WO2021098374A1 - 一种用于增强现实的光栅波导 - Google Patents

一种用于增强现实的光栅波导 Download PDF

Info

Publication number
WO2021098374A1
WO2021098374A1 PCT/CN2020/117509 CN2020117509W WO2021098374A1 WO 2021098374 A1 WO2021098374 A1 WO 2021098374A1 CN 2020117509 W CN2020117509 W CN 2020117509W WO 2021098374 A1 WO2021098374 A1 WO 2021098374A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
coupling
waveguide
waveguide element
augmented reality
Prior art date
Application number
PCT/CN2020/117509
Other languages
English (en)
French (fr)
Inventor
杜亮
朱耀明
周知星
Original Assignee
深圳惠牛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳惠牛科技有限公司 filed Critical 深圳惠牛科技有限公司
Publication of WO2021098374A1 publication Critical patent/WO2021098374A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • This application relates to the field of augmented reality technology, and in particular to a grating waveguide for augmented reality.
  • AR glasses enhance the user's perception of the world by displaying virtual information that matches the real world.
  • the AR lens as an optical display element is a key technical point.
  • the combined structure of grating and optical waveguide is a highly respected AR lens optical display solution.
  • the grating waveguide structure suitable for mass copy production is a combined structure of surface relief grating and glass optical waveguide. Companies and research institutions such as Akonia, Dispelix, Waveoptics, Microsoft, etc. are developing this solution.
  • the structure of the traditional scheme is shown in Figure 1.
  • the imageable AR lens includes three parts: the coupling-in grating a, the coupling-out grating c, and the substrate optical waveguide b.
  • the coupling-out grating and coupling-in grating have the same grating period constant.
  • the principle of this optical display scheme the narrow-band image source light becomes parallel light after passing through the collimating lens and reaches the coupling grating a.
  • the diffraction effect of the coupling grating a makes the parallel light change its transmission direction. Because the diffracted beam meets the condition of total reflection, the light The light is transmitted along the substrate of the grating, that is, the substrate optical waveguide b.
  • the out-coupling grating c recombines the scattered light to make it output to the substrate light again in the direction of coupling and input. Outside the waveguide b.
  • the grating waveguide structure Due to the narrow-band optical characteristics of the grating, the grating waveguide structure presents greater challenges in terms of full-color display and color reproduction.
  • a way of superimposing multiple grating waveguide structures is generally adopted.
  • a common solution is the bonding and stacking of two to three layers of grating waveguide structures.
  • optical glue or double-sided tape is used for bonding.
  • the size of the observation field of view directly affects the integrity of the information obtained by the observer and even the safety of the personnel.
  • the common grating waveguide slab structure is limited by the refractive index of the waveguide material, and the field of view of the AR lens of this structure needs to be improved.
  • the distance between each pixel on the image plane and the human eye is not equal, and the fidelity and immersion of the display effect are poor.
  • the related technology has shortcomings and needs to be improved.
  • the purpose of this application is to overcome the shortcomings of related technologies and provide a grating waveguide for augmented reality.
  • a grating waveguide for augmented reality comprising: a display light source, a waveguide element arranged opposite to the display light source, and a coupling element located on the waveguide element; the coupling element includes The first coupling-in grating and the first coupling-out grating, the waveguide element, the first coupling-in grating and the first coupling-out grating are all curved structures and have the same curvature.
  • the light emitted by the display light source is totally reflected in the waveguide element after the action of the waveguide element and the first coupling grating, and is incident to the observation after the action of the first coupling-out grating and the waveguide element In the vision of the reader.
  • the centers of curvature of the waveguide element, the first coupling-in grating, and the first coupling-out grating are all located on the side of the observer.
  • first coupling-in grating and the first coupling-out grating are located on the surface of the waveguide element on the side away from the observer; or, the first coupling-in grating and the first coupling-out grating are located at the On the surface of the waveguide element and close to the side of the observer.
  • the coupling element further includes: a second in-coupling grating and a second out-coupling grating; the second in-coupling grating and the second out-coupling grating are located in the waveguide element and are connected to the first in-coupling grating
  • the first coupling-out grating is on a surface on a different side of the waveguide element; both the second coupling-in grating and the second coupling-out grating have the same curvature as the waveguide element.
  • the waveguide element, and the first in-coupling grating After the light emitted by the display light source undergoes the action of the second in-coupling grating, the waveguide element, and the first in-coupling grating, total reflection is realized in the waveguide element, and finally passes through the first out-coupling grating , The waveguide element and the second coupling-out grating are incident into the field of vision of the observer.
  • the grating waveguide further includes: a collimating lens arranged between the display light source and the waveguide element; the light emitted by the display light source is collimated by the collimating lens and then enters the waveguide element.
  • the grating waveguide further includes: a negative lens for correcting refractive power; the negative lens is arranged on the waveguide element and is close to the side of the observer; the light emitted from the waveguide element finally passes through the The negative lens is incident into the field of view of the observer.
  • the coupling element is a volume phase grating or a surface relief grating, and the coupling element and the waveguide element are an integral structure.
  • volume phase grating is directly prepared on the surface of the waveguide element; or, the volume phase grating is prepared on a polymer film first, and then the polymer film is copied or attached to the waveguide element s surface.
  • the surface relief grating is directly prepared on the surface of the waveguide element using micro-nano manufacturing technology; or, the surface relief grating is first prepared on a polymer film, and then the polymer film with the surface relief grating is copied or Attached to the surface of the waveguide element.
  • the coupling element includes three stacked volume phase gratings or surface relief gratings, and each volume phase grating or surface relief grating corresponds to a wavelength of one color, thereby realizing RGB full color display.
  • the coupling element adopts an angle multiplexing method to prepare a single piece of the volume phase grating or the surface relief grating, so as to realize a single piece of grating RGB three-color transmission.
  • a coating layer is provided on the surface of the waveguide element, and the coating layer is used to expand the total reflection of the waveguide element.
  • the grating of the curved structure of the present application has a larger field of view; as an AR spectacle lens component, when the curvature is designed properly, each point on the image surface has the same distance to the eye. Whether it is the central area or the edge area of the image plane, the wearer can get the best viewing effect even from the edge of the screen, the image edge display effect is better, the viewing angle is wider, and the sense of presence and content immersion are enhanced.
  • the curved waveguide element is easier to adapt to the refractive lens. Only a negative lens is attached to the curved waveguide element to achieve the purpose of diopter adjustment, and at the same time, the volume and weight of the entire optical system can be reduced. The cost is lower, the diopter correction is simple and easy, and the inconvenience caused by the human eye observation with abnormal diopter is solved.
  • Figure 1 is a schematic diagram of the structure of a planar grating waveguide in related technologies
  • FIG. 2 is a schematic structural diagram of an embodiment of a grating waveguide according to the present application.
  • FIG. 3 is a view comparison diagram of the grating waveguide of this application and the traditional planar grating waveguide;
  • FIG. 4 is a schematic structural diagram of another embodiment of a grating waveguide according to the present application.
  • Fig. 5 is a schematic structural diagram of another embodiment of a grating waveguide according to the present application.
  • Fig. 6 is a schematic structural diagram of an embodiment of the coupling element in the grating waveguide of the present application.
  • the grating waveguide for augmented reality includes: a display light source, a waveguide element arranged opposite to the display light source, and a coupling element located on the waveguide element; the coupling element includes a first coupling grating and a first coupling Out of the grating.
  • the waveguide element, the first coupling-in grating and the first coupling-out grating are all curved structures and have the same curvature.
  • the coupling element and the waveguide element can be an integral structure, or the coupling element can be closely attached to the surface of the waveguide element.
  • the grating waveguide of the embodiment of the present application works, the light emitted by the display light source is fully reflected in the waveguide element after the waveguide element and the first coupling grating interact, and is incident to the observation after the first coupling grating and the waveguide element work together. In the vision of the reader. Since the first coupling-in grating, the first coupling-out grating and the waveguide element are all curved structures and have the same curvature, they have a larger field of view than the traditional planar waveguide grating.
  • the distance from each point on the image surface to the eye is equal, whether it is the central area or the edge area of the image surface, the wearer can get the best viewing effect even from the edge of the screen, and the image edge display effect is better.
  • the viewing angle is wider, enhancing the sense of presence and content immersion.
  • the first coupling-in grating and the first coupling-out grating may be located on the surface of the waveguide element far away from the observer, or may be located on the surface near the observer.
  • the working process of the grating waveguide of the embodiment of the present application may be: the light from the display light source enters the waveguide element and then enters the first coupling.
  • the entrance grating after being reflected by the first coupling grating, realizes total reflection in the waveguide element, and is transmitted to the first coupling-out grating.
  • the light reflected by the first coupling-out grating enters the observer's field of vision after passing through the waveguide element.
  • the working process of the grating waveguide of the embodiment of the present application may be: the light from the display light source is transmitted through the first coupling grating and then enters the waveguide The element realizes total reflection in the waveguide element and transmits to the first coupling-out grating. The light transmitted through the first coupling-out grating enters the field of vision of the observer.
  • the center of curvature of the waveguide element, the first coupling-in grating, and the first coupling-out grating are all located on the side of the observer.
  • the grating waveguide may include a collimating lens in addition to the above-mentioned components.
  • the grating waveguide may also include a negative lens that can be used for diopter adjustment.
  • the first coupling-in grating and the first coupling-out grating are located on the surface far away from the observer as an example, and detailed description will be given in conjunction with specific embodiments.
  • the present application provides a grating waveguide for augmented reality, including: a display light source 1, a waveguide element arranged opposite to the display light source 1, a waveguide element 2 arranged between the display light source 1 and the waveguide element 2
  • the waveguide element 2 has a curved structure.
  • the coupling element includes a first coupling-in grating 3 and a first coupling-out grating 4.
  • the first in-coupling grating 3 and the first out-coupling grating 4 are also curved structures and have the same curvature as the waveguide element 2.
  • the first in-coupling grating 3 and the first out-coupling grating 4 are located on the side of the waveguide element 2 away from the observer On the surface of, the centers of curvature of the three are all located on the side close to the observer 6.
  • the collimating lens 5 is used to collimate the light emitted by the display light source 1.
  • the negative lens 7 is adapted to the waveguide element 2 with a curved structure, and the negative lens 7 is attached to the waveguide element 2 through the optical adhesive layer 8 for correcting the refractive power.
  • the principle of the curved grating waveguide is: it is mainly realized by the principle of grating diffraction, total reflection and negative lens power correction.
  • the light from the display light source 1 is collimated by the collimating lens 5 with good aberration correction, and then enters the first coupling grating 3 after passing through the waveguide element 2, and is reflected in the waveguide element 2 after being reflected by the first coupling grating 3 It is totally reflected to the first out-coupling grating 4, and finally reflected by the first out-coupling grating 4, and then incident on the negative lens 7 through the waveguide element 2 and enters the field of vision of the observer 6 through the negative lens 7. Due to the existence of the first coupling-out grating 4, the propagation condition of total reflection of light in the waveguide element 2 is broken, so that the light can be emitted from the waveguide element 2. As for the light from the surrounding scenes, the transmission through the upper and lower surfaces of the waveguide element 2 directly enters the human eye, thereby completing real-time observation of image information and surrounding scene information.
  • the viewing angle of the grating waveguide is enlarged and the visible area of the optical waveguide is enlarged.
  • the size of the grating waveguide device with curved structure in this embodiment is: the length is 5.5 cm, the radius of curvature is 8-20 cm, and the exit pupil distance is 3-8 cm.
  • the planar grating waveguide device of the same length the curved surface The structure has a larger field of view than the planar structure.
  • the distance from each point on the image surface to the eye is equal, whether it is the central area or the edge area of the image surface, the wearer can get the best viewing effect even from the edge of the screen, and the image edge display effect is better.
  • the viewing angle is wider, enhancing the sense of scene and content immersion.
  • the waveguide element 2 is a curved structure, it is only necessary to attach a negative lens 7 on the curved waveguide element 2 on the side close to the observer, and pass the waveguide element 2 and The mutual cooperation of the negative lens 7 can achieve the purpose of diopter adjustment, and at the same time, it can reduce the volume, weight, and cost of the entire optical system.
  • the diopter correction is simple and easy, and solves the problem of abnormal diopter. inconvenient.
  • the inner surface and/or the outer surface of the waveguide element 2 has a free-form surface structure, such as a spherical surface or a toric surface or any other regular geometrical curved surface structure.
  • the material of the waveguide element 2 can be inorganic glass materials (such as JGS1, JGS2, BK7, etc.), or organic thermoplastics (such as polycarbonate, polymethyl methacrylate), or transparent thermosetting materials (such as based on acrylate, polyurethane, Polyurea, polythiourethane and allyl diethylene glycol carbonate and other organic glass).
  • the slab waveguide that relies on the total internal reflection between the air-glass interface can have an angle from total internal reflection to 90° (the reflection still exists in this range, and the angle is from the normal to the surface Measured) reflection.
  • the FOV field of view
  • a coating layer with a certain refractive index is usually plated on the surface of the waveguide element 2 to extend the total reflection of the waveguide element 2 to a certain extent.
  • the coupling element of the embodiment of the present application may also include: a second coupling-in grating and a second coupling-out grating, and the second coupling-in grating Both the second outcoupling grating and the waveguide element have the same curvature.
  • the second in-coupling grating and the second out-coupling grating are located on the waveguide element, and the first in-coupling grating and the first out-coupling grating are on surfaces on different sides of the waveguide element.
  • the second coupling-in grating and the second coupling-out grating are located on the waveguide element and close to the observation.
  • the first coupling-in grating and the first coupling-out grating are on the waveguide element and on the surface close to the observer side
  • the second coupling-in grating and the second coupling-out grating are located on the waveguide element and away from the observer side.
  • the first coupling-in grating 3 and the first coupling-out grating 4 are located on the surface of the waveguide element 2 away from the display light source 1, and the second coupling-in grating 9
  • the second coupling-out grating 10 is located on the surface of the waveguide element 2 on the side close to the display light source 1.
  • the addition of the second coupling-in grating 9 and the second coupling-out grating 10 can enhance the coupling-out coupling-in light efficiency and display uniformity, and improve the display effect.
  • the working principle of the grating waveguide is: the light emitted by the display light source 1 enters the waveguide element 2 after passing through the collimating lens 5 and the second coupling grating 9, and then enters the first coupling grating 3, and passes through the first coupling grating 9 3 After reflection, it is totally reflected in the waveguide element 2 to the first out-coupling grating 4, and finally after being reflected by the first out-coupling grating 4, it passes through the waveguide element 2 and the second out-coupling grating 10, and finally enters the observer through the negative lens 7 6 in the field of vision.
  • the coupling element 2 may be a volume phase grating or a surface relief grating.
  • the waveguide element 2 and the coupling element in the embodiment of the present application are preferably an integrally formed structure, and the integrally formed structure can be realized in the following two ways:
  • volume phase grating one is to directly prepare the volume phase grating on the curved waveguide element 2.
  • the photosensitive material such as silver salt material, dichromate gelatin, photopolymer, etc.
  • the surface of the waveguide element 2 is exposed and recorded by the holographic method and the coherent fringes of the spherical light wave and the plane light wave are used to prepare a curved waveguide with a volume phase grating on the surface; another way, first polymerize on a flexible plane coated with photosensitive material
  • a volume phase grating is prepared on a polymer film (such as a polymer film such as PET), and then the plane polymer film prepared with a volume phase grating is exposed to copy or attached to the surface of the curved waveguide element 2. This method is suitable for Mass production.
  • one method is to use micro-nano processing technology (such as photolithography, nanoimprinting, ion beam etching) to directly prepare the surface relief grating on the curved waveguide element 2; the other method is to first
  • the surface relief grating is prepared on a flexible flat polymer film (PET and other polymer films). This method is suitable for copying or attaching the above-mentioned flat polymer film prepared with the surface relief grating to the surface of the curved waveguide element. For mass production.
  • the coupling element may include three pieces of volume phase grating or surface relief grating superimposed, each piece of volume phase grating or surface relief grating Corresponding to the wavelength of one color, and then achieve RGB three colors, to achieve full-color display.
  • the coupling element can prepare a single-piece volume phase grating or the surface relief grating in a manner of angle multiplexing, and then realize the single-piece grating RGB three-color transmission.
  • the grating waveguide of the embodiment of the present application can not only be applied to augmented reality glasses scenes, but also can be applied to head-up display scenes.
  • the curved grating waveguide of the present application has a larger field of view compared with the traditional structure; as an AR spectacle lens assembly, when the curvature is designed appropriately, each point on the image surface has the same distance to the eye. Whether it is the central area or the edge area of the image plane, the wearer can get the best viewing effect even from the edge of the screen, the image edge display effect is better, the viewing angle is wider, and the sense of presence and content immersion are enhanced.
  • the curved waveguide element is easier to adapt to the refractive lens. Only a negative lens is attached to the curved waveguide element to achieve the purpose of diopter adjustment. At the same time, it can reduce the volume, weight and cost of the entire optical system. Low diopter correction is simple and easy, which solves the inconvenience caused by human eyes with abnormal diopter.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

一种用于增强现实的光栅波导,包括:显示光源(1)、与显示光源(1)相对设置的波导元件(2)、以及设于波导元件(2)上的耦合元件;耦合元件包括第一耦入光栅(3)和第一耦出光栅(4),波导元件(2)、第一耦入光栅(3)和第一耦出光栅(4)均为曲面结构且具有相同曲率,显示光源(1)发出的光线经波导元件(2)和第一耦入光栅(3)作用后在波导元件(2)中实现全反射,经第一耦出光栅(4)和波导元件(2)作用后入射到观察者(6)的视野中。

Description

一种用于增强现实的光栅波导
相关申请
本申请要求2019年11月20日申请的,申请号为201911139565.7,名称为“一种用于增强现实的光栅波导”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及增强现实技术领域,尤其涉及一种用于增强现实的光栅波导。
背景技术
基于增强现实技术(Augmented Reality)的智能眼镜作为可穿戴智能设备,近年来备受关注。AR眼镜通过显示与真实世界匹配的虚拟信息,来增强用户对世界的感知。而其中,AR镜片作为光学显示元件是关键的技术点。光栅与光波导的组合结构是受推崇的AR镜片光学显示方案。
目前适于批量复制生产的光栅波导结构为表面浮雕光栅与玻璃光波导的组合结构,Akonia,Dispelix,waveoptics,微软等公司和研究机构在开发此方案。传统方案的结构如图1所示,可成像AR镜片包括耦入光栅a、耦出光栅c及衬底光波导b三部分,耦出和耦入光栅的光栅周期常数一样。此光学显示方案的原理:窄带图像源光线经准直透镜后变成平行光到达耦入光栅a,由耦入光栅a的衍射效应使平行光改变传输方向,因衍射光束满足全反射条件,光线沿着光栅的衬底,即衬底光波导b传输,当平行光传输到耦出光栅c时,耦出光栅c对分散的光线重新组合,使其按照耦合输入的方向重新输出到衬底光波导b外。
因光栅的窄带光学特性,光栅波导结构在全彩色显示和色彩还原度方面存在较大挑战,为了达到多色显示的目的,一般采用多个光栅波导结构叠加的方式。常见方案为两到三层光栅波导结构粘合叠加的方式。一般采用光学胶水或双面胶粘合。如微软的HoloLens,Magic leap one等设备。
作为可穿戴设备的元件,对普通消费者,通常要求AR镜片具有视场角大,结构紧凑,美观的特点。作为信息显示元件,观察视场范围的大小直接影响到观察者获取信息的完整性甚至人员的安全。常见的光栅波导平板结构由于受限于波导材料折射率,这种结构的AR镜片视场角有待提高。另外由于是平板结构,图像平面上各像素点与人眼距离不等,显示效果的保真度和沉浸感较差。
因此,相关技术存在不足,需要改进。
技术解决方案
本申请的目的是克服相关技术的不足,提供一种用于增强现实的光栅波导。
本申请的技术方案如下:提供一种用于增强现实的光栅波导,包括:显示光源、与所述显示光源相对设置的波导元件、以及位于所述波导元件上的耦合元件;所述耦合元件包括第一耦入光栅和第一耦出光栅,所述波导元件、所述第一耦入光栅和第一耦出光栅均为曲面结构且具有相同曲率。
所述显示光源发出的光线经所述波导元件和所述第一耦入光栅作用后在所述波导元件中实现全反射,经所述第一耦出光栅和所述波导元件作用后入射到观察者的视野中。
进一步地,所述波导元件、所述第一耦入光栅和第一耦出光栅的曲率中心均位于所述观察者这一侧。
进一步地,所述第一耦入光栅和第一耦出光栅位于所述波导元件且远离所述观察者一侧的表面上;或,所述第一耦入光栅和第一耦出光栅位于所述波导元件且靠近所述观察者一侧的表面上。
进一步地,所述耦合元件还包括:第二耦入光栅和第二耦出光栅;所述第二耦入光栅和第二耦出光栅位于所述波导元件,且与所述第一耦入光栅和第一耦出光栅在所述波导元件不同侧的表面上;所述第二耦入光栅和第二耦出光栅均与所述波导元件具有相同的曲率。
所述显示光源发出的光线经所述第二耦入光栅、所述波导元件以及所述第一耦入光栅作用后,在所述波导元件中实现全反射,最后经所述第一耦出光栅、所述波导元件和所述第二耦出光栅作用后入射到观察者的视野中。
进一步地,所述光栅波导还包括:设置于所述显示光源与所述波导元件之间的准直透镜;所述显示光源发出的光线经所述准直透镜准直后进入所述波导元件。
进一步地,所述光栅波导还包括:用于矫正屈光度的负透镜;所述负透镜设置于所述波导元件上且靠近所述观察者一侧;从所述波导元件出射的光线最终经所述负透镜后入射至所述观察者的视野中。
进一步地,所述耦合元件为体相位光栅或表面浮雕光栅,且所述耦合元件与所述波导元件为一体结构。
进一步地,所述体相位光栅直接制备于所述波导元件的表面;或,先在聚合物薄膜上制备出所述体相位光栅,再将所述聚合物薄膜复制或贴合在所述波导元件的表面。
所述表面浮雕光栅采用微纳制造技术直接制备于所述波导元件的表面;或,先将所述表面浮雕光栅制备于聚合物薄膜上,再将具有所述表面浮雕光栅的聚合物薄膜复制或贴合到所述波导元件的表面。
进一步地,所述耦合元件包括三片层叠设置的所述体相位光栅或所述表面浮雕光栅,每片所述体相位光栅或所述表面浮雕光栅对应一种颜色的波长,进而实现RGB全彩显示。
或,所述耦合元件采用角度复用的方式制备单片所述体相位光栅或所述表面浮雕光栅,进而实现单片光栅RGB三色传输。
进一步地,所述波导元件的表面设有镀膜层,所述镀膜层用于对所述波导元件的全反射进行扩展。
采用上述方案,本申请的有益效果如下:
1、在光栅元件长度相同的情况的,与传统结构相比,本申请曲面结构的光栅的视野大;作为AR眼镜镜片组件,在曲率设计合适时,图像面上每一点到达眼睛的距离相等,无论是像面中央区域还是边缘区域,佩戴者即使从屏幕边缘处也可以获得最佳观看效果,图像边缘显示效果更好,视角更为宽广,增强现场感和内容沉浸感。
2、曲面的波导元件更易与屈光镜片适配,只需在曲面的波导元件上贴合一片负透镜,即可实现屈光度调节的目的,同时能够使整个光学系统的体积减小、重量减轻,成本更低,屈光度矫正简单易行,解决了屈光度异常人眼观察带来的不便。
附图说明
图1位相关技术中平面光栅波导的结构示意图;
图2为本申请光栅波导一实施例的结构示意图;
图3为本申请的光栅波导与传统平面光栅波导视角对比图;
图4为本申请光栅波导另一实施例的结构示意图;
图5为本申请光栅波导又一实施例的结构示意图;
图6位本申请光栅波导中耦合元件一实施例的结构示意图。
本发明的实施方式
以下结合附图和具体实施例,对本申请进行详细说明。
本申请实施例提供的用于增强现实的光栅波导,包括:显示光源、与显示光源相对设置的波导元件、以及位于波导元件上的耦合元件;该耦合元件包括第一耦入光栅和第一耦出光栅。其中,该波导元件、第一耦入光栅和第一耦出光栅均为曲面结构且具有相同的曲率。耦合元件与波导元件可以为一体结构,也可以是耦合元件紧密贴合在波导元件的表面上。
本申请实施例的光栅波导工作时,显示光源发出的光线经波导元件和第一耦入光栅共同作用后在波导元件中实现全反射,经第一耦出光栅和波导元件共同作用后入射到观察者的视野中。由于第一耦入光栅、第一耦出光栅和波导元件均为曲面结构且具有相同的曲率,因此相比传统的平面波导光栅具有更大的视野。并且在曲率设计合适时,图像面上每一点到达眼睛的距离相等,无论是像面中央区域还是边缘区域,佩戴者即使从屏幕边缘处也可以获得最佳观看效果,图像边缘显示效果更好,视角更为宽广,增强现场感和内容沉浸感。
可以理解的是,本申请实施例的光栅波导,其第一耦入光栅和第一耦出光栅可以位于波导元件远离观察者一侧的表面上,也可以位于靠近观察者一侧的表面上。
当第一耦入光栅和第一耦出光栅位于远离观察者一侧的表面上时,本申请实施例的光栅波导的工作过程可以是:来自显示光源的光线进入波导元件后入射至第一耦入光栅,经第一耦入光栅反射后在波导元件中实现全反射,并传输至第一耦出光栅,经第一耦出光栅反射后的光线通过波导元件后进入观察者的视野中。
当第一耦入光栅和第一耦出光栅位于靠近观察者一侧的表面上时,本申请实施例的光栅波导的工作过程可以是:来自显示光源的光线第一耦入光栅透射后进入波导元件,在波导元件中实现全反射并传输至第一耦出光栅。经第一耦出光栅透射后的光线进入观察者的视野中。
另外需要说明的是,本申请实施例的光栅波导,波导元件、第一耦入光栅和第一耦出光栅的曲率中心均位于所述观察者这一侧。并且,光栅波导除包括上述部件外,还可以包括:准直透镜。进一步优化的方案,光栅波导还可以包括可以用于进行屈光度调节的负透镜。下面,将以第一耦入光栅和第一耦出光栅位于远离观察者一侧的表面上为例,结合具体实施例进行详细说明。
请参阅图2至图4,本申请提供一种用于增强现实的光栅波导,包括:显示光源1、与显示光源1相对设置的波导元件2、设于显示光源1与波导元件2之间的准直透镜5、设于波导元件2上的耦合元件、设于波导元件2靠近观察者6这一侧的负透镜7。波导元件2为曲面结构。耦合元件包括第一耦入光栅3和第一耦出光栅4。第一耦入光栅3和第一耦出光栅4也为曲面结构且与波导元件2具有相同的曲率,第一耦入光栅3和第一耦出光栅4位于波导元件2上远离观察者一侧的表面上,三者的曲率中心均位于靠近观察者6这一侧。准直透镜5用于对显示光源1出射的光线进行准直。负透镜7与曲面结构的波导元件2适配,负透镜7通过光学胶层8贴合在波导元件2上,用于矫正屈光度。
请参阅图2至图4,曲面的光栅波导的原理为:主要采用光栅衍射、全反射以及负透镜屈光度矫正原理实现的。
具体地,来自显示光源1的光线经像差矫正良好的准直透镜5准直以后经波导元件2后入射至第一耦入光栅3,经第一耦入光栅3反射后在波导元件2中全反射至第一耦出光栅4,最后经第一耦出光栅4反射后通过波导元件2入射到负透镜7,经负透镜7进入观察者6的视野中。由于第一耦出光栅4的存在,打破了光线在波导元件2中的全反射传播条件,使得光线可以从波导元件2射出。而对于来自周围景物的光线,经过波导元件2上下表面的透射直接进入到人眼,从而完成图像信息和周围景物信息的实时观察。
本申请实施例的曲面结构的光栅波导,由于耦合元件与波导元件2均为曲面结构,与传统的平面结构的波导光栅相比,扩大了光栅波导的视角,达到扩大光波导可视区域的目的,增强临场感,可以提升观察者的观看体验。如图3所示,本实施例中曲面结构的光栅波导器件的尺寸为:长度为5.5 cm,曲率半径为8-20cm,出瞳距离为3-8cm,针对同样长度的平面光栅波导器件,曲面结构较平面结构有较大的视场角。并且,在曲率设计合适时,图像面上每一点到达眼睛的距离相等,无论是像面中央区域还是边缘区域,佩戴者即使从屏幕边缘处也可以获得最佳观看效果,图像边缘显示效果更好,视角更为宽广,增强现场感和内容沉浸感。
进一步地,本申请实施例的曲面结构的光栅波导,由于波导元件2为曲面结构,因此只需在曲面的波导元件2上靠近观察者这一侧贴合一片负透镜7,通过波导元件2与负透镜7的相互配合,即可实现屈光度调节的目的,同时还能够使整个光学系统的体积减小、重量减轻,成本更低,屈光度矫正简单易行,解决了屈光度异常人眼观察带来的不便。
请参阅图2至图5,具体地,本实施例中,波导元件2的内表面和/或外表面具有自由曲面结构,如球面或复曲面或任何其他规则几何形状的曲面结构。波导元件2的材料可用无机玻璃材料(如JGS1、JGS2、BK7等),或有机热塑性塑料(如聚碳酸酯、聚甲基丙烯酸甲酯),或透明的热固性材料(如基于丙烯酸酯、聚氨酯、聚脲、聚硫胺甲酸酯和烯丙基二甘醇碳酸酯等有机玻璃)。由于波导材料本身的限制,依赖于空气-玻璃界面之间的全内反射的平板波导可具有从全内反射角度到90°(在此范围内反射仍然存在,并且其角度是从法线到表面测量的)的反射。在曲面的波导元件2传输中允许FOV(field of view--视角)超过全反射角可允许的范围。为进一步扩大传输图像的范围,通常在波导元件2的表面镀一层具有一定折射率的镀膜层,对波导元件2的全反射给予一定的扩展。
可以理解的是,本申请实施例的耦合元件,除包括第一耦入光栅和第一耦出光栅以外,还可以包括:第二耦入光栅和第二耦出光栅,且第二耦入光栅和第二耦出光栅均与波导元件具有相同的曲率。第二耦入光栅和第二耦出光栅位于波导元件上,且与第一耦入光栅和第一耦出光栅在波导元件不同侧的表面上。即是说,当第一耦入光栅和第一耦出光栅在波导元件上且远离观察者一侧的表面上时,第二耦入光栅和第二耦出光栅则位于波导元件上且靠近观察者一侧的表面上。当第一耦入光栅和第一耦出光栅在波导元件上且靠近观察者一侧的表面上时,第二耦入光栅和第二耦出光栅则位于波导元件上且远离观察者一侧的表面上。
下面,将结合具体实施例进行详细说明。
请再次参阅图2至图5,本申请另一实施例中,第一耦入光栅3和第一耦出光栅4位于波导元件2远离显示光源1这一侧的表面,第二耦入光栅9和第二耦出光栅10则位于波导元件2靠近显示光源1这一侧的表面。增加第二耦入光栅9和第二耦出光栅10,能够增强耦出耦入光效率和显示均匀性,提升显示效果。
此时,光栅波导的工作原理是:显示光源1发出的光线经准直透镜5、第二耦入光栅9后进入波导元件2,并入射至第一耦入光栅3,经第一耦入光栅3反射后在波导元件2中全反射至第一耦出光栅4,最后经第一耦出光栅4反射后通过波导元件2、第二耦出光栅10后,最后经负透镜7入射到观察者6的视野中。
需要说明的是,耦合元件2可以是体相位光栅,也可以是表面浮雕光栅。本申请实施例波导元件2与耦合元件优选为一体成型结构,所述一体成型结构可以通过以下两种方式实现:
针对体相位光栅,一种是将体相位光栅直接制备于曲面的波导元件2上,首先将感光材料(如银盐材料、重铬酸盐明胶、光致聚合物等)涂布于曲面的所述波导元件2表面,用全息摄影方法曝光并记录球面光波和平面光波的相干条纹,制备出表面具有体相位光栅的曲面波导;另一种方式,首先在涂布有感光材料的柔性的平面聚合物薄膜(如PET等高分子聚合物薄膜)上制备体相位光栅,再将上述制备有体相位光栅的平面聚合物薄膜曝光复制或贴合到曲面的波导元件2的表面,此种方式适用于批量化生产。
针对表面浮雕光栅,一种方式是采用微纳加工技术(如光刻、纳米压印、离子束刻蚀)直接将表面浮雕光栅制备在曲面的波导元件2上;另一种方式是,先将表面浮雕光栅制备在柔性的平面聚合物薄膜上(PET等高分子聚合物薄膜),在将上述制备好表面浮雕光栅的平面聚合物薄膜复制或贴合到曲面的波导元件表面,这种方式适用于批量化生产。
进一步地,为实现RGB全彩显示,本实施例的光栅波导中,如图6所示,耦合元件可以包括三片体相位光栅或表面浮雕光栅叠加而成,每片体相位光栅或表面浮雕光栅对应一种颜色的波长,进而实现RGB三色,实现全彩显示。当然,耦合元件可以采用角度复用的方式制备单片体相位光栅或所述表面浮雕光栅,进而实现单片光栅RGB三色传输。
需要说明的是,本申请实施例的光栅波导,不仅可以应用于增强现实眼镜场景,也可以应用于抬头显示场景。
综上所述,本申请的有益效果如下:
1、在光栅元件长度相同的情况的,与传统结构相比,本申请曲面光栅波导的视野更大;作为AR眼镜镜片组件,在曲率设计合适时,图像面上每一点到达眼睛的距离相等,无论是像面中央区域还是边缘区域,佩戴者即使从屏幕边缘处也可以获得最佳观看效果,图像边缘显示效果更好,视角更为宽广,增强现场感和内容沉浸感。
2、曲面波导元件更易与屈光镜片适配,只需在曲面波导元件上贴合一片负透镜,即可实现屈光度调节的目的,同时能够使整个光学系统的体积减小、重量减轻,成本更低,屈光度矫正简单易行,解决了屈光度异常人眼观察带来的不便。
以上仅为本申请的较佳实施例而已,并不用于限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种用于增强现实的光栅波导,其中,包括:显示光源、与所述显示光源相对设置的波导元件、以及位于所述波导元件上的耦合元件;所述耦合元件包括第一耦入光栅和第一耦出光栅,所述波导元件、所述第一耦入光栅和第一耦出光栅均为曲面结构且具有相同曲率;
    所述显示光源发出的光线经所述波导元件和所述第一耦入光栅作用后在所述波导元件中实现全反射,经所述第一耦出光栅和所述波导元件作用后入射到观察者的视野中。
  2. 根据权利要求1所述的用于增强现实的光栅波导,其中,所述波导元件、所述第一耦入光栅和第一耦出光栅的曲率中心均位于所述观察者这一侧。
  3. 根据权利要求2所述的用于增强现实的光栅波导,其中,所述第一耦入光栅和第一耦出光栅位于所述波导元件且远离所述观察者一侧的表面上;或,所述第一耦入光栅和第一耦出光栅位于所述波导元件且靠近所述观察者一侧的表面上。
  4. 根据权利要求3所述的用于增强现实的光栅波导,其中,所述耦合元件还包括:第二耦入光栅和第二耦出光栅;所述第二耦入光栅和第二耦出光栅位于所述波导元件,且与所述第一耦入光栅和所述第一耦出光栅在所述波导元件不同侧的表面上;所述第二耦入光栅和第二耦出光栅均与所述波导元件具有相同的曲率;
    所述显示光源发出的光线经所述第二耦入光栅、所述波导元件以及所述第一耦入光栅作用后,在所述波导元件中实现全反射,最后经所述第一耦出光栅、所述波导元件和所述第二耦出光栅作用后入射到观察者的视野中。
  5. 根据权利要求1所述的用于增强现实的光栅波导,其中,所述光栅波导还包括:设置于所述显示光源与所述波导元件之间的准直透镜;所述显示光源发出的光线经所述准直透镜准直后进入所述波导元件。
  6. 根据权利要求2所述的用于增强现实的光栅波导,其中,所述光栅波导还包括:设置于所述显示光源与所述波导元件之间的准直透镜;所述显示光源发出的光线经所述准直透镜准直后进入所述波导元件。
  7. 根据权利要求3所述的用于增强现实的光栅波导,其中,所述光栅波导还包括:设置于所述显示光源与所述波导元件之间的准直透镜;所述显示光源发出的光线经所述准直透镜准直后进入所述波导元件。
  8. 根据权利要求4所述的用于增强现实的光栅波导,其中,所述光栅波导还包括:设置于所述显示光源与所述波导元件之间的准直透镜;所述显示光源发出的光线经所述准直透镜准直后进入所述波导元件。
  9. 根据权利要求1所述的用于增强现实的光栅波导,其中,所述光栅波导还包括:用于矫正屈光度的负透镜;所述负透镜设置于所述波导元件上且靠近所述观察者一侧;从所述波导元件出射的光线最终经所述负透镜后入射至所述观察者的视野中。
  10. 根据权利要求2至4中任一项所述的用于增强现实的光栅波导,其中,所述光栅波导还包括:用于矫正屈光度的负透镜;所述负透镜设置于所述波导元件上且靠近所述观察者一侧;从所述波导元件出射的光线最终经所述负透镜后入射至所述观察者的视野中。
  11. 根据权利要求1所述的用于增强现实的光栅波导,其中,所述耦合元件为体相位光栅或表面浮雕光栅,且所述耦合元件与所述波导元件为一体结构。
  12. 根据权利要求11所述的用于增强现实的光栅波导,其中,所述体相位光栅直接制备于所述波导元件的表面;或,先在聚合物薄膜上制备出所述体相位光栅,再将所述聚合物薄膜复制或贴合在所述波导元件的表面;
    所述表面浮雕光栅采用微纳制造技术直接制备于所述波导元件的表面;或,先将所述表面浮雕光栅制备于聚合物薄膜上,再将具有所述表面浮雕光栅的聚合物薄膜复制或贴合到所述波导元件的表面。
  13. 根据权利要求11所述的用于增强现实的光栅波导,其中,所述耦合元件包括三片层叠设置的所述体相位光栅或所述表面浮雕光栅,每片所述体相位光栅或所述表面浮雕光栅对应一种颜色的波长,进而实现RGB全彩显示;
    或,所述耦合元件采用角度复用的方式制备单片所述体相位光栅或所述表面浮雕光栅,进而实现单片光栅RGB三色传输。
  14. 根据权利要求12所述的用于增强现实的光栅波导,其中,所述耦合元件包括三片层叠设置的所述体相位光栅或所述表面浮雕光栅,每片所述体相位光栅或所述表面浮雕光栅对应一种颜色的波长,进而实现RGB全彩显示;
    或,所述耦合元件采用角度复用的方式制备单片所述体相位光栅或所述表面浮雕光栅,进而实现单片光栅RGB三色传输。
  15. 根据权利要求1至4中任一项所述的用于增强现实的光栅波导,其中,所述波导元件的表面设有镀膜层,所述镀膜层用于对所述波导元件的全反射进行扩展。
PCT/CN2020/117509 2019-11-20 2020-09-24 一种用于增强现实的光栅波导 WO2021098374A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911139565.7 2019-11-20
CN201911139565.7A CN110806645A (zh) 2019-11-20 2019-11-20 一种用于增强现实的光栅波导

Publications (1)

Publication Number Publication Date
WO2021098374A1 true WO2021098374A1 (zh) 2021-05-27

Family

ID=69490636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117509 WO2021098374A1 (zh) 2019-11-20 2020-09-24 一种用于增强现实的光栅波导

Country Status (2)

Country Link
CN (1) CN110806645A (zh)
WO (1) WO2021098374A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2780511C1 (ru) * 2021-12-13 2022-09-26 Самсунг Электроникс Ко., Лтд. Устройство дополненной реальности на основе изогнутного волновода, способ работы упомянутого устройства, очки дополненной реальности на основе упомянутого устройства
WO2023084147A1 (en) * 2021-11-11 2023-05-19 Dispelix Oy Waveguide, display device, method, and apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110806645A (zh) * 2019-11-20 2020-02-18 深圳惠牛科技有限公司 一种用于增强现实的光栅波导
CN111308717B (zh) * 2020-03-31 2022-03-25 京东方科技集团股份有限公司 显示模组及显示方法、显示装置
CN111474718A (zh) * 2020-05-05 2020-07-31 谷东科技有限公司 体全息光波导显示装置和增强现实显示设备
CN111458880B (zh) * 2020-05-09 2022-04-22 三生万物(北京)人工智能技术有限公司 一种波导光场显示装置和头戴式增强现实眼镜
FI20205642A1 (en) * 2020-06-17 2021-12-18 Dispelix Oy A method of manufacturing an optical element, an optical element, and an apparatus for manufacturing an optical element
CN111830715A (zh) * 2020-07-28 2020-10-27 谷东科技有限公司 二维扩瞳的波导显示装置和增强现实显示设备
CN111965826B (zh) * 2020-08-27 2022-11-15 Oppo广东移动通信有限公司 智能眼镜的控制方法、装置、存储介质及智能眼镜
CN114167606B (zh) * 2020-09-11 2023-11-10 宁波舜宇光电信息有限公司 光波导组件及包括该光波导组件的显示设备
CN114252997A (zh) * 2021-11-03 2022-03-29 上海大学 一种基于柱面波导的彩色近眼显示装置及方法
CN114527533A (zh) * 2022-02-22 2022-05-24 珠海莫界科技有限公司 一种轻便的改变虚像距的光波导及头戴显示器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076747A (zh) * 2004-12-13 2007-11-21 诺基亚公司 在显示器设备中具有短近焦距的光束扩展的系统和方法
EP2246728A1 (en) * 2009-04-29 2010-11-03 BAE Systems PLC Head mounted display
CN102165357A (zh) * 2008-09-29 2011-08-24 卡尔蔡司公司 显示装置和显示方法
CN104116495A (zh) * 2014-07-11 2014-10-29 北京理工大学 一种视网膜光学相干层析探测-显示系统
CN104520751A (zh) * 2012-08-02 2015-04-15 卡尔蔡司股份公司 显示装置
CN105579885B (zh) * 2013-09-27 2018-10-19 图茨技术股份有限公司 能够佩戴到使用者头上且产生图像的显示装置的镜片以及具有这种镜片的显示装置
CN108828780A (zh) * 2018-08-29 2018-11-16 深圳珑璟光电技术有限公司 一种基于全息光栅的近眼显示光学装置
CN110806645A (zh) * 2019-11-20 2020-02-18 深圳惠牛科技有限公司 一种用于增强现实的光栅波导
CN111175971A (zh) * 2019-10-30 2020-05-19 北京理工大学 一种近眼光学显示系统、增强现实眼镜
CN111458880A (zh) * 2020-05-09 2020-07-28 三生万物(北京)人工智能技术有限公司 一种波导光场显示装置和头戴式增强现实眼镜

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076747A (zh) * 2004-12-13 2007-11-21 诺基亚公司 在显示器设备中具有短近焦距的光束扩展的系统和方法
CN102165357A (zh) * 2008-09-29 2011-08-24 卡尔蔡司公司 显示装置和显示方法
EP2246728A1 (en) * 2009-04-29 2010-11-03 BAE Systems PLC Head mounted display
CN104520751A (zh) * 2012-08-02 2015-04-15 卡尔蔡司股份公司 显示装置
CN105579885B (zh) * 2013-09-27 2018-10-19 图茨技术股份有限公司 能够佩戴到使用者头上且产生图像的显示装置的镜片以及具有这种镜片的显示装置
CN104116495A (zh) * 2014-07-11 2014-10-29 北京理工大学 一种视网膜光学相干层析探测-显示系统
CN108828780A (zh) * 2018-08-29 2018-11-16 深圳珑璟光电技术有限公司 一种基于全息光栅的近眼显示光学装置
CN111175971A (zh) * 2019-10-30 2020-05-19 北京理工大学 一种近眼光学显示系统、增强现实眼镜
CN110806645A (zh) * 2019-11-20 2020-02-18 深圳惠牛科技有限公司 一种用于增强现实的光栅波导
CN111458880A (zh) * 2020-05-09 2020-07-28 三生万物(北京)人工智能技术有限公司 一种波导光场显示装置和头戴式增强现实眼镜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023084147A1 (en) * 2021-11-11 2023-05-19 Dispelix Oy Waveguide, display device, method, and apparatus
RU2780511C1 (ru) * 2021-12-13 2022-09-26 Самсунг Электроникс Ко., Лтд. Устройство дополненной реальности на основе изогнутного волновода, способ работы упомянутого устройства, очки дополненной реальности на основе упомянутого устройства

Also Published As

Publication number Publication date
CN110806645A (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
WO2021098374A1 (zh) 一种用于增强现实的光栅波导
EP3796070A1 (en) Augmented reality device and optical system thereof
EP3654085B1 (en) Compact head-mounted display system protected by a hyperfine structure
US8848289B2 (en) Near-to-eye display with diffractive lens
TW201805692A (zh) 頭戴式成像裝置
US20070070859A1 (en) Optical elements and combiner optical systems and image-display units comprising same
EP3853658A1 (en) Optical combiner lens for wearable heads-up display
CN104204871A (zh) 夹心式衍射光学组合器
CN112213861A (zh) 一种轻薄型光波导ar光学成像系统
CN108732767A (zh) 一种紧凑型自由曲面波导近眼显示光学装置
US20210247610A1 (en) Optical Systems Having Angle-Selective Transmission Filters
CN108828780A (zh) 一种基于全息光栅的近眼显示光学装置
CN210639353U (zh) 一种用于增强现实的光栅波导
JP7441443B2 (ja) 光学システム及び複合現実装置
US20230314796A1 (en) Optical Systems Having Edge-Coupled Media Layers
CN208705580U (zh) 一种基于全息光栅的近眼显示光学装置
CN208569195U (zh) 一种紧凑型自由曲面波导近眼显示光学装置
CN210166569U (zh) 基于自由曲面和光波导的增强现实光学系统
CN116027553A (zh) 衍射增强光波导装置及其方法
CN218917805U (zh) 一种近眼显示系统及近眼显示装置
CN213690115U (zh) 一种轻薄型光波导ar光学成像系统
US20230359050A1 (en) Low residual layer thickness waveguide with high-index coating
WO2022170910A1 (zh) 增强现实显示装置及近眼显示设备
US20240168296A1 (en) Waveguide-Based Displays with Tint Layer
US20240184117A1 (en) Optical Systems For Directing Display Module Light into Waveguides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889969

Country of ref document: EP

Kind code of ref document: A1