WO2022170534A1 - 一种放射治疗系统 - Google Patents

一种放射治疗系统 Download PDF

Info

Publication number
WO2022170534A1
WO2022170534A1 PCT/CN2021/076394 CN2021076394W WO2022170534A1 WO 2022170534 A1 WO2022170534 A1 WO 2022170534A1 CN 2021076394 W CN2021076394 W CN 2021076394W WO 2022170534 A1 WO2022170534 A1 WO 2022170534A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
collimator
controller
gantry
treatment
Prior art date
Application number
PCT/CN2021/076394
Other languages
English (en)
French (fr)
Inventor
李金升
Original Assignee
西安大医集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安大医集团股份有限公司 filed Critical 西安大医集团股份有限公司
Priority to CN202180092817.4A priority Critical patent/CN116847907A/zh
Priority to PCT/CN2021/076394 priority patent/WO2022170534A1/zh
Publication of WO2022170534A1 publication Critical patent/WO2022170534A1/zh
Priority to US18/446,852 priority patent/US20230381543A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present application relates to the field of medical equipment, and in particular, to a radiation therapy system.
  • a radiotherapy system is a medical device that uses radiation to treat tumors, and includes: a gantry, a treatment head, and a treatment couch, wherein the treatment couch is used to carry a patient and move the patient to a designated position, and the treatment head is arranged on the gantry , the gantry is used to drive the treatment head to rotate around the isocenter axis, and the treatment head focuses multiple beams of rays to the tumor target area of the patient while rotating, thereby realizing the radiotherapy of the tumor tissue.
  • the gantry drives the treatment head to rotate around the isocenter axis and performs treatment on the current position of the patient on the treatment bed.
  • the treatment bed drives the patient to move to the next position, and the frame drives the treatment head to rotate to continue treating the patient. treatment, which makes the treatment time longer.
  • the present application provides a radiotherapy system that can solve the above technical problems.
  • a radiation therapy system comprising: a treatment couch, a gantry, a treatment head coupled to the gantry, and a control mechanism;
  • the control mechanism is configured to synchronously move the treatment couch along the axial direction of the gantry while rotating the gantry.
  • the treatment head includes: a radiation source, a pre-collimator with a pre-collimation hole with adjustable size, and a multi-leaf collimator with multiple sets of leaves;
  • the control mechanism is configured to control at least two of the couch, the gantry, the radiation source, the pre-collimator, and the multi-leaf collimator.
  • the treatment head further includes: a tungsten gate
  • the control mechanism is configured to control at least two of the couch, the gantry, the radiation source, the pre-collimator, the multi-leaf collimator, and the tungsten gate.
  • control mechanism includes: a couch controller, a gantry controller, a radiation source controller, a pre-collimator controller, a multi-leaf collimator controller, and a tungsten gate controller;
  • the couch controller the gantry controller, the radiation source controller, the pre-collimator controller, the multi-leaf collimator controller, and the tungsten gate controller
  • the two can be linked together.
  • the multi-leaf collimator controller, the treatment couch controller and the gantry controller can be controlled in linkage, so that when the treatment couch and the gantry move synchronously, more The leaf collimator opens and closes, allowing the radiation therapy system to deliver conformal therapy at any location or at multiple set locations.
  • the treatment couch controller is configured to control the movement speed, movement direction and movement distance of the treatment couch
  • the rack controller is configured to control the rotation speed, rotation direction and rotation angle of the rack
  • the radiation source controller is configured to control the radiation dose of the radiation beam
  • the pre-collimator controller is configured to control the size of the pre-collimation aperture
  • the multi-leaf collimator controller is configured to control the movement speed and movement distance of the blades
  • the tungsten gate controller is configured to control the movement speed and movement distance of the tungsten gate.
  • the multi-leaf collimator includes: a plurality of blade groups arranged side by side; each blade group includes: a first blade and a second blade arranged oppositely;
  • Both the first blade and the second blade move in a direction parallel to the axis of the frame.
  • the multi-leaf collimator further includes:
  • the first driving mechanism is connected with the first blade and the control mechanism, and is used for driving the first blade to move in a direction parallel to the axis of the frame under the control of the control mechanism;
  • the second driving mechanism is connected with the second blade and the control mechanism, and is used for driving the second blade to move in a direction parallel to the axis of the frame under the control of the control mechanism.
  • the maximum moving distances of the first blade and the second blade are both 5cm-15cm;
  • the first drive mechanism is configured to be able to make the first blade stay at any position within the range of motion
  • the second drive mechanism is configured to allow the second vane to stop at any position within a range of motion.
  • the length directions of the first blade and the second blade are both parallel to the axial direction of the frame
  • the lengths of the first blade and the second blade are both 2.5cm-7.5cm;
  • the heights of the first blade and the second blade are both 6cm-8cm.
  • opposite front ends of the first vane and the second vane are both arranged in an arc-shaped structure.
  • the treatment head further comprises: a position monitoring mechanism, the position monitoring mechanism is configured to monitor the movement positions of the first blade and the second blade.
  • the pre-collimator includes: a pre-collimator body, and a pre-collimation hole opened on the pre-collimator body;
  • the pre-collimation hole is a quadrangular pyramid-shaped through hole, and the pre-collimation hole penetrates the opposite first and second surfaces of the pre-collimator body.
  • the first section of the pre-collimation hole and the second section of the pre-collimation hole are both elongated holes
  • the size of the first section of the pre-collimation hole is larger than the size of the second section of the pre-collimation hole
  • the first section of the pre-collimation hole is the section of the pre-collimation hole on the first surface of the pre-collimator body
  • the second section of the pre-collimation hole is a section of the pre-collimation hole on the second surface of the pre-collimator body.
  • the shape of the projection field projected by the pre-collimation hole at the isocenter of the radiotherapy system is a strip
  • the length of the short side of the field is 5-15cm
  • the length of the long side of the shooting field is 30-50cm;
  • the short side direction of the radiation field is along the axial direction of the gantry of the radiotherapy system.
  • the size of the short side of the pre-collimation hole is adjustable.
  • the pre-collimator body includes: a base body with a through hole, a first fixing block, a second fixing block, a first sliding block, and a second sliding block;
  • the first fixing block and the second fixing block are fixed on the opposite first sides of the through hole to match the two short sides constituting the pre-alignment hole;
  • the first sliding block and the second sliding block are located on the opposite second side of the through hole to match the two long sides of the pre-alignment hole, and the first sliding block and the The distance between the second sliders is adjustable.
  • the treatment head is configured not to rotate about its own axis.
  • the radiotherapy system further includes: a first imaging assembly, the first imaging assembly is disposed opposite the treatment head, the first imaging assembly is configured to The beam of the head acquires first image data, which is used for portal imaging or dose verification.
  • the radiotherapy system further includes: a second imaging component, the second imaging component includes: a bulb and a flat panel detector arranged oppositely, the bulb is used for emitting X-rays, the A flat panel detector is used to detect the X-rays and generate second image data for imaging the patient's tumor.
  • a second imaging component includes: a bulb and a flat panel detector arranged oppositely, the bulb is used for emitting X-rays, the A flat panel detector is used to detect the X-rays and generate second image data for imaging the patient's tumor.
  • the gantry in the process of treating the patient, through the control function of the control mechanism, the gantry can be rotated and the treatment couch can be moved synchronously, forming a multi-turn spiral intensity modulation therapy mode. achieve the effect of spiral therapy. This not only helps to reduce the treatment time, but also can increase the treatment range, so that any part of the patient and tumors of any size can be treated.
  • 1-1 is a schematic structural diagram of an exemplary radiation therapy system according to an embodiment of the present application.
  • FIG. 1-2 are schematic structural diagrams of another exemplary radiation therapy system provided by the embodiments of the present application.
  • FIG. 2 is a schematic structural diagram of an exemplary multi-leaf collimator provided in an embodiment of the present application, wherein FIG. 2 is a top view of the multi-leaf collimator, and the blade section in FIG. 2 is a section in the direction of the blade thickness T;
  • FIG. 3 is a schematic structural diagram of an exemplary blade provided by an embodiment of the present application, wherein FIG. 3 is a blade structure obtained from a side direction of a multi-leaf collimator;
  • FIG. 4 is a schematic structural diagram of another exemplary multi-leaf collimator
  • FIG. 5 is a schematic structural diagram of a pre-collimator provided by an embodiment of the present application.
  • FIG. 6 is a top view of a pre-collimator provided in an embodiment of the present application.
  • FIG. 7 is a side view of a pre-collimator provided in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another pre-collimator provided in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of still another pre-collimator provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a connection relationship between a fixed block and a slider provided by an embodiment of the present application.
  • FIG. 11-1 is a schematic diagram of the connection relationship between an exemplary control mechanism and various components according to an embodiment of the present application
  • 11-2 is a schematic diagram of the connection relationship between another exemplary control mechanism and various components provided by the embodiment of the present application;
  • FIG. 12 is a schematic diagram of an arrangement relationship of an exemplary imaging assembly provided by an embodiment of the present application.
  • the isocenter of the radiation therapy system refers to the intersection point of the rotation axis of the collimator (which can be considered as the center of the irradiation field) and the rotation axis of the gantry.
  • the collimator refers to the whole composed of the pre-collimator and the multi-leaf collimator.
  • the field involved in the embodiments of the present application refers to the boundary of the ray beam determined by the collimator and the ray beam plane perpendicular to the central axis of the ray beam.
  • the axial direction of the gantry involved in the embodiments of the present application refers to the axial direction along the central axis of the gantry, and the gantry can perform rotational motion around its central axis to drive the treatment head on it to perform synchronous rotational motion.
  • the central axis of the gantry is parallel to the central axis of the treatment couch.
  • An embodiment of the present application provides a radiotherapy system, as shown in FIG. 1 and FIG. 11-1, the radiotherapy system includes: a treatment head 100, a gantry 200, a treatment couch 300, and a control mechanism 400; wherein, The treatment head 100 is coupled to the gantry 200 , and the control mechanism 400 is configured to make the treatment couch 300 move synchronously along the axis of the gantry while rotating the gantry 200 .
  • the gantry 200 in the process of treating a patient, through the control function of the control mechanism 400, the gantry 200 can be rotated while the treatment couch 300 can be moved synchronously, forming a multi-turn spiral intensity modulation Treatment mode to achieve the effect of spiral treatment.
  • This is not only beneficial to reduce the treatment time, but also can increase the treatment range, which is beneficial to the treatment of any part of the patient and tumor of any size.
  • the therapy head 100 includes: a radiation source 101 , a pre-collimator 102 having a pre-collimation hole with adjustable size, and a plurality of sets of blades The multi-leaf collimator 103; wherein, the pre-collimator 102 and the multi-leaf collimator 103 are sequentially arranged on the path of the ray beam emitted by the radiation source 101, and the pre-collimator 102 is configured to radiate rays emitted by the radiation source 101.
  • the beam is initially conformed, and the multi-leaf collimator 103 is configured to perform final conforming to the initially conformed beam.
  • control mechanism 400 is configured to control at least two of the treatment couch 300 , the gantry 200 , the radiation source 101 , the pre-collimator 102 and the multi-leaf collimator 103 so that the treatment couch 300 , at least two of the gantry 200 , the radiation source 101 , the pre-collimator 102 , and the multi-leaf collimator 103 can cooperate to improve the control accuracy of the radiation therapy system and diversify the treatment methods.
  • the control mechanism 400 includes: a couch controller 401, a gantry controller 402, a radiation source controller 403, a pre-collimator controller 404, and a multi-leaf collimator controller device 405.
  • a couch controller 401 a gantry controller 402
  • a radiation source controller 403 a pre-collimator controller 404
  • at least two of the treatment couch controller 401 , the gantry controller 402 , the radiation source controller 403 , the pre-collimator controller 404 , and the multi-leaf collimator controller 405 can perform linkage control.
  • At least two of the treatment couch 300 , the gantry 200 , the radiation source 101 , the pre-collimator 102 , and the multi-leaf collimator 103 can work together to improve the control of the radiation therapy system. precision, and to diversify treatment modalities.
  • the treatment head 100 includes: a radiation source 101 , a pre-collimator 102 with pre-collimation holes, a multi-leaf collimator 103 with multiple sets of blades, and a tungsten gate 104 .
  • the pre-collimator 102 , the multi-leaf collimator 103 and the tungsten gate 104 are sequentially arranged on the path of the ray beam emitted by the radiation source 101 , and the pre-collimator 102 is configured to preliminarily conform to the ray beam emitted by the radiation source 101 , the multi-leaf collimator 103 is configured to perform final conformation to the initially conformed beam, and the tungsten gate 104 is configured to shield the leaked beam.
  • the control mechanism 400 is configured to control at least two of the treatment couch 300, the gantry 200, the radiation source 101, the pre-collimator 102, and the multi-leaf collimator 103, so that the treatment couch 300, the gantry 200, the radiation source 101. At least two of the pre-collimator 102, the multi-leaf collimator 103 and the tungsten gate 104 can act in synergy to improve the control accuracy of the radiotherapy system and to diversify the treatment methods.
  • the control mechanism 400 includes: a couch controller 401, a gantry controller 402, a radiation source controller 403, a pre-collimator controller 404, a multi-leaf collimator controller 405, and Tungsten gate controller 406 .
  • a couch controller 401 a gantry controller 402, a radiation source controller 403, a pre-collimator controller 404, a multi-leaf collimator controller 405, and Tungsten gate controller 406 .
  • at least two of the treatment couch controller 401, the gantry controller 402, the radiation source controller 403, the pre-collimator controller 404, the multi-leaf collimator controller 405, and the tungsten gate controller 406 can perform Linkage control.
  • At least two of the treatment couch 300 , the gantry 200 , the radiation source 101 , the pre-collimator 102 , the multi-leaf collimator 103 , and the tungsten gate 104 can synergize to improve the radiation exposure.
  • the controller 406 can be integrated to obtain the control mechanism 400 having an integrated structure.
  • the control mechanism 400 can also be connected to the host computer 500 .
  • the operator can communicate with the control mechanism 400 , specifically to the multiple controllers contained therein.
  • the controller in the control mechanism 400 can receive the treatment plan and control the treatment couch 300, the gantry 200, the radiation source 101, the pre-collimator 102, and the multi-leaf collimator according to the treatment plan 103 operation process.
  • the treatment couch controller 401 and the gantry controller 402 perform linkage control, so that when the gantry 200 rotates, the treatment couch 300 moves synchronously along the axis of the gantry 200 , to achieve spiral treatment.
  • the multi-leaf collimator controller 405 can be controlled in linkage with the treatment couch controller 401 and the gantry controller 402, so that when the treatment couch 300 and the gantry 200 move synchronously, the multi-leaf collimator 103 opens and closes, so that the Radiation therapy systems deliver conformal therapy at any location or at multiple set locations.
  • the multi-leaf collimator 103 when the gantry 200 rotates, the treatment couch 300 can move along the axis direction of the gantry 200 at the same time, and at the same time, the multi-leaf collimator 103 also performs synchronous blade opening and closing movements to perform the final Conformal and Intensity Modulated Therapy. Moreover, when the gantry 200 rotates to any position, the multi-leaf collimator 103 can perform the blade opening and closing movement at the corresponding position, or, when the gantry 200 rotates to several specific set positions , the multi-leaf collimator 103 can perform the leaf opening and closing movement at these set positions.
  • the multi-leaf collimator 103 can simultaneously open and close the blades,
  • the purpose of treatment is achieved by achieving conformal radiation at this arbitrary position.
  • the method shown in this example can be considered as a combination of the advantages of the helical treatment method and VMAT (Volumetric Modulated Arc Therapy): during the beam exit process, the gantry rotates, and the multi-leaf collimation The blades of the device open and close at the same time.
  • VMAT Volumetric Modulated Arc Therapy
  • the dose distribution in the target area is more uniform, the treatment effect will be better, and the side effects of radiotherapy will be less.
  • the helical + VMAT treatment method achieves the same absorbed dose as the ordinary intensity modulation, less exposure is required, and the reduction in exposure also means that the impact of scattered rays and leaking rays on the patient is reduced, which is conducive to reducing radiation pollution and reduce machine wear.
  • the multi-leaf collimator 103 can open the blades when the gantry 200 rotates to several fixed positions. Combined movement, in order to achieve radiation conformal at these several set positions to achieve the purpose of treatment.
  • the method shown in this example can be considered as a combination of the advantages of the spiral treatment method and IMRT (Intensity Modulated Radiotherapy).
  • the radiotherapy system provided in this embodiment of the present application further includes a treatment head controller, where the treatment head is configured to control the operation of the treatment head. Rotation direction and rotation angle.
  • the treatment couch controller 401 is configured to control the movement speed, movement direction and movement distance of the treatment couch 300 .
  • the treatment couch 300 is used to carry the patient, and the treatment couch 300 can drive the patient to move along the axis of the frame 200. Before the treatment starts, the patient lies on the treatment couch 300, and the treatment couch 300 drives the patient to move, so that the patient moves to the treatment position. area.
  • the treatment couch controller 401 can control the movement speed of the treatment couch 300, so that when the treatment couch 300 moves along the axis direction of the frame 200, it can move at a uniform speed, or at a non-uniform speed, and can also move at a uniform speed for a certain distance, and then at a non-uniform speed. Move at a constant speed for a distance.
  • the treatment couch controller 401 can control the movement direction of the treatment couch 300 , so that the treatment couch 300 can move forward along the axis direction of the gantry 200 (the direction close to the treatment head), and can also move backward along the axis direction of the gantry 200 Movement (the direction away from the treatment head) can also reciprocate along the axis of the gantry 200 .
  • the treatment couch controller 401 can control the movement distance of the treatment couch 300 to move the treatment couch 300 to a specific position.
  • the treatment couch 300 can move continuously until it reaches the target position, and the treatment couch 300 can also be spaced at more intervals according to treatment requirements. Make the moves one at a time, each a specific distance.
  • the racks 200 involved in the embodiments of the present application all refer to rotating racks.
  • the radiotherapy system also includes a fixed frame, the fixed frame is fixed on the ground, the rotating frame is rotatably connected to the fixed frame, and at the same time, the rotating frame is also fixedly connected to the treatment head, and the rotating frame can Drive the treatment head to rotate around the central axis of the rotating gantry.
  • the structure of the rotating gantry includes, but is not limited to, a ring structure, a C-shaped structure, a helmet-shaped structure, a robotic arm structure, and the like.
  • a ring gantry is used to carry the treatment head, and the ring gantry can rotate and rotate the radiation source 101 together.
  • the rack controller 402 is configured to control the rotational speed, rotational direction, and rotational angle of the rack 200 .
  • the gantry controller 402 can be used to control the rotation speed of the gantry 200, so that the rotation of the gantry 200 can be at a constant speed (at a constant speed, the rotation speed of the gantry 200 can also be adaptively adjusted according to actual treatment needs), It can also be non-uniform.
  • the rack controller 402 can be used to control the rotation direction of the rack 200, so that the rack 200 can rotate in a clockwise direction or a counterclockwise direction, or can also switch the rotation direction during rotation, for example, the first clockwise Clockwise then counterclockwise, or, first counterclockwise and then clockwise.
  • the rack controller 402 can be used to control the rotation angle of the rack 200, so that the rack 200 can rotate back and forth within a preset angle range, for example, within a range of 0°-360° or 30°-90°,
  • the gantry 200 can also be directly rotated to a specific angle, so that the dose received by the tumor in a treatment area can meet the needs of the radiotherapy plan.
  • the radiation source 101 can emit a beam of rays, wherein the rays include: alpha rays, beta rays, gamma rays, x-rays, electron rays, proton beams, and other particle beams generated by radioisotopes.
  • the radiation source controller 403 is configured to control the radiation dose of the radiation beam.
  • the tungsten gate 104 may include two tungsten gates 104 whose opening and closing directions are perpendicular, or one tungsten gate 104 may be provided.
  • one tungsten gate 104 can be arranged between the pre-collimator 102 and the multi-leaf collimator 103, and the other can be arranged on the side of the pre-collimator 102 away from the radiation source 101;
  • the two tungsten gates 104 can also be simultaneously disposed between the pre-collimator 102 and the multi-leaf collimator 103 ; the two tungsten gates 104 can also be simultaneously disposed on the side of the pre-collimator 102 away from the radiation source 101 .
  • the tungsten gate controller 406 is configured to control the movement speed and movement distance of the tungsten gate 104 .
  • the pre-collimator controller 404 is configured to control the size of the pre-collimation hole so that the size of the pre-collimation hole is adjusted to a desired position to obtain a suitable field area.
  • the multi-leaf collimator 103 includes multiple sets of blades, and the multi-leaf collimator controller 405 is configured to control the movement speed and movement distance of the blades, so as to make the size and shape of the final collimation hole And the position can be adjusted, which is conducive to the intensity modulated treatment.
  • the multi-leaf collimator 103 includes: a plurality of blade groups arranged side by side; each blade group includes: a first blade 11 and a second blade 12 arranged oppositely;
  • Both the first blade 11 and the second blade 12 move in a direction parallel to the axis of the gantry 200 of the radiotherapy system.
  • the axial direction of the gantry 200 is the direction of the straight line where the central axis is located, and the gantry 200 can rotate around its central axis. In this embodiment of the present application, the axial direction of the gantry 200 is defined as the Y direction).
  • both the first blade 11 and the second blade 12 are moved in a direction parallel to the axis of the gantry 200 of the radiotherapy system, so that no matter when the treatment head 100 rotates with the gantry 200 to any position, the first The opening and closing directions of the first blade 11 and the second blade 12 are always parallel to the axial direction of the frame 200, which effectively avoids the influence of gravity when the blades are opened and closed, and improves the accuracy of the multi-leaf collimator 103 for conforming to the ray beam.
  • the multi-leaf collimator when the multi-leaf collimator rotates to the side of the gantry (the position reached after rotating 90° from the initial position), the multi-leaf collimator opens and closes in the tangential direction of the gantry, and the blades open and close at this time.
  • the combined direction is in the direction of its gravitational force, which will adversely affect the movement of the blade).
  • the treatment head 100 is configured not to rotate around its own axis, that is, the treatment head 100 and the gantry 200 always maintain a relatively fixed relationship, and the treatment head 100 cannot rotate along the gantry 200, It can only rotate with the frame 200 .
  • the radiation source 101 , the pre-collimator 102 and the multi-leaf collimator 103 are all fixedly arranged, so that the pre-collimator 102 and the multi-leaf collimator 103 are sequentially arranged on the radiation source 101 on the path of the emitted ray beam. Since the treatment head 100 cannot rotate, the corresponding pre-collimator 102 and the multi-leaf collimator 103 cannot perform corresponding rotational motions.
  • the multi-leaf collimator 103 further includes:
  • first driving mechanisms 21 corresponding to the first blades 11 one-to-one
  • second driving mechanisms 22 corresponding to the second blades 12 one-to-one
  • the first driving mechanism 21 is connected with the first blade 11 and the control mechanism 400 (specifically, the multi-leaf collimator controller 405 ), for driving the first blade 11 along the axis parallel to the frame 200 under the control of the control mechanism 400 directional movement;
  • the second driving mechanism 22 is connected with the second blade 12 and the control mechanism 400 (specifically, the multi-leaf collimator controller 405 ) for driving the second blade 12 along the axis parallel to the frame 200 under the control of the control mechanism 400 directional movement.
  • the control mechanism 400 specifically, the multi-leaf collimator controller 405
  • each blade of the multi-leaf collimator 103 is independently driven by a corresponding driving mechanism. In this way, by driving the specific first blade 11 and/or the second blade 12 respectively for conforming, it is beneficial to improve the Conformal accuracy to achieve the purpose of IM therapy.
  • the moving distance of the blades of the multi-leaf collimator 103 when opening and closing is also reduced accordingly, so that the maximum moving distance of the first blade 11 and the second blade 12 is relatively smaller than the current distance.
  • the maximum moving distances of the first blade 11 and the second blade 12 are both 5 cm-15 cm, for example, 8 cm or 10 cm.
  • the maximum moving distance of the first blade 11 and the second blade 12 is 8cm;
  • the maximum moving distance of the first blade 11 and the second blade 12 is 10 cm.
  • the stroke of the blade is shortened, thereby shortening the length of the blade.
  • the first driving mechanism 21 is configured to make the first blade 11 stay at any position within the motion range under the control of the multi-leaf collimator controller 405;
  • the second driving mechanism 22 is configured Under the control of the multi-leaf collimator controller 405, the second leaf 12 can stay at any position within the motion range.
  • each blade can be moved to any point within the movable range of the blade, which is beneficial to improve the conformal accuracy of the multi-leaf collimator 103 .
  • both the first driving mechanism 21 and the second driving mechanism 22 include: a first transmission member 201 and a first driving member 202 ; a first transmission member 201 and a first blade 11 or the rear end of the second blade 12 is connected; the first driving member 202 is connected with the first transmission member 201 .
  • each first blade 11 is connected with a first transmission member 201
  • the rear end of each second blade 12 is connected with a first transmission member 201 .
  • the rear end of the blade refers to the end opposite to the front end of the blade
  • the front ends of the first blade 11 and the second blade 12 refer to the opposite ends.
  • the front end of the first blade 11 and the second blade A conformal region for rays is formed between the front ends of 12.
  • the first driving mechanism 21 and the second driving mechanism 22 are used to control the movement of the first blade 11 and the second blade 12 respectively, so that after the first blade 11 and the second blade 12 move to the set position, they can automatically fixed at the set position.
  • the transmission mode of the first transmission member 201 is screw transmission or rack-and-pinion transmission, and the following is an exemplary description respectively:
  • the first transmission member 201 is a screw rod
  • the first driving member 202 is a linear motor (for example, a miniature linear motor)
  • the wire The first end of the rod is connected to the tail end of the first blade 11 (or, the second blade 12 ), and the second end of the screw rod is connected to the linear motor.
  • the linear motor can drive the screw to perform linear reciprocating motion, thereby driving the first blade 11 (or, the second blade 12 ) to perform corresponding linear motion, so as to make the first blade 11 (or, the second blade 12 ) move along the frame 200 .
  • the second end of the screw rod can be connected with the linear motor through the rotor with internal thread, and the first end of the screw rod is fixedly connected with the tail end of the first blade 11 (or the second blade 12), so that the The rotational motion of the output shaft can be converted into linear motion of the lead screw along the rotor, thereby driving the first blade 11 (or, the second blade 12 ) to move linearly.
  • the lead screw can be directly used as the output shaft of the linear motor, and at the same time the lead screw is threadedly connected to the tail end of the first blade 11 (or the second blade 12 ), so that the rotation of the lead screw can be directly converted into the first blade 11 (or, the linear movement of the second blade 12).
  • the length of the lead screw corresponding to each blade is correspondingly shortened, which is not only beneficial to The production difficulty of the multi-leaf collimator 103 is reduced, the stability thereof can be increased, and the failure rate can be reduced.
  • the multi-leaf collimator 103 provided by the embodiment of the present application does not require a trolley and other devices to increase the stroke of the leaves, thereby further reducing the complexity of the radiation therapy system.
  • the first transmission member 201 When the transmission mode of the first transmission member 201 is rack and pinion transmission, the first transmission member 201 includes a gear and a rack that mesh with each other, and the first driving member 202 is a micro motor. Wherein, the rack is fixedly connected with the first blade 11 (or the second blade 12), and the gear is coaxially connected with the micro motor.
  • the micro motor When the micro motor is started, it can drive the gear to rotate, and then drive the rack meshing with it to make linear motion, and the moving rack then drives the first blade 11 (or the second blade 12 ) to make linear motion.
  • the movement speed and movement position of the first blade 11 can be precisely controlled, so as to obtain a precise ray intensity modulation effect.
  • the first driving members 202 of the first driving mechanism 21 and the second driving mechanism 22, such as motors, are connected to the control mechanism 400 (multi-leaf collimator controller 405), and the multi-leaf collimator controller 405 can be connected to the host computer 500 at the same time, and the operator can send the blade moving distance adjustment command to the multi-leaf collimator controller 405 by operating the host computer 500, and the multi-leaf collimator controller 405 drives after receiving the command.
  • the motor controls the blade movement.
  • the multi-leaf collimator 103 further includes: a first driving member mounting plate, where the first driving member mounting plate has a plurality of mounting positions for being respectively fixed with the plurality of first driving members connected, so that the positions of the plurality of first driving members are fixed.
  • the multi-leaf collimator 103 may further include: a guide rail box for carrying all the blades, so that the blades can move stably along the guide rail box when moving.
  • the operator may send an instruction to adjust the moving distance of the leaves through the host computer 500 before the treatment.
  • the operator can also send instructions to adjust the moving distance of the blades in real time during the treatment process.
  • the driving speed of the motor can also be adjusted in real time to precisely control the movement speed and movement position of the first blade 11 and the second blade 12, thereby achieving dose intensity modulation during the treatment process.
  • the length directions of the first blade 11 and the second blade 12 are both parallel to the axial direction of the gantry 200 of the radiotherapy system;
  • the length L of the first blade 11 and the second blade 12 are both 2.5cm-7.5cm; the height H of the first blade 11 and the second blade 12 are both 6cm-8cm.
  • the longitudinal directions of the first blade 11 and the second blade 12 are made parallel to the axial direction of the gantry 200 of the radiotherapy system (the axial direction of the gantry 200 is defined as the Y direction). In this way, when the first blade 11 and the second blade 12 are opened and closed, they can always move along the axial direction of the gantry 200 of the radiotherapy system, so that the multi-leaf collimator 103 can be prevented from being affected by gravity when opening and closing. The accuracy of beam conforming by the multi-leaf collimator 103 is improved.
  • the lengths L of the first blade 11 and the second blade 12 are both 2.5cm-7.5cm, such as 3cm, 4cm, 5cm, 6cm, 7cm, and so on.
  • the length L of the blade refers to the longest dimension in the length direction thereof, and the above-mentioned blade length reduces the size of the blade, and finally reduces the size of the blade of the multi-leaf collimator 103 .
  • the length of the blade is significantly reduced compared with the blade length (150 mm) of the prior art, thereby reducing the size and weight of the blade, and reducing the difficulty and cost of processing.
  • the lighter weight of the blade reduces friction and motion resistance, and the movement is more easily controlled, which can reduce the failure rate. Under the same driving capacity, the blade can move faster, thereby significantly improving the treatment quality.
  • the blade size is determined in part by the size of the field formed by the pre-collimator 102 at the isocenter, ie, the reduction in blade size depends on the reduction in the maximum size of the field formed by the pre-collimator 102. Small.
  • the field projected by the pre-collimation hole 42 of the pre-collimator 102 at the isocenter of the radiotherapy system is a rectangle, it includes a long side and a short side, and when the length of the short side of the field is 8 cm, The lengths of the first blade 11 and the second blade 12 may both be set to 4 cm; when the length of the short side of the field is 10 cm, the lengths of the first blade 1111 and the second blade 1212 may both be set to 5 cm.
  • the heights H of the first blade 11 and the second blade 12 are both 6 cm-8 cm, for example, 6 cm, 6.5 cm, 7 cm, 7.5 cm, and the like.
  • the height direction of the blade is along the emission direction of the ray beam. Within this height range, the blade can not only provide a better ray conforming effect, but also make the blade miniaturized.
  • the thicknesses T of the first blade 11 and the second blade 12 both gradually decrease from the two sides to the middle. That is to say, in the blade group, the blade closer to the middle has a thinner thickness, and the blade closer to both sides has a thicker thickness. This arrangement is beneficial to improve the precision of the intensity modulation of the treatment area.
  • the opposite front ends of the first vane 11 and the second vane 12 are both arranged in an arc-shaped structure, for example, a circular arc shape, and further, for example, a semi-circular arc shape.
  • the radian of the front end of the two can be the same or different.
  • the radian of the front end of the first blade 11 and the front end of the second blade 12 are the same. .
  • the involved first blade 11 and the second blade 12 both include: a rectangular body and an arc-shaped front end located at the front end of the rectangular body.
  • the arc-shaped directions of the arc-shaped front ends of the first blade 11 and the second blade 12 are all along the height direction of the blades, and the height direction of the blades refers to the direction along the emission direction of the ray beam, that is, vertically passing through the 2 shows the orientation of the screenshot.
  • the multi-leaf collimator 103 provided by the embodiment of the present application, by setting the opposite front ends of the first vane 11 and the second vane 12 to an arc-shaped structure, compared with the straight linear shape of the front ends of the vanes, the first vane 11 And the front end of the second blade 12 is set in an arc shape, which can reduce the penumbra formed when the ray beam passes through the multi-leaf collimator 103, which is beneficial to improve the treatment accuracy.
  • the curvature of the front ends of the first blade 11 and the second blade 12 is inversely proportional to the thickness of the blade where they are located, that is, the thicker the thickness T of the blade, the smaller the curvature of the front end of the blade; The thinner the thickness T of the blade, the greater the curvature of the front end of the blade.
  • the arc size of the front ends of the first blade 11 and the second blade 12 is proportional to the distance between the blades and the isocenter of the radiotherapy system, that is, the greater the distance between the blades from the isocenter, the greater the curvature of the front ends of the blades; The smaller the distance from the isocenter, the smaller the curvature of the blade tip.
  • the arc size of the front end of the first blade 11 and the second blade 12 is proportional to the maximum moving distance of the blade, that is, the larger the maximum moving distance that the blade can move, the greater the arc of the front end of the blade, and the maximum moving distance that the blade can move. The smaller it is, the smaller the curvature of the front end of the blade.
  • the treatment head 100 provided in this embodiment of the present application further includes: a position monitoring mechanism 3 , where the position monitoring mechanism 3 is configured to monitor the first blade 11 and the second blade 12 movement positions.
  • the position monitoring mechanism 3 is used to accurately monitor the movement and displacement of the blades, so as to further improve the conforming accuracy of the multi-leaf collimator 103 to the ray beam and realize precise radiotherapy.
  • a position monitoring mechanism 3 is correspondingly provided for each blade.
  • the position monitoring mechanism 3 includes: a load cell 32 and an elastic member 31, the load cell 32 is fixedly arranged, one end of the elastic member 31 is fixedly connected to the load cell 32, and the elastic member The other end of 31 and the rear end of the first blade 11 (the second blade 12 ).
  • the load cell 32 can measure the magnitude of the force on the elastic member 31 .
  • the stretching degree of the elastic member 31 changes, and then the force detected by the load cell 32 changes.
  • the movement position of the first blade 11 (the second blade 12 ) is determined according to the detected force.
  • the position monitoring mechanism 3 further includes a processor, which is electrically connected to the load cell 32 for determining the first blade 11 (the second blade 12 ) according to the force data measured by the load cell 32 ) of the movement position.
  • the load cell 32 can be fixed on the driving element mounting plate or the guide rail box of the multi-leaf collimator 103 .
  • the elastic member 31 In order to facilitate the measurement, when the elastic member 31 is located between the rear end of the first blade 11 (the second blade 12) and the load cell 32, when the blade is in the initial position, the elastic member 31 is just in a natural elongation state. In this way, When the blade is moving, it is only necessary to measure the tensile force of the elastic member 31, and when the blade returns to the initial position, the theoretical tensile force is zero, so the measurement is more convenient.
  • the elastic member 31 may be a spring, and the Hooke coefficient of the spring is fixed within the normal use range, which can ensure the accuracy of the measurement data.
  • the elastic member 31 may also include: latex tendons, tubes, ropes, or rubber tendons, tubes, ropes, etc., or other components with good elasticity and a fixed Hooke coefficient.
  • the position monitoring mechanism 3 is a laser range finder
  • the laser range finder includes: a space wave transmitter, a space wave receiver and a processor, wherein the space wave transmitter can emit a space that travels in a straight line
  • the space wave emitted by the space wave transmitter is irradiated on the rear end surface of the first blade 11 (the second blade 12 );
  • the space wave receiver is arranged on the reflection reflected by the rear end surface of the first blade 11 (the second blade 12 )
  • the processor is connected with the space wave transmitter and the space wave receiver, and according to the space wave emitted by the space wave transmitter
  • the wave and the space wave received by the space wave receiver determine the position of the corresponding blade.
  • the space wave transmitter and/or the space wave receiver are mounted on the driver mounting plate or the guide rail box of the multi-leaf collimator 103 .
  • the space waves are lasers, infrared rays, ultrashort waves, or ultrasonic waves.
  • the processor of the position monitoring mechanism 3 is electrically connected to the multi-leaf collimator controller 405, so that the processor can send the movement position information of the first blade 11 (the second blade 12) to the multi-leaf collimator controller Then, the multi-leaf collimator controller 405 uses the movement position information to control the movement of the first leaf 11 (the second leaf 12 ).
  • the pre-collimator 102 includes: a pre-collimator body 41 and a pre-collimator hole 42 opened on the pre-collimator body 41 ;
  • the pre-collimation hole 42 is a quadrangular pyramid-shaped through hole, and the pre-collimation hole 42 penetrates the opposite first and second surfaces of the pre-collimator body 41 .
  • the shape of the pre-collimator body 41 includes, but is not limited to, a circular block, a rectangular block, a pentagonal block, or a block of other geometric shapes, as long as it satisfies the treatment that can be properly installed in the radiation therapy system in the head.
  • FIG. 5 The structure of the quadrangular pyramid-shaped through hole is shown in FIG. 5 , which has two sets of inclined inner surfaces opposite to each other, so that the first cross-section of the pre-collimation hole 42 on the first surface of the pre-collimator body 41 is the same as that of the pre-collimator body 41 .
  • the size of the second cross section of the pre-collimation hole 42 on the second surface of the pre-collimator body 41 is different.
  • the inclination angles of the inclined inner sides of the pre-collimation holes 42 may be the same or different, as long as the dimensions of the first section and the second section of the pre-collimation holes 42 are different.
  • the pre-collimation holes 42 may be The inclination angles of the four inner sides are the same.
  • any cross-section of the pre-collimation hole 42 may be rectangular or square.
  • the first and second surfaces of the pre-collimator body 41 refer to the surfaces of the pre-collimator body 41 facing the radiation source and facing the multi-leaf collimator, wherein the The cross-sectional dimensions at the first surface and the second surface of the body 1 determine the orientation of the first surface and the second surface.
  • the surface where the end of the pre-collimation hole 42 with the smaller cross-sectional size is located faces the radiation source, and the surface where the end of the pre-collimation hole 42 with the larger cross-sectional size is located faces the multi-leaf collimator.
  • the ray beam emitted by the radiation source 101 will diverge after passing through the pre-collimation hole 42 of the quadrangular pyramid through-hole structure, so that the ray beam emitted by the pre-collimation hole 42 has a larger field area, ensuring that the ray beam
  • the final collimation hole can be completely covered, and at the same time, the volume of the pre-collimator 102 can be reduced.
  • the first section 421 of the pre-collimation hole 42 and the second section 422 of the pre-collimation hole 42 are both elongated holes;
  • the size of the first section 421 of the pre-collimation hole 42 is larger than the size of the second section 422 of the pre-collimation hole 42;
  • the first section 421 of the pre-collimation hole 42 is the section of the pre-collimation hole 42 on the first surface of the pre-collimator body 41;
  • the second section 422 of the pre-collimation hole 42 is the section of the pre-collimation hole 42 on the second surface of the pre-collimator body 41 .
  • the first surface of the pre-collimator 102 faces the multi-leaf collimator 103 and the second surface of the pre-collimator 102 faces the radiation source 101 .
  • the first cross-section and the second cross-section of the pre-collimation hole 42 may be rectangular or square. Based on the above, as shown in FIG. 6 , the first and second cross-sections of the pre-collimation hole 42 are long strips.
  • the pre-alignment hole 42 has a long side and a short side with different lengths.
  • the direction of the short side of the pre-collimation hole 42 is along the axial direction of the gantry 200 of the radiation therapy system.
  • the shape of the pre-collimated hole 42 whose cross-sectional shape is an elongated hole projected at the isocenter of the radiotherapy system is a rectangle correspondingly, which includes a long side and a short side, and the short side of the field is in the direction of the radiation therapy.
  • the axial direction of the frame 200 of the system is a rectangle correspondingly, which includes a long side and a short side, and the short side of the field is in the direction of the radiation therapy.
  • the length of the short side of the field is 5cm-15cm, such as 5cm, 6cm, 7cm, 8cm, 9cm, 10cm, 11cm, 12cm, 13cm, 14cm, 15cm, etc.;
  • the side length is 30cm-50cm, for example, 30cm, 35cm, 40cm, 45cm, 50cm, etc.
  • the size of the field projected by the pre-collimation hole 42 at the isocenter of the radiotherapy system is as follows: the length of the short side of the field is 8 cm or 10 cm, and the length of the long side of the field is 40 cm.
  • the size of the pre-collimation hole 42 at any distance from the isocenter can be correspondingly obtained, and then the size of the first section 421 of the pre-collimation hole 42 and the second size of the pre-collimation hole 42 can be obtained.
  • the dimensions of the second section 422 The above-mentioned field size provided by the embodiment of the present application makes the size of the pre-collimation hole 42 correspondingly smaller, which is beneficial to reduce the size and volume of the pre-collimator 102 , and further facilitates to simplify the volume and structure of the treatment head 100 .
  • the size of the pre-collimation hole 42 of the pre-collimator 102 provided in the embodiment of the present application can be adjusted, which includes but is not limited to: making the size of the long side of the pre-collimation hole 422 adjustable, or , the size of the short side of the pre-collimation hole 42 can be adjusted, or the size of the long side and the size of the short side of the pre-collimation hole 42 can be adjusted.
  • the size of the pre-collimation hole 42 is variable, so that different preliminary conformal effects of the ray beam can be obtained, and it is suitable for different sized lesion areas and improves the adaptability of the pre-collimator 102 . Further, when the size of the pre-collimation hole 42 changes to 0, that is, when the pre-collimation hole 42 is closed, the source can be turned off or intensity-modulated therapy that does not require radiation can be performed.
  • the size of the short side of the pre-collimation hole 42 is adjustable, so that in the application state of the pre-collimator 102 , the pre-collimation hole 42 is along the axial direction of the gantry 200 of the radiotherapy system The size of the can be adjusted to suit different sized lesion areas.
  • the size of the short side of the pre-collimation hole 42 is adjustable, which means that the size of the short side of any section of the pre-collimation hole 42 can be adjusted in the entire depth direction of the pre-alignment hole 42 .
  • the pre-collimator body 41 includes: a base body 411 with a through hole, a first fixing block 412 , a second fixing block 413 , and a first sliding block 415.
  • the first fixing block 412 and the second fixing block 413 are fixed on the opposite first sides of the through hole to match the two short sides forming the pre-alignment hole 42;
  • the first sliding block 415 and the second sliding block 416 are located on the opposite second side of the through hole to match the two long sides of the pre-alignment hole 42 , and between the first sliding block 415 and the second sliding block 416 The spacing is adjustable.
  • the materials of the base body 411 , the first fixing block 412 , the second fixing block 413 , the first sliding block 415 , and the second sliding block 416 are all selected from radiation shielding materials, such as tungsten, lead, or tungsten alloy.
  • the shape of the base body 411 includes, but is not limited to: a circular block, a rectangular block, a pentagonal block, or a block of other geometric shapes, as long as it satisfies the requirements of being able to be properly installed in the treatment head 100 of the radiation therapy system in.
  • the distance between them can be adjusted, thereby achieving the purpose of adjusting the size of the short side of the pre-alignment hole 42 .
  • first sliding block 415 and the second sliding block 416 can be moved in the following manner, so as to achieve the purpose of adjusting the distance between them: the first sliding block 415 and the second sliding block 416 pass through the sliding guide rail The first sliding block 415 and the second sliding block 416 are driven by the rack and pinion to move, the first sliding block 415 and the second sliding block 416 are driven by the screw nut, and so on.
  • first fixing block 412 and the second fixing block 413, and the first sliding block 415 and the second sliding block 416 may be located on both sides of the top of the through hole of the base body 411, respectively.
  • the pre-alignment hole 42 formed by the slider is actually located above the through hole of the base body 411 .
  • the size of the through hole is made larger than the maximum size to which the pre-collimation hole 42 can be adjusted to ensure that the desired field is obtained.
  • first fixing block 412 and the second fixing block 413, and the first sliding block 415 and the second sliding block 416 may be located on both sides of the inner through hole of the base body 411, respectively.
  • the pre-alignment holes 42 formed by each slider are actually integrated with the through holes of the base body 411 .
  • the size of the through hole can be determined adaptively according to the size of the fixed block and the slider, and the size of the required field.
  • a sliding groove (the sliding groove is equivalent to the following guide groove 414 ) is provided on the opposite second side of the through hole of the base body 411 to accommodate the first sliding block 415 and the second sliding block 416 respectively.
  • the tail of the first slider 415 and the tail of the second slider 416 can be moved along the chute, and the fronts of the first slider 415 and the second slider 416 are opposite to form the beam conforming area .
  • the structures of the opposite sides of the first fixing block 412 and the second fixing block 413 are adapted to the structures of the side parts of the first sliding block 415 and the side parts of the second sliding block 416 , for example, the first fixing block 412 and the second sliding block 416
  • the opposite sides of the two fixing blocks 413 are in contact with the side surfaces of the first sliding block 415 , so that the first sliding block 415 and the second sliding block 416 move along the side surfaces of the fixing blocks.
  • guide grooves 1201 are provided on the opposite surfaces of the first fixing block 412 and the second fixing block 413 , so that the opposite sides of the first sliding block 415 are opposite to the second sliding block 416 .
  • the two sides are respectively embedded in the corresponding guide grooves 1201 , so that both the first sliding block 415 and the second sliding block 416 move along the guide groove 1201 .
  • one of the first sliding block 415 and the second sliding block 416 may be fixed, and the other may be moved, for example, the second sliding block 416 may be fixed, and the first sliding block 415 may be moved away from or close to The second sliding block 416 moves in the direction of movement; alternatively, both the first sliding block 415 and the second sliding block 416 may be able to move, and the two may move toward each other or backward.
  • Guide grooves 414 are provided, so that the opposite sides of the first slider 415 and the opposite sides of the second slider 416 are respectively embedded in the corresponding guide grooves 414, so that the first slider 415 and the second slider 416 are The guide groove 414 moves.
  • the cross-sectional shape of the guide groove 414 includes, but is not limited to, a rectangle, a trapezoid, a circular arc, etc.
  • the opposite sides of the first sliding block 415 and the second sliding block 416 are also set to be rectangular, trapezoidal or circular arc. shape etc.
  • the guide grooves 414 on the fixed block can not only provide a guiding function for the movement of the slider, but also provide a certain limit function for the slider, which is beneficial to improve the stability of the slider during movement.
  • the first sliding block 415 and the second sliding block 416 move along the guide groove 414 to obtain the set position, the first sliding block 415 and the second sliding block 416 need to be fixed. Not limited to the following:
  • the slider is manually fixed.
  • the pre-collimator 102 provided in this embodiment of the present application further includes: a fixing member 5 , and the fixing member 5 is It is configured to be able to fix the first slider 415 and the second slider 416 in a moving state.
  • the fixing member 5 to fix the first sliding block 415 as an example to illustrate the structure of the fixing member 5 (the fixing principle of the fixing member 5 to the second sliding block 416 is the same as the fixing principle of the fixing member 5 to the first sliding block 415 ). , I will not repeat them here):
  • the fixing member 5 includes: a pressure plate and a first fixing bolt, wherein one end of the pressure plate is rotatably connected to the top of the first fixing block 412 and/or the second fixing block 413, and the other end of the pressure plate is provided with a first fixing block 412.
  • a bolt hole is provided on the top wall of the first sliding block 415 with a first bolt groove, wherein the first bolt groove is elongated, and the length of the first bolt groove extends along the moving direction of the first sliding block 415 .
  • the first bolt groove communicates with the first bolt hole.
  • the first fixing bolt can pass through the first bolt hole into the first position of the first bolt groove, and at the same time be threadedly connected with the first bolt hole, so that the pressing plate is pressed tightly
  • the first sliding block 415 makes the first sliding block 415 press against the top of the base body 411 to achieve the purpose of fixing the first sliding block 415 .
  • the first bolt hole thereon communicates with the second position of the first bolt groove on the first slider 415, so that the first fixing bolt can pass through the first bolt hole into the second position of the first bolt groove, and at the same time It is threadedly connected with the first bolt hole to achieve the purpose of pressing the first sliding block 415 .
  • the fixing member 5 includes: a second fixing bolt, a plurality of second bolt grooves arranged side by side are opened on the side wall of the first sliding block 415, and the plurality of second bolt grooves are along the first sliding block.
  • the moving directions of the 415 are arranged in sequence, the side wall of the first fixing block 412 or the second fixing block 413 is provided with a second bolt hole, the second bolt hole is in the shape of a long strip, and the length of the second bolt hole is along the first sliding block.
  • the direction of movement of the block 415 extends.
  • the second bolt hole communicates with the second bolt groove, and both of them can be threadedly connected with the second fixing bolt at the same time.
  • the second fixing bolt can pass through the second bolt hole and enter the second bolt groove, and is threadedly connected with the two at the same time, so as to achieve the purpose of fixing the first sliding block 415 .
  • both the first sliding block 415 and the second sliding block 416 are driven by the third driving mechanism 23 to move; wherein, the third driving mechanism 23 includes: A second transmission member 203 connected with a sliding block 415 and a second sliding block 416 ; a second driving member 204 connected with the second transmission member 203 .
  • the first sliding block 415 and the second sliding block 416 correspond to a third driving mechanism 23 respectively, and the first sliding block 415 and the second sliding block 416 are individually controlled by the two third driving mechanisms 23 .
  • the third driving mechanism 23 can be used to automatically control the movement process of the first sliding block 415 and the second sliding block 416, so that the first sliding block 415 and the second sliding block 416 are moved to the set point. After the position is set, it can be automatically fixed at the set position.
  • the transmission mode of the second transmission member 203 is a screw transmission or a rack and pinion transmission, and the following is an exemplary description respectively:
  • the second transmission member 203 is a screw rod
  • the second driving member 204 is a linear motor (miniature linear motor).
  • the first end is connected with the tail end of the first slider 415 (the tail end of the first slider 415 is the end of the first slider 415 away from the second slider 416 ), and the second end of the screw rod is connected with the linear motor .
  • the linear motor can drive the screw to perform linear reciprocating motion, and then drive the first sliding block 415 to perform corresponding linear motion, so as to achieve the purpose of making the first sliding block 415 perform linear reciprocating motion along the central axis of the frame 200 .
  • the second end of the screw rod can be connected to the linear motor through a rotor with internal threads, and the first end of the screw rod is fixedly connected to the tail end of the first slider 415, so that the rotary motion of the output shaft of the linear motor can be converted into It is the linear movement of the lead screw along the rotor, which in turn drives the first sliding block 415 to move linearly.
  • the lead screw can be directly used as the output shaft of the linear motor, and the lead screw is threadedly connected to the tail end of the first slider 415 , so that the rotation of the lead screw can be directly converted into linear motion of the first slider 415 .
  • the second transmission member 203 When the transmission mode of the second transmission member 203 is rack and pinion transmission, the second transmission member 203 includes a gear and a rack that mesh with each other, and the second driving member 204 is a micro motor.
  • the rack is fixedly connected to the first slider 415, and the gear is coaxially connected to the micro motor.
  • the micro motor When the micro motor is started, it can drive the gear to rotate, and then drive the gear rack meshed with it to move in a straight line, and the rack that realizes the movement then drives the first slider 415 to move in a straight line.
  • the movement speed and movement position of the first sliding block 415 and the second sliding block 416 can be precisely controlled, so that the precise ray intensity modulation effect can be obtained.
  • the motor of the third driving mechanism 23 is connected to the pre-collimator controller 404, and the pre-collimator controller 404 can be connected to the upper computer 500 at the same time.
  • the collimator controller 404 sends an instruction to adjust the length of the short side of the pre-collimation hole 42.
  • the pre-collimator controller 404 drives the motor to control the movement of the slider, so as to obtain the pre-collimation hole 42 of a specific size. the goal of.
  • the operator can send an instruction to adjust the size of the pre-collimation hole 42 through the host computer 500 before the treatment, and the pre-collimation hole 42 The width of 42 is adjusted to the set width value.
  • the operator can also send an instruction to adjust the size of the pre-collimation hole 42 in real time during the treatment.
  • the driving speed of the motor can also be adjusted in real time, so as to precisely control the movement speed and movement position of the first sliding block 415 and the second sliding block 416 .
  • the radiation therapy system provided by the embodiment of the present application may not be provided with a tungsten gate, which is beneficial to simplify the structure of the radiation therapy system, increase the number of radiation Reliability of the treatment system and reduce the cost of the radiation treatment system.
  • the radiation therapy system provided in this embodiment of the present application further includes: a first imaging assembly 61 , the first imaging assembly 61 is disposed opposite the treatment head 100 , and the first imaging assembly 61 It is configured to be able to obtain first image data from the beam from the treatment head 100, the first image data being used for portal imaging or dose verification.
  • the first imaging assembly 61 is disposed on the rack 200, which may be an EPID (Electronic Portal Imaging Device, electronic portal imaging device).
  • EPID Electronic Portal Imaging Device, electronic portal imaging device
  • Portal imaging may be images obtained during treatment based on beams of rays to determine whether the actual treatment field is consistent with the treatment plan.
  • Portal imaging can also be a medical image of the patient acquired before treatment, and image registration is performed according to the medical image with other medical images of the patient (eg, CT image, MR image, PET image, etc.) to guide patient placement.
  • Portal imaging can also be a medical image of a patient acquired during treatment, and image registration is performed on the medical image with other medical images of the patient (such as CT images, MR images, PET images, etc.) to confirm that the patient's tumor is undergoing treatment.
  • the radiation therapy system guides the radiation therapy system by adjusting the treatment couch or adjusting the treatment head to perform precise treatment for the movement of the tumor, such as moving the treatment couch so that the tumor is in the irradiation area, or adjusting the treatment head to turn off the beam.
  • the dose rate is reduced, or the beam is blocked by a pre-collimator or multi-leaf collimator to prevent the beam from hitting normal tissues or organs.
  • the dose verification may be image data acquired according to the ray beam during the treatment process, and dose parameters can be obtained according to the image data, so as to determine whether the dose of the actual treatment is consistent with the dose in the treatment plan.
  • the EPID can be a strip detector of the corresponding size (according to the size of the maximum field or pre-collimation).
  • the size of the pre-collimation hole on the detector, and the size of the EPID is calculated through the geometric relationship. Since the size of the pre-collimation hole is significantly reduced compared to the size of the pre-collimation hole in the prior art, the detector can be reduced accordingly. size), thereby reducing the size of the detector, saving equipment space, and reducing the cost of the detector.
  • the radiotherapy system provided by the embodiment of the present application further includes: a second imaging assembly 62 , and the second imaging assembly 62 includes: a bulb 621 and a flat panel detector disposed opposite to each other 622, the bulb 621 is used for emitting X-rays, and the flat panel detector 622 is used for detecting the X-rays and generating second image data, and the second image data is used for imaging the tumor of the patient.
  • the second imaging assembly 62 includes: a bulb 621 and a flat panel detector disposed opposite to each other 622, the bulb 621 is used for emitting X-rays, and the flat panel detector 622 is used for detecting the X-rays and generating second image data, and the second image data is used for imaging the tumor of the patient.
  • the second imaging assembly 62 is disposed on the gantry 200 , and the bulb 621 is an X-ray source for emitting KV-level rays.
  • the rotation of the gantry drives the tube 621 to rotate.
  • the tube 621 generates an X-ray beam.
  • the X-ray beam passes through the human body from different angles and is received by the flat panel detector 622.
  • the radiographic data is generated to generate CT images, thereby realizing the imaging of the patient's tumor.
  • the X-ray beam may be a fan beam or a cone beam.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance.
  • plurality refers to two or more, unless expressly limited otherwise.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

本申请公开了一种放射治疗系统,属于医疗设备领域。该放射治疗系统包括:治疗床、机架、耦合至所述机架上的治疗头、以及控制机构;控制机构被配置为在使所述机架进行旋转的同时,使所述治疗床沿着所述机架的轴线方向进行同步地运动。这样,能够形成多圈螺旋调强治疗模式,达到螺旋治疗的效果。这样不仅利于减小治疗时间,且能够增大治疗范围,以对患者任何部位以及任意尺寸的肿瘤进行治疗。

Description

一种放射治疗系统 技术领域
本申请涉及医疗设备领域,特别涉及一种放射治疗系统。
背景技术
放射治疗系统是一种利用放射线治疗肿瘤的医疗设备,其包括:机架、治疗头、治疗床,其中,治疗床用于承载患者并将患者移动至指定位置处,治疗头设置于机架上,利用机架带动治疗头绕等中心的轴线旋转,治疗头在旋转的同时将多个射线束聚焦到患者的肿瘤靶区,从而实现对肿瘤组织的放射治疗。
相关技术中,机架带动治疗头绕等中心的轴线旋转并对治疗床上的患者的当前位置进行治疗,治疗完毕后,治疗床带动患者运动至下一位置,机架带动治疗头旋转继续对患者进行治疗,这使得治疗时间较长。
发明内容
鉴于此,本申请提供一种放射治疗系统,能够解决上述技术问题。
具体而言,包括以下的技术方案:
一种放射治疗系统,所述放射治疗系统包括:治疗床、机架、耦合至所述机架上的治疗头、以及控制机构;
所述控制机构被配置为在使所述机架进行旋转的同时,使所述治疗床沿着所述机架的轴线方向进行同步地运动。
在一些可能的实现方式中,所述治疗头包括:辐射源、具有尺寸可调的预准直孔的预准直器、具有多组叶片的多叶准直器;
所述控制机构被配置为对治疗床、机架、辐射源、预准直器以及多叶准直器中的至少两个进行控制。
在一些可能的实现方式中,所述治疗头还包括:钨门;
所述控制机构被配置为对所述治疗床、所述机架、所述辐射源、所述预准直器、所述多叶准直器、所述钨门中的至少两个进行控制。
在一些可能的实现方式中,所述控制机构包括:治疗床控制器、机架控制器、辐射源控制器、预准直器控制器、多叶准直器控制器、以及钨门控制器;
所述治疗床控制器、所述机架控制器、所述辐射源控制器、所述预准直器控制器、所述多叶准直器控制器、以及所述钨门控制器中的至少两个能够进行联动控制。
在一些可能的实现方式中,所述多叶准直器控制器与所述治疗床控制器和所述机架控制器能够联动控制,使得在所述治疗床和所述机架同步运动时多叶准直器开合,使放射治疗系统在任意位置或者在多个设定位置处进行适形治疗。
在一些可能的实现方式中,所述治疗床控制器被配置为用于控制所述治疗床的运动速度、运动方向及运动距离;
所述机架控制器被配置为用于控制所述机架的旋转速度、旋转方向和旋转角度;
所述辐射源控制器被配置为用于控制射线束的放射剂量;
所述预准直器控制器被配置为用于控制所述预准直孔的尺寸;
所述多叶准直器控制器被配置为用于控制所述叶片的运动速度及运动距离;
所述钨门控制器被配置为用于控制所述钨门的运动速度及运动距离。
在一些可能的实现方式中,所述多叶准直器包括:多个并排设置的叶片组;每一叶片组包括:相对设置的第一叶片和第二叶片;
所述第一叶片和所述第二叶片均沿平行于所述机架的轴线方向运动。
在一些可能的实现方式中,所述多叶准直器还包括:
与所述第一叶片一一对应的多个第一驱动机构、以及与所述第二叶片一一对应的多个第二驱动机构;
所述第一驱动机构与所述第一叶片和所述控制机构连接,用于在所述控制机构的控制下驱动所述第一叶片沿平行于所述机架的轴线方向运动;
所述第二驱动机构与所述第二叶片和所述控制机构连接,用于在所述控制机构的控制下驱动所述第二叶片沿平行于所述机架的轴线方向运动。
在一些可能的实现方式中,所述第一叶片和所述第二叶片的最大运动距离均为5cm-15cm;
并且,所述第一驱动机构被配置为能够使所述第一叶片在运动范围内任意位置处停留;
所述第二驱动机构被配置为能够使所述第二叶片在运动范围内任意位置处停留。
在一些可能的实现方式中,所述第一叶片和所述第二叶片的长度方向均平行于所述机架的轴线方向;
所述第一叶片和所述第二叶片的长度均为2.5cm-7.5cm;
所述第一叶片和所述第二叶片的高度均为6cm-8cm。
在一些可能的实现方式中,所述第一叶片和所述第二叶片的相对的前端均设置为弧形结构。
在一些可能的实现方式中,所述治疗头还包括:位置监测机构,所述位置监测机构被配置为用于监测所述第一叶片和所述第二叶片的运动位置。
在一些可能的实现方式中,所述预准直器包括:预准直器本体、以及开设于所述预准直器本体上的预准直孔;
所述预准直孔为四棱台状通孔,所述预准直孔贯穿所述预准直器本体的相对的第一表面和第二表面。
在一些可能的实现方式中,所述预准直孔的第一截面和所述预准直孔的第二截面均为长条形孔;
所述预准直孔的第一截面的尺寸大于所述预准直孔的第二截面的尺寸;
其中,所述预准直孔的第一截面为所述预准直孔在所述预准直器本体的第一表面上的截面;
所述预准直孔的第二截面为所述预准直孔在所述预准直器本体的第二表面上的截面。
在一些可能的实现方式中,所述预准直孔投影在放射治疗系统的等中心处的射野的形状为长条形;
所述射野的短边长度为5-15cm;
所述射野的长边长度为30-50cm;
其中,所述射野的短边方向沿所述放射治疗系统的机架的轴向。
在一些可能的实现方式中,所述预准直孔的短边尺寸可调。
在一些可能的实现方式中,所述预准直器本体包括:具有通孔的基体、第一固定块、第二固定块、第一滑块、第二滑块;
所述第一固定块和所述第二固定块固定于所述通孔相对的第一侧部,以配合构成所述预准直孔的两个短边;
所述第一滑块和所述第二滑块位于所述通孔相对的第二侧部,以配合构成所述预准直孔的两个长边,并且,所述第一滑块与所述第二滑块之间的间距可调。
在一些可能的实现方式中,所述治疗头被配置为不能绕自身的轴线自转。
在一些可能的实现方式中,所述放射治疗系统还包括:第一成像组件,所述第一成像组件与所述治疗头相对设置,所述第一成像组件被配置为能够根据来自所述治疗头的射线束获得第一图像数据,所述第一图像数据用于射野成像或者剂量验证。
在一些可能的实现方式中,所述放射治疗系统还包括:第二成像组件,所述第二成像组件包括:相对设置的球管和平板探测器,所述球管用于发射X射线,所述平板探测器用于探测所述X射线并生成第二图像数据,所述第二图像数据用于对患者的肿瘤进行成像。
本申请实施例提供的技术方案的有益效果至少包括:
本申请实施例提供的放射治疗系统,在对患者进行治疗的过程中,通过控制机构的控制作用,能够使机架旋转的同时,治疗床同步进行地移动,形成多圈螺旋调强治疗模式,达到螺旋治疗的效果。这样不仅利于减小治疗时间,且能够增大治疗范围,以对患者任何部位以及任意尺寸的肿瘤进行治疗。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1-1为本申请实施例提供的一示例性放射治疗系统的结构示意图;
图1-2为本申请实施例提供的另一示例性放射治疗系统的结构示意图;
图2为本申请实施例提供的一示例性多叶准直器的结构示意图,其中,图2是多叶准直器的俯视图,图2中的叶片截面是叶片厚T方向上的截面;
图3为本申请实施例提供的一示例性叶片的结构示意图,其中,图3是从多叶准直器的侧面方向获得的叶片结构;
图4为另一示例性多叶准直器的结构示意图;
图5为本申请实施例提供的一种预准直器的结构示意图;
图6为本申请实施例提供的预准直器的俯视图;
图7为本申请实施例提供的预准直器的侧视图;
图8为本申请实施例提供的另一种预准直器的结构示意图;
图9为本申请实施例提供的再一种预准直器的结构示意图;
图10为本申请实施例提供的固定块与滑块之间的连接关系示意图;
图11-1为本申请实施例提供的一示例性控制机构与各部件的连接关系示意图;
图11-2为本申请实施例提供的另一示例性控制机构与各部件的连接关系示意图;
图12为本申请实施例提供的一示例性成像组件的布置关系示意图。
附图标记分别表示:
100-治疗头,200-机架,300-治疗床,400-控制机构,500-上位机,
101-辐射源,102-预准直器,103-多叶准直器,104-钨门,
11-第一叶片,12-第二叶片,
21-第一驱动机构,22-第二驱动机构,23-第三驱动机构,
201-第一传动件,202-第一驱动件,203-第二传动件,204-第二驱动件,
3-位置监测机构,31-弹性件,32-测力传感器,
41-预准直器本体,
411-基体,412-第一固定块,413-第二固定块,414-导向槽,
415-第一滑块,416-第二滑块,
42-预准直孔,421-第一截面,422-第二截面,
5-固定件,
401-治疗床控制器,402-机架控制器,403-辐射源控制器,
404-预准直器控制器,405-多叶准直器控制器,406-钨门控制器,
61-第一成像组件,
62-第二成像组件,621-球管,622-平板探测器。
具体实施方式
为使本申请的技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
需要说明的是,本申请实施例所涉及的放射治疗系统的等中心指的是准直 体的旋转轴(可以认为是照射野的中心)与机架的旋转轴的相交点。准直体指的是由预准直器和多叶准直器构成的整体。
本申请实施例所涉及的射野指的是由准直体所确定的射线束的边界且垂直于射线束中心轴的射线束平面。
本申请实施例所涉及的机架的轴向指的是沿机架的中心轴的轴线方向,机架能够进行绕其中心轴的旋转运动,以带动其上的治疗头进行同步的旋转运动。机架的中心轴与治疗床的中心轴是平行的。
本申请实施例提供了一种放射治疗系统,如附图1及附图11-1所示,该放射治疗系统包括:治疗头100、机架200、治疗床300、以及控制机构400;其中,治疗头100耦合至机架200上,控制机构400被配置为在使机架200进行旋转的同时,使治疗床300沿着机架的轴线方向进行同步地运动。
本申请实施例提供的放射治疗系统,在对患者进行治疗的过程中,通过控制机构400的控制作用,能够使机架200旋转的同时,治疗床300同步进行地移动,形成多圈螺旋调强治疗模式,达到螺旋治疗的效果。这样不仅利于减小治疗时间,且能够增大治疗范围,利于对患者任何部位以及任意尺寸的肿瘤进行治疗。
本申请实施例提供的放射治疗系统中,如附图1-1所示,该治疗头100包括:辐射源101、具有尺寸可调的预准直孔的预准直器102、具有多组叶片的多叶准直器103;其中,预准直器102以及多叶准直器103依次设置于辐射源101发出射线束的路径上,预准直器102被配置为对辐射源101发出的射线束进行初步适形,多叶准直器103被配置为对初步适形的射线束进行最终适形。
在一些可能的实现方式中,控制机构400被配置为对治疗床300、机架200、辐射源101、预准直器102以及多叶准直器103中的至少两个进行控制,使治疗床300、机架200、辐射源101、预准直器102、多叶准直器103中的至少两个能够协同作用,提高对放射治疗系统的控制精度,以及使治疗方式多样化。
示例地,如附图11-1所示,控制机构400包括:治疗床控制器401、机架控制器402、辐射源控制器403、预准直器控制器404、以及多叶准直器控制器405。其中,治疗床控制器401、机架控制器402、辐射源控制器403、预准直器控制器404、以及多叶准直器控制器405的至少两个能够进行联动控制。
利用各控制器的协同作用,能够使治疗床300、机架200、辐射源101、预准直器102、多叶准直器103中的至少两个能够协同作用,提高对放射治疗系统 的控制精度,以及使治疗方式多样化。
进一步地,如附图1-2所示,该治疗头100包括:辐射源101、具有预准直孔的预准直器102、具有多组叶片的多叶准直器103,以及钨门104。预准直器102、多叶准直器103和钨门104依次设置于辐射源101发出的射线束的路径上,预准直器102被配置为对辐射源101发出的射线束进行初步适形,多叶准直器103被配置为对初步适形的射线束进行最终适形,钨门104被配置为对漏射的射线束进行屏蔽。
控制机构400被配置为对治疗床300、机架200、辐射源101、预准直器102以及多叶准直器103中的至少两个进行控制,使治疗床300、机架200、辐射源101、预准直器102、多叶准直器103和钨门104中的至少两个能够协同作用,提高对放射治疗系统的控制精度,以及使治疗方式多样化。
如附图11-2所示,控制机构400包括:治疗床控制器401、机架控制器402、辐射源控制器403、预准直器控制器404、多叶准直器控制器405、以及钨门控制器406。其中,治疗床控制器401、机架控制器402、辐射源控制器403、预准直器控制器404、多叶准直器控制器405、以及钨门控制器406中的至少两个能够进行联动控制。
利用各控制器的协同作用,能够使治疗床300、机架200、辐射源101、预准直器102、多叶准直器103、钨门104中的至少两个能够协同作用,提高对放射治疗系统的控制精度,以及使治疗方式多样化。
在一些可能的实现方式中,治疗床控制器401、机架控制器402、辐射源控制器403、预准直器控制器404、多叶准直器控制器405、以及可选的钨门控制器406可以集成设置,获得具有集成结构的控制机构400。
如附图11-1或者图11-2所示,控制机构400还可以与上位机500连接,操作人员通过操作上位机500,能够向控制机构400,具体是向其中所包含的多个控制器发送调节指令(也就是治疗计划),控制机构400中的控制器能够接收治疗计划,并根据治疗计划控制治疗床300、机架200、辐射源101、预准直器102、多叶准直器103的运行过程。
举例来说,如上所述的,治疗床控制器401和机架控制器402进行联动控制,这样,机架200进行旋转的同时,使治疗床300沿着机架200的轴线方向进行同步地运动,实现螺旋式治疗。
进一步地,多叶准直器控制器405与治疗床控制器401和机架控制器402 能够联动控制,使得在治疗床300和机架200同步运动时,多叶准直器103开合,使放射治疗系统在任意位置或者在多个设定位置处进行适形治疗。
也就是说,在机架200旋转时,治疗床300能够同时沿机架200的轴线方向上运动,并且,与此同时,多叶准直器103也进行同步的叶片开合运动,来进行最终适形和调强治疗。并且,在机架200旋转至任意位置处时,多叶准直器103均能够在该相应的位置处进行叶片开合运动,或者,在机架200旋转至特定的几个设定位置处时,多叶准直器103能够在这几个设定位置处进行叶片开合运动。
作为一种示例,在治疗床300和机架200同步运动而形成的螺旋路径治疗过程中,在机架200旋转至任意位置处时,多叶准直器103均能够同时作叶片开合运动,以在该任意位置处实现射线适形达到治疗的目的。该种示例所示的方式可以认为是结合了螺旋治疗方式与VMAT(Volumetric Modulated Arc Therapy,容积旋转调强放疗法)的优点:在射线束出束过程中,机架进行旋转,多叶准直器的叶片同时作开合运动,机架旋转一定角度范围时,能够形成多个不同的照射野,照射范围更大,更灵活,更精准,使得剂量分布更优,对正常组织保护更好,靶区剂量分布更均匀,治疗效果会更好,放疗副反应更小。另外,该螺旋+VMAT治疗方式在达到与普通调强相同的吸收剂量时,需要更少的照射量,照射量的减少也就意味着减少了散射线和漏射线对患者的影响,利于降低放射性污染,降低机器损耗。
作为另一种示例,在治疗床300和机架200同步运动而形成的螺旋路径治疗过程中,多叶准直器103能够在机架200旋转至固定的几个设定位置处时作叶片开合运动,以在这几个设定位置处实现射线适形达到治疗的目的。该种示例所示的方式可以认为是结合了螺旋治疗方式与IMRT(Intensity Modulated Radiotherapy,强度调控放射治疗)的优点。
在一些可能的实现方式中,如若治疗头被配置为能够绕自身的轴线自转,则本申请实施例提供的放射治疗系统还包括治疗头控制器,该治疗头被配置为用于控制治疗头的旋转方向和旋转角度。
对于治疗床控制器401,该治疗床控制器401被配置为用于控制治疗床300的运动速度、运动方向及运动距离。
治疗床300用于承载患者,治疗床300能够带动患者沿着机架200的轴线方向运动,在治疗开始之前,患者躺在治疗床300上,由治疗床300带动患者 移动,使患者移动至治疗区域。
治疗床控制器401能够控制治疗床300的运动速度,使得治疗床300在沿着机架200的轴线方向运动时,可以匀速运动,也可以非匀速运动,还可以是匀速运动一段距离,再非匀速运动一段距离。
治疗床控制器401能够控制治疗床300的运动方向,使得治疗床300可以沿着机架200的轴线方向向前移动(靠近治疗头的方向),也可以沿着机架200的轴线方向向后移动(远离治疗头的方向),还可以沿着机架200的轴线方向往复运动。
治疗床控制器401能够控制治疗床300的运动距离,使治疗床300移动至特定的位置处,例如,治疗床300可以连续地进行运动直至达到目标位置,治疗床300还可以根据治疗需求间隔多次地进行移动,每次移动特定的距离。
本申请实施例中所涉及的机架200均指的是旋转机架。可以理解的是,放射治疗系统还包括固定机架,固定机架固定设置于地面上,旋转机架与固定机架可转动连接,同时,旋转机架还与治疗头固定连接,旋转机架能够带动治疗头绕旋转机架的中心轴旋转。示例地,旋转机架的结构包括但不限于:环形结构、C形结构、头盔形结构、机械臂结构等。例如,使用环形机架承载治疗头,环形机架能够旋转,并带动辐射源101一起旋转。
对于机架控制器402,该机架控制器402被配置为用于控制机架200的旋转速度、旋转方向和旋转角度。
机架控制器402能够用于控制机架200的旋转速度,使得机架200的旋转可以是匀速的(匀速时,也可以根据实际治疗需求,来适应性地调整机架200的旋转速度),也可以是非匀速的。
机架控制器402能够用于控制机架200的旋转方向,使得机架200可以沿顺时针方向旋转,也可以沿逆时针方向旋转,或者,还可以在旋转时切换旋转方向,例如,先顺时针旋转再逆时针旋转,或者,先逆时针旋转再顺时针旋转。
机架控制器402能够用于控制机架200的旋转角度,使得机架200可以在一个预先设定的角度范围内来回进行旋转,例如,0°-360°或者30°-90°范围内,还可以使得机架200直接旋转至特定的角度处,以满足在一个治疗区域内,使肿瘤接受到的剂量满足放疗计划的需求。
本申请实施例中,辐射源101能够发出射线束,其中,射线包括:放射性同位素产生的α射线、β射线、γ射线、x射线、电子线、质子束及其他粒子束 等。其中,辐射源控制器403被配置为用于控制射线束的放射剂量。
本申请实施例中,钨门104可以包括开合方向相垂直的两个钨门104,也可以设置一个钨门104。对于包含两个钨门104的情况,一个钨门104可以设置于预准直器102与多叶准直器103之间,另一个可以设置于预准直器102远离辐射源101的一侧;两个钨门104也可以同时设置于预准直器102与多叶准直器103之间;两个钨门104也可以同时设置于预准直器102远离辐射源101的一侧。钨门控制器406被配置为用于控制钨门104的运动速度和运动距离。
预准直器控制器404被配置为用于控制预准直孔的尺寸,使得预准直孔的尺寸调整至期望位置,以获得适宜的射野面积。
本申请实施例中,多叶准直器103包括多组叶片,多叶准直器控制器405被配置为用于控制叶片的运动速度及运动距离,从而以使终准直孔的尺寸、形状和位置可调,利于调强治疗。
在一些可能的实现方式中,如附图2所示,多叶准直器103包括:多个并排设置的叶片组;每一叶片组包括:相对设置的第一叶片11和第二叶片12;
第一叶片11和第二叶片12均沿平行于放射治疗系统的机架200的轴线方向运动。(机架200的轴线方向即是中心轴所在直线的方向,机架200绕其中心轴能够进行旋转,本申请实施例将机架200的轴线方向定义为Y方向)。
本申请实施例通过使第一叶片11和第二叶片12均沿平行于放射治疗系统的机架200的轴线方向运动,这样,不论治疗头100随着机架200转动至任意位置处时,第一叶片11和第二叶片12的开合方向始终平行于机架200的轴线方向,有效避免了叶片在开合时受到重力的影响,提高多叶准直器103对射线束适形的准确度(相关技术中,多叶准直器旋转至机架的侧部时(由初始位置旋转90°后到达的位置),多叶准直器在机架的切线方向进行开合,此时叶片开合方向沿其重力方向,重力会对叶片的移动造成不利影响)。
为了优化该效果,使该治疗头100被配置为不能绕自身的轴线自转,也就是说,治疗头100与机架200始终保持相对固定关系,治疗头100不能沿着机架200作旋转运动,而仅能随着机架200作旋转运动。
需要说明的是,治疗头100中,辐射源101、预准直器102和多叶准直器103均固定设置,以使预准直器102以及多叶准直器103依次设置于辐射源101发出射线束的路径上。由于治疗头100不能自转,相应的预准直器102以及多叶准直器103均无法作相应的旋转运动。
在一些可能的实现方式中,本申请实施例提供的治疗头100,如附图1-1所示,该多叶准直器103还包括:
与第一叶片11一一对应的多个第一驱动机构21、以及与第二叶片12一一对应的多个第二驱动机构22;
第一驱动机构21与第一叶片11和控制机构400(具体为多叶准直器控制器405)连接,用于在控制机构400的控制下驱动第一叶片11沿平行于机架200的轴线方向运动;
第二驱动机构22与第二叶片12和控制机构400(具体为多叶准直器控制器405)连接,用于在控制机构400的控制下驱动第二叶片12沿平行于机架200的轴线方向运动。
通过上述设置,使得多叶准直器103中每一个叶片均对应由一个驱动机构进行独立地驱动,这样,通过分别驱动特定的第一叶片11和/或第二叶片12进行适形,利于提高适形精度,达到调强治疗的目的。
当预准直器102所形成的射野变小时,多叶准直器103的叶片开合时的移动距离也会相应缩小,使得第一叶片11和第二叶片12的最大移动距离相对于现有技术也得以减小。本申请实施例中,第一叶片11和第二叶片12的最大运动距离均为5cm-15cm,例如为8cm或者10cm。
举例来说,当射野在放射治疗系统的机架200的轴向方向上的尺寸为8cm时,第一叶片11和第二叶片12的最大移动距离为8cm;当射野在放射治疗系统的机架200的轴向方向上的尺寸为10cm时,第一叶片11和第二叶片12的最大移动距离为10cm。相比于现有技术(叶片运动最大距离一般大于15cm,加小车运动可以在等中心形成40*40cm射野),本申请实施例中,叶片的行程变短,从而使叶片长度得以缩短。
本申请实施例中,第一驱动机构21被配置为在多叶准直器控制器405的控制作用下,能够使第一叶片11在运动范围内任意位置处停留;第二驱动机构22被配置为在多叶准直器控制器405的控制作用下,能够使第二叶片12在运动范围内任意位置处停留。
如此设置,能够使得每一个叶片均能够移动至叶片可运动范围内的任意一点处,利于提高多叶准直器103的适形精度。
在一些可能的实现方式中,如附图2所示,第一驱动机构21和第二驱动机构22均包括:第一传动件201和第一驱动件202;第一传动件201与第一叶片 11或者第二叶片12的后端连接;第一驱动件202与第一传动件201连接。
也就是说,每一第一叶片11的后端均连接有一个第一传动件201,每一第二叶片12的后端均连接有一个第一传动件201。其中,叶片的后端指的是与叶片的前端相对的端部,而第一叶片11和第二叶片12的前端指的是两者相对的端部,第一叶片11的前端和第二叶片12的前端之间形成用于射线适形区域。
利用第一驱动机构21和第二驱动机构22分别对第一叶片11和第二叶片12的运动进行控制,使得第一叶片11和第二叶片12在运动至设定位置处后,能够自动地固定于该设定位置处。
示例地,第一传动件201的传动方式为螺旋传动或者齿轮齿条传动,以下分别进行示例性说明:
(1)当第一传动件201的传动方式为螺旋传动时,如附图2所示,第一传动件201为丝杆,第一驱动件202为直线电机(例如,微型直线电机),丝杆的第一端与第一叶片11(或者,第二叶片12)的尾端连接,丝杆的第二端与直线电机连接。
直线电机能够驱动丝杆作直线往复运动,进而带动第一叶片11(或者,第二叶片12)作相应的直线运动,达到使第一叶片11(或者,第二叶片12)沿机架200的轴线方向上作直线往复运动的目的。
其中,丝杆的第二端可以通过带内螺纹的转子与直线电机连接,丝杆的第一端与第一叶片11(或者,第二叶片12)的尾端固定连接,这样,直线电机的输出轴的旋转运动能够转化为丝杆沿转子的直线运动,进而带动第一叶片11(或者,第二叶片12)直线运动。
或者,丝杆可以直接作为直线电机的输出轴,同时使丝杆与第一叶片11(或者,第二叶片12)的尾端螺纹连接,这样,丝杆的转动能够直接转化为第一叶片11(或者,第二叶片12)的直线运动。
基于上述可知,当第一叶片11和第二叶片12的最大移动距离相对于现有技术提供的叶片的最大移动距离减小时,对应于每个叶片的丝杆的长度也相应缩短,这不仅利于降低多叶准直器103的生产难度,还能增加其稳定性,降低故障率。此外,本申请实施例提供的多叶准直器103不需要小车等器件来增加叶片的行程,从而进一步降低了放射治疗系统的复杂度。
(2)当第一传动件201的传动方式为齿轮齿条传动时,第一传动件201包括:彼此啮合的齿轮和齿条,第一驱动件202为微型电机。其中,齿条与第一 叶片11(或者,第二叶片12)固定连接,齿轮与微型电机同轴连接。
微型电机启动时,能够带动齿轮转动,进而带动与其啮合的齿条作直线运动,实现运动的齿条进而带动第一叶片11(或者,第二叶片12)作直线运动。
由于电机的驱动速度是可变的,这样能够使得第一叶片11(或者,第二叶片12)的运动速度、运动位置得到精确控制,进而能够获得精确的射线强度调制效果。
本公开实施例中,第一驱动机构21和第二驱动机构22的第一驱动件202,例如电机,与控制机构400(多叶准直器控制器405)连接,多叶准直器控制器405同时又可以与上位机500连接,操作人员通过操作上位机500,能够向多叶准直器控制器405发送叶片移动距离调节指令,多叶准直器控制器405在接收到该指令后驱动电机来控制叶片运动。
在一些可能的实现方式中,多叶准直器103还包括:第一驱动件安装板,该第一驱动件安装板上具有多个安装位,以用于分别与多个第一驱动件固定连接,以使多个第一驱动件位置固定。
进一步地,多叶准直器103还可以包括:导轨箱,该导轨箱用于承载所有的叶片,以使叶片运动时能够沿着导轨箱进行稳定地运动。
在利用包含有本申请实施例提供的多叶准直器103的放射治疗系统进行肿瘤治疗时,操作人员可以在治疗之前通过上位机500发送调整叶片移动距离的指令。或者,操作人员还可以在治疗过程中,实时发送调整叶片移动距离的指令。
在治疗的过程中,还可以实时调整电机的驱动速度,以精确地控制第一叶片11和第二叶片12的运动速度、运动位置,进而实现在治疗过程中的剂量调强。
在一些可能的实现方式中,第一叶片11和第二叶片12的长度方向均平行于放射治疗系统的机架200的轴线方向;
如附图3所示,第一叶片11和第二叶片12的长度L均为2.5cm-7.5cm;第一叶片11和第二叶片12的高度H均为6cm-8cm。
使第一叶片11和第二叶片12的长度方向平行于放射治疗系统的机架200的轴线方向(将机架200的轴线方向定义为Y方向)。这样,第一叶片11和第二叶片12开合运动时,能够始终沿着放射治疗系统的机架200的轴向方向运动,能够避免多叶准直器103在开合时受到重力的影响,提高多叶准直器103对射 线束适形的准确度。
在一些可能的实现方式中,第一叶片11和第二叶片12的长度L均为2.5cm-7.5cm,例如为3cm、4cm、5cm、6cm、7cm等。其中,叶片的长度L指的是其长度方向上最长的尺寸,上述叶片长度使得叶片的尺寸得以减小,最终使得多叶准直器103的叶片小型化。
本申请实施例中,叶片长度相比现有技术叶片长度(150mm)显著减小,进而减小了叶片的大小和重量,降低了加工难度和造价。叶片重量的变轻,降低了摩擦和运动阻力,运动更加便于控制,可降低故障率,在同样的驱动能力下可以使叶片运动更快,进而显著提高治疗质量。
当然,叶片尺寸在一定程度上由预准直器102在等中心处形成的射野尺寸所决定,即,叶片尺寸的减小依赖于预准直器102所形成的射野的最大尺寸的减小。举例来说,预准直器102的预准直孔42投影在放射治疗系统的等中心处的射野为矩形时,其包括长边和短边,当射野的短边长度为8cm时,第一叶片11和第二叶片12的长度可以均设置为4cm;当射野的短边长度为10cm时,第一叶片1111和第二叶片1212的长度可以均设置为5cm。
第一叶片11和第二叶片12的高度H均为6cm-8cm,例如为6cm、6.5cm、7cm、7.5cm等。其中,叶片的高度方向沿射线束的发射方向,在该高度范围内,叶片不仅能够提供较好的射线适形效果,同时还使得叶片小型化。
本申请实施例涉及的多个叶片组中,第一叶片11和第二叶片12的厚度T均由两侧向中间逐渐减小。也就是说,在叶片组中,越靠近中间的叶片,其厚度越薄,约靠近两侧的叶片,其厚度越厚,如此设置,利于提高治疗区域调强的精确度。
在一些可能的实现方式中,第一叶片11和第二叶片12的相对的前端均设置为弧形结构,例如为圆弧形,进一步例如为半圆弧形。对于同一叶片组中的第一叶片11和第二叶片12,两者前端的弧度可以相同,也可以不同,示例地,使第一叶片11的前端的弧度与第二叶片12的前端的弧度相同。
本申请实施例中,所涉及的第一叶片11和第二叶片12均包括:矩形本体、以及位于矩形本体前端的弧形前端。第一叶片11和第二叶片12的弧形前端的弧形方向均沿着叶片的高度方向,而叶片的高度方向指的是沿着射线束的发射方向的方向,也就是垂直地穿过图2所示截图的方向。
本申请实施例提供的多叶准直器103,通过使第一叶片11和第二叶片12相 对的前端均设置为弧形结构,相比叶片的前端设置为平直的线形,第一叶片11和第二叶片12的前端设置为弧形,能够减少射线束穿过多叶准直器103时形成的半影,利于提高治疗精确度。
为了进一步优化上述的减少半影的效果,第一叶片11和第二叶片12的前端的弧度大小与所在叶片的厚度大小呈反比,即,叶片的厚度T越厚,叶片前端的弧度越小;叶片的厚度T越薄,叶片前端的弧度越大。
第一叶片11和第二叶片12的前端的弧度大小与所在叶片距离放射治疗系统的等中心之间的间距呈正比,即,叶片距离等中心的间距越大,叶片前端的弧度越大;叶片距离等中心的间距越小,叶片前端的弧度越小。
第一叶片11和第二叶片12的前端的弧度大小与所在叶片的最大运动距离呈正比,即,叶片能够移动的最大移动距离越大,叶片前端的弧度越大,叶片能够移动的最大移动距离越小,叶片前端的弧度越小。
在一些可能的实现方式中,如附图4所示,本申请实施例提供的治疗头100还包括:位置监测机构3,位置监测机构3被配置为用于监测第一叶片11和第二叶片12的运动位置。利用位置监测机构3,来对叶片运动位移进行精确监测,进一步提高多叶准直器103对射线束的适形精度,实现精确放疗。针对每一个叶片,均对应设置有一个位置监测机构3。
作为一种示例,如附图4所示,该位置监测机构3包括:测力传感器32和弹性件31,测力传感器32固定设置,弹性件31的一端与测力传感器32固定连接,弹性件31的另一端与第一叶片11(第二叶片12)的后端。
测力传感器32能够测量弹性件31所受的力的大小,当第一叶片11(第二叶片12)进行移动时,弹性件31的拉伸程度发生变化,进而测力传感器32检测到的力的变化,根据检测到的力,确定第一叶片11(第二叶片12)的运动位置。
进一步地,该位置监测机构3还包括处理器,该处理器与测力传感器32电性连接,用于根据测力传感器32测量得到的力的数据,来确定第一叶片11(第二叶片12)的运动位置。
举例来说,测力传感器32可以固定于多叶准直器103的驱动件安装板或者导轨箱上等。
为了方便测量,当弹性件31位于第一叶片11(第二叶片12)的后端和测力传感器32之间时,使叶片在初始位置时,弹性件31正好处于自然伸长状态, 这样,叶片在运动时,只需要测量到弹性件31受拉的拉力,叶片再回到初始位置时,理论上所受拉力就是零,这样测量更加方便。
示例地,弹性件31可以是弹簧,弹簧的胡可系数在正常使用的范围内是固定的,可以保证测量数据的准确性。当然弹性件31还可以包括:乳胶筋、管、绳,或橡胶筋、管、绳等,或其他具有良好弹性,胡可系数固定的部件。
作为另一种示例,该位置监测机构3为激光测距仪,该激光测距仪包括:空间波发射器、空间波接收器和处理器,其中,空间波发射器可发射出直线传播的空间波,空间波发射器发出的空间波照射在第一叶片11(第二叶片12)的后端面上;空间波接收器设置在经第一叶片11(第二叶片12)的后端面反射的反射空间波的光路上,接收经第一叶片11(第二叶片12)的后端面反射的反射空间波;处理器与空间波发射器和空间波接收器连接,并根据空间波发射器发出的空间波以及空间波接收器接收的空间波确定对应叶片的位置。
示例地,空间波发射器和/或空间波接收器安装于所述多叶准直器103的驱动件安装板或者导轨箱上等。示例地,空间波为激光、红外线、超短波或超声波等。
其中,位置监测机构3的处理器与多叶准直器控制器405电性连接,这样,处理器能够将第一叶片11(第二叶片12)的运动位置信息发送给多叶准直器控制器405,进而使多叶准直器控制器405利用该运动位置信息对第一叶片11(第二叶片12)的运动进行控制。
在一些可能的实现方式中,如附图5-附图7所示,预准直器102包括:预准直器本体41、以及开设于预准直器本体41上的预准直孔42;
预准直孔42为四棱台状通孔,预准直孔42贯穿预准直器本体41的相对的第一表面和第二表面。
预准直器本体41的形状包括但不限于:圆形块体、矩形块体、五边形块体、或者其他几何形状的块体,只要其满足能够被恰当地安装于放射治疗系统的治疗头中即可。
四棱台状通孔的结构如附图5所示,其具有两两相对的两组倾斜内侧面,使得预准直孔42在预准直器本体41的第一表面上的第一截面与预准直孔42在预准直器本体41的第二表面上的第二截面的尺寸不同。
预准直孔42的倾斜的内侧面的倾斜角度可以相同,也可以不同,只要满足预准直孔42的第一截面和第二截面的尺寸不同即可,例如,可以使预准直孔42 的四个内侧面的倾斜角度均相同。此外,对于预准直孔42的任意截面,可以为长方形,也可以为正方形。
预准直器本体41的第一表面和第二表面指的是预准直器本体41的面向辐射源以及面向多叶准直器的表面,其中,根据预准直孔42在预准直器本体1的第一表面和第二表面处的截面尺寸,来确定第一表面和第二表面的朝向。使预准直孔42的截面尺寸较小的一端所在的表面面向辐射源,使预准直孔42的截面尺寸较大的一端所在的表面面向多叶准直器。
由辐射源101发出的射线束经四棱台状通孔结构的预准直孔42后会进行发散,使得由预准直孔42发射出来的射线束具有较大的射野面积,确保射线束能够完全覆盖终准直孔,同时,还利于减小预准直器102的体积。
在一些可能的实现方式中,预准直孔42的第一截面421和预准直孔42的第二截面422均为长条形孔;
预准直孔42的第一截面421的尺寸大于预准直孔42的第二截面422的尺寸;
其中,预准直孔42的第一截面421为预准直孔42在预准直器本体41的第一表面上的截面;
预准直孔42的第二截面422为预准直孔42在预准直器本体41的第二表面上的截面。
应用时,使预准直器102的第一表面面向多叶准直器103,使预准直器102的第二表面面向辐射源101。
预准直孔42的第一截面和第二截面可以是长方形,也可以是正方形,基于上述可知,如附图6所示,预准直孔42的第一截面和第二截面均为长条形孔(即长方形),长条形孔具有长度不同的长边和短边,即,预准直孔42具有长边和短边。通过按照上述方式设置预准直孔42的结构,辐射源101发出的射线束经过预准直孔42后能够在等中心位置处形成矩形射野。
当本申请实施例提供的预准直器102用于放射治疗系统中时,使预准直孔42的短边所在方向沿放射治疗系统的机架200的轴向。
截面形状为长条形孔的预准直孔42投影在放射治疗系统的等中心处的射野的形状相应为矩形,其包括长边和短边,并且,射野的短边方向沿放射治疗系统的机架200的轴向。
在一些可能的实现方式中,使射野的短边长度为5cm-15cm,例如为5cm、 6cm、7cm、8cm、9cm、10cm、11cm、12cm、13cm、14cm、15cm等;使射野的长边长度为30cm-50cm,例如为30cm、35cm、40cm、45cm、50cm等。
举例来说,预准直孔42投影在放射治疗系统的等中心处的射野的尺寸如下所示:射野的短边长度为8cm或者为10cm,射野的长边长度为40cm。
根据射野的尺寸,能够相应地获得预准直孔42在距离等中心任意距离处时的尺寸大小,进而能够获得预准直孔42的第一截面421的尺寸和预准直孔42的第二截面422的尺寸。本申请实施例提供的上述射野尺寸,使得预准直孔42的尺寸也相应较小,利于减小预准直器102的尺寸和体积,进一步地利于简化治疗头100的体积和结构。
在一些可能的实现方式中,本申请实施例提供的预准直器102的预准直孔42的尺寸可调,这包括但不限于:使预准直孔422的长边尺寸可调,或者,使预准直孔42的短边尺寸可调,或者,使预准直孔42的长边尺寸和短边尺寸均可调。
预准直孔42的尺寸可变,能够获得不同的射线束初步适形效果,适用于不同大小的病灶区域,提高预准直器102的适应性。进一步地,在预准直孔42的尺寸变化至为0时,也就是说,使预准直孔42闭合时,还可以进行关源或者进行不需要射线照射的调强治疗。
在一些可能的实现方式中,使预准直孔42的短边尺寸可调,这样,在预准直器102应用状态下,预准直孔42沿放射治疗系统的机架200轴向方向上的尺寸可调,以适用于不同尺寸大小的病灶区域。
需要说明的是,预准直孔42的短边尺寸可调,指的是,在预准直孔42的整个深度方向上,预准直孔42的任意截面的短边尺寸均可调。
对于如何实现预准直孔42的短边尺寸可调,本申请实施例给出以下示例性描述:
在一些可能的实现方式中,如附图8或者附图9所示,预准直器本体41包括:具有通孔的基体411、第一固定块412、第二固定块413、第一滑块415、第二滑块416;
第一固定块412和第二固定块413固定于通孔相对的第一侧部,以配合构成预准直孔42的两个短边;
第一滑块415和第二滑块416位于通孔相对的第二侧部,以配合构成预准直孔42的两个长边,并且,第一滑块415与第二滑块416之间的间距可调。
其中,基体411、第一固定块412、第二固定块413、第一滑块415、第二滑块416的材质均选自射线屏蔽材料,例如为钨、铅、或者钨合金等。并且,基体411的形状包括但不限于:圆形块体、矩形块体、五边形块体、或者其他几何形状的块体,只要其满足能够被恰当地安装于放射治疗系统的治疗头100中即可。
通过使第一滑块415和第二滑块416进行运动,能够调节两者之间的间距,进而达到使预准直孔42的短边尺寸可调的目的。
举例来说,可以使第一滑块415和第二滑块416按照下述方式的进行运动,进而达到调节两者之间间距的目的:第一滑块415和第二滑块416通过滑动导轨传动的方式进行运动、第一滑块415和第二滑块416通过齿条齿轮传动的方式进行运动、第一滑块415和第二滑块416通过丝杆螺母传动的方式进行运动等。以下分别就这几种方式进行示例性说明:
作为一种示例,第一固定块412和第二固定块413、以及第一滑块415和第二滑块416可以分别位于基体411的通孔的顶部两侧,这样,由各固定块和各滑块构成的预准直孔42实际上位于基体411的通孔的上方。在该实现方式中,使通孔的尺寸大于预准直孔42所能够调节到的最大尺寸,以确保获得期望的射野。
作为另一种示例,第一固定块412和第二固定块413、以及第一滑块415和第二滑块416可以分别位于基体411的通孔的内部两侧,这样,由各固定块和各滑块构成的预准直孔42实际上与基体411的通孔为一体。
在该实现方式中,根据固定块和滑块的尺寸、以及需要的射野尺寸来适应性地确定通孔的尺寸即可。
其中,基体411的通孔的相对的第二侧部上设置有滑槽(该滑槽相当于下述的导向槽414),以分别用于容纳第一滑块415和第二滑块416的尾部,并能够使第一滑块415和第二滑块416的尾部沿着该滑槽移动,第一滑块415和第二滑块416的前部相对,以用于构成射线束适形区域。第一固定块412和第二固定块413相对的侧部的结构与第一滑块415的侧部以及第二滑块416的侧部的结构相适配,例如,第一固定块412和第二固定块413相对的侧部与第一滑块415的侧部适配地面面接触,以使第一滑块415和第二滑块416沿着固定块的侧部表面进行运动。或者,如附图6所示,使第一固定块412和第二固定块413相对的表面上均设置有导向槽1201,使第一滑块415相对的两侧和第二滑 块416相对的两侧分别嵌入相应的导向槽1201内,以使第一滑块415和第二滑块416均沿导向槽1201进行运动。
对于上述两种示例,可以使第一滑块415和第二滑块416中的一个进行固定,另一个进行运动,例如,使第二滑块416固定,使第一滑块415沿远离或者靠近第二滑块416的方向运动运动;或者,还可以使第一滑块415和第二滑块416都能够进行运动,两者可以相向运动或者背向运动等。
为了使第一滑块415和第二滑块416的运动更加稳定和顺畅,本申请实施例中,如附图10所示,使第一固定块412和第二固定块413相对的表面上均设置有导向槽414,使第一滑块415相对的两侧和第二滑块416相对的两侧分别嵌入相应的导向槽414内,以使第一滑块415和第二滑块416均沿导向槽414进行运动。
示例地,导向槽414的截面形状包括但不限于:矩形、梯形、圆弧形等,相应地,第一滑块415和第二滑块416相对的两侧也设置成矩形、梯形或者圆弧形等。
固定块上的导向槽414不仅能够为滑块的运动提供导向作用,还能够对滑块提供一定的限位作用,利于提高滑块运动时的稳定性。
第一滑块415和第二滑块416沿着导向槽414运动至获得设定位置处后,需要将第一滑块415和第二滑块416进行固定,对于滑块的固定方式,包括但不限于以下:
在一些可能的实现方式中,对滑块进行手动固定,在该实现方式中,如附图4所示,本申请实施例提供的预准直器102还包括:固定件5,固定件5被配置为能够对运动状态下的第一滑块415和第二滑块416进行固定。
当第一滑块415和第二滑块416运动至设定位置处时,利用固定件5来对第一滑块415和第二滑块416进行固定,使第一滑块415和第二滑块416固定于该设定位置处。以下将使用固定件5对第一滑块415进行固定为例,来示例性说明固定件5的结构(固定件5对第二滑块416的固定原理与其对第一滑块415的固定原理相同,在此不再一一赘述):
作为一种示例,该固定件5包括:压板、第一固定螺栓,其中,压板的一端与第一固定块412和/或第二固定块413的顶部可转动连接,压板的另一端开设有第一螺栓孔,第一滑块415的顶壁上开设有第一螺栓槽,其中,第一螺栓槽呈长条形,第一螺栓槽的长度沿第一滑块415的运动方向延伸。第一螺栓槽 与第一螺栓孔连通。
第一滑块415运动至设定位置处后,第一固定螺栓能够穿过第一螺栓孔进入第一螺栓槽的第一位置内,并且同时与第一螺栓孔螺纹连接,从而使压板压紧第一滑块415,使得第一滑块415压紧于基体411的顶部,达到对第一滑块415进行固定的目的。当需要调整第一滑块415的位置时,拆卸第一固定螺栓,转动压板,使其不再压紧第一滑块415,移动第一滑块415至期望位置处以后,反向转动压板使其上的第一螺栓孔与第一滑块415上的第一螺栓槽的第二位置连通,使得第一固定螺栓能够穿过第一螺栓孔进入第一螺栓槽的第二位置内,并且同时与第一螺栓孔螺纹连接,达到压紧第一滑块415的目的。
作为另一种示例,该固定件5包括:第二固定螺栓,第一滑块415的侧壁上开设有并排设置的多个第二螺栓槽,多个第二螺栓槽沿着第一滑块415的运动方向依次布置,第一固定块412或第二固定块413的侧壁上开设有第二螺栓孔,第二螺栓孔呈长条形,并且第二螺栓孔的长度沿着第一滑块415的运动方向延伸。第二螺栓孔与第二螺栓槽连通,并且,两者能够同时与第二固定螺栓螺纹连接。
第一滑块415运动至设定位置处后,第二固定螺栓能够穿过第二螺栓孔进入第二螺栓槽内,并且同时与两者螺纹连接,达到对第一滑块415进行固定的目的。
在一些可能的实现方式中,如附图9所示,第一滑块415和第二滑块416均通过第三驱动机构23的驱动进行运动;其中,第三驱动机构23包括:分别与第一滑块415和第二滑块416连接的第二传动件203;与第二传动件203连接的第二驱动件204。
第一滑块415和第二滑块416分别对应有一个第三驱动机构23,利用两个第三驱动机构23对分别对第一滑块415和第二滑块416进行单独地控制。本申请实施例中,利用第三驱动机构23,能够对第一滑块415和第二滑块416的运动过程进行自动控制,使得第一滑块415和第二滑块416在运动至设定位置处后,能够自动地固定于该设定位置处。
示例地,第二传动件203的传动方式为螺旋传动或者齿轮齿条传动,以下分别进行示例性说明:
(1)如附图9所示,当第二传动件203的传动方式为螺旋传动时,第二传动件203为丝杆,第二驱动件204为直线电机(微型直线电机),丝杆的第一端 与第一滑块415的尾端连接(第一滑块415的尾端为第一滑块415的远离第二滑块416的端部),丝杆的第二端与直线电机连接。
直线电机能够驱动丝杆作直线往复运动,进而带动第一滑块415作相应的直线运动,达到使第一滑块415沿机架200的中心轴线方向上作直线往复运动的目的。
其中,丝杆的第二端可以通过带内螺纹的转子与直线电机连接,丝杆的第一端与第一滑块415的尾端固定连接,这样,直线电机的输出轴的旋转运动能够转化为丝杆沿转子的直线运动,进而带动第一滑块415直线运动。
或者,丝杆可以直接作为直线电机的输出轴,同时使丝杆与第一滑块415的尾端螺纹连接,这样,丝杆的转动能够直接转化为第一滑块415的直线运动。
(2)当第二传动件203的传动方式为齿轮齿条传动时,第二传动件203包括:彼此啮合的齿轮和齿条,第二驱动件204为微型电机。其中,齿条与第一滑块415固定连接,齿轮与微型电机同轴连接。
微型电机启动时,能够带动齿轮转动,进而带动与其啮合的齿条作直线运动,实现运动的齿条进而带动第一滑块415作直线运动。
由于电机的驱动速度是可变的,这样能够使得第一滑块415和第二滑块416的运动速度、运动位置得到精确控制,进而能够获得精确的射线强度调制效果。
本公开实施例中,第三驱动机构23的电机与预准直器控制器404连接,预准直器控制器404同时又可以与上位机500连接,操作人员通过操作上位机500,能够向预准直器控制器404发送预准直孔42短边长度调节指令,预准直器控制器404在接收到该指令后驱动电机来控制滑块运动,进而达到获取特定尺寸的预准直孔42的目的。
在利用包含有本申请实施例提供的预准直器102的放射治疗系统进行肿瘤治疗时,操作人员可以在治疗之前通过上位机500发送调整预准直孔42尺寸的指令,将预准直孔42的宽度调整至设定的宽度值。或者,操作人员还可以在治疗过程中,实时发送调整预准直孔42尺寸的指令。
在治疗的过程中,还可以实时调整电机的驱动速度,以精确地控制第一滑块415和第二滑块416的运动速度、运动位置。
需要说明的是,基于多叶准直器103和预准直器102的上述结构布置,使得本申请实施例提供的放射治疗系统可以不用设置钨门,利于简化放射治疗系统的结构,增加并放射治疗系统的可靠性,并降低放射治疗系统的成本。
在一些可能的实现方式中,如附图12所示,本申请实施例提供的放射治疗系统还包括:第一成像组件61,第一成像组件61与治疗头100相对设置,第一成像组件61被配置为能够根据来自治疗头100的射线束获得第一图像数据,第一图像数据用于射野成像或者剂量验证。
示例地,第一成像组件61设置于机架200上,其可以是EPID(Electronic Portal Imaging Device,电子射野影像装置)。
射野成像可以是治疗过程中基于射线束获得的图像,以确定实际治疗过程中的射野是否与治疗计划中的射野一致。射野成像还可以是在治疗前获取的患者的医学图像,根据该医学图像与患者的其他医学图像(例如CT图像、MR图像、PET图像等)进行图像配准,以指导患者的摆位。射野成像还可以是在治疗过程中获取的患者的医学图像,根据该医学图像与患者其他医学图像(例如CT图像、MR图像、PET图像等)进行图像配准,以确认患者的肿瘤在治疗过程中是否发生了移动,进而引导放射治疗系统通过调节治疗床或调节治疗头以实施针对肿瘤移动的精准治疗,例如移动治疗床使得肿瘤位于照射区域内,或调节治疗头使其关闭射束、降低剂量率,或者,通过预准直器或者多叶准直器阻挡射线束以避免射线束照射正常组织或器官。
剂量验证可以是在治疗过程中根据射线束获取的图像数据,根据该图像数据能够得到剂量参数,以确定实际治疗的剂量是否与治疗计划中的剂量一致。
举例来说,本申请实施例提供的放射治疗系统的最大治疗野为8cm*40cm或10cm*40cm,则EPID可以是对应大小的长条状探测器(根据最大射野的尺寸或是预准直器上预准直孔的尺寸,通过几何关系计算得到EPID的尺寸,由于预准直孔的尺寸相对于现有技术中的预准直孔尺寸显著减小,因此,能够相应地减小探测器的尺寸),从而减小了探测器的尺寸,节省了设备空间,降低了探测器的成本。
在一些可能的实现方式中,如附图12所示,本申请实施例提供的放射治疗系统还包括:第二成像组件62,第二成像组件62包括:相对设置的球管621和平板探测器622,球管621用于发射X射线,平板探测器622用于探测X射线并生成第二图像数据,第二图像数据用于对患者的肿瘤进行成像。
示例地,第二成像组件62设置于机架200上,球管621为X射线源,用于发射KV级的射线。应用时,机架旋转带动球管621旋转,在旋转的过程中球管621产生X射线束,X射线束从不同的角度穿过人体后被平板探测器622接 受,平板探测器622根据接受到的射线数据,生成CT图像,进而实现对患者肿瘤的成像。其中,X射线束可以是扇形束,也可以是锥形束。
在本申请实施例中,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
以上所述仅是为了便于本领域的技术人员理解本申请的技术方案,并不用以限制本申请。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种放射治疗系统,其特征在于,所述放射治疗系统包括:治疗床、机架、耦合至所述机架上的治疗头、以及控制机构;
    所述控制机构被配置为在使所述机架进行旋转的同时,使所述治疗床沿着所述机架的轴线方向进行同步地运动。
  2. 根据权利要求1所述的放射治疗系统,其特征在于,所述治疗头包括:辐射源、具有尺寸可调的预准直孔的预准直器、具有多组叶片的多叶准直器;
    所述控制机构被配置为对治疗床、机架、辐射源、预准直器以及多叶准直器中的至少两个进行控制。
  3. 根据权利要求2所述的放射治疗系统,其特征在于,所述治疗头还包括:钨门;
    所述控制机构被配置为对所述治疗床、所述机架、所述辐射源、所述预准直器、所述多叶准直器、所述钨门中的至少两个进行控制。
  4. 根据权利要求3所述的放射治疗系统,其特征在于,所述控制机构包括:治疗床控制器、机架控制器、辐射源控制器、预准直器控制器、多叶准直器控制器以及钨门控制器;
    所述治疗床控制器、所述机架控制器、所述辐射源控制器、所述预准直器控制器、所述多叶准直器控制器以及所述钨门控制器的至少两个能够进行联动控制。
  5. 根据权利要求4所述的放射治疗系统,其特征在于,所述多叶准直器控制器与所述治疗床控制器和所述机架控制器能够联动控制,使得在所述治疗床和所述机架同步运动时多叶准直器开合,使放射治疗系统在任意位置或者在多个设定位置处进行适形治疗。
  6. 根据权利要求4所述的放射治疗系统,其特征在于,所述治疗床控制器被配置为用于控制所述治疗床的运动速度、运动方向及运动距离;
    所述机架控制器被配置为用于控制所述机架的旋转速度、旋转方向和旋转角度;
    所述辐射源控制器被配置为用于控制射线束的放射剂量;
    所述预准直器控制器被配置为用于控制所述预准直孔的尺寸;
    所述多叶准直器控制器被配置为用于控制所述叶片的运动速度及运动距离;
    所述钨门控制器被配置为用于控制所述钨门的运动速度及运动距离。
  7. 根据权利要求2所述的放射治疗系统,其特征在于,所述多叶准直器包括:多个并排设置的叶片组;每一叶片组包括:相对设置的第一叶片和第二叶片;
    所述第一叶片和所述第二叶片均沿平行于所述机架的轴线方向运动。
  8. 根据权利要求7所述的放射治疗系统,其特征在于,所述多叶准直器还包括:
    与所述第一叶片一一对应的多个第一驱动机构、以及与所述第二叶片一一对应的多个第二驱动机构;
    所述第一驱动机构与所述第一叶片和所述控制机构连接,用于在所述控制机构的控制下驱动所述第一叶片沿平行于所述机架的轴线方向运动;
    所述第二驱动机构与所述第二叶片和所述控制机构连接,用于在所述控制机构的控制下驱动所述第二叶片沿平行于所述机架的轴线方向运动。
  9. 根据权利要求8所述的放射治疗系统,其特征在于,所述第一叶片和所述第二叶片的最大运动距离均为5cm-15cm;
    并且,所述第一驱动机构被配置为能够使所述第一叶片在运动范围内任意位置处停留;
    所述第二驱动机构被配置为能够使所述第二叶片在运动范围内任意位置处停留。
  10. 根据权利要求7所述的放射治疗系统,其特征在于,所述第一叶片和 所述第二叶片的长度方向均平行于所述机架的轴线方向;
    所述第一叶片和所述第二叶片的长度均为2.5cm-7.5cm;
    所述第一叶片和所述第二叶片的高度均为6cm-8cm。
  11. 根据权利要求7所述的放射治疗系统,其特征在于,所述第一叶片和所述第二叶片的相对的前端均设置为弧形结构。
  12. 根据权利要求7所述的放射治疗系统,其特征在于,所述治疗头还包括:位置监测机构,所述位置监测机构被配置为用于监测所述第一叶片和所述第二叶片的运动位置。
  13. 根据权利要求2所述的放射治疗系统,其特征在于,所述预准直器包括:预准直器本体、以及开设于所述预准直器本体上的预准直孔;
    所述预准直孔为四棱台状通孔,所述预准直孔贯穿所述预准直器本体的相对的第一表面和第二表面。
  14. 根据权利要求13所述的放射治疗系统,其特征在于,所述预准直孔的第一截面和所述预准直孔的第二截面均为长条形孔;
    所述预准直孔的第一截面的尺寸大于所述预准直孔的第二截面的尺寸;
    其中,所述预准直孔的第一截面为所述预准直孔在所述预准直器本体的第一表面上的截面;
    所述预准直孔的第二截面为所述预准直孔在所述预准直器本体的第二表面上的截面。
  15. 根据权利要求14所述的放射治疗系统,其特征在于,所述预准直孔投影在放射治疗系统的等中心处的射野的形状为长条形;
    所述射野的短边长度为5-15cm;
    所述射野的长边长度为30-50cm;
    其中,所述射野的短边方向沿所述放射治疗系统的机架的轴向。
  16. 根据权利要求14所述的放射治疗系统,其特征在于,所述预准直孔的短边尺寸可调。
  17. 根据权利要求16所述的放射治疗系统,其特征在于,所述预准直器本体包括:具有通孔的基体、第一固定块、第二固定块、第一滑块、第二滑块;
    所述第一固定块和所述第二固定块固定于所述通孔相对的第一侧部,以配合构成所述预准直孔的两个短边;
    所述第一滑块和所述第二滑块位于所述通孔相对的第二侧部,以配合构成所述预准直孔的两个长边,并且,所述第一滑块与所述第二滑块之间的间距可调。
  18. 根据权利要求1-17任一项所述的放射治疗系统,其特征在于,所述治疗头被配置为不能绕自身的轴线自转。
  19. 根据权利要求1-17任一项所述的放射治疗系统,其特征在于,所述放射治疗系统还包括:第一成像组件,所述第一成像组件与所述治疗头相对设置,所述第一成像组件被配置为能够根据来自所述治疗头的射线束获得第一图像数据,所述第一图像数据用于射野成像或者剂量验证。
  20. 根据权利要求1-17任一项所述的放射治疗系统,其特征在于,所述放射治疗系统还包括:第二成像组件,所述第二成像组件包括:相对设置的球管和平板探测器,所述球管用于发射X射线,所述平板探测器用于探测所述X射线并生成第二图像数据,所述第二图像数据用于对患者的肿瘤进行成像。
PCT/CN2021/076394 2021-02-09 2021-02-09 一种放射治疗系统 WO2022170534A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180092817.4A CN116847907A (zh) 2021-02-09 2021-02-09 一种放射治疗系统
PCT/CN2021/076394 WO2022170534A1 (zh) 2021-02-09 2021-02-09 一种放射治疗系统
US18/446,852 US20230381543A1 (en) 2021-02-09 2023-08-09 Radiotherapy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076394 WO2022170534A1 (zh) 2021-02-09 2021-02-09 一种放射治疗系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076388 Continuation-In-Part WO2022170532A1 (zh) 2021-02-09 2021-02-09 一种治疗头及放射治疗设备

Publications (1)

Publication Number Publication Date
WO2022170534A1 true WO2022170534A1 (zh) 2022-08-18

Family

ID=82837434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076394 WO2022170534A1 (zh) 2021-02-09 2021-02-09 一种放射治疗系统

Country Status (2)

Country Link
CN (1) CN116847907A (zh)
WO (1) WO2022170534A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060163495A1 (en) * 2005-01-24 2006-07-27 Kazuo Hiramoto Ion beam therapy system and its couch positioning method
CN102105194A (zh) * 2008-07-26 2011-06-22 断层放疗公司 利用颚件、机架和治疗床的协调运动的放射疗法成像和传递
US20150094517A1 (en) * 2013-09-30 2015-04-02 Iom Beam Applications S.A. Charged hadron beam delivery
CN107469240A (zh) * 2013-02-26 2017-12-15 安科锐公司 多叶准直器和用于准直治疗放射束的系统
CN108969909A (zh) * 2018-07-25 2018-12-11 宋世鹏 可跟随治疗目标的放射治疗系统
CN109966663A (zh) * 2018-06-12 2019-07-05 东软医疗系统股份有限公司 一种运动控制方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060163495A1 (en) * 2005-01-24 2006-07-27 Kazuo Hiramoto Ion beam therapy system and its couch positioning method
CN102105194A (zh) * 2008-07-26 2011-06-22 断层放疗公司 利用颚件、机架和治疗床的协调运动的放射疗法成像和传递
CN107469240A (zh) * 2013-02-26 2017-12-15 安科锐公司 多叶准直器和用于准直治疗放射束的系统
US20150094517A1 (en) * 2013-09-30 2015-04-02 Iom Beam Applications S.A. Charged hadron beam delivery
CN109966663A (zh) * 2018-06-12 2019-07-05 东软医疗系统股份有限公司 一种运动控制方法及装置
CN108969909A (zh) * 2018-07-25 2018-12-11 宋世鹏 可跟随治疗目标的放射治疗系统

Also Published As

Publication number Publication date
CN116847907A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
US10773102B2 (en) Radiotherapy and imaging apparatus
JP6548665B2 (ja) 定位式強度変調回転放射線療法の方法およびシステム
US8331532B2 (en) Method and system for treating moving target
US6459769B1 (en) Movable miniature multi-leaf collimator
US8613694B2 (en) Method for biological modulation of radiation therapy
US6878951B2 (en) Helical electron beam generating device and method of use
CN111954496A (zh) 光束站治疗计划和放射输送方法
Fenwick et al. Tomotherapy and other innovative IMRT delivery systems
US10500420B2 (en) Small beam area, mid-voltage radiotherapy system with reduced skin dose, reduced scatter around the treatment volume, and improved overall accuracy
US20070164239A1 (en) Variable stop collimator
US10188878B2 (en) Small beam area, mid-voltage radiotherapy system with reduced skin dose, reduced scatter around the treatment volume, and improved overall accuracy
US10617885B2 (en) System and method for an intensity modulated radiation therapy device
US7899155B2 (en) Stand for holding a radiation detector for a radiation therapy device
WO2022170532A1 (zh) 一种治疗头及放射治疗设备
US20130289400A1 (en) Devices, apparatus and methods for analyzing, affecting and/or treating one or more anatomical structures
WO2022170534A1 (zh) 一种放射治疗系统
CN216258762U (zh) 一种放射治疗系统
US20230381543A1 (en) Radiotherapy system
US20230263489A1 (en) Imaging system for a radiotherapy device
CN115397508A (zh) 用于向对象递送辐射的放射疗法设备
CN215309765U (zh) 一种治疗头及放射治疗设备
WO2019136763A1 (zh) 多叶准直器及放射治疗头
CN216934470U (zh) 聚焦治疗头和医疗设备
CN215900759U (zh) 一种预准直器、治疗头及放射治疗设备
CN215900758U (zh) 一种多叶准直器、治疗头及放射治疗设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925199

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180092817.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925199

Country of ref document: EP

Kind code of ref document: A1