WO2022169291A1 - Modified killer cells, preparation method therefor, and pharmaceutical use thereof - Google Patents

Modified killer cells, preparation method therefor, and pharmaceutical use thereof Download PDF

Info

Publication number
WO2022169291A1
WO2022169291A1 PCT/KR2022/001747 KR2022001747W WO2022169291A1 WO 2022169291 A1 WO2022169291 A1 WO 2022169291A1 KR 2022001747 W KR2022001747 W KR 2022001747W WO 2022169291 A1 WO2022169291 A1 WO 2022169291A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
cells
pmel
tumor
modified
Prior art date
Application number
PCT/KR2022/001747
Other languages
French (fr)
Korean (ko)
Inventor
조현일
김태규
이상은
손현정
Original Assignee
바이젠셀 주식회사
가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 바이젠셀 주식회사, 가톨릭대학교 산학협력단 filed Critical 바이젠셀 주식회사
Publication of WO2022169291A1 publication Critical patent/WO2022169291A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/31Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/38Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/57Skin; melanoma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4613Natural-killer cells [NK or NK-T]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464416Receptors for cytokines
    • A61K39/464421Receptors for chemokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464436Cytokines
    • A61K39/464438Tumor necrosis factors [TNF], CD70
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/46449Melanoma antigens
    • A61K39/464492Glycoprotein 100 [Gp100]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70575NGF/TNF-superfamily, e.g. CD70, CD95L, CD153, CD154
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • C07K14/7158Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for chemokines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention relates to a killer cell genetically modified to express a chemokine receptor, a cytokine, or a costimulatory molecule, a method for preparing the same, and a pharmaceutical use thereof.
  • the tumor microenvironment is generated by the tumor, and immunosuppressive cells such as regulatory T cells (Treg) and myeloid suppressor cell (MDSC) are densely packed, so various immune cells are mobilized to the tumor site, but their antitumor function mainly responds to tumor-derived signals. is down-regulated.
  • immunosuppressive cells such as regulatory T cells (Treg) and myeloid suppressor cell (MDSC) are densely packed, so various immune cells are mobilized to the tumor site, but their antitumor function mainly responds to tumor-derived signals. is down-regulated.
  • the present invention provides a modified killer cell expressing at least one of a chemokine receptor (C-X-C chemokine receptor) and a cytokine.
  • C-X-C chemokine receptor C-X-C chemokine receptor
  • the present invention also provides a method for producing a modified killer cell in vitro comprising introducing at least one of a chemokine receptor and a cytokine into the killer cell.
  • the present invention also provides an anticancer composition comprising the modified killer cells.
  • the present invention also provides a method of treating cancer comprising administering to a subject in need thereof a therapeutically effective amount of the modified killer cells.
  • FIG. 3 is a flow cytometric analysis result of ex vivo activated Pmel-1 T cells transduced with recombinant retroviruses encoding GFP and mouse CD70, IL-2-CD70, IL-12-CD70, IL-21-CD70 (a). ), ELISA analysis results (b, c, d, and e) measuring cytokine secretion in the culture supernatant of each group, and the therapeutic antitumor effect (f) of transgenic Pmel-1 CD8 T cells.
  • Figure 5 shows the flow cytometry results of ex vivo activated Pmel-1 T cells transduced with recombinant retrovirus encoding GFP, mouse cytokines IL-2, IL-12, IL-2 and chemokine receptor CXCR3 (a); ELISA analysis results (b, c, d, and e) measuring the cytokine secretion of the corresponding culture solution of each group, and the therapeutic antitumor effect (f) of the transgenic Pmel-1 CD8 T cells are shown.
  • Figure 6 shows the results of flow cytometry analysis of in vitro activated Pmel-1 T cells transduced with recombinant retroviruses encoding GFP, mouse cytokine and chemokine receptor (a), cytokine secretion of the corresponding culture solution of each group.
  • Results of ELISA analysis (b, c, d, and e), therapeutic antitumor effect of transgenic Pmel-1 CD8 T cells (f), and EliSpot results of measuring IFN ⁇ secretion of transgenic Pmel-1 CD8 T cells (g) is shown.
  • the modified killer cell of the present invention is characterized in that it is a killer cell genetically modified to express a chemokine receptor, cytokine or co-stimulatory molecule. More specifically, genetically modified killer cells transduced with chemokine receptor and cytokine-encoding nucleic acids, either alone or in combination thereof, are transduced with costimulatory molecules or non-adoptive animal models. It is characterized in that it exhibits an excellent anti-tumor effect by inhibiting tumor formation compared to In particular, cancer cell-specific chemokine receptors track chemokine ligands expressed in tumors, enabling more efficient migration of genetically modified killer cells to the tumor site. In addition, the modified killer cells of the present invention change the initial tumor microenvironment by regulating the host's immune response and promoting migration to the tumor site, thereby enabling effective tumor treatment.
  • the chemokine receptor may be CXCR1, CXCR2, CXCR3, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7, CCR2, CCR4, CCR5, CCR7, CCR10, or the like. More specifically, it may be CXCR2, CXCR3 or CXCR5.
  • the cytokine may be IL-2, IL-7, IL-12, IL-15, IL-18, IL-21, and the like.
  • the modified killer cells may further express costimulatory molecules in addition to chemokine receptors or cytokines.
  • CD70, CD134L (OX40L), CD80, CD86, CD54, CD154 (CD40L) or CD137L (4-1BBL) may be used alone or in two or more types.
  • the term "costimulatory molecule” refers to a substance that participates in the interaction between a receptor-ligand pair expressed on the surface of an antigen-presenting cell and a T cell. Two or more signals are required for T cells, one signal conferring specificity and produced by the interaction of the MHC/peptide complex with the TCR/CD3 complex, the second signal being non-antigen specific and a “costimulatory” signal.
  • This signal is known to be an activity provided by bone marrow-derived helper cells such as macrophages and dendritic cells.
  • Co-stimulatory molecules mediate the necessary co-stimulatory signals under normal physiological conditions to perform complete activation of ⁇ T cells.
  • the costimulatory molecule may be human or mouse CD70, CD134L (OX40L), CD80, CD86, CD54, CD154 (CD40L) or CD137L (4-1BBL).
  • the modified killer cell can be prepared by introducing a nucleic acid encoding a chemokine receptor and/or cytokine into the killer cell using a known transformation technique. According to one embodiment, it can be prepared by introducing a nucleic acid encoding CXCR3 and/or IL-2, IL-12 or IL-21 into Pmel-1 T cells.
  • the nucleic acid is used in the broadest sense, and includes single-stranded (ss) DNA, double-stranded (ds) DNA, cDNA, (-)-RNA, (+)-RNA, dsRNA, and the like. Preferably, it is double-stranded DNA.
  • the introduction may be to introduce a vector into which a nucleic acid encoding a chemokine receptor, cytokine, costimulatory molecule, etc. is inserted into the killer cell using a known transformation technique.
  • the retrovirus is an RNA virus having a different life cycle from the lytic virus. Retroviruses in this respect are infectious entities that replicate through DNA intermediates. When a retrovirus infects a cell, the genome is converted to DNA formation by reverse transcriptase. The DNA copy serves as a template for the production of a new RNA genome and a virally encoded protein essential for the assembly of infectious viral particles.
  • the present invention also provides the use of said modified killer cell for use in the manufacture of a medicament for the treatment of cancer.
  • composition of the present invention may further include a pharmaceutically acceptable excipient or diluent in addition to the carrier.
  • the "pharmaceutically acceptable” refers to a composition that is physiologically acceptable and does not normally cause allergic reactions such as gastrointestinal disorders, dizziness, or similar reactions when administered to humans.
  • carriers, excipients and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil.
  • fillers, anti-agglomeration agents, lubricants, wetting agents, fragrances, emulsifiers and preservatives may be further included.
  • the pharmaceutically active modified killer cells of the present invention may be administered in an amount of 10 6 to 10 10 cells/kg (body weight), and administrations below or above the exemplary range are also particularly administered in consideration of the above factors. If the dosing regimen is continuous infusion, it should be in the range of 10 3 to 10 9 cell units per kg body weight per minute.
  • the present invention also provides a method of treating cancer comprising administering to a subject in need thereof a therapeutically effective amount of the modified killer cells.
  • terapéuticaally effective amount means an amount that significantly inhibits the death of cancer cells or at least the growth of cancer tissues.
  • the subject may include humans, dogs, chickens, pigs, cattle, sheep, guinea pigs, monkeys, and the like.
  • mice Six-week-old female C57BL/6 (B6) mice were purchased from Orient Bio (Seongnam, Kyunggi) and bred in the Catholic University of Korea Animal Laboratory under aseptic conditions. All procedures for animal research include guidelines and policies for rodent experiments provided by the Institutional Animal Care and Use Committee (IACUC) of the Catholic University of Korea (Approval number: CUMS-2019-0169-01) College of Medicine, and the management and management of laboratory animals. It was carried out according to the guide for use, the Laboratory Animal Welfare Act.
  • IACUC Institutional Animal Care and Use Committee
  • Reverse primer 5'-ggtaagatgctc gaattc ctaggatcggaccctgcagg-3' (SEQ ID NO: 10)
  • IL-2, IL-12 and IL-21 cytokine secretion was measured using an ELISA kit (R&D Systems).
  • mice in each group were sacrificed, the spleen and tumor sites were incised, and the tissues were separated using the gentleMACS Dissociator (Miltenyi) and filtered through a 70- ⁇ m nylon mesh.
  • the proportion of adoptive metastasis cells in infiltrating T cells in the spleen and tumor sites was analyzed using a fluorescence-binding antibody against the adoptive metastasis cell marker CD90.1.
  • Figure 1a is the result of analyzing the expression of transduced Pmel-1 CD8 T cells by flow cytometry after obtaining cells from each group on the 3rd day after transduction
  • Figures 1b-d are gene transfer Pmel-1 CD8
  • B6 mice (3 per group) were subcutaneously inoculated with 1 ⁇ 10 5 B16 cells on day 0 and 2 ⁇ 10 6 transgenic Pmel-1 CD8 T cells were injected on day 7 received.
  • Non-vaccinated mice No vax
  • Tumor growth was monitored by time course of in vivo bioluminescence imaging in individual mice (left panel). Tumor size was measured in individual mice and tumor size was presented as tumor area in mm 2 (right panel).
  • FIG 2 shows the result of transduction of the recombinant retrovirus encoding mouse IL-2, IL-12 and IL-21 genes into the in vitro activated Pmel-1 T cells
  • Figure 2a is Pmel-1 CD8 T cells
  • FIGS. 2b-e show the therapeutic antitumor effect of the transgenic Pmel-1 CD8 T cells.
  • B6 mice (3 per group) were subcutaneously inoculated with 1 ⁇ 10 5 B16 cells on day 0 and received 2 ⁇ 10 6 transgenic Pmel-1 CD8 T cells on day 7.
  • Non-vaccinated mice No vax
  • Tumor growth was monitored by time course of in vivo bioluminescence imaging in individual mice (left panel). Tumor size was measured in individual mice and tumor size was presented as tumor area in mm 2 (right panel).
  • IL-2, IL-12 and IL-21 gene-transduced Pmel-1 T cells showed therapeutic advantages compared to Pmel-GFP or non-adoptive mice, among which Pmel- IL-12 had a substantially higher antitumor effect in adoptive transfer mice.
  • FIG. 3 shows GFP and mouse CD70, IL-2-CD70, IL-12-CD70, and IL-21-CD70 (Pmel-GFP, Pmel-CD70, Pmel-IL-2, respectively) in activated Pmel-1 T cells in vitro.
  • -CD70, Pmel-IL-12-CD70, Pmel-IL-21-CD70 shows the results of transduction with a recombinant retrovirus encoding the transduced
  • Figure 3a is the expression of the transduced Pmel-1 CD8 T cells. Cells from each group were obtained on the 3rd day after introduction and expression efficiency by flow cytometry, and FIGS.
  • FIG. 3b-e are the results of measuring cytokine secretion by ELISA by obtaining the culture supernatant of each group, and FIG. 3f is the gene transfer Pmel-1
  • B6 mice (3 per group) were subcutaneously inoculated with 1 ⁇ 10 5 B16 cells on day 0 and 2 ⁇ 10 6 transgenic Pmel-1 CD8 T cells on day 7 received.
  • Non-vaccinated mice (No vax) were included as controls. Tumor growth was monitored by time course of in vivo bioluminescence imaging in individual mice (left panel). Tumor size was measured in individual mice and tumor size was presented as tumor area in mm 2 (right panel).
  • the antitumor effect of Pmel-T cells transduced with IL-2-CD70, IL-12-CD70 and IL-21-CD70 genes was determined by Pmel-GFP. , showed a therapeutic advantage compared to mice that were not Pmel-CD70 or adoptively transferred, among which Pmel-IL-12-CD70 had a substantially higher antitumor effect in mice with adoptive transfer.
  • Figure 4 shows the result of transduction of in vitro activated Pmel-1 T cells with a recombinant retrovirus encoding GFP and mouse chemokine receptor CXCR3 (Pmel-GFP, Pmel-CXCR3, respectively),
  • Figure 4a is the transduced
  • the expression of Pmel-1 CD8 T cells is the result of obtaining cells from each group on the 3rd day after transduction and analyzing them by flow cytometry.
  • B6 mice (3 per group) were subcutaneously inoculated with 1 ⁇ 10 5 B16 cells on day 0 and received 2 ⁇ 10 6 transgenic Pmel-1 CD8 T cells on day 7.
  • Non-vaccinated mice No vax
  • Tumor growth was monitored by time course of in vivo bioluminescence imaging in individual mice (left panel). Tumor size was measured in individual mice and tumor size was presented as tumor area in mm 2 (right panel).
  • FIG. 5 shows GFP, mouse cytokines IL-2, IL-12, IL-2 and chemokine receptor CXCR3 (Pmel-GFP, Pmel-IL-2-CXCR3, Pmel-IL, respectively) in activated Pmel-1 T cells in vitro.
  • -12-CXCR3, Pmel-IL-21-CXCR3 shows the transduction results with a recombinant retrovirus encoding
  • FIG. 5a shows the expression of transduced Pmel-1 CD8 T cells at 3 days after transduction. Cells of a group were obtained and expression efficiency by flow cytometry
  • FIGS. 5b-e are the results of obtaining the culture supernatant of each group and measuring the cytokine secretion by ELISA
  • 5f is the therapeutic effect of transgenic Pmel-1 CD8 T cells.
  • B6 mice (3 per group) were subcutaneously inoculated with 1 ⁇ 10 5 B16 cells on day 0 and received 2 ⁇ 10 6 transgenic Pmel-1 CD8 T cells on day 7.
  • Non-vaccinated mice (No vax) were included as controls. Tumor growth was monitored by time course of in vivo bioluminescence imaging in individual mice (left panel). Tumor size was measured in individual mice and tumor size was presented as tumor area in mm 2 (right panel).
  • the anti-tumor effect of Pmel-T cells transduced with the chemokine receptor CXCR3 gene showed a therapeutic advantage in the early stage of tumor growth compared to mice without Pmel-GFP or adoptive transfer.
  • Pmel-IL-12-CXCR3 had a substantially higher antitumor effect in adoptively transferred mice.
  • Fig. 6 shows the result of transduction of activated Pmel-1 T cells in vitro with recombinant retroviruses encoding GFP, mouse cytokine and chemokine receptors
  • Fig. 6a is the expression of transduced Pmel-1 CD8 T cells.
  • Cells from each group were obtained on the 3rd day after transduction, and the expression efficiency and the culture supernatant of each group were obtained by flow cytometry, and cytokine secretion was measured by ELISA, FIGS.
  • FIG. 7 shows the results of transduction of activated Pmel-1 T cells in vitro with recombinant retroviruses encoding GFP, mouse cytokine and chemokine receptors
  • FIG. 7a shows the expression of transduced Pmel-1 CD8 T cells.
  • Cells from each group were obtained on the third day after transduction, and the expression efficiency of each group was obtained by flow cytometry
  • FIG. 7b is the result of obtaining the culture supernatant of each group and measuring the cytokine secretion by ELISA, FIGS.
  • the present invention can be used in adoptive immunotherapy for the prevention or treatment of tumors.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mycology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Oncology (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Hematology (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Hospice & Palliative Care (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)

Abstract

The present invention relates to modified killer cells, a preparation method therefor, and a pharmaceutical use thereof. More specifically, in the present invention, killer cells genetically modified to express a chemokine receptor, a cytokine, or a co-stimulatory molecule are used to promote immune response regulation and migration to tumor sites in hosts to alter the initial tumor microenvironments, whereby an effective anticancer therapeutic effect can be provided.

Description

변형된 살해 세포, 이의 제조방법 및 이의 약제학적 용도Modified killer cells, methods for their preparation and pharmaceutical uses thereof
본 발명은 케모카인 수용체, 사이토카인, 또는 보조자극분자를 발현하도록 유전자 변형된 살해 세포, 이의 제조방법 및 이의 약제학적 용도에 관한 것이다. The present invention relates to a killer cell genetically modified to express a chemokine receptor, a cytokine, or a costimulatory molecule, a method for preparing the same, and a pharmaceutical use thereof.
살해 세포를 이용하는 입양-세포치료제는 악성 종양에 대한 유망한 치료 전략 중 하나이지만, 임상에서의 구현은 여전히 도전적이다. 입양-세포치료제의 성공적인 종양 제거는 살해 세포의 입양전이 후 생체 내에서 종양부위로의 이동 및 입양-전이된 살해 세포의 증식과 생존이 중요하다. 최근 연구는 종양 발생에 대한 숙주 면역 반응을 향상시키기 위한 면역 요법이 중요하다. 이러한 전략에는 IL-2, IL-12 와 같은 면역 조절 사이토카인 및 IL-21, IL-23, IL-27과 같은 항종양 사이토카인의 병용투여를 통해 극복될 수 있다.Adoptive-cell therapy using killer cells is one of the promising therapeutic strategies for malignancy, but its implementation in clinical practice remains challenging. For successful tumor removal of adoptive-cell therapy, it is important that the killer cells migrate to the tumor site in vivo after adoptive transfer, and that the adoptive-transferred killer cells proliferate and survive. Recent studies have shown that immunotherapy is important to enhance the host immune response to tumorigenesis. This strategy can be overcome through co-administration of immunomodulatory cytokines such as IL-2 and IL-12 and anti-tumor cytokines such as IL-21, IL-23 and IL-27.
종양 미세환경은 종양에 의해 생성되며 regulatory T cell(Treg) 과 myeloid suppressor cell(MDSC) 등 면역 억제 세포들이 밀집하여, 다양한 면역 세포가 종양 부위에 동원되나 그들의 항종양 기능은 주로 종양 유래 신호에 반응하여 하향 조절된다.The tumor microenvironment is generated by the tumor, and immunosuppressive cells such as regulatory T cells (Treg) and myeloid suppressor cell (MDSC) are densely packed, so various immune cells are mobilized to the tumor site, but their antitumor function mainly responds to tumor-derived signals. is down-regulated.
IL-12는 타고난 면역 반응과 적응 면역 반응을 모두 조절하는 데 중심적인 역할을 하고, 그 자체로 강력한 항암 효과를 유도할 수 있다. IL-12 plays a central role in regulating both innate and adaptive immune responses, and by itself can induce potent anticancer effects.
일부 케모카인 리간드는 종양에서 발현하여 종양 형성의 촉진, 종양 세포 성장의 유지, 혈관 신생의 유도 등 종양 진행에 있어서 중요한 역할을 하는 것으로 알려져 있다. 케모카인 수용체는 면역세포의 순환, 귀환, 유지 및 활성화에 관여하여 림프구의 광범위한 침윤을 초래하여 종양 미세환경을 변화시킨다. Some chemokine ligands are expressed in tumors and are known to play important roles in tumor progression, such as promotion of tumor formation, maintenance of tumor cell growth, and induction of angiogenesis. Chemokine receptors are involved in the circulation, homing, maintenance and activation of immune cells, resulting in extensive infiltration of lymphocytes, thereby changing the tumor microenvironment.
따라서, 본 발명자들은 살해 세포의 성장과 기능을 자극할 수 있는 T 세포 자극 인자인 사이토카인, T 세포의 면역 반응 활성화, 증식 및 생존에 관여하는 보조자극분자, 그리고 종양에서 발현하는 케모카인 리간드를 추적하는 케모카인 수용체로 유전자 변형된 살해 세포를 개발하고 이를 사용하여 종양 부위로의 이동을 동반한 항암 치료효과를 조사함으로써 본 발명을 완성하였다. Therefore, the present inventors pursued cytokines, which are T cell-stimulating factors that can stimulate the growth and function of killer cells, co-stimulatory molecules involved in T-cell immune response activation, proliferation and survival, and chemokine ligands expressed in tumors. The present invention was completed by developing a killer cell genetically modified with a chemokine receptor and using it to investigate the anticancer therapeutic effect accompanied by movement to the tumor site.
본 발명의 목적은 케모카인 수용체, 사이토카인 또는 보조자극분자를 발현하도록 유전자 변형된 살해 세포, 이의 제조방법 및 이의 약제학적 용도를 제공하는 것이다.It is an object of the present invention to provide a killer cell genetically modified to express a chemokine receptor, cytokine or costimulatory molecule, a method for preparing the same, and a pharmaceutical use thereof.
상기 목적을 달성하기 위하여, 본 발명은 케모카인 수용체(C-X-C chemokine receptor) 및 사이토카인 중 하나 이상을 발현하는 변형된 살해 세포를 제공한다.In order to achieve the above object, the present invention provides a modified killer cell expressing at least one of a chemokine receptor (C-X-C chemokine receptor) and a cytokine.
본 발명은 또한 케모카인 수용체 및 사이토카인 중 하나 이상을 살해 세포에 도입하는 단계를 포함하는 인 비트로에서 변형된 살해 세포의 제조방법을 제공한다.The present invention also provides a method for producing a modified killer cell in vitro comprising introducing at least one of a chemokine receptor and a cytokine into the killer cell.
본 발명은 또한 상기 변형된 살해 세포를 포함하는 항암용 조성물을 제공한다.The present invention also provides an anticancer composition comprising the modified killer cells.
본 발명은 또한 암 치료용 의약 제조에 사용하기 위한 상기 변형된 살해 세포의 용도를 제공한다.The present invention also provides the use of said modified killer cell for use in the manufacture of a medicament for the treatment of cancer.
본 발명은 또한 치료적으로 유효한 양의 상기 변형된 살해 세포를 이를 필요로 하는 개체에 투여하는 단계를 포함하는 암의 치료방법이 제공된다.The present invention also provides a method of treating cancer comprising administering to a subject in need thereof a therapeutically effective amount of the modified killer cells.
본 발명의 케모카인 수용체, 사이토카인 또는 보조자극분자로 유전자 변형된 살해 세포는 종양에서 발현하는 케모카인 리간드를 추적하여 종양부위로 보다 효율적으로 이동한다. 본 발명의 유전자 변형 살해 세포의 입양 요법은 살해 세포의 숙주의 면역 반응 조절 및 종양부위로의 이동 촉진하여 초기 종양 미세 환경을 변화시켜 효과적인 종양 치료를 가능하게 한다. The killer cells genetically modified with the chemokine receptor, cytokine or costimulatory molecule of the present invention track the chemokine ligand expressed in the tumor and move more efficiently to the tumor site. Adoptive therapy of genetically modified killer cells of the present invention enables effective tumor treatment by changing the initial tumor microenvironment by regulating the host's immune response and promoting migration of the killer cells to the tumor site.
도 1은 GFP와 마우스 CD70, 마우스 CD70-OX40L를 암호화하는 재조합 레트로바이러스가 형질도입된 생체외 활성화된 Pmel-1 T 세포의 유세포 분석 결과(a) 및 유전자 전이 Pmel-1 CD8 T 세포의 치료적 항종양 효과(b, c 및 d)를 나타낸 것이다.1 shows the results of flow cytometry analysis of in vitro activated Pmel-1 T cells transduced with recombinant retroviruses encoding GFP, mouse CD70, and mouse CD70-OX40L (a) and therapeutic treatment of transgenic Pmel-1 CD8 T cells. Antitumor effects (b, c and d) are shown.
도 2는 마우스 IL-2, IL-12 및 IL-21 유전자를 암호화하는 재조합 레트로바이러스로 형질도입된 생체외 활성화된 Pmel-1 T 세포의 사이토카인 분비량을 측정한 ELISA 분석 결과(a) 및 유전자 전이 Pmel-1 CD8 T 세포의 치료적 항종양 효과(b, c, d 및 e)를 나타낸 것이다.2 is an ELISA analysis result (a) and genes measuring the cytokine secretion of in vitro activated Pmel-1 T cells transduced with a recombinant retrovirus encoding mouse IL-2, IL-12 and IL-21 genes. The therapeutic antitumor effect (b, c, d and e) of metastatic Pmel-1 CD8 T cells is shown.
도 3은 GFP와 마우스 CD70, IL-2-CD70, IL-12-CD70, IL-21-CD70을 암호화하는 재조합 레트로바이러스로 형질도입된 생체외 활성화된 Pmel-1 T 세포의 유세포 분석 결과(a), 상기 각 그룹의 배양 상등액에서 사이토카인 분비량을 측정한 ELISA 분석 결과(b, c, d 및 e), 및 유전자 전이 Pmel-1 CD8 T 세포의 치료적 항종양 효과(f)를 나타낸 것이다.3 is a flow cytometric analysis result of ex vivo activated Pmel-1 T cells transduced with recombinant retroviruses encoding GFP and mouse CD70, IL-2-CD70, IL-12-CD70, IL-21-CD70 (a). ), ELISA analysis results (b, c, d, and e) measuring cytokine secretion in the culture supernatant of each group, and the therapeutic antitumor effect (f) of transgenic Pmel-1 CD8 T cells.
도 4는 GFP와 마우스 케모카인 수용체 CXCR3을 암호화하는 재조합 레트로바이러스로 형질도입된 생체외 활성화된 Pmel-1 T 세포의 유세포 분석 결과(a) 및 유전자 전이 Pmel-1 CD8 T 세포의 치료적 항종양 효과(b, c, d 및 e)를 나타낸 것이다.Figure 4 shows the results of flow cytometry analysis of in vitro activated Pmel-1 T cells transduced with recombinant retrovirus encoding GFP and mouse chemokine receptor CXCR3 (a) and the therapeutic antitumor effect of transgenic Pmel-1 CD8 T cells. (b, c, d and e) are shown.
도 5는 GFP, 마우스 사이토카인 IL-2, IL-12, IL-2와 케모카인 수용체 CXCR3을 암호화하는 재조합 레트로바이러스로 형질도입된 생체외 활성화된 Pmel-1 T 세포의 유세포 분석 결과(a), 상기 각 그룹의 배양 상응액의 사이토카인 분비량을 측정한 ELISA 분석 결과(b, c, d 및 e), 및 유전자 전이 Pmel-1 CD8 T 세포의 치료적 항종양 효과(f)를 나타낸 것이다.Figure 5 shows the flow cytometry results of ex vivo activated Pmel-1 T cells transduced with recombinant retrovirus encoding GFP, mouse cytokines IL-2, IL-12, IL-2 and chemokine receptor CXCR3 (a); ELISA analysis results (b, c, d, and e) measuring the cytokine secretion of the corresponding culture solution of each group, and the therapeutic antitumor effect (f) of the transgenic Pmel-1 CD8 T cells are shown.
도 6은 GFP, 마우스 사이토카인 및 케모카인 수용체를 암호화하는 재조합 레트로바이러스로 형질도입된 생체외 활성화된 Pmel-1 T 세포의 유세포 분석 결과(a), 상기 각 그룹의 배양 상응액의 사이토카인 분비량을 측정한 ELISA 분석 결과(b, c, d 및 e), 유전자 전이 Pmel-1 CD8 T 세포의 치료적 항종양 효과(f), 및 유전자 전이 Pmel-1 CD8 T 세포의 IFNγ 분비량을 측정한 EliSpot 결과(g)를 나타낸 것이다.Figure 6 shows the results of flow cytometry analysis of in vitro activated Pmel-1 T cells transduced with recombinant retroviruses encoding GFP, mouse cytokine and chemokine receptor (a), cytokine secretion of the corresponding culture solution of each group. Results of ELISA analysis (b, c, d, and e), therapeutic antitumor effect of transgenic Pmel-1 CD8 T cells (f), and EliSpot results of measuring IFNγ secretion of transgenic Pmel-1 CD8 T cells (g) is shown.
도 7은 GFP, 마우스 사이토카인 및 케모카인 수용체를 암호화하는 재조합 레트로바이러스로 형질도입된 생체외 활성화된 Pmel-1 T 세포의 유세포 분석 결과(a), 상기 각 그룹의 배양 상응액의 사이토카인 분비량을 측정한 ELISA 분석 결과(b), 및 유전자 전이 Pmel-1 CD8 T 세포의 치료적 항종양 효과(c, d, e 및 f)를 나타낸 것이다.Figure 7 shows the results of flow cytometry analysis of in vitro activated Pmel-1 T cells transduced with recombinant retrovirus encoding GFP, mouse cytokine and chemokine receptor (a), cytokine secretion of the corresponding culture solution of each group. The results of the measured ELISA analysis (b) and the therapeutic antitumor effect (c, d, e and f) of the transgenic Pmel-1 CD8 T cells are shown.
이하, 본 발명의 구성을 구체적으로 설명한다.Hereinafter, the configuration of the present invention will be described in detail.
본 발명은 케모카인 수용체(C-X-C chemokine receptor) 및 사이토카인 중 하나 이상을 발현하는 변형된 살해 세포에 관한 것이다. The present invention relates to modified killer cells expressing one or more of a C-X-C chemokine receptor and a cytokine.
본 발명의 변형된 살해 세포는 케모카인 수용체, 사이토카인 또는 보조자극분자를 발현하도록 유전자 변형된 살해 세포인 것을 특징으로 한다. 보다 구체적으로, 케모카인 수용체 및 사이토카인을 암호화하는 핵산이 각각 단독으로 또는 이들의 조합이 형질도입된 유전자 변형된 살해 세포는 보조자극분자가 형질도입된 유전자 변형된 살해 세포 또는 입양 전이 되지 않은 동물 모델에 비해 종양 형성을 억제함으로써 우수한 항종양 효과를 나타내는 것을 특징으로 한다. 특히 암세포 특이적인 케모카인 수용체는 종양에서 발현하는 케모카인 리간드를 추적하여 유전자 변형된 살해 세포를 종양 부위로 보다 효율적으로 이동하게 한다. 또한, 본 발명의 변형된 살해 세포는 숙주의 면역 반응 조절 및 종양 부위로의 이동을 촉진하여 초기 종양 미세환경을 변화시켜 효과적인 종양 치료가 가능하다.The modified killer cell of the present invention is characterized in that it is a killer cell genetically modified to express a chemokine receptor, cytokine or co-stimulatory molecule. More specifically, genetically modified killer cells transduced with chemokine receptor and cytokine-encoding nucleic acids, either alone or in combination thereof, are transduced with costimulatory molecules or non-adoptive animal models. It is characterized in that it exhibits an excellent anti-tumor effect by inhibiting tumor formation compared to In particular, cancer cell-specific chemokine receptors track chemokine ligands expressed in tumors, enabling more efficient migration of genetically modified killer cells to the tumor site. In addition, the modified killer cells of the present invention change the initial tumor microenvironment by regulating the host's immune response and promoting migration to the tumor site, thereby enabling effective tumor treatment.
상기 케모카인 수용체는 CXCR1, CXCR2, CXCR3, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7, CCR2, CCR4, CCR5, CCR7, CCR10 등일 수 있다. 보다 구체적으로, CXCR2, CXCR3 또는 CXCR5일 수 있다.The chemokine receptor may be CXCR1, CXCR2, CXCR3, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7, CCR2, CCR4, CCR5, CCR7, CCR10, or the like. More specifically, it may be CXCR2, CXCR3 or CXCR5.
상기 사이토카인은 IL-2, IL-7, IL-12, IL-15, IL-18, IL-21 등일 수 있다.The cytokine may be IL-2, IL-7, IL-12, IL-15, IL-18, IL-21, and the like.
상기 변형된 살해 세포는 케모카인 수용체 또는 사이토카인 외에 보조자극분자를 추가로 발현할 수 있다.The modified killer cells may further express costimulatory molecules in addition to chemokine receptors or cytokines.
상기 보조자극분자는 CD70, CD134L(OX40L), CD80, CD86, CD54, CD154(CD40L) 또는 CD137L(4-1BBL) 등을 단독 또는 2종 이상 사용할 수 있다.As the co-stimulatory molecule, CD70, CD134L (OX40L), CD80, CD86, CD54, CD154 (CD40L) or CD137L (4-1BBL) may be used alone or in two or more types.
본 명세서에서, 용어,"보조자극분자(costimulatory molecule)"는 항원제시세포의 표면에 발현된 수용체-리간드 쌍과 T 세포 간의 상호작용에 참여하는 물질로, 사이토카인 유전자 발현과 증식 유도를 위해서는 휴지기 T 세포에 2 이상의 신호가 필요하며, 한 가지 신호는 특이성을 부여하는 신호로 MHC/펩타이드 복합체와 TCR/CD3 복합체의 상호작용에 의해 생성되며, 두 번째 신호는 항원 비특이적이고, "보조자극성" 신호라 한다. 이 신호는 대식세포 및 수지상세포 등 골수 유래 보조 세포에 의해 제공되는 활성으로 알려져 있다. 보조자극분자는 정상적인 생리 조건 하에서 필요한 보조자극 신호를 매개하여 γδT 세포의 완전한 활성화를 수행한다. 본 발명에서는 이러한 보조자극분자는 사람 또는 마우스의 CD70, CD134L(OX40L), CD80, CD86, CD54, CD154(CD40L) 또는 CD137L(4-1BBL) 등일 수 있다.As used herein, the term "costimulatory molecule" refers to a substance that participates in the interaction between a receptor-ligand pair expressed on the surface of an antigen-presenting cell and a T cell. Two or more signals are required for T cells, one signal conferring specificity and produced by the interaction of the MHC/peptide complex with the TCR/CD3 complex, the second signal being non-antigen specific and a “costimulatory” signal. say This signal is known to be an activity provided by bone marrow-derived helper cells such as macrophages and dendritic cells. Co-stimulatory molecules mediate the necessary co-stimulatory signals under normal physiological conditions to perform complete activation of γδ T cells. In the present invention, the costimulatory molecule may be human or mouse CD70, CD134L (OX40L), CD80, CD86, CD54, CD154 (CD40L) or CD137L (4-1BBL).
상기 살해 세포는 종양 침윤 림프구(tumor-infiltrated lymphocytes), 체외배양 항원-특이 T 세포(ex vivo antigen-specific T cells), 자연 살해 세포(natural killer cell), 자연 살해 T 세포(natural killer T cell), 감마 델타 T 세포(gamma delta T cell), 또는, 키메라 항원 수용체(CAR; chimeric antigen receptor) 또는 T 세포 수용체(TCR: T cell receptor)를 장착한 T 세포 등을 사용할 수 있다.The killer cells are tumor-infiltrated lymphocytes, ex vivo antigen-specific T cells, natural killer cells, natural killer T cells. , gamma delta T cells, or chimeric antigen receptor (CAR) or T cell receptor (TCR)-equipped T cells may be used.
상기 키메라 항원 수용체 또는 T 세포 수용체를 장착한 T 세포는 CD4+T 세포; CD8+T 세포; 또는 키메라 항원 수용체 또는 T 세포 수용체가 도입된 재조합 종양 침윤 림프구(tumor-infiltrated lymphocytes), 재조합 자연 살해 세포(natural killer cell), 재조합 자연 살해 T 세포(natural killer T cell) 또는 재조합 감마 델타 T 세포(gammadelta T cell) 등일 수 있다.The chimeric antigen receptor or T cell receptor-equipped T cell is a CD4 + T cell; CD8+ T cells; or recombinant tumor-infiltrated lymphocytes, recombinant natural killer cells, recombinant natural killer T cells, or recombinant gamma delta T cells into which a chimeric antigen receptor or T cell receptor has been introduced ( gammadelta T cells) and the like.
상기 변형된 살해 세포는 공지의 형질전환 기술을 이용하여 케모카인 수용체 및/또는 사이토카인을 암호화하는 핵산을 살해 세포에 도입하여 제조할 수 있다. 일 구체예에 따르면, CXCR3 및/또는 IL-2, IL-12 또는 IL-21를 암호화하는 핵산을 Pmel-1 T 세포에 도입하여 제조할 수 있다.The modified killer cell can be prepared by introducing a nucleic acid encoding a chemokine receptor and/or cytokine into the killer cell using a known transformation technique. According to one embodiment, it can be prepared by introducing a nucleic acid encoding CXCR3 and/or IL-2, IL-12 or IL-21 into Pmel-1 T cells.
상기 핵산은 가장 광의적인 의미로 사용되며, 단일가닥(ss) DNA, 이중가닥(ds) DNA, cDNA, (-)-RNA, (+)-RNA, dsRNA 등을 포괄한다. 바람직하게는 이중가닥 DNA이다.The nucleic acid is used in the broadest sense, and includes single-stranded (ss) DNA, double-stranded (ds) DNA, cDNA, (-)-RNA, (+)-RNA, dsRNA, and the like. Preferably, it is double-stranded DNA.
본 발명은 또한 케모카인 수용체 및 사이토카인 중 하나 이상을 살해 세포에 도입하는 단계를 포함하는 인 비트로에서 변형된 살해 세포의 제조방법에 관한 것이다.The present invention also relates to a method for producing a modified killer cell in vitro comprising the step of introducing at least one of a chemokine receptor and a cytokine into the killer cell.
상기 방법은 살해 세포에 보조자극분자를 형질도입하는 단계를 추가로 포함할 수 있다.The method may further comprise transducing the killer cell with a co-stimulatory molecule.
상기 도입은 공지의 형질전환 기술을 이용하여 케모카인 수용체, 사이토카인, 보조자극분자 등을 암호화하는 핵산이 삽입된 벡터를 살해 세포에 도입하는 것일 수 있다. The introduction may be to introduce a vector into which a nucleic acid encoding a chemokine receptor, cytokine, costimulatory molecule, etc. is inserted into the killer cell using a known transformation technique.
본 명세서에서 사용되는 "벡터"란 용어는 자신에게 연결된 다른 핵산을 운반할 수 있는 핵산 분자를 말한다. 벡터의 한 유형으로 "플라스미드"가 있는데, 플라스미드는 추가의 DNA 분절을 결찰시킬 수 있는 원형의 이중 가닥 DNA 루프를 말한다. 벡터의 또 다른 유형으로는 추가적인 DNA 분절을 바이러스 게놈으로 결찰시킬 수 있는 바이러스 벡터가 있다. 일부 벡터는 숙주세포로 도입될 때 이 숙주세포 내에서 자가 복제할 수 있다(예를 들어, 박테리아 복제 기점을 갖는 박테리아 벡터 및 에피솜 포유동물 벡터). 다른 벡터(예를 들어, 비에피솜 포유동물 벡터)는 숙주세포로 도입될 때 숙주세포의 게놈으로 통합되어, 숙주 게놈과 함께 복제될 수 있다. 또한, 일부 벡터는 이들이 작동 가능하게 연결되어 있는 유전자의 발현을 지시할 수 있다. 본 명세서에서 이러한 벡터를 "재조합 발현 벡터"(또는 간단히, "발현 벡터")라 한다. 일반적으로, 재조합 DNA 기법에 유용한 발현 벡터는 대개 플라스미드의 형태로 플라스미드가 가장 일반적으로 사용되는 벡터 유형이기 때문에, "플라스미드"와 "벡터"는 서로 교환하여 사용될 수 있다. 그러나, 본 발명은 동등한 기능을 제공하는 바이러스 벡터(예를 들어, 아데노바이러스 벡터, 아데노-관련 바이러스(AAV) 벡터, 헤르페스 바이러스 벡터, 레트로바이러스 벡터, 렌티바이러스 벡터, 바큘로바이러스 벡터)와 같은 다른 형태의 발현 벡터도 포함한다. 바람직하게는, 레트로바이러스 벡터를 사용할 수 있다.As used herein, the term "vector" refers to a nucleic acid molecule capable of carrying another nucleic acid to which it has been linked. One type of vector is a “plasmid,” which refers to a circular double-stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector capable of ligating additional DNA segments into the viral genome. Some vectors are capable of self-replication within a host cell when introduced into the host cell (eg, bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (eg, non-episomal mammalian vectors) can be integrated into the genome of the host cell when introduced into the host cell and replicated along with the host genome. In addition, some vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" (or simply, "expression vectors"). In general, expression vectors useful in recombinant DNA techniques are usually in the form of plasmids, since plasmids are the most commonly used type of vector, so "plasmid" and "vector" can be used interchangeably. However, the present invention provides other methods, such as viral vectors (e.g., adenoviral vectors, adeno-associated virus (AAV) vectors, herpes virus vectors, retroviral vectors, lentiviral vectors, baculovirus vectors) that serve equivalent functions. forms of expression vectors are also included. Preferably, retroviral vectors can be used.
상기 레트로바이러스는 용균성 바이러스와는 상이한 생활주기를 가진 RNA 바이러스이다. 이 점에 있어서 레트로바이러스는 DNA 중간물질을 통해서 복제하는 전염성 독립체이다. 레트로바이러스가 세포를 감염시킬 때, 게놈은 역전사효소에 의해 DNA 형성으로 전환된다. DNA 카피는 새로운 RNA 게놈 및 감염성 바이러스 입자의 조립(assembly)을 위해 필수적인 바이러스성으로 인코딩되는 단백질의 생성을 위한 주형으로 쓰인다. 많은 레트로바이러스가 있는데, 예를 들면 뮤린 백혈병 바이러스(MLV), 인간 면역 결핍 바이러스(HIV), 말 전염성 빈혈 바이러스(EIAV), 생쥐 유방 종양 바이러스(MMTV), 라우스 육종 바이러스(RSV), 후지나미 육종 바이러스(FuSV), 몰로니 설치류 백혈병 바이러스(Mo-MLV), FBR 뮤린 골육종 바이러스(FBR MSV), 몰로니 설치류 육종 바이러스(Mo-MSV), 아벨솔 쥐 백형병 바이러스(A-MLV), 조류 골수 세포증 바이러스-29(MC29) 및 조류의 적아구증 바이러스(AEV) 및 렌티바이러스를 포함하는 모든 다른 레트로바이러스과를 들 수 있다. 레트로바이러스의 상세한 목록은 Coffin et al("Retroviruses" 1997 Cold Spring Harbour Laboratory Press Eds: JM Coffin, SM Hughes, HE Varmus pp 758-763)에 기술되어 있다. The retrovirus is an RNA virus having a different life cycle from the lytic virus. Retroviruses in this respect are infectious entities that replicate through DNA intermediates. When a retrovirus infects a cell, the genome is converted to DNA formation by reverse transcriptase. The DNA copy serves as a template for the production of a new RNA genome and a virally encoded protein essential for the assembly of infectious viral particles. There are many retroviruses, such as murine leukemia virus (MLV), human immunodeficiency virus (HIV), equine infectious anemia virus (EIAV), mouse mammary tumor virus (MMTV), Rous sarcoma virus (RSV), Fujinami sarcoma Virus (FuSV), Moloney Rodent Leukemia Virus (Mo-MLV), FBR Murine Osteosarcoma Virus (FBR MSV), Moloney Rodent Sarcoma Virus (Mo-MSV), Abelsol Murine Leukemia Virus (A-MLV), avian bone marrow Cytovirus-29 (MC29) and all other retroviral families, including avian erythrocytosis virus (AEV) and lentiviruses. A detailed list of retroviruses is described in Coffin et al (“Retroviruses” 1997 Cold Spring Harbor Laboratory Press Eds: JM Coffin, SM Hughes, HE Varmus pp 758-763).
형질전환은 핵산을 유기체, 세포, 조직 또는 기관에 도입하는 어떤 방법도 포함되며, 당 분야에서 공지된 바와 같이 살해 세포의 종류에 따라 적합한 표준 기술을 선택하여 수행할 수 있다. 이런 방법에는 전기충격유전자전달법(electroporation), 원형질 융합, 인산칼슘(CaPO4) 침전, 염화칼슘(CaCl2) 침전, 실리콘 카바이드 섬유 이용한 교반, 아그로박테리아 매개된 형질전환, PEG, 덱스트란 설페이트, 리포펙타민 등이 포함되나 이로 제한되지 않는다. Transformation includes any method of introducing a nucleic acid into an organism, cell, tissue or organ, and as known in the art, can be performed by selecting an appropriate standard technique according to the type of killer cell. These methods include electroporation, protoplast fusion, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, agitation using silicon carbide fibers, agrobacterium mediated transformation, PEG, dextran sulfate, lipoproteins. Pectamine, and the like, but are not limited thereto.
본 발명의 일 구체예에 따르면, CXCR2, CXCR3, CXCR5 등의 케모카인 수용체, IL-2, IL-12, IL-21 등의 사이토카인, CD70, OX40L, CD80, CD83, CD54, CD32, 4-1BBL 등의 보조자극분자의 유전자에 대해 각각의 cDNA를 제조하고, 이들을 각각 레트로바이러스 벡터에 삽입하고, 상기의 레트로바이러스 벡터는 Pmel-1 T 세포에 형질도입되었다. According to one embodiment of the present invention, chemokine receptors such as CXCR2, CXCR3, CXCR5, cytokines such as IL-2, IL-12, IL-21, CD70, OX40L, CD80, CD83, CD54, CD32, 4-1BBL Each cDNA was prepared for the gene of a costimulatory molecule, such as, and inserted into each retroviral vector, and the retroviral vector was transduced into Pmel-1 T cells.
본 발명은 또한 상기 변형된 살해 세포를 포함하는 항암용 조성물에 관한 것이다.The present invention also relates to an anticancer composition comprising the modified killer cells.
본 발명은 또한 암 치료용 의약 제조에 사용하기 위한 상기 변형된 살해 세포의 용도를 제공한다.The present invention also provides the use of said modified killer cell for use in the manufacture of a medicament for the treatment of cancer.
일반적으로 흑색종 치료는 면역 체크포인트 억제제와 입양 세포 요법을 포함한 광범위한 면역 요법에 의해 발전하였으나, 그럼에도 불구하고 치료효과는 환자의 일부분으로 제한되었다. 또한, 종양부위에서 수득한 종양 침윤 림프구를 체외 확장한 입양 세포 요법은 환자 특이적 신생 항원을 포함하여 광범위한 종양 항원을 표적으로 하여 흑색종 치료에 큰 성공을 거두었으나, 시험관내 확장된 종양 침윤 림프구 중 일부만이 투여 후 종양 부위로 이동한다. In general, the treatment of melanoma has been advanced by a wide range of immunotherapies, including immune checkpoint inhibitors and adoptive cell therapy, nevertheless, the therapeutic effect has been limited to a small fraction of patients. In addition, adoptive cell therapy, in which tumor-infiltrating lymphocytes obtained from tumor sites are expanded in vitro, by targeting a wide range of tumor antigens, including patient-specific neoantigens, has achieved great success in the treatment of melanoma, but in vitro expanded tumor-infiltrating lymphocytes Only a small fraction migrates to the tumor site after administration.
반면, 본 발명의 변형된 살해 세포는 케모카인 수용체로 인해 종양에서 발현하는 케모카인 리간드를 추적하여 종양부위로 보다 효율적으로 이동한다. 본 발명의 유전자 변형 살해 세포의 입양 요법은 살해 세포의 숙주의 면역 반응 조절 및 종양부위로의 이동 촉진하여 초기 종양 미세 환경을 변화시켜 효과적인 종양 치료를 가능하게 한다. 본 발명의 일 구체예에 따르면, CXCR3 및 IL-12 유전자가 형질도입된 Pmel-1 T 세포의 항종양 효과는 보조자극분자(CD70) 또는 입양 전이 되지 않은 마우스와 비교하여 치료적 이점을 나타내었고 그 중 사이토카인과 케모카인 수용체가 동시에 전이된 살해세포(IL-12-CXCR3)가 입양 전이된 마우스에서 실질적으로 더 높은 항 종양 효과를 가졌다.On the other hand, the modified killer cells of the present invention move more efficiently to the tumor site by tracking the chemokine ligand expressed in the tumor due to the chemokine receptor. Adoptive therapy of genetically modified killer cells of the present invention enables effective tumor treatment by changing the initial tumor microenvironment by regulating the host's immune response and promoting migration of the killer cells to the tumor site. According to one embodiment of the present invention, the antitumor effect of Pmel-1 T cells transduced with CXCR3 and IL-12 genes showed a therapeutic advantage compared to mice without costimulatory molecule (CD70) or adoptive transfer. Among them, the killer cells (IL-12-CXCR3) to which cytokines and chemokine receptors were simultaneously transferred had substantially higher antitumor effects in adoptively transferred mice.
따라서, 본 발명의 항암용 조성물은 흑색종 치료에 효과적일 수 있다. Therefore, the anticancer composition of the present invention may be effective in treating melanoma.
또한, 본 발명의 항암용 조성물은 흑색종 외에도 폐암, 위암, 결장암, 유방암, 골암, 췌장암, 피부암, 두부암, 두경부암, 자궁암, 난소암, 대장암, 소장암, 직장암, 항문부근암, 나팔관암종, 자궁내막암, 자궁경부암, 질암, 음문암, 호지킨병(Hodgkin's disease), 식도암, 임파선암, 방광암, 담낭암, 내분비선암, 전립선암, 부신암, 연조직 육종, 요도암, 음경암, 만성 또는 급성 백혈병, 림프구 림프종, 신장암, 수뇨관암, 신장골반암, 혈액암, 뇌암, 중추신경계(CNS; central nervous system) 종양, 척수 종양, 뇌간 신경교종 또는 뇌하수체 선종에 대해서도 치료적 효과를 나타낼 수 있다.In addition, the anticancer composition of the present invention, in addition to melanoma, lung cancer, stomach cancer, colon cancer, breast cancer, bone cancer, pancreatic cancer, skin cancer, head cancer, head and neck cancer, uterine cancer, ovarian cancer, colorectal cancer, small intestine cancer, rectal cancer, perianal cancer, fallopian tube cancer Carcinoma, endometrial cancer, cervical cancer, vaginal cancer, vulvar cancer, Hodgkin's disease, esophageal cancer, lymph adenocarcinoma, bladder cancer, gallbladder cancer, endocrine adenocarcinoma, prostate cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, penile cancer, chronic or acute leukemia, lymphocytic lymphoma, kidney cancer, ureter cancer, renal pelvic cancer, blood cancer, brain cancer, central nervous system (CNS) tumor, spinal cord tumor, brainstem glioma or pituitary adenoma have.
본 발명의 조성물은 상기 담체 외에 약학적으로 허용가능한 부형제 또는 희석제를 추가적으로 포함할 수 있다.The composition of the present invention may further include a pharmaceutically acceptable excipient or diluent in addition to the carrier.
아울러 상기 "약학적으로 허용가능한"이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 위장 장애, 현기증과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 조성물을 말한다. 상기 담체, 부형제 및 희석제의 예로는, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 또한, 충진제, 항응집제, 윤활제, 습윤제, 향료, 유화제 및 방부제 등을 추가로 포함할 수 있다. In addition, the "pharmaceutically acceptable" refers to a composition that is physiologically acceptable and does not normally cause allergic reactions such as gastrointestinal disorders, dizziness, or similar reactions when administered to humans. Examples of such carriers, excipients and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil. In addition, fillers, anti-agglomeration agents, lubricants, wetting agents, fragrances, emulsifiers and preservatives may be further included.
또한, 본 발명의 조성물은 포유동물에 투여시, 활성 성분의 신속한 방출, 또는 지속 또는 지연된 방출이 가능하도록 당업계에 공지된 방법을 사용하여 제형화될 수 있다. 제형은 분말, 과립, 정제, 에멀젼, 시럽, 에어로졸, 연질 또는 경질 젤라틴 캅셀, 멸균 주사용액, 멸균 분말 형태를 포함한다. In addition, the compositions of the present invention may be formulated using methods known in the art to permit rapid, sustained or delayed release of the active ingredient upon administration to a mammal. Formulations include powders, granules, tablets, emulsions, syrups, aerosols, soft or hard gelatin capsules, sterile injectable solutions, and sterile powder forms.
상기에 예시된 것들을 비롯하여 본 발명에 적합한 약학적으로 허용되는 담체 및 제제는 문헌[Remington's Pharmaceutical Sciences, 최신판]에 상세히 기재되어 있다. Pharmaceutically acceptable carriers and agents suitable for the present invention, including those exemplified above, are described in detail in Remington's Pharmaceutical Sciences, latest edition.
본 발명의 조성물은 다양한 경로로 투여될 수 있으며, 예를 들면, 경구, 비경구, 예를 들면 좌제, 경피, 정맥, 복강, 근육내, 병변내, 비강, 척추관내 투여로 투여될 수 있으며, 또한 서방형 또는 연속적 또는 반복적 방출을 위한 이식장치를 사용하여 투여될 수 있다. 투여횟수는 원하는 범위 내에서 하루에 1회, 또는 수회로 나누어 투여할 수 있으며, 투여 기간도 특별히 한정되지 않는다. The composition of the present invention may be administered by various routes, for example, oral, parenteral, for example, suppository, transdermal, intravenous, intraperitoneal, intramuscular, intralesional, nasal, intrathecal administration, It can also be administered using implanted devices for sustained release or continuous or repeated release. The number of administration may be administered once a day or divided into several times within a desired range, and the administration period is not particularly limited.
본 발명의 조성물의 환자에 대한 투여량은 환자의 신장, 체표면적, 연령, 투여되는 특정 화합물, 성별, 투여 시간 및 경로, 일반적인 건강, 및 동시에 투여되는 다른 약물들을 포함하는 많은 요소들에 따라 다르다. 통상적으로 변형된 살해 세포는 1회 투여시 통상 체표면적 m2 당 109 내지 1010 세포 전후로 투여될 수 있다. 따라서, 일반 성인(약 60 kg)의 기준으로 약 2×1010 세포가 투여되는 것이 적절하나, 상기 투여량은 상술한 바와 같이 환자의 다양한 조건 및 병용투여되는 약물의 종류와 양에 따라 달라질 수 있다. 따라서, 약학적으로 활성인 본 발명의 변형된 살해 세포는 106 내지 1010 cells/kg(체중)의 양으로 투여될 수 있으며 상기 예시 범위 이하 또는 이상의 투여도 특히 상기 요소들을 고려하여 투여된다. 투여법이 연속 주입이면, 1분당 체중 1 ㎏ 당 103 내지 109 세포 단위의 범위 내에 있어야 한다.The dosage of the composition of the present invention to a patient depends on many factors including the patient's height, body surface area, age, the particular compound being administered, sex, time and route of administration, general health, and other drugs being administered concurrently. . Typically, the modified killer cells may be administered before and after 10 9 to 10 10 cells per m 2 of body surface area at one time administration. Therefore, it is appropriate to administer about 2×10 10 cells based on an average adult (about 60 kg), but the dosage may vary depending on the patient's various conditions and the type and amount of co-administered drugs as described above. have. Accordingly, the pharmaceutically active modified killer cells of the present invention may be administered in an amount of 10 6 to 10 10 cells/kg (body weight), and administrations below or above the exemplary range are also particularly administered in consideration of the above factors. If the dosing regimen is continuous infusion, it should be in the range of 10 3 to 10 9 cell units per kg body weight per minute.
본 발명은 또한 치료적으로 유효한 양의 상기 변형된 살해 세포를 이를 필요로 하는 개체에 투여하는 단계를 포함하는 암의 치료방법이 제공된다.The present invention also provides a method of treating cancer comprising administering to a subject in need thereof a therapeutically effective amount of the modified killer cells.
본 명세서에서 사용되는 "치료적으로 유효한 양(therapeutically effective amount)"은 암세포의 사멸 또는 적어도 암조직의 성장을 유의하게 억제하는 정도의 양을 의미한다.As used herein, "therapeutically effective amount" means an amount that significantly inhibits the death of cancer cells or at least the growth of cancer tissues.
상기 개체는 인간, 개, 닭, 돼지, 소, 양, 기니아피그, 원숭이 등을 포함할 수 있다.The subject may include humans, dogs, chickens, pigs, cattle, sheep, guinea pigs, monkeys, and the like.
이하, 본 발명에 따르는 실시 예 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시 예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples according to the present invention, but the scope of the present invention is not limited by the examples presented below.
<실시예 1> 유전자 변형된 살해 세포의 제조 및 실험방법<Example 1> Preparation and Experimental Method of Genetically Modified Killer Cells
(마우스, 세포주)(mouse, cell line)
6주령된 암컷 C57BL/6(B6) 마우스는 Orient Bio(Seongnam, Kyunggi)에서 구입하였고, 무균 조건 하에서 가톨릭대학교 동물실험실에서 사육하였다. 동물 연구의 모든 과정은 서울 가톨릭대학교(Approval number : CUMS-2019-0169-01) 의과대학 IACUC(Institutional Animal Care and Use Committee)에서 제공받은 설치류 실험에 대한 가이드라인 및 정책, 및 실험 동물의 관리 및 이용에 대한 가이드, 실험동물 복지법에 따라 수행되었다. Six-week-old female C57BL/6 (B6) mice were purchased from Orient Bio (Seongnam, Kyunggi) and bred in the Catholic University of Korea Animal Laboratory under aseptic conditions. All procedures for animal research include guidelines and policies for rodent experiments provided by the Institutional Animal Care and Use Committee (IACUC) of the Catholic University of Korea (Approval number: CUMS-2019-0169-01) College of Medicine, and the management and management of laboratory animals. It was carried out according to the guide for use, the Laboratory Animal Welfare Act.
B16F10SK(B16) 흑색종 세포는 American Type Culture Collection(Manassas, VA), Plat E retroviral packaging cell은 Cell Biolabs(San Diego, CA)에서 구입하였으며 모든 세포주는 제조사의 권장에 따라 배양되었다. B16F10SK (B16) melanoma cells were purchased from the American Type Culture Collection (Manassas, VA) and Plat E retroviral packaging cells were purchased from Cell Biolabs (San Diego, CA), and all cell lines were cultured according to the manufacturer's recommendations.
(재조합 레트로바이러스의 생산) (Production of Recombinant Retrovirus)
마우스 CD70(NCBI Nucleotide ID : NM_011617.2 / Cat no : MG51129-G), CXCR3(NCBI Nucleotide ID : NM_009910.3 / Cat no : MG50842-G), IL-2(NCBI Nucleotide ID : NM_008366.2 / Cat no : MG51061-G), IL-12B(NCBI Nucleotide ID : NM_008352.2 / Cat no : MG51004-G), IL-12A(NCBI Nucleotide ID : NM_001159424.1 / Cat no : MG51308-G), IL-21(NCBI Nucleotide ID : NM_021782.2 / Cat no : MG50137-M) 에 대한 유전자는 pMD18-T Simple Vector에 삽입되어 있는 형태로 SinoBiological에서 구입하였다. 각 유전자의 PCR 증폭을 위한 프라이머 세트는 다음과 같다:Mouse CD70 (NCBI Nucleotide ID: NM_011617.2 / Cat no: MG51129-G), CXCR3 (NCBI Nucleotide ID: NM_009910.3 / Cat no: MG50842-G), IL-2 (NCBI Nucleotide ID: NM_008366.2 / Cat no: MG51061-G), IL-12B(NCBI Nucleotide ID: NM_008352.2 / Cat no: MG51004-G), IL-12A(NCBI Nucleotide ID: NM_001159424.1 / Cat no: MG51308-G), IL-21 The gene for (NCBI Nucleotide ID: NM_021782.2 / Cat no: MG50137-M) was purchased from SinoBiological in the form inserted into the pMD18-T Simple Vector. The primer sets for PCR amplification of each gene are as follows:
1) CD70: 1) CD70:
Forward primer: 5'-gctcacttacag gcggccgc gccacc atgccggaggaaggtcgccc-3'(SEQ ID NO: 1);Forward primer: 5'-gctcacttacag gcggccgc gccacc atgccggaggaaggtcgccc-3' (SEQ ID NO: 1);
Reverse primer: 5'-ggtaagatgctc gaattc tcaagggcatatccactgaa-3'(SEQ ID NO: 2)Reverse primer: 5'-ggtaagatgctc gaattc tcaagggcatatccactgaa-3' (SEQ ID NO: 2)
2) IL-2:2) IL-2:
Forward primer: 5'-gctcacttacag gcggccgc gccacc atgtacagcatgcagctcgcat-3'(SEQ ID NO: 3);Forward primer: 5'-gctcacttacag gcggccgc gccacc atgtacagcatgcagctcgcat-3' (SEQ ID NO: 3);
Reverse primer: 5'-ggtaagatgctc gaattc ttattgagggcttgttgaga-3'(SEQ ID NO: 4)Reverse primer: 5'-ggtaagatgctc gaattc ttattgagggcttgttgaga-3' (SEQ ID NO: 4)
3) IL12p35 T2A IL12p40:3) IL12p35 T2A IL12p40:
1st PCR, Forward primer: 5'-gctcacttacag gcggccgc gccacc atgtgtcaatcacgctacct-3'(SEQ ID NO: 5);1 st PCR, Forward primer: 5'-gctcacttacag gcggccgc gccacc atgtgtcaatcacgctacct-3' (SEQ ID NO: 5);
Overlapping Reverse primer: 5'-cacgtcaccgcatgttagaagacttcctctgccctcagcggccgcggcgga-3'(SEQ ID NO: 6);Overlapping Reverse primer: 5'-cacgtcaccgcatgttagaagacttcctctgccctcagcggccgcggcgga-3' (SEQ ID NO: 6);
Overlapping Forward primer: 5'-ctaacatgcggtgacgtggaggagaatcccggccct tccggaatgtgtcct-3'(SEQ ID NO: 7);Overlapping Forward primer: 5'-ctaacatgcggtgacgtggaggagaatcccggccct tccggaatgtgtcct-3' (SEQ ID NO: 7);
Reverse primer: 5'-ggtaagatgctc gaattc ctaggatcggaccctgcagg-3'(SEQ ID NO: 8);Reverse primer: 5'-ggtaagatgctc gaattc ctaggatcggaccctgcagg-3' (SEQ ID NO: 8);
2nd PCR, Forward primer: 5'-gctcacttacag gcggccgc gccacc atgtgtcctcagaag-3'(SEQ ID NO: 9);2 nd PCR, Forward primer: 5'-gctcacttacag gcggccgc gccacc atgtgtcctcagaag-3' (SEQ ID NO: 9);
Reverse primer: 5'-ggtaagatgctc gaattc ctaggatcggaccctgcagg-3'(SEQ ID NO: 10)Reverse primer: 5'-ggtaagatgctc gaattc ctaggatcggaccctgcagg-3' (SEQ ID NO: 10)
4) IL-21:4) IL-21:
Forward primer: 5'-gctcacttacag gcggccgc gccacc atggagaggacccttgtctg-3'(SEQ ID NO: 11);Forward primer: 5'-gctcacttacag gcggccgc gccacc atggagaggacccttgtctg-3' (SEQ ID NO: 11);
Reverse primer: 5'-ggtaagatgctc gaattc ctaggagagatgctgatgaa-3'(SEQ ID NO: 12)Reverse primer: 5'-ggtaagatgctc gaattc ctaggagagatgctgatgaa-3' (SEQ ID NO: 12)
PCR은 TOYOBO cat no. KOD FX 1110 kit를 사용하였으며 KOD FX용 2x PCR buffer 12.5 ㎕, 2mM dNTPs 5 ㎕, 10pmol /㎕ Forward Primer 1.0 ㎕, 10pmol /㎕Reverse Primer 1.0 ㎕, Template DNA (Plasmid DNA) 1 ㎕ (50ng), PCR grade water 4 ㎕ 및 KOD FX taq polymerase (1.0U/㎕) 0.5 ㎕의 PCR mixture 25 ㎕를 전-변성단계(94℃, 2min) 1 cycle, 변성(98℃, 10 sec)-어닐링(58℃, 30 sec)-연장(68℃, 30 sec)의 35 cycles, 최종 연장단계(68℃, 5min)의 조건으로 증폭하였다. PCR was performed using TOYOBO cat no. KOD FX 1110 kit was used, 2x PCR buffer for KOD FX 12.5 μl, 2mM dNTPs 5 μl, 10pmol/μl Forward Primer 1.0 μl, 10pmol/μl Reverse Primer 1.0 μl, Template DNA (Plasmid DNA) 1 μl (50ng), PCR 25 μl of PCR mixture of 4 μl of grade water and 0.5 μl of KOD FX taq polymerase (1.0U/μl) was pre-denatured (94℃, 2min) 1 cycle, denatured (98℃, 10 sec)-annealed (58℃, 30 sec)-extension (68° C., 30 sec) was amplified under the conditions of 35 cycles and a final extension step (68° C., 5 min).
PCR 생성물을 Not I 및 EcoR I 부위를 갖는 레트로바이러스 벡터 pMP71로 클로닝하고 Taq 폴리머라제 오류를 확인하기 위해 서열분석하였다. 재조합 레트로바이러스의 생성을 위해, 5×106 Plat-E 세포를 5 ㎍/mL의 poly-L-Lysine(Sigma, St. Louis, MO)으로 코팅된 100-mm 배양 플레이트에 씨딩하였다. 20시간 후, 12 ㎍의 클로닝된 pMP71 플라스미드 및 레트로바이러스 패키징 플라스미드(6.3 ㎍, pCL-Eco)를 제조업자의 지시에 따라 lipofectamin 2000(Invitrogen, Carlsbad, CA)을 사용하여 동시에 Plat-E 세포로 형질감염시켰다. 이틀 후, 재조합 레트로바이러스를 수확하고 293T 세포로 적정한 후 형질도입 실험에 사용하였다.The PCR product was cloned into the retroviral vector pMP71 with Not I and EcoR I sites and sequenced to identify Taq polymerase errors. For generation of recombinant retroviruses, 5×10 6 Plat-E cells were seeded in 100-mm culture plates coated with 5 μg/mL of poly-L-Lysine (Sigma, St. Louis, MO). After 20 h, 12 μg of cloned pMP71 plasmid and retroviral packaging plasmid (6.3 μg, pCL-Eco) were simultaneously transfected into Plat-E cells using lipofectamin 2000 (Invitrogen, Carlsbad, CA) according to the manufacturer's instructions. did it Two days later, the recombinant retrovirus was harvested, titrated with 293T cells, and used for transduction experiments.
(재조합 레트로바이러스의 시험관내 활성화된 살해 세포로의 형질도입)(Transduction of Recombinant Retrovirus into Activated Killer Cells In Vitro)
살해 세포는 Pmel-1 마우스의 비장에서 수득하였다. 시험관내 사전-활성화를 위해, 100 IU/mL 인간 인터루킨 2(hIL-2)의 존재 하에 anti-CD3ε(BioXcell, 145-2C11) 1 ㎍/mL, anti-CD28(BioXcell, 37.51) 2 ㎍/mL로 코팅된 96-웰 플레이트에서 웰 당 2.5×105 세포에서 CD8 T 세포를 공동 배양하였다. 6시간 후, 상등액을 버리고, 보조자극 리간드, 사이토카인 및 케모카인 수용체를 코딩하는 재조합 레트로바이러스를 개별적으로 첨가하였다(Mulltiplicity of infection = 0.5). 세포를 8 ㎍/mL 폴리브렌(polybrene, Sigma)의 존재하에 25℃에서 1시간 동안 2,500 rpm에서 원심분리하고, anti-CD3ε(BioXcell, 145-2C11) 0.5 ㎍/mL, anti-CD28(BioXcell, 37.51) 1 ㎍/mL, 인간 인터루킨 2(hIL-2) 100 IU/mL 를 함유하는 배양 배지로 교체하였다. 16시간 후(overnight), 수득된 유전자 변형된 살해 세포를 입양 전이에 사용하였다.killing Cells were obtained from the spleen of Pmel-1 mice. For in vitro pre-activation, anti-CD3ε (BioXcell, 145-2C11) 1 μg/mL, anti-CD28 (BioXcell, 37.51) 2 μg/mL in the presence of 100 IU/mL human interleukin 2 (hIL-2) CD8 T cells were co-cultured at 2.5×10 5 cells per well in 96-well plates coated with . After 6 hours, the supernatant was discarded and recombinant retroviruses encoding costimulatory ligands, cytokines and chemokine receptors were individually added (Mulltiplicity of infection = 0.5). Cells were centrifuged at 2,500 rpm for 1 hour at 25° C. in the presence of 8 μg/mL polybrene (Sigma), anti-CD3ε (BioXcell, 145-2C11) 0.5 μg/mL, anti-CD28 (BioXcell, 37.51) 1 μg/mL, and replaced with a culture medium containing 100 IU/mL of human interleukin 2 (hIL-2). After 16 hours (overnight), the obtained genetically modified killer cells were used for adoptive transfer.
(유전자-변형 살해 세포의 기능 확인)(Confirmation of function of gene-modified killer cells)
상기 방식으로 살해 세포에 유전자를 도입한 후, 3일 동안 배양하였다. 배양 상등액을 수득해 IL-2, IL-12 및 IL-21을 ELISA kit(R&D Systems)를 사용하여 사이토카인 분비량을 측정하였다. After the gene was introduced into the killer cells in the above manner, they were cultured for 3 days. To obtain a culture supernatant, IL-2, IL-12 and IL-21 cytokine secretion was measured using an ELISA kit (R&D Systems).
(치료적 항종양 효과의 평가)(Evaluation of therapeutic antitumor effect)
생체 내에서 치료 효과를 평가하기 위해, 마우스의 후방 측면에 1×105 B16 세포를 피하 접종하고 7일째에 유전자 조작된 2×106 살해 세포를 1회 혹은 3일 간격으로 3회 입양 전이하였다. 입양 전이되지 않은 마우스(No vax)를 대조군으로 포함시켰다. 종양 성장은 개별 마우스에서 생체 내 생물 발광 영상화의 시간 경과에 의해 모니터링되었고, 종양 크기는 캘리퍼스를 사용하여 두 개의 대향 직경을 3-4일마다 개별 마우스에서 측정되었으며 종양크기는 mm2의 종양 면적으로 제시되었다. 종양 면적이 400 mm2에 도달하면 마우스를 안락사시켰다. 결과는 실험이 종료될 때까지 다양한 시점에서 모든 치료 그룹에 대한 평균 종양 크기를 (mm2) ± 표준편차로 표시된다. To evaluate the therapeutic effect in vivo, 1×10 5 B16 cells were subcutaneously inoculated into the posterior flank of mice, and on day 7, genetically engineered 2×10 6 killer cells were adoptively transferred once or three times at 3-day intervals. . Mice not adoptively transferred (No vax) were included as controls. Tumor growth was monitored by time course of in vivo bioluminescence imaging in individual mice, tumor size was measured in individual mice every 3-4 days using calipers, two opposite diameters were measured in individual mice, and tumor size was measured with a tumor area in mm2 . presented Mice were euthanized when the tumor area reached 400 mm 2 . Results are expressed as mean tumor size (mm 2 ) ± standard deviation for all treatment groups at various time points until the end of the experiment.
(면역능 평가)(Immunity evaluation)
항원 특이적 CD8 T세포의 반응을 측정하기 위해 비장세포를 37℃에서 1 ㎍/mL GolgiPlug(BD Bioscience, San Diego, CA)와 함께 배양하였다. 6시간 후, MHCII, CD8a 및 IFNγ에 대한 형광 결합 항체를 사용하여 세포내 IFNγdp eogo 세포를 염색하였다. 입양 전이된 마우스의 면역능을 평가하기 위해, 마우스의 비장에서 CD8 T 세포를 수득하여 IFNγ-EliSpot(Millipore) 을 수행하였다. To measure the antigen-specific CD8 T cell response, splenocytes were incubated with 1 μg/mL GolgiPlug (BD Bioscience, San Diego, CA) at 37°C. After 6 hours, intracellular IFNγdp eogo cells were stained using fluorescent binding antibodies to MHCII, CD8a and IFNγ. To evaluate the immune capacity of adoptively transferred mice, IFNγ-EliSpot (Millipore) was performed by obtaining CD8 T cells from the mouse spleen.
(종양부위로 이동한 입양전이 세포 확인/생체내 이동(migration) 확인)(Confirmation of adoptive transfer cells that have migrated to the tumor site/Confirmation of migration in vivo)
마지막 입양 전이로부터 7일 뒤에, 각 그룹의 마우스를 희생하여 비장과 종양부위를 절개하고 gentleMACS Dissociator(Miltenyi)를 사용하여 조직을 분리한 뒤 70-㎛ nylon mesh에 여과하였다. 입양 전이 세포 마커 CD90.1에 대한 형광 결합 항체를 사용하여 비장 및 종양 부위의 침윤 T 세포에서의 입양 전이 세포 비중을 분석하였다.Seven days after the last adoptive transfer, mice in each group were sacrificed, the spleen and tumor sites were incised, and the tissues were separated using the gentleMACS Dissociator (Miltenyi) and filtered through a 70-㎛ nylon mesh. The proportion of adoptive metastasis cells in infiltrating T cells in the spleen and tumor sites was analyzed using a fluorescence-binding antibody against the adoptive metastasis cell marker CD90.1.
<실시예 2> 시험관내에서 활성화된 살해 세포에 전이된 보조자극분자의 발현 및 항종양 효과<Example 2> Expression and antitumor effect of costimulatory molecules metastasized to activated killer cells in vitro
도 1은 생체외 활성화된 Pmel-1 T 세포에 GFP와 마우스 CD70, 마우스 CD70-OX40L(각각 Pmel-GFP, Pmel-CD70, Pmel-CD70-OX40L)를 암호화하는 재조합 레트로바이러스가 형질도입된 결과를 나타낸 것으로, 도 1a는 형질도입된 Pmel-1 CD8 T 세포의 발현을 형질도입 후 3일째에 각 그룹의 세포를 수득하여 유세포 분석기로 분석한 결과이며, 도 1b-d는 유전자 전이 Pmel-1 CD8 T 세포의 치료적 항종양 효과를 나타낸 것으로, B6 마우스(그룹당 3마리)에 0일에 1×105 B16 세포를 피하로 접종하고 7일에 2×106 유전자 전이 Pmel-1 CD8 T 세포를 받았다. 백신 접종되지 않은 마우스(No vax)를 대조군으로 포함시켰다. 종양 성장은 개별 마우스에서 생체 내 생물 발광 영상화의 시간 경과에 의해 모니터링되었다(왼쪽 패널). 종양 크기는 개별 마우스에서 측정되었으며 종양크기는 mm2의 종양 면적으로 제시되었다(오른쪽 패널).1 shows the results of transduction of recombinant retroviruses encoding GFP, mouse CD70, and mouse CD70-OX40L (Pmel-GFP, Pmel-CD70, Pmel-CD70-OX40L, respectively) into in vitro activated Pmel-1 T cells. As shown, Figure 1a is the result of analyzing the expression of transduced Pmel-1 CD8 T cells by flow cytometry after obtaining cells from each group on the 3rd day after transduction, and Figures 1b-d are gene transfer Pmel-1 CD8 To show the therapeutic antitumor effect of T cells, B6 mice (3 per group) were subcutaneously inoculated with 1×10 5 B16 cells on day 0 and 2×10 6 transgenic Pmel-1 CD8 T cells were injected on day 7 received. Non-vaccinated mice (No vax) were included as controls. Tumor growth was monitored by time course of in vivo bioluminescence imaging in individual mice (left panel). Tumor size was measured in individual mice and tumor size was presented as tumor area in mm 2 (right panel).
실험 결과, 레트로바이러스의 시험관내 형질도입 효율은 CD8 T 세포상에서의 발현 수준이 후속적으로 증가되었고(도 1a), 모든 변형된 CD8 T 세포는 형질도입 후에 생존 가능함을 나타내었다(미도시됨). 형질도입된 Pmel-1 T 세포(Pmel-GFP, CD70, CD70-OX40L 기반)를 7일 확립 된 B16 흑색종에 대해 입양 전이의 치료 효능을 평가한 결과(도 1b-d), CD70 및 CD70-OX40L 유전자가 형질주입된 Pmel-T 세포의 항종양 효과는 Pmel-GFP 또는 입양 전이 되지 않은 마우스와 비교하여 무시할만한 치료 효과를 가졌다. As a result of the experiment, the in vitro transduction efficiency of retroviruses showed that the expression level on CD8 T cells was subsequently increased (Fig. 1a), and all modified CD8 T cells were viable after transduction (not shown). . As a result of evaluating the therapeutic efficacy of adoptive transfer of transduced Pmel-1 T cells (based on Pmel-GFP, CD70, CD70-OX40L) against B16 melanoma established at 7 days (Fig. 1b-d), CD70 and CD70- The antitumor effect of Pmel-T cells transfected with the OX40L gene had a negligible therapeutic effect compared to mice that were not Pmel-GFP or adoptive transfer.
<실시예 3> 시험관내에서 활성화된 살해 세포에 전이된 사이토카인의 항종양 효과<Example 3> Anti-tumor effect of cytokines metastasized to activated killer cells in vitro
도 2는 생체외 활성화된 Pmel-1 T 세포에 마우스 IL-2, IL-12 및 IL-21 유전자를 암호화하는 재조합 레트로바이러스로 형질도입된 결과를 나타낸 것으로, 도 2a는 Pmel-1 CD8 T 세포에 유전자를 형질도입 후 3일째에 각 그룹의 배양 상등액을 수득하여 ELISA로 사이토카인 분비량을 측정한 결과이며, 도 2b-e는 유전자 전이 Pmel-1 CD8 T 세포의 치료적 항종양 효과를 나타낸 것으로 B6 마우스(그룹당 3마리)에 0일에 1×105 B16 세포를 피하로 접종하고 7일에 2×106 유전자 전이 Pmel-1 CD8 T 세포를 받았다. 백신 접종되지 않은 마우스(No vax)를 대조군으로 포함시켰다. 종양 성장은 개별 마우스에서 생체 내 생물 발광 영상화의 시간 경과에 의해 모니터링되었다(왼쪽 패널). 종양 크기는 개별 마우스에서 측정되었으며 종양크기는 mm2의 종양 면적으로 제시되었다(오른쪽 패널).Figure 2 shows the result of transduction of the recombinant retrovirus encoding mouse IL-2, IL-12 and IL-21 genes into the in vitro activated Pmel-1 T cells, Figure 2a is Pmel-1 CD8 T cells On the 3rd day after transduction of the gene, the culture supernatant of each group was obtained and cytokine secretion was measured by ELISA, and FIGS. 2b-e show the therapeutic antitumor effect of the transgenic Pmel-1 CD8 T cells. B6 mice (3 per group) were subcutaneously inoculated with 1×10 5 B16 cells on day 0 and received 2×10 6 transgenic Pmel-1 CD8 T cells on day 7. Non-vaccinated mice (No vax) were included as controls. Tumor growth was monitored by time course of in vivo bioluminescence imaging in individual mice (left panel). Tumor size was measured in individual mice and tumor size was presented as tumor area in mm 2 (right panel).
실험 결과, 사이토카인 유전자를 암호화하는 레트로바이러스로 형질도입된 Pmel-1 T 세포상에서 도입된 사이토카인이 정상적으로 기능하였고(도 2a), 모든 변형된 CD8 T 세포는 형질도입 후에 생존 가능함을 나타내었다(미도시됨). 형질도입된 Pmel-1 T 세포(Pmel-GFP, IL-2, IL-12, IL-21 기반)를 7일 확립된 B16 흑색종에 대해 입양 전이의 치료 효능을 평가한 결과(도 2b-e), IL-2, IL-12 및 IL-21 유전자가 형질도입된 Pmel-1 T세포의 항종양 효과는 Pmel-GFP 또는 입양 전이 되지 않은 마우스와 비교하여 치료적 이점을 나타내었고 그 중 Pmel-IL-12 입양 전이된 마우스에서 실질적으로 더 높은 항 종양 효과를 가졌다.As a result of the experiment, it was shown that the introduced cytokine functioned normally on Pmel-1 T cells transduced with a retrovirus encoding a cytokine gene (Fig. 2a), and that all modified CD8 T cells were viable after transduction (Fig. not shown). As a result of evaluating the therapeutic efficacy of adoptive transfer against B16 melanoma established by transduced Pmel-1 T cells (based on Pmel-GFP, IL-2, IL-12, IL-21) for 7 days (Fig. 2b-e) ), IL-2, IL-12 and IL-21 gene-transduced Pmel-1 T cells showed therapeutic advantages compared to Pmel-GFP or non-adoptive mice, among which Pmel- IL-12 had a substantially higher antitumor effect in adoptive transfer mice.
<실시예 4> 보조자극분자-CD70 및 사이토카인-발현 살해 세포의 항종양 효과<Example 4> Anti-tumor effect of costimulatory molecule-CD70 and cytokine-expressing killer cells
도 3은 생체외 활성화된 Pmel-1 T 세포에 GFP와 마우스 CD70, IL-2-CD70, IL-12-CD70, IL-21-CD70(각각 Pmel-GFP, Pmel-CD70, Pmel-IL-2-CD70, Pmel-IL-12-CD70, Pmel-IL-21-CD70)를 암호화하는 재조합 레트로바이러스로 형질도입된 결과를 나타낸 것으로, 도 3a는 형질도입된 Pmel-1 CD8 T 세포의 발현을 형질도입 후 3일째에 각 그룹의 세포를 수득하여 유세포 분석기로 발현 효율과 도 3b-e는 각 그룹의 배양 상등액을 수득하여 ELISA로 사이토카인 분비량을 측정한 결과이며, 도 3f는 유전자 전이 Pmel-1 CD8 T 세포의 치료적 항종양 효과를 나타낸 것으로 B6 마우스(그룹당 3마리)에 0일에 1×105 B16 세포를 피하로 접종하고 7일에 2×106 유전자 전이 Pmel-1 CD8 T 세포를 받았다. 백신 접종되지 않은 마우스(No vax)를 대조군으로 포함시켰다. 종양 성장은 개별 마우스에서 생체 내 생물 발광 영상화의 시간 경과에 의해 모니터링되었다(왼쪽 패널). 종양 크기는 개별 마우스에서 측정되었으며 종양크기는 mm2의 종양 면적으로 제시되었다(오른쪽 패널).3 shows GFP and mouse CD70, IL-2-CD70, IL-12-CD70, and IL-21-CD70 (Pmel-GFP, Pmel-CD70, Pmel-IL-2, respectively) in activated Pmel-1 T cells in vitro. -CD70, Pmel-IL-12-CD70, Pmel-IL-21-CD70) shows the results of transduction with a recombinant retrovirus encoding the transduced, Figure 3a is the expression of the transduced Pmel-1 CD8 T cells. Cells from each group were obtained on the 3rd day after introduction and expression efficiency by flow cytometry, and FIGS. 3b-e are the results of measuring cytokine secretion by ELISA by obtaining the culture supernatant of each group, and FIG. 3f is the gene transfer Pmel-1 To show the therapeutic antitumor effect of CD8 T cells, B6 mice (3 per group) were subcutaneously inoculated with 1×10 5 B16 cells on day 0 and 2×10 6 transgenic Pmel-1 CD8 T cells on day 7 received. Non-vaccinated mice (No vax) were included as controls. Tumor growth was monitored by time course of in vivo bioluminescence imaging in individual mice (left panel). Tumor size was measured in individual mice and tumor size was presented as tumor area in mm 2 (right panel).
실험 결과, 레트로바이러스의 시험관내 형질도입 효율은 CD8 T 세포상에서의 발현 수준이 후속적으로 증가되었고(도 3a), 형질도입된 사이토카인이 정상적으로 기능하였다(도 3b-e). 모든 변형된 CD8 T 세포는 형질도입 후에 생존 가능함을 나타내었다(미도시됨). 형질도입된 Pmel-1 T 세포(Pmel-GFP, Pmel-CD70, Pmel-IL-2-CD70, Pmel-IL-12-CD70, Pmel-IL-21-CD70 기반)를 7일 확립된 B16 흑색종에 대해 입양 전이의 치료 효능을 평가한 결과(도 3f), IL-2-CD70, IL-12-CD70 및 IL-21-CD70 유전자가 형질도입된 Pmel-T세포의 항종양 효과는 Pmel-GFP, Pmel-CD70 또는 입양 전이 되지 않은 마우스와 비교하여 치료적 이점을 나타내었고 그 중 Pmel-IL-12-CD70 입양 전이된 마우스에서 실질적으로 더 높은 항 종양 효과를 가졌다.As a result of the experiment, the in vitro transduction efficiency of retroviruses was subsequently increased in the expression level on CD8 T cells ( FIG. 3A ), and the transduced cytokines functioned normally ( FIGS. 3B-E ). All modified CD8 T cells were shown to be viable after transduction (not shown). Transduced Pmel-1 T cells (based on Pmel-GFP, Pmel-CD70, Pmel-IL-2-CD70, Pmel-IL-12-CD70, Pmel-IL-21-CD70) established B16 melanoma at 7 days As a result of evaluating the therapeutic efficacy of adoptive transfer against (Fig. 3f), the antitumor effect of Pmel-T cells transduced with IL-2-CD70, IL-12-CD70 and IL-21-CD70 genes was determined by Pmel-GFP. , showed a therapeutic advantage compared to mice that were not Pmel-CD70 or adoptively transferred, among which Pmel-IL-12-CD70 had a substantially higher antitumor effect in mice with adoptive transfer.
<실시예 5> 케모카인 수용체 (CXCR3)-발현 살해 세포의 항종양 효과<Example 5> Chemokine receptor (CXCR3)-expressing killer cells antitumor effect
도 4는 생체외 활성화된 Pmel-1 T 세포에 GFP와 마우스 케모카인 수용체 CXCR3(각각 Pmel-GFP, Pmel-CXCR3)를 암호화하는 재조합 레트로바이러스로 형질도입된 결과를 나타낸 것으로, 도 4a는 형질도입된 Pmel-1 CD8 T 세포의 발현을 형질도입 후 3일째에 각 그룹의 세포를 수득하여 유세포 분석기로 분석한 결과이며, 도 4b-e는 유전자 전이 Pmel-1 CD8 T 세포의 치료적 항종양 효과를 나타낸 것으로 B6 마우스(그룹당 3마리)에 0일에 1×105 B16 세포를 피하로 접종하고 7일에 2×106 유전자 전이 Pmel-1 CD8 T 세포를 받았다. 백신 접종되지 않은 마우스(No vax)를 대조군으로 포함시켰다. 종양 성장은 개별 마우스에서 생체 내 생물 발광 영상화의 시간 경과에 의해 모니터링되었다(왼쪽 패널). 종양 크기는 개별 마우스에서 측정되었으며 종양크기는 mm2의 종양 면적으로 제시되었다(오른쪽 패널).Figure 4 shows the result of transduction of in vitro activated Pmel-1 T cells with a recombinant retrovirus encoding GFP and mouse chemokine receptor CXCR3 (Pmel-GFP, Pmel-CXCR3, respectively), Figure 4a is the transduced The expression of Pmel-1 CD8 T cells is the result of obtaining cells from each group on the 3rd day after transduction and analyzing them by flow cytometry. As shown, B6 mice (3 per group) were subcutaneously inoculated with 1×10 5 B16 cells on day 0 and received 2×10 6 transgenic Pmel-1 CD8 T cells on day 7. Non-vaccinated mice (No vax) were included as controls. Tumor growth was monitored by time course of in vivo bioluminescence imaging in individual mice (left panel). Tumor size was measured in individual mice and tumor size was presented as tumor area in mm 2 (right panel).
실험 결과, 레트로바이러스의 시험관내 형질도입 효율은 CD8 T 세포상에서의 발현 수준이 후속적으로 증가되었고(도 4a), 모든 변형된 CD8 T 세포는 형질도입 후에 생존 가능함을 나타내었다(미도시됨). 형질도입된 Pmel-1 T 세포(Pmel-GFP, Pmel-CXCR3)를 7일 확립된 B16 흑색종에 대해 입양 전이의 치료 효능을 평가한 결과(도 4b-e), 케모카인 수용체 CXCR3 유전자가 형질도입된 Pmel-1 T 세포의 항종양 효과는 Pmel-GFP 또는 입양 전이 되지 않은 마우스와 비교하여 실질적으로 더 높은 항 종양 효과를 가졌다.As a result of the experiment, the in vitro transduction efficiency of retroviruses showed that the expression level on CD8 T cells was subsequently increased (Fig. 4a), and all modified CD8 T cells were viable after transduction (not shown). . As a result of evaluating the therapeutic efficacy of adoptive transfer of transduced Pmel-1 T cells (Pmel-GFP, Pmel-CXCR3) against B16 melanoma established on day 7 (Fig. 4b-e), the chemokine receptor CXCR3 gene was transduced The antitumor effect of Pmel-1 T cells was substantially higher than that of Pmel-GFP or adoptive non-transferred mice.
<실시예 6> 케모카인 수용체 CXCR3 과 사이토카인-발현 살해 세포의 항종양 효과<Example 6> Chemokine receptor CXCR3 and cytokine-expressing killer cells antitumor effect
도 5는 생체외 활성화된 Pmel-1 T 세포에 GFP, 마우스 사이토카인 IL-2, IL-12, IL-2와 케모카인 수용체 CXCR3(각각 Pmel-GFP, Pmel-IL-2-CXCR3, Pmel-IL-12-CXCR3, Pmel-IL-21-CXCR3)를 암호화하는 재조합 레트로바이러스로 형질도입된 결과를 나타낸 것으로, 도 5a는 형질도입된 Pmel-1 CD8 T 세포의 발현을 형질도입 후 3일째에 각 그룹의 세포를 수득하여 유세포 분석기로 발현 효율과 도 5b-e는 각 그룹의 배양 상등액을 수득하여 ELISA로 사이토카인 분비량을 측정한 결과이며, 도 5f는 유전자 전이 Pmel-1 CD8 T 세포의 치료적 항종양 효과를 나타낸 것으로 B6 마우스(그룹당 3마리)에 0일에 1×105 B16 세포를 피하로 접종하고 7일에 2×106 유전자 전이 Pmel-1 CD8 T 세포를 받았다. 백신 접종되지 않은 마우스(No vax)를 대조군으로 포함시켰다. 종양 성장은 개별 마우스에서 생체 내 생물 발광 영상화의 시간 경과에 의해 모니터링되었다(왼쪽 패널). 종양 크기는 개별 마우스에서 측정되었으며 종양크기는 mm2의 종양 면적으로 제시되었다(오른쪽 패널).5 shows GFP, mouse cytokines IL-2, IL-12, IL-2 and chemokine receptor CXCR3 (Pmel-GFP, Pmel-IL-2-CXCR3, Pmel-IL, respectively) in activated Pmel-1 T cells in vitro. -12-CXCR3, Pmel-IL-21-CXCR3) shows the transduction results with a recombinant retrovirus encoding, FIG. 5a shows the expression of transduced Pmel-1 CD8 T cells at 3 days after transduction. Cells of a group were obtained and expression efficiency by flow cytometry, and FIGS. 5b-e are the results of obtaining the culture supernatant of each group and measuring the cytokine secretion by ELISA, and FIG. 5f is the therapeutic effect of transgenic Pmel-1 CD8 T cells. To show antitumor effect, B6 mice (3 per group) were subcutaneously inoculated with 1×10 5 B16 cells on day 0 and received 2×10 6 transgenic Pmel-1 CD8 T cells on day 7. Non-vaccinated mice (No vax) were included as controls. Tumor growth was monitored by time course of in vivo bioluminescence imaging in individual mice (left panel). Tumor size was measured in individual mice and tumor size was presented as tumor area in mm 2 (right panel).
실험 결과, 레트로바이러스의 시험관내 형질도입 효율은 CD8 T 세포상에서의 발현 수준이 후속적으로 증가되었고(도 5a), 형질도입된 사이토카인이 정상적으로 기능하였다(도 5b-e). 모든 변형된 CD8 T 세포는 형질도입 후에 생존 가능함을 나타내었다(미도시됨). 형질도입된 Pmel-1 T 세포(Pmel-GFP, Pmel-IL-2-CXCR3, Pmel-IL-12-CXCR3, Pmel-IL-21-CXCR3)를 7일 확립된 B16 흑색종에 대해 입양 전이의 치료 효능을 평가한 결과(도 5f), 케모카인 수용체 CXCR3 유전자가 형질도입된 Pmel-T세포의 항종양 효과는 Pmel-GFP 또는 입양 전이 되지 않은 마우스와 비교하여 종양 성장 초기에 치료적 이점을 나타내었고 그 중 Pmel-IL-12-CXCR3 입양 전이된 마우스에서 실질적으로 더 높은 항종양 효과를 가졌다.As a result of the experiment, the in vitro transduction efficiency of retroviruses was subsequently increased in the expression level on CD8 T cells ( FIG. 5A ), and the transduced cytokines functioned normally ( FIGS. 5B-E ). All modified CD8 T cells were shown to be viable after transduction (not shown). Transduced Pmel-1 T cells (Pmel-GFP, Pmel-IL-2-CXCR3, Pmel-IL-12-CXCR3, Pmel-IL-21-CXCR3) were transferred to established B16 melanoma at 7 days of adoptive transfer. As a result of evaluating the therapeutic efficacy (Fig. 5f), the anti-tumor effect of Pmel-T cells transduced with the chemokine receptor CXCR3 gene showed a therapeutic advantage in the early stage of tumor growth compared to mice without Pmel-GFP or adoptive transfer. Among them, Pmel-IL-12-CXCR3 had a substantially higher antitumor effect in adoptively transferred mice.
<실시예 7> 케모카인 수용체 CXCR3 과 사이토카인-발현 살해 세포의 항종양 효과 및 종양부위 이동<Example 7> Chemokine receptor CXCR3 and cytokine-expressing killer cells antitumor effect and tumor site migration
도 6은 생체외 활성화된 Pmel-1 T 세포에 GFP, 마우스 사이토카인 및 케모카인 수용체를 암호화하는 재조합 레트로바이러스로 형질도입된 결과를 나타낸 것으로, 도 6a는 형질도입된 Pmel-1 CD8 T 세포의 발현을 형질도입 후 3일째에 각 그룹의 세포를 수득하여 유세포 분석기로 발현 효율과 각 그룹의 배양 상등액을 수득하여 ELISA로 사이토카인 분비량을 측정한 결과이며, 도 6b-e는 유전자 전이 Pmel-1 CD8 T 세포의 치료적 항종양 효과를 나타낸 것으로 B6 마우스(그룹당 3마리)에 0일에 1×105 B16 세포를 피하로 접종하고 7일에 2×106 유전자 전이 Pmel-1 CD8 T 세포 1회 혹은 3회를 받았다. 백신 접종되지 않은 마우스(No vax)를 대조군으로 포함시켰다. 종양 성장은 개별 마우스에서 생체 내 생물 발광 영상화의 시간 경과에 의해 모니터링되었다(왼쪽 패널). 종양 크기는 개별 마우스에서 측정되었으며 종양크기는 mm2의 종양 면적으로 제시되었다(오른쪽 패널). 도 6f는 B16 세포 접종 후 15일에 각 그룹의 마우스를 희생하여 종양 부위로 이동한 유전자 전이 Pmel-1 CD8 T 세포를 유세포 분석기로 확인하였다. 도 6g는 B16 세포 접종 후 35일에 마우스의 비장에서 CD8 T 세포를 분리하여 B16 세포에 대한 IFNγ 분비량을 EliSpot을 통해 확인하였다. Fig. 6 shows the result of transduction of activated Pmel-1 T cells in vitro with recombinant retroviruses encoding GFP, mouse cytokine and chemokine receptors, and Fig. 6a is the expression of transduced Pmel-1 CD8 T cells. Cells from each group were obtained on the 3rd day after transduction, and the expression efficiency and the culture supernatant of each group were obtained by flow cytometry, and cytokine secretion was measured by ELISA, FIGS. 6b-e are the gene transfer Pmel-1 CD8 To show the therapeutic antitumor effect of T cells, B6 mice (3 per group) were subcutaneously inoculated with 1×10 5 B16 cells on day 0 and 2×10 6 transgenic Pmel-1 CD8 T cells once on day 7 or 3 times. Non-vaccinated mice (No vax) were included as controls. Tumor growth was monitored by time course of in vivo bioluminescence imaging in individual mice (left panel). Tumor size was measured in individual mice and tumor size was presented as tumor area in mm 2 (right panel). 6f shows that the transgenic Pmel-1 CD8 T cells migrated to the tumor site by sacrificing mice of each group on day 15 after B16 cell inoculation were confirmed by flow cytometry. FIG. 6g shows that the CD8 T cells were isolated from the spleen of mice on the 35th day after inoculation of B16 cells, and the amount of IFNγ secretion to the B16 cells was confirmed through EliSpot.
실험 결과, 레트로바이러스의 시험관내 형질도입 효율은 CD8 T 세포상에서의 발현 수준이 후속적으로 증가되었고, 형질도입된 사이토카인이 정상적으로 기능하였다(도 6a). 형질도입된 Pmel-1 T 세포 (Pmel-GFP, Pmel-CXCR3, Pmel-IL-12, Pmel-IL-12-CXCR3)를 7일 확립된 B16 흑색종에 대해 입양 전이의 치료 효능을 평가한 결과(도 6b-e), 케모카인 수용체 CXCR3 및 사이토카인 IL-12가 형질도입된 Pmel-1 T 세포의 항종양 효과는 Pmel-GFP 3회 투여받은 마우스와 비교하여 종양 성장 초기에 치료적 이점을 나타내었고, 그 중 CXCR3 유전자가 형질도입된 Pmel-CXCR3, Pmel-IL-12-CXCR3 를 받은 마우스에서 입양 전이된 세포가 종양부위로 이동하였음을 확인하였다. As a result of the experiment, the in vitro transduction efficiency of retroviruses was subsequently increased in the expression level on CD8 T cells, and the transduced cytokines functioned normally ( FIG. 6A ). Results of evaluating the therapeutic efficacy of adoptive transfer of transduced Pmel-1 T cells (Pmel-GFP, Pmel-CXCR3, Pmel-IL-12, Pmel-IL-12-CXCR3) against B16 melanoma established on day 7 (Fig. 6b-e), the antitumor effect of Pmel-1 T cells transduced with the chemokine receptor CXCR3 and cytokine IL-12 showed a therapeutic advantage in the early stage of tumor growth compared to mice receiving 3 doses of Pmel-GFP. Among them, it was confirmed that adoptively transferred cells migrated to the tumor site in mice receiving Pmel-CXCR3 and Pmel-IL-12-CXCR3 transduced with the CXCR3 gene.
<실시예 8> 케모카인 수용체 CXCR3 및 사이토카인-발현 살해 세포의 투여 횟수에 따른 항종양 효과<Example 8> Chemokine receptor CXCR3 and cytokine-expressing anti-tumor effect according to the number of administration of killer cells
도 7은 생체외 활성화된 Pmel-1 T 세포에 GFP, 마우스 사이토카인 및 케모카인 수용체를 암호화하는 재조합 레트로바이러스로 형질도입된 결과를 나타낸 것으로, 도 7a는 형질도입된 Pmel-1 CD8 T 세포의 발현을 형질도입 후 3일째에 각 그룹의 세포를 수득하여 유세포 분석기로 발현 효율과 도 7b는 각 그룹의 배양 상등액을 수득하여 ELISA로 사이토카인 분비량을 측정한 결과이며, 도 7c-f는 유전자 전이 Pmel-1 CD8 T 세포의 치료적 항종양 효과를 나타낸 것으로 B6 마우스(그룹당 3마리)에 0일에 1×105 B16 세포를 피하로 접종하고 7일부터 3일 간격으로 2×106 유전자 전이 Pmel-1 CD8 T 세포 3회를 투여하였다. 백신 접종되지 않은 마우스(No vax)를 대조군으로 포함시켰다. 종양 성장은 개별 마우스에서 생체 내 생물 발광 영상화의 시간 경과에 의해 모니터링되었다(왼쪽 패널). 종양 크기는 개별 마우스에서 측정되었으며 종양크기는 mm2의 종양 면적으로 제시되었다(오른쪽 패널). 7 shows the results of transduction of activated Pmel-1 T cells in vitro with recombinant retroviruses encoding GFP, mouse cytokine and chemokine receptors, and FIG. 7a shows the expression of transduced Pmel-1 CD8 T cells. Cells from each group were obtained on the third day after transduction, and the expression efficiency of each group was obtained by flow cytometry, and FIG. 7b is the result of obtaining the culture supernatant of each group and measuring the cytokine secretion by ELISA, FIGS. 7c-f are the gene transfer Pmel -1 To show the therapeutic antitumor effect of CD8 T cells, B6 mice (3 per group) were subcutaneously inoculated with 1×10 5 B16 cells on day 0 and 2×10 6 gene transfer Pmel at 3 day intervals from the 7th day. -1 CD8 T cells were administered 3 times. Non-vaccinated mice (No vax) were included as controls. Tumor growth was monitored by time course of in vivo bioluminescence imaging in individual mice (left panel). Tumor size was measured in individual mice and tumor size was presented as tumor area in mm 2 (right panel).
실험 결과, 레트로바이러스의 시험관내 형질도입 효율은 CD8 T 세포상에서의 발현 수준이 후속적으로 증가되었고, 형질도입된 사이토카인이 정상적으로 기능하였다(도 7a, 7b). 형질도입된 Pmel-1 T 세포(Pmel-GFP, Pmel-CXCR3, Pmel-IL-12, Pmel-IL-12-CXCR3)를 7일 확립된 B16 흑색종에 대해 입양 전이 3회 투여받은 마우스의 치료 효능을 평가한 결과(도 7c-f), 케모카인 수용체 CXCR3가 형질도입된 Pmel-T세포의 항종양 효과는 Pmel-IL-12와 Pmel-IL-12-CXCR3 투여받은 마우스와 비교하여 종양 성장 초기에 비슷한 치료적 이점을 나타내었다.As a result of the experiment, the in vitro transduction efficiency of retroviruses was subsequently increased in the expression level on CD8 T cells, and the transduced cytokines functioned normally ( FIGS. 7A and 7B ). Treatment of mice receiving 3 doses of adoptive transfer for 7-day established B16 melanoma with transduced Pmel-1 T cells (Pmel-GFP, Pmel-CXCR3, Pmel-IL-12, Pmel-IL-12-CXCR3) As a result of evaluating the efficacy (Fig. 7c-f), the antitumor effect of Pmel-T cells transduced with the chemokine receptor CXCR3 was early in tumor growth compared to mice receiving Pmel-IL-12 and Pmel-IL-12-CXCR3. showed similar therapeutic benefits.
본 발명은 종양 예방 또는 치료를 위한 입양 면역 요법에 사용할 수 있다.The present invention can be used in adoptive immunotherapy for the prevention or treatment of tumors.

Claims (14)

  1. 케모카인 수용체(C-X-C chemokine receptor) 및 사이토카인 중 하나 이상을 발현하는 변형된 살해 세포.A modified killer cell that expresses one or more of a C-X-C chemokine receptor and a cytokine.
  2. 제1항에 있어서,According to claim 1,
    케모카인 수용체는 CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7, CCR2, CCR4, CCR5, CCR7 및 CCR10으로 이루어진 군에서 선택된 하나 이상인, 변형된 살해 세포.The chemokine receptor is at least one selected from the group consisting of CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7, CCR2, CCR4, CCR5, CCR7 and CCR10, a modified killer cell.
  3. 제1항에 있어서,According to claim 1,
    사이토카인은 IL-2, IL-7, IL-12, IL-15, IL-18 및 IL-21로 이루어진 군에서 선택된 하나 이상인, 변형된 살해 세포.The cytokine is at least one selected from the group consisting of IL-2, IL-7, IL-12, IL-15, IL-18 and IL-21, modified killer cells.
  4. 제1항에 있어서,According to claim 1,
    변형된 살해 세포는 보조자극분자를 추가로 발현하는 것인, 변형된 살해 세포.wherein the modified killer cell further expresses a costimulatory molecule.
  5. 제4항에 있어서,5. The method of claim 4,
    보조자극분자는 CD70, CD134L(OX40L), CD80, CD86, CD54, CD154(CD40L) 및 CD137L(4-1BBL)로 이루어진 군에서 선택된 하나 이상인, 변형된 살해 세포.The costimulatory molecule is at least one selected from the group consisting of CD70, CD134L (OX40L), CD80, CD86, CD54, CD154 (CD40L) and CD137L (4-1BBL), a modified killer cell.
  6. 제1항에 있어서,According to claim 1,
    살해 세포는 종양 침윤 림프구(tumor-infiltrated lymphocytes), 체외배양 항원-특이 T 세포(ex vivo antigen-specific T cells), 자연 살해 세포(natural killer cell), 자연 살해 T 세포(natural killer T cell), 감마 델타 T 세포(gamma delta T cell) 및 키메라 항원 수용체(CAR; chimeric antigen receptor) 또는 T 세포 수용체(TCR: T cell receptor)를 장착한 T 세포로 이루어진 군에서 선택된 하나 이상인, 변형된 살해 세포.Killer cells include tumor-infiltrated lymphocytes, ex vivo antigen-specific T cells, natural killer cells, natural killer T cells, A modified killer cell, at least one selected from the group consisting of gamma delta T cells and T cells with a chimeric antigen receptor (CAR) or T cell receptor (TCR).
  7. 제6항에 있어서,7. The method of claim 6,
    키메라 항원 수용체 또는 T 세포 수용체를 장착한 T 세포는 CD4+T 세포, CD8+T 세포, 재조합 종양 침윤 림프구(tumor-infiltrated lymphocytes), 재조합 자연 살해 세포(natural killer cell), 재조합 자연 살해 T 세포(natural killer T cell) 및 재조합 감마 델타 T 세포(gammadelta T cell)로 이루어진 군에서 선택된 하나 이상인, 변형된 살해 세포.T cells equipped with chimeric antigen receptors or T cell receptors include CD4 + T cells, CD8 + T cells, recombinant tumor-infiltrated lymphocytes, recombinant natural killer cells, recombinant natural killer T cells ( At least one modified killer cell selected from the group consisting of natural killer T cells and recombinant gamma delta T cells.
  8. 케모카인 수용체 및 사이토카인 중 하나 이상을 살해 세포에 도입하는 단계를 포함하는 인 비트로에서 변형된 살해 세포의 제조방법.A method for producing a modified killer cell in vitro comprising the step of introducing one or more of a chemokine receptor and a cytokine into the killer cell.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 방법은 살해 세포에 보조자극분자를 도입하는 단계를 추가로 포함하는, 인 비트로에서 변형된 살해 세포의 제조방법.The method further comprises the step of introducing a co-stimulatory molecule into the killer cell, the method for producing a modified killer cell in vitro.
  10. 제1항에 따른 변형된 살해 세포를 포함하는 항암용 조성물.An anticancer composition comprising the modified killer cell according to claim 1 .
  11. 제10항에 있어서,11. The method of claim 10,
    암은 폐암, 위암, 결장암, 유방암, 골암, 췌장암, 피부암, 두부암, 두경부암, 흑색종, 자궁암, 난소암, 대장암, 소장암, 직장암, 항문부근암, 나팔관암종, 자궁내막암, 자궁경부암, 질암, 음문암, 호지킨병(Hodgkin's disease), 식도암, 임파선암, 방광암, 담낭암, 내분비선암, 전립선암, 부신암, 연조직 육종, 요도암, 음경암, 만성 또는 급성 백혈병, 림프구 림프종, 신장암, 수뇨관암, 신장골반암, 혈액암, 뇌암, 중추신경계(CNS; central nervous system) 종양, 척수 종양, 뇌간 신경교종 또는 뇌하수체 선종인, 항암용 조성물.Cancers include lung cancer, stomach cancer, colon cancer, breast cancer, bone cancer, pancreatic cancer, skin cancer, head cancer, head and neck cancer, melanoma, uterine cancer, ovarian cancer, colorectal cancer, small intestine cancer, rectal cancer, perianal cancer, fallopian tube carcinoma, endometrial cancer, uterus Cervical cancer, vaginal cancer, vulvar cancer, Hodgkin's disease, esophageal cancer, lymph gland cancer, bladder cancer, gallbladder cancer, endocrine adenocarcinoma, prostate cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, penile cancer, chronic or acute leukemia, lymphocytic lymphoma, Renal cancer, ureter cancer, renal pelvic cancer, blood cancer, brain cancer, central nervous system (CNS) tumor, spinal cord tumor, brainstem glioma or pituitary adenoma, anticancer composition.
  12. 치료적으로 유효한 양의 제1항에 따른 변형된 살해 세포를 이를 필요로 하는 개체에 투여하는 단계를 포함하는 암의 치료방법.A method for treating cancer, comprising administering a therapeutically effective amount of the modified killer cell according to claim 1 to a subject in need thereof.
  13. 제12항에 있어서,13. The method of claim 12,
    암은 폐암, 위암, 결장암, 유방암, 골암, 췌장암, 피부암, 두부암, 두경부암, 흑색종, 자궁암, 난소암, 대장암, 소장암, 직장암, 항문부근암, 나팔관암종, 자궁내막암, 자궁경부암, 질암, 음문암, 호지킨병(Hodgkin's disease), 식도암, 임파선암, 방광암, 담낭암, 내분비선암, 전립선암, 부신암, 연조직 육종, 요도암, 음경암, 만성 또는 급성 백혈병, 림프구 림프종, 신장암, 수뇨관암, 신장골반암, 혈액암, 뇌암, 중추신경계(CNS; central nervous system) 종양, 척수 종양, 뇌간 신경교종 또는 뇌하수체 선종인, 암의 치료방법.Cancers include lung cancer, stomach cancer, colon cancer, breast cancer, bone cancer, pancreatic cancer, skin cancer, head cancer, head and neck cancer, melanoma, uterine cancer, ovarian cancer, colorectal cancer, small intestine cancer, rectal cancer, perianal cancer, fallopian tube carcinoma, endometrial cancer, uterus Cervical cancer, vaginal cancer, vulvar cancer, Hodgkin's disease, esophageal cancer, lymph gland cancer, bladder cancer, gallbladder cancer, endocrine adenocarcinoma, prostate cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, penile cancer, chronic or acute leukemia, lymphocytic lymphoma, Renal cancer, ureter cancer, renal pelvic cancer, blood cancer, brain cancer, central nervous system (CNS) tumor, spinal cord tumor, brain stem glioma or pituitary adenoma, a method of treating cancer.
  14. 암 치료용 의약 제조에 사용하기 위한 제1항에 따른 변형된 살해 세포의 용도.Use of a modified killer cell according to claim 1 for the manufacture of a medicament for the treatment of cancer.
PCT/KR2022/001747 2021-02-05 2022-02-04 Modified killer cells, preparation method therefor, and pharmaceutical use thereof WO2022169291A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210016857A KR20220113092A (en) 2021-02-05 2021-02-05 Modified killer cells, method for prearing the same, and pharmaceutical use thereof
KR10-2021-0016857 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022169291A1 true WO2022169291A1 (en) 2022-08-11

Family

ID=82742399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001747 WO2022169291A1 (en) 2021-02-05 2022-02-04 Modified killer cells, preparation method therefor, and pharmaceutical use thereof

Country Status (2)

Country Link
KR (1) KR20220113092A (en)
WO (1) WO2022169291A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018213332A1 (en) * 2017-05-17 2018-11-22 Seattle Children's Hospital (dba Seattle Children's Research Institute) Generating mammalian t cell activation inducible synthetic promoters (syn+pro) to improve t cell therapy
KR102081987B1 (en) * 2016-09-23 2020-02-28 주식회사 에스엘바이젠 A novel Natural Killer cell line and use thereof
US20210032661A1 (en) * 2018-04-09 2021-02-04 The Trustees Of The University Of Pennsylvania Methods And Compositions Comprising A Viral Vector For Expression Of A Transgene And An Effector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102081987B1 (en) * 2016-09-23 2020-02-28 주식회사 에스엘바이젠 A novel Natural Killer cell line and use thereof
WO2018213332A1 (en) * 2017-05-17 2018-11-22 Seattle Children's Hospital (dba Seattle Children's Research Institute) Generating mammalian t cell activation inducible synthetic promoters (syn+pro) to improve t cell therapy
US20210032661A1 (en) * 2018-04-09 2021-02-04 The Trustees Of The University Of Pennsylvania Methods And Compositions Comprising A Viral Vector For Expression Of A Transgene And An Effector

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NG YU YANG, TAY JOHAN C.K., WANG SHU: "CXCR1 Expression to Improve Anti-Cancer Efficacy of Intravenously Injected CAR-NK Cells in Mice with Peritoneal Xenografts", MOLECULAR THERAPY - ONCOLYTICS, vol. 16, 27 March 2020 (2020-03-27), pages 75 - 85, XP055956802, ISSN: 2372-7705, DOI: 10.1016/j.omto.2019.12.006 *
VERONIKA KREMER; MAARTEN LIGTENBERG; ROSA ZENDEHDEL; CHRISTINA SEITZ; ANNET DUIVENVOORDEN; ERIK WENNERBERG; EUGENIA COLÓN; ANN-HEL: "Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma", JOURNAL FOR IMMUNOTHERAPY OF CANCER, vol. 5, no. 1, 19 September 2017 (2017-09-19), London, UK , pages 1 - 13, XP021248901, DOI: 10.1186/s40425-017-0275-9 *

Also Published As

Publication number Publication date
KR20220113092A (en) 2022-08-12

Similar Documents

Publication Publication Date Title
WO2019109980A1 (en) Chimeric protein, and immune effector cell expressing same and application thereof
WO2019182422A1 (en) Novel genetically modified natural killer cell line and use thereof
WO2021054789A1 (en) Genetically modified nk cell line transduced with gene encoding novel chimeric antigen receptor and use thereof
Schilham et al. Critical involvement of Tcf-1 in expansion of thymocytes
US7998736B2 (en) Adoptive immunotherapy with enhanced T lymphocyte survival
Wagner et al. A strategy for treatment of Epstein–Barr virus-positive Hodgkin's disease by targeting interleukin 12 to the tumor environment using tumor antigen-specific T cells
Papiernik et al. T cell deletion induced by chronic infection with mouse mammary tumor virus spares a CD25-positive, IL-10-producing T cell population with infectious capacity.
Zhang et al. Biological effects of IL-15 on immune cells and its potential for the treatment of cancer
US20090053184A1 (en) Compositions comprising t cell receptors and methods of use thereof
WO2017069512A1 (en) Method for inducing and proliferating virus antigen-specific t cells
US20230256093A1 (en) Method
CN114686428B (en) Cell-polypeptide conjugate, preparation method and application thereof
Laouar et al. Overexpression of IL-7Rα provides a competitive advantage during early T-cell development
CA3165462A1 (en) Viral vectors expressing therapeutic proteins specifically in myeloid cells and microglia
TW202102667A (en) Method for t lymphocytes and nk cells expansion and differentiation for adoptive cell therapies
TW201835100A (en) Novel t-cell receptor
WO2021251707A1 (en) Genetically-modified cell line for nk cell activation and amplification, and use thereof
WO2022169291A1 (en) Modified killer cells, preparation method therefor, and pharmaceutical use thereof
WO2019231243A1 (en) Feeder cell expressing ox40l and method for culturing natural killer cells using same
CN115925974A (en) Preparation method of universal IPS (in-plane switching) -derived CAR-NK (CAR-NK cell) cell for solid tumor
WO2022092841A1 (en) Transformed immune cells inducing chemotaxis towards heterogeneous immune cells
Wang et al. Research progress on the mechanism of γδT cells in pathogenic microbial infection
Metzger et al. Immunological studies of γδ T cells in a case of large granular lymphocyte (LGL) leukemia: leukemic γδ+ T cells are resistant to growth stimulation in vitro but respond to interferon-α treatment in vivo
EP4212618A1 (en) Method of producing vdelta1+ t cells
WO2023096352A1 (en) Feeder cell line genetically engineered to express hla-e and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22750040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22750040

Country of ref document: EP

Kind code of ref document: A1