WO2022170910A1 - 增强现实显示装置及近眼显示设备 - Google Patents

增强现实显示装置及近眼显示设备 Download PDF

Info

Publication number
WO2022170910A1
WO2022170910A1 PCT/CN2022/071839 CN2022071839W WO2022170910A1 WO 2022170910 A1 WO2022170910 A1 WO 2022170910A1 CN 2022071839 W CN2022071839 W CN 2022071839W WO 2022170910 A1 WO2022170910 A1 WO 2022170910A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
coupling
vector
display device
augmented reality
Prior art date
Application number
PCT/CN2022/071839
Other languages
English (en)
French (fr)
Inventor
郑光
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110177023.XA external-priority patent/CN112817155A/zh
Priority claimed from CN202120373464.2U external-priority patent/CN214097983U/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP22752072.3A priority Critical patent/EP4279980A1/en
Publication of WO2022170910A1 publication Critical patent/WO2022170910A1/zh
Priority to US18/362,665 priority patent/US20230377292A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • G02B2027/012Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility comprising devices for attenuating parasitic image effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present application relates to the technical field of augmented reality display, and in particular, to an augmented reality display device and a near-eye display device.
  • Augmented Reality (AR) display devices such as AR glasses
  • AR glasses can not only see the external real world but also need to see virtual images.
  • Real scenes and virtual information are integrated into one, mutually reinforcing and "enhancing" each other.
  • the external ambient light will be dispersed into rainbow patterns, which will be injected into the human eye, so that the user can see the rainbow stripes. This phenomenon is called the rainbow pattern effect.
  • the rainbow pattern When the user sees the rainbow pattern, the light one will affect the user's experience, and the heavy one will hurt the user's eyes.
  • a first aspect of the present application provides an augmented reality display device, the augmented reality display device comprising:
  • the coupling-in grating is carried on the waveguide substrate for coupling light into the waveguide substrate, and the grating vector of the coupling-in grating is a first vector K1;
  • the turning grating is carried on the waveguide substrate and used to dilate the light coupled into the waveguide substrate by the coupling-in grating, wherein the grating vector of the turning grating is the second vector K2; as well as
  • the out-coupling grating is carried on the waveguide substrate for receiving the light after pupil dilation through the turning grating, and coupling the light out of the waveguide substrate
  • the grating vector of the out-coupling grating is the first Three vectors K3, wherein the first vector K1, the second vector K2 and the third vector K3 form a closed vector triangle, and when the augmented reality display device is used, the third vector K3
  • the range of the angle A between the direction and the horizontal direction X is: -45° ⁇ A ⁇ 45°.
  • a second aspect of the present application further provides an augmented reality display device, the augmented reality display device comprising:
  • the coupling-in grating is carried on the waveguide substrate for coupling light into the waveguide substrate, and the grating vector of the coupling-in grating is a first vector k1;
  • an out-coupling grating the out-coupling grating is carried on the waveguide substrate for coupling light in the waveguide substrate out of the waveguide substrate, the out-coupling grating has a second vector k2 and a third vector k3, wherein , the first vector k1, the second vector k2 and the third vector k3 form a closed vector triangle, and when the augmented reality display device is used, the relationship between the second vector k2 and the horizontal direction X The included angle between them is less than or equal to 45°, and the included angle between the third vector k3 and the horizontal direction X is less than or equal to 45°.
  • the coupling-out grating is set, so that when the augmented reality display device is used, the angle between the second vector k2 and the horizontal direction X is less than or equal to 45°, and the third The angle between the vector k3 and the horizontal direction X is less than or equal to 45°, so that the rainbow pattern when the augmented reality display device is worn can be reduced or even avoided, and damage to the user's eyes can be avoided.
  • a third aspect of the present application provides a near-eye display device, including the enhanced display display device according to any one of the second aspect and the third aspect.
  • FIG. 1 is a schematic diagram of an augmented reality display device according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of light propagation of the augmented reality display device shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of an application scenario of an augmented reality display device provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the coupling-out grating and various parameters of the present application.
  • FIG. 5 is a schematic diagram of the waveguide substrate facing the sun when the grating vector is vertically arranged.
  • FIG. 6 is a schematic diagram of the waveguide substrate tilted by 45° to face the sun when the grating vector is vertically arranged.
  • FIG. 7 is a schematic diagram when the waveguide substrate is completely facing the sun when the grating vector is vertically arranged.
  • FIG. 8 is a schematic diagram of the superposition of the vectors in FIG. 5 .
  • FIG. 9 is a schematic diagram of the superposition of the vectors in FIG. 6 .
  • FIG. 10 is a schematic diagram of the superposition of the vectors in FIG. 7 .
  • FIG. 11 is a schematic diagram of the waveguide substrate facing the sun when the grating vector is set horizontally.
  • FIG. 12 is a schematic diagram of the waveguide substrate tilted by 45° to face the sun when the grating vector is set horizontally.
  • FIG. 13 is a schematic diagram when the waveguide substrate is completely facing the sun when the grating vector is set horizontally.
  • FIG. 14 is a schematic diagram of the superposition of the vectors in FIG. 11 .
  • FIG. 15 is a schematic diagram of the superposition of the vectors in FIG. 12 .
  • FIG. 16 is a schematic diagram of the superposition of the vectors in FIG. 13 .
  • FIG. 17 is a schematic diagram of an augmented reality display device according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of light propagation of the augmented reality display device shown in FIG. 17 .
  • FIG. 19 is a schematic diagram of an augmented reality display device according to an embodiment of the present application.
  • FIG. 20 is a schematic diagram of light propagation of the augmented reality display device shown in FIG. 19 .
  • FIG. 21 is a schematic structural diagram of an outcoupling grating provided by an embodiment.
  • FIG. 22 is a schematic perspective view of an augmented reality display device according to another embodiment of the present application.
  • FIG. 23 is a side view of the augmented reality display device of FIG. 22 .
  • FIG. 24 is a schematic perspective view of an augmented reality display device according to another embodiment of the present application.
  • FIG. 25 is a side view of the augmented reality display device of FIG. 24 .
  • FIG. 26 is a schematic three-dimensional view of an augmented reality display device according to still another embodiment of the present application.
  • FIG. 27 is a side view of a partial structure of the augmented reality display device in FIG. 26 .
  • FIG. 28 is a schematic perspective view of an augmented reality display device according to still another embodiment of the present application.
  • FIG. 29 is a side view of a partial structure of the augmented reality display device in FIG. 28 .
  • FIG. 30 is a schematic diagram of an augmented reality display device according to another embodiment of the present application.
  • FIG. 31 is a schematic diagram of an augmented reality display device according to another embodiment of the present application.
  • FIG. 32 is a schematic diagram of a near-eye display device according to an embodiment of the present application.
  • FIG. 33 is a schematic diagram of a near-eye display device according to yet another embodiment of the present application.
  • FIG. 34 is a schematic diagram of an augmented reality display device according to another embodiment of the present application.
  • FIG. 35 is a schematic diagram of vector superposition in the augmented reality display device shown in FIG. 34 .
  • 36 to 39 are side views of an augmented reality display device in various embodiments.
  • FIG. 40 is a schematic diagram of an augmented reality display device according to another embodiment of the present application.
  • FIG. 41 is a schematic diagram of an augmented reality display device according to another embodiment of the present application.
  • FIG. 42 is a schematic diagram of a near-eye display device provided by yet another embodiment of the present application.
  • FIG. 43 is a schematic diagram of a near-eye display device provided by yet another embodiment of the present application.
  • FIG. 44 is a schematic diagram of a near-eye display device provided by another embodiment of the present application.
  • embodiments of the present application provide an augmented reality display device, the augmented reality display device comprising:
  • the coupling-in grating is carried on the waveguide substrate for coupling light into the waveguide substrate, and the grating vector of the coupling-in grating is a first vector K1;
  • the turning grating is carried on the waveguide substrate and used to dilate the light coupled into the waveguide substrate by the coupling-in grating, wherein the grating vector of the turning grating is the second vector K2; as well as
  • the out-coupling grating is carried on the waveguide substrate for receiving the light after pupil dilation through the turning grating, and coupling the light out of the waveguide substrate
  • the grating vector of the out-coupling grating is the first Three vectors K3, wherein the first vector K1, the second vector K2 and the third vector K3 form a closed vector triangle, and when the augmented reality display device is used, the third vector K3
  • the range of the angle A between the direction and the horizontal direction X is: -45° ⁇ A ⁇ 45°.
  • the range of the angle A between the direction of the third vector K3 and the horizontal direction X is: -30° ⁇ A ⁇ 30°.
  • the coupling-out grating includes a plurality of coupling-out units arranged at intervals and periodically arranged, and the period of the coupling-out grating is less than or equal to 450 nm.
  • the area of the outcoupling grating is a rectangle, and the side length of the rectangle satisfies:
  • d is the side length of the rectangle
  • m is the eye movement range of the user
  • l is the distance from the user's eyes to the wave guide plate
  • FOV is the field of view angle of the augmented reality display system.
  • the period of the coupling-out grating is the same as the period of the coupling-in grating.
  • the coupling-in grating and the coupling-out grating are arranged on the same side of the waveguide substrate, or arranged on opposite sides of the waveguide substrate.
  • the coupling-out grating and the waveguide substrate are integral structures.
  • the shape of the coupling-out grating is any one of blazed grating, inclined grating, binary grating, and photonic crystal.
  • the augmented reality display device further includes:
  • a polarizer the light emitted from the polarizer enters the coupling-out grating, wherein the polarization direction of the polarizer is the horizontal direction X.
  • the waveguide substrate includes an outer surface and an inner surface disposed opposite to each other, the polarizer and the outcoupling grating are both arranged on the outer surface of the waveguide substrate, and the polarizer is opposite to the outcoupling plate.
  • the grating is disposed away from the waveguide substrate.
  • the waveguide substrate includes an outer surface and an inner surface arranged opposite to each other, the polarizer is arranged on the outer surface of the waveguide substrate, and the coupling-out grating is arranged on the inner surface of the waveguide substrate.
  • the polarizer is a coated polarizer.
  • an embodiment of the present application provides an augmented reality display device, and the augmented reality display device includes:
  • the coupling-in grating is carried on the waveguide substrate for coupling light into the waveguide substrate, and the grating vector of the coupling-in grating is a first vector k1;
  • an out-coupling grating the out-coupling grating is carried on the waveguide substrate for coupling light in the waveguide substrate out of the waveguide substrate, the out-coupling grating has a second vector k2 and a third vector k3, wherein , the first vector k1, the second vector k2 and the third vector k3 form a closed vector triangle, and when the augmented reality display device is used, the relationship between the second vector k2 and the horizontal direction X The included angle between them is less than or equal to 45°, and the included angle between the third vector k3 and the horizontal direction X is less than or equal to 45°.
  • the included angle between the second vector k2 and the horizontal direction X is less than or equal to 30°
  • the included angle between the third vector k3 and the horizontal direction X is less than or equal to 30°.
  • the included angle between the second vector k2 and the horizontal direction X is equal to the included angle between the third vector k3 and the horizontal direction X.
  • the coupling-in grating and the coupling-out grating are arranged on the same side of the waveguide substrate, or arranged on opposite sides of the waveguide substrate.
  • the coupling-out grating and the waveguide substrate are integral structures.
  • the augmented reality display device further includes:
  • a polarizer the light emitted from the polarizer enters the outcoupling grating, wherein the polarization direction of the polarizer is parallel to the second vector k2, or parallel to the third vector k3, or between between the second vector k2 and the third vector k3.
  • the coupling-out grating is a three-dimensional grating with a preset pattern in the XY plane and extending in the Z direction, wherein the preset pattern is any one of a circle, a T shape, and a diamond shape.
  • embodiments of the present application provide a near-eye display device, including the augmented reality display device according to any one of the first aspect or the second aspect.
  • the near-eye display device includes:
  • a wearing frame the wearing frame has two viewing window areas arranged at intervals, and at least one viewing window area of the two viewing window areas is provided with the coupling-out grating.
  • the near-eye display device further includes:
  • the wearing frame is connected with the wearing frame
  • an image source disposed on one side of the waveguide substrate for generating light according to an image to be displayed
  • the optical lens assembly is arranged between the image source and the coupling grating, and is used to input the light into the coupling grating according to a preset rule, the image source and the optical lens At least one of the components is arranged at the connection between the wearing frame and the wearing frame.
  • first and second appearing in this application are only for the purpose of description, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as “first”, “second” may expressly or implicitly include one or more of said features. In the description of this application, the meaning of “plurality” refers to two or more, unless otherwise expressly and specifically defined.
  • FIG. 1 is a schematic diagram of an augmented reality display device according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of light propagation of the augmented reality display device shown in FIG. 1
  • the present application provides an augmented reality (Augmented Reality, AR) display device 1 .
  • the augmented reality display device 1 can be AR glasses, and can also be applied to a device with a windshield such as a car.
  • the augmented reality display device 1 will be described in detail below.
  • the augmented reality display device 1 includes a waveguide substrate 110 , an in-coupling grating 120 , a turning grating 130 and an out-coupling grating 140 .
  • the coupling grating 120 is carried on the waveguide substrate 110 for coupling light into the waveguide substrate 110 , and a grating vector of the coupling grating 120 is a first vector K1 .
  • the turning grating 130 is carried on the waveguide substrate 110 for pupil dilation of the light coupled into the waveguide substrate 110 by the coupling grating 120 , wherein a grating vector of the turning grating 130 is a second vector K2.
  • the outcoupling grating 140 is carried on the waveguide substrate 110 for receiving the light after pupil dilation through the turning grating 130 and coupling the light out of the waveguide substrate 110 .
  • the grating of the coupling out grating 140 The vector is a third vector K3, wherein the first vector K1, the second vector K2 and the third vector K3 form a closed vector triangle, and when the augmented reality display device 1 is used, the The range of the angle A between the third vector K3 and the horizontal direction X is: -45° ⁇ A ⁇ 45°.
  • the rays are represented by dashed lines in FIG. 2 .
  • the waveguide substrate 110 can be considered to be in the XY plane.
  • the horizontal direction X is in the XY plane.
  • An important application scenario of the augmented reality display device 1 of the present application is to solve the rainbow pattern effect caused by outdoor sunlight.
  • the augmented reality display device 1 is AR glasses
  • the augmented reality display device 1 is used to be worn by a user.
  • a scenario in which the augmented reality display device 1 is used is described as follows.
  • the augmented reality display device 1 is AR glasses, and the user wears the augmented reality display device 1 and stands outdoors, the augmented reality
  • the range of the angle A between the third vector K3 and the horizontal direction X in the display device 1 is: -45° ⁇ A ⁇ 45°, which can reduce or even eliminate the rainbow effect caused by outdoor sunlight.
  • the augmented reality display device 1 When the augmented reality display device 1 is applied to a device having a windshield such as a car, the augmented reality display device 1 can be arranged on the side of the windshield of the car close to the human eye.
  • the augmented reality display device 1 may be directly attached to the windshield, or may not be directly attached to the windshield, and may be arranged spaced from the windshield.
  • the user's eyes view the situation outside the car through the augmented reality display device, such as the road outside the car, pedestrians, and the like.
  • the range of the angle A between the third vector K3 and the horizontal direction X in the augmented reality display device 1 of the present application is: -45° ⁇ A ⁇ 45°, which can reduce or even eliminate the rainbow pattern caused by outdoor sunlight. effect.
  • the so-called waveguide substrate 110 also referred to as an optical waveguide substrate (optical waveguide substrate), a dielectric optical waveguide substrate, or a waveguide substrate sheet, is a medium in which light is guided to propagate.
  • Optical waveguide substrates usually include two categories: one is integrated optical waveguide substrates, including planar (thin film) dielectric optical waveguide substrates and strip-shaped dielectric optical waveguide substrates, which are usually part of optoelectronic integrated devices (or systems), so is called an integrated optical waveguide substrate; the other type is a cylindrical optical waveguide substrate, commonly referred to as an optical fiber (optical fiber).
  • the waveguide substrate 110 is a guiding structure for transmitting light (optical frequency electromagnetic waves) composed of an optically transparent medium (such as quartz glass).
  • an optically transparent medium such as quartz glass.
  • the waveguide substrate 110 in this application is also referred to as a diffractive optical waveguide substrate (Diffractive Wave guide). Because of its thinness and high penetration characteristics of external light, good color reproduction, and large field of vision (Field of Vision, FOV), it is considered to be a must-have optical solution for consumer-grade AR glasses.
  • Diffractive Wave guide Because of its thinness and high penetration characteristics of external light, good color reproduction, and large field of vision (Field of Vision, FOV), it is considered to be a must-have optical solution for consumer-grade AR glasses.
  • the waveguide substrate 110 includes an outer surface 111 (see FIG. 22 ) and an inner surface 112 (see FIG. 22 ) that are opposite to each other.
  • the outer surface 111 refers to the surface facing away from the user when the augmented reality display device 1 is used; the inner surface 112 refers to the surface close to the user when the augmented reality display device 1 is used.
  • the in-coupling grating 120 is carried on the waveguide substrate 110, including the following cases: the in-coupling grating 120 is disposed on the inner surface 112 of the waveguide substrate 110, or the in-coupling grating 120 is disposed on the waveguide substrate Outer surface 111 of 110 .
  • the process of coupling light into the waveguide substrate 110 by the coupling grating 120 is also referred to as coupling-in.
  • the so-called pupil dilation means that when the light is transmitted in the waveguide substrate 110, a part of the light is deflected through the action of the turning grating 130, while the other part of the light propagates along the original propagation direction, and the light propagating along the original propagation direction is the same as the one.
  • the turning grating 130 is subjected to multiple deflections after being acted for many times to generate multiple-path deflection rays, and this phenomenon is called pupil dilation.
  • the first vector K1 , the second vector K2 and the third vector K3 form a closed vector triangle in order to ensure that the augmented reality display device 1 can form an image.
  • the range of the angle A between the third vector K3 and the horizontal direction X is: -45° ⁇ A ⁇ 45°, which can reduce or even eliminate the rainbow effect.
  • the range of the angle A between the third vector K3 and the horizontal direction X is: -45° ⁇ A ⁇ 45°, which can reduce or even eliminate the rainbow pattern effect will be described and explained later in combination with the data.
  • the so-called augmented reality means that the light to display the image generated by the image source 180 in the augmented reality display device 1 enters the waveguide substrate 110 through the coupling-in grating 120 , and then is coupled out through the coupling-out grating 140 and exits to the human eye, and the external ambient light (For example, the light generated by outdoor sunlight and indoor lighting) can also be injected into the human eye through the coupling grating 120. Therefore, the user can view the image in the image source 180 and the image in the external environment, thereby realizing virtual reality. Combined augmented reality capabilities.
  • the coupling-in grating 120 and the coupling-out grating 140 have strong dispersion functions, the external ambient light will be dispersed into rainbow patterns by the coupling-out grating 140, which are mainly generated by -1-level reflection and -1-level transmission.
  • the -1-level reflected light cannot directly enter the human eye, so it has no effect on the user's experience, while the -1-level transmitted light may Shooting into the human eye makes the user see rainbow stripes, a phenomenon called the rainbow effect.
  • the user sees the rainbow pattern the light one will affect the user's experience, and the heavy one will hurt the user's eyes.
  • the rainbow pattern formed by the -1-level transmission can be injected into the eyes of the user wearing the augmented reality display device 1 is related to the incident angle of the external ambient light, for example, when the external ambient light is incident at 50°
  • the exit angle of the rainbow pattern formed by the -1-order transmission is too large, and the diffracted light is more likely to deviate from the observation position of the user's eyes. Appears in peripheral areas of the field of vision.
  • the exit angle of the rainbow pattern formed by the -1 order transmission is relatively small, the diffracted light is more likely to enter the human eye, and is closer to the center of the field of view, which affects the user. larger.
  • the rainbow pattern formed by the outdoor sunlight passing through the coupling-out grating 140 as external ambient light is often bright and dazzling.
  • This phenomenon directly causes the augmented reality display device 1 currently on the market. Not very good or even for outdoor use.
  • the present application mainly utilizes the principle of the superposition of the incident vector of sunlight and the vector, and converts the transmitted light of -1 level into evanescent waves or makes it deviate from the eye movement range, so as to achieve the purpose of alleviating the rainbow pattern.
  • the external ambient light is described as sunlight as an example in this application, in other embodiments, the external ambient light also includes light generated by lighting lamps and the like.
  • is the wavelength and d is the grating period. It can be known from the grating equation of formula (1) that the longer the wavelength of light, the larger the diffraction angle. Since the wavelength of blue light is smaller than that of red light, the diffraction angle of blue light is smaller than that of red light. Therefore, when the rainbow pattern appears, the blue light appears in the center of the field of view observed by the user's eyes due to the smaller diffraction angle, and the red light appears in the peripheral area of the field of view due to the larger diffraction angle.
  • FIG. 3 is a schematic diagram of an application scenario of an augmented reality display device provided by an embodiment of the present application.
  • the following is a judgment on whether the rainbow pattern can be shot into the human eye.
  • AA' is the outermost area of the outcoupling grating 140, and its length is set as d
  • BB' is the inner area of the outcoupling grating 140.
  • the waveguide substrate 110 The distance to the eye movement range is called the ocular distance, and we define its length as l.
  • the eye movement range means that the human eye can see a complete and clear field of view only when it falls on this observation area.
  • the geometric center of the default eye movement range is aligned with the geometric center of the coupling-out grating 140, and its length is defined as m. Assuming that there is a ray of light incident from point A, it is diffracted by the coupling-out grating 140 to the edge C' of the eye movement range, and the angle between the diffracted ray and the normal line is ⁇ , and the formula is obtained according to the geometric relationship:
  • FIG. 4 is a schematic diagram of the coupling-out grating and various parameters of the present application.
  • the direction of the grating vector K3 of the outcoupling grating 140 is consistent with the positive direction of the X-axis, and the angle between the plane formed by the incident direction of sunlight and the Z-axis and the X-axis It is called the azimuth angle, and the angle ⁇ between the incident direction of the sun and the Z axis is called the incident angle.
  • the schematic diagrams of the sunlight irradiating the augmented reality display device 1 are shown in FIG. 5 to FIG. 7 , and FIG. 5 to FIG. 7. It is discussed in three cases that when the waveguide substrate 110 faces the sun at different angles, so that the incident angle ⁇ and the azimuth angle of the solar light relative to the outcoupling grating 140 situation. It should be noted that the specific structure of the coupling-out grating 140 is not illustrated in FIGS. 5 to 7 .
  • FIG. 6 ie, case 2
  • the case where the waveguide substrate 110 is inclined to face the sun by 45° is illustrated, that is, the angle between the plane formed by the sunlight and the normal direction (Z axis) of the waveguide substrate 110 and the X axis is 45° , so the azimuth
  • the incident angle ⁇ of the sun's rays with respect to the coupling-out grating 140 the sun elevation angle.
  • FIG. 8 is a schematic diagram of the superposition of vectors in FIG. 5 ;
  • FIG. 9 is a schematic diagram of the superposition of vectors in FIG. 6 ;
  • FIG. 10 is a schematic diagram of the superposition of vectors in FIG. 7 .
  • the vector superposition in Figures 8 to 10 is superimposed in the k domain, where Ks is the incoming vector of the sun's rays, K3 is the grating vector of the outcoupling grating, and Kd is the outgoing vector of the sun's rays.
  • Ks is the incoming vector of the sun's rays
  • K3 is the grating vector of the outcoupling grating
  • Kd is the outgoing vector of the sun's rays.
  • the outgoing angle is also large, and the rainbow pattern produced by diffraction is more likely to deviate from the eye movement range.
  • the mode of the outgoing vector Kd is small, the rainbow pattern produced by diffraction is more likely to appear in the eye movement range, and is more likely to appear in the center of the field of view. That is to say, the longer the length of the outgoing vector Kd, the greater the influence of the rainbow pattern; the smaller the length of the outgoing vector Kd, the smaller the influence of the rainbow pattern.
  • the vector superposition of the three cases is analyzed in detail below.
  • the solar ray incident vector Ks is parallel to the grating vector K3 (ie, the third vector K3) of the coupled out grating.
  • the length of the solar ray outgoing vector Kd is the smallest, and rainbow patterns are most likely to be generated.
  • the grating vector of the outcoupling grating 140 is set vertically.
  • the period of the coupling-out grating 140 is set to 380 nm, and the diffraction angles of the diffracted light with wavelengths of 460 nm (blue light), 522 nm (green light) and 620 nm (red light) are analyzed.
  • the calculation results when the incident azimuth angle of sunlight is 0° are as follows.
  • Table 1 shows the diffraction angles of blue, green and red light at different incident angles when the sun's ray is at 0° in azimuth. It can be seen from Table 1 that when the sun elevation angle is greater than 35°, the human eye can see the blue diffracted light (ie blue light); when the sun elevation angle is greater than 50°, the human eye can see the green diffracted light (ie blue light) Green light); when the sun elevation angle is greater than 85°, the human eye can see the red diffracted light (ie red light); that is to say, as the diffraction angle gradually increases, the green light and red light also gradually is revealed, and the blue light is getting closer and closer to the center of the field of view. It is not difficult to see from Table 1 that as the incident angle increases, the rainbow pattern becomes more obvious.
  • Table 2 shows the diffraction angles of blue light, green light, and red light at different incident angles when the azimuth angle of sunlight is 45°. According to the calculation results, it can be seen that in this case, the human eye cannot observe it. Rainbow pattern.
  • the grating vector direction is parallel to the X direction.
  • the schematic diagrams of the sunlight illuminating the augmented reality display device 1 are shown in FIG. 11 to FIG. 13 .
  • the following three situations are discussed in conjunction with FIGS. 11 to 13 when the waveguide substrate 110 faces the sun at different angles. , so that the incident angle ⁇ of the sunlight relative to the coupling-out grating 140, and the azimuth angle situation.
  • Fig. 12 ie, case 2'
  • the case where the waveguide substrate 110 is tilted at 45° to face the sun that is, the angle between the plane formed by the sunlight and the normal direction (Z axis) of the waveguide substrate 110 and the X axis is 45°, so the azimuth
  • the incident angle ⁇ of the solar light coupling out relative to the grating sun elevation angle.
  • Fig. 13 ie, case 3'
  • the situation when the waveguide substrate 110 is completely facing the sun, that is, the sun's rays are in the XY plane, is illustrated, and the azimuth angle at this time is The sun elevation angle, the incident angle ⁇ 90° of the outgoing sunlight relative to the outgoing grating 140 .
  • FIG. 14 is a schematic diagram of the superposition of vectors in FIG. 11 ;
  • FIG. 15 is a schematic diagram of the superposition of vectors in FIG. 12 ;
  • FIG. 16 is a schematic diagram of the superposition of vectors in FIG. 13 .
  • the vector superposition in Figure 14 to Figure 16 is superimposed in the k domain, where Ks is the incoming vector of the sun's rays, K3 is the grating vector of the outcoupling grating, and Ks is the outgoing vector of the sun's rays.
  • Ks is the incoming vector of the sun's rays
  • K3 is the grating vector of the outcoupling grating
  • Ks is the outgoing vector of the sun's rays.
  • the outgoing angle is also large, and the rainbow pattern produced by diffraction is more likely to deviate from the eye movement range.
  • the mode of the outgoing vector Kd is small, the rainbow pattern produced by diffraction is more likely to appear in the eye movement range, and is more likely to appear in the center of the field of view. That is to say, the longer the length of the outgoing vector Kd, the greater the influence of the rainbow pattern; the smaller the length of the outgoing vector Kd, the smaller the influence of the rainbow pattern.
  • the vector superposition of the three cases is analyzed in detail below.
  • the rainbow pattern is weaker when the sun altitude angle is larger, so the influence of the rainbow pattern will be further weakened.
  • Table 1' shows the diffraction angles of blue, green and red light at different incident angles when the sun's rays are at an azimuth angle of 90°. It can be seen from Table 1' that in this case, the rainbow pattern cannot be observed by the human eye.
  • Table 2' shows the diffraction angles of blue light, green light, and red light at different incident angles when the azimuth angle of sunlight is 45°. According to the calculation results, it can be seen that in this case, the human eye cannot observe to the rainbow pattern.
  • the rainbow pattern can only be observed by the human eye when the sun's altitude angle is less than 30°. Specifically, when the sun elevation angle is less than 30°, the human eye can see blue diffracted light (ie blue light); when the sun altitude angle is less than 25°, the human eye can see green diffracted light (ie green light); When the sun elevation angle is less than 5°, the human eye can see the red diffracted light (ie, red light).
  • Table 4 summarizes the behavior of rainbow patterns in three situations when the raster vector is placed horizontally or vertically.
  • the height angle is generally less than 30° only in the morning or evening, but considering that the brightness of the sun's light is small at this time, the influence of the rainbow pattern is also weak.
  • the sun's altitude angle is larger, and the brightness of the sun's rays is higher. Therefore, the horizontal placement of the grating vector can effectively alleviate the influence of the rainbow pattern.
  • the rainbow pattern phenomenon in outdoor use can be significantly alleviated. It works best when the grating vector of the outcoupling grating 140 is placed horizontally (ie, the angle between the third vector K3 of the outcoupling grating and the horizontal direction X is 0°), even if the grating vector is placed at an angle of ⁇ 45° for the rainbow The effect of the grain on it is also much smaller than that of the vertical one.
  • the range of the angle A between the direction of the grating vector K3 coupled out of the grating 140 and the horizontal direction X is: -45° ⁇ A ⁇ 45°.
  • the embodiment of the present application utilizes the formation mechanism of the rainbow pattern, and through clever design, the -1-level transmitted light coupled out of the grating 140 deviates from the eye movement range as much as possible, thereby alleviating the rainbow pattern phenomenon.
  • the implementation of the present application will not increase the complexity of the process, nor will it affect the human eye's observation of ambient light.
  • the principle of vector superposition of light is used to make the rainbow pattern become an evanescent wave or deviate from the eye movement range as much as possible, so as to achieve The purpose of alleviating the rainbow pattern entering the human eye of the user using the augmented reality display device.
  • the range of the angle A between the direction of the third vector K3 and the horizontal direction X is: -30° ⁇ A ⁇ 30°.
  • the range of the angle A between the third vector K3 and the horizontal direction X is -30° ⁇ A ⁇ 30°, even in the morning or evening, it is difficult for rainbow patterns to appear. Therefore, when the range of the angle A between the third vector K3 and the horizontal direction X is -30° ⁇ A ⁇ 30°, the -1-level transmitted light of the coupling-out grating 140 can be more effectively deviated from the eye movement range, Thereby more effectively alleviate the phenomenon of rainbow pattern.
  • the selection of the range of the angle A between the third vector K3 and the horizontal direction X takes into account alleviation of the rainbow pattern phenomenon and imaging factors of the augmented reality display device.
  • FIG. 17 is a schematic diagram of an augmented reality display device according to an embodiment of the present application
  • FIG. 18 is a schematic diagram of light propagation of the augmented reality display device shown in FIG. 17 .
  • FIG. 17 shows a waveguide structure composed of the incoupling grating, the turning grating, the outcoupling grating and the waveguide substrate when the outcoupling grating vector is placed horizontally (ie, placed along the X direction).
  • the morphology of the coupled-in grating can be any one of blazed grating, inclined grating, binary grating, and photonic crystal.
  • the shape of the turning grating can be a binary grating or a photonic crystal or the like.
  • the morphology of the coupling-out grating can be any one of blazed grating, inclined grating, binary grating, and photonic crystal.
  • the angle between the turning grating vector (ie the second vector) K2 and the vertical direction is According to the principle of vector superposition, the outcoupling grating vector (ie, the third vector) K3 parallel to the horizontal direction can be obtained. If the angle between the coupled-out grating vector K1' and the vertical direction is an arbitrary angle ⁇ , the angle between the turning grating vector K2' and the coupled-in grating vector K1' becomes an arbitrary angle Through the superposition of the grating vectors K1' and K2', the coupling-out grating vector K3' parallel to the horizontal direction can also be obtained.
  • the angle ⁇ can take any value from -45° to +45°.
  • the counterclockwise rotation relative to the coordinate axis X is positive, and the clockwise rotation is negative. for then only need to satisfy A closed vector triangle can be formed, and the coupled-out grating vector K3' is parallel to the horizontal direction. According to the previous derivation, it can be known that the augmented reality display device with the waveguide substrate structure can effectively avoid the rainbow pattern phenomenon caused by sunlight outdoors.
  • the direction of the grating vector coupled into the grating is perpendicular to the horizontal direction X, that is, the first vector K1 is perpendicular to the horizontal direction X.
  • the angle between the first vector K1 coupled into the grating and the vertical direction Y is zero.
  • FIG. 19 is a schematic diagram of an augmented reality display device according to an embodiment of the present application
  • FIG. 20 is a schematic diagram of light propagation of the augmented reality display device shown in FIG. 19 .
  • the grating vector of the coupling-out grating in this embodiment is placed at a certain angle with the horizontal direction X. As shown in FIG.
  • FIG. 19 and FIG. 20 show the waveguide structure in which the grating vector of the outcoupling grating is arranged at an angle with the horizontal direction.
  • the morphology of the coupled-in grating can be any one of blazed grating, inclined grating, binary grating, and photonic crystal.
  • the shape of the turning grating may be a binary grating or a photonic crystal or the like.
  • the shape of the coupling-out grating can be any one of blazed grating, inclined grating, binary grating, and photonic crystal.
  • the angle between the coupled grating vector (ie the first vector) K1 and the vertical direction Y is an arbitrary angle ⁇
  • the angle between the turning grating vector (ie the second vector) K2 and the coupled grating vector K1 becomes an arbitrary angle
  • the grating vector K3 can also be obtained, and the included angle between K3 and the horizontal direction is ⁇ .
  • the angle between the coupled grating vector (ie the first vector) K1 and the vertical direction Y is an arbitrary angle ⁇ , that is, in this embodiment, the included angle between the coupled grating vector and the vertical direction Y is ⁇ .
  • the ⁇ angle can take any value from -45° to +45°, and the counterclockwise rotation relative to the coordinate axis is positive, and the clockwise rotation is negative. As shown in the figure, the alpha angle is negative and the beta angle is also negative. for then only need to satisfy A closed vector triangle can be formed, and the angle ⁇ between the coupling-out grating vector K3 and the horizontal direction is controlled within ⁇ 45°.
  • the grating vector K3 of the coupled-out grating is at a certain angle with the horizontal direction X, the performance of suppressing the rainbow pattern is not as good as the case where the coupled-out grating vector (ie, the third vector) K3 is placed completely horizontally, but it can still suppress the vast majority of The rainbow effect at angular incidence.
  • FIG. 21 is a schematic structural diagram of a coupling-out grating provided by an embodiment.
  • the coupling-out grating 140 includes a plurality of coupling-out units 141 arranged at intervals and periodically arranged, and the period of the coupling-out grating 140 is less than or equal to 450 nm.
  • the grating includes a plurality of elements arranged at intervals and periodically arranged, and the direction of the periodic arrangement of the plurality of elements is the grating vector.
  • the periodic arrangement direction of the plurality of coupling-out units 141 is the grating vector of the coupling-out grating 140 .
  • the two-dimensional grating has two grating vectors, in other words, the two-dimensional grating includes a plurality of cells arranged periodically in one direction and includes a plurality of cells arranged periodically in the other direction.
  • the one direction in which the units are periodically arranged is one grating vector
  • the other direction in which the units are periodically arranged is another grating vector.
  • one direction in which out-coupling grating units are periodically arranged in the two-dimensional grating is one grating vector
  • the other direction in which out-coupling units are periodically arranged in the two-dimensional grating is one of the other raster vectors.
  • the period of the coupling-out grating 140 is less than or equal to 450 nm, so that the influence of the rainbow pattern is weak; and the smaller the period of the coupling-out grating 140 is, the weaker the influence of the rainbow pattern is. In one embodiment, the period of the outcoupling grating 140 is equal to 380 nm.
  • the area of the outcoupling grating 140 is a rectangle, wherein the side length of the rectangle satisfies:
  • d is the side length of the rectangle
  • m is the eye movement range of the user
  • l is the distance from the user's eyes to the wave guide plate
  • FOV is the field of view angle of the augmented reality display system.
  • the period of the out-coupling grating 140 is the same as the period of the in-coupling grating 120 .
  • the period of the out-coupling grating 140 is the same as the period of the in-coupling grating 120 , so that the manufacturing process of the out-coupling grating 140 and the in-coupling grating 120 is convenient.
  • the shape of the out-coupling grating 140 is the same as that of the in-coupling grating 120 , which can also facilitate the preparation of the out-coupling grating 140 and the in-coupling grating 120 .
  • the period of the out-coupling grating 140 is the same as the period of the in-coupling grating 120
  • the shape of the out-coupling grating 140 is the same as that of the in-coupling grating 120
  • the The height of the coupling-out grating 140 is different from the height of the coupling-in grating 120 .
  • the period of the coupling-out grating 140 is the same as that of the coupling-in grating 120 , and the shape of the coupling-out grating 140 is the same as that of the coupling-in grating 120 , and the height of the coupling-out grating 140 is equal to When the heights of the coupling-in gratings 120 are different, the coupling-out gratings 140 and the coupling-in gratings 120 are a pair of conjugated systems.
  • the period of the out-coupling grating 140 and the period of the in-coupling grating 120 may also be different.
  • the topography of the outcoupling grating 140 may also be different from the topography of the incoupling grating 120 .
  • the shape of the coupling-out grating 140 there is no special requirement for the shape of the coupling-out grating 140 , and the shape of the coupling-out grating 140 may be a blazed grating, a tilted grating, a binary grating, a photon grating any of the crystals.
  • the positional relationship of the coupling-in grating 120 , the turning grating 130 , and the coupling-out grating 130 relative to the waveguide substrate 110 is described below. It should be noted that in the following figures, only the positional relationship of the out-coupling grating 120 , the turning grating 120 and the out-coupling grating 130 relative to the waveguide substrate 110 is shown, and the in-coupling grating 120 , the turning grating 120 are not shown. The topography and specific structure of the grating 130 and the coupling-out grating 140 .
  • FIG. 22 is a schematic perspective view of an augmented reality display device according to another embodiment of the present application; and FIG. 23 is a side view of the augmented reality display device in FIG. 22 .
  • the in-coupling grating 120 , the turning grating 130 and the out-coupling grating 140 are disposed on the same side of the waveguide substrate 110 and disposed on the inner surface 112 of the waveguide substrate 110 .
  • FIG. 24 is a schematic perspective view of an augmented reality display device according to another embodiment of the present application
  • FIG. 25 is a side view of the augmented reality display device in FIG. 24
  • the in-coupling grating 120 , the turning grating 130 and the out-coupling grating 140 are disposed on the same side of the waveguide substrate 110 and on the outer surface 111 of the waveguide substrate 110 .
  • FIG. 26 is a schematic perspective view of an augmented reality display device according to still another embodiment of the present application
  • FIG. 27 is a side view of a partial structure of the augmented reality display device in FIG. 26 .
  • the in-coupling grating 120 and the turning grating 130 are disposed on the same side of the waveguide substrate 110
  • the out-coupling grating 140 is disposed on the other side of the waveguide substrate 110
  • the in-coupling grating 120 and the turning grating 130 are disposed on the inner surface 112 of the waveguide substrate 110
  • the out-coupling grating 140 is disposed on the outer surface 111 of the waveguide substrate 110 .
  • FIG. 28 is a schematic perspective view of an augmented reality display device according to still another embodiment of the present application
  • FIG. 29 is a side view of a partial structure of the augmented reality display device in FIG. 28
  • the in-coupling grating 120 and the turning grating 130 are disposed on one side of the waveguide substrate 110
  • the out-coupling grating 140 is disposed on the other side of the waveguide substrate 110
  • the in-coupling grating 120 and the turning grating 130 are disposed on the outer surface 111 of the waveguide substrate 110
  • the out-coupling grating 140 is disposed on the inner surface 112 of the waveguide substrate 110 .
  • the above arrangement relationship of the in-coupling grating 120 , the turning grating 130 , the out-coupling grating 140 and the waveguide substrate 110 can make the in-coupling grating 120 , the out-coupling grating 140 and the waveguide substrate Between 110 is easier to set up. It should be noted that no matter how the incoupling grating 120 , the turning grating 130 , the outcoupling grating 140 and the waveguide substrate 110 are positioned, as long as the angle between the outcoupling grating vector and the horizontal direction is controlled All can achieve the purpose of suppressing the rainbow effect.
  • the coupling-out grating 140 and the waveguide substrate 110 are integrated into one structure.
  • the decoupling grating 140 can be formed on the substrate by imprinting technology, that is, the imprinted part of the substrate constitutes the decoupling grating 140, and the unimprinted part of the substrate forms the waveguide substrate 110, therefore, The outcoupling grating 140 is integrated with the waveguide substrate 110 .
  • the coupling grating 120 and the waveguide substrate 110 are also integrated.
  • the out-coupling grating 140 may be formed on a substrate by imprinting technology or the like, that is, the imprinted part of the substrate constitutes the in-coupling grating 120 , and the non-imprinted part of the substrate is formed as the The waveguide substrate 110 is described above, therefore, the coupling grating 120 and the waveguide substrate 110 are integrated into a structure.
  • the coupling-in grating 120 , the coupling-out grating 140 and the waveguide substrate 110 are integral structures.
  • the coupling-in grating 120 and the coupling-out grating 140 may be formed on a substrate by an imprinting technique, that is, the imprinted part of the substrate constitutes the coupling-in grating 120 and the coupling-out grating 140 140 , the unimprinted portion of the substrate is formed as the waveguide substrate 110 . Therefore, the coupling-in grating 120 , the coupling-out grating 140 and the waveguide substrate 110 are integrated into one structure.
  • FIG. 30 is a schematic diagram of an augmented reality display device provided by another embodiment of the present application.
  • the augmented reality display device 1 includes a waveguide substrate 110 , an in-coupling grating 120 and an out-coupling grating 140 .
  • the augmented reality display device 1 further includes a polarizer 150 .
  • the waveguide substrate 110 , the coupling-in grating 120 and the coupling-out grating 140 refer to the above descriptions, and are not repeated here.
  • the light emitted from the polarizer 150 enters the coupling-out grating 140 , wherein the polarization direction of the polarizer 150 is the horizontal direction X.
  • the polarization direction of the sunlight reflected by the glass in the environment is usually along the Y-axis direction.
  • Setting the polarizer 150 with the polarization direction as the horizontal direction X can filter out the reflected light that is polarized along the Y-axis direction in the environment. Further avoid rainbow patterns.
  • the waveguide substrate 110 includes an outer surface 111 and an inner surface 112 disposed opposite to each other.
  • the polarizer 150 and the coupling-out grating 140 are both disposed on the outer surface 111 of the waveguide substrate 110 , and The polarizer 150 is disposed away from the waveguide substrate 110 compared to the outcoupling grating 140 .
  • the augmented reality display device 1 further includes a protection sheet 210, and the material of the protection sheet 210 may be, but not limited to, glass, plastic, and the like.
  • the protection sheet 210 is disposed on the surface of the polarizer 150 away from the coupling-out grating 140 , and is used to protect the polarizer 150 from damage. It can be understood that, in another implementation manner, the augmented reality display device 1 may not include the protective sheet 210 .
  • the augmented reality display device 1 including the polarizer 150 and the protective sheet 210 is combined into the augmented reality display device 1 provided by the previous embodiment as an example for illustration, it can be understood that The augmented reality display device 1 including the polarizer 150 and the protection sheet 210 can also be combined into other implementations, for example, in the implementation in which the outcoupling grating 120 is located on the inner surface 112 .
  • FIG. 31 is a schematic diagram of an augmented reality display device provided by another embodiment of the present application.
  • the augmented reality display device 1 further includes a polarizer 150 .
  • the light emitted from the polarizer 150 enters the coupling-out grating 140 , wherein the polarization direction of the polarizer 150 is the horizontal direction X.
  • the waveguide substrate 110 includes an outer surface 111 and an inner surface 112 arranged opposite to each other, the polarizer 150 is arranged on the outer surface 111 of the waveguide substrate 110 , and the coupling-out grating 140 is arranged on the outer surface 111 of the waveguide substrate 110 .
  • the inner surface 112 of the waveguide substrate 110 is arranged.
  • the augmented reality display device 1 further includes a protection sheet 210, and the material of the protection sheet 210 may be, but not limited to, glass, plastic, and the like.
  • the protection sheet 210 is disposed on the surface of the polarizer 150 away from the waveguide substrate 110 , for protecting the polarizer 150 from damage. It can be understood that, in another implementation manner, the augmented reality display device 1 may not include the protective sheet 210 .
  • the polarizer 150 is a coated polarizer.
  • the polarizer 150 is a polarizer 150 formed by a coating process.
  • the polarizer 150 is a film coated on the outer surface 111 of the coupling-out grating 140 .
  • the polarizer 150 is plated on the waveguide substrate 110 .
  • the polarizer 150 is a single-piece polarizer 150 , and the polarizer 150 is bonded to the outcoupling grating 140 or the waveguide substrate 110 by a bonding member such as glue.
  • the polarizer 150 is a coated polarizer, which can make the polarizer 150 thinner and easier to manufacture.
  • FIG. 32 is a schematic diagram of a near-eye display device provided by an embodiment of the present application.
  • the near-eye display device 2 includes the augmented reality display device 1 as provided in any of the foregoing embodiments.
  • the near-eye display device 2 further includes a wearing frame 160 .
  • the wearing frame 160 has two window areas 161 arranged at intervals, and at least one window area 161 of the two window areas 161 is provided with the coupling-out grating 140 .
  • the one window area 161 can allow the human eye to see a virtual image, and the coupled-in grating 120 area itself can pass through the environment light, so that a window area 161 can realize the effect of augmented reality.
  • the two window areas 161 are both provided with the outcoupling grating 140 , the two window areas 161 can achieve the effect of augmented reality.
  • the two window regions 161 are both provided with the outcoupling grating 140 as an example for illustration.
  • FIG. 33 is a schematic diagram of a near-eye display device provided by another embodiment of the present application.
  • the near-eye display device 2 further includes a wearing frame 160 , a wearing frame 170 , an image source 180 and an optical lens assembly 190 .
  • the wearing frame 170 is connected with the wearing frame 160 .
  • the image source 180 is also referred to as a light projector.
  • the image source 180 is disposed on one side of the waveguide substrate 110 for generating light according to the image to be displayed.
  • the optical lens assembly 190 is disposed between the image source 180 and the coupling grating 120, and is used to input the light into the coupling grating 120 according to a preset rule, the image source 180 and the optical grating 120. At least one of the lens assemblies 190 is disposed at the connection between the wearing frame 160 and the wearing frame 170 .
  • the near-eye display device 2 includes a wearing frame 160 and also includes a wearing frame 170 .
  • the augmented reality display device 1 is AR glasses, and the wearing frame 170 is also called a temple.
  • the image source 180 is a device that generates images, such as a Micro-LED display device.
  • the coupling grating 120 can be disposed at the connection between the wearing frame 160 and the wearing frame 170 .
  • the side projection layout is adopted, and the image source 180 and the optical lens assembly 190 are placed at the connection between the wearing frame 160 and the wearing frame 170, and the coupling grating 120 is arranged on one side of the window area 161.
  • the two coupling gratings 120 are located on opposite sides of the two window areas 161 respectively.
  • the two coupling-in gratings 120 are allocated on opposite sides of the human eye.
  • FIG. 34 is a schematic diagram of an augmented reality display device according to another embodiment of the present application
  • FIG. 35 is a schematic diagram of vector overlay in the augmented reality display device shown in FIG. 34
  • the augmented reality display device 1 includes a waveguide substrate 110 , an in-coupling grating 120 and an out-coupling grating 140 .
  • the coupling-in grating 120 is carried on the waveguide substrate 110 for coupling light into the waveguide substrate 110, and the grating vector of the coupling-in grating 120 is the first vector k1.
  • the decoupling grating 140 is carried on the waveguide substrate 110 for coupling light in the waveguide substrate 110 out of the waveguide substrate 110, and the decoupling grating 140 has a second vector k2 and a third vector k3, Wherein, the first vector k1, the second vector k2 and the third vector k3 form a closed vector triangle, and when the augmented reality display device 1 is used, the second vector k2 and the horizontal direction
  • the included angle between X is less than or equal to 45°
  • the included angle between the third vector k3 and the horizontal direction X is less than or equal to 45°.
  • the out-coupling grating 140 has a second vector k2 and a third vector k3, so the coupling-out grating 140 is a two-dimensional grating.
  • the grating vector k1 of the coupling-in grating 120 is parallel to the horizontal direction X
  • the coupling-out grating 140 is a two-dimensional grating, so there are two-direction coupling-out grating vectors, that is, the second The vector k2 and the third vector k3, in which the angle between the second vector k2 and the horizontal direction X is denoted as ⁇ 1, and the angle between the third vector k3 and the horizontal direction X is denoted as ⁇ 2.
  • the superposition of the vectors is shown in Figure 35. line shown.
  • the angle between the second vector k2 and the horizontal direction X is less than or equal to 45°, and the third vector k3 and the horizontal direction X are at an angle less than or equal to 45°.
  • the included angle is less than or equal to 45°, which can reduce or even eliminate the rainbow effect.
  • the included angle between the second vector k2 and the horizontal direction X is less than or equal to 30°, and the included angle between the third vector k3 and the horizontal direction X is less than or equal to 30°.
  • the included angle between the second vector k2 and the horizontal direction X is less than or equal to 30°
  • the included angle between the third vector k3 and the horizontal direction X is less than or equal to 30°
  • the angle between the second vector k2 and the horizontal direction X is less than or equal to 30°
  • the angle between the third vector k3 and the horizontal direction X is less than or equal to 30°
  • the value of the included angle between the second vector k2 and the horizontal direction X, and the value of the included angle between the third vector k3 and the horizontal direction X are selected into consideration. In order to alleviate the rainbow pattern phenomenon and the imaging factors of augmented reality display devices, etc.
  • the first vector k1 , the second vector k2 and the third vector k3 form a closed vector triangle in order to ensure that the augmented reality display device 1 can form an image.
  • the included angle ⁇ 1 between the second vector k2 and the horizontal direction X is less than or equal to 45° and the included angle ⁇ 2 between the third vector k3 and the horizontal direction X is less than or equal to 45°, And the included angle ⁇ 1 between the second vector k2 and the horizontal direction X is equal to the included angle ⁇ 2 between the third vector k3 and the horizontal direction X.
  • ⁇ 1 is equal to ⁇ 2
  • the out-coupling grating 140 is easier to fabricate, the process of fabricating the out-coupling grating 140 is less difficult, and the effect of reducing rainbow patterns is better.
  • the included angle ⁇ 1 between the second vector k2 and the horizontal direction X is less than or equal to 45°
  • the included angle ⁇ 2 between the third vector k3 and the horizontal direction X is less than or equal to 45°.
  • the included angle ⁇ 1 between the second vector k2 and the horizontal direction X is not equal to the included angle ⁇ 2 between the third vector k3 and the horizontal direction X.
  • the rainbow pattern can be reduced as long as the included angle ⁇ 1 between the second vector k2 and the horizontal direction X is less than or equal to 45° and the included angle ⁇ 2 between the third vector k3 and the horizontal direction X is less than or equal to 45°.
  • the coupling-out grating 140 is a three-dimensional grating with a predetermined pattern in the XY plane and extending in the Z direction, wherein the predetermined pattern is any one of a circle, a T shape, and a diamond shape.
  • the coupling-in grating 120 and the coupling-out grating 140 are disposed on the same side of the waveguide substrate 110 , or are disposed on opposite sides of the waveguide substrate 110 . Please refer to FIG. 36 to FIG. 39 together.
  • the coupling-in grating 120 and the coupling-out grating 140 are disposed on the same side of the waveguide substrate 110 . Specifically, they are both disposed on the waveguide substrate. Outer surface 111 of 110 .
  • the coupling-in grating 120 and the coupling-out grating 140 are disposed on the same side of the waveguide substrate 110 , specifically, disposed on the inner surface 112 of the waveguide substrate 110 .
  • FIG. 36 the coupling-in grating 120 and the coupling-out grating 140 are disposed on the same side of the waveguide substrate 110 , specifically, disposed on the inner surface 112 of the waveguide substrate 110 .
  • the in-coupling grating 120 is disposed on the outer surface 111 of the waveguide substrate 110
  • the out-coupling grating 140 is disposed on the inner surface 112 of the waveguide substrate 110
  • the in-coupling grating 120 is disposed on the inner surface 112 of the waveguide substrate 110
  • the out-coupling grating 140 is disposed on the outer surface 111 of the waveguide substrate 110 .
  • the coupling-out grating 140 and the waveguide substrate 110 are integrated into one structure.
  • the decoupling grating 140 can be formed on the substrate by imprinting technology, that is, the imprinted part of the substrate constitutes the decoupling grating 140, and the unimprinted part of the substrate forms the waveguide substrate 110, therefore, The outcoupling grating 140 is integrated with the waveguide substrate 110 .
  • the coupling grating 120 and the waveguide substrate 110 are also integrated.
  • the out-coupling grating 140 may be formed on a substrate by imprinting technology or the like, that is, the imprinted part of the substrate constitutes the in-coupling grating 120 , and the non-imprinted part of the substrate is formed as the The waveguide substrate 110 is described above, therefore, the coupling grating 120 and the waveguide substrate 110 are integrated into a structure.
  • the coupling-in grating 120 , the coupling-out grating 140 and the waveguide substrate 110 are integral structures.
  • the coupling-in grating 120 and the coupling-out grating 140 may be formed on a substrate by an imprinting technique, that is, the imprinted part of the substrate constitutes the coupling-in grating 120 and the coupling-out grating 140 140 , the unimprinted portion of the substrate is formed as the waveguide substrate 110 . Therefore, the coupling-in grating 120 , the coupling-out grating 140 and the waveguide substrate 110 are integrated into one structure.
  • FIG. 40 is a schematic diagram of an augmented reality display device according to another embodiment of the present application.
  • the augmented reality display device 1 includes a waveguide substrate 110 , an in-coupling grating 120 and an out-coupling grating 140 .
  • the augmented reality display device 1 further includes a polarizer 150 .
  • the waveguide substrate 110 , the coupling-in grating 120 and the coupling-out grating 140 refer to the above descriptions, and are not repeated here.
  • the light emitted from the polarizer 150 enters the outcoupling grating 140, wherein the polarization direction of the polarizer 150 is parallel to the second vector k2, or parallel to the third vector k3, or between between the second vector k2 and the third vector k3.
  • the polarization direction of the reflected light rays reflected by the glass in the environment is usually along the Y-axis direction, and the polarization direction is set to be parallel to the second vector k2, or parallel to the third vector k3, or between. Part of the reflected light polarized along the Y-axis direction in the environment can be filtered out between the second vector k2 and the third vector k3 to further avoid rainbow patterns.
  • the waveguide substrate 110 includes an outer surface 111 and an inner surface 112 disposed opposite to each other.
  • the polarizer 150 and the coupling-out grating 140 are both disposed on the outer surface 111 of the waveguide substrate 110 , and The polarizer 150 is disposed away from the waveguide substrate 110 compared to the outcoupling grating 140 .
  • the augmented reality display device 1 further includes a protection sheet 210, and the material of the protection sheet 210 may be, but not limited to, glass, plastic, and the like.
  • the protection sheet 210 is disposed on the surface of the polarizer 150 away from the coupling-out grating 140 , and is used to protect the polarizer 150 from damage. It can be understood that, in another implementation manner, the augmented reality display device 1 may not include the protective sheet 210 .
  • FIG. 41 is a schematic diagram of an augmented reality display device provided by another embodiment of the present application.
  • the augmented reality display device 1 includes a waveguide substrate 110 , an in-coupling grating 120 and an out-coupling grating 140 .
  • the augmented reality display device 1 further includes a polarizer 150 .
  • the waveguide substrate 110 , the coupling-in grating 120 and the coupling-out grating 140 refer to the above descriptions, and are not repeated here.
  • the light emitted from the polarizer 150 enters the outcoupling grating 140, wherein the polarization direction of the polarizer 150 is parallel to the second vector k2, or parallel to the third vector k3, or between between the second vector k2 and the third vector k3.
  • the waveguide substrate 110 includes an outer surface 111 and an inner surface 112 arranged opposite to each other, the polarizer 150 is arranged on the outer surface 111 of the waveguide substrate 110 , and the coupling-out grating 140 is arranged on the inner surface of the waveguide substrate 110 112.
  • the augmented reality display device 1 further includes a protection sheet 210, and the material of the protection sheet 210 may be, but not limited to, glass, plastic, and the like.
  • the protection sheet 210 is disposed on the surface of the polarizer 150 away from the waveguide substrate 110 , for protecting the polarizer 150 from damage. It can be understood that, in another implementation manner, the augmented reality display device 1 may not include the protective sheet 210 .
  • the polarizer 150 is a coated polarizer.
  • the polarizer 150 is a polarizer formed by a coating process.
  • the polarizer 150 is a film coated on the outer surface 111 of the coupling-out grating 140 .
  • the polarizer 150 is plated on the waveguide substrate 110 .
  • the polarizer 150 is a single-piece polarizer, and the polarizer 150 is bonded to the outcoupling grating 140 or the waveguide substrate 110 by a bonding member such as glue.
  • the polarizer 150 is a coated polarizer, which can make the polarizer 150 thinner and easier to manufacture.
  • FIG. 42 is a schematic diagram of a near-eye display device provided by yet another embodiment of the present application.
  • the near-eye display device 2 includes the augmented reality display device 1 as provided in any of the foregoing embodiments.
  • the near-eye display device 2 further includes a wearing frame 160 .
  • the wearing frame 160 has two window areas 161 arranged at intervals, and at least one window area 161 of the two window areas 161 is provided with the coupling-out grating 140 .
  • the one window area 161 can allow the human eye to see a virtual image, and the coupled-in grating 120 area itself can pass through the environment light, so that a window area 161 can realize the effect of augmented reality.
  • the two window areas 161 are both provided with the outcoupling grating 140 , the two window areas 161 can achieve the effect of augmented reality.
  • the two window regions 161 are both provided with the outcoupling grating 140 as an example.
  • FIG. 43 is a schematic diagram of a near-eye display device provided by yet another embodiment of the present application.
  • the near-eye display device 2 includes the augmented reality display device 1 as provided in any of the foregoing embodiments.
  • the near-eye display device 2 further includes a wearing frame 160 , a wearing frame 170 , an image source 180 and an optical lens assembly 190 .
  • the wearing frame 170 is connected with the wearing frame 160 .
  • the image source 180 is disposed on one side of the waveguide substrate 110 for generating light according to the image to be displayed.
  • the optical lens assembly 190 is disposed between the image source 180 and the coupling grating 120, and is used to input the light into the coupling grating 120 according to a preset rule, the image source 180 and the optical grating 120. At least one of the lens assemblies 190 is disposed at the connection between the wearing frame 160 and the wearing frame 170 .
  • the near-eye display device 2 further includes a wearing frame 160 and a wearing frame 170, specifically, AR glasses.
  • the micro-image source is an image-generating device, such as a Micro-LED display device.
  • the coupling The input grating 120 is disposed at the connection between the wearing frame 160 and the wearing frame 170 .
  • the side projection layout is adopted, and the image source 180 and the optical lens assembly 190 are placed at the connection between the wearing frame 160 and the wearing frame 170, and the coupling grating 120 is arranged on one side of the window area 161.
  • the near-eye display device 1 has two window areas 161
  • the two coupling gratings 120 are located on opposite sides of the two window areas 161 respectively.
  • the two coupling-in gratings 120 are allocated on opposite sides of the human eye.
  • the augmented reality display device 1 may be disposed on the windshield of a car, for example, the augmented reality display device 1 may be disposed on the side of the windshield of the car close to the human eye.
  • the augmented reality display device 1 may be directly attached to the windshield, or may not be directly attached to the windshield, and may be arranged spaced from the windshield.
  • FIG. 44 is a schematic diagram of a near-eye display device provided by another embodiment of the present application.
  • the near-eye display device 2 further includes a camera 230 , an environmental sensor 240 , a processor 250 , and a battery 260 .
  • the image source 180 , the camera 230 , and the environmental sensor 240 are all electrically connected to the processor 250 for working under the control of the processor 250 .
  • the camera 230 is used to collect video data
  • the environment sensor 240 is used to detect the surrounding environment.
  • the battery 260 is used to power the image source 180 , the camera 230 , and the environment sensor 240 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种增强现实显示装置及近眼显示设备,增强现实显示装置包括波导基底(110)、耦入光栅(120)、转折光栅(130)以及耦出光栅(140),耦入光栅(120)将光线耦入波导基底(110)内,耦入光栅(120)的光栅矢量为第一矢量K1,转折光栅(130)将耦入波导基底(110)内的光线进行扩瞳,转折光栅(130)的光栅矢量为第二矢量K2,耦出光栅(140)接收经由转折光栅(130)扩瞳后的光线,并将光线耦出波导基底(110),耦出光栅(140)的光栅矢量为第三矢量K3,其中,K1、K2及K3构成密闭的矢量三角形,且当增强现实显示装置被使用时,K3的方向与水平方向X之间的角度A的范围为:-45°≤A≤45°,可减小甚至避免彩虹纹现象。

Description

增强现实显示装置及近眼显示设备 技术领域
本申请涉及增强现实显示技术领域,具体涉及一种增强现实显示装置及近眼显示设备。
背景技术
随着技术的发展,增强现实(Augmented Reality,AR)显示装置,比如AR眼镜,既能看到外部真实的世界也需要看到虚拟的图像。真实场景和虚拟信息融合为一体,相互补强,相互“增强”。然,当用户使用增强现实显示装置时,比如,佩戴所述AR眼镜时,外部环境光线会被色散成彩虹纹,射入人眼,使用户看到彩虹条纹,这种现象称为彩虹纹效应。当用户看到彩虹纹时,轻者会影响用户的使用体验,重者会伤害用户的眼睛。
发明内容
本申请第一方面提供了一种增强现实显示装置,所述增强现实显示装置包括:
波导基底;
耦入光栅,所述耦入光栅承载于所述波导基底,用于将光线耦入所述波导基底内,且所述耦入光栅的光栅矢量为第一矢量K1;
转折光栅,所述转折光栅承载于所述波导基底,用于将所述耦入光栅耦入所述波导基底内的光线进行扩瞳,其中,所述转折光栅的光栅矢量为第二矢量K2;以及
耦出光栅,所述耦出光栅承载于所述波导基底,用于接收经由所述转折光栅扩瞳后的光线,并将光线耦出所述波导基底,所述耦出光栅的光栅矢量为第三矢量K3,其中,所述第一矢量K1、所述第二矢量K2及所述第三矢量K3构成密闭的矢量三角形,且当所述增强现实显示装置被使用时,所述第三矢量K3的方向与水平方向X之间的角度A的范围为:-45°≤A≤45°。
本申请第二方面还提供了一种增强现实显示装置,所述增强现实显示装置包括:
波导基底;
耦入光栅,所述耦入光栅承载于所述波导基底,用于将光线耦入所述波导基底内,且所述耦入光栅的光栅矢量为第一矢量k1;
耦出光栅,所述耦出光栅承载于所述波导基底,用于将所述波导基底内的光线耦出所述波导基底,所述耦出光栅具有第二矢量k2及第三矢量k3,其中,所述第一矢量k1、所述第二矢量k2及所述第三矢量k3构成密闭的矢量三角形,且当所述增强现实显示装置被使用时,所述第二矢量k2与水平方向X之间的夹角小于或等于45°,且所述第三矢量k3与水平方向X之间的夹角小于或等于45°。
本申请的增强现实显示装置通过设置耦出光栅,使得所述增强现实显示装置被使用时,所述第二矢量k2与水平方向X之间的夹角小于或等于45°,且所述第三矢量k3与水平方向X之间的夹角小于或等于45°,从而可减小甚至避免所述增强现实显示装置被佩戴时的彩虹纹,避免对用户眼睛的伤害。
本申请第三方面提供了一种近眼显示设备,包括如第二方面及第三方面任意一项所述的增强显示显示装置。
附图说明
图1为本申请一实施方式提供的增强现实显示装置的示意图。
图2为图1中所示的增强现实显示装置的光线传播示意图。
图3为本申请一实施方式提供的增强现实显示装置的应用场景示意图。
图4为本申请的耦出光栅及各个参数的示意图。
图5为光栅矢量竖直设置时波导基底正对太阳时的示意图。
图6为光栅矢量竖直设置时波导基底倾斜45°对向太阳的示意图。
图7为光栅矢量竖直设置时波导基底完全侧对太阳时的示意图。
图8为图5中的矢量叠加情况示意图。
图9为图6中的矢量叠加情况示意图。
图10为图7中的矢量叠加情况示意图。
图11为光栅矢量水平设置时波导基底正对太阳时的示意图。
图12为光栅矢量水平设置时波导基底倾斜45°对向太阳的示意图。
图13为光栅矢量水平设置时波导基底完全侧对太阳时的示意图。
图14为图11中的矢量叠加情况示意图。
图15为图12中的矢量叠加情况示意图。
图16为图13中的矢量叠加情况示意图。
图17为本申请一实施方式提供的增强现实显示装置的示意图。
图18为图17中所示的增强现实显示装置的光线传播示意图。
图19为本申请一实施方式提供的增强现实显示装置的示意图。
图20为图19中所示的增强现实显示装置的光线传播示意图。
图21为一实施方式提供的耦出光栅的结构示意图。
图22为本申请另一实施方式提供的增强现实显示装置的立体示意图。
图23为图22中的增强现实显示装置的侧视图。
图24为本申请又一实施方式提供的增强现实显示装置的立体示意图。
图25为图24中的增强现实显示装置的侧视图。
图26为本申请再一实施方式提供的增强现实显示装置的立体示意图。
图27为图26中的增强现实显示装置的部分结构的侧视图。
图28为本申请再一实施方式提供的增强现实显示装置的立体示意图。
图29为图28中的增强现实显示装置的部分结构的侧视图。
图30为本申请另一实施方式提供的增强现实显示装置的示意图。
图31为本申请又一实施方式提供的增强现实显示装置的示意图。
图32为本申请一实施方式提供的近眼显示设备的示意图。
图33为本申请又一实施方式提供的近眼显示设备的示意图。
图34为本申请又一实施方式提供的增强现实显示装置的示意图。
图35为图34所示的增强现实显示装置中的矢量叠加示意图。
图36至图39为各个实施方式中增强现实显示装置的侧视图。
图40为本申请另一实施方式提供的增强现实显示装置的示意图。
图41为本申请又一实施方式提供的增强现实显示装置的示意图。
图42为本申请又一实施方式提供的近眼显示设备的示意图。
图43为本申请又一实施方式提供的近眼显示设备的示意图。
图44为本申请另一实施方式提供的近眼显示设备的示意图。
具体实施方式
第一方面,本申请实施方式提供一种增强现实显示装置,所述增强现实显示装置包括:
波导基底;
耦入光栅,所述耦入光栅承载于所述波导基底,用于将光线耦入所述波导基底内,且所述耦入光栅的光 栅矢量为第一矢量K1;
转折光栅,所述转折光栅承载于所述波导基底,用于将所述耦入光栅耦入所述波导基底内的光线进行扩瞳,其中,所述转折光栅的光栅矢量为第二矢量K2;以及
耦出光栅,所述耦出光栅承载于所述波导基底,用于接收经由所述转折光栅扩瞳后的光线,并将光线耦出所述波导基底,所述耦出光栅的光栅矢量为第三矢量K3,其中,所述第一矢量K1、所述第二矢量K2及所述第三矢量K3构成密闭的矢量三角形,且当所述增强现实显示装置被使用时,所述第三矢量K3的方向与水平方向X之间的角度A的范围为:-45°≤A≤45°。
其中,所述第三矢量K3的方向与水平方向X之间的角度A的范围为:-30°≤A≤30°。
其中,所述耦出光栅包括间隔设置且周期性排布的多个耦出单元,所述耦出光栅的周期小于或等于450nm。
其中,所述耦出光栅的区域为矩形,其中,矩形的边长满足:
d=m+l*tan(FOV/2)*2
其中,d为矩形的边长,m为用户眼动范围,l为用户眼睛到导波片的距离,FOV是所述增强现实显示系统的视场角。
其中,所述耦出光栅的周期与所述耦入光栅的周期相同。
其中,所述耦入光栅和所述耦出光栅设置于所述波导基底的同一侧,或者设置于所述波导基底相对的两侧。
其中,所述耦出光栅和所述波导基底为一体结构。
其中,所述耦出光栅的形貌为闪耀光栅,倾斜光栅,二元光栅,光子晶体中的任意一种。
其中,所述增强现实显示装置还包括:
偏振片,所述偏振片出射的光线进入到所述耦出光栅中,其中,所述偏振片的偏振方向为水平方向X。
其中,所述波导基底包括相背设置的外表面及内表面,所述偏振片及所述耦出光栅均设置在所述波导基底的外表面,且所述偏振片相较于所述耦出光栅背离所述波导基底设置。
其中,所述波导基底包括相背设置的外表面及内表面,所述偏振片设置于所波导基底的外表面,所述耦出光栅设置在所述波导基底的内表面。
其中,所述偏振片为镀膜偏振片。
第二方面,本申请实施方提供一种增强现实显示装置,所述增强现实显示装置包括:
波导基底;
耦入光栅,所述耦入光栅承载于所述波导基底,用于将光线耦入所述波导基底内,且所述耦入光栅的光栅矢量为第一矢量k1;
耦出光栅,所述耦出光栅承载于所述波导基底,用于将所述波导基底内的光线耦出所述波导基底,所述耦出光栅具有第二矢量k2及第三矢量k3,其中,所述第一矢量k1、所述第二矢量k2及所述第三矢量k3构成密闭的矢量三角形,且当所述增强现实显示装置被使用时,所述第二矢量k2与水平方向X之间的夹角小于或等于45°,且所述第三矢量k3与水平方向X之间的夹角小于或等于45°。
其中,所述第二矢量k2与水平方向X之间的夹角小于或等于30°,且所述第三矢量k3与水平方向X之间的夹角小于或等于30°。
其中,所述第二矢量k2与水平方向X之间的夹角等于所述第三矢量k3与水平方向X之间的夹角。
其中,所述耦入光栅和所述耦出光栅设置于所述波导基底的同一侧,或者设置于所述波导基底相对的两侧。
其中,所述耦出光栅和所述波导基底为一体结构。
其中,所述增强现实显示装置还包括:
偏振片,所述偏振片出射的光线进入到所述耦出光栅中,其中,所述偏振片的偏振方向与所述第二矢量k2平行,或者与所述第三矢量k3平行,或者介于所述第二矢量k2与所述第三矢量k3之间。
其中,所述耦出光栅为在XY平面内的预设图形且在Z方向延伸的立体光栅,其中,所述预设图形为圆形、T形、菱形中的任意一种。
第三方面,本申请实施方式提供一种近眼显示设备,包括第一方面或第二方面中任意一项所述的增强现实显示装置。
其中,所述近眼显示设备包括:
佩戴框,所述佩戴框具有间隔设置的两个视窗区,所述两个视窗区的至少一个视窗区设置有所述耦出光栅。
其中,所述近眼显示设备还包括:
佩戴架,所述佩戴架与所述佩戴框相连;
图像源,所述图像源设置于所述波导基底的一侧,用于根据所要显示的图像产生光线;及
光学透镜组件,所述光学透镜组件设置于所述图像源与所述耦入光栅之间,用于将所述光线按照预设规律投入所述耦入光栅,所述图像源及所述光学透镜组件中的至少一个设置于所述佩戴框连接所述佩戴架的连接处。
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整的描述,显然,所描述的实施方式仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
需要说明的是,在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请中出现的术语“第一”、“第二”仅仅用于描述的目的,而不能理解为指示或者暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是指两个或两个以上,除非另有明确具体的限定。
请一并参阅图1及图2,图1为本申请一实施方式提供的增强现实显示装置的示意图;图2为图1中所示的增强现实显示装置的光线传播示意图。本申请提供了一种增强现实(Augmented Reality,AR)显示装置1。所述增强现实显示装置1可以为AR眼镜,也可以应用在汽车等具有挡风玻璃的设备上。下面对所述增强现实显示装置1进行详细介绍。所述增强现实显示装置1包括波导基底110、耦入光栅120、转折光栅130及耦出光栅140。所述耦入光栅120承载于所述波导基底110,用于将光线耦入所述波导基底110内,且所述耦入光栅120的光栅矢量为第一矢量K1。所述转折光栅130承载于所述波导基底110,用于将所述耦入光栅120耦入所述波导基底110内的光线进行扩瞳,其中,所述转折光栅130的光栅矢量为第二矢量K2。所述耦出光栅140承载于所述波导基底110,用于接收经由所述转折光栅130扩瞳后的光线,并将所述光线耦出所述波导基底110,所述耦出光栅140的光栅矢量为第三矢量K3,其中,所述第一矢量K1、所述第二矢量K2及所述第三矢量K3构成密闭的矢量三角形,且当所述增强现实显示装置1被使用时,所述第三矢量K3与水平方向X之间的角度A的范围为:-45°≤A≤45°。
在图2中以虚线表示光线。当所述增强现实显示装置1被使用时,可认为所述波导基底110在XY平面内。水平方向X在XY平面内。
下面对增强现实显示装置1的一些应用场景进行描述。本申请的增强现实显示装置1一种重要的应用场景为解决室外太阳光线产生的彩虹纹效应。当所述增强现实显示装置1为AR眼镜时,所述增强现实显示装置1被使用为被用户佩戴使用。所述增强现实显示装置1被使用的一种场景描述如下,当所述增强现实显示装置1为AR眼镜时,用户佩戴所述增强现实显示装置1,且站立于室外时,本申请的增强现实显示装置1中的所述第三矢量K3与水平方向X之间的角度A的范围为:-45°≤A≤45°,可减少甚至消除室外的太阳光产生的彩虹纹效应。
当所述增强现实显示装置1应用在汽车等具有挡风玻璃的设备上,所述增强现实显示装置1可设 置于汽车的挡风玻璃靠近人眼的一侧。所述增强现实显示装置1可直接贴附于挡风玻璃上,也可不直接贴附于挡风玻璃,与挡风玻璃间隔设置。用户的眼睛通过所述增强现实显示装置来观看汽车外部的情况,比如,汽车外部的道路、行人等。本申请的增强现实显示装置1中的所述第三矢量K3与水平方向X之间的角度A的范围为:-45°≤A≤45°,可减少甚至消除室外的太阳光产生的彩虹纹效应。
所谓波导基底110,也称为光波导基底(optical wave guide)、介质光波导基底、或波导基底片,是引导光线在其中传播的介质。光波导基底通常包括两大类:一类是集成光波导基底,包括平面(薄膜)介质光波导基底和条形介质光波导基底,它们通常都是光电集成器件(或系统)中的一部分,所以叫作集成光波导基底;另一类是圆柱形光波导基底,通常称为光纤(光学纤维)。通常情况下,波导基底110由光透明介质(如石英玻璃)构成的传输光线(光频电磁波)的导行结构。光线在波导基底110内传输时,会在光波导基底110内发生全反射,使得光线被限制在波导基底110内传播。
本申请中的波导基底110,也称为衍射光波导基底(Diffractive Wave guide)。因其轻薄和外界光线的高穿透特性,色彩还原性好,视场角(Field of Vision,FOV)大而被认为是消费级AR眼镜的必选光学方案。
所述波导基底110包括相背设置的外表面111(见图22)及内表面112(见图22)。所谓外表面111,是指,在所述增强现实显示装置1被使用时背离用户的表面;所谓内表面112,是指,在所述增强现实显示装置1被使用时靠近用户的表面。
所述耦入光栅120承载于所述波导基底110,包括如下情况:所述耦入光栅120设置于所述波导基底110的内表面112,或者,所述耦入光栅120设置于所述波导基底110的外表面111。所述耦入光栅120将光线耦入所述波导基底110内的过程也称为光耦合入(couple-in)。
所谓扩瞳,是指,光线在波导基底110里进行传输时,经过所述转折光栅130的作用,一部分光线偏转,而另外一部分光线沿原来的传播方向传播,沿原来的传播方向传播的光线与所述转折光栅130多次作用后发生多次偏转,而产生多路偏转光线,这种现象称为扩瞳。
在本实施方式中,所述第一矢量K1、所述第二矢量K2及所述第三矢量K3构成密闭的矢量三角形是为了确保所述增强现实显示装置1能够形成图像。
所述第三矢量K3与水平方向X之间的角度A的范围为:-45°≤A≤45°可减少甚至消除彩虹纹效应。稍后将结合数据对第三矢量K3与水平方向X之间的角度A的范围为:-45°≤A≤45°可减少甚至消除彩虹纹效应进行说明和解释。
所谓增强现实是指,增强现实显示装置1中的图像源180产生的要显示图像的光线过耦入光栅120进入波导基底110,再经过耦出光栅140耦出而出射至人眼,外部环境光线(比如,户外太阳光、室内照明灯产生的光线)也可以透过耦入光栅120射入人眼,因此,用户可观看到图像源180中的图像以及外部环境中的图像,由此实现虚实结合的增强现实功能。然,因为耦入光栅120及耦出光栅140均具有很强的色散功能,外部环境光线会被耦出光栅140色散成彩虹纹,并且主要通过-1级反射和-1级透射产生,当用户使用所述增强现实显示装置1时,比如,用户佩戴增强现实显示装置1时,那么,-1级反射光线直接无法进入人眼,因此对用户的使用体验没有影响,而-1级透射光线可能射入人眼,使用户看到彩虹条纹,这种现象称为彩虹纹效应。当用户看到彩虹纹时,轻者会影响用户的使用体验,重者会伤害用户的眼睛。需要说明的是,经-1级透射所形成的彩虹纹能否射入佩戴所述增强现实显示装置1的用户眼睛中与外部环境光线的入射角度有关,比如,当外部环境光线以50°入射耦出光栅140时,-1级透射所形成的彩虹纹出射角度偏大,衍射光线更容易偏离用户的眼睛的观测位置,即使射入用户的眼睛中,由于其衍射角度偏大,彩虹纹也会出现在视野偏外围的区域。当外部环境光线以80°入射耦入光栅120时,-1级透射所形成的彩虹纹出射角偏小,衍射光线更容易射入人眼,且更接近于视场中心位置,对用户的影响较大。
当用户在户外使用所述增强现实显示装置1时,户外的太阳光作为外部环境光线经过耦出光栅140所形成的彩虹纹往往明亮刺眼,这个现象直接导致目前所市面上的增强现实显示装置1不能很好地甚至无法在户外使用。本申请主要利用太阳光入射矢量与矢量叠加的原理,将-1级透射的光线转化为倏逝波或使其偏离眼动范围外,从而实现缓解彩虹纹的目的。可以理解地,虽然在本申请中以外部环境光为 太阳光为例进行介绍,在其他实施方式中,所述外部环境光线还包括照明灯等产生的光线。
此外,根据光栅方程:
θ 衍射=sin -1(sin(θ 入射)-λ/d)      (公式1)
其中,λ为波长,d为光栅周期。由公式(1)光栅方程可得知,光线的波长越长,衍射角度也越大。由于蓝光的波长小于红光的波长,因此,蓝光的衍射角度小于红光的衍射角度。故而,当彩虹纹出现时,蓝色的光线由于衍射角度较小,则出现在偏用户的眼睛观察的视场中心,红色的光线由于衍射角度更大,出现在视场的外围区域。
请参阅图3,图3为本申请一实施方式提供的增强现实显示装置的应用场景示意图。下面对彩虹纹能否射入人眼进行判断。如本示意图所示,AA’为耦出光栅140的最外围区域,设定它的长度为d,BB’为耦出光栅140的内部区域,当增强现实显示装置1被佩戴时,波导基底110到眼动范围的距离我们称之为眼视距离,并定义它的长度为l。眼动范围是指人眼只有落在这个观测区域就可以看到完整且清晰的视场,默认眼动范围的几何中心与耦出光栅140的几何中心对齐,并定义它的长度为m。假设有一束光线从A点入射,经过耦出光栅140衍射至眼动范围的边缘C'处,衍射光线与法线之间的夹角为θ,根据几何关系得出公式:
Figure PCTCN2022071839-appb-000001
从图3中不难看出,当光线的衍射角度大于θ时,光线会因射出衍射范围外而无法被人眼观察到,当光线的衍射角度小于θ时,光线会因射入眼动范围内而被人眼捕获。综上所述,当θ越小时,彩虹纹就越难射入人眼,因此它对用户体验的影响将越小,当θ越大时,彩虹纹效应将会变得更为明显。也就是说,在保持眼动范围和眼视距离不变的基础上,耦出光栅140的区域越小或者耦出光栅140的周期越小,彩虹纹的影响将越弱。最后,可以通过几何关系推导出FOV,耦出光栅140大小d,眼动范围大小m之间的关系:
d=m+l*tan(FOV/2)*2       (公式3)
在深入讲解本申请的技术原理前,首先讲解一下光栅衍射中常见的几个变量。请参阅图4,图4为本申请的耦出光栅及各个参数的示意图。如本实施方式的示意图所示,所述耦出光栅140的光栅矢量K3的方向与X轴的正方向一致,太阳光入射方向与Z轴所构成的平面与X轴的夹角
Figure PCTCN2022071839-appb-000002
称之为方位角,太阳入射方向与Z轴之间的夹角θ称之为入射角。
当耦出光栅140光栅矢量在竖直方向时(即光栅矢量方向与Y方向平行),太阳光线照射至增强现实显示装置1时的示意图如图5至图7所示,下面结合图5至图7分三种情形论述当波导基底110以不同角度对着太阳时,进而使得太阳光线相对耦出光栅140的入射角度θ,以及方位角
Figure PCTCN2022071839-appb-000003
的情形。需要说明的是,在图5至图7中未示意出所述耦出光栅140的具体结构。
图5中(即,情形1)示意了波导基底110正对太阳时的情况,即太阳光线位于XZ平面,此时的方位角
Figure PCTCN2022071839-appb-000004
太阳光线相对于耦出光栅140的入射角度θ等于太阳高度角。
图6中(即,情形2)示意了波导基底110倾斜45°对向太阳的情况,即太阳光线与波导基底110的法线方向(Z轴)所构成平面与X轴的夹角为45°,因此方位角
Figure PCTCN2022071839-appb-000005
太阳光线相对于耦出光栅 140的入射角度θ=太阳高度角。
图7中(情形3)示意了波导基底110完全侧对太阳时的情况,即太阳光线处于XY平面,此时的方位角
Figure PCTCN2022071839-appb-000006
太阳高度角,太阳光线相对于耦出光栅140的入射角度θ=90°。
请一并参阅图8至图10,图8为图5中的矢量叠加情况示意图;图9为图6中的矢量叠加情况示意图;图10为图7中的矢量叠加情况示意图。需要说明的是,图8至图10中的矢量叠加是在k域进行叠加的,其中,Ks是太阳光线的入射矢量,K3是耦出光栅的光栅矢量,Kd是太阳光线的出射矢量。太阳光线入射角度或衍射角度越大时,其对应的入射矢量Ks的模将会越大。当出射矢量Kd的模较大时,其出射角度也会较大,衍射所产生的彩虹纹更容易偏离眼动范围。当出射矢量Kd的模较小时,衍射所产生的彩虹纹更容易出现在眼动范围内,且更容易出现在视场中心位置。也就是说出射矢量Kd的长度越大,彩虹纹的影响将会更甚;出射矢量Kd的长度越小,彩虹纹的影响将会更小。下面对三种情形的矢量叠加情况进行了详细分析。
对于情形1,由于方位角
Figure PCTCN2022071839-appb-000007
为0°,即太阳光线入射矢量Ks和耦出光栅的光栅矢量K3(即第三矢量K3)平行,此时太阳光线的出射矢量Kd的长度最小,最容易产生彩虹纹。
对于情形2,其方位角
Figure PCTCN2022071839-appb-000008
为45°,太阳光线的出射矢量Kd的长度较情形1更长,因此彩虹纹的影响将会减弱。
对于情形3,其方位角
Figure PCTCN2022071839-appb-000009
相对更大,因此彩虹纹的影响将会进一步减弱。根据计算我们可以得到出射矢量的模与方位角的计算关系如下:
Figure PCTCN2022071839-appb-000010
从公式(4)中可看出,方位角
Figure PCTCN2022071839-appb-000011
越趋近与90°时,增强现实显示装置1越难产生彩虹纹。
下面将对耦出光栅140的光栅矢量竖直设置时的情况进行详细的计算。首先根据公式(2)计算可得到当经耦出光栅140的-1级透射光线的衍射角度大于40°时,将偏离眼动范围之外,因此无法被人眼捕捉。设定耦出光栅140的周期为380nm,对衍射光中波长为460nm(蓝光),522nm(绿光),620nm(红光)的光线衍射角度进行分析。对于情形1,太阳光的入射方位角为0°时的计算结果如下表。
表1
Figure PCTCN2022071839-appb-000012
Figure PCTCN2022071839-appb-000013
表1中展示了当太阳光线在方位角为0°时在不同的入射角度下的蓝光、绿光及红光的衍射角度。由表1中可见,当太阳高度角大于35°时,人眼就可以看见蓝色的衍射光线(即蓝光);当太阳高度角大于50°时,人眼就可以看见绿色的衍射光线(即绿光);当太阳高度角大于85°时,人眼就可以看见红色的衍射光线(即红光);也就是说,随着衍射角度的逐渐增大,绿色的光线和红色的光线也逐渐展现出来,并且蓝色的光线越来越接近视场中心。从表1中不难看出,随着入射角度的增加,彩虹纹现象变的更加明显。
对于情形2,太阳光的入射方位角为
Figure PCTCN2022071839-appb-000014
时的计算结果如表2所示。
表2
Figure PCTCN2022071839-appb-000015
表2中展示了当太阳光线在方位角为45°时在不同的入射角度下的蓝光、绿光、及红光的衍射角度,根据计算结果可见,在这种情况下,人眼无法观察到彩虹纹。
对于情形3,太阳光的入射方位角为
Figure PCTCN2022071839-appb-000016
太阳高度角时的计算结果如表3所示。
表3
Figure PCTCN2022071839-appb-000017
从表3中的计算结果可以看出,情形3中彩虹纹计算的结果与情形1一样。当太阳高度角大于35°时,人眼就可以看见蓝色的衍射光线(即蓝光);当太阳高度角大于50°时,人眼就可以看见绿色的衍射光线(即绿光);当太阳高度角大于85°时,人眼就可以看见红色的衍射光线(即红光);也就是说,随着衍射角度的逐渐增大,绿色的光线和红色的光线也逐渐展现出来,并且蓝色的光线越来越接近视场中心。从表3中不难看出,随着入射角度的增加,彩虹纹现象变的更加明显。
下面对光栅矢量在水平方向(光栅矢量方向与X方向平行)时的情况进行介绍。当光栅矢量在水平方向时,太阳光线照射增强现实显示装置1时的示意图如图11至图13所示,下面结合图11至图13分三种情形论述当波导基底110以不同角度对着太阳时,进而使得太阳光线相对耦出光栅140的入射角度θ,以及方位角
Figure PCTCN2022071839-appb-000018
的情形。
图11中(即,情形1’),示意了波导基底110正对太阳时的情况,即太阳光线位于XZ平面,此时的方位角
Figure PCTCN2022071839-appb-000019
太阳光线相对于耦出光栅140的入射角度θ=太阳高度角。
图12中(即,情形2’),示意了波导基底110片倾斜45°对向太阳的情况,即太阳光线与波导基底110法线方向(Z轴)所构成平面与X轴的夹角为45°,因此方位角
Figure PCTCN2022071839-appb-000020
太阳光耦出相对于光栅的入射角度θ=太阳高度角。
图13中(即,情形3’),示意了波导基底110完全侧对太阳时的情况,即太阳光线处于XY平面,此时的方位角
Figure PCTCN2022071839-appb-000021
太阳高度角,太阳光耦出相对于耦出光栅140的入射角度θ=90°。
请一并参阅图14至图16,图14为图11中的矢量叠加情况示意图;图15为图12中的矢量叠加情况示意图;图16为图13中的矢量叠加情况示意图。需要说明的是,图14至图16中的矢量叠加是在k域进行叠加的,其中,Ks是太阳光线的入射矢量,K3是耦出光栅的光栅矢量,Ks是太阳光线的出射矢量。太阳光线入射角度或衍射角度越大时,其对应的入射矢量Ks的模将会越大。当出射矢量Kd的模较大时,其出射角度也会较大,衍射所产生的彩虹纹更容易偏离眼动范围。当出射矢量Kd的模较小时,衍射所产生的彩虹纹更容易出现在眼动范围内,且更容易出现在视场中心位置。也就是说出射矢量Kd的长度越大,彩虹纹的影响将会更甚;出射矢量Kd的长度越小,彩虹纹的影响将会更小。下面对三种情形的矢量叠加情况进行了详细分析。
对于情形1’,由于方位角
Figure PCTCN2022071839-appb-000022
为90°,即太阳光线的入射矢量Ks和耦出光栅的光栅矢量K3(即第三矢量K3)垂直,此时太阳光线的出射矢量Kd的长度最大,最不容易产生彩虹纹。
对于情形2’,其方位角
Figure PCTCN2022071839-appb-000023
为45°,太阳光线的出射矢量Kd的长度较情形1更长,因此彩虹纹的影响将会减弱。
对于情形3’,其方位角
Figure PCTCN2022071839-appb-000024
与太阳高度角相关,当太阳高度角越大时彩虹纹越弱,因此彩虹纹的影响将会进一步减弱。
下面将对光栅矢量水平设置时的情况进行详细的计算。根据公式(2)计算可得到当经耦出光栅140的-1级透射光线的衍射角度大于40°时,将偏离眼动范围之外,因此无法被人眼捕捉。设定耦出光栅140的周期为380nm,对衍射光中波长为460nm(蓝光),522nm(绿光),620nm(红光)的光线衍射角度进行分析。对于情形1’,太阳光的入射方位角为0°时的计算结果如下表。
表1’
Figure PCTCN2022071839-appb-000025
Figure PCTCN2022071839-appb-000026
表1’中展示了当太阳光线在方位角为90°时在不同的入射角度下的蓝光、绿光及红光的衍射角度。由表1’可见,在这种情况下,人眼无法观察到彩虹纹。
对于情形2’,太阳光线的入射方位角为
Figure PCTCN2022071839-appb-000027
时的计算结果如表2’所示。
表2’
Figure PCTCN2022071839-appb-000028
表2’中展示了当太阳光线在方位角为45°时在不同的入射角度下的蓝光、绿光、及红光的衍射角度,根据计算结果可见,在这种情况下,人眼无法观察到彩虹纹。
对于情形3’,太阳光的入射方位角为
Figure PCTCN2022071839-appb-000029
太阳高度角时的计算结果如表3’所示。
表3’
Figure PCTCN2022071839-appb-000030
Figure PCTCN2022071839-appb-000031
从表3’中的计算结果我们可以看出,在情形3’中,只有当太阳高度角小于30°时,人眼才会观察到彩虹纹现象。具体地,当太阳高度角小于30°时,人眼可看见蓝色的衍射光线(即蓝光);当太阳高度角小于25°时,人眼可看到绿色的衍射光线(即绿光);当太阳高度角小于5°时,人眼可看到红色的衍射光线(即红光)。
表4对光栅矢量水平放置或竖直放置时在三种情形下的彩虹纹表现情况进行汇总。
表4
Figure PCTCN2022071839-appb-000032
考虑到日常生活中,一般只有在早晨或者傍晚时才会出现高度角小于30°的情况,但考虑到此时太阳光线的亮度较小,因此带来的彩虹纹的影响同样较弱。而中午时太阳高度角较大,且太阳光线的亮度较高,因此采用光栅矢量水平放置的设计可以有效缓解彩虹纹所带来的影响。
根据上述分析可以得知,通过优化耦出光栅140光栅矢量(即第三矢量K3)的摆放方向可以明显缓解户外使用中的彩虹纹现象。当耦出光栅140的光栅矢量水平放置(即,耦出光栅的第三矢量K3与水平方向X之间的角度为0°)时效果最佳,即使光栅矢量以±45°的角度摆放彩虹纹对它的影响也远比 竖直放置的要小。换而言之,当耦出光栅140的光栅矢量K3的方向与水平方向X之间的角度A的范围为:-45°≤A≤45°。
本申请实施方式利用彩虹纹的形成机理,通过巧妙的设计,尽可能的使耦出光栅140的-1级透射光线偏离眼动范围,从而缓解彩虹纹现象。本申请实施方式不会增加工艺的复杂性,也不会影响人眼对环境光线的观测,利用光线的矢量叠加原理,使彩虹纹变成倏逝波或者尽可能的偏离眼动范围,从而达到缓解进入到使用所述增强现实显示装置的用户的人眼的彩虹纹的目的。
在一种实施方式中,所述第三矢量K3的方向与水平方向X之间的角度A的范围为:-30°≤A≤30°。当所述第三矢量K3与水平方向X之间的角度A的范围为-30°≤A≤30°时,即便在早上或傍晚,也较难出现彩虹纹。因此,当所述第三矢量K3与水平方向X之间的角度A的范围为-30°≤A≤30°时可更加有效地使耦出光栅140的-1级透射光线偏离眼动范围,从而更加有效缓解彩虹纹现象。
需要说明的是,在实际应用中,所述第三矢量K3与水平方向X之间的角度A的范围的选取兼顾了缓解彩虹纹现象以及增强现实显示装置的成像因素等。
请参阅图17及图18,图17为本申请一实施方式提供的增强现实显示装置的示意图;图18为图17中所示的增强现实显示装置的光线传播示意图。
图17中展示了所述耦出光栅矢量水平放置(即,沿X方向放置)时所述耦入光栅、所述转折光栅、所述耦出光栅及所述波导基底组成的波导架构。所述耦入光栅的形貌可以是闪耀光栅,倾斜光栅,二元光栅,光子晶体中的任意一种。所述转折光栅,的形貌可以为二元光栅或者光子晶体等。所述耦出光栅的形貌可以为闪耀光栅,倾斜光栅,二元光栅,光子晶体中的任意一种。若耦入光栅矢量(即第一矢量)K1沿竖直方向分布,转折光栅矢量(即第二矢量)K2与竖直方向的夹角为
Figure PCTCN2022071839-appb-000033
根据矢量叠加原理可得到与水平方向平行的耦出光栅矢量(即第三矢量)K3。若耦出光栅矢量K1’与竖直方向的夹角为任意角θ,转折光栅矢量K2’与耦入光栅矢量K1’间的夹角则变为任意角
Figure PCTCN2022071839-appb-000034
通过光栅矢量K1’和K2’的叠加,同样可以得到与水平方向平行的耦出光栅矢量K3’。在这里θ角可以取-45°到+45°的任意一值,这里,相对于坐标轴X逆时针旋转为正,顺时针旋转为负。对于
Figure PCTCN2022071839-appb-000035
则只需满足
Figure PCTCN2022071839-appb-000036
即可构成封闭的矢量三角形,并使耦出光栅矢量K3’与水平方向平行。根据前面的推导,可知这种波导基底构架的增强现实显示装置能在户外有效规避太阳光所引起的彩虹纹现象。
在本实施方式中,所述耦入光栅的光栅矢量的方向垂直于水平方向X,即,第一矢量K1垂直于水平方向X。换而言之,耦入光栅的第一矢量K1与竖直方向Y的夹角为零。
请参阅图19及图20,图19为本申请一实施方式提供的增强现实显示装置的示意图;图20为图19中所示的增强现实显示装置的光线传播示意图。本实施方式中的耦出光栅的光栅矢量与水平方向X呈一定夹角放置。
图19及图20展示了耦出光栅的光栅矢量与水平方向呈夹角设置的波导架构。所述耦入光栅的形貌可以是闪耀光栅,倾斜光栅,二元光栅,光子晶体中的任意一种。所述转折光栅的形貌可以为二元光栅或者光子晶体等。所述耦出光栅,的形貌可以为闪耀光栅,倾斜光栅,二元光栅,光子晶体中的任意一种。若耦入光栅矢量(即第一矢量)K1与竖直方向Y的夹角为任意角α,转折光栅矢量(即第二矢量)K2与耦入光栅矢量K1间的夹角则变为任意角
Figure PCTCN2022071839-appb-000037
通过矢量K1和K2的叠加,同样可以得到光栅矢量K3,并且K3与水平方向的夹角为β。耦入光栅矢量(即第一矢量)K1与竖直方向Y的夹角为任意角α,即,在本实施方式中,所述耦入光栅的光栅矢量与竖直方向Y的夹角为α。在这里α角可以取-45°到+45°的任意一值,相对于坐标轴逆时针旋转为正,顺时针旋转为负。如图中所示,α角是负数,β角也是负数。对于
Figure PCTCN2022071839-appb-000038
则只需满足
Figure PCTCN2022071839-appb-000039
即可构成封闭的矢量三角形,并使耦出光栅矢量K3与水平方向的夹角β控制在±45°以内。虽然耦出光栅的光栅矢量K3与水平方向X呈一定夹角后,其抑制彩虹纹的性能不如耦出光栅矢量(即第三矢量)K3完全水平放置的情况,但其仍能抑制绝大多数角度入射时的彩虹纹效应。β角的绝对值越小,彩虹纹的抑制效果将会越明显,反之则反。
请一并参阅图3及图21,图21为一实施方式提供的耦出光栅的结构示意图。所述耦出光栅140 包括间隔设置且周期性排布的多个耦出单元141,所述耦出光栅140的周期小于或等于450nm。
通常而言,对于一维光栅而言,光栅包括间隔设置且周期性排布的多个单元,所述多个单元的周期性排布的方向即为光栅矢量。对于耦出光栅140而言,所述多个耦出单元141的周期性排布方向即为所述耦出光栅140的光栅矢量。对于二维光栅而言,二维光栅具有两个光栅矢量,换言之,二维光栅包括在一个方向上周期排布的多个单元,且包括在另一方向上周期排布的多个单元。其中,单元周期性排布的所述一个方向即为其中的一个光栅矢量,单元周期排布的所述另一方向即为另一光栅矢量。对于耦出光栅140为二维光栅而言,二维光栅中耦出光栅单元周期性排布一个方向即为其中的一个光栅矢量,二维光栅中耦出单元周期性排布的另外一个方向即为其中的另外一个光栅矢量。
从图3中看出,当光线的衍射角度大于θ时,光线会因射出衍射范围外而无法被人眼观察到,当光线的衍射角度小于θ时,光线会因射入眼动范围内而被人眼捕获。综上所述,当θ越小时,彩虹纹就越难射入人眼,因此它对用户体验的影响将越小,当θ越大时,彩虹纹效应将会变得更为明显。也就是说,在保持眼动范围和眼视距离不变的基础上,耦出光栅140的区域越小或者耦出光栅140的周期越小,彩虹纹的影响将越弱。
本实施方式中,所述耦出光栅140的周期小于或等于450nm,从而可使得彩虹纹的影响较弱;且所述耦出光栅140的周期越小,彩虹纹的影响越弱。在一种实施方式中,所述耦出光栅140的周期等于380nm。
在一实施方式中,所述耦出光栅140的区域为矩形,其中,矩形的边长满足:
d=m+l*tan(FOV/2)*2           (公式5)
其中,d为矩形的边长,m为用户眼动范围,l为用户眼睛到导波片的距离,FOV是所述增强现实显示系统的视场角。
具体地,在一实施方式中,d为矩形的长边,d满足公式(5);在另一实施方式中,d为矩形的短边,且d满足公式(5);在又一实施方式中,所述矩形的长边d 1及所述矩形的短边d 2均满足公式(5),即,d 1=m+l*tan(FOV/2)*2且d 2=m+l*tan(FOV/2)*2。
在一实施方式中,所述耦出光栅140的周期与所述耦入光栅120的周期相同。
所述耦出光栅140的周期与所述耦入光栅120的周期相同,使得制备所述耦出光栅140及所述耦入光栅120工艺上较为方便。
在另一实施方式中,在实际设计过程中,耦出光栅140的形貌与耦入光栅120的形貌相同,也可使得制备所述耦出光栅140及所述耦入光栅120较为方便。在另一实施方式中,所述耦出光栅140的周期与所述耦入光栅120的周期相同,且所述耦出光栅140的形貌与所述耦入光栅120的形貌相同,所述耦出光栅140的高度与所述耦入光栅120的高度不同。所述耦出光栅140的周期与所述耦入光栅120的周期相同,且所述耦出光栅140的形貌与所述耦入光栅120的形貌相同,所述耦出光栅140的高度与所述耦入光栅120的高度不同时,所述耦出光栅140和所述耦入光栅120是一对共轭的系统。
可以理解地,在其他实施方式中,所述耦出光栅140的周期与所述耦入光栅120的周期也可以不同。在耦出光栅140的形貌与所述耦入光栅120的形貌也可以不同。
本申请实施方式提供的增强现实显示装置1中,对所述耦出光栅140的形貌没有特殊的要求,所述耦出光栅140的形貌可为闪耀光栅,倾斜光栅,二元光栅,光子晶体中的任意一种。
下面对所述耦入光栅120、所述转折光栅130及所述耦出光栅130相对于所述波导基底110的位置关系进行介绍。需要说明的是,在接下来的附图中仅仅示意出耦入光栅120、转折光栅120及耦出光栅130相对于波导基底110的位置关系,未示意出所述耦入光栅120、所述转折光栅130及所述耦出光栅140的形貌及具体结构。
请参阅图22至图29,图22为本申请另一实施方式提供的增强现实显示装置的立体示意图;图23为图22中的增强现实显示装置的侧视图。在图22及图23中,所述耦入光栅120、所述转折光栅130和所述耦出光栅140设置于所述波导基底110的同一侧,且设置于所述波导基底110的内表面112。
图24为本申请又一实施方式提供的增强现实显示装置的立体示意图;图25为图24中的增强现实显示装置的侧视图。在图24及图25中,所述耦入光栅120、所述转折光栅130和所述耦出光栅140设置于所述波导基底110的同一侧,且设置于所述波导基底110的外表面111。
图26为本申请再一实施方式提供的增强现实显示装置的立体示意图;图27为图26中的增强现实显示装置的部分结构的侧视图。在图26及图27中,所述耦入光栅120和所述转折光栅130设置于所述波导基底110的同一侧,所述耦出光栅140设置于所述波导基底110的另一侧,且所述耦入光栅120及所述转折光栅130设置于所述波导基底110的内表面112,所述耦出光栅140设置于所述波导基底110的外表面111。
图28为本申请再一实施方式提供的增强现实显示装置的立体示意图;图29为图28中的增强现实显示装置的部分结构的侧视图。在图28及图29中,所述耦入光栅120和所述转折光栅130设置于所述波导基底110的一侧,所述耦出光栅140设置于所述波导基底110的另一侧,且所述耦入光栅120和所述转折光栅130设置于所述波导基底110的外表面111,所述耦出光栅140设置于所述波导基底110的内表面112。
所述耦入光栅120、所述转折光栅130和所述耦出光栅140及所述波导基底110的上述设置关系,可使得所述耦入光栅120、所述耦出光栅140及所述波导基底110之间更容易设置。需要说明的是,不管所述耦入光栅120、所述转折光栅130和所述耦出光栅140及所述波导基底110的位置如何摆放,只要通过控制耦出光栅矢量与水平方向的夹角都可以达到抑制彩虹效应的目的。
在一实施方式中,所述耦出光栅140和所述波导基底110为一体结构。
所述耦出光栅140可通过压印技术等在基板上形成,即,基板被压印的部分构成所述耦出光栅140,基板未被压印的部分形成为所述波导基底110,因此,耦出光栅140与波导基底110为一体结构。
在另一实施方式中,所述耦入光栅120和所述波导基底110也为一体结构。具体地,所述耦出光栅140可通过压印技术等在基板上形成,即,所述基板被压印的部分构成所述耦入光栅120,所述基板未被压印的部分形成为所述波导基底110,因此,耦入光栅120与波导基底110为一体结构。
在另一实施方中,所述耦入光栅120、所述耦出光栅140和所述波导基底110为一体结构。具体地,所述耦入光栅120、所述耦出光栅140可通过压印技术等在基板上形成,即,所述基板被压印的部分构成所述耦入光栅120、所述耦出光栅140,所述基板未被压印的部分形成为所述波导基底110,因此,所述耦入光栅120、所述耦出光栅140与所述波导基底110为一体结构。
请参阅图30,图30为本申请另一实施方式提供的增强现实显示装置的示意图。在本实施方式中,所述增强现实显示装置1包括波导基底110、耦入光栅120及耦出光栅140。此外,所述增强现实显示装置1还包括偏振片150。所述波导基底110、所述耦入光栅120及所述耦出光栅140请参阅前面描述,在此不再赘述。所述偏振片150出射的光线进入到所述耦出光栅140中,其中,所述偏振片150的偏振方向为水平方向X。
太阳光线经由环境中的玻璃等反射作用的反射光线的偏振方向通常是沿着Y轴方向,设置偏振方向为水平方向X的偏振片150可滤除环境中沿着Y轴方向偏振的反射光线,进一步避免产生彩虹纹。
所述波导基底110包括相背设置的外表面111及内表面112,在本实施方式中,所述偏振片150及所述耦出光栅140均设置在所述波导基底110的外表面111,且所述偏振片150相较于所述耦出光栅140背离所述波导基底110设置。
进一步地,在本实施方式中,所述增强现实显示装置1还包括保护片210,所述保护片210的材质可以为但不仅限于为玻璃、塑料等。所述保护片210设置于所述偏振片150背离所述耦出光栅140的表面,用于保护所述偏振片150不受损伤。可以理解地,在另外的实施方式中,所述增强现实显示装置1可不包括所述保护片210。
在本实施方式的示意图中,以所述增强现实显示装置1包括所述偏振片150及所述保护片210结 合到前面一种实施方式提供的增强现实显示装置1中为例进行示意,可以理解地,所述增强现实显示装置1包括所述偏振片150及所述保护片210还可以结合到其他实施方式中,比如,结合到所述耦出光栅120位于所述内表面112的实施方式中。
请一并参阅图31,图31为本申请又一实施方式提供的增强现实显示装置的示意图。在实施方式中,所述增强现实显示装置1还包括偏振片150。所述偏振片150出射的光线进入到所述耦出光栅140中,其中,所述偏振片150的偏振方向为水平方向X。在本实施方式中,所述波导基底110包括相背设置的外表面111及内表面112,所述偏振片150设置于所波导基底110的外表面111,所述耦出光栅140设置在所述波导基底110的内表面112。
进一步地,在本实施方式中,所述增强现实显示装置1还包括保护片210,所述保护片210的材质可以为但不仅限于为玻璃、塑料等。所述保护片210设置于所述偏振片150背离所述波导基底110的表面,用于保护所述偏振片150不受损伤。可以理解地,在另外的实施方式中,所述增强现实显示装置1可不包括所述保护片210。
在一实施方式中,所述偏振片150为镀膜偏振片。换而言之,所述偏振片150为通过镀膜工艺形成的偏振片150。当所述偏振片150及所述耦出光栅140均设置在所述波导基底110的外表面111,且所述偏振片150相较于所述耦出光栅140背离所述波导基底110设置时,所述偏振片150为镀设在所述耦出光栅140的外表面111的膜片。当所述偏振片150设置于所波导基底110的外表面111,所述耦出光栅140设置在所述波导基底110的内表面112时,所述偏振片150为镀设在所述波导基底110的外表面111的膜片。在另一实施方式中,所述偏振片150为单片形式的偏振片150,所述偏振片150通过胶水等粘结件粘结于所述耦出光栅140上或波导基底110上。
所述偏振片150为镀膜偏振片,可使得所述偏振片150较薄,且制作较为简便。
请一并参阅图32,图32为本申请一实施方式提供的近眼显示设备的示意图。所述近眼显示设备2包括如前面任意实施方式提供的增强现实显示装置1。
在一种实施方式中,所述近眼显示设备2还包括佩戴框160。所述佩戴框160具有间隔设置的两个视窗区161,所述两个视窗区161的至少一个视窗区161设置有所述耦出光栅140。
当所述两个视窗区161中的一个视窗区161设置有所述耦出光栅140时,所述一个视窗区161可使人眼看到虚拟影像,而耦入光栅120区域本身又可以透过环境光线,从而使得一个视窗区161可实现增强现实的效果。当两个视窗区161均设置有耦出光栅140时,所述两个视窗区161可实现增强现实的效果。在本实施方式的示意图中,以所述两个视窗区161均设置有耦出光栅140为例进行示意。
请一并参阅图33,图33为本申请又一实施方式提供的近眼显示设备的示意图。所述近眼显示设备2还包括佩戴框160、佩戴架170、图像源180及光学透镜组件190。所述佩戴架170与所述佩戴框160相连。所述图像源180也称为投影光机。所述图像源180设置于所述波导基底110的一侧,用于根据所要显示的图像产生光线。所述光学透镜组件190设置于所述图像源180与所述耦入光栅120之间,用于将所述光线按照预设规律投入所述耦入光栅120,所述图像源180及所述光学透镜组件190中的至少一个设置于所述佩戴框160连接所述佩戴架170的连接处。
近眼显示设备2包括佩戴框160还包括佩戴架170,具体而言,所述增强现实显示装置1为AR眼镜,所述佩戴架170也称为眼镜腿。所述图像源180为产生图像的设备,如Micro-LED显示设备。
当所述增强现实显示装置1为AR眼镜时,为了将所述波导基底110、所述耦入光栅120、所述转折光栅130及所述耦出光栅140构成的波导基底结构尽量贴合眼镜的形态,可将耦入光栅120设置在所述佩戴框160连接所述佩戴架170的连接处。采用侧投的布局形式,以及将图像源180及光学透镜组件190放置在所述佩戴框160连接所述佩戴架170的连接处,将耦入光栅120布局在视窗区161的一侧,当所述增强现实显示装置1具有两个视窗区161时,所述两个耦入光栅120分别位于所述两个视窗区161相对的两侧。当所述AR眼镜被佩戴时,所述两个耦入光栅120分配位于人眼相对的两侧。
请参阅图34及图35,图34为本申请又一实施方式提供的增强现实显示装置的示意图;图35为图34所示的增强现实显示装置中的矢量叠加示意图。在本实施方式中,所述增强现实显示装置1包括波导基底110、耦入光栅120及耦出光栅140。耦入光栅120,所述耦入光栅120承载于所述波导基底 110,用于将光线耦入所述波导基底110内,且所述耦入光栅120的光栅矢量为第一矢量k1。所述耦出光栅140承载于所述波导基底110,用于将所述波导基底110内的光线耦出所述波导基底110,所述耦出光栅140具有第二矢量k2及第三矢量k3,其中,所述第一矢量k1、所述第二矢量k2及所述第三矢量k3构成密闭的矢量三角形,且当所述增强现实显示装置1被使用时,所述第二矢量k2与水平方向X之间的夹角小于或等于45°,且所述第三矢量k3与水平方向X之间的夹角小于或等于45°。
所述波导基底110请参阅前面描述,在此不再赘述。所述耦出光栅140具有第二矢量k2及第三矢量k3,因此,所述耦出光栅140为二维光栅。
在图34及图35中,所述耦入光栅120的光栅矢量k1与水平方向X平行,所述耦出光栅140为二维光栅,所以有两个方向的耦出光栅矢量,即,第二矢量k2和第三矢量k3,其中第二矢量k2与水平方向X的夹角记为θ1,第三矢量k3与水平方向X的夹角记为θ2,其矢量叠加的情况如图35中的实线所示。当θ1小于或等于45°且θ2小于或等于45°时具有较好的彩虹纹抑制效果,并且随着θ1和θ2的角度变小时,彩虹纹抑制的效果将会愈发明显。当耦入光栅120的第一矢量k1’(图35中虚线所示)的方向与水平方向X不平行而是呈夹角ɑ时,只要通过控制θ1小于或等于45°且θ2小于或等于45°,依然可以获得较好的彩虹纹抑制效果,并且夹角ɑ越小,彩虹纹抑制越明显。
由此可见,当所述增强现实显示装置1被使用时,所述第二矢量k2与水平方向X之间的夹角小于或等于45°,且所述第三矢量k3与水平方向X之间的夹角小于或等于45°,可减少甚至消除彩虹纹效应。
在一实施方式中,所述第二矢量k2与水平方向X之间的夹角小于或等于30°,且所述第三矢量k3与水平方向X之间的夹角小于或等于30°。
在一实施方式中,所述第二矢量k2与水平方向X之间的夹角小于或等于30°,且所述第三矢量k3与水平方向X之间的夹角小于或等于30°时,即便在早上或傍晚,也较难出现彩虹纹。因此,当在一实施方式中,所述第二矢量k2与水平方向X之间的夹角小于或等于30°,且所述第三矢量k3与水平方向X之间的夹角小于或等于30°时可更加有效地使耦出光栅140的-1级透射光线偏离眼动范围,从而更加有效缓解彩虹纹现象。
需要说明的是,在实际应用中,所述第二矢量k2与水平方向X之间的夹角的取值,以及所述第三矢量k3与水平方向X之间的夹角的取值选取兼顾了缓解彩虹纹现象以及增强现实显示装置的成像因素等。
在本实施方式中,所述第一矢量k1、所述第二矢量k2及所述第三矢量k3构成密闭的矢量三角形是为了确保所述增强现实显示装置1能够形成图像。
在一实施方式中,所述第二矢量k2与水平方向X之间的夹角θ1小于或等于45°且所述第三矢量k3与水平方向X之间的夹角θ2小于或等于45°,且所述第二矢量k2与水平方向X之间的夹角θ1等于所述第三矢量k3与水平方向X之间的夹角θ2。当θ1等于θ2时,所述耦出光栅140更容易制备,制备所述耦出光栅140的工艺难度较小,且减小彩虹纹的效果更好。
可以理解地,在其他实施方式中,第二矢量k2与水平方向X之间的夹角θ1小于或等于45°且所述第三矢量k3与水平方向X之间的夹角θ2小于或等于45°,且所述第二矢量k2与水平方向X之间的夹角θ1不等于所述第三矢量k3与水平方向X之间的夹角θ2。只要满足第二矢量k2与水平方向X之间的夹角θ1小于或等于45°且所述第三矢量k3与水平方向X之间的夹角θ2小于或等于45°即可减小彩虹纹。
所述耦出光栅140为在XY平面内的预设图形且在Z方向延伸的立体光栅,其中,所述预设图形为圆形、T形、菱形中的任意一种。
所述耦入光栅120和所述耦出光栅140设置于所述波导基底110的同一侧,或者设置于所述波导基底110相对的两侧。请一并参阅图36至图39,在图36中,所述耦入光栅120及所述耦出光栅140设置于所述波导基底110片的同一侧,具体地,均设置在所述波导基底110的外表面111。在图37中,所述耦入光栅120及所述耦出光栅140设置于所述波导基底110的同一侧,具体地,设置在所述波导基底110的内表面112。在图38中,所述耦入光栅120设置于所述波导基底110的外表面111,所述耦出 光栅140设置于所述波导基底110的内表面112。在图39中,所述耦入光栅120设置于所述波导基底110的内表面112,所述耦出光栅140设置于所述波导基底110的外表面111。
在一实施方式中,所述耦出光栅140和所述波导基底110为一体结构。
所述耦出光栅140可通过压印技术等在基板上形成,即,基板被压印的部分构成所述耦出光栅140,基板未被压印的部分形成为所述波导基底110,因此,耦出光栅140与波导基底110为一体结构。
在另一实施方式中,所述耦入光栅120和所述波导基底110也为一体结构。具体地,所述耦出光栅140可通过压印技术等在基板上形成,即,所述基板被压印的部分构成所述耦入光栅120,所述基板未被压印的部分形成为所述波导基底110,因此,耦入光栅120与波导基底110为一体结构。
在另一实施方中,所述耦入光栅120、所述耦出光栅140和所述波导基底110为一体结构。具体地,所述耦入光栅120、所述耦出光栅140可通过压印技术等在基板上形成,即,所述基板被压印的部分构成所述耦入光栅120、所述耦出光栅140,所述基板未被压印的部分形成为所述波导基底110,因此,所述耦入光栅120、所述耦出光栅140与所述波导基底110为一体结构。
请参阅图40,图40为本申请另一实施方式提供的增强现实显示装置的示意图。在本实施方式中,所述增强现实显示装置1包括波导基底110、耦入光栅120及耦出光栅140。此外,所述增强现实显示装置1还包括偏振片150。所述波导基底110、所述耦入光栅120及所述耦出光栅140请参阅前面描述,在此不再赘述。所述偏振片150出射的光线进入到所述耦出光栅140中,其中,所述偏振片150的偏振方向与所述第二矢量k2平行,或者与所述第三矢量k3平行,或者介于所述第二矢量k2与所述第三矢量k3之间。
太阳光线经由环境中的玻璃等反射作用的反射光线的偏振方向通常是沿着Y轴方向,设置偏振方向为与所述第二矢量k2平行,或者与所述第三矢量k3平行,或者介于所述第二矢量k2与所述第三矢量k3之间可滤除环境中沿着Y轴方向偏振的部分反射光线,进一步避免产生彩虹纹。
所述波导基底110包括相背设置的外表面111及内表面112,在本实施方式中,所述偏振片150及所述耦出光栅140均设置在所述波导基底110的外表面111,且所述偏振片150相较于所述耦出光栅140背离所述波导基底110设置。
进一步地,在本实施方式中,所述增强现实显示装置1还包括保护片210,所述保护片210的材质可以为但不仅限于为玻璃、塑料等。所述保护片210设置于所述偏振片150背离所述耦出光栅140的表面,用于保护所述偏振片150不受损伤。可以理解地,在另外的实施方式中,所述增强现实显示装置1可不包括所述保护片210。
请参阅图41,图41为本申请又一实施方式提供的增强现实显示装置的示意图。在实施方式中,所述增强现实显示装置1包括波导基底110、耦入光栅120及耦出光栅140。此外,增强现实显示装置1还包括偏振片150。所述波导基底110、所述耦入光栅120及所述耦出光栅140请参阅前面描述,在此不再赘述。所述偏振片150出射的光线进入到所述耦出光栅140中,其中,所述偏振片150的偏振方向与所述第二矢量k2平行,或者与所述第三矢量k3平行,或者介于所述第二矢量k2与所述第三矢量k3之间。
所述波导基底110包括相背设置的外表面111及内表面112,所述偏振片150设置于所波导基底110的外表面111,所述耦出光栅140设置在所述波导基底110的内表面112。
进一步地,在本实施方式中,所述增强现实显示装置1还包括保护片210,所述保护片210的材质可以为但不仅限于为玻璃、塑料等。所述保护片210设置于所述偏振片150背离所述波导基底110的表面,用于保护所述偏振片150不受损伤。可以理解地,在另外的实施方式中,所述增强现实显示装置1可不包括所述保护片210。
在一实施方式中,偏振片150为镀膜偏振片。换而言之,所述偏振片150为通过镀膜工艺形成的偏振片。当所述偏振片150及所述耦出光栅140均设置在所述波导基底110的外表面111,且所述偏振片150相较于所述耦出光栅140背离所述波导基底110设置时,所述偏振片150为镀设在所述耦出光栅140的外表面111的膜片。当所述偏振片150设置于所波导基底110的外表面111,所述耦出光栅140设置在所述波导基底110的内表面112时,所述偏振片150为镀设在所述波导基底110的外表面111的 膜片。在另一实施方式中,所述偏振片150为单片形式的偏振片,所述偏振片150通过胶水等粘结件粘结于所述耦出光栅140上或波导基底110上。
所述偏振片150为镀膜偏振片,可使得所述偏振片150较薄,且制作较为简便。
请参阅图42,图42为本申请又一实施方式提供的近眼显示设备的示意图。所述近眼显示设备2包括如前面任意实施方式提供的增强现实显示装置1。
在一实施方式中,所述近眼显示设备2还包括佩戴框160。所述佩戴框160具有间隔设置的两个视窗区161,所述两个视窗区161的至少一个视窗区161设置有所述耦出光栅140。
当所述两个视窗区161中的一个视窗区161设置有所述耦出光栅140时,所述一个视窗区161可使人眼看到虚拟影像,而耦入光栅120区域本身又可以透过环境光线,从而使得一个视窗区161可实现增强现实的效果。当两个视窗区161均设置有耦出光栅140时,所述两个视窗区161可实现增强现实的效果。在本实施方式的示意图中以所述两个视窗区161均设置有耦出光栅140为例进行示意。
请参阅图43,图43为本申请又一实施方式提供的近眼显示设备的示意图。所述近眼显示设备2包括如前面任意实施方式提供的增强现实显示装置1。
在一实施方式中,所述近眼显示设备2还包括佩戴框160,还包括佩戴架170、图像源180及光学透镜组件190。所述佩戴架170与所述佩戴框160相连。所述图像源180设置于所述波导基底110的一侧,用于根据所要显示的图像产生光线。所述光学透镜组件190设置于所述图像源180与所述耦入光栅120之间,用于将所述光线按照预设规律投入所述耦入光栅120,所述图像源180及所述光学透镜组件190中的至少一个设置于所述佩戴框160连接所述佩戴架170的连接处。
所述近眼显示设备2还包括佩戴框160还包括佩戴架170,具体而言,为AR眼镜。所述微像源为产生图像的设备,如Micro-LED显示设备。
当所述增强现实显示装置1为AR眼镜时,为了将所述波导基底110、所述耦入光栅120、及所述耦出光栅140构成的波导基底结构尽量贴合眼镜的形态,可将耦入光栅120设置在所述佩戴框160连接所述佩戴架170的连接处。采用侧投的布局形式,以及将图像源180及光学透镜组件190放置在所述佩戴框160连接所述佩戴架170的连接处,将耦入光栅120布局在视窗区161的一侧,当所述近眼显示设备1具有两个视窗区161时,所述两个耦入光栅120分别位于所述两个视窗区161相对的两侧。当所述AR眼镜被佩戴时,所述两个耦入光栅120分配位于人眼相对的两侧。
在一实施方式中,所述增强现实显示装置1可以设置在汽车的挡风玻璃上,比如,所述增强现实显示装置1可设置于汽车的挡风玻璃靠近人眼的一侧。所述增强现实显示装置1可直接贴附于挡风玻璃上,也可不直接贴附于挡风玻璃,与挡风玻璃间隔设置。
请参阅图44,图44为本申请另一实施方式提供的近眼显示设备的示意图。所述近眼显示设备2还包括摄像头230、环境传感器240、处理器250、及电池260。所述图像源180、所述摄像头230、环境传感器240均与所述处理器250电连接,用于在所述处理器250的控制下工作。所述摄像头230用于采集视频数据,所述环境传感器240用于检测周围环境。所述电池260用于为所述图像源180、所述摄像头230、及所述环境传感器240供电。
本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (22)

  1. 一种增强现实显示装置,其特征在于,所述增强现实显示装置包括:
    波导基底;
    耦入光栅,所述耦入光栅承载于所述波导基底,用于将光线耦入所述波导基底内,且所述耦入光栅的光栅矢量为第一矢量K1;
    转折光栅,所述转折光栅承载于所述波导基底,用于将所述耦入光栅耦入所述波导基底内的光线进行扩瞳,其中,所述转折光栅的光栅矢量为第二矢量K2;以及
    耦出光栅,所述耦出光栅承载于所述波导基底,用于接收经由所述转折光栅扩瞳后的光线,并将光线耦出所述波导基底,所述耦出光栅的光栅矢量为第三矢量K3,其中,所述第一矢量K1、所述第二矢量K2及所述第三矢量K3构成密闭的矢量三角形,且当所述增强现实显示装置被使用时,所述第三矢量K3的方向与水平方向X之间的角度A的范围为:-45°≤A≤45°。
  2. 如权利要求1所述的增强现实显示装置,其特征在于,所述第三矢量K3的方向与水平方向X之间的角度A的范围为:-30°≤A≤30°。
  3. 如权利要求1所述的增强现实显示装置,其特征在于,所述耦出光栅包括间隔设置且周期性排布的多个耦出单元,所述耦出光栅的周期小于或等于450nm。
  4. 如权利要求1所述的增强现实显示装置,其特征在于,所述耦出光栅的区域为矩形,其中,矩形的边长满足:
    d=m+l*tan(FOV/2)*2
    其中,d为矩形的边长,m为用户眼动范围,l为用户眼睛到导波片的距离,FOV是所述增强现实显示系统的视场角。
  5. 如权利要求1所述的增强现实显示装置,其特征在于,所述耦出光栅的周期与所述耦入光栅的周期相同。
  6. 如权利要求1所述的增强现实显示装置,其特征在于,所述耦入光栅和所述耦出光栅设置于所述波导基底的同一侧,或者设置于所述波导基底相对的两侧。
  7. 如权利要求6所述的增强现实显示装置,其特征在于,所述耦出光栅和所述波导基底为一体结构。
  8. 如权利要求1所述的增强现实显示装置,其特征在于,所述耦出光栅的形貌为闪耀光栅,倾斜光栅,二元光栅,光子晶体中的任意一种。
  9. 如权利要求1所述的增强现实显示装置,其特征在于,所述增强现实显示装置还包括:
    偏振片,所述偏振片出射的光线进入到所述耦出光栅中,其中,所述偏振片的偏振方向为水平方向X。
  10. 如权利要求9所述的增强现实显示装置,其特征在于,所述波导基底包括相背设置的外表面及内表面,所述偏振片及所述耦出光栅均设置在所述波导基底的外表面,且所述偏振片相较于所述耦出光栅背离所述波导基底设置。
  11. 如权利要求9所述的增强现实显示装置,其特征在于,所述波导基底包括相背设置的外表面及内表面,所述偏振片设置于所波导基底的外表面,所述耦出光栅设置在所述波导基底的内表面。
  12. 如权利要求10或11所述的增强现实显示装置,其特征在于,所述偏振片为镀膜偏振片。
  13. 一种增强现实显示装置,其特征在于,所述增强现实显示装置包括:
    波导基底;
    耦入光栅,所述耦入光栅承载于所述波导基底,用于将光线耦入所述波导基底内,且所述耦入光栅的光栅矢量为第一矢量k1;
    耦出光栅,所述耦出光栅承载于所述波导基底,用于将所述波导基底内的光线耦出所述波导基底, 所述耦出光栅具有第二矢量k2及第三矢量k3,其中,所述第一矢量k1、所述第二矢量k2及所述第三矢量k3构成密闭的矢量三角形,且当所述增强现实显示装置被使用时,所述第二矢量k2与水平方向X之间的夹角小于或等于45°,且所述第三矢量k3与水平方向X之间的夹角小于或等于45°。
  14. 如权利要求13所述的增强现实显示装置,其特征在于,所述第二矢量k2与水平方向X之间的夹角小于或等于30°,且所述第三矢量k3与水平方向X之间的夹角小于或等于30°。
  15. 如权利要求13所述的增强现实显示装置,其特征在于,所述第二矢量k2与水平方向X之间的夹角等于所述第三矢量k3与水平方向X之间的夹角。
  16. 如权利要求13所述的增强现实显示装置,其特征在于,所述耦入光栅和所述耦出光栅设置于所述波导基底的同一侧,或者设置于所述波导基底相对的两侧。
  17. 如权利要求16所述的增强现实显示装置,其特征在于,所述耦出光栅和所述波导基底为一体结构。
  18. 如权利要求13所述的增强现实显示装置,其特征在于,所述增强现实显示装置还包括:
    偏振片,所述偏振片出射的光线进入到所述耦出光栅中,其中,所述偏振片的偏振方向与所述第二矢量k2平行,或者与所述第三矢量k3平行,或者介于所述第二矢量k2与所述第三矢量k3之间。
  19. 如权利要求13所述的增强现实显示装置,其特征在于,所述耦出光栅为在XY平面内的预设图形且在Z方向延伸的立体光栅,其中,所述预设图形为圆形、T形、菱形中的任意一种。
  20. 一种近眼显示设备,包括如权利要求1-19任意一项所述的增强现实显示装置。
  21. 如权利要求20所述的近眼显示设备,其特征在于,所述近眼显示设备包括:
    佩戴框,所述佩戴框具有间隔设置的两个视窗区,所述两个视窗区的至少一个视窗区设置有所述耦出光栅。
  22. 如权利要求21所述的近眼显示设备,其特征在于,所述近眼显示设备还包括:
    佩戴架,所述佩戴架与所述佩戴框相连;
    图像源,所述图像源设置于所述波导基底的一侧,用于根据所要显示的图像产生光线;及
    光学透镜组件,所述光学透镜组件设置于所述图像源与所述耦入光栅之间,用于将所述光线按照预设规律投入所述耦入光栅,所述图像源及所述光学透镜组件中的至少一个设置于所述佩戴框连接所述佩戴架的连接处。
PCT/CN2022/071839 2021-02-09 2022-01-13 增强现实显示装置及近眼显示设备 WO2022170910A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22752072.3A EP4279980A1 (en) 2021-02-09 2022-01-13 Augmented reality display apparatus and near-eye display device
US18/362,665 US20230377292A1 (en) 2021-02-09 2023-07-31 Augmented reality display device and near-eye display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202120373464.2 2021-02-09
CN202110177023.XA CN112817155A (zh) 2021-02-09 2021-02-09 增强现实显示装置及近眼显示设备
CN202120373464.2U CN214097983U (zh) 2021-02-09 2021-02-09 增强现实显示装置及近眼显示设备
CN202110177023.X 2021-02-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/362,665 Continuation US20230377292A1 (en) 2021-02-09 2023-07-31 Augmented reality display device and near-eye display device

Publications (1)

Publication Number Publication Date
WO2022170910A1 true WO2022170910A1 (zh) 2022-08-18

Family

ID=82838247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071839 WO2022170910A1 (zh) 2021-02-09 2022-01-13 增强现实显示装置及近眼显示设备

Country Status (3)

Country Link
US (1) US20230377292A1 (zh)
EP (1) EP4279980A1 (zh)
WO (1) WO2022170910A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110537136A (zh) * 2017-04-28 2019-12-03 索尼公司 光学装置、图像显示装置及显示装置
US10557994B1 (en) * 2018-09-24 2020-02-11 Facebook Technologies, Llc Waveguide grating with spatial variation of optical phase
EP3671320A1 (en) * 2018-12-21 2020-06-24 Thomson Licensing Stray light resistant augmented reality device
WO2020149053A1 (ja) * 2019-01-16 2020-07-23 ソニー株式会社 光学装置、画像表示装置及び表示装置
US20200264378A1 (en) * 2019-02-15 2020-08-20 Digilens Inc. Methods and Apparatuses for Providing a Holographic Waveguide Display Using Integrated Gratings
CN112817155A (zh) * 2021-02-09 2021-05-18 Oppo广东移动通信有限公司 增强现实显示装置及近眼显示设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110537136A (zh) * 2017-04-28 2019-12-03 索尼公司 光学装置、图像显示装置及显示装置
US10557994B1 (en) * 2018-09-24 2020-02-11 Facebook Technologies, Llc Waveguide grating with spatial variation of optical phase
EP3671320A1 (en) * 2018-12-21 2020-06-24 Thomson Licensing Stray light resistant augmented reality device
WO2020149053A1 (ja) * 2019-01-16 2020-07-23 ソニー株式会社 光学装置、画像表示装置及び表示装置
US20200264378A1 (en) * 2019-02-15 2020-08-20 Digilens Inc. Methods and Apparatuses for Providing a Holographic Waveguide Display Using Integrated Gratings
CN112817155A (zh) * 2021-02-09 2021-05-18 Oppo广东移动通信有限公司 增强现实显示装置及近眼显示设备

Also Published As

Publication number Publication date
US20230377292A1 (en) 2023-11-23
EP4279980A1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
JP7408138B2 (ja) ニアアイ表示装置における反射抑制
US11181735B2 (en) Optic and assembly for reduced reflections
US9507150B1 (en) Head up display (HUD) using a bent waveguide assembly
WO2021098374A1 (zh) 一种用于增强现实的光栅波导
CN112817155A (zh) 增强现实显示装置及近眼显示设备
CN103718083A (zh) 用于近眼式显示器的方法及设备
CN104204871A (zh) 夹心式衍射光学组合器
TWI778571B (zh) 顯示裝置及其操作方法
WO2021098744A1 (zh) 波导镜片及增强现实眼镜
CN214097983U (zh) 增强现实显示装置及近眼显示设备
CN112213861A (zh) 一种轻薄型光波导ar光学成像系统
CN113376739A (zh) 光学设备及显示系统
WO2022170910A1 (zh) 增强现实显示装置及近眼显示设备
TWI824355B (zh) 一種光學系統及混合實境設備
CN216485802U (zh) 增强现实设备
CN215641928U (zh) 波导组件、ar镜片及ar眼镜
WO2021197060A1 (zh) 头戴显示设备
CN210166569U (zh) 基于自由曲面和光波导的增强现实光学系统
TW202240222A (zh) 光學模組及近眼顯示裝置
CN116027475A (zh) 光波导装置及其制造方法
US20230011039A1 (en) Display device
CN116699751B (zh) 光波导及近眼显示设备
CN117148594B (zh) 一种显示组件及ar设备
CN219609272U (zh) 一种光波导和近眼显示装置
US20230011557A1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752072

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022752072

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022752072

Country of ref document: EP

Effective date: 20230815

NENP Non-entry into the national phase

Ref country code: DE