts out the battery pack #2 from the series circuit on the basis of executing S220 for the first time. The first control unit acquires the second input voltage #2 of each power conversion unit.
  • the second control unit #3 When executing S220-S230 for the third time, the second control unit #3 receives the first instruction, and cuts out the battery pack #3 from the series circuit on the basis of executing S220 for the first time and the second time. The first control unit acquires the second input voltage #3 of each power conversion unit.
  • the first control unit determines the first voltage difference before and after the voltage change of the first battery cluster indicated by the first instruction.
  • the first voltage difference is associated with the battery pack each time the series circuit is cut out. Since one battery pack is cut out each time, and the output voltage of each battery pack is 50V, the first control unit determines that the first voltage difference is 50V.
  • the first control unit determines a first threshold value according to the first voltage difference, where the first threshold value is less than or equal to the first voltage difference.
  • the first threshold value may be determined to be 47V.
  • the information obtained by the first control unit is shown in Table 3, where the voltage reduction amount is the difference between the two input voltage values before and after each power conversion unit, for example, the difference between the second input voltage #1 and the first input voltage.
  • the voltage reduction amount, the voltage reduction amount of the second input voltage #2 relative to the second input voltage #1, and the voltage reduction amount of the second input voltage #3 relative to the second input voltage #2 are only illustrative, and are not limited in the present application.
  • the first control unit determines the number of the three voltage reduction amounts of each power conversion unit that is greater than the first threshold.
  • the number of power conversion units greater than or equal to the second threshold is determined to be connected to the first battery cluster.
  • the first control unit determines that the first battery cluster is connected to the power conversion unit #1 and the power conversion unit #3.
  • S220-S230 may also be repeated three times, and the battery pack #1, battery pack #2, and battery pack #3 of the first battery cluster are respectively cut into the series circuit. It should be understood that when S220-S230 are not executed, the battery pack #1, the battery pack #2, and the battery pack #3 are in the state of being cut out of the series circuit.
  • the first control unit obtains three pieces of second voltage information corresponding to each power conversion unit, and the first control unit determines the number of the three voltage increments of each power conversion unit that are greater than the first threshold. The number of power conversion units greater than or equal to the second threshold is determined to be connected to the first battery cluster.
  • the voltage increase amount is the voltage increase amount of the second input voltage #1 of each power conversion unit relative to the first input voltage, or the voltage increase amount of the second input voltage #2 relative to the second input voltage #1, Or the voltage increase amount of the second input voltage #3 relative to the second input voltage #2.
  • S220-S230 can also be repeated three times. The first two times are to cut battery pack #1 and battery pack #2 of the first battery cluster out of the series circuit, and the third time to cut battery pack #1 into the series circuit. in a series circuit. It should be understood that when S220-S230 are not executed, the battery pack #1 and the battery pack #2 are in the state of being switched to the series circuit.
  • the first control unit obtains three pieces of second voltage information of each power conversion unit, the first control unit determines the amount of decrease of the second input voltage #1 of each power conversion unit relative to the first input voltage, the second input voltage The amount of decrease of #2 relative to the second input voltage #1, and the amount of increase of the second input voltage #3 relative to the second input voltage #2, determine the number of the three voltage changes greater than the first threshold. The number of power conversion units greater than or equal to the second threshold is determined to be connected to the first battery cluster.
  • the first control unit determines, according to the results of repeating S220-S230 multiple times, the power conversion unit connected to the first battery cluster among the Q power conversion units. Performing S220-S230 only once can improve the detection accuracy and reduce the probability of wrong judgment.
  • connection relationship between the first battery cluster and the Q power conversion units can be determined by the first control unit in the above S210-S250.
  • first control unit may also determine the connection relationship between other battery clusters in the energy storage system and the Q power conversion units.
  • the first control unit may also send a second command to the first battery cluster, where the second command is used to restore the output voltage of the first battery cluster to the value before the change, and obtain the first battery cluster.
  • a message if the first control unit determines that the actual connection relationship between the first battery cluster and the Q power conversion units is different from the preset connection relationship, it executes an alarm process, which will not be described in detail here.
  • FIG. 6 is a schematic block diagram of a first control unit provided by an embodiment of the present application.
  • the first control unit includes a transceiver unit 310 and a processing unit 320 .
  • the transceiver unit 310 and the processing unit 320 can support the actions performed by the first control unit in the above method examples.
  • the transceiver unit 310 can support the first control unit to perform S110, S120, S130 in FIG. 4, and/or other processes for the techniques described herein;
  • the processing unit 320 can support the first control unit to perform the steps of FIG. 4 S140, S170, and/or other processes for the techniques described herein.

Abstract

本申请提供了一种储能系统、储能系统的检测方法。该方法包括:第一控制单元向第一电池簇发送第一指令,第一指令用于指示变更第一电池簇的输出电压,第一电池簇为多个电池簇中的任意一个电池簇;第一控制单元获取多个功率变换单元中的每个功率变换单元的第一输入电压和第二输入电压;根据第一指令、多个功率变换单元中的每个功率变换单元的第一输入电压和第二输入电压,第一控制单元确定多个功率变换单元中的每个功率变换单元与第一电池簇是否相连。本申请的方案能够检测储能系统中多个电池簇和多个功率变换单元之间的连接关系,在此基础上判断储能系统中是否存在接线错误的情况,从而消除系统中存在的安全隐患。

Description

储能系统、储能系统的检测方法
本申请要求于2021年02月10日提交国家知识产权局、申请号为202110185168.4、申请名称为“储能系统、储能系统的检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及储能系统、储能系统的检测方法。
背景技术
在一个储能系统中,包括多个电池簇和多个功率变换单元。在构建储能系统时,通常将电池簇和功率变换单元做成一个整体,电池簇和功率变换单元之间的接线方式已经固定,这不利于维护和系统扩容。如果将电池簇和功率变换单元做成两个模块,在安装过程中就可能存在接线错误的情况。如果系统中存在错误的接线,轻则引起系统功能紊乱,重则导致储能系统开机后炸机损坏。因此,在将电池簇和功率变换单元做成两个模块的情况下,在系统安装完成或者调试完成时,如何识别储能系统中电池簇和功率变换单元之间的连接关系是一个亟待解决的问题。
发明内容
本申请提供一种储能系统、储能系统的检测方法,能够对储能系统中多个电池簇与多个功率变换单元之间的连接关系进行检测。
第一方面,提供了一种储能系统,该储能系统包括:第一控制单元、多个电池簇和多个功率变换单元,该多个电池簇用于向该多个功率变换单元输出电压;该多个功率变换单元用于接收来自该多个电池簇的输入电压,并在进行直流变换之后输出电能;该第一控制单元用于:向第一电池簇发送第一指令,该第一指令用于指示变更该第一电池簇的输出电压,该第一电池簇为该多个电池簇中的任意一个电池簇;获取该多个功率变换单元中的每个功率变换单元的第一输入电压和第二输入电压,该第一输入电压为每个功率变换单元在所述第一指令发送之前的输入电压,该第二输入电压为每个功率变换单元在所述第一指令发送之后的输入电压;根据该第一指令、该多个功率变换单元中的每个功率变换单元的第一输入电压和第二输入电压,确定该多个功率变换单元中的每个功率变换单元与该第一电池簇是否相连。
根据本申请的技术方案,该储能系统中的第一控制单元可以检测第一电池簇与多个功率变换单元中的每个功率变换单元是否相连,进而确定第一电池簇与多个功率变换单元之间的连接关系。
结合第一方面,在第一方面的某些实现方式中,该第一电池簇中包括第二控制单元、多个电池包、至少一个开关电路,其中,该多个电池包构成串联电路,该第二控制单元用于:接收该第一指令;根据该第一指令控制该至少一个开关电路的通断,以使得该第一电 池簇中的部分电池包切入或切出该串联电路。
在本申请实施例中,通过在第一电池簇中设置开关电路和第二控制单元,使得第一电池簇的输出电压能够快速变更,从而使得本申请提供的方案能够实现。
结合第一方面,在第一方面的某些实现方式中,该第一控制单元具体用于:确定该第一指令指示的该第一电池簇的输出电压变更前后的第一电压差;根据该第一电压差确定第一阈值,该第一阈值小于或等于该第一电压差;确定第一功率变换单元的该第一输入电压和该第二输入电压之间的第二电压差,该第一功率变换单元为该多个功率变换单元中的任意一个功率变换单元;在该第二电压差大于该第一阈值的情况下,确定该第一功率变换单元与该第一电池簇相连;在该第二电压差小于或等于该第一阈值的情况下,确定该第一功率变换单元与该第一电池簇不相连。
结合第一方面,在第一方面的某些实现方式中,该多个功率变换单元中的每个功率变换单元还用于向该第一控制单元发送该第一输入电压的信息和该第二输入电压的信息。
结合第一方面,在第一方面的某些实现方式中,该第一控制单元还用于:获取第一信息,该第一信息包括该第一电池簇与该多个功率变换单元之间的预设连接关系;在该第一电池簇与该多个功率变换单元的实际连接关系与该预设连接关系不同的情况下,执行告警处理。
根据本申请的技术方案,第一控制单元确定了储能系统中第一电池簇和多个功率变换单元之间的连接关系后,可以根据第一信息进一步判断储能系统中是否存在接线错误的情况,从而可以及时发现系统中存在的问题,消除系统中存在的安全隐患。
第二方面,提供了一种储能系统的检测方法,该储能系统包括:第一控制单元、多个电池簇和多个功率变换单元,该多个电池簇用于向该多个功率变换单元输出电压,该多个功率变换单元用于接收来自该多个电池簇的输入电压,并在进行直流变换之后,输出电能,该方法包括:该第一控制单元向第一电池簇发送第一指令,该第一指令用于指示变更该第一电池簇的输出电压,该第一电池簇为该多个电池簇中的任意一个电池簇;该第一控制单元获取该多个功率变换单元中的每个功率变换单元的第一输入电压和第二输入电压,该第一输入电压为每个功率变换单元在所述第一指令发送之前的输入电压,该第二输入电压为每个功率变换单元在所述第一指令发送之后的输入电压;根据该第一指令、该多个功率变换单元中的每个功率变换单元的第一输入电压和第二输入电压,确定该多个功率变换单元中的每个功率变换单元与该第一电池簇是否相连。
根据本申请的技术方案,该储能系统中的第一控制单元可以检测第一电池簇与多个功率变换单元中的每个功率变换单元是否相连,进而确定第一电池簇与多个功率变换单元之间的连接关系。
结合第二方面,在第二方面的某些实现方式中,该第一电池簇中包括第二控制单元、多个电池包、至少一个开关电路,该多个电池包构成串联电路;该第一控制单元向第一电池簇发送第一指令包括:该第一控制单元向该第二控制单元发送第一指令,以便该第二控制单元根据该第一指令控制该至少一个开关电路的通断,使得该第一电池簇中的部分电池包切入或切出该串联电路。
结合第二方面,在第二方面的某些实现方式中,该第一控制单元确定该多个功率变换单元中的每个功率变换单元与该第一电池簇是否相连包括:该第一控制单元确定该第一指 令指示的该第一电池簇的输出电压变更前后的第一电压差;该第一控制单元根据该第一电压差确定第一阈值,该第一阈值小于或等于该第一电压差;该第一控制单元确定第一功率变换单元的该第一输入电压和该第二输入电压之间的第二电压差,该第一功率变换单元为该多个功率变换单元中的任意一个功率变换单元;在该第二电压差大于该第一阈值的情况下,该第一控制单元确定该第一功率变换单元与该第一电池簇相连;在该第二电压差小于或等于该第一阈值的情况下,该第一控制单元确定该第一功率变换单元与该第一电池簇不相连。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该第一控制单元获取第一信息,该第一信息包括该第一电池簇与该多个功率变换单元之间的预设连接关系;在该第一电池簇与该多个功率变换单元的实际连接关系与该预设连接关系不同的情况下,该第一控制单元执行告警处理。
根据本申请的技术方案,第一控制单元确定了储能系统中第一电池簇和多个功率变换单元之间的连接关系后,可以根据第一信息进一步判断储能系统中是否存在接线错误的情况,从而可以及时发现系统中存在的问题,消除系统中存在的安全隐患。
第三方面,提供一种储能系统的第一控制单元,该储能系统还包括:多个电池簇和多个功率变换单元,该多个电池簇用于向该多个功率变换单元输出电压,该多个功率变换单元用于接收来自该多个电池簇的输入电压,并在进行直流变换之后,输出电能,该第一控制单元包括:收发单元,用于向第一电池簇发送第一指令,该第一指令用于指示变更该第一电池簇的输出电压,该第一电池簇为该多个电池簇中的任意一个电池簇;收发单元,还用于获取该多个功率变换单元中的每个功率变换单元的第一输入电压和第二输入电压,第一输入电压为每个功率变换单元在第一指令发送之前的输入电压,第二输入电压为每个功率变换单元在第一指令发送之后的输入电压;处理单元,用于根据该第一指令、该多个功率变换单元中的每个功率变换单元的第一输入电压和第二输入电压,确定该多个功率变换单元中的每个功率变换单元与该第一电池簇是否相连。
结合第三方面,在第三方面的某些实现方式中,该第一电池簇中包括第二控制单元、多个电池包、至少一个开关电路,该多个电池包构成串联电路;收发单元,用于向该第二控制单元发送第一指令,以便该第二控制单元根据该第一指令控制该至少一个开关电路的通断,使得该第一电池簇中的部分电池包切入或切出该串联电路。
结合第三方面,在第三方面的某些实现方式中,该处理单元,还用于确定该第一指令指示的该第一电池簇的输出电压变更前后的第一电压差;该处理单元,还用于根据该第一电压差确定第一阈值,该第一阈值小于或等于该第一电压差;该处理单元,还用于确定第一功率变换单元的该第一输入电压和该第二输入电压之间的第二电压差,该第一功率变换单元为该多个功率变换单元中的任意一个功率变换单元;在该第二电压差大于该第一阈值的情况下,该处理单元,还用于确定该第一功率变换单元与该第一电池簇相连;在该第二电压差小于或等于该第一阈值的情况下,该处理单元,还用于确定该第一功率变换单元与该第一电池簇不相连。
结合第三方面,在第三方面的某些实现方式中,该收发单元,还用于获取第一信息,该第一信息包括该第一电池簇与该多个功率变换单元之间的预设连接关系;在该第一电池簇与该多个功率变换单元的实际连接关系与该预设连接关系不同的情况下,该处理单元, 还用于执行告警处理。
附图说明
图1是本申请实施例的储能系统架构示意图。
图2是本申请实施例的电池簇一种改进方式示意图。
图3是本申请实施例的电池簇的又一种改进方式示意图。
图4是本申请提供的一种检测方法的示意性流程图。
图5是本申请提供的另一种检测方法的示意性流程图。
图6是本申请提供的第一控制单元的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
首先对本申请涉及到的储能系统进行介绍,如图1所示,储能系统中包括:
第一控制单元,N个电池簇,Q个功率变换单元,其中N大于或等于2,Q大于或等于2。
下面对储能系统的各个组成部分进行介绍。
1、电池簇
电池簇用于向功率变换单元输出电压。一个电池簇中通常包括m个电池包,该m个电池包组成串联电路,m大于或等于1。为了实现本申请提出的检测方法,对电池簇的结构进行了改进,使得电池簇的输出电压能够快速变更,下面对电池簇的改进方式进行说明。
方式1:
如图2所示,在电池簇中设置第二控制单元和至少一个第一开关电路,该第二控制单元可以为一个或多个。以电池簇中的电池包#i为例,第一开关电路包括单刀单掷开关S1i与电池包#i组成的串联电路,单刀单掷开关S2i与电池包#i、开关S1i组成的并联电路。当开关S1i断开,开关S2i闭合时,可以将电池包#i从串联电路中切出。当开关S1i闭合,开关S2i断开时,可以将电池包#i切入串联电路中。应理解,“切出”一个电池包在本申请中的含义为将该电池包从串联电路中移除,从而减少串联电路中包括的电池包的数量。“切入”一个电池包在本申请中的含义为将该电池包接入串联电路中,从而增加串联电路中包括的电池包的数量。
方式2:
如图3所示,在电池簇中设置第二控制单元和至少一个第二开关电路,该第二控制单元可以为一个或多个。以电池簇中的电池包#i为例,第二开关电路包括单刀双掷开关S3i与电池包#i组成的电路。当开关S3i的动端切换到与不动端#4i相连时,可以将电池包#i从串联电路中切出。当开关S3i的动端切换到与不动端#3i相连时,可以将电池包#i切入串联电路中。
应理解,上述方式1-2中的电路连接方式仅为示意性描述,本领域技术人员可以根据实际情况选择是针对电池簇中的每个电池包进行上述改进,或者每两个电池包进行上述改进,又或者每隔一个电池包进行上述改进,本申请对此不作限定。
2、功率变换单元
功率变换单元用于接收来自电池簇的输入电压,并在进行直流变换之后,输出电能。作为示例而非限定,本系统中的功率变换单元可以为DC-DC变换器,DC-DC变换器也可称为直流-直流变换器。应理解,功率变换单元输入电压的采样值,可以用于指示电池簇的输出电压。
最基本的DC-DC变换器有3种,分别为Buck变换器,Boost变换器和Buckboost变换器,其中Buck变换器为降压式变换器,Boost变换器为升压式变换器,Buckboost变换器为升降式变换器。在图1所示的储能系统中,本领域技术人员可以根据实际情况选用合适类型的DC-DC变换器。
在图1所示的储能系统中,功率变换单元的数量为Q个,电池簇与功率变换单元的连接关系可以为一个电池簇连接一个功率变换单元,或者一个电池簇连接多个功率变换单元,或者多个电池簇连接一个功率变换单元,即,Q可以小于、等于、或者大于N,本申请对此不作限定。
3、第一控制单元
在一个储能系统中通常设置一个第一控制单元。第一控制单元通过通信线分别与N个电池簇和Q个功率变换单元连接。在本申请提出的检测方法中,第一控制单元可以通过通信线向电池簇发送指令。相应地,电池簇中的第二控制单元接收指令,根据指令控制电池簇的输出电压。功率变换单元可以通过通信线向第一控制单元发送输入电压采样值。相应地,第一控制单元接收功率变换单元的输入电压采样值。
本申请提供了一种储能系统,该储能系统包括第一控制单元、N个电池簇、Q个功率变换单元。该第一控制单元可以用于检测N个电池簇和Q个功率变换单元之间的连接关系。为了便于理解,下面以检测N个电池簇中的第一电池簇与Q个功率变换单元的连接关系为例,对本申请提供的检测方法进行描述,其中第一电池簇为N个电池簇中的任意一个电池簇,如图4所示。
S110,Q个功率变换单元中的每个功率变换单元分别向第一控制单元发送第一电压信息。相应地,第一控制单元获取每个功率变换单元的第一电压信息。
应理解,每个功率变换单元的第一电压信息用于指示每个功率变换单元在第一指令发送之前的第一输入电压。
S120,第一控制单元向第一电池簇发送第一指令,第一指令用于指示变更第一电池簇的输出电压。相应地,第一电池簇接收第一指令。
下面介绍变更第一电池簇的输出电压的方式:
方式3:
如图2或图3所示,第一电池簇中的第二控制单元接收第一指令,降低第一电池簇的输出电压。
例如,图2中,第一电池簇中的第二控制单元接收到第一指令之前,第一电池簇中的开关S11-S1m均为闭合状态,S21-S2m均为断开状态,即m个电池包均切入串联电路。第二控制单元#1接收到第一指令,将开关S11断开,将开关S21闭合,即,将电池包#1切出串联电路。
又例如,图3中,第一电池簇中的第二控制单元接收到第一指令之前,第一电池簇中的开关S31-S3i与各个开关对应的不动端#3i连接,即m个电池包均切入串联电路。第二 控制单元#1接收到第一指令,将开关S31切换到与不动端#41连接,即,将电池包#1从串联电路中切出。
在将电池包#1从串联电路中切出之后,串联电路中电池包的数量减少了,从而降低了第一电池簇的输出电压。第一电池簇的输出电压减小量与电池包#1的输出电压相关联,例如,第一电池簇的输出电压减小量等于电池包#1的输出电压。
应理解,以上仅为变更第一电池簇输出电压的一些具体方式,本申请并不局限于此。例如,变更第一电池簇输出电压的方式还可以为第一电池簇中的第二控制单元#1和第二控制单元#2接收到第一指令,按照上述方式,将电池包#1和电池包#2切出串联电路。
方式4:
如图2或图3所示,第一电池簇中的第二控制单元接收第一指令,升高第一电池簇的输出电压。
例如,图2中,第一电池簇中的第二控制单元接收到第一指令之前,第一电池簇中的开关S11断开,开关S21闭合,开关S12-S1m为闭合状态,开关S22-S2m为断开状态,即电池包#1未切入串联电路。第二控制单元#1接收到第一指令,将开关S11闭合,将开关S21断开,即,将电池包#1切入串联电路中。
又例如,图3中,第一电池簇中的第二控制单元接收到第一指令之前,第一电池簇中的开关S31与对应的不动端#41连接,S32-S3m与各个开关对应的不动端#3i连接,即,电池包#1未切入串联电路。第二控制单元#1接收到第一指令,将开关S31切换到与不动端#31连接,即,将电池包#1切入串联电路中。
在将电池包#1切入串联电路中之后,串联电路中电池包的数量增加了,从而升高了第一电池簇的输出电压。第一电池簇的输出电压增加量与电池包#1的输出电压相关联,例如,第一电池簇的输出电压增加量等于电池包#1的输出电压。
应理解,以上仅为变更第一电池簇输出电压的一些具体方式,本申请并不局限于此。例如,变更第一电池簇输出电压的方式还可以为,接收到第一指令之前第一电池簇中的电池包#1和电池包#2未切入串联电路,第二控制单元#1和第二控制单元#2根据接收到的第一指令,按照上述方式,将电池包#1和电池包#2切入串联电路中。
S130,Q个功率变换单元中的每个功率变换单元分别向第一控制单元发送第二电压信息。相应地,第一控制单元获取每个功率变换单元的第二电压信息。
应理解,每个功率变换单元的第二电压信息用于指示每个功率变换单元在该第一指令发送之后的第二输入电压。
在一种可能的实现方式中,在S120之后,立即执行S130。
在另一种可能的实现方式中,在S120之后可以等待时间间隔T,例如T为2秒,然后再执行S130。设置时间间隔T是为了等待第一电池簇的输出电压趋于稳定,以提高第一控制单元获取到的每个功率变换单元的第二输入电压的准确性。
S140,第一控制单元根据第一指令,每个功率变换单元的第一电压信息和第二电压信息,确定每个功率变换单元与第一电池簇是否相连。
下面介绍确定每个功率变换单元与第一电池簇是否相连的方式:
方式5:
与S120中方式3对应,第一控制单元确定第一指令指示的第一电池簇的电压变更前 后的第一电压差。该第一电压差与切出串联电路的电池包相关联。
例如,方式3中第一指令指示第一电池簇中的第二控制单元#1将电池包#1从串联电路中切出。电池包#1的输出电压为50V,则第一控制单元确定第一电压差为50V。
第一控制单元根据第一电压差确定第一阈值,第一阈值小于或等于第一电压差。
例如,当第一电压差为50V时,则可以将第一阈值确定为47V。
第一控制单元判断每个功率变换单元的第二输入电压相比于第一输入电压的减小量(第二电压差的一例)是否大于第一阈值。将第二输入电压相比于第一输入电压的减小量大于第一阈值的功率变换单元确定为与第一电池簇相连。
例如,系统中总共有3个功率变换单元。各个功率变换单元的第一输入电压和第二输入电压如表1所示。应理解,表1中的数值仅为示例性说明,本申请对此并不限定。
表1
Figure PCTCN2022073597-appb-000001
由表1可知,功率变换单元#1的第二输入电压相比于第一输入电压的减小量大于第一阈值,功率变换单元#2的第二输入电压相比于第一输入电压的减小量小于第一阈值,功率变换单元#3的第二输入电压相比于第一输入电压的减小量大于第一阈值,则可以确定第一电池簇与功率变换单元#1和功率变换单元#3相连。
方式6:
与S120中方式4对应,第一控制单元确定第一指令指示的第一电池簇的电压变更前后的第一电压差。该第一电压差与切入串联电路的电池包相关联。
例如,方式4中第一指令指示第一电池簇中的第二控制单元#1将电池包#1切入串联电路中。电池包#1的输出电压为50V,则第一控制单元确定第一电压差为50V。
第一控制单元根据第一电压差确定第一阈值,第一阈值小于或等于第一电压差。
例如,第一电压差为50V,则可以将第一阈值确定为47V。
第一控制单元判断每个功率变换单元的第二输入电压相比于第一输入电压的增加量(第二电压差的一例)是否大于第一阈值。将第二输入电压相比于第一输入电压的增加量大于第一阈值的功率变换单元确定为与第一电池簇相连。
例如,系统中总共有3个功率变换单元。各个功率变换单元的第一输入电压和第二输入电压如表2所示。应理解,表2中的数值仅为示例性说明,本申请对此并不限定。
表2
Figure PCTCN2022073597-appb-000002
Figure PCTCN2022073597-appb-000003
由表2可知,功率变换单元#1的第二输入电压相比于第一输入电压的增加量大于第一阈值,功率变换单元#2的第二输入电压相比于第一输入电压的增加量小于第一阈值,功率变换单元#3的第二输入电压相比于第一输入电压的增加量大于第一阈值,则可以确定第一电池簇与功率变换单元#1和功率变换单元#3相连。
应理解,通过以上S110-S140第一控制单元可以确定第一电池簇和Q个功率变换单元之间的连接关系。类似地,第一控制单元可以确定储能系统中其他电池簇与Q个功率变换单元之间的连接关系。
在一种可能的实现方式中该检测方法还包括:
S150,第一控制单元向第一电池簇发送第二指令,该第二指令用于使第一电池簇的输出电压恢复至变更之前的值。
下面介绍将第一电池簇的输出电压恢复至变更之前的值的方式:
方式7:
在S120的方式3中,第一电池簇中的第二控制单元#1根据接收到的第一指令,将电池包#1从串联电路中切出。相应地,在S150中,第一电池簇中的第二控制单元#1根据接收到的第二指令,将电池包#1切入串联电路中。
方式8:
在S120的方式4中,第一电池簇中的第二控制单元#1根据接收到的第一指令,将电池包#1切入串联电路中。相应地,在S150中,第一电池簇中的第二控制单元#1根据接收到的第二指令,将电池包#1切出串联电路中。
S160,第一控制单元获取第一信息,该第一信息包括N个电池簇与Q个功率变换单元之间的预设连接关系,即,第一信息包括第一电池簇与Q个功率变换单元之间的预设连接关系。
在一种可能的实现方式中,该第一信息可以是人工配置的。
S170,如果第一控制单元确定第一电池簇与Q个功率变换单元之间的实际连接关系与预设连接关系不同,则执行告警处理。
例如,第一信息中包括的第一电池簇与Q个功率变换单元之间的预设连接关系为第一电池簇与1个功率变换单元相连。如果根据上述S110-S140,第一控制单元确定第一电池簇与2个功率变换单元相连,则执行告警处理。
又例如,第一信息中包括的第一电池簇与Q个功率变换单元之间的预设连接关系为第一电池簇与功率变换单元#1相连。如果根据上述S110-S140,第一控制单元确定第一电池簇与功率变换单元#2相连,则执行告警处理。
应理解,以上列举的第一控制单元确定第一电池簇与Q个功率变换单元之间的实际连接关系与预设连接关系不同的例子仅为示例性说明,对于其他类似的例子,在此不再一一列举。
在本申请实施例中,在确定了储能系统中第一电池簇和Q个功率变换单元之间的连接关系后,可以进一步判断第一电池簇和Q个功率变换单元之间的实际连接关系与预设连接关系是否相同,从而可以及时发现系统中错误的接线,消除系统中存在的安全隐患。
下面介绍本申请提供的检测第一电池簇与Q个功率变换单元之间的连接关系的另一种方法,如图5所示。
S210,Q个功率变换单元中的每个功率变换单元分别向第一控制单元发送第一电压信息。相应地,第一控制单元获取每个功率变换单元的第一电压信息。
该过程可以与S110类似。
S220,第一控制单元向第一电池簇发送第一指令,第一指令用于指示变更第一电池簇的输出电压。相应地,第一电池簇接收第一指令。
其中,变更第一电池簇的输出电压的方式可以与S120中类似。
S230,Q个功率变换单元中的每个功率变换单元分别向第一控制单元发送第二电压信息。相应地,第一控制单元获取每个功率变换单元的第二电压信息。
S240,将S220-S230重复多次。
S250,第一控制单元根据多个第一指令,每个功率变换单元的第一电压信息和多个第二电压信息,确定每个功率变换单元与第一电池簇是否相连。
下面介绍确定每个功率变换单元与第一电池簇是否相连的方式,为便于描述,以将S220-S230重复3次,功率变换单元共计3个为例,进行说明。应理解,本申请对S220-S230的重复次数和功率变换单元的个数不作限定。
第一控制单元确定第二阈值,该第二阈值与S220-S230重复的次数相关联。例如,如果将S220-S230重复3次,第二阈值可以确定为2。
例如,未执行S220-S230时,第一电池簇中的电池包#1-电池包#m按照图2或图3的方式切入串联电路中。其中,每个电池包的输出电压均为50V。
第一次执行S220-S230时,第二控制单元#1接收到第一指令,将电池包#1从串联电路中切出。第一控制单元获取每个功率变换单元的第二输入电压#1。
第二次执行S220-S230时,第二控制单元#2接收到第一指令,在第一次执行S220的基础上将电池包#2从串联电路中切出。第一控制单元获取每个功率变换单元的第二输入电压#2。
第三次执行S220-S230时,第二控制单元#3接收到第一指令,在第一次和第二次执行S220的基础上将电池包#3从串联电路中切出。第一控制单元获取每个功率变换单元的第二输入电压#3。
第一控制单元确定第一指令指示的第一电池簇的电压变更前后的第一电压差。该第一电压差与每次切出串联电路的电池包相关联。由于每次切出一个电池包,且每个电池包的输出电压均为50V,则第一控制单元确定第一电压差为50V。
第一控制单元根据第一电压差确定第一阈值,第一阈值小于或等于第一电压差。
例如,当第一电压差为50V时,则可以将第一阈值确定为47V。
第一控制单元获取到的信息如表3所示,其中电压减小量为每个功率变换单元前后两次的输入电压值之差,例如,第二输入电压#1相对于第一输入电压的电压减小量,第二输入电压#2相对于第二输入电压#1的电压减小量,第二输入电压#3相对于第二输入电压 #2的电压减小量。应理解,表3中的数值仅为示例性说明,本申请对此并不限定。
第一控制单元判断每个功率变换单元的3个电压减小量中大于第一阈值的数量。将该数量大于或等于第二阈值的功率变换单元确定为与第一电池簇相连。
表3
Figure PCTCN2022073597-appb-000004
由表3可知,功率变换单元#1的3个电压减小量中大于第一阈值的数量大于第二阈值,功率变换单元#2的3个电压减小量中大于第一阈值的数量小于第二阈值,功率变换单元#3的3个电压减小量中大于第一阈值的数量等于第二阈值。因此,第一控制单元确定第一电池簇与功率变换单元#1和功率变换单元#3相连。
类似地,在S240中还可以将S220-S230重复3次,分别将第一电池簇的电池包#1、电池包#2、电池包#3切入串联电路中。应理解,在未执行S220-S230时,电池包#1、电池包#2、电池包#3处于切出串联电路的状态。第一控制单元得到每个功率变换单元对应的3个第二电压信息,第一控制单元判断每个功率变换单元的3个电压增加量中大于第一阈值的数量。将该数量大于或等于第二阈值的功率变换单元确定为与第一电池簇相连。例如,该电压增加量为每个功率变换单元的第二输入电压#1相对于第一输入电压的电压增加量,或者第二输入电压#2相对于第二输入电压#1的电压增加量,或者第二输入电压#3相对于第二输入电压#2的电压增加量。
类似地,在S240中还可以将S220-S230重复3次,前两次分别将第一电池簇的电池包#1、电池包#2切出串联电路中,第三次将电池包#1切入串联电路中。应理解,在未执行S220-S230时,电池包#1、电池包#2处于切入串联电路的状态。第一控制单元得到每个功率变换单元的3个第二电压信息,第一控制单元确定每个功率变换单元的第二输入电压#1相对于第一输入电压的减小量,第二输入电压#2相对于第二输入电压#1的减小量,第二输入电压#3相对于第二输入电压#2的增加量,判断3个电压变化量中大于第一阈值的数量。将该数量大于或等于第二阈值的功率变换单元确定为与第一电池簇相连。
根据本申请提出的方案,通过将S220-S230重复多次,第一控制单元根据S220-S230重复多次的结果确定Q个功率变换单元中与第一电池簇相连的功率变换单元,相比于只将S220-S230执行一次,可以提高检测的准确性,降低判断错误的概率。
应理解,通过以上S210-S250第一控制单元可以确定第一电池簇和Q个功率变换单元之间的连接关系。类似地,第一控制单元还可以确定储能系统中其他电池簇与Q个功率变 换单元之间的连接关系。
与前述类似地,在S250之后,第一控制单元还可以向第一电池簇发送第二指令,该第二指令用于使第一电池簇的输出电压恢复至变更之前的值,并且,获取第一信息,如果第一控制单元确定第一电池簇与Q个功率变换单元之间的实际连接关系与预设连接关系不同,则执行告警处理,在此不再详细说明。
根据前述方法,图6为本申请实施例提供的一种第一控制单元的示意性框图。该第一控制单元包括收发单元310和处理单元320。收发单元310和处理单元320能够支持上述各方法示例中由第一控制单元完成的动作。例如,收发单元310能够支持第一控制单元执行图4中的S110,S120,S130,和/或用于本文所描述的技术的其它过程;处理单元320能够支持第一控制单元执行图4中的S140,S170,和/或用于本文所描述的技术的其它过程。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (9)

  1. 一种储能系统,其特征在于,所述储能系统包括:第一控制单元、多个电池簇和多个功率变换单元,
    所述多个电池簇用于向所述多个功率变换单元输出电压;
    所述多个功率变换单元用于接收来自所述多个电池簇的输入电压,并在进行直流变换之后输出电能;
    所述第一控制单元用于:
    向第一电池簇发送第一指令,所述第一指令用于指示变更所述第一电池簇的输出电压,所述第一电池簇为所述多个电池簇中的任意一个电池簇;
    获取所述多个功率变换单元中的每个功率变换单元的第一输入电压和第二输入电压,所述第一输入电压为每个功率变换单元在所述第一指令发送之前的输入电压,所述第二输入电压为每个功率变换单元在所述第一指令发送之后的输入电压;
    根据所述第一指令、所述多个功率变换单元中的每个功率变换单元的第一输入电压和第二输入电压,确定所述多个功率变换单元中的每个功率变换单元与所述第一电池簇是否相连。
  2. 根据权利要求1所述的系统,其特征在于,所述第一电池簇中包括第二控制单元、多个电池包、至少一个开关电路,其中,所述多个电池包构成串联电路,
    所述第二控制单元用于:
    接收所述第一指令;
    根据所述第一指令控制所述至少一个开关电路的通断,以使得所述第一电池簇中的部分电池包切入或切出所述串联电路。
  3. 根据权利要求1或2所述的系统,其特征在于,所述第一控制单元具体用于:
    确定所述第一指令指示的所述第一电池簇的输出电压变更前后的第一电压差;
    根据所述第一电压差确定第一阈值,所述第一阈值小于或等于所述第一电压差;
    确定第一功率变换单元的第一输入电压和第二输入电压之间的第二电压差,所述第一功率变换单元为所述多个功率变换单元中的任意一个功率变换单元;
    在所述第二电压差大于所述第一阈值的情况下,确定所述第一功率变换单元与所述第一电池簇相连;
    在所述第二电压差小于或等于所述第一阈值的情况下,确定所述第一功率变换单元与所述第一电池簇不相连。
  4. 根据权利要求1-3中任一项所述的系统,其特征在于,所述多个功率变换单元中的每个功率变换单元还用于向所述第一控制单元发送所述第一输入电压的信息和所述第二输入电压的信息。
  5. 根据权利要求1-4中任一项所述的系统,其特征在于,所述第一控制单元还用于:
    获取第一信息,所述第一信息包括所述第一电池簇与所述多个功率变换单元之间的预设连接关系;
    在所述第一电池簇与所述多个功率变换单元的实际连接关系与所述预设连接关系不 同的情况下,执行告警处理。
  6. 一种储能系统的检测方法,其特征在于,所述储能系统包括:第一控制单元、多个电池簇和多个功率变换单元,所述多个电池簇用于向所述多个功率变换单元输出电压,所述多个功率变换单元用于接收来自所述多个电池簇的输入电压,并在进行直流变换之后,输出电能,所述方法包括:
    所述第一控制单元向第一电池簇发送第一指令,所述第一指令用于指示变更所述第一电池簇的输出电压,所述第一电池簇为所述多个电池簇中的任意一个电池簇;
    所述第一控制单元获取所述多个功率变换单元中的每个功率变换单元的第一输入电压和第二输入电压,所述第一输入电压为每个功率变换单元在所述第一指令发送之前的输入电压,所述第二输入电压为每个功率变换单元在所述第一指令发送之后的输入电压;
    根据所述第一指令、所述多个功率变换单元中的每个功率变换单元的第一输入电压和第二输入电压,所述第一控制单元确定所述多个功率变换单元中的每个功率变换单元与所述第一电池簇是否相连。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第一电池簇中包括第二控制单元、多个电池包、至少一个开关电路,所述多个电池包构成串联电路;
    所述第一控制单元向第一电池簇发送第一指令包括:
    所述第一控制单元向所述第二控制单元发送第一指令,以便所述第二控制单元根据所述第一指令控制所述至少一个开关电路的通断,使得所述第一电池簇中的部分电池包切入或切出所述串联电路。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第一控制单元确定所述多个功率变换单元中的每个功率变换单元与所述第一电池簇是否相连包括:
    所述第一控制单元确定所述第一指令指示的所述第一电池簇的输出电压变更前后的第一电压差;
    所述第一控制单元根据所述第一电压差确定第一阈值,所述第一阈值小于或等于所述第一电压差;
    所述第一控制单元确定第一功率变换单元的第一输入电压和第二输入电压之间的第二电压差,所述第一功率变换单元为所述多个功率变换单元中的任意一个功率变换单元;
    在所述第二电压差大于所述第一阈值的情况下,所述第一控制单元确定所述第一功率变换单元与所述第一电池簇相连;
    在所述第二电压差小于或等于所述第一阈值的情况下,所述第一控制单元确定所述第一功率变换单元与所述第一电池簇不相连。
  9. 根据权利要求6-8中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一控制单元获取第一信息,所述第一信息包括所述第一电池簇与所述多个功率变换单元之间的预设连接关系;
    在所述第一电池簇与所述多个功率变换单元的实际连接关系与所述预设连接关系不同的情况下,所述第一控制单元执行告警处理。
PCT/CN2022/073597 2021-02-10 2022-01-24 储能系统、储能系统的检测方法 WO2022170959A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22752120.0A EP4287448A1 (en) 2021-02-10 2022-01-24 Energy storage system, and detection method for energy storage system
AU2022220921A AU2022220921A1 (en) 2021-02-10 2022-01-24 Energy storage system and energy storage system detection method
US18/447,043 US20230400520A1 (en) 2021-02-10 2023-08-09 Energy storage system and energy storage system detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110185168.4A CN114944675A (zh) 2021-02-10 2021-02-10 储能系统、储能系统的检测方法
CN202110185168.4 2021-02-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/447,043 Continuation US20230400520A1 (en) 2021-02-10 2023-08-09 Energy storage system and energy storage system detection method

Publications (1)

Publication Number Publication Date
WO2022170959A1 true WO2022170959A1 (zh) 2022-08-18

Family

ID=82837466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073597 WO2022170959A1 (zh) 2021-02-10 2022-01-24 储能系统、储能系统的检测方法

Country Status (5)

Country Link
US (1) US20230400520A1 (zh)
EP (1) EP4287448A1 (zh)
CN (1) CN114944675A (zh)
AU (1) AU2022220921A1 (zh)
WO (1) WO2022170959A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116073493A (zh) * 2023-04-06 2023-05-05 西安图为电气技术有限公司 电力控制方法、电力储能系统、装置、设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017225270A (ja) * 2016-06-16 2017-12-21 株式会社東芝 電力変換装置、電力補償装置、制御装置、制御方法
CN110346682A (zh) * 2019-07-12 2019-10-18 奇瑞新能源汽车股份有限公司 电动汽车dcdc变换器输出连接状态检测电路及方法
CN110690721A (zh) * 2019-08-30 2020-01-14 阳光电源股份有限公司 储能系统的开机自检测方法及其应用装置和系统
CN111276989A (zh) * 2020-02-26 2020-06-12 深圳市科陆电子科技股份有限公司 储能控制保护方法及系统
CN111929619A (zh) * 2020-08-17 2020-11-13 深圳市泰昂能源科技股份有限公司 一种电池连接异常的检测电路及其检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017225270A (ja) * 2016-06-16 2017-12-21 株式会社東芝 電力変換装置、電力補償装置、制御装置、制御方法
CN110346682A (zh) * 2019-07-12 2019-10-18 奇瑞新能源汽车股份有限公司 电动汽车dcdc变换器输出连接状态检测电路及方法
CN110690721A (zh) * 2019-08-30 2020-01-14 阳光电源股份有限公司 储能系统的开机自检测方法及其应用装置和系统
CN111276989A (zh) * 2020-02-26 2020-06-12 深圳市科陆电子科技股份有限公司 储能控制保护方法及系统
CN111929619A (zh) * 2020-08-17 2020-11-13 深圳市泰昂能源科技股份有限公司 一种电池连接异常的检测电路及其检测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116073493A (zh) * 2023-04-06 2023-05-05 西安图为电气技术有限公司 电力控制方法、电力储能系统、装置、设备和存储介质

Also Published As

Publication number Publication date
CN114944675A (zh) 2022-08-26
AU2022220921A1 (en) 2023-09-07
US20230400520A1 (en) 2023-12-14
EP4287448A1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
EP3978307B1 (en) Battery system of vehicle, charging and discharging method, and vehicle
US20230170711A1 (en) Energy storage system
WO2018049863A1 (zh) 并联电池组的快速充电方法及相关设备
CN110716150B (zh) 一种储能系统及其绝缘检测方法
US11726133B2 (en) Energy storage system and insulation detection method therefor
EP4199188A1 (en) Self-heating control circuit and system
CN108155657B (zh) 储能变流器及其主电路拓扑结构以及均衡控制方法
CN104362695A (zh) 一种串联蓄电池组均衡系统及其控制方法
CN105164885A (zh) 电力控制系统、电力控制装置和用于控制电力控制系统的方法
WO2022170959A1 (zh) 储能系统、储能系统的检测方法
CN109638882B (zh) 光伏系统
CN203103992U (zh) 一种电池模组管理控制系统
EP3890172B1 (en) Power conversion method, apparatus, and device, and medium
CN112803570B (zh) 一种储能系统及其控制方法
CN113459888A (zh) 车辆供电系统、方法和车辆
CN112865261B (zh) 一种储能电池及其应用装置和充放电控制方法
CN113708656A (zh) 一种车载电源转换系统与车载电源转换装置
CN110896225B (zh) 多端常规直流输电系统第三站在线投入方法、装置及存储介质
CN112636417A (zh) 一种蓄电池组并联充电均流电路结构
WO2023226364A1 (zh) 一种充电装置及充电控制方法
CN116599201A (zh) 储能系统、电池子系统及其电源电路和内部供电方法
CN109245214B (zh) 基于竞争机制的通信基站多路混用电池管理器
CN209055600U (zh) 充电桩节能老化装置和充电系统
CN112701913A (zh) 升压功率变换电路及其控制方法与应用装置
CN114336953B (zh) 一种能量路由器的控制方法、中央控制器及能量路由器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752120

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022220921

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022220921

Country of ref document: AU

Date of ref document: 20220124

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022752120

Country of ref document: EP

Effective date: 20230830

NENP Non-entry into the national phase

Ref country code: DE