WO2022169317A1 - High-strength self-healing polyurethane polymer having room-temperature self-healing function - Google Patents
High-strength self-healing polyurethane polymer having room-temperature self-healing function Download PDFInfo
- Publication number
- WO2022169317A1 WO2022169317A1 PCT/KR2022/001802 KR2022001802W WO2022169317A1 WO 2022169317 A1 WO2022169317 A1 WO 2022169317A1 KR 2022001802 W KR2022001802 W KR 2022001802W WO 2022169317 A1 WO2022169317 A1 WO 2022169317A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- self
- healing
- polyurethane polymer
- based polyol
- aliphatic
- Prior art date
Links
- 229920002635 polyurethane Polymers 0.000 title claims abstract description 79
- 239000004814 polyurethane Substances 0.000 title claims abstract description 79
- 229920000642 polymer Polymers 0.000 title claims abstract description 76
- 229920005862 polyol Polymers 0.000 claims abstract description 60
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 53
- 150000003077 polyols Chemical class 0.000 claims abstract description 53
- 229920000515 polycarbonate Polymers 0.000 claims abstract description 31
- 239000004417 polycarbonate Substances 0.000 claims abstract description 31
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000005056 polyisocyanate Substances 0.000 claims abstract description 18
- 229920001228 polyisocyanate Polymers 0.000 claims abstract description 18
- 230000000694 effects Effects 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims description 19
- 229920001730 Moisture cure polyurethane Polymers 0.000 claims description 13
- 125000002723 alicyclic group Chemical group 0.000 claims description 13
- 238000005520 cutting process Methods 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 7
- 125000002947 alkylene group Chemical group 0.000 claims description 5
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 230000000052 comparative effect Effects 0.000 description 16
- 238000001523 electrospinning Methods 0.000 description 14
- -1 aliphatic disulfide polyol Chemical class 0.000 description 13
- 229920001410 Microfiber Polymers 0.000 description 12
- 239000003658 microfiber Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 10
- 230000008859 change Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 230000000704 physical effect Effects 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 238000002835 absorbance Methods 0.000 description 6
- 230000015271 coagulation Effects 0.000 description 6
- 238000005345 coagulation Methods 0.000 description 6
- 125000002228 disulfide group Chemical group 0.000 description 6
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 5
- 229920006299 self-healing polymer Polymers 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000009987 spinning Methods 0.000 description 4
- KYNFOMQIXZUKRK-UHFFFAOYSA-N 2,2'-dithiodiethanol Chemical compound OCCSSCCO KYNFOMQIXZUKRK-UHFFFAOYSA-N 0.000 description 3
- 239000005058 Isophorone diisocyanate Substances 0.000 description 3
- 238000000149 argon plasma sintering Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 2
- XGKGITBBMXTKTE-UHFFFAOYSA-N 4-[(4-hydroxyphenyl)disulfanyl]phenol Chemical compound C1=CC(O)=CC=C1SSC1=CC=C(O)C=C1 XGKGITBBMXTKTE-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000012975 dibutyltin dilaurate Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000006355 external stress Effects 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 229920000909 polytetrahydrofuran Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- BYPFICORERPGJY-UHFFFAOYSA-N 3,4-diisocyanatobicyclo[2.2.1]hept-2-ene Chemical compound C1CC2(N=C=O)C(N=C=O)=CC1C2 BYPFICORERPGJY-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 208000002463 Sveinsson chorioretinal atrophy Diseases 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000011481 absorbance measurement Methods 0.000 description 1
- 150000001334 alicyclic compounds Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000000578 dry spinning Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 235000013611 frozen food Nutrition 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 235000008113 selfheal Nutrition 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000002166 wet spinning Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/44—Polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/38—Low-molecular-weight compounds having heteroatoms other than oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/38—Low-molecular-weight compounds having heteroatoms other than oxygen
- C08G18/3855—Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
- C08G18/3863—Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing groups having sulfur atoms between two carbon atoms, the sulfur atoms being directly linked to carbon atoms or other sulfur atoms
- C08G18/3865—Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing groups having sulfur atoms between two carbon atoms, the sulfur atoms being directly linked to carbon atoms or other sulfur atoms containing groups having one sulfur atom between two carbon atoms
- C08G18/3868—Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing groups having sulfur atoms between two carbon atoms, the sulfur atoms being directly linked to carbon atoms or other sulfur atoms containing groups having one sulfur atom between two carbon atoms the sulfur atom belonging to a sulfide group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/75—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
Definitions
- the present invention relates to a transparent polyurethane polymer having high tensile strength and high self-healing efficiency at room temperature and a method for preparing the same.
- thermoplastic urethane-based elastomer (TPU) has attracted much attention as a self-healing material due to its excellent mechanical and optical performance.
- the present invention is to develop a self-healing high-strength polyurethane polymer that solves the above problems, that is, has high mechanical properties, has excellent self-healing power at room temperature, has excellent optical properties, and can be manufactured with a simple design.
- the problem of conventional self-healing polymers is that the mechanical properties decrease as the self-healing properties are improved.
- the self-healing temperature of the existing polyurethane material having an aliphatic disulfide requires a temperature of 70° C. or higher, but in the present invention, it was discovered for the first time that self-healing is possible even at room temperature by changing the surrounding polymer structure design.
- the present invention provides a self-healing polyurethane polymer comprising a structural unit derived from an aliphatic polycarbonate-based polyol, an alicyclic polyisocyanate, and an aliphatic disulfide-based polyol.
- the self-healing polyurethane polymer may be a polyurethane prepolymer derived from an aliphatic polycarbonate-based polyol and an alicyclic polyisocyanate and an aliphatic disulfide-based polyol connected by a coupling.
- the aliphatic polycarbonate-based polyol may have a number average molecular weight of 300 to 10,000 g/mol, preferably 500 to 5,000 g/mol.
- the carbon number of the alkylene group of the structural unit of the aliphatic polycarbonate-based polyol may be 4 to 10.
- the structural unit of the aliphatic disulfide-based polyol may have 4 to 10 carbon atoms.
- the aliphatic polycarbonate-based polyol and the aliphatic disulfide-based polyol may be in a molar ratio of 1: 0.02 to 1.5.
- the aliphatic polycarbonate-based polyol and the cycloaliphatic polyisocyanate are 1: 1.5 to 2.5 equivalent ratio of polyurethane prepolymer, and the equivalent ratio of the isocyanate group of the polyurethane prepolymer and the hydroxyl group of the aliphatic disulfide-based polyol is 1 : It may be 0.5 to 1.5.
- the self-healing polyurethane polymer may have a tensile strength of 40 MPa or more and a tensile toughness of 50 MJ/m 3 or more.
- the self-healing rate at 25° C., 72 hrs may be 40% or more, and the self-healing rate at 35° C., 72 hrs may be 80% or more.
- Another aspect of the present invention may provide a porous self-healing polyurethane article comprising a self-healing polyurethane polymer.
- the present invention can provide a self-healing polyurethane polymer having excellent mechanical strength of a certain strength or higher, which cannot be achieved due to the contradictory properties of the existing polyurethane polymers, and at the same time having an excellent self-healing effect even at low temperature or room temperature.
- the present inventors have discovered that self-healing performance and mechanical strength can be simultaneously improved by preparing a self-healing polyurethane polymer comprising structural units derived from aliphatic polycarbonate-based polyols, cycloaliphatic polyisocyanates and aliphatic disulfide-based polyols.
- a self-healing polymer having excellent mechanical properties as well as an excellent self-healing effect even at a low temperature such as room temperature can be provided, thereby completing the present invention.
- the self-healing temperature of the existing polyurethane material having an aliphatic disulfide requires a temperature of 70° C. or higher, but in the present invention, it was discovered for the first time that self-healing is possible even at room temperature by changing the design of the surrounding polymer structure.
- the remarkable functional effect is an effect exhibited by including all of an aliphatic polycarbonate-based polyol, an alicyclic polyisocyanate, and an aliphatic disulfide polyol as a monomer, and the monomer is included as a structural unit of the polymer through a polymerization reaction.
- the present invention prepares an isocyanate-terminated polyurethane prepolymer by pre-polymerizing the aliphatic polycarbonate-based polyol and alicyclic polyisocyanate, and then reacts with an aliphatic disulfide-based polyol, for example, an aliphatic disulfide-based diol compound. can be manufactured.
- the structural unit of the aliphatic polycarbonate-based polyol includes an alkylene group-carbonate group, and hydroxyl groups (-OH) may be included at both ends or side branches of the molecule.
- the number of hydroxyl groups included in the molecule of the aliphatic polycarbonate-based polyol may be 2 to 6, preferably 2 to 4, and preferably, each of the hydroxyl groups is included at both ends so that two hydroxyl groups may be included in the molecule. , but is not limited thereto.
- the alkylene group is included in the aliphatic polycarbonate-based polyol, the flexibility of the polymer chain may be improved and the self-healing effect may be increased.
- the number of carbon atoms of the alkylene group included in the structural unit of the aliphatic polycarbonate-based polyol may be 2 to 10, preferably 2 to 8, and more preferably 4 to 6.
- the number average molecular weight of the aliphatic polycarbonate-based polyol may be 300 to 10,000 g/mol, preferably 500 to 5,000 g/mol, more preferably 600 to 4,000 g/mol, very preferably 700 to 3,000 g/mol.
- the number average molecular weight of the aliphatic polycarbonate-based polyol is more excellent in flexibility and self-healing effect of the polymer chain within the above range, and the physical properties excellent in tensile strength can be satisfied at the same time.
- the alicyclic polyisocyanate may be used without particular limitation as long as it is an alicyclic compound having two or more isocyanate groups, and specifically, for example, isophorone diisocyanate (IPDI), 4, 4'-dicyclohexylmethane diisocyanate (hydrogenated methylene diphenyl diisocyanate, hydrogenated MDI), cyclohexylene diisocyanate, methylcyclohexylene diisocyanate (hydrogenated toluene diisocyantate, hydrogenated TDI), bis (2-isocyanate) Natoethyl)-4-diclohexene-1,2-dicarboxylate (Bis(2-isocyanatoethyl)-4-diclohexene-1,2-dicarboxylate), 2,5-norbornene diisocyanate (2,5- any one or two or more selected from norbornene diisocyanate) and
- IPDI isophor
- the structural unit of the aliphatic disulfide-based polyol may have 2 to 10 carbon atoms, preferably 3 to 8 carbon atoms, and more preferably 4 to 6 carbon atoms.
- the weight average molecular weight of the aliphatic disulfide-based polyol may be 50 to 300 g/mol, preferably 80 to 250 g/mol, and more preferably 100 to 200 g/mol.
- the aliphatic polycarbonate-based polyol and the aliphatic disulfide-based polyol may be included in the polymer chain.
- the aliphatic polycarbonate-based polyol and the aliphatic disulfide-based polyol may be in a molar ratio of 1: 0.02 to 1.5.
- composition ratio of the aliphatic polycarbonate-based polyol and the aliphatic disulfide-based polyol in the self-healing polyurethane polymer satisfies the above, it can have excellent mechanical strength and at the same time exhibit an excellent self-healing effect at a low temperature.
- the present invention is not limited thereto.
- the self-healing polyurethane polymer is a self-healing polyurethane in which an isocyanate-terminated polyurethane prepolymer derived from an aliphatic polycarbonate-based polyol and an cycloaliphatic polyisocyanate and an aliphatic disulfide-based polyol are coupled to each other. It may be a polymer.
- an isocyanate-terminated polyurethane prepolymer is first prepared by a reaction of an aliphatic polycarbonate polyol having a relatively large molecular weight and an alicyclic polyisocyanate, followed by a second step
- a high molecular weight polyurethane can be prepared by coupling the prepared prepolymer with an aliphatic disulfide-based polyol through the reaction.
- the high molecular weight polyurethane prepared as described above is good in that it can maintain self-healing properties and mechanical strength uniformly, and at the same time have very excellent self-healing effect at low temperature.
- the unit weight ratio of the aliphatic polycarbonate-based polyol and alicyclic polyisocyanate for preparing the polyurethane prepolymer may be 1: 1.5 to 2.5 equivalent ratio, preferably 1.7 to 2.4 equivalent ratio. and more preferably 1.9 to 2.3 equivalent ratio, but is not limited thereto.
- the equivalent ratio of the isocyanate group of the polyurethane prepolymer prepared by the reaction of the aliphatic polycarbonate-based polyol and the alicyclic polyisocyanate and the hydroxyl group of the aliphatic disulfide-based polyol may be 1: 0.5 to 1.5 equivalent ratio, preferably 1:0.7 to It may be 1.3 equivalent ratio, preferably 1:0.9 to 1.1 equivalent ratio.
- the self-healing polyurethane polymer is prepared in the equivalence ratio, the degree of crosslinking of the self-healing polyurethane is excellent, and in particular, the content of urethane bonds capable of hydrogen bonding in the self-healing polyurethane polymer is high, It has better mechanical strength and self-healing effect.
- the self-healing polyurethane polymer prepared by the above method does not need to add additional materials to impart self-healing properties, and can self-heal without raising the temperature to a higher temperature than necessary, and has high tensile strength under external stress. Therefore, it has an excellent advantage for general use.
- the weight average molecular weight of the self-healing polyurethane polymer may be 5,000 to 1,000,000 g/mol, preferably 10,000 to 500,000 g/mol, and more preferably 20,000 to 300,000 g/mol, but is not limited thereto. .
- the self-healing polyurethane polymer may have a tensile strength of 30 MPa or more, preferably 40 MPa or more, more preferably 40 MPa to 60 MPa, and a tensile toughness of 40 MJ/m 3 or more. , may preferably have a physical property of 50MJ/m3 to 120MJ/m3, but is not limited thereto.
- a general polyurethane polymer also has high flexibility and toughness, when an article made of the polymer is subjected to physical damage such as cutting, it cannot recover the physical damage, so that the article has a remarkably low mechanical strength according to the physical damage.
- the self-healing polyurethane polymer according to the present invention forms hydrogen bonds and disulfide groups between various functional groups included in the polymer chain, and at the same time achieves an appropriate balance of flexibility, tensile strength, and toughness to form a self-healing polyurethane polymer.
- the made article receives physical damage such as cutting, it can quickly recover the physical damage even at a low temperature, such as room temperature, and has a remarkable effect of rapidly recovering the mechanical strength.
- the self-healing polyurethane polymer has a tensile strength of 30 MPa or more, preferably 40 Mpa to 60 Mpa, and preferably has an excellent tensile strength of 40 Mpa or more, while at the same time 70% at a temperature condition of 35 °C, Preferably, it can have a remarkable effect with a self-healing rate of 80% or more.
- the self-healing polyurethane polymer of the present invention may have a tensile strength of 30 MPa or more, preferably a physical property of 40 Mpa to 60 Mpa, and a tensile toughness of 40 to 80 MJ/m 3 and a temperature condition of 35 ° C. After 72 hours, it can have a remarkable effect with a self-healing rate of 70%, preferably 80% or more. In addition, after 72 hours at 25 °C, it can have a remarkable effect having a self-healing rate of preferably 40% or more.
- the self-healing polyurethane polymer satisfies high mechanical properties, excellent self-healing at room temperature, and high light transmittance at the same time, thereby preventing spoilage of refrigerated or frozen food and medical supplies that may be altered according to temperature. It has excellent applicability as a change detection sensor.
- the self-healing polyurethane polymer is opaque at a low temperature, but increases in transparency at a high temperature above a critical temperature, so it may be desirable to have a characteristic having transparency above a certain level.
- the change in light transmittance according to temperature change may be insignificant due to the high transparency of the polymer material.
- light scattering of incident light is generated in the film, so that it is opaque at a low temperature, but at a high temperature above the critical temperature, light scattering is reduced, and it may be desirable to have a characteristic having a certain level of transparency or more.
- the self-healing polyurethane article is not uniformly densified or filmed, and the non-uniform self-healing polyurethane article or porosity containing pores or irregularities on the inside or surface of the article
- a self-healing polyurethane article can be utilized as a desirable temperature change sensor.
- the shape and size of the pores or concavities and convexities is sufficient as long as it can generate light scattering of light incident on the article in the visible light region (380-780 nm), and is not limited to a specific shape or size in a specific range.
- the average diameter of the pores or irregularities may be 10 nm to 500 ⁇ m, preferably 100 nm to 100 ⁇ m, and more preferably 150 nm to 10 ⁇ m.
- the porosity of the article may be 10 to 95%, specifically 20 to 85%, and more specifically 40 to 80%.
- the shape of the article is not limited to a specific shape, and specific examples thereof may be a film, a sheet, a sticker, a web-film, a fiber, or a coating solution.
- the present invention provides a self-healing web-film, wherein the self-healing web-film comprises a self-healing polyurethane polymer.
- the self-healing polyurethane polymer may be molded into microfibers, and a plurality of microfibers made of the self-healing polyurethane polymer may be manufactured into a self-healing web-film forming a network structure.
- microfibers form a network structure, and thus pores may be included in the network structure, or irregularities may be included on the surface of the web-film.
- the self-healing web-film is made of a nonwoven fabric in which the self-healing polyurethane polymer is finely fibrous and aggregated, and has opaque properties in a web state.
- the fine fibers lose their fibrous shape, and the self-healing polyurethane polymer diffuses into the surrounding pores to fill the empty space of the web, making it homogeneous and dense. It has a behavior that changes to a dense film.
- the microfibrillation of the self-healing polyurethane polymer may be prepared by solution spinning or melt spinning.
- the diameter of the fiber ranges from nanometer level ( ⁇ 102 nm) to micrometer level ( ⁇ 102 ⁇ m). It is preferable because it can be easily adjusted.
- the present invention provides a method for producing a self-healing web-film by an electrospinning method.
- the self-healing web-film manufacturing method comprises the steps of: S1) dissolving the self-healing polyurethane polymer in an organic solvent to prepare a self-healing polyurethane solution; S2) forming microfibers by electrospinning the self-healing polyurethane solution; and S3) obtaining a web-film made of the microfibers; includes
- Electrospinning may be performed using spinning equipment including a nozzle unit for discharging a polyurethane polymer solution or melt for electrospinning, a high voltage generator, and a current collector. Also, it may be a method in which a microfiber aggregate having a random structure is implemented by the strength of an electric field applied to the discharge.
- the concentration of the electrospun polymer solution is not particularly limited as long as electrospinning is possible.
- the solvent may be used without limitation as long as it is a solvent capable of dissolving the polymer and capable of electrospinning.
- the electrospinning may be electrospinning on a coagulation bath.
- the coagulation bath may include water, and a current collector may be included in the coagulation bath to be electrospinning on the water surface.
- a current collector may be included in the coagulation bath to be electrospinning on the water surface.
- the solvent included in the polymer solution is preferably a solvent miscible with water, and water may be a poor solvent for the polymer.
- the self-healing polyurethane polymer microfibers are spun on the water surface of the coagulation bath, and thus the self-healing web in the form of a pure non-woven fabric free from impurities and solvents - The film can be obtained easily.
- the self-healing web-film produced by the electrospinning may have a very dense nonwoven structure by combining microfibers having a diameter of a nanometer level ( ⁇ 102 nm) to a micrometer level ( ⁇ 102 ⁇ m).
- the average diameter of the microfibers may be 0.01 ⁇ m to 200 ⁇ m, preferably 0.05 ⁇ m to 100 ⁇ m, and more preferably 0.1 ⁇ m to 50 ⁇ m.
- the thickness of the self-healing web-film produced by the electrospinning may be 0.1 ⁇ m to 200 ⁇ m, preferably 0.5 ⁇ m to 150 ⁇ m, and more preferably 1 ⁇ m to 100 ⁇ m.
- the self-healing web-film includes microfibers of the average diameter and forms a network structure, a difference in light transmittance according to temperature change in the visible region can be clearly observed with the naked eye, and the self-healing web - The durability of the film can be increased.
- the self-healing web-film may have high light transmittance above the critical temperature or higher.
- the temperature sensor including the self-healing web-film according to the present invention may be an irreversible temperature sensor.
- Each polymer prepared in Examples and Comparative Examples was dissolved in DMAc solvent at a concentration of 40 wt% to prepare a mixed solution. After the mixed solution was applied on a Teflon sheet, the solvent was removed while the temperature was gradually increased to 100 ° C., and vacuum dried at 110 ° C. to prepare a film having a thickness of 1 mm, and the physical properties were measured.
- Tensile strength was measured at 25° C. with a load cell of 1 KN and a crosshead speed of 100 mm/min, and the average value measured 5 times for each sample was taken.
- the tensile toughness was converted into MJ/m 3 as the integral value of the strain-stress curve up to the cut strain.
- a self-healing polyurethane polymer specimen (thickness 1 mm) of the standard conforming to ASTM D638-03 was prepared and then cut in the middle. The cut section of the specimen was re-bonded while maintaining it at a temperature of 35° C. for 48 hours. The tensile toughness of the rejoined specimen was measured, and the recovery rate compared to before cutting was calculated using the following relational formula (1).
- T o is the self-healing polyurethane polymer before cutting toughness (MJ/m3)
- T 1 is the self-healing polyurethane polymer after cutting and re-bonding at a temperature of 35° C. for 48 hours (MJ/m3). m 3 ).
- Absorbance was measured by measuring the absorbance of the film with a UV-2600 UV/vis spectrometer by preparing a film with a thickness of 0.3 mm when preparing a film by the above specimen preparation method, and the absorbance at 420 nm, which is a yellow light region, was quantified.
- a mixed solution was prepared by dissolving 6.77 g of isophorone diisocyanate (IPDI, 30.45 mmol) and 50 mg of dibutyltin dilaurate (DBTDL) in 5 ml of dimethylacetamide (DMAc).
- IPDI isophorone diisocyanate
- DBTDL dibutyltin dilaurate
- the mixed solution was slowly added dropwise to the polyhexamethylene carbonate diol and stirred for 2 hours to prepare a polyurethane prepolymer having a weight average molecular weight of 5,000 g/mol.
- the self-healing polyurethane polymer prepared above a film with a thickness of 1 mm was prepared by the method for preparing the specimen, and the tensile strength and tensile toughness were measured and described in Table 1.
- the self-healing polyurethane polymer was prepared as a specimen according to ASTM D638-03, cut in the middle, and measured by rejoining it, and the absorbance was measured in Table 1 included.
- Example 1 all processes were performed in the same manner as in Example 1 except that 3.63 g of bis(4-hydroxyphenyl)disulfide (Bis(4-hydroxyphenyl)disulfide, 14.5 mmol) was added instead of 2-Hydroxyethyl disulfide.
- Example 1 all processes were performed in the same manner as in Example 1 except that 1.71 g of 1,6-hexanediol (1,6-hexanediol, 14.5 mmol) was added instead of 2-Hydroxyethyl disulfide.
- Example 1 all processes were performed in the same manner as in Example 1, except that 14.5 g of polytetramethylene ether glycol (Polytetramethylene ether glycol, Mn 1,000 g/mol, 14.5 mmol) was added instead of polyhexamethylene carbonate diol.
- polytetramethylene ether glycol Polytetramethylene ether glycol, Mn 1,000 g/mol, 14.5 mmol
- Example 1 all processes were the same as in Example 1 except that bis(4-isocyanatophenyl)methane (4,4-Diphenylmethane diisocyanate, MDI, 30.45 mmol, 7.62 g) was added instead of isophorone diisocyanate. proceeded.
- bis(4-isocyanatophenyl)methane (4,4-Diphenylmethane diisocyanate, MDI, 30.45 mmol, 7.62 g) was added instead of isophorone diisocyanate. proceeded.
- the tensile strength of the specimen was 30 MPa or more, tensile toughness of 40 MJ/m3 or more was achieved, and after cutting and rejoining the specimen, after 72 hours at 25°C, room temperature self-healing with a tensile toughness recovery rate of 40% or more It functions as a polyurethane material.
- the self-healing polyurethane polymer film at room temperature with a thickness of 0.3 mm had an absorbance of 0.1 or less at 420 nm and had excellent transparency.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
The present invention relates to a self-healing polyurethane polymer having both high tensile strength and a high self-healing effect even at room temperature. Specifically, the present invention relates to a self-healing polyurethane polymer comprising structural units derived from aliphatic polycarbonate-based polyols, cycloaliphatic polyisocyanates, and aliphatic disulfide-based polyols.
Description
본 발명은 높은 인장강도를 가지며 상온에서 높은 자가치유 효율을 가지는 투명한 폴리우레탄 중합체 및 이의 제조방법에 관한 것이다.The present invention relates to a transparent polyurethane polymer having high tensile strength and high self-healing efficiency at room temperature and a method for preparing the same.
외력에 의한 물리적 손상에 대해 반복적으로 회복할 수 있는 생물학적 물질과는 달리 인공적인 제조된 고분자 제품의 경우 누적되는 물리적 손상 또는 균열에 의하여 비가역적인 파단을 초래하기 때문에 수명이 제한적이다. Unlike biological materials that can repeatedly recover from physical damage caused by external forces, artificially manufactured polymer products have a limited lifespan because they cause irreversible fracture due to accumulated physical damage or cracks.
특히, 상기 고분자로 제조하는 제품 중, 외부 스트레스에 반복적으로 노출되는 보호재 또는 휴대 기기 제품의 경우, 외력에 의한 피로도가 증가함에 의해 내구성 및 제품 수명이 단축되는 문제점이 있다.In particular, among the products made of the polymer, in the case of a protective material or a portable device product that is repeatedly exposed to external stress, there is a problem in that durability and product life are shortened due to an increase in fatigue due to an external force.
이에, 종래에는 생물학적 조직에서 영감을 받아 자가치유가 가능한 고분자 소재에 대한 연구가 진행되고 있다. 상기 자가치유가 가능한 고분자 소재의 개발은 자동차 부품, 전자 제품, 및 의료 기기 등에 사용되는 보호 코팅용으로 주로 사용될 수 있다.Accordingly, in the prior art, research on a self-healing polymer material that is inspired by a biological tissue is being conducted. The development of the self-healing polymer material can be mainly used for protective coatings used in automobile parts, electronic products, and medical devices.
다양한 고분자 소재 중에 열가소성 우레탄계 엘라스토머 (TPU)는 우수한 기계적 성능 및 광학적 성능으로 인해 자가 치유 소재로 많은 주목을 받고 있다. Among various polymer materials, thermoplastic urethane-based elastomer (TPU) has attracted much attention as a self-healing material due to its excellent mechanical and optical performance.
다만, 상기 자가치유가 가능한 TPU를 제조하기 위해서는 몇가지 문제점이 있다.However, there are several problems in order to manufacture the self-healing TPU.
먼저, 재료 성능의 균형을 맞추기 어렵고 두 번째로 분자 설계의 복잡성이 있다. 상기 성능의 균형과 관련된 문제는 기계적 특성과 치유 특성 간의 절충(trade-off)이 가장 큰 장애물이다. 기계적 강도는 높은 결정도, 강력한 2 차 결합 및/또는 높은 사슬 강성을 기반으로 조밀하고 잘 조직된 내부 구조를 필요로 하지만, 이러한 고분자 구조는 불가피하게 사슬 이동성과 상응하는 자가치유 능력을 방해한다. First, it is difficult to balance material performance, and secondly, there is the complexity of molecular design. The trade-off between mechanical and healing properties is the biggest obstacle to the problem of balancing the performance. Mechanical strength requires a dense and well-organized internal structure based on high crystallinity, strong secondary bonds and/or high chain stiffness, but such a polymeric structure inevitably interferes with chain mobility and the corresponding self-healing ability.
이러한 높은 결정성 및 사슬 이동성은 서로 상충되는 물성이므로 자가치유 고분자 분야에서 우수한 기계적 특성 및 자가치유성을 동시에 만족시키기가 어려웠다. 특히, 자가치유 TPU에 대한 접근은 예를 들어 동적 공유결합 특성을 가지고 있는 디설파이드 그룹이 결정성 하드 도메인에 속박(trap)되어 원하는 자가치유 기능을 충분히 발현할 수가 없었다. Since these high crystallinity and chain mobility are mutually conflicting physical properties, it was difficult to simultaneously satisfy excellent mechanical properties and self-healing properties in the field of self-healing polymers. In particular, in the approach to self-healing TPU, for example, a disulfide group having dynamic covalent bonding properties was trapped in a crystalline hard domain, so that the desired self-healing function could not be sufficiently expressed.
또한 무색 및 투명성과 같은 TPU 고유의 광학 특성을 희생하지 않고 성능 균형을 실현해야 한다. In addition, performance balance must be realized without sacrificing TPU's inherent optical properties such as colorlessness and transparency.
또한 분자 설계와 관련된 문제를 해결하기 위하여, 성능의 균형을 깨는 돌파구를 만들기 위해 동적인 물리적 및 화학적 결합을 기반으로 하는 많은 전략이 제안되었다. 그러나 복잡한 합성 절차와 복잡한 분자 구조가 가공성과 비용 효율성을 저하시키는 것이다. 복잡한 화학 구조 설계 대신 TPU의 하드 도메인과 해당 미세 구조의 변조가 간편하고 편리한 접근 방식으로 각광을 받을 수 있다.In addition, in order to solve the problems related to molecular design, many strategies based on dynamic physical and chemical bonding have been proposed to make breakthroughs that break the balance of performance. However, complex synthetic procedures and complex molecular structures reduce processability and cost-effectiveness. Instead of designing complex chemical structures, modulation of TPU's hard domains and their microstructures can be in the spotlight as a simple and convenient approach.
따라서 본 발명은 상기의 문제점을 해결하는 즉, 높은 기계적 물성을 가지면서, 상온에서 우수한 자가치유력을 가지면서, 광학적 특성이 우수하고 간단한 디자인으로 제조 가능한 자가치유 고강도 폴리우레탄 중합체를 개발하는 것이다.Therefore, the present invention is to develop a self-healing high-strength polyurethane polymer that solves the above problems, that is, has high mechanical properties, has excellent self-healing power at room temperature, has excellent optical properties, and can be manufactured with a simple design.
종래 자가치유 고분자의 문제점은 자가치유성이 향상될수록 기계적 물성이 감소하는 문제점이 있었으나, 본 발명은 일정이상의 우수한 기계적 강도를 가지면서 동시에 높은 상온 자가치유 효율 및 훌륭한 광학적 특성을 가질수 있는 상온 자가치유 폴리우레탄 중합체를 제공하는 것이다.The problem of conventional self-healing polymers is that the mechanical properties decrease as the self-healing properties are improved. To provide a urethane polymer.
특히, 기존의 지방족 디설파이드를 가지는 폴리우레탄 소재의 자가치유 온도는 70℃ 이상의 온도가 필요하지만, 본 발명에서는 주변 고분자 구조 설계를 달리하여 상온에서도 자가치유가 가능한 것을 최초로 발견하였다.In particular, the self-healing temperature of the existing polyurethane material having an aliphatic disulfide requires a temperature of 70° C. or higher, but in the present invention, it was discovered for the first time that self-healing is possible even at room temperature by changing the surrounding polymer structure design.
상기 문제점을 해결하기 위하여, 본 발명은 지방족 폴리카보네이트계 폴리올, 지환족 폴리이소시아네이트 및 지방족 디설파이드계 폴리올으로부터 유래된 구조단위를 포함하는 자가치유성 폴리우레탄 중합체를 제공한다.In order to solve the above problems, the present invention provides a self-healing polyurethane polymer comprising a structural unit derived from an aliphatic polycarbonate-based polyol, an alicyclic polyisocyanate, and an aliphatic disulfide-based polyol.
본 발명의 일 양태에 따르면, 상기 자가치유성 폴리우레탄 중합체는 지방족 폴리카보네이트계 폴리올 및 지환족 폴리이소시아네이트로부터 유래된 폴리우레탄 프리폴리머와 지방족 디설파이드계 폴리올이 커플링으로 연결된 것 일 수 있다.According to one aspect of the present invention, the self-healing polyurethane polymer may be a polyurethane prepolymer derived from an aliphatic polycarbonate-based polyol and an alicyclic polyisocyanate and an aliphatic disulfide-based polyol connected by a coupling.
본 발명의 일 양태에 따르면, 상기 지방족 폴리카보네이트계 폴리올은 수평균분자량이 300 내지 10,000 g/mol 좋게는 500 내지 5,000g/mol인 것 일 수 있다.According to one aspect of the present invention, the aliphatic polycarbonate-based polyol may have a number average molecular weight of 300 to 10,000 g/mol, preferably 500 to 5,000 g/mol.
본 발명의 일 양태에 따르면, 상기 지방족 폴리카보네이트계 폴리올의 구조단위의 알킬렌기의 탄소수는 4 내지 10인 것일 수 있다.According to an aspect of the present invention, the carbon number of the alkylene group of the structural unit of the aliphatic polycarbonate-based polyol may be 4 to 10.
본 발명의 일 양태에 따르면, 상기 지방족 디설파이드계 폴리올의 구조단위의 탄소수는 4 내지 10인 것일 수 있다.According to an aspect of the present invention, the structural unit of the aliphatic disulfide-based polyol may have 4 to 10 carbon atoms.
본 발명의 일 양태에 따르면, 상기 지방족 폴리카보네이트계 폴리올과 지방족 디설파이드계 폴리올은 1: 0.02 내지 1.5 몰비인 것일 수 있다.According to an aspect of the present invention, the aliphatic polycarbonate-based polyol and the aliphatic disulfide-based polyol may be in a molar ratio of 1: 0.02 to 1.5.
본 발명의 일 양태에 따르면, 상기 지방족 폴리카보네이트계 폴리올 및 지환족 폴리이소시아네이트가 1: 1.5 내지 2.5 당량비인 폴리우레탄 프리폴리머이며, 상기 폴리우레탄 프리폴리머의 이소시아네이트기 및 지방족 디설파이드계 폴리올의 수산화기의 당량비가 1: 0.5 내지 1.5 인 것일 수 있다.According to an aspect of the present invention, the aliphatic polycarbonate-based polyol and the cycloaliphatic polyisocyanate are 1: 1.5 to 2.5 equivalent ratio of polyurethane prepolymer, and the equivalent ratio of the isocyanate group of the polyurethane prepolymer and the hydroxyl group of the aliphatic disulfide-based polyol is 1 : It may be 0.5 to 1.5.
본 발명의 일 양태에 따르면, 상기 자가치유성 폴리우레탄 중합체는 인장강도 40 MPa 이상, 인장인성이 50 MJ/㎥ 이상일 수 있다.According to one aspect of the present invention, the self-healing polyurethane polymer may have a tensile strength of 40 MPa or more and a tensile toughness of 50 MJ/m 3 or more.
본 발명의 일 양태에 따르면, 25℃, 72 hrs 자가 치유율이 40%이상일 수 있으며, 35℃, 72 hrs에서의 자가치유율이 80%이상일 수 있다.According to an aspect of the present invention, the self-healing rate at 25° C., 72 hrs may be 40% or more, and the self-healing rate at 35° C., 72 hrs may be 80% or more.
본 발명의 다른 일 양태는 자가치유성 폴리우레탄 중합체를 포함하는 다공성 자가치유성 폴리우레탄 물품을 제공할 수 있다.Another aspect of the present invention may provide a porous self-healing polyurethane article comprising a self-healing polyurethane polymer.
본 발명은 기존의 폴리우레탄 중합체가 서로 상반된 특성으로 인해 달성할 수 없었던 일정 강도 이상의 우수한 기계적 강도를 가지면서 동시에 저온 또는 상온에서도 우수한 자가치유 효과를 가지는 자가치유성 폴리우레탄 중합체를 제공할 수 있다.The present invention can provide a self-healing polyurethane polymer having excellent mechanical strength of a certain strength or higher, which cannot be achieved due to the contradictory properties of the existing polyurethane polymers, and at the same time having an excellent self-healing effect even at low temperature or room temperature.
이하 구체예 또는 실시예를 통해 본 발명을 더욱 상세히 설명한다. 다만 하기 구체예 또는 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다. The present invention will be described in more detail through the following specific examples or examples. However, the following specific examples or examples are only a reference for describing the present invention in detail, and the present invention is not limited thereto, and may be implemented in various forms.
또한 달리 정의되지 않는 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본 발명에서 설명에 사용되는 용어는 단지 특정 구체예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다. Also, unless defined otherwise, all technical and scientific terms have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description herein is for the purpose of effectively describing particular embodiments only and is not intended to limit the invention.
또한 명세서 및 첨부된 특허청구범위에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다. Also, the singular forms used in the specification and appended claims may also be intended to include the plural forms unless the context specifically dictates otherwise.
또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. Also, when a part "includes" a certain component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.
종래의 자가복원 폴리우레탄계 수지는 자가치유 성능이 증가할수록 기계적 물성이 저하되고, 이와 반대로, 기계적 강도가 증가하게 되면 자가치유 성능이 저하되어 서로 트레이트 오프(trade-off)가 필요한 문제점이 존재하였다. Conventional self-healing polyurethane-based resins have a problem that the mechanical properties are lowered as the self-healing performance increases. .
이에 본 발명자는 지방족 폴리카보네이트계 폴리올, 지환족 폴리이소시아네이트 및 지방족 디설파이드계 폴리올으로부터 유래된 구조단위를 포함하는 자가치유성 폴리우레탄 중합체를 제조함으로써 자가치유 성능 및 기계적 강도를 동시에 향상시킬 수 있음을 발견하였으며, 특히 상온과 같은 저온에서도 자가치유효과가 우수한 효과와 더불어 기계적 물성 또한 우수한 자가치유 중합체를 제공할 수 있음을 알게 되어 본 발명을 완성하였다.Accordingly, the present inventors have discovered that self-healing performance and mechanical strength can be simultaneously improved by preparing a self-healing polyurethane polymer comprising structural units derived from aliphatic polycarbonate-based polyols, cycloaliphatic polyisocyanates and aliphatic disulfide-based polyols. In particular, it was found that a self-healing polymer having excellent mechanical properties as well as an excellent self-healing effect even at a low temperature such as room temperature can be provided, thereby completing the present invention.
구체적으로, 기존의 지방족 디설파이드를 가지는 폴리우레탄 소재의 자가치유 온도는 70℃ 이상의 온도가 필요하지만, 본 발명에서는 주변 고분자 구조 설계를 달리하여 상온에서도 자가치유가 가능한 것을 최초로 발견하였다.Specifically, the self-healing temperature of the existing polyurethane material having an aliphatic disulfide requires a temperature of 70° C. or higher, but in the present invention, it was discovered for the first time that self-healing is possible even at room temperature by changing the design of the surrounding polymer structure.
상기 현저한 작용효과는 지방족 폴리카보네이트계 폴리올, 지환족 폴리이소시아네이트 및 지방족 디설파이드 폴리올을 단량체로 전부 포함하고, 상기 단량체가 중합반응을 통해 중합체의 구조단위로 포함됨에 따라 발휘되는 효과이다. The remarkable functional effect is an effect exhibited by including all of an aliphatic polycarbonate-based polyol, an alicyclic polyisocyanate, and an aliphatic disulfide polyol as a monomer, and the monomer is included as a structural unit of the polymer through a polymerization reaction.
또한 본 발명은 상기 지방족 폴리카보네이트계 폴리올 및 지환족 폴리이소시아네이트를 프리중합(pre-polymerization)하여 이소시아네이트 말단 폴리우레탄 프리폴리머를 제조한 후, 지방족 디설파이드계 폴리올, 예를 들면, 지방족 디설파이드계디올 화합물과 반응하여 제조할 수 있다.In addition, the present invention prepares an isocyanate-terminated polyurethane prepolymer by pre-polymerizing the aliphatic polycarbonate-based polyol and alicyclic polyisocyanate, and then reacts with an aliphatic disulfide-based polyol, for example, an aliphatic disulfide-based diol compound. can be manufactured.
본 발명의 일 양태에 따라, 상기 지방족 폴리카보네이트계 폴리올은 구조단위가 알킬렌기-카보네이트기의 단위를 포함하고 있으며, 분자의 양 말단 또는 곁가지에 수산기(-OH)가 포함될 수 있다. 지방족 폴리카보네이트계 폴리올의 분자 내에 포함되는 수산기의 수는 2 내지 6일 수 있으며, 바람직하게 2 내지 4일 수 있으며, 바람직하게 양 말단에 수산기가 각각 포함되어 분자 내에 수산기의 수가 2개 포함될 수 있으나, 이에 제한되는 것은 아니다.According to one aspect of the present invention, the structural unit of the aliphatic polycarbonate-based polyol includes an alkylene group-carbonate group, and hydroxyl groups (-OH) may be included at both ends or side branches of the molecule. The number of hydroxyl groups included in the molecule of the aliphatic polycarbonate-based polyol may be 2 to 6, preferably 2 to 4, and preferably, each of the hydroxyl groups is included at both ends so that two hydroxyl groups may be included in the molecule. , but is not limited thereto.
상기 지방족 폴리카보네이트계 폴리올에 알킬렌기가 포함됨에 따라 중합체 쇄의 유연성이 향상될 수 있으며 자가치유 효과가 증가할 수 있다. 상기 지방족 폴리카보네이트계 폴리올의 구조단위에 포함되는 알킬렌기의 탄소수는 2 내지 10인 것일 수 있으며, 바람직하게는 2 내지 8일 수도 있으며, 더욱 바람직하게는 4 내지 6일 수도 있다.As the alkylene group is included in the aliphatic polycarbonate-based polyol, the flexibility of the polymer chain may be improved and the self-healing effect may be increased. The number of carbon atoms of the alkylene group included in the structural unit of the aliphatic polycarbonate-based polyol may be 2 to 10, preferably 2 to 8, and more preferably 4 to 6.
상기 지방족 폴리카보네이트계 폴리올의 수평균 분자량은 300 내지 10,000 g/mol 일 수 있으며, 좋게는 500 내지 5,000 g/mol일 수 있으며, 더 좋게는 600 내지 4,000 g/mol일 수 있으며, 아주 좋게는 700 내지 3,000 g/mol일 수 있다. The number average molecular weight of the aliphatic polycarbonate-based polyol may be 300 to 10,000 g/mol, preferably 500 to 5,000 g/mol, more preferably 600 to 4,000 g/mol, very preferably 700 to 3,000 g/mol.
상기 지방족 폴리카보네이트계 폴리올의 수평균분자량이 상기 범위에서 중합체 쇄의 유연성 및 자가치유 효과가 더욱 우수하며, 인장강도가 우수한 물성을 동시에 만족할 수 있어서 좋다. The number average molecular weight of the aliphatic polycarbonate-based polyol is more excellent in flexibility and self-healing effect of the polymer chain within the above range, and the physical properties excellent in tensile strength can be satisfied at the same time.
본 발명의 일 양태에 따라, 상기 지환족 폴리이소시아네이트는 두 개 이상의 이소시아네이트기를 가지는 지환족 화합물이라면 특별히 한정하지 않고 사용할 수 있으며, 구체적으로 예를 들면 이소포론 디이소시아네이트 (Isophorone diisocyanate ,IPDI), 4,4'-디시클로헥실메탄디이소시아네이트(hydrogenated methylene diphenyl diisocyanate, hydrogenated MDI), 시클로헥실렌디이소시아네이트(Cyclohexylene diisocyanate), 메틸시클로헥실렌디이소시아네이트(hydrogenated toluene diisocyantate, hydrogenated TDI), 비스(2-이소시아나토에틸)-4-디클로헥센-1,2-디카르복실레이트(Bis(2-isocyanatoethyl)-4-diclohexene-1,2-dicarboxylate), 2,5-노르보르넨디이소시아네이트(2,5-norbornene diisocyanate) 및 2,6-노르보르넨디이소시아네이트(2,6-norbornene diisocyanate)에서 선택되는 어느 하나 또는 둘 이상을 사용할 수 있다. 특히 바람직하게는 높은 인성을 확보하는 측면에서 이소포론 디이소시아네이트(IPDI)를 사용하는 것이 좋다.According to an aspect of the present invention, the alicyclic polyisocyanate may be used without particular limitation as long as it is an alicyclic compound having two or more isocyanate groups, and specifically, for example, isophorone diisocyanate (IPDI), 4, 4'-dicyclohexylmethane diisocyanate (hydrogenated methylene diphenyl diisocyanate, hydrogenated MDI), cyclohexylene diisocyanate, methylcyclohexylene diisocyanate (hydrogenated toluene diisocyantate, hydrogenated TDI), bis (2-isocyanate) Natoethyl)-4-diclohexene-1,2-dicarboxylate (Bis(2-isocyanatoethyl)-4-diclohexene-1,2-dicarboxylate), 2,5-norbornene diisocyanate (2,5- any one or two or more selected from norbornene diisocyanate) and 2,6-norbornene diisocyanate (2,6-norbornene diisocyanate) may be used. It is particularly preferable to use isophorone diisocyanate (IPDI) in terms of securing high toughness.
본 발명의 일 양태에 따라, 상기 지방족 디설파이드계 폴리올의 구조단위의 탄소수는 2 내지 10, 바람직하게 3 내지 8, 더욱 바람직하게 4 내지 6일 수 있다. 상기 지방족 디설파이드계 폴리올의 중량평균분자량은 50 내지 300 g/mol일 수 있으며, 좋게는 80 내지 250 g/mol일 수 있으며, 더욱 좋게는 100 내지 200 g/mol일 수 있다. According to an aspect of the present invention, the structural unit of the aliphatic disulfide-based polyol may have 2 to 10 carbon atoms, preferably 3 to 8 carbon atoms, and more preferably 4 to 6 carbon atoms. The weight average molecular weight of the aliphatic disulfide-based polyol may be 50 to 300 g/mol, preferably 80 to 250 g/mol, and more preferably 100 to 200 g/mol.
본 발명의 일 양태에 따라, 상기 지방족 폴리카보네이트계 폴리올과 지방족 디설파이드계 폴리올은 중합체 쇄 내에 포함될 수 있다. 구체적으로, 상기 지방족 폴리카보네이트계 폴리올과 지방족 디설파이드계 폴리올은 1: 0.02 내지 1.5 몰비일 수 있다.According to an aspect of the present invention, the aliphatic polycarbonate-based polyol and the aliphatic disulfide-based polyol may be included in the polymer chain. Specifically, the aliphatic polycarbonate-based polyol and the aliphatic disulfide-based polyol may be in a molar ratio of 1: 0.02 to 1.5.
상기 자가치유성 폴리우레탄 중합체 내에 상기 지방족 폴리카보네이트계 폴리올과 지방족 디설파이드계 폴리올의 조성비가 상기를 만족하는 경우, 우수한 기계적 강도를 가질 수 있으며, 동시에 저온에서 우수한 자가치유 효과 또한 발휘할 수 있어 바람직하지만 반드시 이에 한정하는 것은 아니다.When the composition ratio of the aliphatic polycarbonate-based polyol and the aliphatic disulfide-based polyol in the self-healing polyurethane polymer satisfies the above, it can have excellent mechanical strength and at the same time exhibit an excellent self-healing effect at a low temperature. The present invention is not limited thereto.
본 발명의 일 양태에 따라, 상기 자가치유성 폴리우레탄 중합체는 지방족 폴리카보네이트계 폴리올 및 지환족 폴리이소시아네이트로부터 유래된 이소시아네이트 말단 폴리우레탄 프리폴리머와 지방족 디설파이드계 폴리올이 커플링하여 결합된 자가치유성 폴리우레탄 중합체일 수 있다.According to one aspect of the present invention, the self-healing polyurethane polymer is a self-healing polyurethane in which an isocyanate-terminated polyurethane prepolymer derived from an aliphatic polycarbonate-based polyol and an cycloaliphatic polyisocyanate and an aliphatic disulfide-based polyol are coupled to each other. It may be a polymer.
구체적으로, 자가치유성 폴리우레탄 중합체를 제조하기 위한 1단계 반응으로서, 분자량이 상대적으로 큰 지방족 폴리카보네이트 폴리올과 지환족 폴리이소시아네이트의 반응에 의해 이소시아네이트 말단 폴리우레탄 프리폴리머를 먼저 제조하고, 이어서 제2단계 반응으로 상기 제조된 프리폴리머와 지방족 디설파이드계 폴리올을 커플링함으로써 고분자량의 폴리우레탄을 제조할 수 있다. 상기에 의해 제조된 고분자량의 폴리우레탄은 자가치유 성질 및 기계적 강도를 균일하게 유지할 수 있으면서 동시에 저온에서 자가치유 효가가 매우 우수한 물성을 갖는 점에서 좋다. Specifically, as a one-step reaction for producing a self-healing polyurethane polymer, an isocyanate-terminated polyurethane prepolymer is first prepared by a reaction of an aliphatic polycarbonate polyol having a relatively large molecular weight and an alicyclic polyisocyanate, followed by a second step A high molecular weight polyurethane can be prepared by coupling the prepared prepolymer with an aliphatic disulfide-based polyol through the reaction. The high molecular weight polyurethane prepared as described above is good in that it can maintain self-healing properties and mechanical strength uniformly, and at the same time have very excellent self-healing effect at low temperature.
본 발명의 일 양태에 따라, 상기 폴리우레탄 프리폴리머를 제조하기 위한 상기 지방족 폴리카보네이트계 폴리올 및 지환족 폴리이소시아네이트의 단량비는 1: 1.5 내지 2.5 당량비일 수 있으며, 바람직하게는 1.7 내지 2.4 당량비일 수 있으며, 더욱 바람직하게는 1.9 내지 2.3 당량비일 수 있으나, 이에 제한되는 것은 아니다. 상기 지방족 폴리카보네이트계 폴리올 및 지환족 폴리이소시아네이트의 반응에 의해 제조된 폴리우레탄 프리폴리머의 이소시아네이트기 및 지방족 디설파이드계 폴리올의 수산화기의 당량비가 1: 0.5 내지 1.5 당량비일 수 있으며, 바람직하게는 1:0.7 내지 1.3 당량비일 수 있으며, 바람직하게는 1:0.9 내지 1.1 당량비일 수 있다.According to an aspect of the present invention, the unit weight ratio of the aliphatic polycarbonate-based polyol and alicyclic polyisocyanate for preparing the polyurethane prepolymer may be 1: 1.5 to 2.5 equivalent ratio, preferably 1.7 to 2.4 equivalent ratio. and more preferably 1.9 to 2.3 equivalent ratio, but is not limited thereto. The equivalent ratio of the isocyanate group of the polyurethane prepolymer prepared by the reaction of the aliphatic polycarbonate-based polyol and the alicyclic polyisocyanate and the hydroxyl group of the aliphatic disulfide-based polyol may be 1: 0.5 to 1.5 equivalent ratio, preferably 1:0.7 to It may be 1.3 equivalent ratio, preferably 1:0.9 to 1.1 equivalent ratio.
상기 당량비로 자가치유성 폴리우레탄 중합체가 제조됨에 따라, 상기 자가치유 폴리우레탄의 가교도가 우수하며, 특히 상기 자가치유성 폴리우레탄 중합체 내에 수소결합 할 수 있는 우레탄 결합(urethane bond)의 함량이 높아, 기계적 강도 및 자가치유 효과가 더욱 좋다.As the self-healing polyurethane polymer is prepared in the equivalence ratio, the degree of crosslinking of the self-healing polyurethane is excellent, and in particular, the content of urethane bonds capable of hydrogen bonding in the self-healing polyurethane polymer is high, It has better mechanical strength and self-healing effect.
상기 방법으로 제조된 자가치유성 폴리우레탄 중합체는 자가치유성을 부여하기 위해 추가적인 물질을 더 부가할 필요가 없으며, 또한 필요 이상의 고온으로 승온시키지 않더라도 자가치유가 가능하며, 외부응력하에서 높은 인장강도를 가지므로, 범용적으로 사용하기에 우수한 장점이 있다. The self-healing polyurethane polymer prepared by the above method does not need to add additional materials to impart self-healing properties, and can self-heal without raising the temperature to a higher temperature than necessary, and has high tensile strength under external stress. Therefore, it has an excellent advantage for general use.
자가치유성 폴리우레탄 중합체의 중량평균분자량은 5,000 내지 1,000,000 g/mol일수 있으며, 바람직하게는 10,000 내지 500,000 g/mol일수 있으며, 더욱 바람직하게는 20,000 내지 300,000 g/mol 일수 있으나, 이에 제한되는 것은 아니다. The weight average molecular weight of the self-healing polyurethane polymer may be 5,000 to 1,000,000 g/mol, preferably 10,000 to 500,000 g/mol, and more preferably 20,000 to 300,000 g/mol, but is not limited thereto. .
본 발명의 일 양태에 따라, 상기 자가치유성 폴리우레탄 중합체는 인장강도가 30 MPa 이상, 좋게는 40 MPa 이상 일 수 있으며, 더욱 좋게는 40 MPa 내지 60 MPa 일수 있으며, 인장인성은 40MJ/㎥ 이상, 좋게는 50MJ/㎥ 내지 120MJ/㎥의 물성을 가질 수 있지만 이에 한정하는 것은 아니다.According to an aspect of the present invention, the self-healing polyurethane polymer may have a tensile strength of 30 MPa or more, preferably 40 MPa or more, more preferably 40 MPa to 60 MPa, and a tensile toughness of 40 MJ/m 3 or more. , may preferably have a physical property of 50MJ/m3 to 120MJ/m3, but is not limited thereto.
일반적인 폴리우레탄 중합체 역시 유연성이 높고 인성을 가짐에도 불구하고, 중합체로 이루어진 물품이 절단과 같은 물리적 손상을 입을 경우 물리적 손상을 회복하지 못하여 상기 물품은 물리적 손상에 따라 현저하게 낮은 기계적 강도를 가진다. 그에 비해 본 발명에 따른 자가치유성 폴리우레탄 중합체는 중합체 쇄에 포함되는 다양한 작용기들 사이에 수소결합과 디설파이드기를 형성하며, 동시에 유연성, 인장강도 및 인성이 적절한 균형을 이뤄 자가치유성 폴리우레탄 중합체로 이루어진 물품이 절단과 같은 물리적 손상을 입을 경우 실온(Room Temperature)과 같은 저온에서도 물리적 손상을 빠르게 회복할 수 있으며, 기계적 강도 역시 빠르게 회복할 수 있는 현저한 효과를 가진다.Although a general polyurethane polymer also has high flexibility and toughness, when an article made of the polymer is subjected to physical damage such as cutting, it cannot recover the physical damage, so that the article has a remarkably low mechanical strength according to the physical damage. In contrast, the self-healing polyurethane polymer according to the present invention forms hydrogen bonds and disulfide groups between various functional groups included in the polymer chain, and at the same time achieves an appropriate balance of flexibility, tensile strength, and toughness to form a self-healing polyurethane polymer. When the made article receives physical damage such as cutting, it can quickly recover the physical damage even at a low temperature, such as room temperature, and has a remarkable effect of rapidly recovering the mechanical strength.
구체적으로, 자가치유성 폴리우레탄 중합체는 인장강도가 30 MPa 이상, 좋게는 40Mpa 내지 60Mpa의 물성을 가질 수 있으며, 좋게는 40Mpa 이상의 우수한 인장강도를 가지면서, 동시에 35℃ 의 온도 조건에서 70%, 좋게는 80% 이상의 자가치유율을 가지는 현저한 효과를 가질 수 있다.Specifically, the self-healing polyurethane polymer has a tensile strength of 30 MPa or more, preferably 40 Mpa to 60 Mpa, and preferably has an excellent tensile strength of 40 Mpa or more, while at the same time 70% at a temperature condition of 35 ℃, Preferably, it can have a remarkable effect with a self-healing rate of 80% or more.
또한 본 발명의 자가치유성 폴리우레탄 중합체는 인장강도가 30 MPa 이상, 좋게는 40Mpa 내지 60Mpa의 물성을 가질 수 있으며, 또한 인장인성이 40 내지 80 MJ/㎥의 값을 가지며 동시에 35℃ 의 온도 조건에서 72시간 후, 70%, 좋게는 80% 이상의 자가치유율을 가지는 현저한 효과를 가질 수 있다. 또한 25℃에서 72시간 후, 좋게는 40% 이상의 자가치유율을 가지는 현저한 효과를 가질 수 있다.In addition, the self-healing polyurethane polymer of the present invention may have a tensile strength of 30 MPa or more, preferably a physical property of 40 Mpa to 60 Mpa, and a tensile toughness of 40 to 80 MJ/m 3 and a temperature condition of 35 ° C. After 72 hours, it can have a remarkable effect with a self-healing rate of 70%, preferably 80% or more. In addition, after 72 hours at 25 ℃, it can have a remarkable effect having a self-healing rate of preferably 40% or more.
또한, 상기 자가치유성 폴리우레탄 중합체는 높은 기계적 물성, 상온에서도 우수한 자가치유 및 높은 광투과도를 동시에 만족함으로써, 온도에 따라 변질될 수 있는 냉장 또는 냉동전용 식품 및 의료용품 등의 부패 방지를 위한 온도변화 감지센서로 우수한 응용성을 가진다.In addition, the self-healing polyurethane polymer satisfies high mechanical properties, excellent self-healing at room temperature, and high light transmittance at the same time, thereby preventing spoilage of refrigerated or frozen food and medical supplies that may be altered according to temperature. It has excellent applicability as a change detection sensor.
온도변화 감지센서의 응용을 위해, 자가치유성 폴리우레탄 중합체는 낮은 온도에서는 불투명하지만 임계 온도 이상의 높은 온도에서는 투명도가 증가하여 일정 수준 이상의 투명성을 가지는 특성을 가지는 것이 바람직할 수 있다.For the application of the temperature change sensor, the self-healing polyurethane polymer is opaque at a low temperature, but increases in transparency at a high temperature above a critical temperature, so it may be desirable to have a characteristic having transparency above a certain level.
구체적인 예를 들면, 자가치유성 폴리우레탄 중합체가 필름으로 제막되어 밀도화된 필름(dense film)을 형성할 경우 중합체 물질이 가지는 높은 투명도에 의해 온도 변화에 따라 광투과도의 변화가 미미할 수 있다. 광투과도의 변화를 극대화하기 위해서는 필름 내에서 입사광의 광산란이 발생되어 낮은 온도에서는 불투명하지만, 임계 온도 이상의 높은 온도에서는 광산란이 감소되어 일정 수준 이상의 투명성을 가지는 특성을 가지는 것이 바람직할 수 있다.As a specific example, when the self-healing polyurethane polymer is formed into a film to form a dense film, the change in light transmittance according to temperature change may be insignificant due to the high transparency of the polymer material. In order to maximize the change in light transmittance, light scattering of incident light is generated in the film, so that it is opaque at a low temperature, but at a high temperature above the critical temperature, light scattering is reduced, and it may be desirable to have a characteristic having a certain level of transparency or more.
상기와 같은 투명성의 변화 특성을 구현하기 위해, 자가치유성 폴리우레탄 물품은 균일한 밀도화 또는 필름화되지 않고, 물품의 내부 또는 표면에 기공 또는 요철을 포함하는 불균일성 자가치유성 폴리우레탄 물품 또는 다공성 자가치유성 폴리우레탄 물품이 바람직한 온도변화 감지센서로 활용될 수 있다.In order to implement the transparency change characteristics as described above, the self-healing polyurethane article is not uniformly densified or filmed, and the non-uniform self-healing polyurethane article or porosity containing pores or irregularities on the inside or surface of the article A self-healing polyurethane article can be utilized as a desirable temperature change sensor.
기공 또는 요철의 형상과 크기는 가시광 영역(380-780 ㎚)에서 물품에 입사하는 광의 광산란을 발생시킬 수 있으면 충분하며, 따로 특정 형상이나 특정 범위의 크기로 제한되지 않는다. 예시적으로 기공 또는 요철의 평균 직경은 10 ㎚ 내지 500 ㎛일 수 있으며, 바람직하게는 100 ㎚ 내지 100 ㎛ 일수 있으며, 더욱 바람직하게는 150 ㎚ 내지 10 ㎛일 수 있다.The shape and size of the pores or concavities and convexities is sufficient as long as it can generate light scattering of light incident on the article in the visible light region (380-780 nm), and is not limited to a specific shape or size in a specific range. Illustratively, the average diameter of the pores or irregularities may be 10 nm to 500 μm, preferably 100 nm to 100 μm, and more preferably 150 nm to 10 μm.
물품의 내부에 기공을 포함하는 다공성 자가치유성 폴리우레탄 물품의 경우, 물품의 기공율은 10 내지 95%일 수 있고, 구체적으로 20 내지 85%, 보다 구체적으로 40 내지 80%일 수 있다.In the case of a porous self-healing polyurethane article including pores inside the article, the porosity of the article may be 10 to 95%, specifically 20 to 85%, and more specifically 40 to 80%.
물품의 형상은 특정 형상으로 한정되지 아니하며, 구체적인 예를 들면 필름, 시트, 스티커, 웹-필름, 섬유 또는 코팅액 등일 수 있다.The shape of the article is not limited to a specific shape, and specific examples thereof may be a film, a sheet, a sticker, a web-film, a fiber, or a coating solution.
본 발명은 자가치유성 웹-필름을 제공하며, 상기 자가치유성 웹-필름은 자가치유성 폴리우레탄 중합체를 포함한다. 구체적으로, 상기 자가치유성 폴리우레탄 중합체는 미세섬유로 성형될 수 있고, 상기 자가치유성 폴리우레탄 중합체로 이루어진 복수개의 미세섬유가 망상구조를 형성하는 자가치유성 웹-필름으로 제조될 수 있다. 자가치유성 웹-필름은 미세섬유가 망상구조를 형성하여, 망상구조 내에 기공을 포함할 수 있으며, 또는 웹-필름 표면에 요철을 포함할 수도 있다.The present invention provides a self-healing web-film, wherein the self-healing web-film comprises a self-healing polyurethane polymer. Specifically, the self-healing polyurethane polymer may be molded into microfibers, and a plurality of microfibers made of the self-healing polyurethane polymer may be manufactured into a self-healing web-film forming a network structure. In the self-healing web-film, microfibers form a network structure, and thus pores may be included in the network structure, or irregularities may be included on the surface of the web-film.
보다 구체적으로, 상기 자가치유성 웹-필름은 상기 자가치유성 폴리우레탄 중합체가 미세 섬유화되고 응집된 부직포로 제조된 것으로서, 웹 상태에서는 불투명한 성질을 가진다. 그러나, 임계 온도 이상의 높은 온도 이상에서는 상기 미세 섬유가 섬유적 형상을 상실하고, 자가치유성 폴리우레탄 중합체가 주변의 기공으로 확산(Migration)되어 상기 웹의 빈 공간이 메워지면서 균일(Homogeneous)하고 밀도화된(dense) 필름으로 변화되는 거동을 가진다.More specifically, the self-healing web-film is made of a nonwoven fabric in which the self-healing polyurethane polymer is finely fibrous and aggregated, and has opaque properties in a web state. However, at a high temperature above the critical temperature, the fine fibers lose their fibrous shape, and the self-healing polyurethane polymer diffuses into the surrounding pores to fill the empty space of the web, making it homogeneous and dense. It has a behavior that changes to a dense film.
자가치유성 폴리우레탄 중합체의 미세 섬유화는 용액 방사 또는 용융 방사하여 제조된 것일 수 있다. The microfibrillation of the self-healing polyurethane polymer may be prepared by solution spinning or melt spinning.
상기 용액 방사의 경우 건식 방사, 습식 방사 및 전기 방사 등 여러 가지 방사방식이 있으나, 상기 전기 방사의 경우 섬유의 직경이 나노미터 수준(~102 ㎚)부터 마이크로미터 수준(~102 μm)에 이르기까지 용이하게 조절할 수 있어 바람직하다.In the case of the solution spinning, there are various spinning methods such as dry spinning, wet spinning and electrospinning, but in the case of the electrospinning, the diameter of the fiber ranges from nanometer level (~102 nm) to micrometer level (~102 μm). It is preferable because it can be easily adjusted.
이에 따라 본 발명은 전기방사 방법에 의한 자가치유성 웹-필름의 제조방법을 제공한다. 구체적으로 자가치유성 웹-필름의 제조방법은, S1) 상기 자가치유성 폴리우레탄 중합체를 유기용매에 용해시켜 자가치유성 폴리우레탄 용액으로 제조하는 단계; S2) 상기 자가치유성 폴리우레탄 용액을 전기방사하여 미세섬유를 형성하는 단계; 및 S3) 상기 미세섬유로 이루어진 웹-필름을 수득하는 단계; 를 포함한다.Accordingly, the present invention provides a method for producing a self-healing web-film by an electrospinning method. Specifically, the self-healing web-film manufacturing method comprises the steps of: S1) dissolving the self-healing polyurethane polymer in an organic solvent to prepare a self-healing polyurethane solution; S2) forming microfibers by electrospinning the self-healing polyurethane solution; and S3) obtaining a web-film made of the microfibers; includes
전기방사는 전기방사용 폴리우레탄 중합체 용액 또는 용융물을 토출하는 노즐부, 고전압 발생장치 및 집전판을 포함하는 방사장비를 이용하여 수행될 수 있다. 또한 토출물에 인가되는 전기장 세기에 의해 랜덤 구조의 미세섬유 집합체가 구현되는 방법일 수 있다.Electrospinning may be performed using spinning equipment including a nozzle unit for discharging a polyurethane polymer solution or melt for electrospinning, a high voltage generator, and a current collector. Also, it may be a method in which a microfiber aggregate having a random structure is implemented by the strength of an electric field applied to the discharge.
상기 전기방사 고분자 용액의 농도는 전기방사가 가능한 범위이면 특별히 한정되지 않는다. 또한, 고분자 용액을 구성함에 있어서 용매는 고분자를 용해할 수 있으면서 전기방사가 가능한 용매라면 제한되지 않고 사용될 수 있다.The concentration of the electrospun polymer solution is not particularly limited as long as electrospinning is possible. In addition, in constituting the polymer solution, the solvent may be used without limitation as long as it is a solvent capable of dissolving the polymer and capable of electrospinning.
본 발명의 일 양태에 따라, 상기 전기방사는 응고욕 위에 전기방사하는 것일 수 있다. According to an aspect of the present invention, the electrospinning may be electrospinning on a coagulation bath.
상기 응고욕은 물을 포함하며, 상기 응고욕 내에 집전판이 포함되어 수면 상에 전기방사하는 것일 수 있다. 응고욕이 물을 포함함에 따라 상기 고분자 용액에 포함되는 용매는 물과 혼화성을 가지는 용매가 바람직하며, 물은 상기 고분자에 대해 비용매(poor solvent)일 수 있다.The coagulation bath may include water, and a current collector may be included in the coagulation bath to be electrospinning on the water surface. As the coagulation bath contains water, the solvent included in the polymer solution is preferably a solvent miscible with water, and water may be a poor solvent for the polymer.
또한, 전기방사 시에 집전판을 상기 응고욕 내에 포함으로써, 상기 자가치유성 폴리우레탄 중합체 미세섬유가 응고욕 수면위에 방사되고, 이에 따라 불순물 및 용매가 잔류하지 않은 순수한 부직포형태인 자가치유성 웹-필름이 쉽게 얻어질 수 있다.In addition, by including a current collector in the coagulation bath during electrospinning, the self-healing polyurethane polymer microfibers are spun on the water surface of the coagulation bath, and thus the self-healing web in the form of a pure non-woven fabric free from impurities and solvents - The film can be obtained easily.
상기 전기방사로 제조된 자가치유성 웹-필름은 나노미터 수준(~102 ㎚)부터 마이크로미터 수준(~102 μm)의 직경을 가지는 미세섬유들이 결합되어 매우 치밀한 부직포 구조를 가질 수 있다. 구체적으로 상기 미세 섬유의 평균 직경은 0.01 ㎛ 내지 200 ㎛ 인 것일 수 있으며, 바람직하게는 0.05 ㎛ 내지 100 ㎛인 것 일수 있으며, 더욱 바람직하게는 0.1 ㎛ 내지 50 ㎛ 일수 있다.The self-healing web-film produced by the electrospinning may have a very dense nonwoven structure by combining microfibers having a diameter of a nanometer level (~102 nm) to a micrometer level (~102 μm). Specifically, the average diameter of the microfibers may be 0.01 μm to 200 μm, preferably 0.05 μm to 100 μm, and more preferably 0.1 μm to 50 μm.
또한, 상기 전기방사로 제조된 자가치유성 웹-필름의 두께는 0.1 ㎛ 내지 200 ㎛ 일수 있으며, 바람직하게는 0.5 ㎛ 내지 150 ㎛ 일수 있으며, 더욱 바람직하게는 1 ㎛ 내지 100 ㎛ 일수 있다.In addition, the thickness of the self-healing web-film produced by the electrospinning may be 0.1 μm to 200 μm, preferably 0.5 μm to 150 μm, and more preferably 1 μm to 100 μm.
상기 자가치유성 웹-필름이 상기 평균 직경의 미세섬유를 포함하고 망상구조를 형성함에 따라, 가시광 영역에서 온도변화에 따른 광투과도 변화의 차이가 육안으로 뚜렷하게 관찰될 수 있으며, 상기 자가치유성 웹-필름의 내구성이 높아질 수 있다.As the self-healing web-film includes microfibers of the average diameter and forms a network structure, a difference in light transmittance according to temperature change in the visible region can be clearly observed with the naked eye, and the self-healing web - The durability of the film can be increased.
이러한 부직포 구조를 가짐으로써 웹 상태에서는 미세섬유가 형성하는 망상구조를 통해 입사광이 광산란되어 불투명한 성질을 가진다. 그러나,임계 온도 이상의 높은 온도 이상에서는 상기 미세섬유가 섬유적 형상을 상실하고, 자가치유성 폴리우레탄 중합체가 주변의 기공으로 확산(Migration)되어 상기 웹의 빈 공간이 메워지면서 균일(Homogeneous)하고 밀도화된(dense) 필름으로 변화되는 거동을 가진다. 이러한 거동에 따라 자가치유성 웹-필름은 임계 온도 이상의 높은 온도 이상에서는 높은 광투과도를 가질 수 있다.By having such a nonwoven structure, incident light is light-scattered through the network structure formed by the microfibers in the web state, and thus has an opaque property. However, at a high temperature above the critical temperature, the microfiber loses its fibrous shape, and the self-healing polyurethane polymer diffuses into the surrounding pores to fill the empty space of the web, making it homogeneous and dense. It has a behavior that changes to a dense film. According to this behavior, the self-healing web-film may have high light transmittance above the critical temperature or higher.
상기 웹-필름을 온도센서로 활용할 경우, 불투명성을 유지하는 웹-필름이라면 보관 및 유통과정에서 신선도가 일정하게 유지되었음을 신뢰할 수 있다. 반면, 투명성을 가지는 필름이라면 보관 및 유통과정에서 10℃ 이상의 온도로 일정 시간 유지되었음을 의미하는 것이므로, 소비자가 제품의 투명도를 육안으로 확인하는 것만으로도 용이하게 제품의 신선도를 판단할 수 있도록 하는 유용성을 제공할 수 있다. 이에 따라 본 발명에 따른 자가치유성 웹-필름을 포함하는 온도센서는 비가역적 온도센서일 수 있다. When the web-film is used as a temperature sensor, it can be trusted that freshness is constantly maintained during storage and distribution if the web-film maintains opacity. On the other hand, if it is a film having transparency, it means that it has been maintained at a temperature of 10°C or higher for a certain period of time during storage and distribution. can provide Accordingly, the temperature sensor including the self-healing web-film according to the present invention may be an irreversible temperature sensor.
이하 실시예 및 비교예를 바탕으로 본 발명을 더욱 상세히 설명한다. 다만 하기 실시예 및 비교예는 본 발명을 더욱 상세히 설명하기 위한 하나의 예시일 뿐, 본 발명이 하기 실시예 및 비교예에 의해 제한되는 것은 아니다. Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples. However, the following Examples and Comparative Examples are only examples for explaining the present invention in more detail, and the present invention is not limited by the following Examples and Comparative Examples.
[물성 평가][Evaluation of physical properties]
1) 시편 제조1) Specimen preparation
실시예 및 비교예로부터 제조된 각각의 중합체를 DMAc 용매에 40 wt%의 농도로 용해시켜 혼합용액을 제조하였다. 상기 혼합용액을 테프론 시트위에 도포한 후, 온도를 서서히 100 ℃ 까지 승온 시키면서 상기 용매를 제거하였으며, 110 ℃에서 진공 건조하여 두께 1 ㎜의 필름을 제조하여 물성을 측정하였다.Each polymer prepared in Examples and Comparative Examples was dissolved in DMAc solvent at a concentration of 40 wt% to prepare a mixed solution. After the mixed solution was applied on a Teflon sheet, the solvent was removed while the temperature was gradually increased to 100 ° C., and vacuum dried at 110 ° C. to prepare a film having a thickness of 1 mm, and the physical properties were measured.
2) 인장강도 (MPa) 및 인장인성 (MJ/㎥) 측정2) Measurement of tensile strength (MPa) and tensile toughness (MJ/㎥)
인장강도 및 인장인성은 상기 제조된 필름을 Intstron 5943 (영국) 장비를 사용하여, ASTM D638-03에 준하는 규격 및 방법으로 측정하였다. Tensile strength and tensile toughness were measured using the Intstron 5943 (UK) equipment for the prepared film in accordance with ASTM D638-03 standards and methods.
인장강도는 1 KN의 로드셀, 크로스헤드 속도 100 ㎜/min으로 25℃에서 측정하였으며, 매 샘플당 5번 측정한 평균값을 취하였다. Tensile strength was measured at 25° C. with a load cell of 1 KN and a crosshead speed of 100 mm/min, and the average value measured 5 times for each sample was taken.
인장인성은 스트레인-스트레스 곡선(strain-stress curve)의 절단되는 스트레인까지의 적분값을 MJ/m3으로 환산하였다.The tensile toughness was converted into MJ/m 3 as the integral value of the strain-stress curve up to the cut strain.
3) 자가치유율 (%) 측정3) Self-healing rate (%) measurement
자가치유율을 측정하기 위하여, 상기 ASTM D638-03에 준하는 규격의 자가치유성 폴리우레탄 중합체 시편(두께 1mm)을 제작한 다음 가운데를 절단하였다. 상기 시편의 절단 단면을 35 ℃의 온도조건에서 48시간 유지하면서 재접합하였다. 상기 재접합한 시편의 인장인성을 측정하여 절단 전 대비 회복율을 하기 관계식 1을 통해 계산하였다.In order to measure the self-healing rate, a self-healing polyurethane polymer specimen (thickness 1 mm) of the standard conforming to ASTM D638-03 was prepared and then cut in the middle. The cut section of the specimen was re-bonded while maintaining it at a temperature of 35° C. for 48 hours. The tensile toughness of the rejoined specimen was measured, and the recovery rate compared to before cutting was calculated using the following relational formula (1).
[관계식 1][Relational Expression 1]
T1/To * 100T 1 /T o * 100
(상기 To는 자가치유성 폴리우레탄 중합체의 절단 전 인성(MJ/m3)이며, T1은 자가치유성 폴리우레탄 중합체를 절단하고 35 ℃의 온도조건에서 48시간동안 재접합 후의 인성(MJ/m3)이다.)(The T o is the self-healing polyurethane polymer before cutting toughness (MJ/m3), and T 1 is the self-healing polyurethane polymer after cutting and re-bonding at a temperature of 35° C. for 48 hours (MJ/m3). m 3 ).
4) 흡광도 측정4) Absorbance measurement
흡광도는 상기 시편제조 방법으로 필름 제조시에 두께를 0.3 mm로 제조하여 UV-2600 UV/vis spectrometer로 필름의 흡광도를 측정하였고, 노란색 빛의 영역인 420 nm에 대한 흡광도를 수치화 하였다.Absorbance was measured by measuring the absorbance of the film with a UV-2600 UV/vis spectrometer by preparing a film with a thickness of 0.3 mm when preparing a film by the above specimen preparation method, and the absorbance at 420 nm, which is a yellow light region, was quantified.
[실시예 1][Example 1]
기계식 교반기, 온도계가 장착된 0.5 L 3구 플라스크에 폴리헥사메틸렌 카보네이트 디올(Poly(hexamethylene carbonate) diol, HPCD, Mn 1,000 g/mol, 14.5 mmol) 14.5 g을 투입한 후 100 ℃에서 진공 건조하여 수분을 제거하였다.After adding 14.5 g of poly(hexamethylene carbonate) diol, HPCD, Mn 1,000 g/mol, 14.5 mmol) to a 0.5 L three-necked flask equipped with a mechanical stirrer and thermometer, vacuum drying at 100 ° C. was removed.
디메틸아세트아미드(DMAc) 5 ml에 이소포론 디이소시아네이트 (isophorone diisocyanate, IPDI, 30.45 mmol) 6.77 g와 디부틸주석 디라우레이트(dibutyltin dilaurate, DBTDL) 50 mg을 용해시켜 혼합용액을 제조하였다.A mixed solution was prepared by dissolving 6.77 g of isophorone diisocyanate (IPDI, 30.45 mmol) and 50 mg of dibutyltin dilaurate (DBTDL) in 5 ml of dimethylacetamide (DMAc).
상기 혼합용액을 상기 폴리헥사메틸렌카보네이트 디올에 천천히 적가하고 2시간 동안 교반하여 중량평균분자량이 5,000 g/mol인 폴리우레탄 프리폴리머(polyurethane prepolymer)을 제조하였다.The mixed solution was slowly added dropwise to the polyhexamethylene carbonate diol and stirred for 2 hours to prepare a polyurethane prepolymer having a weight average molecular weight of 5,000 g/mol.
이후, 상기 폴리우레탄 프리폴리머의 온도가 25℃가 되도록 낮춘 후, 2-히드록시에틸 디설파이드(2-hydroxyethyl disulfide, 14.5 mmol) 2.24 g이 용해된 디메틸아세트아미드 10ml 용액을 적가 하고 40℃에서 1.5시간 교반하여 자가치유성 폴리우레탄 중합체를 제조하였다.Thereafter, after lowering the temperature of the polyurethane prepolymer to 25°C, a solution of 10 ml of dimethylacetamide in which 2.24 g of 2-hydroxyethyl disulfide (14.5 mmol) was dissolved was added dropwise and stirred at 40°C for 1.5 hours. Thus, a self-healing polyurethane polymer was prepared.
상기 제조된 자가치유성 폴리우레탄 중합체를 이용하여 상기 시편 제조방법으로 두께 1 ㎜ 필름으로 제조하고, 이를 인장강도 및 인장인성를 측정하여 표 1에 기재하였다. 또한 상기 샘플의 자가치유율을 측정하기 위하여, 상기 자가치유성 폴리우레탄 중합체를 ASTM D638-03에 준하는 규격의 시편으로 제작한 다음 가운데를 절단하고 이를 재접합하여 측정하였고, 흡광도를 측정하여 표 1에 수록하였다. Using the self-healing polyurethane polymer prepared above, a film with a thickness of 1 mm was prepared by the method for preparing the specimen, and the tensile strength and tensile toughness were measured and described in Table 1. In addition, in order to measure the self-healing rate of the sample, the self-healing polyurethane polymer was prepared as a specimen according to ASTM D638-03, cut in the middle, and measured by rejoining it, and the absorbance was measured in Table 1 included.
[비교예 1][Comparative Example 1]
실시예 1에서 2-Hydroxyethyl disulfide 대신에 비스(4-히드록시페닐)디설파이드 (Bis(4-hydroxyphenyl) Disulfide, 14.5 mmol) 3.63 g을 투입한 것 외 모든 공정을 실시예 1과 동일하게 진행하였다.In Example 1, all processes were performed in the same manner as in Example 1 except that 3.63 g of bis(4-hydroxyphenyl)disulfide (Bis(4-hydroxyphenyl)disulfide, 14.5 mmol) was added instead of 2-Hydroxyethyl disulfide.
[비교예 2][Comparative Example 2]
실시예 1에서 2-Hydroxyethyl disulfide 대신에 1,6-헥산디올 (1,6-hexanediol, 14.5 mmol) 1.71 g을 투입한 것 외 모든 공정을 실시예 1과 동일하게 진행하였다.In Example 1, all processes were performed in the same manner as in Example 1 except that 1.71 g of 1,6-hexanediol (1,6-hexanediol, 14.5 mmol) was added instead of 2-Hydroxyethyl disulfide.
[비교예 3][Comparative Example 3]
실시예 1에서 폴리헥사메틸렌 카보네이트 디올 대신에 폴리테트라메틸렌에테르 디올(Polytetramethylene ether glycol, Mn 1,000 g/mol, 14.5 mmol) 14.5 g을 투입한 것 외 모든 공정을 실시예 1과 동일하게 진행하였다.In Example 1, all processes were performed in the same manner as in Example 1, except that 14.5 g of polytetramethylene ether glycol (Polytetramethylene ether glycol, Mn 1,000 g/mol, 14.5 mmol) was added instead of polyhexamethylene carbonate diol.
[비교예 4][Comparative Example 4]
실시예 1에서 이소포론 디이소시아네이트 대신에 비스(4-이소시아네이토페닐)메탄 (4,4-Diphenylmethane diisocyanate, MDI, 30.45 mmol, 7.62 g)을 투입한 것 외 모든 공정을 실시예 1과 동일하게 진행하였다. In Example 1, all processes were the same as in Example 1 except that bis(4-isocyanatophenyl)methane (4,4-Diphenylmethane diisocyanate, MDI, 30.45 mmol, 7.62 g) was added instead of isophorone diisocyanate. proceeded.
인장강도 (MPa)Tensile strength (MPa) | 인장인성 (MJ/m3)Tensile toughness (MJ/m 3 ) | 자가치유율 (%, 25도/72시간)Self-healing rate (%, 25 degrees/72 hours) | 자가치유율 (%, 35도/6시간)Self-healing rate (%, 35 degrees / 6 hours) |
흡광도 (420 nm )absorbance (420 nm) |
|
실시예 1Example 1 | 4545 | 6565 | 4949 | 8888 | 0.0040.004 |
비교예 1Comparative Example 1 | 4343 | 7575 | 4040 | 4949 | 0.150.15 |
비교예 2Comparative Example 2 | 6868 | 117117 | 3232 | 3636 | 0.0040.004 |
비교예 3Comparative Example 3 | 33 | 1212 | 100100 | 100100 | 0.020.02 |
비교예 4Comparative Example 4 | 5858 | 120120 | 00 | 00 | 0.110.11 |
상기 표 1에 나타난 바와 같이, 실시예 1 처럼 폴리카보네이트계 폴리올, 지환족 폴리이소시아네이트 및 디설파이드 작용기를 포함하는 지방족 폴리올로부터 유래된 구조단위를 포함하는 폴리우레탄의 경우 시편의 인장 강도(tensile strength)가 30 MPa 이상, 인장 인성(tensile toughness) 40 MJ/m3 이상을 달성하였고, 시편의 절단 및 재접합 후 25도 온도에서 72시간 경과 후, 인장 인성(tensile toughness) 회복률이 40% 이상인 상온 자가치유성 폴리우레탄 소재로 기능하였다. 또한 시편의 절단 및 재접합 후 35도 온도에서 6시간 경과 후, 인장 인성(tensile toughness) 회복률이 70% 이상인 상온 자가치유성 폴리우레탄 소재로 기능하였다. 또한, 두께 0.3 mm의 상온 자가치유성 폴리우레탄 중합체 필름은 420 nm에서 0.1 이하의 흡광도를 가지는 것으로 매우 투명도도 우수한 것임을 확인하였다.As shown in Table 1, in the case of a polyurethane including a structural unit derived from a polycarbonate-based polyol, an alicyclic polyisocyanate and an aliphatic polyol containing a disulfide functional group as in Example 1, the tensile strength of the specimen was 30 MPa or more, tensile toughness of 40 MJ/m3 or more was achieved, and after cutting and rejoining the specimen, after 72 hours at 25°C, room temperature self-healing with a tensile toughness recovery rate of 40% or more It functions as a polyurethane material. In addition, after 6 hours at 35°C after cutting and rejoining the specimen, it functioned as a room temperature self-healing polyurethane material with a tensile toughness recovery rate of 70% or more. In addition, it was confirmed that the self-healing polyurethane polymer film at room temperature with a thickness of 0.3 mm had an absorbance of 0.1 or less at 420 nm and had excellent transparency.
반면, 디설파이드 작용기를 포함하는 지방족 폴리올이 아닌 디설파이드 작용기를 포함하는 방향족 폴리올인 경우 (비교예 1) 놀랍게도 더 열등한 상온 자가치유율을 보였고, 투명도도 좋지 못하였다. 이는 기존의 문헌 (A Novel Self Healing Polyurethane Based on Disulfide Bonds, https://doi.org/10.1002/macp.201600011) 에서 지방족 디설파이드 폴리올의 경우 자가치유 온도가 80도 이상이라고 언급한 예상을 벗어나는 결과로써, 본 발명에서 폴리우레탄의 결정성 하드도메인 구조를 무정형으로 해소하였기 때문에 가능한 결과로 현저한 효과로 생각된다. On the other hand, in the case of an aromatic polyol containing a disulfide functional group rather than an aliphatic polyol containing a disulfide functional group (Comparative Example 1), surprisingly, it showed a poorer room temperature self-healing rate and had poor transparency. This is a result that deviates from the expectation that the self-healing temperature of the aliphatic disulfide polyol is 80 degrees or higher in the existing literature (A Novel Self Healing Polyurethane Based on Disulfide Bonds, https://doi.org/10.1002/macp.201600011). , it is considered to be a remarkable effect as a possible result because the crystalline hard domain structure of the polyurethane is resolved into an amorphous form in the present invention.
한편, 디설파이드 작용기를 포함하는 지방족 폴리올이 아닌 탄소/수소로만 이루어진 지방족 폴리올의 경우 (비교예 2) 수소결합만이 자가치유 작용기로 작용하기 때문에 기대보다 낮은 상온 자가치유율을 보였다.On the other hand, in the case of an aliphatic polyol consisting only of carbon/hydrogen, not an aliphatic polyol containing a disulfide functional group (Comparative Example 2), the self-healing rate at room temperature was lower than expected because only a hydrogen bond acts as a self-healing functional group.
한편, 폴리카보네이트계 폴리올이 아닌 에테르계 폴리올의 경우 (비교예 3) 우레탄 그룹 (hard segment) 사슬과 상호작용이 약하여 낮은 물성을 보였다. On the other hand, in the case of the ether-based polyol rather than the polycarbonate-based polyol (Comparative Example 3), the interaction with the urethane group (hard segment) chain was weak, and thus showed low physical properties.
한편, 지환족 폴리이소시아네이트가 아닌 방향족 폴리이소시아네이트의 경우 (비교예 4) 결정성 하드도메인을 형성하여 높은 기계적 물성을 달성하였으나, 내부에 디설파이드 자가치유 관능기가 갇혀서(trapped) 상온 자가치유가 거의 발현되지 않았다.On the other hand, in the case of an aromatic polyisocyanate rather than an alicyclic polyisocyanate (Comparative Example 4), high mechanical properties were achieved by forming a crystalline hard domain, but the disulfide self-healing functional group was trapped inside, so room temperature self-healing was hardly expressed. didn't
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. As described above, the present invention has been described with specific details and limited examples and drawings, but these are only provided to help a more general understanding of the present invention, and the present invention is not limited to the above embodiments, and the present invention is not limited to the above embodiments. Various modifications and variations are possible from these descriptions by those of ordinary skill in the art.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the described embodiments, and not only the claims described below, but also all those with equivalent or equivalent modifications to the claims will be said to belong to the scope of the spirit of the present invention. .
Claims (9)
- 지방족 폴리카보네이트계 폴리올, 지환족 폴리이소시아네이트 및 지방족 디설파이드계 폴리올으로부터 유래된 구조단위를 포함하는 자가치유성 폴리우레탄 중합체.A self-healing polyurethane polymer comprising a structural unit derived from an aliphatic polycarbonate-based polyol, an alicyclic polyisocyanate, and an aliphatic disulfide-based polyol.
- 제 1항에 있어서,The method of claim 1,상기 자가치유성 폴리우레탄 중합체는 지방족 폴리카보네이트계 폴리올 및 지환족 폴리이소시아네이트로부터 유래된 폴리우레탄 프리폴리머와 지방족 디설파이드계 폴리올이 커플링하여 결합된 자가치유성 폴리우레탄 중합체.The self-healing polyurethane polymer is a self-healing polyurethane polymer in which a polyurethane prepolymer derived from an aliphatic polycarbonate-based polyol and an alicyclic polyisocyanate and an aliphatic disulfide-based polyol are coupled by coupling.
- 제 1항에 있어서,The method of claim 1,상기 지방족 폴리카보네이트계 폴리올은 수평균분자량이 300 내지 10,000 g/mol인 지방족 폴리카보네이트계 폴리올인 자가치유성 폴리우레탄 중합체.The aliphatic polycarbonate-based polyol is a self-healing polyurethane polymer having a number average molecular weight of 300 to 10,000 g/mol.
- 제 1항에 있어서,The method of claim 1,상기 지방족 폴리카보네이트계 폴리올의 구조단위의 알킬렌기의 탄소수는 2 내지 10인 자가치유성 폴리우레탄 중합체.A self-healing polyurethane polymer having 2 to 10 carbon atoms in the alkylene group of the structural unit of the aliphatic polycarbonate-based polyol.
- 제 1항에 있어서,The method of claim 1,상기 지방족 디설파이드계 폴리올의 구조단위의 탄소수는 2 내지 10인 자가치유성 폴리우레탄 중합체.A self-healing polyurethane polymer having 2 to 10 carbon atoms in the structural unit of the aliphatic disulfide-based polyol.
- 제 1항에 있어서,The method of claim 1,상기 지방족 폴리카보네이트계 폴리올과 지방족 디설파이드계 폴리올은 1: 0.02 내지 1.5 중량비인 자가치유성 폴리우레탄 중합체.The aliphatic polycarbonate-based polyol and the aliphatic disulfide-based polyol are 1: 0.02 to 1.5 weight ratio of self-healing polyurethane polymer.
- 제 2항에 있어서,3. The method of claim 2,상기 지방족 폴리카보네이트계 폴리올 및 지환족 폴리이소시아네이트가 1: 1.5 내지 2.5 당량비인 폴리우레탄 프리폴리머이며, 상기 폴리우레탄 프리폴리머의 이소시아네이트기 및 지방족 디설파이드계 폴리올의 수산화기의 당량비가 1: 0.5 내지 1.5 인 것인 자가치유성 폴리우레탄 중합체.The aliphatic polycarbonate-based polyol and the alicyclic polyisocyanate are a polyurethane prepolymer having an equivalent ratio of 1: 1.5 to 2.5, and the equivalent ratio of the isocyanate group of the polyurethane prepolymer and the hydroxyl group of the aliphatic disulfide-based polyol is 1: 0.5 to 1.5 Value-based polyurethane polymers.
- 제 1항에 있어서,The method of claim 1,상기 자가치유성 폴리우레탄 중합체는 35℃, 72시간 방치시 자가치유 효과가 70% 이상인 것인 하기 관계식 1을 만족하는 자가치유성 폴리우레탄 중합체.The self-healing polyurethane polymer is a self-healing polyurethane polymer satisfying the following relation 1, wherein the self-healing effect is 70% or more when left at 35 ° C. for 72 hours.[관계식 1][Relational Expression 1]T1/To * 100T 1 /T o * 100(상기 To는 자가치유성 폴리우레탄 중합체의 절단 전 인성(MJ/m3)이며, T1은 자가치유성 폴리우레탄 중합체를 절단하고 35 ℃의 온도조건에서 48시간동안 재접합 후의 인성(MJ/m3)이다. 시편은 ASTM D638-03에 준하는 규격의 자가치유성 폴리우레탄 중합체 시편(두께 1mm)을 제작한 다음 가운데를 절단하고 절단 단면을 35 ℃의 온도조건에서 72시간 유지하면서 재접합하였다.)(The T o is the self-healing polyurethane polymer before cutting toughness (MJ/m3), and T 1 is the self-healing polyurethane polymer after cutting and re-bonding at a temperature of 35° C. for 48 hours (MJ/m3). m3) The specimen was prepared with a self-healing polyurethane polymer specimen (thickness of 1 mm) conforming to ASTM D638-03, cut in the middle, and rejoined while maintaining the cut section at a temperature of 35 ° C for 72 hours. )
- 제 1항 내지 8항에서 선택되는 어느 한 항의 자가치유성 폴리우레탄 중합체를 포함하는 다공성 자가치유성 폴리우레탄 물품.A porous self-healing polyurethane article comprising the self-healing polyurethane polymer of any one of claims 1 to 8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0017781 | 2021-02-08 | ||
KR1020210017781A KR20220114363A (en) | 2021-02-08 | 2021-02-08 | High-strength self-healing polyurethane polymer at room temperature |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022169317A1 true WO2022169317A1 (en) | 2022-08-11 |
Family
ID=82742394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/001802 WO2022169317A1 (en) | 2021-02-08 | 2022-02-07 | High-strength self-healing polyurethane polymer having room-temperature self-healing function |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20220114363A (en) |
WO (1) | WO2022169317A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115651514A (en) * | 2022-09-28 | 2023-01-31 | 中国人民解放军陆军工程大学 | Infrared and laser compatible stealth coating with self-repairing function and good mechanical property |
CN116284638A (en) * | 2022-11-16 | 2023-06-23 | 威海市泓淋电力技术股份有限公司 | Preparation method of super-toughness polyurethane crosslinked network |
CN116396692A (en) * | 2023-04-11 | 2023-07-07 | 中山博锐斯新材料股份有限公司 | High-strength stretching crack-free invisible car cover protective film and preparation method thereof |
CN117247524A (en) * | 2023-09-21 | 2023-12-19 | 南昌航空大学 | Waterborne photo-curing multiple reversible room temperature self-repairing elastomer and preparation method and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170078816A (en) * | 2014-12-15 | 2017-07-07 | 미쓰이 가가쿠 가부시키가이샤 | Self-repairing polyurethane resin material, self-repairing polyurethane resin, self-repairing coating material, self-repairing elastomer material, method for producing self-repairing polyurethane resin material, and method for producing self-repairing polyurethane resin |
KR20190083551A (en) * | 2018-01-04 | 2019-07-12 | 한국과학기술연구원 | Self healing elastomer, self healing complex and self healing film |
KR102000568B1 (en) * | 2018-01-26 | 2019-07-16 | 한국화학연구원 | Self-healable polyurethane polymer, and method of manufacturing the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101872501B1 (en) | 2014-02-18 | 2018-06-29 | 경북대학교 산학협력단 | self-healing Polyurethane Coatings |
-
2021
- 2021-02-08 KR KR1020210017781A patent/KR20220114363A/en not_active Application Discontinuation
-
2022
- 2022-02-07 WO PCT/KR2022/001802 patent/WO2022169317A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170078816A (en) * | 2014-12-15 | 2017-07-07 | 미쓰이 가가쿠 가부시키가이샤 | Self-repairing polyurethane resin material, self-repairing polyurethane resin, self-repairing coating material, self-repairing elastomer material, method for producing self-repairing polyurethane resin material, and method for producing self-repairing polyurethane resin |
KR20190083551A (en) * | 2018-01-04 | 2019-07-12 | 한국과학기술연구원 | Self healing elastomer, self healing complex and self healing film |
KR102000568B1 (en) * | 2018-01-26 | 2019-07-16 | 한국화학연구원 | Self-healable polyurethane polymer, and method of manufacturing the same |
Non-Patent Citations (2)
Title |
---|
EOM YOUNGHO, KIM SEON-MI, LEE MINKYUNG, JEON HYEONYEOL, PARK JAEDUK, LEE EUN SEONG, HWANG SUNG YEON, PARK JEYOUNG, OH DONGYEOP X.: "Mechano-responsive hydrogen-bonding array of thermoplastic polyurethane elastomer captures both strength and self-healing", NATURE COMMUNICATIONS, NATURE PUBLISHING GROUP, UK, vol. 12, no. 1, 1 December 2021 (2021-12-01), UK, pages 621 - 11, XP055955718, ISSN: 2041-1723, DOI: 10.1038/s41467-021-20931-z * |
JIAN XIAOXIA, HU YIWEN, ZHOU WEILIANG, XIAO LEQIN: "Self-healing polyurethane based on disulfide bond and hydrogen bond", POLYMERS FOR ADVANCED TECHNOLOGIES, WILEY & SONS , BOGNOR REGIS, GB, vol. 29, no. 1, 1 January 2018 (2018-01-01), GB , pages 463 - 469, XP055955719, ISSN: 1042-7147, DOI: 10.1002/pat.4135 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115651514A (en) * | 2022-09-28 | 2023-01-31 | 中国人民解放军陆军工程大学 | Infrared and laser compatible stealth coating with self-repairing function and good mechanical property |
CN116284638A (en) * | 2022-11-16 | 2023-06-23 | 威海市泓淋电力技术股份有限公司 | Preparation method of super-toughness polyurethane crosslinked network |
CN116396692A (en) * | 2023-04-11 | 2023-07-07 | 中山博锐斯新材料股份有限公司 | High-strength stretching crack-free invisible car cover protective film and preparation method thereof |
CN117247524A (en) * | 2023-09-21 | 2023-12-19 | 南昌航空大学 | Waterborne photo-curing multiple reversible room temperature self-repairing elastomer and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20220114363A (en) | 2022-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022169317A1 (en) | High-strength self-healing polyurethane polymer having room-temperature self-healing function | |
WO2019013551A1 (en) | Self-restoring polyurethane-based polymer and preparation method therefor | |
KR20120101466A (en) | Heat resistant high moisture vapor transmission thermoplastic polyurethane | |
US20090182113A1 (en) | Segmented polyurethane elastomers with high elongation at tear | |
EP1379591B1 (en) | Polyurethane elastomeric fiber and process for making the fiber | |
WO2022005223A1 (en) | High-strength self-healing polyurethane polymer and temperature sensor web-film comprising same | |
US6639041B2 (en) | Spandex having low set at low temperatures | |
EP2829642A1 (en) | Elastic polyurethane fiber and method for manufacturing same | |
WO2011081441A2 (en) | Preparation method of elastic yarn having excellent power and elongation | |
WO2015026051A1 (en) | Polyurethane urea elastic yarn having excellent uniformity and thermosetting property | |
WO2011081450A2 (en) | Manufacturing method of high-performance polyurethaneurea elastic fiber | |
WO2015056909A1 (en) | Polyurethane urea elastic yarn having remarkable tensile resilience and preparation method therefor | |
KR20240144057A (en) | High-strength self-healing polyurethane polymer at room temperature | |
JP4487112B2 (en) | Polyurethane elastic fiber and method for producing the same | |
JP2002348730A (en) | Polyurethane elastic fiber for sanitary product | |
JPH10310934A (en) | Elastic yarn, its production and polyurethane urea solution | |
KR100537252B1 (en) | Polyurethane fiber of good heat setting property and Process for the production of the same | |
JP4362803B2 (en) | Polyurethane elastic fiber and method for producing the same | |
JP4600798B2 (en) | Sanitary polyurethane elastic fiber and method for producing the same | |
JP4600799B2 (en) | Sanitary polyurethane elastic fiber and method for producing the same | |
WO2018080063A1 (en) | Polyurethaneurea elastic yarn having high elongation, and manufacturing method therefor | |
WO2012091480A2 (en) | Method for manufacturing polyurethane urea elastic yarn having excellent power and restoring force | |
WO2019132182A1 (en) | Polyurethane urea elastic yarn having improved dyeability and manufacturing method therefor | |
EP1311578B1 (en) | Spandex having low set at low temperatures | |
WO2022182089A1 (en) | Self-healing porous substrate and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22750066 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22750066 Country of ref document: EP Kind code of ref document: A1 |