WO2022170515A1 - 一种反射阵列天线 - Google Patents

一种反射阵列天线 Download PDF

Info

Publication number
WO2022170515A1
WO2022170515A1 PCT/CN2021/076359 CN2021076359W WO2022170515A1 WO 2022170515 A1 WO2022170515 A1 WO 2022170515A1 CN 2021076359 W CN2021076359 W CN 2021076359W WO 2022170515 A1 WO2022170515 A1 WO 2022170515A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
sub
reflection
arrays
parameter
Prior art date
Application number
PCT/CN2021/076359
Other languages
English (en)
French (fr)
Inventor
解清明
沈龙
张关喜
李龙
易浩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/076359 priority Critical patent/WO2022170515A1/zh
Publication of WO2022170515A1 publication Critical patent/WO2022170515A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart

Definitions

  • This application relates to the field of communications. Specifically, it relates to a reflection array antenna.
  • both radar and communication systems expect antennas to have more functionality and adaptability.
  • the existing reflect array antennas have limited adjustment of reflected beams, and the structure is fixed, making it difficult to meet the requirements for beam adjustment in various scenarios at the same time.
  • the active components in the existing antennas increase equipment cost and cost. The difficulty of deploying large-scale antenna arrays.
  • the present application provides a splicable reflection array, which realizes flexible adjustment of beams, meets application requirements in different scenarios, and reduces deployment difficulty and equipment costs.
  • a first aspect provides a reflection array
  • the reflection array may include a first sub-array, the first sub-array includes at least two reflection units with different reflection phases, the first sub-array corresponds to a first parameter, so
  • the first parameter is the absolute value of the difference between the reflection phases of any two adjacent reflection units in the first sub-array in the first direction, and the first direction is the reflection phase included in the first sub-array Different arrangement directions of the reflection units, the reflection phase of the reflection units of the first sub-array in the first direction changes monotonically according to the first law;
  • the reflection array further includes a second sub-array, the second sub-array It includes at least two reflection units with different reflection phases, the second sub-array corresponds to a second parameter, and the second parameter is any two adjacent reflection units in the first direction in the second sub-array
  • the absolute value of the difference of the reflection phase, the reflection phase of the reflection unit of the second sub-array in the first direction changes monotonically according to the first law, wherein the value of the
  • the reflection array includes at least two different sub-arrays, and may also include more sub-arrays, such as a third sub-array, a fourth sub-array, a fifth sub-array, etc., and each sub-array corresponds to an Nth parameter , the definition of this parameter is the same as that of the first parameter and the second parameter.
  • the value of the Nth parameter of the Nth subarray can be the same or different from the first parameter and the second parameter.
  • the value of the Nth parameter is greater than 0 and within the range of less than 2 ⁇ .
  • the "monotonically changing according to the first law” may be monotonically increasing or monotonically decreasing, and the reflection phases of the reflection units inside each sub-array maintain the same variation law.
  • the reflection phase of the reflection unit changes according to the law of monotonically increasing or monotonically decreasing, which is beneficial to the synthesis of the equivalent vector and satisfies the principle of array shaping, and the equivalent beam of the sub-array composed of different reflection units can be realized.
  • the first direction is determined according to the direction of the reflection phase change along the reflection unit, which may be the lateral direction in the horizontal plane in the physical sense, or the longitudinal direction in the horizontal plane in the physical sense.
  • This solution provides a reflect array including different sub-arrays.
  • the arrangement order of the sub-arrays can be further adjusted to form a reflect array that meets the requirements.
  • the sub-arrays can be adjusted.
  • the arrangement order of the array can change the beam direction of the reflection array, which is more flexible in the adjustment of the beam direction.
  • the reflection unit in the sub-array does not include active devices, and the antenna array realizes the beam adjustment in the way of sub-array splicing. Cost and deployment difficulty.
  • the reflection array may include J first sub-arrays and Q second sub-arrays, the J first sub-arrays and The Q second sub-arrays are arranged along the first direction, and J and Q are positive integers.
  • the arrangement order of the J first sub-arrays and the Q second sub-arrays is determined by at least one of the following parameters: the The approximation error corresponding to the reflection array or the beam sidelobe corresponding to the reflection array.
  • the arrangement order of the sub-arrays needs to be considered.
  • This scheme provides the basis for the selection of the arrangement order between the sub-arrays and the sub-arrays. It can be selected to minimize the approximation error of the spliced reflection array. Alternatively, the order of the smallest beam side lobes is beneficial to improve the pointing accuracy of the reflected beam and improve the reflectivity.
  • the J and the Q are determined according to a third parameter, and the third parameter may include the following parameters: the first subarray is in the The number of reflection units included in the first direction, the number of reflection units included in the second sub-array in the first direction, the beam direction of the first sub-array, the direction of the second sub-array The beam pointing, the target beam pointing corresponding to the reflection array, or the approximation error corresponding to the reflection array.
  • the third parameter satisfies the following relationship:
  • J 0 is the candidate number of the first sub-array
  • Q 0 is the candidate number of the second sub-array
  • n 0 is the reflection unit included in the first sub-array in the first direction
  • n 1 is the number of reflection units included in the second sub-array in the first direction
  • ⁇ a0 is the beam direction of the first sub-array
  • ⁇ a1 is the second sub-array
  • ⁇ ai is the target beam direction corresponding to the reflection array
  • ⁇ ' is the approximation error
  • J 0 , Q 0 , n 0 , n 1 are all positive integers greater than or equal to 1
  • J can be taken as the number of the first sub-array
  • Q is the number of the second sub-array
  • J is J 0
  • Q is the smallest value among the values of Q 0 .
  • the scheme provides the influencing factors of the number of sub-arrays and the calculation method, which can maximize the beam pointing error and improve the beam pointing accuracy.
  • the first parameter is determined according to a fourth parameter, the fourth parameter includes a phase period, the first sub-array is in the first The number of reflection units included in the upward direction, the second parameter is determined according to the fifth parameter, and the fifth parameter includes the phase period, the number of reflection units included in the first sub-array in the first direction number.
  • P g1 is the first parameter
  • 2 ⁇ is the For the phase period
  • n 0 is the number of reflection units included in the first sub-array in the first direction
  • P g2 is the second parameter
  • n 1 is the second sub-array in the The number of reflection units included in the first direction.
  • This scheme provides the influencing factors of the Nth parameter corresponding to each sub-array and its calculation method, which is convenient for the determination of the phase gradient in the structural design.
  • the beam direction can also be determined by the phase gradient (ie, the Nth parameter), which is the structure of the reflect array.
  • the design provides theoretical directions. When the beam pointing needs to be changed, the corresponding phase gradient can be calculated, so that the sub-arrays can be re-spliced, which provides the feasibility for the flexible adjustment of the array structure.
  • an antenna structure in a second aspect, may include at least one reflection array as in the first aspect, or in a certain possible implementation manner of the first aspect, or, in any possible implementation manner in the first aspect
  • the antenna structure may also include a feed and so on.
  • a communication device in a third aspect, the communication device may include the antenna structure of the second aspect.
  • FIG. 1 shows a schematic diagram of a communication system applicable to the embodiment of the present application.
  • FIG. 2 shows an antenna array suitable for use in embodiments of the present application.
  • FIG. 3 shows yet another antenna array suitable for use in embodiments of the present application.
  • FIG. 4 is a phase relationship diagram of a reflection array and its sub-arrays according to an embodiment of the present application.
  • FIG. 5 is a relationship diagram between a subarray phase distribution and an average phase distribution according to an embodiment of the present application.
  • FIG. 6 shows yet another antenna array suitable for use in embodiments of the present application.
  • FIG. 7 is a relationship diagram between the splicing sequence of the sub-arrays and the reflection phase according to the embodiment of the present application.
  • the wireless communication systems mentioned in the embodiments of this application include, but are not limited to: Global System of Mobile communication (GSM) system, Code Division Multiple Access (Code Division Multiple Access, CDMA) system, Wideband Code Division Multiple Access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced Long Term Evolution (LTE-A) system, LTE Frequency Division Duplex (Frequency Division Duplex, FDD) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system, fifth generation ( fifth-generation, 5G) communication system, fusion system of multiple access systems, or evolution system, three major application scenarios of 5G mobile communication system eMBB, URLLC and eMTC or new communication systems that will appear in the future.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet
  • the network device involved in the embodiments of this application may be any device with a wireless transceiver function or a chip that can be provided in the device, and the device includes but is not limited to: an evolved Node B (evolved Node B, eNB), a wireless network Controller (Radio Network Controller, RNC), Node B (Node B, NB), Base Station Controller (Base Station Controller, BSC), Base Transceiver Station (Base Transceiver Station, BTS), Home Base Station (for example, Home evolved NodeB, Or Home Node B, HNB), baseband unit (BaseBand Unit, BBU), access point (Access Point, AP), wireless relay node, wireless backhaul node, transmission in Wireless Fidelity (Wireless Fidelity, WIFI) system Point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP) or remote radio head (remote radio head, RRH), etc., can also be 5G, such as NR, gNB in the system,
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (active antenna unit, AAU for short).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implementing functions at the radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, the media access control (MAC) layer and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the higher-layer signaling such as the RRC layer signaling
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • a network device can be used as a scheduling device.
  • the network device may include, but is not limited to, an LTE base station eNB, an NR base station gNB, an operator, etc., and its functions may include, for example, configuring uplink and downlink resources,
  • DCI downlink control information
  • the network device can also be used as a sending device.
  • the network device may include, but is not limited to, TRP and RRH, and its functions may include, for example, sending downlink signals and receiving uplink signals.
  • the terminal equipment involved in the embodiments of this application may also be referred to as user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, Terminal, wireless communication device, user agent or user equipment.
  • user equipment user equipment
  • UE user equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, Terminal, wireless communication device, user agent or user equipment.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a wearable device, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality) , AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid , wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit application scenarios.
  • the aforementioned terminal equipment and the chips that can be provided in the aforementioned terminal equipment are collectively referred to as terminal equipment.
  • the functions of the terminal device may include, but are not limited to, for example, receiving downlink/sidelink signals, and/or sending uplink/sidelink signals.
  • FIG. 1 is a schematic diagram of a communication system using the present application to transmit information.
  • the communication system 100 includes a network device 102 , which may include a plurality of antennas, eg, antennas 104 , 106 , 108 , 110 , 112 , and 114 .
  • the network device 102 may additionally include a transmitter chain and a receiver chain, each of which may include various components (eg, processors, modulators, multiplexers) related to signal transmission and reception, as will be understood by those of ordinary skill in the art. , demodulator, demultiplexer or antenna, etc.).
  • Network device 102 may communicate with a plurality of end devices (eg, end device 116 and end device 122). It will be appreciated, however, that network device 102 may communicate with any number of end devices similar to end devices 116 or 122 .
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, laptop computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable device for communicating over wireless communication system 100 . equipment.
  • the network device 102 may include an antenna 112, an antenna 104, etc., and the terminal device may also include an antenna. It should be understood that the antenna may also be deployed independently, which is not limited in this application.
  • the antenna is the component used to send and receive electromagnetic waves in the radio equipment.
  • the radio frequency signal output by the radio transmitter is transmitted to the antenna through the feeder (radio frequency cable) and radiated in the form of electromagnetic waves. After the electromagnetic wave reaches the receiving point, it is received by the antenna and sent to the radio receiver through the feeder.
  • antennas are reversible, that is, the same antenna can be used as both a transmitting antenna and a receiving antenna.
  • the antenna may be a single antenna, multiple antennas, or an antenna group, which is not limited in this application. Two or more single antennas working at the same frequency are fed and spatially arranged according to certain requirements to form an antenna array, also called an antenna array.
  • the antenna array may be single-frequency or multi-frequency, may be a single-polarized antenna, or may be a multi-polarized antenna, which is not limited in this embodiment of the present application.
  • end device 116 may communicate with antennas 112 and 114 , which may transmit information to end device 116 over forward link 118 and receive information from end device 116 over reverse link 120 .
  • end device 122 may communicate with antennas 104 and 106 , which may transmit information to end device 122 over forward link 124 and receive information from end device 122 over reverse link 126 .
  • FIG. 1 is only used as an example of communication, which is not limited in this application.
  • forward link 118 may use a different frequency band than reverse link 120, and forward link 124 may use a different frequency band than reverse link 126. frequency band.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 may use a common frequency band, and the forward link 124 and the reverse link 120 may use a common frequency band.
  • Links 126 may use a common frequency band.
  • Each antenna (or group of antennas) and/or area designed for communication is referred to as a sector of network device 102 .
  • an antenna group may be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the transmit antenna of network device 102 may utilize beamforming to improve the signal-to-noise ratio of forward links 118 and 124.
  • the network device 102 uses beamforming to transmit to the terminal devices 116 and 122 randomly dispersed in the associated coverage area, the Mobile devices will experience less interference.
  • network device 102, end device 116, or end device 122 may be a wireless communication transmitter and/or a wireless communication receiver.
  • the wireless communication transmitting device may encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be contained in a transport block (or transport blocks) of data, which may be segmented to produce multiple code blocks.
  • the communication system 100 may be a public land mobile network (full name in English may be: Public Land Mobile Network, abbreviation in English may be: PLMN) network or D2D network or M2M network or other network
  • FIG. 1 is only a simplified schematic diagram of an example, the network It may also include other network equipment, which is not shown in FIG. 1 .
  • the sending device may be the above-mentioned network device 102 or a terminal device (for example, the terminal device 116 or the terminal device 122 ), and correspondingly, the receiving end device may be the above-mentioned terminal device ( For example, the terminal device 116 or the terminal device 122) may also be the network device 102, which is not particularly limited in this application.
  • Beamforming is a key technical solution to adjust the beam pointing. It mainly uses the principle of wave interference, and by changing the signal amplitude and phase parameters on each reflection unit, the main lobe of the transmitted wave is aligned with the direction of the target terminal equipment, while the The zero point and side lobes are aimed at other undesired users, thereby enhancing the received signal of the target terminal equipment, reducing the interference between users, and finally improving the system capacity.
  • the direction of the antenna radiation can be realized by changing the relative delay between the wave sources, and the change of the relative position between the transmitter and the receiver can be tracked in real time.
  • the above-mentioned reflection unit refers to the antenna radiation unit constituting the antenna array.
  • the sub-array in the embodiment of the present application may be a unit array composed of reflection units, each sub-array includes at least two different reflection units, and the phase gradient of the sub-array is any two adjacent azimuths included in the sub-array The absolute value of the difference in the reflection phase of the reflection unit.
  • the basic reflection array in this embodiment of the present application may be an array obtained by splicing sub-arrays.
  • the reflection array in the embodiment of the present application may be an array formed by splicing basic reflection arrays in a certain order.
  • the antenna array may include a plurality of identical basic reflection arrays (ie, reflection arrays), the basic reflection array may be formed by splicing sub-arrays, and each sub-array may include reflection units with different reflection phases.
  • the basic reflection array formed by splicing multiple sub-arrays is then spliced to obtain an antenna array that meets the requirements.
  • the requirements change for example, when the coverage area of the antenna array is required to be smaller or larger, the splicable reflection array can replace the module in time. Increase or decrease the number of basic reflection arrays, and then achieve the reconstruction of the aperture of the reflection array.
  • the antenna array can include multiple identical basic reflection arrays, and the basic reflection array can include multiple different sub-arrays.
  • the sub-arrays can be divided into "0" sub-arrays (ie sub-array 1 in Figure 3) and "1" sub-arrays.
  • Array ie sub-array 2 in Figure 3
  • each sub-array may include different reflection units, as shown in Figure 3, the "0" sub-array includes multiple reflection units, such as reflection unit 1 and reflection unit 2,
  • the "1" sub-array includes a plurality of reflection units, such as reflection unit 1, reflection unit 3 and reflection unit 4.
  • FIG. 3 and the number of parts in the figure are just an example, which is not limited in the present application.
  • the "0" sub-array and the "1" sub-array can respectively contain n and m (n, m are both ⁇ 2) reflective units, and each unit can be consistent in the elevation direction but different in the azimuth direction (ie, the first direction). , so that the sub-array presents a phase gradient along the azimuth direction (that is, the Nth parameter), and the phase variation range is exactly one phase period 2 ⁇ , and the reflection phase of the first unit of the "0" sub-array and the "1" sub-array is guaranteed.
  • the reflection phase of the first element of each sub-array is the same, that is, the sub-arrays spliced into the basic reflection array need to be connected end to end.
  • the same reflection phase of the first unit can indicate at least two situations, that is, the reflection phase of the first unit of each sub-array is the smallest in the sub-array, or, the reflection of the first unit of each sub-array
  • the phase is the largest in the sub-array, that is, the reflection units can be arranged according to the law of monotonically increasing or monotonically decreasing reflection phase.
  • the phase gradient of the "0" sub-array and the "1" sub-array can be determined according to the phase period and the number of reflection units
  • phase gradient is related to factors such as the working wavelength, the spacing of the reflection units, and the beam direction, and the following relationship (steering vector formula) can be satisfied between the parameters:
  • k 0 is the free space wave number
  • is the wavelength corresponding to the working center frequency
  • d is the spacing between adjacent reflection units along the azimuth direction
  • ⁇ a is the beam direction corresponding to the phase gradient.
  • the basic reflection array in Fig. 3 can be formed by splicing several "0" sub-arrays and "1" sub-arrays in a certain order along the azimuth direction, and the splicing direction is the first direction.
  • the first direction can be determined according to the direction of the reflection phase change along the reflection unit, which can be the lateral direction in the horizontal plane in the physical sense, or the longitudinal direction in the horizontal plane in the physical sense, such as the phase change of the diagonal line in Figure 3. direction does not apply.
  • the selection principle of the optimal order of sub-array splicing may be to calculate the theoretical patterns of different sequences through the array pattern formula, and select the sequence with the smallest beam pointing error and side lobes.
  • the phase gradient along the azimuth direction of the front of the basic reflection array V min is neither the phase gradient P g0 of the "0" sub-array, nor the phase gradient P g1 of the "1" sub-array, but a mixed phase gradient (P g ⁇ [P g0 ,P g1 ]) surface.
  • the beam pointing ⁇ a of the basic reflector V min will be the intermediate state of the “0” sub-array beam ⁇ a0 and the “1” sub-array beam ⁇ a1 ( ⁇ a ⁇ [ ⁇ a1 a0 , ⁇ a1 ]), .
  • the period of the reflection units in the sub-array may be determined according to the number of reflection units included between two reflection units with the same reflection phase.
  • the i-th reflection unit is the same as the i+ks-th reflection unit, that is, the distribution of the reflection units is periodic, and the period is s, as shown in FIG. 3 .
  • the s reflection units in a phase period as sub-arrays, and denote them as "0" sub-arrays or "1" sub-arrays.
  • the reflection phase ⁇ i can be in one-to-one correspondence with the structural parameter w i of the reflection unit, which can be expressed as formula (3):
  • the phase gradient P g of the reflection array is related to parameters such as the spacing of the reflection elements and the operating wavelength
  • k 0 is the free space wave number
  • d cell is the spacing of the reflection elements of the reflector
  • the number of reflection units in a 2 ⁇ phase period can be determined by the phase period, the phase gradient, and the spacing of the reflection units,
  • the number of sub-arrays in the basic reflection array V min can be determined according to the average phase gradient, as shown in FIG. 4 , which also shows the phase period of the sub-arrays calculated by simulation and an array formed by splicing multiple sub-arrays. phase period. Assuming that the reflection array V contains J sub-arrays "0" and Q sub-arrays "1",
  • the total phasor of the reflection array V is ⁇ all , and the total phasor is related to the phase period and the number of sub-arrays,
  • the average phase gradient can be determined from the total phasor and the physical length of the reflect array,
  • L(V) is the physical length of the reflection array along the azimuth direction, which can be determined according to the number of sub-arrays, the number of reflection units included in the sub-array, the spacing between the reflection units and other parameters,
  • n 0 and n 1 are the number of reflection units included in the sub-array "0" and sub-array "1" along the azimuth direction, respectively,
  • the beam direction of the reflector V is ⁇ ai which can be calculated according to the average phase gradient Approximation error to determine,
  • the approximation error can be determined by the number of reflection units, the number of sub-arrays, the target beam pointing, the actual beam pointing and other parameters,
  • the reflection array V is the basic reflection array V min , that is, the number of sub-array "0" and sub-array "1" included in the basic reflection array can be respectively J 0 and Q 0 when J 0 +Q 0 takes the minimum value.
  • the basic reflection array V min has a variety of coding sequences arranged and combined by "0" and "1", and the optimal sequence is generally selected.
  • the optimal sequence selection principle is to calculate the theoretical patterns of different sequences through the array pattern formula, and select the sequence with the smallest beam pointing error and side lobes.
  • relational expressions given in the embodiments of the present application are only examples, which are not limited in the present application.
  • the deformation and equivalence of the relational expressions, or other alternative relational expressions that can realize the solutions of the embodiments of the present application, are all described in the present application. within the scope of protection.
  • Fig. 5 shows the actual phase distribution of V min and the equivalent average phase distribution , where the dashed line represents the phase distribution of the sub-array "0", p g0 is its phase gradient, the solid line represents the phase distribution of the sub-array "1”, p g1 is its phase gradient, the dashed and solid lines constitute the actual phase distribution, and The dotted line is the average phase distribution, where is the average phase gradient, then the continuous average phase gradient can be equivalent by the discrete actual discrete phase gradients p g0 and p g1 , and have
  • the basic reflection array includes "0" sub-array and "1" sub-array, the number of reflection elements of "0" sub-array can be 4 ⁇ 20, the size can be 16mm ⁇ 80mm, and the number of reflection elements of "1" sub-array can be 3 ⁇ 20, the size can be 12mm ⁇ 80mm.
  • the reflection phase of each reflection unit is shown in Table 1:
  • Figure 6 also shows the phase shift curves of the sub-array and the basic reflection array.
  • the continuous average phase gradient can be equivalent to the discrete actual discrete phase gradient, and the average phase gradient is in the two actual discrete phases.
  • the beam direction of the "0" subarray under a certain reflection phase is 42°
  • the beam direction of the "1" subarray under the same reflection phase is 63.2°.
  • the basic The beam pointing of the reflect array under the same reflection phase is 56.6°, that is to say, the adjustment of the beam pointing is realized by the scheme of the splicable reflect array.
  • a basic reflection array may include three, four, five... different
  • the sub-array is not limited in this application.
  • Fig. 7 shows the effect of different splicing orders on the reflection phase of the basic reflection array.
  • Different sub-arrays are spliced into a basic reflection array in a certain order, and the basic reflection array is spliced into an antenna array, which has a certain adaptability to the requirements of scene changes.
  • the splicing order of the sub-arrays can be changed or Selecting suitable sub-arrays for splicing provides flexibility in beam adjustment, and beam adjustment can be achieved by sub-array splicing without active components, which reduces equipment costs and equipment deployment difficulties.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例提供了一种反射阵列,适用于通信领域。该反射阵列包括至少两个相位梯度不同的子阵,通过拼接子阵实现反射阵列的结构设计,并提供了子阵的最优拼接顺序的选择方法,保证了反射阵列波束指向的准确性;还提供了一种天线结构,该天线结构包括至少一个所述反射阵列,应用场景对天线的覆盖面积的需求发生变化时,通过增加或减少所述反射阵列的数量以扩大或缩小天线的覆盖面积,目标波束指向发生变化时,通过重新拼接子阵搭建新的反射阵列,以实现波束指向的调整。本申请实施例的反射阵列,实现了波束的灵活调整,能够满足不同场景的应用需求,降低了部署难度和设备成本。

Description

一种反射阵列天线 技术领域
本申请涉及通信领域。具体地,涉及一种反射阵列天线。
背景技术
随着电子无线通信技术的不断发展和完善,雷达和通信系统都期望天线具有更多的功能性和自适应性。在实际应用中,现有的反射阵列天线对反射波束的调整有限,并且结构固定,难以同时满足多种场景中对波束调整的需求,此外,现有天线中的有源器件提高了设备成本和大规模天线阵列的部署难度。
发明内容
本申请提供一种可拼接反射阵列,实现了波束的灵活调整,以满足不同场景的应用需求,降低了部署难度和设备成本。
第一方面,提供了一种反射阵列,该反射阵列可以包括第一子阵,所述第一子阵包括至少两个反射相位不同的反射单元,所述第一子阵对应第一参数,所述第一参数为所述第一子阵中任意两个在第一方向上相邻的反射单元的反射相位的差的绝对值,所述第一方向为所述第一子阵包括的反射相位不同的反射单元的排列方向,所述第一子阵在所述第一方向上的反射单元的反射相位按第一规律单调变化;该反射阵列还包括第二子阵,所述第二子阵包括至少两个反射相位不同的反射单元,所述第二子阵对应第二参数,所述第二参数为所述第二子阵中任意两个在所述第一方向上相邻的反射单元的反射相位的差的绝对值,所述第二子阵在所述第一方向上的反射单元的反射相位按所述第一规律单调变化,其中,第一参数的值与第二参数的值不同。
应理解,该反射阵列至少包括两个不同的子阵,也可以包括更多的子阵,比如第三子阵、第四子阵、第五子阵等等,每个子阵对应一个第N参数,该参数的定义与第一参数、第二参数相同,第N子阵的第N参数的值与第一参数、第二参数可以相同,也可以不同,第N参数的取值在大于0且小于2π的范围内。
应理解,所述“按所述第一规律单调变化”可以是单调递增,也可以是单调递减,各子阵内部的反射单元的反射相位保持相同的变化规律。
反射单元的反射相位按照单调递增或单调递减的规律变化,有利于等效矢量的合成,满足阵列赋形的原理,不同的反射单元构成的子阵的等效波束得以实现。
还应理解,第一方向根据沿反射单元的反射相位变化的方向确定,可以是物理意义上的水平面中的横向,也可以是物理意义上的水平面中的纵向。
该方案提供了包括有不同子阵的反射阵列,应用需求产生变化时,子阵的排列顺序可以进一步调整,以拼接成满足需求的反射阵列,例如,当波束指向需要发生改变时,可以调整子阵的排列顺序以改变反射阵列的波束指向,在波束指向的调整上更加灵活,同时该 子阵中的反射单元不包括有源器件,天线阵列以子阵拼接的方式实现了波束调整,降低了成本和部署难度。
结合第一方面,在第一方面的某些实现方式中,该反射阵列可以包括J个所述第一子阵和Q个所述第二子阵,所述J个所述第一子阵和所述Q个所述第二子阵沿所述第一方向排列,J、Q为正整数。
结合第一方面,在第一方面的某些实现方式中,所述J个所述第一子阵和所述Q个所述第二子阵的排列顺序由以下至少一种参数确定:所述反射阵列对应的逼近误差或所述反射阵列对应的波束副瓣。
当反射阵列包括两个以上子阵时,需要考虑子阵的排列顺序,该方案提供了子阵与子阵间的排列顺序的选择依据,可以选择令拼接而成的反射阵列的逼近误差最小,或者,波束副瓣最小的排列顺序,有利于提升反射波束指向的精准度和提高反射率。
结合第一方面,在第一方面的某些实现方式中,所述J和所述Q是根据第三参数确定的,所述第三参数可以包括以下参数:所述第一子阵在所述第一方向上包括的反射单元的个数、所述第二子阵在所述第一方向上包括的反射单元的个数、所述第一子阵的波束指向、所述第二子阵的波束指向、所述反射阵列对应的目标波束指向或所述反射阵列对应的逼近误差。
一种可能的实施方式,所述第三参数满足以下关系:
Figure PCTCN2021076359-appb-000001
其中,J 0为所述第一子阵的候选个数、Q 0为所述第二子阵的候选个数、n 0为所述第一子阵在所述第一方向上包括的反射单元的个数、n 1为所述第二子阵在所述第一方向上包括的反射单元的个数、θ a0为所述第一子阵的波束指向、θ a1为所述第二子阵的波束指向、θ ai为所述反射阵列对应的目标波束指向,ε'为逼近误差,J 0、Q 0、n 0、n 1均为大于或等于1的正整数,
当ε'趋近于0且J 0+Q 0取最小值时,可以取J作为所述第一子阵的个数、Q为所述第二子阵的个数,其中,J为J 0的取值中最小的值,Q为Q 0的取值中最小的值。
该方案提供了子阵个数的影响因素及其计算方法,能够最大化地令波束指向误差最小,提高波束指向的精准度。
结合第一方面,在第一方面的某些实现方式中,所述第一参数是根据第四参数确定的,所述第四参数包括相位周期、所述第一子阵在所述第一方向上包括的反射单元的个数,所述第二参数是根据第五参数确定的,所述第五参数包括相位周期、所述第一子阵在所述第一方向上包括的反射单元的个数。
一种可能的实施方式,所述第四参数可以满足P g1=2π/n 0,所述第五参数可以满足P g2=2π/n 1,其中,P g1为所述第一参数,2π为所述相位周期,n 0为所述第一子阵在所述第一方向上包括的反射单元的个数,P g2为所述第二参数,n 1为所述第二子阵在所述第一方向上包括的反射单元的个数。
该方案提供了各子阵对应的第N参数的影响因素及其计算方法,便于结构设计中对相位梯度的确定,通过相位梯度(即第N参数)也可确定波束指向,为反射阵列的结构设计提供理论方向,在波束指向需要变化时,可以计算出对应的相位梯度,从而对子阵进行重 新拼接,为阵列结构的灵活调整提供了可行性。
第二方面,提供了一种天线结构,该天线结构可以包括至少一个如第一方面,或第一方面某种可能的实施方式中的反射阵列,或,第一方面中任一种可能实现方式中的反射阵列,该天线结构还可以包括馈源等。
第三方面,提供了一种通信设备,该通信设备可以包括如第二方面的天线结构。
附图说明
图1示出了适用于本申请实施例的一通信系统的示意图。
图2示出了适用于本申请实施例的一天线阵列。
图3示出了适用于本申请实施例的又一天线阵列。
图4是本申请实施例的一反射阵列与其子阵的相位关系图。
图5是本申请实施例的子阵相位分布与平均相位分布的关系图。
图6示出了适用于本申请实施例的又一天线阵列。
图7是本申请实施例的子阵的拼接顺序与反射相位的关系图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例提及的无线通信系统包括但不限于:全球移动通信(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(LTE)系统、先进的长期演进(LTE-A)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、第五代(fifth-generation,5G)通信系统、多种接入系统的融合系统,或演进系统、5G移动通信系统的三大应用场景eMBB,URLLC和eMTC或者将来出现的新的通信系统。
本申请实施例中涉及的网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)或者远程射频头(remote radio head,RRH)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,简称AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio  resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
示例地,网络设备可以作为调度设备,在该情况下,网络设备例如可以包含但不限于:LTE基站eNB、NR基站gNB、运营商等等,其功能例如可以包含:进行上下行资源的配置、在基站调度模式、发送下行控制信息(downlink control information,DCI)。示例地,网络设备还可以作为发送设备,在该情况下,网络设备例如可以包含但不限于:TRP、RRH,其功能例如可以包含:进行下行信号发送和上行信号接收。
本申请实施例中涉及的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、可穿戴设备、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将前述终端设备及可设置于前述终端设备的芯片统称为终端设备。
其中,终端设备的功能例如可以包括但不限于:进行下行/侧行信号的接收,和/或,上行/侧行信号的发送。
图1是使用本申请的传输信息的通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,网络设备102可以包括天线112、天线104等,终端设备也可以包括天线,应理解,天线也可独立部署,本申请对此不作限定。
天线是无线电设备中用来发送和接收电磁波的部件,无线电发信机输出的射频信号通 过馈线(射频电缆)输送到天线,以电磁波形式辐射出去。电磁波到达接收点后,由天线接收,并通过馈线送到无线电收信机。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。
天线可以是单个天线,也可以是多个天线,也可以是天线组,本申请对此不作限定。将工作在同一频率的两个或两个以上的单个天线,按照一定的要求进行馈电和空间排列构成天线阵列,也叫天线阵。天线阵列可以是单频或多频,可以是单极化天线,也可以是多极化天线,本申请实施例对此不作限定。
如图1所示,终端设备116可以与天线112和114通信,其中天线112和114可以通过前向链路118向终端设备116发送信息,并可以通过反向链路120从终端设备116接收信息。此外,终端设备122可以与天线104和106通信,其中天线104和106可以通过前向链路124向终端设备122发送信息,并可以通过反向链路126从终端设备122接收信息。
应理解,图1仅作为通信的一种示例,本申请对此不作限定。
例如,在频分双工(FDD,Frequency Division Duplex)系统中,例如,前向链路118可与反向链路120使用不同的频带,前向链路124可与反向链路126使用不同的频带。
再例如,在时分双工(TDD,Time Division Duplex)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是公共陆地移动网络(英文全称可以为:Public Land Mobile Network,英文简称可以为:PLMN)网络或者D2D网络或者M2M网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
需要说明的是,在本申请实施例中,发送设备可以是上述网络设备102也可以是终端设备(例如,终端设备116或终端设备122),相对应的,接收端设备可以是上述终端设备(例如,终端设备116或终端设备122),也可以是网络设备102,本申请并未特别限定。
为了便于理解,对本申请实施例所涉及的基本概念作简单介绍。
波束赋形是调整波束指向的一项关键技术方案,主要利用波的干涉原理,通过改变每个反射单元上的信号幅度及相位参数,使发射波的主瓣对准目标终端设备的方向,而使零 点和副瓣对准其他非期望用户,从而增强目标终端设备的接收信号,同时降低用户间的干扰,最终提升系统容量。此外天线辐射的方向可以通过改变波源之间的相对延时来实现,实时跟踪发射端和接收端之间相对位置的改变。
上述反射单元指的是构成天线阵列的天线辐射单元。
本申请实施例中的子阵可以是由反射单元构成的单元阵列,每个子阵中至少包括两个不同的反射单元,子阵的相位梯度为子阵包括的沿方位向的任意相邻两个反射单元的反射相位的差的绝对值。
本申请实施例中的基础反射阵列可以是由子阵拼接得到的阵列。
本申请实施例中的反射阵可以是由基础反射阵列按照一定顺序拼接而成的阵列。
本申请的一个实施例如图2所示:
天线阵列可以包括多个相同的基础反射阵(即,反射阵列),基础反射阵可以由子阵拼接而成,每个子阵内部可以包括反射相位不同的反射单元。
应理解,图2的结构与图中的数量只是一种示例,本申请对此不作限制。
多个子阵拼接成的基础反射阵列再进行拼接得到满足需求的天线阵列,当需求发生改变时,例如,对天线阵列的覆盖面积要求更小或更大时,可拼接反射阵可以及时更换模块,增加或减少基础反射阵的数量,进而达到反射阵的口径的重构。
本申请的另一个实施例如图3所示:
天线阵列可以包括多个相同的基础反射阵,基础反射阵内可以包括多个不同的子阵,子阵可以分为“0”子阵(即图3中的子阵1)和“1”子阵(即图3中的子阵2),每个子阵内部可以包括不同的反射单元,如图3所示,“0”子阵中包括多个反射单元,比如反射单元1和反射单元2,“1”子阵中包括多个反射单元,比如反射单元1、反射单元3和反射单元4。
应理解,图3的结构与图中的各部分的数量只是一种示例,本申请对此不作限制。
“0”子阵和“1”子阵分别可以包含n和m个(n,m均为≥2)反射单元,各单元可以沿俯仰向保持一致但沿方位向(即,第一方向)不同,使得子阵沿方位向呈现相位梯度(即第N参数),且相位变化范围刚好为一个相位周期2π,且保证“0”子阵和“1”子阵各自的第一个单元的反射相位相同,即图3中各子阵的第一列的反射单元是相同的,子阵内部相邻反射单元之间的相位梯度可以通过P g=2π/n计算得到。
各子阵的第一个单元的反射相位相同,也即,拼接为基础反射阵的子阵需头尾相接。
应理解,第一个单元的反射相位相同可以表示至少两种情况,即各子阵的第一个单元的反射相位是该子阵中最小的,或者,各子阵的第一个单元的反射相位是该子阵中最大的,即,反射单元可以按照反射相位的单调递增或者单调递减的规律进行排列。
应理解,“0”和“1”子阵只是一种示例,本申请对此不作限定,根据应用场景的需求,也可有更多种类的子阵。
其中,“0”子阵和“1”子阵的相位梯度可以根据相位周期和反射单元的个数来确定,
上述参数可以满足下述关系:
P g0=2π/n,P g1=2π/m,
其中,相位梯度与工作波长、反射单元的间距、波束指向等因素有关,各参数间可以满足下述关系(导向矢量公式):
P g=k 0d sinθ a=(2π/λ)d sinθ a    (1)
其中,k 0为自由空间波数,λ是工作中心频率对应的波长,d表示沿方位向的相邻反射单元之间的间距,θ a表示相位梯度对应的波束指向。
图3中的基础反射阵可以由若干“0”子阵和“1”子阵沿方位向按一定顺序拼接而成,拼接方向为第一方向。第一方向可以根据沿反射单元的反射相位变化的方向确定,可以是物理意义上的水平面中的横向,也可以是物理意义上的水平面中的纵向,如图3中的对角线的相位变化的方向不适用。
应理解,图3中阵列在水平面上的横、纵呈现只是一种示例,本申请对此不作限制。
其中,子阵拼接的最优顺序的选取原则可以是通过阵列方向图公式计算不同序列的理论方向图,选取波束指向误差以及副瓣最小的序列。基础反射阵可以用数字编码序列V min=[…0…1]表示。这个基础反射阵V min的阵面沿方位向的相位梯度既不是“0”子阵的相位梯度P g0,也不是“1”子阵的相位梯度P g1,而是一个混合的相位梯度(P g∈[P g0,P g1])表面。根据阵列方向图公式,即公式(9),基础反射阵V min的波束指向θ a会是“0”子阵波束θ a0和“1”子阵波束θ a1的中间状态(θ a∈[θ a0a1]),。
其中,子阵内反射单元的周期可以根据反射相位相同的两个反射单元间包括的反射单元的个数确定。
假设s为正整数,若第i个反射单元的反射相位ψ i与第i+ks个反射单元的反射相位ψ i+ks满足下式,
ψ i=ψ i+ks    (2)
其中k为任意正整数,则第i个反射单元与第i+ks个反射单元相同,即反射单元分布呈周期性,周期为s,如图3所示。则定义一个相位周期内的s个反射单元为子阵,并记为“0”子阵或者“1”子阵。
对于反射单元,反射相位ψ i可以与反射单元的结构参数w i一一对应,可以表示为公式(3):
w i=f(ψ i)    (3)
对于平面波垂直入射的平面反射阵,如果反射波束在方位面的偏转角为θ acell,那么反射阵的相位梯度P g与反射单元的间距、工作波长等参数有关,
各参数间的关系可以满足公式(4),
P g=k 0d cellsinθ acell=(2π/λ)d cellsinθ acell      (4)
其中k 0为自由空间波数,d cell为反射阵反射单元的间距,
则一个2π相位周期内反射单元个数可以通过相位周期、相位梯度、反射单元的间距来确定,
各参数间的关系可以满足公式(5):
Figure PCTCN2021076359-appb-000002
其中c为光速,f为工作频率。
另外,基础反射阵V min内的子阵数量可以根据平均相位梯度来确定,如图4所示,图 4还示出了模拟计算的子阵的相位周期与多个该子阵拼接成的阵列的相位周期。假设反射阵V包含J个子阵“0”和Q个子阵“1”,
反射阵V总移相量为ψ all,总的移相量与相位周期、子阵的个数相关,
各参数可以满足公式(6)的关系:
ψ all=2π(Q+J)    (6)
平均相位梯度可以根据总移相量与反射阵列的物理长度来确定,
示例地,可以根据公式(7)给出的关系来确定:
Figure PCTCN2021076359-appb-000003
其中L(V)为反射阵列沿方位向的物理长度,该物理长度可以根据子阵的数量、子阵包括的反射单元的个数、反射单元之间的间距等参数来确定,
示例地,上述参数可以满足公式(8)的关系:
L(V)=n 0Jd+n 1Qd    (8)
其中,n 0和n 1分别为子阵“0”和子阵“1”沿方位向包含的反射单元数,
反射阵V的波束指向为θ ai可以根据平均相位梯度
Figure PCTCN2021076359-appb-000004
逼近误差来确定,
示例地,上述参数的关系可以表示为公式(9):
Figure PCTCN2021076359-appb-000005
其中ε为逼近误差。
这样,逼近误差可以通过反射单元的个数,子阵的个数,目标波束指向,实际波束指向等参数确定,
上述参数可以满足公式(10)的关系:
Figure PCTCN2021076359-appb-000006
其中ε'为逼近误差,只要ε'足够小,可以认为反射阵V的波束指向为期望值θ ai
需要注意的是,由公式(10)可知,如果存在解J 0和Q 0,那么同样存在解kJ 0和kQ 0(其中k为正整数),因此定义J 0+Q 0取最小值时的反射阵V为基础反射阵V min,即基础反射阵列包括的子阵“0”和子阵“1”的个数分别可以为J 0+Q 0取最小值时的J 0和Q 0
当J 0>1和Q 0>1时,基础反射阵V min具有多种由“0”和“1”排列组合的编码序列,一般取其中的最优序列。最优序列的选取原则是通过阵列方向图公式计算不同序列的理论方向图,选取波束指向误差以及副瓣最小的序列。
应理解,本申请实施例给出的各关系式只是示例,本申请对此不作限定,各关系式的变形、等效,或其他可实现本申请实施例方案的替代关系式,均在本申请保护范围之内。
示例地,假设J=2,Q=3,根据最优序列的选取原则,基础反射阵可编码为V min=[01011],图5给出V min的实际相位分布和等效的平均相位分布,其中虚线代表子阵“0”的相位分布,p g0为其相位梯度,实线代表子阵“1”的相位分布,p g1为其相位梯度,虚线和实线构成实际的相位分布,而点虚线则为平均相位分布,其中
Figure PCTCN2021076359-appb-000007
为平均相位梯度,那 么连续的平均相位梯度
Figure PCTCN2021076359-appb-000008
可以由离散的实际离散相位梯度p g0和p g1来等效,并且有
Figure PCTCN2021076359-appb-000009
具体地,又一实施例如图6所示:
基础反射阵列中包括“0”子阵和“1”子阵,“0”子阵的反射单元数可以为4×20,尺寸可以为16mm×80mm,“1”子阵的反射单元数可以为3×20,尺寸可以为12mm×80mm。
应理解,上述数量与尺寸只是作为示例,本申请对此不作限定。
各反射单元的反射相位如表1所示:
表1“0”子阵和“1”子阵的反射单元反射相位
Figure PCTCN2021076359-appb-000010
应理解,上表只是一个示例,本申请对此不作限定。
如图6所示,子阵的拼接规则可以为V min=[11101];
其中,图6还示出了子阵和基础反射阵的相移曲线,可以看出,连续的平均相位梯度可以由离散的实际离散相位梯度来等效,并且平均相位梯度在两种实际离散相位梯度的中间状态。“0”子阵在某反射相位下的波束指向为42°,“1”子阵在相同的反射相位下的波束指向为63.2°,按照一定的顺序将两种子阵进行拼接后,得到的基础反射阵在该相同反射相位下的波束指向为56.6°,也就是说,经过可拼接反射阵的方案实现了波束指向的调整。
应理解,本申请实施例中以两个不同的子阵为例进行拼接来构建基础反射阵,在具体的应用场景中,一个基础反射阵可能包括三个、四个、五个……不同的子阵,本申请对此不作限定。
另外,图7示出了不同的拼接顺序对基础反射阵的反射相位的影响。
不同的子阵按照一定的顺序拼接成基础反射阵,基础反射阵再拼接成天线阵列,对场景变化的需求有一定的自适应性,当波束指向需要更改时,可以改变子阵的拼接顺序或者选取适合的子阵进行拼接,提供了波束可调的灵活性,且由子阵拼接的方法即可实现波束调整,无需有源器件,降低了设备成本和设备的部署难度。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (9)

  1. 一种反射阵列,其特征在于,所述反射阵列包括:
    第一子阵,所述第一子阵包括至少两个反射相位不同的反射单元,所述第一子阵对应第一参数,所述第一参数为所述第一子阵中任意两个在第一方向上相邻的反射单元的反射相位的差的绝对值,所述第一方向为所述第一子阵包括的反射相位不同的反射单元的排列方向,所述第一子阵在所述第一方向上的反射单元的反射相位按第一规律单调变化;
    第二子阵,所述第二子阵包括至少两个反射相位不同的反射单元,所述第二子阵对应第二参数,所述第二参数为所述第二子阵中任意两个在所述第一方向上相邻的反射单元的反射相位的差的绝对值,所述第二子阵在所述第一方向上的反射单元的反射相位按所述第一规律单调变化,
    其中,所述第一参数的值和所述第二参数的值不同,所述第一子阵与所述第一参数一一对应,所述第二子阵与所述第二参数一一对应。
  2. 如权利要求1所述的反射阵列,其特征在于,所述反射阵列包括J个所述第一子阵和Q个所述第二子阵,所述J个所述第一子阵和所述Q个所述第二子阵沿所述第一方向排列,J、Q为正整数。
  3. 如权利要求2所述的反射阵列,其特征在于,所述反射阵列包括所述J个所述第一子阵和所述Q个所述第二子阵,所述J个所述第一子阵和所述Q个所述第二子阵的排列顺序由以下至少一种参数确定:
    所述反射阵列对应的逼近误差或所述反射阵列对应的波束副瓣。
  4. 如权利要求1至3中任一项所述的反射阵列,其特征在于,所述反射阵列包括J个所述第一子阵和Q个所述第二子阵,J、Q为正整数,其中,所述J和所述Q是根据第三参数确定的,所述第三参数包括:
    所述第一子阵在所述第一方向上包括的反射单元的个数、所述第二子阵在所述第一方向上包括的反射单元的个数、所述第一子阵的波束指向、所述第二子阵的波束指向、所述反射阵列对应的目标波束指向或所述反射阵列对应的逼近误差。
  5. 如权利要求4所述的反射阵列,其特征在于,所述第三参数满足以下关系:
    Figure PCTCN2021076359-appb-100001
    其中,J 0为所述第一子阵的候选个数、Q 0为所述第二子阵的候选个数、n 0为所述第一子阵在所述第一方向上包括的反射单元的个数、n 1为所述第二子阵在所述第一方向上包括的反射单元的个数、θ a0为所述第一子阵的波束指向、θ a1为所述第二子阵的波束指向、θ ai为所述反射阵列对应的目标波束指向,ε'为逼近误差,J 0、Q 0、n 0、n 1均为大于或等于1的正整数,
    当ε'趋近于0且J 0+Q 0取最小值时,取J作为所述第一子阵的个数、Q为所述第二子阵的个数,其中,J为J 0的取值中最小的值,Q为Q 0的取值中最小的值。
  6. 如权利要求1至5中任一项所述的反射阵列,其特征在于,所述第一参数是根据第四参数确定的,所述第四参数包括相位周期、所述第一子阵在所述第一方向上包括的反 射单元的个数,所述第二参数是根据第五参数确定的,所述第五参数包括相位周期、所述第一子阵在所述第一方向上包括的反射单元的个数。
  7. 如权利要求6所述的反射阵列,其特征在于,所述第四参数满足P g1=2π/n 0,所述第五参数满足P g2=2π/n 1,其中,P g1为所述第一参数,2π为所述相位周期,n 0为所述第一子阵在所述第一方向上包括的反射单元的个数,P g2为所述第二参数,n 1为所述第二子阵在所述第一方向上包括的反射单元的个数。
  8. 一种天线结构,其特征在于,所述天线结构包括至少一个如权利要求1至7
    中任一项所述的反射阵列。
  9. 一种通信设备,其特征在于,所述通信设备包括如权利要求8所述的天线结构。
PCT/CN2021/076359 2021-02-09 2021-02-09 一种反射阵列天线 WO2022170515A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076359 WO2022170515A1 (zh) 2021-02-09 2021-02-09 一种反射阵列天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076359 WO2022170515A1 (zh) 2021-02-09 2021-02-09 一种反射阵列天线

Publications (1)

Publication Number Publication Date
WO2022170515A1 true WO2022170515A1 (zh) 2022-08-18

Family

ID=82837417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076359 WO2022170515A1 (zh) 2021-02-09 2021-02-09 一种反射阵列天线

Country Status (1)

Country Link
WO (1) WO2022170515A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150022414A1 (en) * 2012-02-29 2015-01-22 Ntt Docomo, Inc. Reflectarray and design method
CN106935975A (zh) * 2017-03-14 2017-07-07 重庆大学 一种大口径宽带接收相控阵天线
CN109390705A (zh) * 2018-09-10 2019-02-26 南京理工大学 基于重叠切换子阵实现相位中心连续可电调的阵列天线
CN110098856A (zh) * 2018-01-31 2019-08-06 华为技术有限公司 一种天线装置及相关设备
CN110212312A (zh) * 2018-02-28 2019-09-06 华为技术有限公司 一种天线装置及相关设备
CN112134032A (zh) * 2020-09-25 2020-12-25 重庆两江卫星移动通信有限公司 一种基于子阵排列的相控阵天线及其系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150022414A1 (en) * 2012-02-29 2015-01-22 Ntt Docomo, Inc. Reflectarray and design method
CN106935975A (zh) * 2017-03-14 2017-07-07 重庆大学 一种大口径宽带接收相控阵天线
CN110098856A (zh) * 2018-01-31 2019-08-06 华为技术有限公司 一种天线装置及相关设备
CN110212312A (zh) * 2018-02-28 2019-09-06 华为技术有限公司 一种天线装置及相关设备
CN109390705A (zh) * 2018-09-10 2019-02-26 南京理工大学 基于重叠切换子阵实现相位中心连续可电调的阵列天线
CN112134032A (zh) * 2020-09-25 2020-12-25 重庆两江卫星移动通信有限公司 一种基于子阵排列的相控阵天线及其系统

Similar Documents

Publication Publication Date Title
CN110098856B (zh) 一种天线装置及相关设备
CN111246496B (zh) 一种基于智能反射表面的波束追踪覆盖与增强方法
US9362991B2 (en) Apparatus, system and method of transmit power control for wireless communication
US9806777B1 (en) Communication device and a method for beamforming
EP2816664B1 (en) Antenna system
WO2019201063A1 (zh) 一种天线系统、馈电网络重构方法及装置
CN110212312B (zh) 一种天线装置及相关设备
US20160094286A1 (en) Apparatus, system and method of wireless backhaul and access communication via a common antenna array
US9660712B2 (en) Method and apparatus for transmitting downlink data on basis of beam restricted sub-frame
CN106797239A (zh) 小区/无线网络的波束管理方法
Maltsev et al. Highly directional steerable antennas: High-gain antennas supporting user mobility or beam switching for reconfigurable backhauling
WO2020015386A1 (zh) 一种波束重构方法、天线、微波设备和网络系统
JP2003060423A (ja) スマートアンテナアレイ
JP2003110494A (ja) スマートアンテナアレイ
CN113162747B (zh) 一种全双工通信方法及装置
KR20190118794A (ko) 무선 통신 시스템에서 렌즈를 이용하여 빔을 조절하기 위한 장치 및 방법
CN112702096B (zh) 一种信号处理方法及相关装置
WO2015042968A1 (zh) 扇区配置方法及装置、系统
Li et al. 5g in the sky: the future of high-speed internet via unmanned aerial vehicles
KR100464332B1 (ko) 이동통신시스템에서 어레이 안테나의 송신빔 형성 장치 및방법
WO2022170515A1 (zh) 一种反射阵列天线
US20230114713A1 (en) Radio frequency (rf)-based ranging and imaging in a wireless communications circuit, particularly for a wireless communications system (wcs)
WO2023092361A1 (zh) 通信系统中的终端以及发送设备
WO2021253400A1 (zh) 波束处理方法、设备、系统及存储介质
KR20220085918A (ko) 무선 통신 시스템에서 렌즈를 이용하여 빔을 제어하기 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925181

Country of ref document: EP

Kind code of ref document: A1