WO2022169117A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
WO2022169117A1
WO2022169117A1 PCT/KR2022/000227 KR2022000227W WO2022169117A1 WO 2022169117 A1 WO2022169117 A1 WO 2022169117A1 KR 2022000227 W KR2022000227 W KR 2022000227W WO 2022169117 A1 WO2022169117 A1 WO 2022169117A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
vane
sub
cylinder
roller
Prior art date
Application number
PCT/KR2022/000227
Other languages
French (fr)
Korean (ko)
Inventor
사범동
설세석
강승민
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN202280012833.2A priority Critical patent/CN116848322A/en
Priority to EP22749871.4A priority patent/EP4290078A1/en
Publication of WO2022169117A1 publication Critical patent/WO2022169117A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0836Vane tracking; control therefor by mechanical means comprising guiding means, e.g. cams, rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/261Carbon dioxide (CO2)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/268R32
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings

Definitions

  • the present invention relates to a vane type rotary compressor in which a vane is coupled to a rotating roller.
  • the rotary compressor can be divided into a method in which a vane is slidably inserted into a cylinder and contacted with the roller, and a method in which a vane is slidably inserted into the roller and contacted with the cylinder.
  • the former is called a roller eccentric rotary compressor (hereinafter referred to as a rotary compressor), and the latter is classified as a vane concentric rotary compressor (hereinafter, a vane rotary compressor).
  • the vane inserted into the cylinder is drawn toward the roller by elastic force or back pressure, and comes into contact with the outer circumferential surface of the roller.
  • the vane rotary compressor the vane inserted into the roller rotates together with the roller, and is drawn toward the cylinder by centrifugal force and back pressure, and comes into contact with the inner circumferential surface of the cylinder.
  • the rotary compressor independently forms as many compression chambers as the number of vanes per rotation of the roller, so that each compression chamber simultaneously performs suction, compression, and discharge strokes.
  • each compression chamber sequentially performs suction, compression, and discharge strokes. Therefore, the vane rotary compressor forms a higher compression ratio than the rotary compressor. Accordingly, the vane rotary compressor is more suitable for using high-pressure refrigerants with low ozone depletion potential (ODP) and global warming potential (GWP), such as R32, R410a, and CO 2 .
  • ODP ozone depletion potential
  • GWP global warming potential
  • the vane rotary compressor is disclosed in Patent Document 1 (US Patent Publication: US2015-0064042 A1).
  • the vane rotary compressor disclosed in Patent Document 1 is a low-pressure method in which the inner space of the motor chamber is filled with suction refrigerant, but a structure in which a plurality of vanes are slidably inserted into the rotating roller discloses the characteristics of the vane rotary compressor.
  • an inner circumferential surface of a cylinder constituting a compression space has a plurality of curves.
  • the inner peripheral surface of the cylinder disclosed in Patent Document 1 may be formed in an asymmetric elliptical shape eccentric with respect to the axial center of the rotation shaft. Accordingly, the inner peripheral surface of the cylinder is provided with a proximal portion closest to the axial center and a remote portion located farthest from the axial center, and between the proximal portion is connected by curved surfaces having different lengths and ends. .
  • the roller is formed in a circular shape with a constant curvature of the outer circumferential surface and is disposed concentrically with respect to the axial center of the rotation shaft, and the roller has a plurality of vane slots that are divided and recessed by a predetermined depth from the outer circumferential surface at equal intervals along the outer circumferential surface of the roller. is formed with
  • the mechanical friction loss between the cylinder and the vane increases as the inner circumferential surface of the cylinder and the tip end (ie, the sealing surface) of the vane are always in contact or move relative to each other with an oil film between them. can do.
  • Patent Document 2 Korean Patent Application Laid-Open No. 10-2011-0095155
  • a structure for suppressing mechanical friction loss between the vane and the cylinder by regulating the radial motion of the vane That is, in Patent Document 2, a ring is provided on a main bearing or a sub-bearing, and the vane is provided with a pin sliding in the circumferential direction along the ring. Through this, the vane only rotates along the roller, but the radial motion toward the cylinder is restricted. This ensures that the vanes are always in position relative to the cylinder, thereby suppressing friction between the cylinder and the vanes.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2012-167578
  • the tip portion (sealing surface) of the vane is non-contact with respect to the cylinder, but a structure that enables radial movement is known. That is, Patent Document 3 has a circular vane guide groove eccentric to the bearing, and a semicircular vane guide is applied to this groove to rotate along the vane guide groove. Then, while the vane moves in a radial direction with respect to the inner circumferential surface of the cylinder, it is possible to maintain a non-contact state with the inner circumferential surface of the cylinder. Through this, it is possible to reduce the mechanical friction loss between the cylinder and the vane by reducing the contact section between the cylinder and the vane.
  • an object of the present invention is to provide a rotary compressor capable of restricting the withdrawal of vanes using a main bearing and/or sub-bearing, but reducing mechanical friction loss between the main bearing and/or sub-bearing and the vane.
  • an object of the present invention is to provide a rotary compressor capable of reducing mechanical friction loss between the main bearing and/or sub-bearing and the vane by providing a bearing member between the main bearing and/or sub-bearing and the vane.
  • Another object of the present invention is to provide a rotary compressor capable of reducing mechanical friction loss caused by the rotation of the roller.
  • an object of the present invention is to provide a rotary compressor capable of reducing mechanical friction loss between a main bearing and/or a sub bearing and a roller facing the same.
  • an object of the present invention is to provide a rotary compressor capable of reducing mechanical friction loss between the main bearing and/or sub-bearing and the roller by providing a bearing member between the main bearing and/or sub-bearing and the roller.
  • a guide groove is formed on a surface facing the axial side of the roller in at least one of the main bearing and the sub-bearing, and in the axial direction of the vane facing the guide groove.
  • a guide projection having a contact surface inserted into the guide groove and sliding along the inner peripheral surface of the guide groove extends in the axial direction at the end, and the bearing member is disposed between the inner peripheral surface of the guide groove and the contact surface of the guide projection facing it.
  • a provided rotary compressor may be provided. Through this, it is possible to reduce the radial mechanical friction loss between the vane and the main bearing or sub-bearing supporting it.
  • guide grooves are formed in the main bearing and the sub bearing supporting the rotation shaft, and the vanes slidably inserted into the rollers are slidably inserted into the guide grooves and are radially constrained by guide projections. is formed, and a ball bearing may be provided between the guide groove and the guide projection.
  • the inner ring constituting the ball bearing may further include a rotating plate portion extending between the main bearing and the roller and between the sub bearing and the roller.
  • the rotating plate portion may be rotatably inserted into the inner circumferential surface of the cylinder. In this way, it is possible to more effectively reduce the axial mechanical friction loss between the roller and the main bearing or sub bearing facing it.
  • guide grooves are formed in the main bearing and the sub bearing supporting the rotation shaft, and the vanes slidably inserted into the rollers are slidably inserted into the guide grooves and are radially constrained by guide projections.
  • a first bearing part is provided between the guide groove and the guide protrusion
  • a second bearing part is provided between the main bearing and the roller and/or between the sub bearing and the roller, the first bearing part and the A rotary compressor in which the second bearing part is integrally formed may be provided.
  • first bearing part and the second bearing part may be integrally formed. Through this, it is possible to easily manufacture a bearing member capable of reducing frictional losses in the radial and axial directions.
  • the outer peripheral surface of the second bearing part may be provided to face the inner peripheral surface of the cylinder, and a sealing part may be formed on the outer peripheral surface of the second bearing part.
  • the cylinder may be formed in an annular inner peripheral surface.
  • the main bearing and the sub-bearing respectively provided on both sides of the axial direction of the cylinder may form a compression space together with the cylinder, and guide grooves may be provided on the side surface forming the compression space.
  • the roller accommodated in the cylinder may be provided to rotate together with a rotation shaft.
  • At least one vane slidably inserted into the roller may have a guide protrusion inserted into the guide groove to slide along a circumferential direction in an axial direction.
  • a bearing member may be provided between the guide groove of at least one of the main bearing and the sub-bearing and the guide protrusion of the vane.
  • the bearing member may include an outer ring inserted into the inner circumferential surface of the guide groove; an inner ring provided on the inner side of the outer ring, the inner circumferential surface of which is slidably in contact with the contact surface of the guide protrusion; and a sliding member provided between the outer ring and the inner ring to allow the outer ring and the inner ring to perform relative motion.
  • any one of the outer ring and the inner ring may further include a rotating plate portion extending between the roller and the main bearing and the sub bearing facing them. In this way, it is possible to more effectively reduce the axial mechanical friction loss between the roller and the main bearing or sub bearing facing it.
  • the bearing member may include: a first bearing part provided between at least one of the main bearing and the sub-bearing and the vane facing the same in a radial direction; and a second bearing part provided between at least one of the main bearing and the sub-bearing and the roller facing the same in the axial direction.
  • a first bearing part provided between at least one of the main bearing and the sub-bearing and the vane facing the same in a radial direction
  • a second bearing part provided between at least one of the main bearing and the sub-bearing and the roller facing the same in the axial direction.
  • first bearing part and the second bearing part may be formed as a single body. Through this, it is possible to easily manufacture a bearing member capable of reducing frictional losses in the radial and axial directions.
  • the second bearing part may be thicker than the first bearing part. Through this, the sealing area between the cylinder and the bearing member can be secured, and the sealing part can be easily formed on the outer peripheral surface of the second bearing part.
  • first bearing part may be formed in a ring shape
  • second bearing part may be formed in a disk shape
  • the first bearing unit may include: an outer ring inserted into a guide groove of at least one of the main bearing and the sub bearing; an inner ring provided on the inner side of the outer ring, the inner circumferential surface of which is slidably in contact with the guide projection of the vane; and a sliding member provided between the outer ring and the inner ring to allow the outer ring and the inner ring to perform relative motion.
  • the second bearing part extends radially from one end of the inner ring or one end of the outer ring of the first bearing part and is provided on the axial side of the main bearing and the sub bearing facing the axial side of the roller can be In this way, it is possible to reduce the radial friction loss between the vane and the main or sub-bearing and the axial friction loss between the roller and the main or sub-bearing.
  • the axial side of the second bearing part may be spaced apart from the axial side of the main bearing or the sub-bearing facing it. Through this, it is possible to effectively reduce the friction loss by suppressing the contact of the second bearing part with the main bearing or the sub-bearing.
  • the second bearing part may be inserted into the cylinder such that its outer circumferential surface faces the inner circumferential surface of the cylinder.
  • a sealing surface is formed between the second bearing part and the inner circumferential surface of the cylinder, thereby effectively reducing refrigerant leakage in the compression space.
  • a sealing part may be provided between the outer peripheral surface of the second bearing part and the inner peripheral surface of the cylinder.
  • an outer circumferential surface of the second bearing part may be formed in the same shape as an inner circumferential surface of the cylinder. Through this, the second bearing part rotates inside the cylinder, thereby suppressing the relative motion between the roller and the second bearing part.
  • the bearing member may be provided between at least one of the main bearing and the sub-bearing and the vane facing the same in a radial direction.
  • An axial side surface of the roller may be in sliding contact with an axial side surface of the main bearing and an axial side surface of the sub bearing facing them.
  • the inner peripheral surface of the cylinder may be formed in a circular or elliptical shape.
  • a discharge port may be formed in at least one of an axial side surface of the main bearing and an axial side surface of the sub bearing.
  • a bush groove may be formed in the roller, and a pair of swing bushes may be rotatably inserted into the bush groove, and the vane may be slidably inserted between the swing bushes.
  • the front end of the vane can be formed to have the same curvature as the inner circumferential surface of the cylinder, thereby securing a sealing area between the cylinder and the vane.
  • a bearing member may be provided between the guide grooves provided in the main bearing and the sub bearing and the guide projections of the vanes facing them.
  • a ball bearing made of an outer ring, an inner ring, and a sliding member may be installed between the inner circumferential surface of the guide groove and the guide projection facing the same.
  • the rotary compressor according to the present embodiment may further include a rotary plate portion extending between the roller and the main bearing and the sub bearing facing the outer ring or the upper inner ring constituting the ball bearing. In this way, it is possible to more effectively reduce the axial mechanical friction loss between the roller and the main bearing or sub bearing facing it.
  • the rotary compressor according to the present embodiment the first bearing portion provided between the main bearing and the sub-bearing and the vanes facing them in the radial direction, the main bearing and the sub-bearing and the roller facing it in the axial direction. It may include a second bearing unit provided. In this way, it is possible to reduce the radial friction loss between the vane and the main or sub-bearing and the axial friction loss between the roller and the main or sub-bearing.
  • the first bearing part and the second bearing part may be formed as a single body. Through this, it is possible to easily manufacture a bearing member capable of reducing frictional losses in the radial and axial directions.
  • the second bearing part may be formed to be thicker than the first bearing part.
  • the second bearing part may be spaced apart from the axial side surface of the main bearing or the sub bearing facing the second bearing part in the axial direction. Through this, it is possible to effectively reduce the friction loss by suppressing the contact of the second bearing part with the main bearing or the sub-bearing.
  • the second bearing part may be inserted into the cylinder so that the outer circumferential surface faces the inner circumferential surface of the cylinder.
  • a sealing surface is formed between the second bearing part and the inner circumferential surface of the cylinder, thereby effectively reducing refrigerant leakage in the compression space.
  • a sealing part may be provided between the outer peripheral surface of the second bearing part and the inner peripheral surface of the cylinder.
  • the inner circumferential surface of the cylinder is formed in a circular or elliptical shape, and the discharge port may be formed in at least one of the axial side surface of the main bearing and the axial side surface of the sub bearing.
  • the shape of the inner circumferential surface of the cylinder can be formed in various ways, and overcompression can be suppressed by forming a long compression cycle.
  • a bush groove is formed in the roller, two pair of swing bushes are rotatably inserted into the bush groove, and the vane may be slidably inserted between the swing bushes.
  • the front end of the vane can be formed to have the same curvature as the inner circumferential surface of the cylinder, thereby securing a sealing area between the cylinder and the vane.
  • FIG. 1 is a cross-sectional view showing an example of a vane rotary compressor according to the present invention in a longitudinal section;
  • FIG. 2 is an exploded perspective view of the compression unit in FIG. 1;
  • FIG. 3 is a perspective view showing the compression part of FIG. 2 assembled
  • Fig. 4 is a plan view of Fig. 3;
  • FIG. 5 is an enlarged cross-sectional view of the compression unit in FIG. 1;
  • FIG. 6 is a perspective view showing the vane bearing in FIG.
  • FIG. 7 is a cross-sectional view showing a state in which the vane bearing of FIG. 6 is mounted on the main bearing;
  • FIG. 8 and 9 are cross-sectional views showing other embodiments of the sealing part of the vane bearing in FIG. 5;
  • FIG. 10 is a cross-sectional view showing another embodiment of the vane bearing
  • FIG. 11 is a cross-sectional view showing another embodiment of the vane bearing.
  • the vane slot of the roller according to the present invention can be equally applied to the vane rotary compressor in which the vane is slidably inserted into the roller.
  • the same can be applied to the example in which the vane slot is formed in the radial direction as well as the example in which the vane slot is formed to be inclined as in the present embodiment.
  • FIG. 1 is a longitudinal cross-sectional view showing an example of a vane rotary compressor according to the present invention
  • FIG. 2 is an exploded perspective view of the compression part in FIG. 1
  • FIG. 3 is a perspective view showing the compression part of FIG. 2 assembled
  • FIG. 3 is a plan view.
  • the vane rotary compressor includes a casing 110 , a driving motor 120 , and a compression unit 130 .
  • the drive motor 120 is installed in the upper inner space 110a of the casing 110
  • the compression unit 130 is installed in the lower inner space 110a of the casing 110, respectively, and the drive motor 120 and the compression unit ( 130 is connected to the rotation shaft 123 .
  • the casing 110 is a portion forming the exterior of the compressor, and may be divided into a vertical or horizontal type depending on an installation aspect of the compressor.
  • the vertical type has a structure in which the driving motor 120 and the compression unit 130 are disposed on both upper and lower sides along the axial direction
  • the horizontal type has a structure in which the driving motor 120 and the compression unit 130 are disposed on both left and right sides.
  • the casing according to the present embodiment may be formed in a bell shape.
  • the casing 110 includes an intermediate shell 111 formed in a cylindrical shape, a lower shell 112 covering the lower end of the intermediate shell 111 , and an upper shell 113 covering the upper end of the intermediate shell 111 .
  • the driving motor 120 and the compression unit 130 are inserted into the intermediate shell 111 to be fixedly coupled, and the suction pipe 115 may be penetrated to be directly connected to the compression unit 130 .
  • the lower shell 112 is sealingly coupled to the lower end of the intermediate shell 111 , and a storage oil space 110b in which oil to be supplied to the compression unit 130 is stored may be formed below the compression unit 130 .
  • the upper shell 113 is sealingly coupled to the upper end of the intermediate shell 111 , and an oil separation space 110c may be formed above the driving motor 120 to separate oil from the refrigerant discharged from the compression unit 130 . have.
  • the driving motor 120 is a part constituting the electric part, and provides power to drive the compression part 130 .
  • the driving motor 120 includes a stator 121 , a rotor 122 , and a rotation shaft 123 .
  • the stator 121 is fixedly installed inside the casing 110 , and may be press-fitted to the inner circumferential surface of the cylindrical casing 110 by shrink fit or the like.
  • the stator 121 may be fixed by being press-fitted to the inner circumferential surface of the intermediate shell 110a.
  • the rotor 122 is rotatably inserted into the stator 121 , and the rotation shaft 123 is press-fitted to the center of the rotor 122 . Accordingly, the rotating shaft 123 rotates concentrically with the rotor 122 .
  • the oil passage 125 is formed in the shape of a hollow hole, and in the middle of the oil passage 125, oil through holes 126a and 126b may be formed to penetrate toward the outer circumferential surface of the rotation shaft 123.
  • the oil through-holes 126a and 126b include a first oil through-hole 126a belonging to the range of the main bearing unit 1312 to be described later and a second oil through-hole 126b belonging to the range of the second bearing unit 1322 .
  • Each of the first oil through-hole 126a and the second oil through-hole 126b may be formed one by one, or a plurality of first oil through-holes 126b may be formed. This embodiment shows an example in which a plurality of pieces are formed.
  • An oil pickup 127 may be installed in the middle or lower end of the oil passage 125 .
  • the oil pickup 127 may be a gear pump, a viscous pump, a centrifugal pump, or the like. This embodiment shows an example to which a centrifugal pump is applied. Accordingly, when the rotating shaft 123 rotates, the oil filled in the oil storage space 110b of the casing 110 is pumped by the oil pickup 127, and this oil is sucked along the oil passage 125 and then the second oil through hole. It may be supplied to the sub-bearing surface 1322a with the sub-bearing unit 1322 through the 126b, and to the main bearing surface 1311a of the main bearing unit 1312 through the first oil through hole 126a. This will be explained again later.
  • the compression unit 130 includes a main bearing 131 , a sub bearing 132 , a cylinder 133 , a roller 134 , and a plurality of vanes 1351 , 1352 , and 1353 .
  • the main bearing 131 and the sub bearing 132 are respectively provided on upper and lower sides of the cylinder 133 to form a compression space V together with the cylinder 133, and the roller 134 rotates in the compression space V Installed as possible, the vanes 1351, 1352 and 1353 are slidably inserted into the roller 134 to divide the compression space V into a plurality of compression chambers.
  • the main bearing 131 may be fixedly installed on the intermediate shell 111 of the casing 110 .
  • the main bearing 131 may be inserted into the intermediate shell 111 and welded.
  • the main bearing 131 may be closely coupled to the upper end of the cylinder 133 . Accordingly, the main bearing 131 forms the upper surface of the compression space V, supports the upper surface of the roller 134 in the axial direction, and at the same time supports the upper half of the rotary shaft 123 in the radial direction.
  • the main bearing 131 may include a main plate part 1311 and a main bearing part 1312 .
  • the main plate part 1311 covers the upper side of the cylinder 133 and is coupled to the cylinder 133 , and the main bearing part 1312 moves from the center of the main plate part 1311 toward the driving motor 120 in the axial direction. It extends to support the upper half of the rotation shaft 123 .
  • the main plate part 1311 may be formed in a disk shape, and the outer peripheral surface of the main plate part 1311 may be fixed in close contact with the inner peripheral surface of the intermediate shell 111 .
  • a main guide groove 1311a may be formed on a lower surface of the main plate portion 1311 , that is, an axial lower surface facing the axial upper surface of the roller 134 to receive a guide protrusion 1351d to be described later.
  • the main guide groove 1311a accommodates a main bearing hole 1312a, which will be described later, and is formed eccentrically with respect to the bearing hole center (axial center or roller rotation center) (unsigned) forming the center of the main bearing hole 1312a.
  • the center Og formed by the inner circumferential surface 1311a1 of the main guide groove 1311a is formed to be located on the same axis as the center Ov of the compression space V formed by the inner circumferential surface 1331 of the cylinder 133.
  • the center Og of the main guide groove 1311a and the center Ov of the compression space V may be formed eccentrically with respect to the rotation center Or of the roller 134 .
  • the center Og and the center Ov of the compression space V may be formed eccentrically with respect to the rotation center Or of the roller 134 while being formed to be located on the same axis.
  • the center Og of the main guide groove 1311a and the center Ov of the compression space V are eccentric to each other. It may also be formed.
  • the main guide groove 1311a may be formed to have substantially the same depth as a whole, and may communicate with the oil passage 125 provided in the rotation shaft 123 .
  • the main guide groove 1311a is formed in a stepped shape at the inner peripheral edge of the main plate part 1311 or at the lower edge of the main bearing 1312, the first oil through hole 126a of the rotating shaft 123 and It may be formed at a position where it communicates directly in the radial direction, or it may be formed to communicate through the main bearing surface 1312a1 formed by the inner circumferential surface of the main bearing hole 1312a. Accordingly, a discharge pressure or an oil equivalent thereto may be introduced into the main guide groove 1311a.
  • the inner circumferential surface of the main guide groove 1311a is a position not communicating with the compression space V, for example, the inner circumferential surface 1311a1 of the main guide groove 1311a is the main bearing surface 1312a1 formed by the inner circumferential surface of the main bearing hole 1312a. ) and the outer peripheral surface 1341 of the roller 134 may be formed to be located. Accordingly, a sealing distance is secured between the main bearing 131 and the roller 134, and even if a discharge pressure or an oil equivalent thereto is introduced into the inside of the main guide groove 1311a, the oil flows into the compression space V. can be restrained
  • the inner circumferential surface 1311a1 of the main guide groove 1311a may be formed in the same shape as the outer circumferential surface 1341 of the roller 134 to be described later.
  • the inner peripheral surface 1311a1 of the main guide groove 1311a may be formed in the same circular shape as the outer peripheral surface 1341 of the roller 134 to be described later. Accordingly, the sealing surface (or sealing distance) between the main guide groove 1311a and the outer peripheral surface of the roller may be uniformly formed along the circumferential direction.
  • the main bearing part 1312 is formed in a bush shape through which the main bearing hole 1312a penetrates in the axial direction to form a hollow, and an oil groove (not shown) is provided on the main bearing surface 1312a1, which is the inner peripheral surface of the main bearing hole 1312a. can be formed.
  • the sub-bearing 132 may be closely coupled to the lower end of the cylinder 133 . Accordingly, the sub-bearing 132 forms the lower surface of the compression space V, supports the lower surface of the roller 134 in the axial direction and at the same time supports the lower half of the rotation shaft 123 in the radial direction.
  • the sub bearing 132 may be formed similarly to the main bearing 131 described above.
  • the sub-bearing 132 according to the present embodiment may include a sub-plate part 1321 and a sub-bearing part 1322 .
  • the sub-plate part 1321 covers the lower side of the cylinder 133 and is coupled to the cylinder 133 , and the sub-bearing part 1322 axially moves from the center of the sub-plate part 1321 toward the lower shell 112 . It extends to support the lower half of the rotation shaft 123 .
  • the sub-plate part 1321 may be formed in a disk shape similar to the main plate part 1311 , and may be formed to be substantially the same as the outer diameter of the cylinder 133 . Accordingly, the outer circumferential surface of the sub-plate portion 1321 may be spaced apart from the inner circumferential surface of the intermediate shell 111 .
  • a sub-guide groove 1321a may be formed on the upper surface of the sub-plate part 1321 in the axial direction. Since the sub guide groove 1321a is formed symmetrically with the main guide groove 1311a described above centering on the roller 134, the description of the sub guide groove 1321a is replaced with the description of the main guide groove 1312a. .
  • the sub-bearing part 1322 is formed in a bush shape through which the sub-bearing hole 1322a penetrates in the axial direction to form a hollow, and an oil groove (not shown) on the sub-bearing surface 1322a1, which is the inner peripheral surface of the sub-bearing hole 1322a. can be formed.
  • the cylinder 133 may be in close contact with the lower surface of the main bearing 131 and may be bolted to the main bearing 131 together with the sub bearing 132 . Accordingly, the cylinder 133 may be fixedly coupled to the casing 110 by the main bearing 131 .
  • the cylinder 133 may be formed in an annular shape having a compression space V in the center.
  • the inner circumferential surface 1331 of the cylinder 133 constituting the compression space V is formed in a circular shape having the same inner diameter along the circumferential direction, and the center (shown in FIG. 4) Ov of the compression space V is It may be formed to be eccentric with respect to the rotation center (shown in FIG. 4) Or of the roller 134 constituting the axial center (shown in FIG. 4) Os.
  • the inner peripheral surface 1331 of the cylinder 133 is formed eccentrically with respect to the outer peripheral surface 1341 of the roller 134, and between the inner peripheral surface 1331 of the cylinder 133 and the outer peripheral surface 1341 of the roller 134, the A proximity point (or contact point) P at which the inner circumferential surface 1331 of the cylinder 133 and the outer circumferential surface 1341 of the roller 134 are almost in contact may be formed.
  • the cylinder 133 may have suction ports 1332 and discharge ports 1333a and 1333b formed on both sides of the circumferential direction with respect to the proximity point P, respectively. Accordingly, the suction port 1332 and the discharge ports 1333a and 1333b may be separated from each other by the proximity point P.
  • the suction port 1332 is directly connected to the suction pipe 115 penetrating the casing 110 , and the discharge ports 1333a and 1333b communicate toward the inner space 110a of the casing 110 , and are coupled through the casing 110 . It may be indirectly connected to the discharge pipe 116 that is. Accordingly, the refrigerant is directly sucked into the compression space V through the suction port 1332 , while the compressed refrigerant is discharged into the inner space 110a of the casing 110 through the discharge ports 1333a and 1333b and then discharged through the discharge pipe. (116) can be discharged. Accordingly, the inner space 110a of the casing 110 may be maintained in a high pressure state constituting the discharge pressure.
  • discharge valves 1335a and 1335b for opening and closing the respective discharge ports 1333a and 1333b are installed in each of the discharge ports 1333a and 1333b, respectively.
  • Each of the discharge valves 1335a and 1335b may be formed of a reed valve having one end fixed and the other end forming a free end.
  • each of the discharge valves 1335a and 1335b may be variously applied as needed, such as a piston valve in addition to a reed type valve.
  • valve accommodating grooves 1334a and 1334b are respectively provided on the outer peripheral surface of the cylinder 133 so that the respective discharge valves 1335a and 1335b can be mounted. can be formed. Accordingly, the length of the discharge ports 1333a and 1333b is reduced to a minimum, thereby reducing the body volume.
  • the valve accommodating grooves 1334a and 1334b may be formed in a triangular shape to secure a flat valve seat surface as shown in FIG. 2 .
  • a plurality of discharge ports 1333a and 1333b may be formed along the compression path (compression progress direction).
  • the plurality of outlets 1333a and 1333b will be described by defining the outlet positioned on the upstream side as the first outlet port 1333a and the outlet positioned on the downstream side as the second outlet port 1333b based on the compression path.
  • the discharge port may not be configured in plurality. For example, if the inner peripheral surface of the cylinder 133 forms a long compression cycle to appropriately reduce overcompression of the refrigerant, only one discharge port may be formed.
  • the roller 134 described above may be rotatably provided in the compression space V of the cylinder 133 .
  • the roller 134 may be formed such that its rotational center Or is positioned on the same axis as the axial center Os of the rotational shaft 123 .
  • the roller 134 may be integrally formed or assembled with the rotation shaft 123 to be integrally coupled. Accordingly, the roller 134 rotates with the rotation shaft 123 about the axis center Os.
  • the roller 134 has an outer peripheral surface 1341 formed in a circular shape, and a plurality of bush grooves 1342 may be formed on the outer peripheral surface 1341 of the roller 134 at predetermined intervals along the circumferential direction.
  • the bush groove 1342 is defined as a first bush groove (unsigned), a second bush groove (unsigned), and a third bush groove (unsigned) along the compression progress direction (rotational direction of the roller), and the first bush
  • the groove, the second bush groove, and the third bush groove may be formed to be identical to each other.
  • a swing bush 1343 forming a kind of vane slot may be rotatably coupled to each bush groove 1342 .
  • two bushes formed in a substantially semicircular shape may be inserted into the bush groove 1342 at intervals of the thickness of each vane 1351 , 1352 , and 1353 to be coupled thereto. Accordingly, the vanes 1351 , 1352 , and 1353 coupled to the swing bush 1343 may rotate while moving along the inner circumferential surface 1331 of the cylinder 133 using the swing bush 1343 as a hinge point.
  • the rotation center Or of the roller 134 is the compression space V Even if the roller 134 rotates in a state eccentrically positioned with respect to the center Ov, the vanes 1351, 1352, and 1353 may always face the center Ov of the compression space V.
  • the vane tip portions 1351b, 1352b, and 1353b forming the front surfaces of the vanes 1351,1352,1363 to be described later have the same curvature as the inner circumferential surface 1331 of the cylinder 133, so that each vane 1351,1352,1363) It is possible to secure a sealing area between the and the cylinder (133).
  • a back pressure chamber 1344 may be formed inside the bush groove 1342 , that is, between the bush groove 1342 and the rotation center Or of the roller 134 .
  • the back pressure chamber 1344 may radially communicate with each bush groove 1342 and may communicate with the above-described main guide groove 1311a and/or sub guide groove 1321a in the axial direction.
  • each vane 1351,1352,1353 is connected to the inner circumferential surface 1331 of the cylinder 133 by using the pressure of high-pressure oil (or refrigerant) flowing into the main guide groove 1311a or/and the sub-guide groove 1321a. ) in the direction of
  • Each back pressure chamber 1344 is sealed by the main bearing 131 and the sub-bearing 132, as described above, the main guide groove 1311a and/or the sub-guide groove 1321a can be axially communicated with each other. have.
  • the back pressure chamber 1344 may communicate with the main guide groove 1311a and/or the sub guide groove 1321a.
  • a plurality of vanes 1351, 1352, and 1353 are vane bodies 1351a, 1352a, and 1353a, the vane front end (or front surface) 1351b, 1352b, 1353b, It may include vane rear end (or rear surface) 1351c, 1352c, 1353c, and guide projections 1351d, 1352d and 1353d.
  • the vane tip portions 1351b, 1352b, and 1353b are surfaces in contact with the inner circumferential surface 1331 of the cylinder 133, and the vane rear ends 1351c, 1352c, and 1353c are understood as surfaces facing the back pressure chambers 1343a, 13343b, and 1343c.
  • Each of the vane bodies 1351a, 1352a, and 1353a may be formed in a substantially rectangular parallelepiped shape. Accordingly, each of the vane bodies 1351a , 1352a , and 1353a can slide smoothly along the longitudinal direction between the respective swing bushes 1343 .
  • the vane tip portions 1351b, 1352b, and 1353b are formed in a curved shape to be in line contact with the inner circumferential surface 1331 of the cylinder 133, and the sealing surface forming the front surface of each vane tip portion 1351b, 1352b, 1353b is the cylinder 133 ) may be formed to have substantially the same curvature as the inner circumferential surface 1331 . Accordingly, even if each of the vane tip parts 1351b, 1352b, and 1353b is slightly spaced apart from the inner circumferential surface 1331 of the cylinder 133, the sealing area between the vane tip parts 1351b, 1352b, and 1353b and the cylinder is secured to secure the compression chamber. Hepatic leakage can be suppressed.
  • the rear ends of the vanes 1351c, 1352c, and 1353c may be formed to be flat. Accordingly, the pressure receiving surface constituting the rear surface of each of the rear ends of the vanes 1351c, 1352c, and 1353c receives the back pressure of each back pressure chamber 1344 evenly, and each vane 1351, 1352, and 1353 moves toward the cylinder 133. While moving quickly, the behavior of the vanes 1351 , 1352 , and 1353 can be stabilized.
  • the guide projections 1351d, 1352d, and 1353d extend in the axial direction from both sides in the rear axial direction of the vane body 1351a, 1352a, 1353a forming the vane rear end portions 1351c, 1352c, 1353c. can be formed.
  • the guide protrusions 1351d, 1352d, and 1353d are upper guide protrusions (hereinafter, first guide protrusions) 1351d1 (not shown) extending upward in the axial direction toward the main guide groove 1311a (not shown). ) and a lower guide protrusion (hereinafter, a second guide protrusion) 1351d2 (not shown) (not shown) extending in the axial direction downward toward the sub-guide groove 1321a.
  • the first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) may have the same shape and the same size and be formed on the same axis. However, in some cases, the first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) may be formed in different shapes and different sizes, and in the axial direction. They may be formed at positions eccentric to each other. Hereinafter, the first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) have the same shape and the same size and are formed on the same axis. Explain.
  • the first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) are formed to have the same width as the vane bodies 1351a, 1352a, and 1353a. can be However, in some cases, the first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) are greater than the width of the vane body 1351a (1352ad) (1353a). It may be formed large or small.
  • first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) are both sides or one of the vane body 1351a (1352ad) (1353a). It may be formed extending in the circumferential direction from the side.
  • first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) are the inner peripheral surfaces 1311a1 of each guide groove 1311a, 1321a ( 1321a1), it may be preferable to be formed in an arc shape.
  • first guide protrusions 1351d1, 1352d1, 1353d1 and the second guide protrusions 1351d2, 1352d2, 1353d2 may be identically formed in the circumferential direction, respectively, but may be formed differently in the circumferential direction. may be
  • the first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) may each have a flat outer circumferential surface.
  • the inner peripheral surface (1311a1) (1321a1) of the guide grooves 1311a and 1321a in which the first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) face each other. ) is formed in a circular curved surface, so the outer peripheral surfaces of the first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) are guide grooves 1311a and 1321a, respectively.
  • the inner peripheral surface (1311a1) (1321a1) may be preferably formed in a circular curved surface to correspond to the inner peripheral surface (1365a) of the first bearing portion 1365 of the inner ring 1362 to be described later.
  • vane bearings 136 and 137 may be provided between the inner peripheral surfaces 1311a1 and 1321a1 of the sub-guide groove 1321a.
  • the vane bearings 136 and 137 may be variously applied to ball bearings, roller bearings, bush bearings, foil bearings, and the like. In the present embodiment, the example of the vane bearings 136 and 137 made of ball bearings will be mainly described, but the vane bearings 136 and 137 will be described again later.
  • the vane rotary compressor as described above operates as follows.
  • the rotor 122 of the drive motor 120 and the rotary shaft 123 coupled to the rotor 122 rotate, and are coupled to the rotary shaft 123 or
  • the integrally formed roller 134 rotates together with the rotating shaft 123 .
  • the plurality of vanes 1351,1352,1353 slidably inserted into the swing bush 1343 of the roller 134 serving as the vane slot are centrifugal force generated by the rotation of the roller 134 and the vanes 1351 , 1352 and 1353 are drawn out or drawn in from the roller 134 by the back pressure of the back pressure chamber 1343 provided on the rear side, and the vane tip portions 1351b, 1352b, and 1353b of each of the vanes 1351, 1352 and 1353. ) is in contact with the inner circumferential surface 1332 of the cylinder 133 .
  • the compression space (V) of the cylinder 133 is formed by a plurality of vanes (1351,1352,1353) by the number of the plurality of vanes (1351,1352,1353) as many compression chambers (including a suction chamber or a discharge chamber) It is partitioned by (V1, V2, V3), and each compression chamber (V1, V2, V3) moves along the rotation of the roller 134 while moving along the inner peripheral surface 1332 shape of the cylinder 133 and the eccentricity of the roller 134 The volume is changed by , and the refrigerant sucked into each compression chamber (V1, V2, V3) is compressed while moving along the rollers 134 and the vanes 1351, 1352, and 1353, and this refrigerant is compressed in the cylinder 133.
  • a series of processes of being discharged into the inner space 110a of the casing 110 through the discharge ports 1333a and 1333b provided on the inner circumferential surface 1331 of the is repeated.
  • the plurality of vanes 1351, 1352, and 1353 are drawn out from the roller 134, respectively, and the vane tip ends 1351b, 1352b, and 1353b forming the front surface of the vanes 1351,1352, and 1353b are of the cylinder 133. In contact with the inner peripheral surface 1332 is separated between the compression chamber.
  • the vanes 1351 , 1352 , and 1353 may be pushed out from the cylinder 133 by receiving the gas force of the compression chamber. Then, the cylinder 133 and the vanes (1351,1352,1353) are further spaced apart, the refrigerant leakage can be increased.
  • the refrigerant does not leak between the inner circumferential surface 1331 of the cylinder 133 and the front surfaces of the vanes 1351,1352c, and 1353c.
  • the cylinder 133 and the vanes (1351,1352,1353) can be made to move relative to the spaced apart state. Through this, it is desirable to reduce the mechanical friction loss between the cylinder 133 and the vanes 1351,1352,1353 and at the same time secure the back pressure acting on the vanes 1351,1352,1353 to suppress refrigerant leakage. do.
  • a main guide groove 1311a is formed in the main plate portion 1311 and a sub guide groove 1321a is formed in the sub-plate portion 1321, respectively, and these main guide grooves 1311a are formed. and a first guide protrusion 1351d1 (not shown) (not shown) at the upper end in the axial direction of the vane body 1351a, 1352a, 1353a facing the sub guide groove 1321a, and a second guide protrusion at the lower end in the axial direction ( 1351d2) (not shown) (not shown) may be formed, respectively.
  • the first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) are caught by the main guide groove 1311a and the sub guide groove 1321a and are cut off.
  • the amount of protrusion is limited, thereby reducing the mechanical friction loss between the cylinder 133 and the vanes 1351,1352,1353, and at the same time securing the back pressure acting on the vanes 1351,1352,1353 to suppress refrigerant leakage. have.
  • FIG. 5 is an enlarged cross-sectional view of the compression part in FIG. 1
  • FIG. 6 is a perspective view showing the vane bearing in FIG. 5 after being broken
  • FIG. 7 is a cross-sectional view showing the state in which the vane bearing of FIG. 6 is mounted to the main bearing.
  • Each of the vane bearings 136 and 137 may be provided between the second guide protrusion 1351d2 (not shown) (not shown) inserted therein.
  • the vane bearings 136 and 137 may be variously applied to ball bearings, roller bearings, bush bearings, foil bearings, etc., but in this embodiment, the vane bearings 136 and 137 made of ball bearings will be mainly described. .
  • vane bearings 136 and 137 may extend between the roller 134 and the main bearing 131 and the sub bearing 132 facing them.
  • vane bearings 136 and 137 are provided between the guide grooves 1311a and 1321a and the guide projections 1351d, 1352d, and 1353d and between the roller 134 and the bearings 131 and 132, respectively. It will be explained based on examples.
  • the vane bearings 136 and 137 are installed between the main guide groove 1311a and the first guide projection 1351d1 (not shown) (not shown) as the main side vane bearing 136, and the sub guide groove What is installed between the 1321a and the second guide protrusion 1351d2 (not shown) (not shown) is defined as the sub-side vane bearing 137, respectively, and hereinafter, the main-side vane bearing will be described as a representative example.
  • the vane bearing 136 may include an outer ring 1361 , an inner ring 1362 , and a plurality of balls 1363 .
  • the outer ring 1361 may be formed in an annular shape so that the center Oob of the outer ring 1361 is positioned on the same axis as the center Og of the main guide groove 1311a. In other words, the center Oob of the outer ring 1361 may be provided eccentrically with respect to the rotation center Or of the roller 134 .
  • the outer diameter of the outer ring 1361 may be formed to be substantially the same as the inner diameter of the main guide groove 1311a, or may be formed to be slightly smaller.
  • the outer diameter of the outer ring 1361 is formed to be substantially the same as the inner diameter of the main guide groove 1311a, the outer ring 1361 is press-fitted into the main guide groove 1311a and fixed, and the outer diameter of the outer ring 1361 is When the inner diameter of the main guide groove 1311a is substantially the same, the outer ring 1361 can freely rotate in the main guide groove 1311a.
  • the outer diameter of the outer ring 1361 is formed to be substantially equal to the inner diameter of the main guide groove 1311a, and the outer ring 1361 is press-fitted to the inner circumferential surface of the main guide groove 1311a.
  • the inner ring 1362 may include a first bearing part 1365 and a second bearing part 1366 .
  • the first bearing part 1365 may be formed in an annular shape
  • the second bearing part 1366 may be formed in a disk shape with an empty central part.
  • the outer diameter of the first bearing part 1365 may be smaller than the outer ring 1361 and the inner diameter may be larger than the inner diameter of the main bearing hole 1312a.
  • the center Ob1 of the first bearing part 1365 is located on the same axis as the center Oob of the outer ring 1361 , that is, the center Ob1 of the first bearing part 1365 is the roller 134 . It may be formed eccentric with respect to the rotation center (Or). Accordingly, the inner ring 1362 including the first bearing part 1365 may be rotatably inserted inside the outer ring 1361 .
  • the second bearing unit 1366 may extend in a flange shape from the lower end of the first bearing unit 1365 or an outer peripheral surface around the lower end.
  • the second bearing unit 1366 may be formed to extend as a single body with the first bearing unit 1365 , or may be formed separately and then assembled.
  • the manufacturing cost can be reduced by excluding the assembly process of the entire inner ring, and the second bearing part 1366 is the second bearing part 1366.
  • the thickness t2 of the second bearing part 1366 is formed to be thicker than the thickness t1 of the first bearing part 1365, and the sealing parts 1367 and 1377 to be described later. can be easily formed.
  • the thickness t2 of the second bearing part 1366 is greater than the thickness t1 of the first bearing part 1365 .
  • the thickness t2 of the second bearing part 1366 may be thicker than the thickness t1 of the first bearing part 1365 even when a separate sealing part 1367 is not formed. . Through this, it is possible to secure a sealing area between the outer peripheral surface 1366a of the second bearing part 1366 and the inner peripheral surface 1331 of the cylinder 133 .
  • the inner diameter D1 of the second bearing part 1366 is smaller than the degree to which the back pressure chamber 1344 can communicate with the main guide groove 1311a, for example, the inner diameter D2 of the main guide groove 1311a.
  • the diameter D3 of the virtual circle connecting the inner ends of the back pressure chamber 1344 may be larger than the diameter D3. Accordingly, the high-pressure oil flowing into the main guide groove 1311a may be smoothly introduced into each back pressure chamber 1344 without being blocked by the second bearing unit 1366 .
  • the outer diameter D12 of the second bearing part 1366 may be substantially the same as or slightly smaller than the inner circumferential surface 1331 of the cylinder 133 , that is, the inner diameter D4 of the compression space V. Accordingly, the second bearing part 1366 is rotatably inserted into the inner space of the cylinder 133 , that is, the compression space V, and the center of rotation Or of the roller 134 together with the first bearing part 1365 . can be rotated around the center. Therefore, the first bearing 1365 may be defined as a rotating ring part, and the second bearing part 1366 may be defined as a rotating plate part.
  • the second bearing part 1366 may be formed to be spaced apart by a predetermined distance t3 from the lower surface of the main plate part 1311 or the upper surface of the sub-plate part 1321 with one axial side surface facing it. have.
  • the lower end of the second bearing unit 1366 is slightly longer than the lower end of the first bearing unit 1365 , so that the second bearing unit 1366 moves from the main plate unit 1311 or the sub-plate unit 1321 to the shaft. It may be formed to be spaced apart in the direction. Accordingly, when the second bearing part rotates, it is possible to reduce the mechanical friction loss by suppressing contact with the main plate part 1311 or the sub-plate part 1321 .
  • the second bearing part 1366 of the vane bearing 136 provided on both sides in the axial direction of the roller seals both sides of the compression space V constituting the inner space of the cylinder 133 in the axial direction to form a substantial compression space ( V) is formed.
  • a sealing part 1367 for sealing the compression space V may be further provided between the outer peripheral surface of the second bearing part 1366 and the inner peripheral surface 1331 of the cylinder 133 facing it.
  • the sealing part 1367 may be formed of at least one or more sealing grooves provided in an annular shape along the circumferential direction on the outer circumferential surface of the second bearing part 1366 .
  • 8 and 9 are cross-sectional views showing other embodiments of the sealing part of the vane bearing in FIG. 5 .
  • the sealing part 1367 may be formed of a single sealing groove as shown in FIG. 5 , or may include a plurality of sealing grooves arranged to be spaced apart by a predetermined interval along the axial direction as shown in FIG. 8 . Accordingly, the sealing part 1367 may be filled with oil or a refrigerant to seal between the compression chambers.
  • the sealing part 1367 forms a sealing groove 1367a on the outer circumferential surface of the second bearing part 1366, and an annular sealing member 1367b may be inserted into the sealing groove 1367a.
  • the sealing member 1367b may be made of a Teflon material having lubricity.
  • a plurality of balls 1363 may be inserted to be positioned between the inner circumferential surface of the outer ring 1361 and the outer circumferential surface of the inner ring 1362 . Accordingly, the inner ring 1362 in contact with the first guide protrusion 1351d1 (not shown) (not shown) of the vanes 1351 , 1352 and 1353 may perform a relative motion with respect to the outer ring 1361 .
  • the side vane bearing 137 may be equally applied.
  • the sub-side vane bearing 137 is composed of an outer ring 1371 , an inner ring 1372 , and a plurality of balls 1373 like the main side vane bearing, and for this, the description of the main side vane bearing 136 is replaced.
  • the sub-side vane bearing 137 may be formed in a shape different from that of the main-side vane bearing 136 .
  • the main side vane bearing 136 may be formed of a ball bearing
  • the sub-side vane bearing 137 may be formed of a roller bearing or a bush bearing.
  • the vane bearings 136 and 137 made of ball bearings are respectively installed between the The inner rings 1362 and 1372 of the vane bearings 136, 137 in contact with the guide projections 1351d, 1352d, and 1353d of the vanes 1351,1352,1353 are connected to the outer ring 1361 by a plurality of balls 1363.
  • each of the vanes 1351, 1352, and 1353 has guide projections 1351d, 1352d, and 1353d
  • the guide projections 1351d, 1352d, and 1353d and the guide grooves 1311a and 1321a can be generated between the The radial friction loss can be significantly reduced.
  • the inner ring 1362 includes the first bearing portions 1365 and 1375 between the guide projections 1351d, 1352d, and 1353d and the guide grooves 1311a and 1321a as well as the main plate portion ( 1311) and second bearing parts 1366 and 1376 extending between the upper surface of the roller 134 and between the sub-plate part 1321 and the lower surface of the roller 134 are provided, and a second bearing part 1366 is provided. 1376 may rotate with roller 134 . Accordingly, the axial friction loss generated between the main bearing 131 and the roller 134 and between the sub bearing 132 and the roller 134 can be significantly reduced.
  • the inner ring is formed of the first bearing portion and the second bearing portion, but in some cases, the outer ring of the vane bearing may be formed of the first bearing portion and the second bearing portion.
  • the main-side vane bearing will be mainly described, and the sub-side vane bearing will be replaced with the description of the main-side vane bearing.
  • FIG. 10 is a cross-sectional view showing another embodiment of the vane bearing.
  • the main side vane bearing 136 may include an outer ring 1361 , an inner ring 1362 , and a plurality of balls 1363 . Since the outer ring 1361, the inner ring 1362, and the plurality of balls 1363 are similar to the above-described embodiments, a detailed description thereof is replaced with the description of the above-described embodiment.
  • the outer ring 1361 may be formed of a first bearing portion 1365 and a second bearing portion 1366, and the inner ring 1362 may be formed in an annular shape. Even in this case, the second bearing part 1366 may be inserted into the compression space V of the cylinder 133 to form an upper surface of the compression space V.
  • the outer circumferential surface 1365a of the first bearing part 1365 of the outer ring 1361 according to the present embodiment is press-fitted to the inner circumferential surface 1311a1 of the main guide groove 1311a as in the above-described embodiment and may be fixed, or the main guide It may be rotatably inserted with respect to the inner peripheral surface (1311a1) of the groove (1311a).
  • the second bearing part 1366 is also the main plate part 1311.
  • the inner peripheral surface of the cylinder 133 may be formed in various ways such as a symmetrical oval or an asymmetrical ellipse in which a plurality of ellipses are combined in addition to a circular shape to increase the compression efficiency.
  • the second bearing part 1366 is the roller as in the above-described embodiment. It can be rotated with (134). Then, not only the radial friction loss in the first bearing part 1365 but also the axial friction loss in the second bearing part 1366 can be suppressed, so that the compressor efficiency can be improved.
  • the inner ring or outer ring of the vane bearing is formed of the first bearing portion and the second bearing portion, but in some cases, the inner ring or outer ring of the vane bearing may be formed of only the first bearing portion.
  • the main-side vane bearing will be mainly described, and the sub-side vane bearing will be replaced with the description of the main-side vane bearing.
  • FIG. 11 is a cross-sectional view showing another embodiment of the vane bearing.
  • the vane bearing 136 may include an outer ring 1361 , an inner ring 1362 , and a plurality of balls 1363 . Since the outer ring 1361, the inner ring 1362, and the plurality of balls 1363 are similar to the above-described embodiments, a detailed description thereof is replaced with the description of the above-described embodiment.
  • the outer ring 1361 and the inner ring 1362 may be formed of only the first bearing part 1365 , respectively.
  • the inner ring 1362 consists only of a ring-shaped first bearing part 1365 only between the inner circumferential surface 1311a1 of the main guide groove 1311a and the first guide protrusion 1351d1 (not shown) (not shown). can be provided.
  • the shape and size of the first bearing unit 1365 may be the same as the shape and size of the first bearing unit 1365 in the above-described embodiments.
  • the inner peripheral surface 1331 of the cylinder 133 may be formed in various ways.
  • the inner circumferential surface 1331 of the cylinder 133 may be formed in a symmetrical oval or asymmetrical oval shape in which a plurality of ellipses are combined in addition to a circular shape.
  • the inner circumferential surface 1331 of the cylinder 133 can be formed so that the compression cycle in the compression space V becomes longer, thereby reducing compression loss due to overcompression.
  • a discharge port may be formed in the main plate part 1311 or the sub-plate part 1321 . Accordingly, when the discharge port (not shown) is formed on the inner peripheral surface 1331 of the cylinder 133, it is possible to suppress the lack of surface pressure on the vane tip portions 1351b, 1352b, and 1353b, which may occur. Through this, partial damage to the vane tip portions 1351b, 1352b, and 1353b or the inner circumferential surface 1331 of the cylinder 133 facing the same can be suppressed, thereby preventing leakage between compression chambers and a decrease in compression efficiency resulting therefrom in advance.
  • the swing bush is not necessarily provided.
  • at least one vane slot is formed on the outer circumferential surface of the roller like a conventional vane rotary compressor, and the same may be applied when the vane is slidably inserted into the vane slot.

Abstract

A rotary compressor according to the present embodiment comprises: a main bearing and a sub-bearing which are respectively provided on both sides of a cylinder in the axial direction and each provided with a guide groove; a roller which is accommodated in the cylinder and rotated along with a rotary shaft; at least one vane which is slidably inserted in the roller, and on which a guide protrusion that is slidably inserted in the guide groove in the circumferential direction is extended in the axial direction; and a bearing member which is provided between the guide groove of at least one bearing between the main bearing and the sub-bearing and the guide protrusion of the vane. As such, the frictional loss between the vane or the roller and the main bearing or the sub-bearing facing same can be reduced to improve the compressor efficiency.

Description

로터리 압축기rotary compressor
본 발명은 회전하는 롤러에 베인이 결합되는 베인식 로터리 압축기에 관한 것이다. The present invention relates to a vane type rotary compressor in which a vane is coupled to a rotating roller.
로터리 압축기는 베인이 실린더에 미끄러지게 삽입되어 롤러에 접촉되는 방식과, 베인이 롤러에 미끄러지게 삽입되어 실린더에 접촉되는 방식으로 구분할 수 있다. 통상적으로 전자는 롤러 편심 로터리 압축기(이하, 로터리 압축기)라고 하고, 후자는 베인 동심 로터리 압축기(이하, 베인 로터리 압축기)라고 구분한다. The rotary compressor can be divided into a method in which a vane is slidably inserted into a cylinder and contacted with the roller, and a method in which a vane is slidably inserted into the roller and contacted with the cylinder. In general, the former is called a roller eccentric rotary compressor (hereinafter referred to as a rotary compressor), and the latter is classified as a vane concentric rotary compressor (hereinafter, a vane rotary compressor).
로터리 압축기는 실린더에 삽입된 베인이 탄성력 또는 배압력에 의해 롤러를 향해 인출되어 그 롤러의 외주면에 접촉하게 된다. 반면, 베인 로터리 압축기는 롤러에 삽입된 베인이 롤러와 함께 회전운동을 하면서 원심력과 배압력에 의해 실린더를 향해 인출되어 그 실린더의 내주면에 접촉하게 된다.In the rotary compressor, the vane inserted into the cylinder is drawn toward the roller by elastic force or back pressure, and comes into contact with the outer circumferential surface of the roller. On the other hand, in the vane rotary compressor, the vane inserted into the roller rotates together with the roller, and is drawn toward the cylinder by centrifugal force and back pressure, and comes into contact with the inner circumferential surface of the cylinder.
로터리 압축기는 롤러의 회전당 베인의 개수만큼의 압축실을 독립적으로 형성하여, 각각의 압축실이 동시에 흡입, 압축, 토출행정을 실시하게 된다. 반면, 베인 로터리 압축기는 롤러의 회전당 베인의 개수만큼의 압축실을 연속적으로 형성하여, 각각의 압축실이 순차적으로 흡입, 압축, 토출행정을 실시하게 된다. 따라서, 베인 로터리 압축기는 로터리 압축기에 비해 높은 압축비를 형성하게 된다. 이에 따라, 베인 로터리 압축기는 R32, R410a, CO2와 같이 오존층파괴지수(ODP) 및 지구온난화지수(GWP)가 낮은 고압 냉매를 사용하는데 더 적합하다.The rotary compressor independently forms as many compression chambers as the number of vanes per rotation of the roller, so that each compression chamber simultaneously performs suction, compression, and discharge strokes. On the other hand, in the vane rotary compressor, as many compression chambers as the number of vanes per rotation of the roller are continuously formed, each compression chamber sequentially performs suction, compression, and discharge strokes. Therefore, the vane rotary compressor forms a higher compression ratio than the rotary compressor. Accordingly, the vane rotary compressor is more suitable for using high-pressure refrigerants with low ozone depletion potential (ODP) and global warming potential (GWP), such as R32, R410a, and CO 2 .
이러한 베인 로터리 압축기는 통상 복수 개의 베인이 롤러와 함께 회전을 하면서 그 베인의 실링면이 실린더의 내주면과 접촉된 상태에서 미끄러지게 되므로 일반적인 로터리 압축기에 비해 마찰손실이 증가하게 된다. In such a vane rotary compressor, as a plurality of vanes rotate together with the rollers, the vane slides while the sealing surface of the vane is in contact with the inner circumferential surface of the cylinder.
베인 로터리 압축기는 특허문헌 1(미국공개특허: US2015-0064042 A1)에 개시되어 있다. 특허문헌 1에 개시된 베인 로터리 압축기는 모터실의 내부공간이 흡입냉매가 채워지는 저압방식이나, 복수 개의 베인이 회전하는 롤러에 미끄러지게 삽입되는 구조는 베인 로터리 압축기의 특징을 개시하고 있다. The vane rotary compressor is disclosed in Patent Document 1 (US Patent Publication: US2015-0064042 A1). The vane rotary compressor disclosed in Patent Document 1 is a low-pressure method in which the inner space of the motor chamber is filled with suction refrigerant, but a structure in which a plurality of vanes are slidably inserted into the rotating roller discloses the characteristics of the vane rotary compressor.
특허문헌 1에 개시된 베인 로터리 압축기는 압축공간을 이루는 실린더의 내주면이 복수의 곡선으로 이루어져 있다. 예를 들어, 특허문헌 1에 개시된 실린더의 내주면은 회전축의 축중심에 대해 편심진 비대칭 타원 형상으로 형성될 수 있다. 이에 따라 실린더의 내주면은 축중심으로부터 가장 인접한 근접부(proximal portion)와 가장 멀리 위치한 원접부(remote portion)가 구비되며, 근접부에서 원접부 사이는 서로 다른 장단비를 가지는 곡면들로 연결되어 있다.In the vane rotary compressor disclosed in Patent Document 1, an inner circumferential surface of a cylinder constituting a compression space has a plurality of curves. For example, the inner peripheral surface of the cylinder disclosed in Patent Document 1 may be formed in an asymmetric elliptical shape eccentric with respect to the axial center of the rotation shaft. Accordingly, the inner peripheral surface of the cylinder is provided with a proximal portion closest to the axial center and a remote portion located farthest from the axial center, and between the proximal portion is connected by curved surfaces having different lengths and ends. .
반면, 롤러는 외주면 곡률이 일정한 진원형상으로 형성되어 회전축의 축중심에 대해 동심상에 위치하도록 배치되고, 롤러에는 외주면에서 기설정된 깊이만큼 갈라져 함몰된 복수의 베인슬롯이 롤러의 외주면을 따라 등간격으로 형성되어 있다. On the other hand, the roller is formed in a circular shape with a constant curvature of the outer circumferential surface and is disposed concentrically with respect to the axial center of the rotation shaft, and the roller has a plurality of vane slots that are divided and recessed by a predetermined depth from the outer circumferential surface at equal intervals along the outer circumferential surface of the roller. is formed with
상기와 같은 베인 로터리 압축기는, 실린더의 내주면과 베인의 선단부(즉, 실링면)이 항상 접촉되거나 또는 오일 유막을 사이에 두고 근접하여 상대운동을 함에 따라, 실린더와 베인 사이의 기계적 마찰손실이 증가할 수 있다.In the vane rotary compressor as described above, the mechanical friction loss between the cylinder and the vane increases as the inner circumferential surface of the cylinder and the tip end (ie, the sealing surface) of the vane are always in contact or move relative to each other with an oil film between them. can do.
이에, 특허문헌 2(한국공개특허 제10-2011-0095155호)와 같이 베인의 반경방향 운동을 규제하여 베인과 실린더 사이의 기계적 마찰손실을 억제하는 구조가 알려져 있다. 즉, 특허문헌 2는 메인베어링 또는 서브베어링에 링을 설치하고, 베인에는 링을 따라 원주방향으로 미끄러지는 핀을 구비하고 있다. 이를 통해 베인은 롤러를 따라 회전운동만 할 뿐 실린더를 향한 반경방향 운동은 구속되게 된다. 그러면 베인이 실린더에 대해 항상 제위치를 유지하게 되므로 실린더와 베인 사이의 마찰을 억제할 수 있다.Accordingly, as in Patent Document 2 (Korean Patent Application Laid-Open No. 10-2011-0095155), there is known a structure for suppressing mechanical friction loss between the vane and the cylinder by regulating the radial motion of the vane. That is, in Patent Document 2, a ring is provided on a main bearing or a sub-bearing, and the vane is provided with a pin sliding in the circumferential direction along the ring. Through this, the vane only rotates along the roller, but the radial motion toward the cylinder is restricted. This ensures that the vanes are always in position relative to the cylinder, thereby suppressing friction between the cylinder and the vanes.
상기와 같은 베인 로터리 압축기는, 베인의 위치가 링에 의해 정해지게 되므로 가공오차 또는 조립오차가 큰 경우에는 베인과 실린더 사이가 과도하게 밀착되거나 반대로 과도하게 이격될 수 있다. 또한, 롤러의 축방향 측면과 이를 마주보는 베어링의 축방향 측면 사이에서의 마찰손실은 여전하게 발생될 수 있다.In the vane rotary compressor as described above, since the position of the vanes is determined by the ring, when a machining error or an assembly error is large, the vane and the cylinder may be excessively closely adhered or conversely excessively spaced apart. Also, friction loss between the axial side of the roller and the axial side of the bearing facing it may still occur.
이에, 특허문헌 3(일본공개특허 제2012-167578호)과 같이 베인의 선단부(실링면)는 실린더에 대해 비접촉시키되 반경방향 운동은 가능하게 하는 구조가 알려져 있다. 즉, 특허문헌 3은 베어링에 편심된 원형의 베인가이드홈을 구비하고, 이 홈에 반원형상의 베인가이드를 적용하여 베인가이드홈을 따라 회전하게 된다. 그러면 베인이 실린더의 내주면에 대해 반경방향 운동은 하면서도 실린더 내주면과 비접촉된 상태를 유지할 수 있다. 이를 통해 실린더와 베인 사이의 접촉구간을 줄여 실린더와 베인 사이에서의 기계적 마찰손실을 감소시킬 수 있다.Accordingly, as in Patent Document 3 (Japanese Patent Application Laid-Open No. 2012-167578), the tip portion (sealing surface) of the vane is non-contact with respect to the cylinder, but a structure that enables radial movement is known. That is, Patent Document 3 has a circular vane guide groove eccentric to the bearing, and a semicircular vane guide is applied to this groove to rotate along the vane guide groove. Then, while the vane moves in a radial direction with respect to the inner circumferential surface of the cylinder, it is possible to maintain a non-contact state with the inner circumferential surface of the cylinder. Through this, it is possible to reduce the mechanical friction loss between the cylinder and the vane by reducing the contact section between the cylinder and the vane.
그러나, 상기와 같은 종래의 베인 로터리 압축기는, 베인가이드가 베인가이드홈의 내주면을 따라 미끄러지면서 이동함에 따라, 베인가이드와 베인가이드홈 사이에서의 기계적 마찰손실이 발생될 수 있다.However, in the conventional vane rotary compressor as described above, as the vane guide slides along the inner circumferential surface of the vane guide groove, mechanical friction loss may occur between the vane guide and the vane guide groove.
또한, 종래의 베인 로터리 압축기는, 롤러의 축방향 측면과 이를 마주보는 메인베어링 또는 서브베어링의 축방향 측면 사이에서도 기계적 마찰손실이 발생될 수 있다.In addition, in the conventional vane rotary compressor, mechanical friction loss may occur between the axial side of the roller and the axial side of the main bearing or sub-bearing facing the same.
본 발명의 목적은, 베인의 회전으로 인해 발생되는 기계적 마찰손실을 줄일 수 있는 로터리 압축기를 제공하려는데 있다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a rotary compressor capable of reducing mechanical friction loss caused by rotation of a vane.
나아가, 본 발명은 메인베어링 또는/및 서브베어링을 이용하여 베인의 인출을 구속하되 그 메인베어링 또는/및 서브베어링과 베인 사이에서의 기계적 마찰손실을 줄일 수 있는 로터리 압축기를 제공하려는데 그 목적이 있다.Further, an object of the present invention is to provide a rotary compressor capable of restricting the withdrawal of vanes using a main bearing and/or sub-bearing, but reducing mechanical friction loss between the main bearing and/or sub-bearing and the vane. .
더 나아가, 본 발명은 메인베어링 또는/및 서브베어링과 베인 사이에 베어링부재를 구비하여 메인베어링 또는/및 서브베어링과 베인 사이에서의 기계적 마찰손실을 줄일 수 있는 로터리 압축기를 제공하려는데 그 목적이 있다.Furthermore, an object of the present invention is to provide a rotary compressor capable of reducing mechanical friction loss between the main bearing and/or sub-bearing and the vane by providing a bearing member between the main bearing and/or sub-bearing and the vane. .
본 발명의 다른 목적은, 롤러의 회전으로 인해 발생되는 기계적 마찰손실을 줄일 수 있는 로터리 압축기를 제공하려는데 있다.Another object of the present invention is to provide a rotary compressor capable of reducing mechanical friction loss caused by the rotation of the roller.
나아가, 본 발명은 메인베어링 또는/및 서브베어링과 이를 마주보는 롤러 사이에서의 기계적 마찰손실을 줄일 수 있는 로터리 압축기를 제공하려는데 그 목적이 있다.Furthermore, an object of the present invention is to provide a rotary compressor capable of reducing mechanical friction loss between a main bearing and/or a sub bearing and a roller facing the same.
더 나아가, 본 발명은 메인베어링 또는/및 서브베어링과 롤러 사이에 베어링부재를 구비하여 메인베어링 또는/및 서브베어링과 롤러 사이에서의 기계적 마찰손실을 줄일 수 있는 로터리 압축기를 제공하려는데 그 목적이 있다.Furthermore, an object of the present invention is to provide a rotary compressor capable of reducing mechanical friction loss between the main bearing and/or sub-bearing and the roller by providing a bearing member between the main bearing and/or sub-bearing and the roller. .
본 발명의 목적을 달성하기 위하여, 상기 메인베어링과 상기 서브베어링 중에서 적어도 어느 한쪽 베어링에는 상기 롤러의 축방향 측면을 마주보는 면에 가이드홈이 형성되고, 상기 가이드홈을 마주보는 상기 베인의 축방향 단부에는 상기 가이드홈에 삽입되어 상기 가이드홈의 내주면을 따라 미끄러지도록 접촉면을 가지는 가이드돌기가 축방향으로 연장되며, 상기 베어링부재는, 상기 가이드홈의 내주면과 이를 마주보는 상기 가이드돌기의 접촉면 사이에 구비되는 로터리 압축기가 제공될 수 있다. 이를 통해, 베인과 이를 지지하는 메인베어링 또는 서브베어링 사이에서의 반경방향 기계적 마찰손실을 줄일 수 있다.In order to achieve the object of the present invention, a guide groove is formed on a surface facing the axial side of the roller in at least one of the main bearing and the sub-bearing, and in the axial direction of the vane facing the guide groove. A guide projection having a contact surface inserted into the guide groove and sliding along the inner peripheral surface of the guide groove extends in the axial direction at the end, and the bearing member is disposed between the inner peripheral surface of the guide groove and the contact surface of the guide projection facing it. A provided rotary compressor may be provided. Through this, it is possible to reduce the radial mechanical friction loss between the vane and the main bearing or sub-bearing supporting it.
또한, 본 발명의 목적을 달성하기 위하여, 회전축을 지지하는 메인베어링 및 서브베어링에 가이드홈이 형성되고, 롤러에 미끄러지게 삽입되는 베인에는 상기 가이드홈에 미끄러지게 삽입되어 반경방향으로 구속되는 가이드돌기가 형성되며, 상기 가이드홈과 상기 가이드돌기 사이에 볼베어링이 구비될 수 있다. 이를 통해, 베인과 이를 지지하는 메인베어링 또는 서브베어링 사이에 베어링부재를 용이하게 설치할 수 있다.In addition, in order to achieve the object of the present invention, guide grooves are formed in the main bearing and the sub bearing supporting the rotation shaft, and the vanes slidably inserted into the rollers are slidably inserted into the guide grooves and are radially constrained by guide projections. is formed, and a ball bearing may be provided between the guide groove and the guide projection. Through this, it is possible to easily install the bearing member between the vane and the main bearing or sub bearing supporting the same.
일례로, 상기 볼베어링을 이루는 내륜은 상기 메인베어링과 상기 롤러 사이 및 상기 서브베어링과 상기 롤러 사이로 연장되는 회전판부가 더 구비될 수 있다. 이를 통해, 롤러와 이를 마주보는 메인베어링 또는 서브베어링 사이에서의 축방향 기계적 마찰손실을 줄일 수 있다.For example, the inner ring constituting the ball bearing may further include a rotating plate portion extending between the main bearing and the roller and between the sub bearing and the roller. Through this, it is possible to reduce the axial mechanical friction loss between the roller and the main bearing or sub-bearing facing it.
다른 예로, 상기 회전판부는 상기 실린더의 내주면에 회전 가능하게 삽입될 수 있다. 이를 통해, 롤러와 이를 마주보는 메인베어링 또는 서브베어링 사이에서의 축방향 기계적 마찰손실을 더욱 효과적으로 줄일 수 있다.As another example, the rotating plate portion may be rotatably inserted into the inner circumferential surface of the cylinder. In this way, it is possible to more effectively reduce the axial mechanical friction loss between the roller and the main bearing or sub bearing facing it.
또한, 본 발명의 목적을 달성하기 위하여, 회전축을 지지하는 메인베어링 및 서브베어링에 가이드홈이 형성되고, 롤러에 미끄러지게 삽입되는 베인에는 상기 가이드홈에 미끄러지게 삽입되어 반경방향으로 구속되는 가이드돌기가 형성되며, 상기 가이드홈과 상기 가이드돌기 사이에 제1 베어링부가 구비되고, 상기 메인베어링과 롤러 사이 및/또는 상기 서브베어링과 롤러 사이에 제2 베어링부가 구비되며, 상기 제1 베어링부와 상기 제2 베어링부가 일체로 형성되는 로터리 압축기가 제공될 수 있다. 이를 통해, 베인과 메인 또는 서브베어링 사이에서의 반경방향 마찰손실 및 롤러와 메인 또는 서브베어링 사이에서의 축방향 마찰손실을 줄일 수 있다.In addition, in order to achieve the object of the present invention, guide grooves are formed in the main bearing and the sub bearing supporting the rotation shaft, and the vanes slidably inserted into the rollers are slidably inserted into the guide grooves and are radially constrained by guide projections. is formed, a first bearing part is provided between the guide groove and the guide protrusion, and a second bearing part is provided between the main bearing and the roller and/or between the sub bearing and the roller, the first bearing part and the A rotary compressor in which the second bearing part is integrally formed may be provided. In this way, it is possible to reduce the radial friction loss between the vane and the main or sub-bearing and the axial friction loss between the roller and the main or sub-bearing.
일례로, 상기 제1 베어링부와 상기 제2 베어링부는 일체로 형성될 수 있다. 이를 통해, 반경방향 및 축방향 마찰손실을 줄일 수 있는 베어링부재의 제작을 용이하게 할 수 있다. For example, the first bearing part and the second bearing part may be integrally formed. Through this, it is possible to easily manufacture a bearing member capable of reducing frictional losses in the radial and axial directions.
다른 예로, 상기 제2 베어링부의 외주면은 상기 실린더의 내주면을 마주보도록 구비되고, 상기 제2 베어링부의 외주면에는 실링부가 형성될 수 있다. 이를 통해, 제2 베어링부가 실린더에서 회전하면서도 압축공간에서 냉매누설을 효과적으로 억제할 수 있다.As another example, the outer peripheral surface of the second bearing part may be provided to face the inner peripheral surface of the cylinder, and a sealing part may be formed on the outer peripheral surface of the second bearing part. Through this, while the second bearing part rotates in the cylinder, it is possible to effectively suppress refrigerant leakage in the compression space.
또한, 본 발명의 목적을 달성하기 위하여, 실린더는 내주면이 환형으로 형성될 수 있다. 상기 실린더의 축방향 양측에 각각 구비되는 메인베어링 및 서브베어링은 상기 실린더와 함께 압축공간을 형성하고, 상기 압축공간을 형성하는 측면에 가이드홈이 구비될 수 있다. 상기 실린더에 수용되는 롤러는 회전축과 함께 회전하도록 구비될 수 있다. 상기 롤러에 미끄러지게 삽입되는 적어도 한 개 이상의 베인은 상기 가이드홈에 원주방향을 따라 미끄러지도록 삽입되는 가이드돌기가 축방향으로 연장될 수 있다. 상기 메인베어링과 상기 서브베어링 중에서 적어도 어느 한쪽 베어링의 가이드홈과 상기 베인의 가이드돌기 사이에는 베어링부재가 구비될 수 있다. 이를 통해, 베인과 이를 지지하는 메인베어링 또는 서브베어링 사이에서의 마찰손실을 줄여 압축기 효율을 높일 수 있다.In addition, in order to achieve the object of the present invention, the cylinder may be formed in an annular inner peripheral surface. The main bearing and the sub-bearing respectively provided on both sides of the axial direction of the cylinder may form a compression space together with the cylinder, and guide grooves may be provided on the side surface forming the compression space. The roller accommodated in the cylinder may be provided to rotate together with a rotation shaft. At least one vane slidably inserted into the roller may have a guide protrusion inserted into the guide groove to slide along a circumferential direction in an axial direction. A bearing member may be provided between the guide groove of at least one of the main bearing and the sub-bearing and the guide protrusion of the vane. Through this, it is possible to increase compressor efficiency by reducing friction loss between the vane and the main bearing or sub bearing supporting the same.
구체적으로, 상기 베어링부재는, 상기 가이드홈의 내주면에 삽입되는 외륜; 상기 외륜의 내측에 구비되며, 그 내주면이 상기 가이드돌기의 접촉면에 미끄러지게 접촉되는 내륜; 및 상기 외륜과 상기 내륜 사이에 구비되어 상기 외륜과 상기 내륜이 상대운동을 하도록 하는 미끄럼부재를 포함할 수 있다. 이를 통해 베인과 이를 지지하는 메인베어링 또는 서브베어링 사이에서의 기계적 마찰손실을 더욱 효과적으로 줄이는 동시에 베어링부재를 용이하게 설치할 수 있다.Specifically, the bearing member may include an outer ring inserted into the inner circumferential surface of the guide groove; an inner ring provided on the inner side of the outer ring, the inner circumferential surface of which is slidably in contact with the contact surface of the guide protrusion; and a sliding member provided between the outer ring and the inner ring to allow the outer ring and the inner ring to perform relative motion. Through this, the mechanical friction loss between the vane and the main bearing or sub-bearing supporting the vane can be more effectively reduced, and the bearing member can be easily installed.
일례로, 상기 외륜 또는 상기 내륜 중에서 어느 한 쪽은 상기 롤러와 이를 마주보는 상기 메인베어링과 상기 서브베어링 사이로 연장되는 회전판부가 더 구비될 수 있다. 이를 통해, 롤러와 이를 마주보는 메인베어링 또는 서브베어링 사이에서의 축방향 기계적 마찰손실을 더욱 효과적으로 줄일 수 있다.For example, any one of the outer ring and the inner ring may further include a rotating plate portion extending between the roller and the main bearing and the sub bearing facing them. In this way, it is possible to more effectively reduce the axial mechanical friction loss between the roller and the main bearing or sub bearing facing it.
일례로, 상기 베어링부재는, 상기 메인베어링과 상기 서브베어링 중에서 적어도 어느 한쪽 베어링과 이를 반경방향으로 마주보는 상기 베인의 사이에 구비되는 제1 베어링부; 및 상기 메인베어링과 상기 서브베어링 중에서 적어도 어느 한쪽 베어링과 이를 축방향으로 마주보는 상기 롤러의 사이에 구비되는 제2 베어링부를 포함할 수 있다. 이를 통해, 베인과 메인 또는 서브베어링 사이에서의 반경방향 마찰손실 및 롤러와 메인 또는 서브베어링 사이에서의 축방향 마찰손실을 줄일 수 있다.For example, the bearing member may include: a first bearing part provided between at least one of the main bearing and the sub-bearing and the vane facing the same in a radial direction; and a second bearing part provided between at least one of the main bearing and the sub-bearing and the roller facing the same in the axial direction. In this way, it is possible to reduce the radial friction loss between the vane and the main or sub-bearing and the axial friction loss between the roller and the main or sub-bearing.
다른 예로, 상기 제1 베어링부와 상기 제2 베어링부는 단일체로 형성될 수 있다. 이를 통해, 반경방향 및 축방향 마찰손실을 줄일 수 있는 베어링부재를 용이하게 제작할 수 있다.As another example, the first bearing part and the second bearing part may be formed as a single body. Through this, it is possible to easily manufacture a bearing member capable of reducing frictional losses in the radial and axial directions.
다른 예로, 상기 제2 베어링부는 상기 제1 베어링부보다 두껍게 형성될 수 있다. 이를 통해, 실린더와 베어링부재 사이의 실링면적을 확보하는 동시에 제2 베어링부의 외주면에 실링부를 용이하게 형성할 수 있다.As another example, the second bearing part may be thicker than the first bearing part. Through this, the sealing area between the cylinder and the bearing member can be secured, and the sealing part can be easily formed on the outer peripheral surface of the second bearing part.
다른 예로, 상기 제1 베어링부는 링 형상으로 형성되고, 상기 제2 베어링부는 원판 형상으로 형성될 수 있다.As another example, the first bearing part may be formed in a ring shape, and the second bearing part may be formed in a disk shape.
다른 예로, 상기 제1 베어링부는, 상기 메인베어링과 상기 서브베어링 중에서 적어도 어느 한 쪽 베어링의 가이드홈에 삽입되는 외륜; 상기 외륜의 내측에 구비되며, 그 내주면이 상기 베인의 가이드돌기에 미끄러지게 접촉되는 내륜; 및 상기 외륜과 상기 내륜 사이에 구비되어 상기 외륜과 상기 내륜이 상대운동을 하도록 하는 미끄럼부재를 포함할 수 있다. 상기 제2 베어링부는, 상기 제1 베어링부의 상기 내륜의 일단 또는 상기 외륜의 일단에서 반경방향으로 연장되어 상기 롤러의 축방향 측면과 이를 마주보는 상기 메인베어링과 상기 서브베어링의 축방향 측면 상에 구비될 수 있다. 이를 통해, 베인과 메인 또는 서브베어링 사이에서의 반경방향 마찰손실 및 롤러와 메인 또는 서브베어링 사이에서의 축방향 마찰손실을 줄일 수 있다.As another example, the first bearing unit may include: an outer ring inserted into a guide groove of at least one of the main bearing and the sub bearing; an inner ring provided on the inner side of the outer ring, the inner circumferential surface of which is slidably in contact with the guide projection of the vane; and a sliding member provided between the outer ring and the inner ring to allow the outer ring and the inner ring to perform relative motion. The second bearing part extends radially from one end of the inner ring or one end of the outer ring of the first bearing part and is provided on the axial side of the main bearing and the sub bearing facing the axial side of the roller can be In this way, it is possible to reduce the radial friction loss between the vane and the main or sub-bearing and the axial friction loss between the roller and the main or sub-bearing.
다른 예로, 상기 제2 베어링부는 그 축방향 측면이 이를 마주보는 상기 메인베어링 또는 상기 서브베어링의 축방향 측면으로부터 이격될 수 있다. 이를 통해, 제2 베어링부가 메인베어링 또는 서브베어링에 접촉되는 것을 억제하여 마찰손실을 효과적으로 줄일 수 있다.As another example, the axial side of the second bearing part may be spaced apart from the axial side of the main bearing or the sub-bearing facing it. Through this, it is possible to effectively reduce the friction loss by suppressing the contact of the second bearing part with the main bearing or the sub-bearing.
다른 예로, 상기 제2 베어링부는 그 외주면이 상기 실린더의 내주면을 마주보도록 상기 실린더의 내부에 삽입될 수 있다. 이를 통해, 제2 베어링부와 실린더의 내주면 사이에 실링면이 형성되도록 하여 압축공간에서의 냉매누설을 효과적으로 줄일 수 있다.As another example, the second bearing part may be inserted into the cylinder such that its outer circumferential surface faces the inner circumferential surface of the cylinder. Through this, a sealing surface is formed between the second bearing part and the inner circumferential surface of the cylinder, thereby effectively reducing refrigerant leakage in the compression space.
또 다른 예로, 상기 제2 베어링부의 외주면과 상기 실린더의 내주면 사이에는 실링부가 구비될 수 있다. 이를 통해, 제2 베어링부가 실린더로부터 이격되면서도 압축공간에서의 냉매누설을 더욱 효과적으로 억제할 수 있다.As another example, a sealing part may be provided between the outer peripheral surface of the second bearing part and the inner peripheral surface of the cylinder. Through this, it is possible to more effectively suppress refrigerant leakage in the compression space while the second bearing part is spaced apart from the cylinder.
또 다른 예로, 상기 제2 베어링부는 그 외주면이 상기 실린더의 내주면과 동일한 형상으로 형성될 수 있다. 이를 통해, 제2 베어링부가 실린더의 내부에서 회전하게 되어 롤러와 제2 베어링부 사이에서의 상대운동을 억제할 수 있다.As another example, an outer circumferential surface of the second bearing part may be formed in the same shape as an inner circumferential surface of the cylinder. Through this, the second bearing part rotates inside the cylinder, thereby suppressing the relative motion between the roller and the second bearing part.
일례로, 상기 베어링부재는, 상기 메인베어링과 상기 서브베어링 중에서 적어도 어느 한쪽 베어링과 이를 반경방향으로 마주보는 상기 베인의 사이에 구비될 수 있다. 상기 롤러의 축방향 측면은 이를 마주보는 상기 메인베어링의 축방향 측면과 상기 서브베어링의 축방향 측면에 미끄럼 접촉될 수 있다. 이를 통해, 제2 베어링부와 롤러 사이에서의 기계적 마찰손실을 억제할 수 있다.For example, the bearing member may be provided between at least one of the main bearing and the sub-bearing and the vane facing the same in a radial direction. An axial side surface of the roller may be in sliding contact with an axial side surface of the main bearing and an axial side surface of the sub bearing facing them. Through this, the mechanical friction loss between the second bearing part and the roller can be suppressed.
다른 예로, 상기 실린더의 내주면은 원형 또는 타원형상으로 형성될 수 있다. 상기 메인베어링의 축방향 측면과 상기 서브베어링의 축방향 측면 중에서 적어도 어느 한 쪽에 토출구가 형성될 수 있다. 이를 통해, 실린더의 내주면 형상을 다양하게 형성할 수 있고, 압축주기를 길게 형성하여 과압축을 억제할 수 있다. As another example, the inner peripheral surface of the cylinder may be formed in a circular or elliptical shape. A discharge port may be formed in at least one of an axial side surface of the main bearing and an axial side surface of the sub bearing. Through this, the shape of the inner circumferential surface of the cylinder can be formed in various ways, and overcompression can be suppressed by forming a long compression cycle.
일례로, 상기 롤러에는 부시홈이 형성되고, 상기 부시홈에는 두 개 한 쌍의 스윙부시가 회전 가능하게 삽입되며, 상기 베인은 상기 스윙부시 사이에 미끄러지도록 삽입될 수 있다. 이를 통해, 베인의 선단부가 실린더의 내주면과 동일한 곡률로 형성될 수 있도록 하여 실린더와 베인 사이의 실링면적을 확보할 수 있다.For example, a bush groove may be formed in the roller, and a pair of swing bushes may be rotatably inserted into the bush groove, and the vane may be slidably inserted between the swing bushes. Through this, the front end of the vane can be formed to have the same curvature as the inner circumferential surface of the cylinder, thereby securing a sealing area between the cylinder and the vane.
본 실시예에 따른 로터리 압축기는, 메인베어링과 서브베어링에 구비된 가이드홈과 이를 마주보는 베인의 가이드돌기 사이에 베어링부재가 구비될 수 있다. 이를 통해, 베인과 이를 지지하는 메인베어링 또는 서브베어링 사이에서의 마찰손실을 줄여 압축기 효율을 높일 수 있다.In the rotary compressor according to the present embodiment, a bearing member may be provided between the guide grooves provided in the main bearing and the sub bearing and the guide projections of the vanes facing them. Through this, it is possible to increase compressor efficiency by reducing friction loss between the vane and the main bearing or sub bearing supporting the same.
또한, 본 실시예에 따른 로터리 압축기는, 가이드홈의 내주면과 이를 마주보는 가이드돌기 사이에 외륜과 내륜 그리고 미끄럼부재로 된 볼베어링이 설치될 수 있다. 이를 통해 베인과 이를 지지하는 메인베어링 또는 서브베어링 사이에서의 기계적 마찰손실을 더욱 효과적으로 줄이는 동시에 베어링부재를 용이하게 설치할 수 있다.In addition, in the rotary compressor according to the present embodiment, a ball bearing made of an outer ring, an inner ring, and a sliding member may be installed between the inner circumferential surface of the guide groove and the guide projection facing the same. Through this, the mechanical friction loss between the vane and the main bearing or sub-bearing supporting the vane can be more effectively reduced, and the bearing member can be easily installed.
또한, 본 실시예에 따른 로터리 압축기는, 볼베어링을 이루는 외륜 또는 상내륜 중에서 어느 한 쪽은 롤러와 이를 마주보는 메인베어링과 서브베어링 사이로 연장되는 회전판부가 더 구비될 수 있다. 이를 통해, 롤러와 이를 마주보는 메인베어링 또는 서브베어링 사이에서의 축방향 기계적 마찰손실을 더욱 효과적으로 줄일 수 있다.In addition, the rotary compressor according to the present embodiment may further include a rotary plate portion extending between the roller and the main bearing and the sub bearing facing the outer ring or the upper inner ring constituting the ball bearing. In this way, it is possible to more effectively reduce the axial mechanical friction loss between the roller and the main bearing or sub bearing facing it.
또한, 본 실시예에 따른 로터리 압축기는, 메인베어링 및 서브베어링과 이를 반경방향으로 마주보는 베인의 사이에 구비되는 제1 베어링부, 메인베어링 및 서브베어링과 이를 축방향으로 마주보는 롤러의 사이에 구비되는 제2 베어링부를 포함할 수 있다. 이를 통해, 베인과 메인 또는 서브베어링 사이에서의 반경방향 마찰손실 및 롤러와 메인 또는 서브베어링 사이에서의 축방향 마찰손실을 줄일 수 있다.In addition, the rotary compressor according to the present embodiment, the first bearing portion provided between the main bearing and the sub-bearing and the vanes facing them in the radial direction, the main bearing and the sub-bearing and the roller facing it in the axial direction. It may include a second bearing unit provided. In this way, it is possible to reduce the radial friction loss between the vane and the main or sub-bearing and the axial friction loss between the roller and the main or sub-bearing.
또한, 본 실시예에 따른 로터리 압축기는, 제1 베어링부와 제2 베어링부는 단일체로 형성될 수 있다. 이를 통해, 반경방향 및 축방향 마찰손실을 줄일 수 있는 베어링부재를 용이하게 제작할 수 있다.In addition, in the rotary compressor according to the present embodiment, the first bearing part and the second bearing part may be formed as a single body. Through this, it is possible to easily manufacture a bearing member capable of reducing frictional losses in the radial and axial directions.
또한, 본 실시예에 따른 로터리 압축기는, 제2 베어링부는 제1 베어링부보다 두껍게 형성될 수 있다. 이를 통해, 실린더와 베어링부재 사이의 실링면적을 확보하는 동시에 제2 베어링부의 외주면에 실링부를 용이하게 형성할 수 있다.In addition, in the rotary compressor according to the present embodiment, the second bearing part may be formed to be thicker than the first bearing part. Through this, the sealing area between the cylinder and the bearing member can be secured, and the sealing part can be easily formed on the outer peripheral surface of the second bearing part.
또한, 본 실시예에 따른 로터리 압축기는, 제2 베어링부는 그 축방향 측면이 이를 마주보는 메인베어링 또는 서브베어링의 축방향 측면으로부터 이격될 수 있다. 이를 통해, 제2 베어링부가 메인베어링 또는 서브베어링에 접촉되는 것을 억제하여 마찰손실을 효과적으로 줄일 수 있다.In addition, in the rotary compressor according to the present embodiment, the second bearing part may be spaced apart from the axial side surface of the main bearing or the sub bearing facing the second bearing part in the axial direction. Through this, it is possible to effectively reduce the friction loss by suppressing the contact of the second bearing part with the main bearing or the sub-bearing.
또한, 본 실시예에 따른 로터리 압축기는, 제2 베어링부는 그 외주면이 실린더의 내주면을 마주보도록 실린더의 내부에 삽입될 수 있다. 이를 통해, 제2 베어링부와 실린더의 내주면 사이에 실링면이 형성되도록 하여 압축공간에서의 냉매누설을 효과적으로 줄일 수 있다.In addition, in the rotary compressor according to the present embodiment, the second bearing part may be inserted into the cylinder so that the outer circumferential surface faces the inner circumferential surface of the cylinder. Through this, a sealing surface is formed between the second bearing part and the inner circumferential surface of the cylinder, thereby effectively reducing refrigerant leakage in the compression space.
또한, 본 실시예에 따른 로터리 압축기는, 제2 베어링부의 외주면과 실린더의 내주면 사이에는 실링부가 구비될 수 있다. 이를 통해, 제2 베어링부가 실린더로부터 이격되면서도 압축공간에서의 냉매누설을 더욱 효과적으로 억제할 수 있다.In addition, in the rotary compressor according to the present embodiment, a sealing part may be provided between the outer peripheral surface of the second bearing part and the inner peripheral surface of the cylinder. Through this, it is possible to more effectively suppress refrigerant leakage in the compression space while the second bearing part is spaced apart from the cylinder.
또한, 본 실시예에 따른 로터리 압축기는, 실린더의 내주면은 원형 또는 타원형상으로 형성되고, 메인베어링의 축방향 측면과 서브베어링의 축방향 측면 중에서 적어도 어느 한 쪽에 토출구가 형성될 수 있다. 이를 통해, 실린더의 내주면 형상을 다양하게 형성할 수 있고, 압축주기를 길게 형성하여 과압축을 억제할 수 있다. In addition, in the rotary compressor according to the present embodiment, the inner circumferential surface of the cylinder is formed in a circular or elliptical shape, and the discharge port may be formed in at least one of the axial side surface of the main bearing and the axial side surface of the sub bearing. Through this, the shape of the inner circumferential surface of the cylinder can be formed in various ways, and overcompression can be suppressed by forming a long compression cycle.
또한, 본 실시예에 따른 로터리 압축기는, 롤러에는 부시홈이 형성되고, 부시홈에는 두 개 한 쌍의 스윙부시가 회전 가능하게 삽입되며, 베인은 스윙부시 사이에 미끄러지도록 삽입될 수 있다. 이를 통해, 베인의 선단부가 실린더의 내주면과 동일한 곡률로 형성될 수 있도록 하여 실린더와 베인 사이의 실링면적을 확보할 수 있다.In addition, in the rotary compressor according to the present embodiment, a bush groove is formed in the roller, two pair of swing bushes are rotatably inserted into the bush groove, and the vane may be slidably inserted between the swing bushes. Through this, the front end of the vane can be formed to have the same curvature as the inner circumferential surface of the cylinder, thereby securing a sealing area between the cylinder and the vane.
도 1은 본 발명에 의한 베인 로터리 압축기의 일례를 종단면하여 보인 단면도, 1 is a cross-sectional view showing an example of a vane rotary compressor according to the present invention in a longitudinal section;
도 2는 도 1에서 압축부를 분해하여 보인 사시도,2 is an exploded perspective view of the compression unit in FIG. 1;
도 3은 도 2의 압축부를 조립하여 보인 사시도, 3 is a perspective view showing the compression part of FIG. 2 assembled;
도 4은 도 3의 평면도,Fig. 4 is a plan view of Fig. 3;
도 5는 도 1에서 압축부를 확대하여 보인 단면도,5 is an enlarged cross-sectional view of the compression unit in FIG. 1;
도 6은 도 5에서 베인베어링을 파단하여 보인 사시도,6 is a perspective view showing the vane bearing in FIG.
도 7은 도 6의 베인베어링이 메인베어링에 장착된 상태를 보인 단면도,7 is a cross-sectional view showing a state in which the vane bearing of FIG. 6 is mounted on the main bearing;
도 8 및 도 9는 도 5에서 베인베어링의 실링부에 대한 다른 실시예들을 보인 단면도들,8 and 9 are cross-sectional views showing other embodiments of the sealing part of the vane bearing in FIG. 5;
도 10은 베인베어링에 대한 다른 실시예를 보인 단면도,10 is a cross-sectional view showing another embodiment of the vane bearing;
도 11은 베인베어링에 대한 또 다른 실시예를 보인 단면도.11 is a cross-sectional view showing another embodiment of the vane bearing.
이하, 본 발명에 의한 베인 로터리 압축기를 첨부도면에 도시된 일실시예에 의거하여 상세하게 설명한다. 참고로, 본 발명에 의한 롤러의 베인슬롯은 베인이 롤러에 미끄러지게 삽입되는 베인 로터리 압축기에는 동일하게 적용될 수 있다. 예를 들어 본 실시예와 같이 베인슬롯이 반경방향으로 형성된 예는 물론 경사지게 형성되는 예에도 동일하게 적용될 수 있다. Hereinafter, a vane rotary compressor according to the present invention will be described in detail based on an embodiment shown in the accompanying drawings. For reference, the vane slot of the roller according to the present invention can be equally applied to the vane rotary compressor in which the vane is slidably inserted into the roller. For example, the same can be applied to the example in which the vane slot is formed in the radial direction as well as the example in which the vane slot is formed to be inclined as in the present embodiment.
도 1은 본 발명에 의한 베인 로터리 압축기의 일례를 종단면하여 보인 단면도이고, 도 2는 도 1에서 압축부를 분해하여 보인 사시도이며, 도 3은 도 2의 압축부를 조립하여 보인 사시도이고, 도 4은 도 3의 평면도이다.1 is a longitudinal cross-sectional view showing an example of a vane rotary compressor according to the present invention, FIG. 2 is an exploded perspective view of the compression part in FIG. 1, FIG. 3 is a perspective view showing the compression part of FIG. 2 assembled, and FIG. 3 is a plan view.
도 1을 참조하면, 본 실시예에 따른 베인 로터리 압축기는, 케이싱(110), 구동모터(120) 및 압축부(130)를 포함한다. 구동모터(120)는 케이싱(110)의 상측 내부공간(110a)에, 압축부(130)는 케이싱(110)의 하측 내부공간(110a)에 각각 설치되고, 구동모터(120)와 압축부(130)는 회전축(123)으로 연결된다. Referring to FIG. 1 , the vane rotary compressor according to the present embodiment includes a casing 110 , a driving motor 120 , and a compression unit 130 . The drive motor 120 is installed in the upper inner space 110a of the casing 110, the compression unit 130 is installed in the lower inner space 110a of the casing 110, respectively, and the drive motor 120 and the compression unit ( 130 is connected to the rotation shaft 123 .
케이싱(110)은 압축기의 외관을 이루는 부분으로, 압축기의 설치양태에 따라 종형 또는 횡형으로 구분될 수 있다. 종형은 구동모터(120)와 압축부(130)가 축방향을 따라 상하 양측에 배치되는 구조이고, 횡형은 구동모터(120)와 압축부(130)가 좌우 양측에 배치되는 구조이다. 본 실시예에 따른 케이싱은 종형으로 형성될 수 있다. The casing 110 is a portion forming the exterior of the compressor, and may be divided into a vertical or horizontal type depending on an installation aspect of the compressor. The vertical type has a structure in which the driving motor 120 and the compression unit 130 are disposed on both upper and lower sides along the axial direction, and the horizontal type has a structure in which the driving motor 120 and the compression unit 130 are disposed on both left and right sides. The casing according to the present embodiment may be formed in a bell shape.
케이싱(110)은 원통형으로 형성되는 중간쉘(111), 중간쉘(111)의 하단을 복개하는 하부쉘(112), 중간쉘(111)의 상단을 복개하는 상부쉘(113)을 포함한다. 중간쉘(111)에는 구동모터(120)와 압축부(130)가 삽입되어 고정 결합되고, 흡입관(115)이 관통되어 압축부(130)에 직접 연결될 수 있다.The casing 110 includes an intermediate shell 111 formed in a cylindrical shape, a lower shell 112 covering the lower end of the intermediate shell 111 , and an upper shell 113 covering the upper end of the intermediate shell 111 . The driving motor 120 and the compression unit 130 are inserted into the intermediate shell 111 to be fixedly coupled, and the suction pipe 115 may be penetrated to be directly connected to the compression unit 130 .
하부쉘(112)은 중간쉘(111)의 하단에 밀봉 결합되고, 압축부(130)로 공급될 오일이 저장되는 저유공간(110b)이 압축부(130)의 하측에 형성될 수 있다. 상부쉘(113)은 중간쉘(111)의 상단에 밀봉 결합되고, 압축부(130)에서 토출되는 냉매에서 오일을 분리하도록 유분리공간(110c)이 구동모터(120)의 상측에 형성될 수 있다.The lower shell 112 is sealingly coupled to the lower end of the intermediate shell 111 , and a storage oil space 110b in which oil to be supplied to the compression unit 130 is stored may be formed below the compression unit 130 . The upper shell 113 is sealingly coupled to the upper end of the intermediate shell 111 , and an oil separation space 110c may be formed above the driving motor 120 to separate oil from the refrigerant discharged from the compression unit 130 . have.
구동모터(120)는 전동부를 이루는 부분으로, 압축부(130)를 구동시키는 동력을 제공한다. 구동모터(120)는 고정자(121), 회전자(122) 및 회전축(123)을 포함한다. The driving motor 120 is a part constituting the electric part, and provides power to drive the compression part 130 . The driving motor 120 includes a stator 121 , a rotor 122 , and a rotation shaft 123 .
고정자(121)는 케이싱(110)의 내부에 고정 설치되며, 원통형 케이싱(110)의 내주면에 열박음 등으로 압입되어 고정될 수 있다. 예를 들어, 고정자(121)는 중간쉘(110a)의 내주면에 압입되어 고정될 수 있다.The stator 121 is fixedly installed inside the casing 110 , and may be press-fitted to the inner circumferential surface of the cylindrical casing 110 by shrink fit or the like. For example, the stator 121 may be fixed by being press-fitted to the inner circumferential surface of the intermediate shell 110a.
회전자(122)는 고정자(121)의 내부에 회전 가능하게 삽입되며, 회전자(122)의 중심에는 회전축(123)이 압입되어 결합된다. 이에 따라, 회전축(123)은 회전자(122)와 함께 동심 회전을 하게 된다.The rotor 122 is rotatably inserted into the stator 121 , and the rotation shaft 123 is press-fitted to the center of the rotor 122 . Accordingly, the rotating shaft 123 rotates concentrically with the rotor 122 .
회전축(123)의 중심에는 오일유로(125)가 중공홀 형상으로 형성되고, 오일유로(125)의 중간에는 오일통공(126a)(126b)이 회전축(123)의 외주면을 향해 관통 형성될 수 있다. 오일통공(126a)(126b)은 후술할 메인베어링부(1312)의 범위에 속하는 제1 오일통공(126a)과 제2 베어링부(1322)의 범위에 속하는 제2 오일통공(126b)으로 이루어진다. 제1 오일통공(126a)과 제2 오일통공(126b)은 각각 1개씩 형성될 수도 있고, 복수 개씩 형성될 수 있다. 본 실시예는 복수 개씩 형성된 예를 도시하고 있다.In the center of the rotation shaft 123, the oil passage 125 is formed in the shape of a hollow hole, and in the middle of the oil passage 125, oil through holes 126a and 126b may be formed to penetrate toward the outer circumferential surface of the rotation shaft 123. . The oil through- holes 126a and 126b include a first oil through-hole 126a belonging to the range of the main bearing unit 1312 to be described later and a second oil through-hole 126b belonging to the range of the second bearing unit 1322 . Each of the first oil through-hole 126a and the second oil through-hole 126b may be formed one by one, or a plurality of first oil through-holes 126b may be formed. This embodiment shows an example in which a plurality of pieces are formed.
오일유로(125)의 중간 또는 하단에는 오일픽업(127)이 설치될 수 있다. 오일픽업(127)은 기어펌프, 점성펌프, 원심펌프 등이 적용될 수 있다. 본 실시예는 원심펌프가 적용된 예를 도시하고 있다. 이에 따라 회전축(123)이 회전을 하면 케이싱(110)의 저유공간(110b)에 채워진 오일은 오일픽업(127)에 의해 펌핑되고, 이 오일은 오일유로(125)를 따라 흡상되다가 제2 오일통공(126b)을 통해 서브베어링부(1322)와의 서브베어링면(1322a)으로, 제1 오일통공(126a)을 통해 메인베어링부(1312)의 메인베어링면(1311a)으로 공급될 수 있다. 이에 대해서는 나중에 다시 설명한다. An oil pickup 127 may be installed in the middle or lower end of the oil passage 125 . The oil pickup 127 may be a gear pump, a viscous pump, a centrifugal pump, or the like. This embodiment shows an example to which a centrifugal pump is applied. Accordingly, when the rotating shaft 123 rotates, the oil filled in the oil storage space 110b of the casing 110 is pumped by the oil pickup 127, and this oil is sucked along the oil passage 125 and then the second oil through hole. It may be supplied to the sub-bearing surface 1322a with the sub-bearing unit 1322 through the 126b, and to the main bearing surface 1311a of the main bearing unit 1312 through the first oil through hole 126a. This will be explained again later.
압축부(130)는 메인베어링(131), 서브베어링(132), 실린더(133), 롤러(134) 및 복수의 베인(1351,1352,1353)을 포함한다. 메인베어링(131)과 서브베어링(132)은 실린더(133)의 상하 양측에 각각 구비되어 실린더(133)와 함께 압축공간(V)을 형성하고, 롤러(134)는 압축공간(V)에 회전 가능하게 설치되며, 베인(1351,1352,1353)은 롤러(134)에 미끄러지게 삽입되어 압축공간(V)을 복수 개의 압축실로 구획된다. The compression unit 130 includes a main bearing 131 , a sub bearing 132 , a cylinder 133 , a roller 134 , and a plurality of vanes 1351 , 1352 , and 1353 . The main bearing 131 and the sub bearing 132 are respectively provided on upper and lower sides of the cylinder 133 to form a compression space V together with the cylinder 133, and the roller 134 rotates in the compression space V Installed as possible, the vanes 1351, 1352 and 1353 are slidably inserted into the roller 134 to divide the compression space V into a plurality of compression chambers.
도 1 및 도 2를 참조하면, 메인베어링(131)은 케이싱(110)의 중간쉘(111)에 고정 설치될 수 있다. 예를 들어 메인베어링(131)은 중간쉘(111)에 삽입되어 용접될 수 있다.1 and 2 , the main bearing 131 may be fixedly installed on the intermediate shell 111 of the casing 110 . For example, the main bearing 131 may be inserted into the intermediate shell 111 and welded.
메인베어링(131)은 실린더(133)의 상단에 밀착되어 결합될 수 있다. 이에 따라 메인베어링(131)은 압축공간(V)의 상측면을 형성하고, 롤러(134)의 상면을 축방향으로 지지하는 동시에 회전축(123)의 상반부를 반경방향으로 지지한다. The main bearing 131 may be closely coupled to the upper end of the cylinder 133 . Accordingly, the main bearing 131 forms the upper surface of the compression space V, supports the upper surface of the roller 134 in the axial direction, and at the same time supports the upper half of the rotary shaft 123 in the radial direction.
메인베어링(131)은 메인플레이트부(1311), 메인베어링부(1312)를 포함할 수 있다. 메인플레이트부(1311)는 실린더(133)의 상측을 복개하여 실린더(133)와 결합되고, 메인베어링부(1312)는 메인플레이트부(1311)의 중심에서 구동모터(120)를 향해 축방향으로 연장되어 회전축(123)의 상반부를 지지한다.The main bearing 131 may include a main plate part 1311 and a main bearing part 1312 . The main plate part 1311 covers the upper side of the cylinder 133 and is coupled to the cylinder 133 , and the main bearing part 1312 moves from the center of the main plate part 1311 toward the driving motor 120 in the axial direction. It extends to support the upper half of the rotation shaft 123 .
메인플레이트부(1311)는 원판형상으로 형성되고, 메인플레이트부(1311)의 외주면이 중간쉘(111)의 내주면에 밀착되어 고정될 수 있다. 메인플레이트부(1311)의 하면, 즉 롤러(134)의 축방향 상면을 마주보는 축방향 하면에는 후술할 가이드돌기(1351d)가 수용되도록 메인가이드홈(1311a)이 형성될 수 있다. The main plate part 1311 may be formed in a disk shape, and the outer peripheral surface of the main plate part 1311 may be fixed in close contact with the inner peripheral surface of the intermediate shell 111 . A main guide groove 1311a may be formed on a lower surface of the main plate portion 1311 , that is, an axial lower surface facing the axial upper surface of the roller 134 to receive a guide protrusion 1351d to be described later.
메인가이드홈(1311a)은 후술할 메인베어링구멍(1312a)을 수용하되, 그 메인베어링구멍(1312a)의 중심을 이루는 베어링구멍중심(축중심 또는 롤러회전중심)(미부호)에 대해 편심지게 형성될 수 있다. 예를 들어 메인가이드홈(1311a)의 내주면(1311a1)이 이루는 중심(Og)은 실린더(133)의 내주면(1331)이 이루는 압축공간(V)의 중심(Ov)과 동일축선상에 위치하도록 형성될 수 있다. 이에 따라 메인가이드홈(1311a)의 중심(Og)과 압축공간(V)의 중심(Ov)은 롤러(134)의 회전중심(Or)에 대해 편심지게 형성될 수 있다.The main guide groove 1311a accommodates a main bearing hole 1312a, which will be described later, and is formed eccentrically with respect to the bearing hole center (axial center or roller rotation center) (unsigned) forming the center of the main bearing hole 1312a. can be For example, the center Og formed by the inner circumferential surface 1311a1 of the main guide groove 1311a is formed to be located on the same axis as the center Ov of the compression space V formed by the inner circumferential surface 1331 of the cylinder 133. can be Accordingly, the center Og of the main guide groove 1311a and the center Ov of the compression space V may be formed eccentrically with respect to the rotation center Or of the roller 134 .
다시 말해, 본 실시예와 같이 후술할 베인베어링(136)(137)이 제1 베어링부(1365)와 제2 베어링부(1366)가 함께 회전하는 경우에는 앞서 설명한 바와 같이 메인가이드홈(1311a)의 중심(Og)과 압축공간(V)의 중심(Ov)은 서로 동일축선상에 위치하도록 형성되면서 롤러(134)의 회전중심(Or)에 대해서는 편심지게 형성될 수 있다.In other words, when the first bearing part 1365 and the second bearing part 1366 rotate together in the vane bearings 136 and 137 to be described later as in the present embodiment, as described above, the main guide groove 1311a) The center Og and the center Ov of the compression space V may be formed eccentrically with respect to the rotation center Or of the roller 134 while being formed to be located on the same axis.
하지만, 제2 베어링부(1366)가 배제되거나 또는 제2 베어링부(1366)가 고정되는 경우에는 메인가이드홈(1311a)의 중심(Og)과 압축공간(V)의 중심(Ov)은 서로 편심지게 형성될 수도 있다.However, when the second bearing part 1366 is excluded or the second bearing part 1366 is fixed, the center Og of the main guide groove 1311a and the center Ov of the compression space V are eccentric to each other. It may also be formed.
메인가이드홈(1311a)은 전체가 대략 동일한 깊이로 형성되고, 회전축(123)에 구비된 오일유로(125)와 연통될 수 있다. 예를 들어 메인가이드홈(1311a)은 메인플레이트부(1311)의 내주면 모서리 또는 메인베어링(1312)의 하단 모서리에서 단차지는 형상으로 형성됨에 따라, 회전축(123)의 제1 오일통공(126a)과 반경방향으로 직접 연통되는 위치에 형성되거나 또는 메인베어링구멍(1312a)의 내주면이 이루는 메인베어링면(1312a1)을 통해 연통되도록 형성될 수 있다. 이에 따라 메인가이드홈(1311a)의 내부에는 토출압 또는 이에 준하는 오일이 유입될 수 있다.The main guide groove 1311a may be formed to have substantially the same depth as a whole, and may communicate with the oil passage 125 provided in the rotation shaft 123 . For example, the main guide groove 1311a is formed in a stepped shape at the inner peripheral edge of the main plate part 1311 or at the lower edge of the main bearing 1312, the first oil through hole 126a of the rotating shaft 123 and It may be formed at a position where it communicates directly in the radial direction, or it may be formed to communicate through the main bearing surface 1312a1 formed by the inner circumferential surface of the main bearing hole 1312a. Accordingly, a discharge pressure or an oil equivalent thereto may be introduced into the main guide groove 1311a.
메인가이드홈(1311a)의 내주면은 압축공간(V)에 연통되지 않는 위치, 예를 들어 메인가이드홈(1311a)의 내주면(1311a1)은 메인베어링구멍(1312a)의 내주면이 이루는 메인베어링면(1312a1)과 롤러(134)의 외주면(1341) 사이에 위치하도록 형성될 수 있다. 이에 따라 메인베어링(131)과 롤러(134)의 사이에 실링거리가 확보되어, 메인가이드홈(1311a)의 내부에는 토출압 또는 이에 준하는 오일이 유입되더라도 그 오일이 압축공간(V)으로 유입되는 것을 억제할 수 있다.The inner circumferential surface of the main guide groove 1311a is a position not communicating with the compression space V, for example, the inner circumferential surface 1311a1 of the main guide groove 1311a is the main bearing surface 1312a1 formed by the inner circumferential surface of the main bearing hole 1312a. ) and the outer peripheral surface 1341 of the roller 134 may be formed to be located. Accordingly, a sealing distance is secured between the main bearing 131 and the roller 134, and even if a discharge pressure or an oil equivalent thereto is introduced into the inside of the main guide groove 1311a, the oil flows into the compression space V. can be restrained
메인가이드홈(1311a)의 내주면(1311a1)은 후술할 롤러(134)의 외주면(1341)과 동일한 형상으로 형성될 수 있다. 예를 들어 메인가이드홈(1311a)의 내주면(1311a1)은 후술할 롤러(134)의 외주면(1341)과 동일한 원형으로 형성될 수 있다. 이에 따라 메인가이드홈(1311a)과 롤러의 외주면 사이의 실링면(또는 실링거리)이 원주방향을 따라 균일하게 형성될 수 있다.The inner circumferential surface 1311a1 of the main guide groove 1311a may be formed in the same shape as the outer circumferential surface 1341 of the roller 134 to be described later. For example, the inner peripheral surface 1311a1 of the main guide groove 1311a may be formed in the same circular shape as the outer peripheral surface 1341 of the roller 134 to be described later. Accordingly, the sealing surface (or sealing distance) between the main guide groove 1311a and the outer peripheral surface of the roller may be uniformly formed along the circumferential direction.
메인베어링부(1312)는 메인베어링구멍(1312a)이 축방향으로 관통되어 중공을 이루는 부시 형상으로 형성되고, 메인베어링구멍(1312a)의 내주면인 메인베어링면(1312a1)에는 오일그루브(미도시)가 형성될 수 있다. The main bearing part 1312 is formed in a bush shape through which the main bearing hole 1312a penetrates in the axial direction to form a hollow, and an oil groove (not shown) is provided on the main bearing surface 1312a1, which is the inner peripheral surface of the main bearing hole 1312a. can be formed.
도 1 및 도 2를 참조하면, 서브베어링(132)은 실린더(133)의 하단에 밀착되어 결합될 수 있다. 이에 따라 서브베어링(132)은 압축공간(V)의 하측면을 형성하고, 롤러(134)의 하면을 축방향으로 지지하는 동시에 회전축(123)의 하반부를 반경방향으로 지지한다. 1 and 2 , the sub-bearing 132 may be closely coupled to the lower end of the cylinder 133 . Accordingly, the sub-bearing 132 forms the lower surface of the compression space V, supports the lower surface of the roller 134 in the axial direction and at the same time supports the lower half of the rotation shaft 123 in the radial direction.
서브베어링(132)은 앞서 설명한 메인베어링(131)과 유사하게 형성될 수 있다. 예를 들어 본 실시예에 따른 서브베어링(132)은 서브플레이트부(1321), 서브베어링부(1322)를 포함할 수 있다.The sub bearing 132 may be formed similarly to the main bearing 131 described above. For example, the sub-bearing 132 according to the present embodiment may include a sub-plate part 1321 and a sub-bearing part 1322 .
서브플레이트부(1321)는 실린더(133)의 하측을 복개하여 실린더(133)와 결합되고, 서브베어링부(1322)는 서브플레이트부(1321)의 중심에서 하부쉘(112)을 향해 축방향으로 연장되어 회전축(123)의 하반부를 지지한다.The sub-plate part 1321 covers the lower side of the cylinder 133 and is coupled to the cylinder 133 , and the sub-bearing part 1322 axially moves from the center of the sub-plate part 1321 toward the lower shell 112 . It extends to support the lower half of the rotation shaft 123 .
서브플레이트부(1321)는 메인플레이트부(1311)와 마찬가지로 원판형상으로 형성되되 실린더(133)의 외경과 거의 동일하게 형성될 수 있다. 이에 따라 서브플레이트부(1321)의 외주면이 중간쉘(111)의 내주면으로부터 이격될 수 있다. The sub-plate part 1321 may be formed in a disk shape similar to the main plate part 1311 , and may be formed to be substantially the same as the outer diameter of the cylinder 133 . Accordingly, the outer circumferential surface of the sub-plate portion 1321 may be spaced apart from the inner circumferential surface of the intermediate shell 111 .
서브플레이트부(1321)의 축방향 상면에는 서브가이드홈(1321a)이 형성될 수 있다. 서브가이드홈(1321a)은 롤러(134)를 중심으로 앞서 설명한 메인가이드홈(1311a)과 대칭되게 형성되므로, 서브가이드홈(1321a)에 대한 설명은 메인가이드홈(1312a)에 대한 설명으로 대신한다.A sub-guide groove 1321a may be formed on the upper surface of the sub-plate part 1321 in the axial direction. Since the sub guide groove 1321a is formed symmetrically with the main guide groove 1311a described above centering on the roller 134, the description of the sub guide groove 1321a is replaced with the description of the main guide groove 1312a. .
서브베어링부(1322)는 서브베어링구멍(1322a)이 축방향으로 관통되어 중공을 이루는 부시 형상으로 형성되고, 서브베어링구멍(1322a)의 내주면인 서브베어링면(1322a1)에는 오일그루브(미도시)가 형성될 수 있다.The sub-bearing part 1322 is formed in a bush shape through which the sub-bearing hole 1322a penetrates in the axial direction to form a hollow, and an oil groove (not shown) on the sub-bearing surface 1322a1, which is the inner peripheral surface of the sub-bearing hole 1322a. can be formed.
도 1 내지 도 3을 참조하면, 본 실시예에 따른 실린더(133)는 메인베어링(131)의 하면에 밀착되어 서브베어링(132)과 함께 메인베어링(131)에 볼트로 체결될 수도 있다. 이에 따라 실린더(133)는 메인베어링(131)에 의해 케이싱(110)에 고정 결합될 수 있다.1 to 3 , the cylinder 133 according to the present embodiment may be in close contact with the lower surface of the main bearing 131 and may be bolted to the main bearing 131 together with the sub bearing 132 . Accordingly, the cylinder 133 may be fixedly coupled to the casing 110 by the main bearing 131 .
실린더(133)는 중앙에 압축공간(V)이 구비된 환형으로 형성될 수 있다. 예를 들어 압축공간(V)을 이루는 실린더(133)의 내주면(1331)은 원주방향을 따라 내경이 동일한 진원 형상으로 형성되되, 압축공간(V)의 중심(도 4에 도시)(Ov)은 축중심(도 4에 도시)(Os)을 이루는 롤러(134)의 회전중심(도 4에 도시)(Or)에 대해 편심지게 형성될 수 있다. 이에 따라 실린더(133)의 내주면(1331)은 롤러(134)의 외주면(1341)에 대해 편심지게 형성되고, 실린더(133)의 내주면(1331)과 롤러(134)의 외주면(1341) 사이에는 그 실린더(133)의 내주면(1331)과 롤러(134)의 외주면(1341)이 거의 접촉되는 근접점(또는 접촉점)(P)이 형성될 수 있다. The cylinder 133 may be formed in an annular shape having a compression space V in the center. For example, the inner circumferential surface 1331 of the cylinder 133 constituting the compression space V is formed in a circular shape having the same inner diameter along the circumferential direction, and the center (shown in FIG. 4) Ov of the compression space V is It may be formed to be eccentric with respect to the rotation center (shown in FIG. 4) Or of the roller 134 constituting the axial center (shown in FIG. 4) Os. Accordingly, the inner peripheral surface 1331 of the cylinder 133 is formed eccentrically with respect to the outer peripheral surface 1341 of the roller 134, and between the inner peripheral surface 1331 of the cylinder 133 and the outer peripheral surface 1341 of the roller 134, the A proximity point (or contact point) P at which the inner circumferential surface 1331 of the cylinder 133 and the outer circumferential surface 1341 of the roller 134 are almost in contact may be formed.
실린더(133)는 근접점(P)을 중심으로 원주방향 양쪽에 각각 흡입구(1332)와 토출구(1333a,1333b)가 형성될 수 있다. 이에 따라 흡입구(1332)와 토출구(1333a,1333b)는 근접점(P)에 의해 서로 분리될 수 있다.The cylinder 133 may have suction ports 1332 and discharge ports 1333a and 1333b formed on both sides of the circumferential direction with respect to the proximity point P, respectively. Accordingly, the suction port 1332 and the discharge ports 1333a and 1333b may be separated from each other by the proximity point P.
흡입구(1332)는 케이싱(110)을 관통하는 흡입관(115)이 직접 연결되고, 토출구(1333a,1333b)는 케이싱(110)의 내부공간(110a)을 향해 연통되어 그 케이싱(110)에 관통 결합되는 토출관(116)과 간접적으로 연결될 수 있다. 이에 따라, 냉매는 흡입구(1332)를 통해 압축공간(V)으로 직접 흡입되는 반면, 압축된 냉매는 토출구(1333a,1333b)를 통해 케이싱(110)의 내부공간(110a)으로 토출되었다가 토출관(116)으로 배출될 수 있다. 따라서, 케이싱(110)의 내부공간(110a)은 토출압을 이루는 고압상태가 유지될 수 있다.The suction port 1332 is directly connected to the suction pipe 115 penetrating the casing 110 , and the discharge ports 1333a and 1333b communicate toward the inner space 110a of the casing 110 , and are coupled through the casing 110 . It may be indirectly connected to the discharge pipe 116 that is. Accordingly, the refrigerant is directly sucked into the compression space V through the suction port 1332 , while the compressed refrigerant is discharged into the inner space 110a of the casing 110 through the discharge ports 1333a and 1333b and then discharged through the discharge pipe. (116) can be discharged. Accordingly, the inner space 110a of the casing 110 may be maintained in a high pressure state constituting the discharge pressure.
또한, 흡입구(1332)에는 별도의 흡입밸브가 설치되지 않는 반면, 각각의 토출구(1333a,1333b)에는 그 각각의 토출구(1333a,1333b)를 각각 개폐하는 토출밸브(1335a,1335b)가 각각 설치될 수 있다. 각각의 토출밸브(1335a,1335b)는 일단이 고정되고 타단이 자유단을 이루는 리드형 밸브로 이루어질 수 있다. 하지만, 각각의 토출밸브(1335a,1335b)는 리드형 밸브 외에도 피스톤 밸브 등 필요에 따라 다양하게 적용될 수 있다. In addition, while a separate suction valve is not installed at the suction port 1332 , discharge valves 1335a and 1335b for opening and closing the respective discharge ports 1333a and 1333b are installed in each of the discharge ports 1333a and 1333b, respectively. can Each of the discharge valves 1335a and 1335b may be formed of a reed valve having one end fixed and the other end forming a free end. However, each of the discharge valves 1335a and 1335b may be variously applied as needed, such as a piston valve in addition to a reed type valve.
또한, 각각의 토출밸브(1335a,1335b)가 리드형 밸브로 이루어지는 경우 실린더(133)의 외주면에는 그 각각의 토출밸브(1335a,1335b)가 장착될 수 있도록 밸브수용홈(1334a,1334b)이 각각 형성될 수 있다. 이에 따라, 토출구(1333a,1333b)의 길이가 최소한으로 줄어들어 사체적을 줄일 수 있다. 밸브수용홈(1334a,1334b)은 도 2와 같이 평평한 밸브시트면을 확보할 수 있도록 삼각형 모양으로 형성될 수 있다.In addition, when each of the discharge valves 1335a and 1335b is a reed type valve, the valve accommodating grooves 1334a and 1334b are respectively provided on the outer peripheral surface of the cylinder 133 so that the respective discharge valves 1335a and 1335b can be mounted. can be formed. Accordingly, the length of the discharge ports 1333a and 1333b is reduced to a minimum, thereby reducing the body volume. The valve accommodating grooves 1334a and 1334b may be formed in a triangular shape to secure a flat valve seat surface as shown in FIG. 2 .
한편, 토출구(1333a,1333b)는 압축경로(압축진행방향)를 따라 복수 개가 형성될 수 있다. 편의상, 복수 개의 토출구(1333a,1333b)는 압축경로를 기준으로 상류측에 위치하는 토출구를 제1 토출구(1333a), 하류측에 위치하는 토출구를 제2 토출구(1333b)라고 정의하여 설명한다. Meanwhile, a plurality of discharge ports 1333a and 1333b may be formed along the compression path (compression progress direction). For convenience, the plurality of outlets 1333a and 1333b will be described by defining the outlet positioned on the upstream side as the first outlet port 1333a and the outlet positioned on the downstream side as the second outlet port 1333b based on the compression path.
하지만, 토출구는 복수 개로 구성되지 않을 수도 있다. 예를 들어 실린더(133)의 내주면이 압축주기를 길게 형성하여 냉매의 과압축을 적절하게 감소시키는 경우라면 토출구를 한 개만 형성할 수도 있다. However, the discharge port may not be configured in plurality. For example, if the inner peripheral surface of the cylinder 133 forms a long compression cycle to appropriately reduce overcompression of the refrigerant, only one discharge port may be formed.
한편, 도 4를 참조하면, 실린더(133)의 압축공간(V)에는 앞서 설명한 롤러(134)가 회전 가능하게 구비될 수 있다. 롤러(134)는 그 회전중심(Or)이 회전축(123)의 축중심(Os)과 동일축선상에 위치하도록 형성될 수 있다. 롤러(134)는 회전축(123)에 일체로 형성되거나 또는 조립되어 일체로 결합될 수 있다. 이에 따라 롤러(134)는 축중심(Os)을 중심으로 하여 회전축(123)과 함께 회전을 하게 된다.Meanwhile, referring to FIG. 4 , the roller 134 described above may be rotatably provided in the compression space V of the cylinder 133 . The roller 134 may be formed such that its rotational center Or is positioned on the same axis as the axial center Os of the rotational shaft 123 . The roller 134 may be integrally formed or assembled with the rotation shaft 123 to be integrally coupled. Accordingly, the roller 134 rotates with the rotation shaft 123 about the axis center Os.
롤러(134)는 그 외주면(1341)이 원형으로 형성되고, 롤러(134)의 외주면(1341)에는 원주방향을 따라 기설정된 간격을 두고 복수 개의 부시홈(1342)이 형성될 수 있다. 부시홈(1342)은 압축진행방향(롤러의 회전방향)을 따라 제1 부시홈(미부호), 제2 부시홈(미부호), 제3 부시홈(미부호)이라고 정의되고, 제1 부시홈, 제2 부시홈, 제3 부시홈은 서로 동일하게 형성될 수 있다.The roller 134 has an outer peripheral surface 1341 formed in a circular shape, and a plurality of bush grooves 1342 may be formed on the outer peripheral surface 1341 of the roller 134 at predetermined intervals along the circumferential direction. The bush groove 1342 is defined as a first bush groove (unsigned), a second bush groove (unsigned), and a third bush groove (unsigned) along the compression progress direction (rotational direction of the roller), and the first bush The groove, the second bush groove, and the third bush groove may be formed to be identical to each other.
각각의 부시홈(1342)마다에는 일종의 베인슬롯을 이루는 스윙부시(1343)가 회전 가능하게 결합될 수 있다. 스윙부시(1343)는 대략 반원형상으로 형성된 두 개의 부시가 각 베인(1351,1352,1353)의 두께만큼 간격을 두고 부시홈(1342)에 삽입되어 결합될 수 있다. 이에 따라 스윙부시(1343)에 결합된 베인(1351,1352,1353)은 실린더(133)의 내주면(1331)을 따라 이동하면서 스윙부시(1343)를 힌지점으로 하여 회전할 수 있다. A swing bush 1343 forming a kind of vane slot may be rotatably coupled to each bush groove 1342 . In the swing bush 1343 , two bushes formed in a substantially semicircular shape may be inserted into the bush groove 1342 at intervals of the thickness of each vane 1351 , 1352 , and 1353 to be coupled thereto. Accordingly, the vanes 1351 , 1352 , and 1353 coupled to the swing bush 1343 may rotate while moving along the inner circumferential surface 1331 of the cylinder 133 using the swing bush 1343 as a hinge point.
상기와 같이 베인(1351,1352,1353)이 각각의 스윙부시(1343)에 의해 롤러(134)에 대해 회전 가능하게 지지되면, 롤러(134)의 회전중심(Or)이 압축공간(V)의 중심(Ov)에 대해 편심지게 위치한 상태에서 롤러(134)가 회전하더라도 베인(1351,1352,1353)은 항상 압축공간(V)의 중심(Ov)을 향하게 될 수 있다. 그러면 후술할 베인(1351,1352,1363)의 전방면을 이루는 베인선단부(1351b,1352b,1353b)가 실린더(133)의 내주면(1331)과 동일한 곡률로 형성되어 각 베인(1351,1352,1363)과 실린더(133) 사이의 실링면적을 확보할 수 있다.As described above, when the vanes 1351 , 1352 , and 1353 are rotatably supported with respect to the roller 134 by each swing bush 1343 , the rotation center Or of the roller 134 is the compression space V Even if the roller 134 rotates in a state eccentrically positioned with respect to the center Ov, the vanes 1351, 1352, and 1353 may always face the center Ov of the compression space V. Then, the vane tip portions 1351b, 1352b, and 1353b forming the front surfaces of the vanes 1351,1352,1363 to be described later have the same curvature as the inner circumferential surface 1331 of the cylinder 133, so that each vane 1351,1352,1363) It is possible to secure a sealing area between the and the cylinder (133).
한편, 부시홈(1342)의 내측, 즉 부시홈(1342)과 롤러(134)의 회전중심(Or) 사이에는 배압챔버(1344)가 각각 형성될 수 있다. 배압챔버(1344)는 각각의 부시홈(1342)과 반경방향으로 연통되는 동시에 앞서 설명한 메인가이드홈(1311a) 또는/및 서브가이드홈(1321a)에 축방향으로 연통될 수 있다. 이에 따라 메인가이드홈(1311a) 또는/및 서브가이드홈(1321a)으로 유입되는 고압의 오일(또는 냉매)의 압력을 이용하여 각 베인(1351,1352,1353)을 실린더(133)의 내주면(1331) 방향으로 가세할 수 있다.Meanwhile, a back pressure chamber 1344 may be formed inside the bush groove 1342 , that is, between the bush groove 1342 and the rotation center Or of the roller 134 . The back pressure chamber 1344 may radially communicate with each bush groove 1342 and may communicate with the above-described main guide groove 1311a and/or sub guide groove 1321a in the axial direction. Accordingly, each vane 1351,1352,1353 is connected to the inner circumferential surface 1331 of the cylinder 133 by using the pressure of high-pressure oil (or refrigerant) flowing into the main guide groove 1311a or/and the sub-guide groove 1321a. ) in the direction of
각각의 배압챔버(1344)는 메인베어링(131)과 서브베어링(132)에 의해 밀봉되되, 앞서 설명한 바와 같이 메인가이드홈(1311a) 또는/및 서브가이드홈(1321a)에 축방향으로 연통될 수 있다. 배압챔버(1344)는 메인가이드홈(1311a) 또는/및 서브가이드홈(1321a)에 함께 연통될 수 있다.Each back pressure chamber 1344 is sealed by the main bearing 131 and the sub-bearing 132, as described above, the main guide groove 1311a and/or the sub-guide groove 1321a can be axially communicated with each other. have. The back pressure chamber 1344 may communicate with the main guide groove 1311a and/or the sub guide groove 1321a.
도 2 내지 도 4를 참조하면, 본 실시예에 따른 복수의 베인(1351,1352,1353)은 베인본체(1351a,1352a,1353a), 베인선단부(또는 전방면)(1351b,1352b,1353b), 베인후단부(또는 후방면)(1351c,1352c,1353c), 가이드돌기(1351d)(1352d)(1353d)를 포함할 수 있다. 베인선단부(1351b,1352b,1353b)는 실린더(133)의 내주면(1331)에 접하는 면으로, 베인후단부(1351c,1352c,1353c)는 배압챔버(1343a,13343b,1343c)를 마주보는 면으로 이해될 수 있다. 2 to 4, a plurality of vanes 1351, 1352, and 1353 according to this embodiment are vane bodies 1351a, 1352a, and 1353a, the vane front end (or front surface) 1351b, 1352b, 1353b, It may include vane rear end (or rear surface) 1351c, 1352c, 1353c, and guide projections 1351d, 1352d and 1353d. The vane tip portions 1351b, 1352b, and 1353b are surfaces in contact with the inner circumferential surface 1331 of the cylinder 133, and the vane rear ends 1351c, 1352c, and 1353c are understood as surfaces facing the back pressure chambers 1343a, 13343b, and 1343c. can be
각각의 베인본체(1351a,1352a,1353a)는 대략 직육면체 형상으로 형성될 수 있다. 이에 따라 각각의 베인본체(1351a,1352a,1353a)는 각각의 스윙부시(1343) 사이에서 길이방향을 따라 원활하게 미끄러질 수 있다.Each of the vane bodies 1351a, 1352a, and 1353a may be formed in a substantially rectangular parallelepiped shape. Accordingly, each of the vane bodies 1351a , 1352a , and 1353a can slide smoothly along the longitudinal direction between the respective swing bushes 1343 .
베인선단부(1351b,1352b,1353b)는 실린더(133)의 내주면(1331)과 선접촉하도록 곡면 형상으로 형성되되, 각 베인선단부(1351b,1352b,1353b)의 전방면을 이루는 실링면은 실린더(133)의 내주면(1331)과 거의 동일한 곡률로 형성될 수 있다. 이에 따라 각각의 베인선단부(1351b,1352b,1353b)가 실린더(133)의 내주면(1331)으로부터 미세하게 이격되더라도 그 베인선단부(1351b,1352b,1353b)와 실린더 사이에서의 실링면적을 확보하여 압축실 간 누설을 억제할 수 있다.The vane tip portions 1351b, 1352b, and 1353b are formed in a curved shape to be in line contact with the inner circumferential surface 1331 of the cylinder 133, and the sealing surface forming the front surface of each vane tip portion 1351b, 1352b, 1353b is the cylinder 133 ) may be formed to have substantially the same curvature as the inner circumferential surface 1331 . Accordingly, even if each of the vane tip parts 1351b, 1352b, and 1353b is slightly spaced apart from the inner circumferential surface 1331 of the cylinder 133, the sealing area between the vane tip parts 1351b, 1352b, and 1353b and the cylinder is secured to secure the compression chamber. Hepatic leakage can be suppressed.
베인후단부(1351c,1352c,1353c)는 평면지게 형성될 수 있다. 이에 따라 각각의 베인후단부(1351c,1352c,1353c)의 후방면을 이루는 수압면이 각 배압챔버(1344)의 배압력을 고르게 받아 각 베인(1351,1352,1353)이 실린더(133)를 향해 신속하게 이동하면서도 베인(1351,1352,1353)의 거동이 안정될 수 있다. The rear ends of the vanes 1351c, 1352c, and 1353c may be formed to be flat. Accordingly, the pressure receiving surface constituting the rear surface of each of the rear ends of the vanes 1351c, 1352c, and 1353c receives the back pressure of each back pressure chamber 1344 evenly, and each vane 1351, 1352, and 1353 moves toward the cylinder 133. While moving quickly, the behavior of the vanes 1351 , 1352 , and 1353 can be stabilized.
가이드돌기(1351d)(1352d)(1353d)는 베인후단부(1351c)(1352c)(1353c)를 이루는 베인본체(1351a)(1352a)(1353a)의 후방측 축방향 양쪽 측면에서 축방향으로 연장되어 형성될 수 있다. 예를 들어 가이드돌기(1351d)(1352d)(1353d)는 메인가이드홈(1311a)을 향해 축방향 상측으로 연장되는 상측 가이드돌기(이하, 제1 가이드돌기)(1351d1)(미도시)(미도시)와, 서브가이드홈(1321a)을 향해 축방향 하측으로 연장되는 하측 가이드돌기(이하, 제2 가이드돌기)(1351d2)(미도시)(미도시)로 이루어질 수 있다.The guide projections 1351d, 1352d, and 1353d extend in the axial direction from both sides in the rear axial direction of the vane body 1351a, 1352a, 1353a forming the vane rear end portions 1351c, 1352c, 1353c. can be formed. For example, the guide protrusions 1351d, 1352d, and 1353d are upper guide protrusions (hereinafter, first guide protrusions) 1351d1 (not shown) extending upward in the axial direction toward the main guide groove 1311a (not shown). ) and a lower guide protrusion (hereinafter, a second guide protrusion) 1351d2 (not shown) (not shown) extending in the axial direction downward toward the sub-guide groove 1321a.
제1 가이드돌기(1351d1)(미도시)(미도시)와 제2 가이드돌기(1351d2)(미도시)(미도시)가 동일한 형상, 동일한 크기로 이루어져 동일축선상에 형성될 수 있다. 하지만 경우에 따라 제1 가이드돌기(1351d1)(미도시)(미도시)와 제2 가이드돌기(1351d2)(미도시)(미도시)는 상이한 형상, 상이한 크기로 형성될 수도 있고, 축방향으로 서로 편심된 위치에 형성될 수 있다. 이하에서는 제1 가이드돌기(1351d1)(미도시)(미도시)와 제2 가이드돌기(1351d2)(미도시)(미도시)가 동일한 형상, 동일한 크기로 이루어져 동일축선상에 형성된 예를 중심으로 설명한다.The first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) may have the same shape and the same size and be formed on the same axis. However, in some cases, the first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) may be formed in different shapes and different sizes, and in the axial direction. They may be formed at positions eccentric to each other. Hereinafter, the first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) have the same shape and the same size and are formed on the same axis. Explain.
제1 가이드돌기(1351d1)(미도시)(미도시)와 제2 가이드돌기(1351d2)(미도시)(미도시)는 베인본체(1351a)(1352a)(1353a)와 동일한 폭을 가지도록 형성될 수 있다. 하지만 경우에 따라 제1 가이드돌기(1351d1)(미도시)(미도시)와 제2 가이드돌기(1351d2)(미도시)(미도시)는 베인본체(1351a)(1352ad)(1353a)의 폭보다 크거나 작게 형성될 수도 있다. 예를 들어 제1 가이드돌기(1351d1)(미도시)(미도시)와 제2 가이드돌기(1351d2)(미도시)(미도시)는 베인본체(1351a)(1352ad)(1353a)의 양측면 또는 일측면에서 원주방향으로 연장되어 형성될 수 있다. 이 경우 제1 가이드돌기(1351d1)(미도시)(미도시)와 제2 가이드돌기(1351d2)(미도시)(미도시)는 각각의 가이드홈(1311a)(1321a)의 내주면(1311a1)(1321a1)에 대응하도록 원호형상으로 형성되는 것이 바람직할 수 있다. 또한, 이 경우 제1 가이드돌기(1351d1)(1352d1)(1353d1)와 제2 가이드돌기(1351d2)(1352d2)(1353d2)는 각각 원주방향으로 동일하게 형성될 수도 있지만, 원주방향으로 상이하게 형성될 수도 있다. The first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) are formed to have the same width as the vane bodies 1351a, 1352a, and 1353a. can be However, in some cases, the first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) are greater than the width of the vane body 1351a (1352ad) (1353a). It may be formed large or small. For example, the first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) are both sides or one of the vane body 1351a (1352ad) (1353a). It may be formed extending in the circumferential direction from the side. In this case, the first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) are the inner peripheral surfaces 1311a1 of each guide groove 1311a, 1321a ( 1321a1), it may be preferable to be formed in an arc shape. Also, in this case, the first guide protrusions 1351d1, 1352d1, 1353d1 and the second guide protrusions 1351d2, 1352d2, 1353d2 may be identically formed in the circumferential direction, respectively, but may be formed differently in the circumferential direction. may be
제1 가이드돌기(1351d1)(미도시)(미도시)와 제2 가이드돌기(1351d2)(미도시)(미도시)는 각각 외주면이 평면지게 형성될 수도 있다. 하지만 제1 가이드돌기(1351d1)(미도시)(미도시)와 제2 가이드돌기(1351d2)(미도시)(미도시)가 마주보는 가이드홈(1311a)(1321a)의 내주면(1311a1)(1321a1)이 원형 곡면으로 형성되므로 제1 가이드돌기(1351d1)(미도시)(미도시)와 제2 가이드돌기(1351d2)(미도시)(미도시)의 외주면은 각각의 가이드홈(1311a)(1321a)의 내주면(1311a1)(1321a1), 더 정확하게는 후술할 내륜(1362)의 제1 베어링부(1365)의 내주면(1365a)과 대응하도록 원형 곡면으로 형성되는 것이 바람직할 수 있다. The first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) may each have a flat outer circumferential surface. However, the inner peripheral surface (1311a1) (1321a1) of the guide grooves 1311a and 1321a in which the first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) face each other. ) is formed in a circular curved surface, so the outer peripheral surfaces of the first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) are guide grooves 1311a and 1321a, respectively. ) of the inner peripheral surface (1311a1) (1321a1), more precisely, it may be preferably formed in a circular curved surface to correspond to the inner peripheral surface (1365a) of the first bearing portion 1365 of the inner ring 1362 to be described later.
한편, 도 1 내지 도 4를 참조하면, 제1 가이드돌기(1351d1)(1352d1)(1353d1)와 제2 가이드돌기(1351d2)(1352d2)(1353d2)의 외주면과 이를 마주보는 메인가이드홈(1311a) 및 서브가이드홈(1321a)의 내주면(1311a1)(1321a1) 사이에는 베인베어링(136)(137)이 구비될 수 있다. 베인베어링(136)(137)은 볼베어링, 롤러베어링, 부시베어링, 포일베어링 등 다양하게 적용될 수 있다. 본 실시예에서는 볼베어링으로된 베인베어링(136)(137)의 예를 중심으로 설명하되, 베인베어링(136)(137)에 대해서는 나중에 다시 설명한다. Meanwhile, referring to FIGS. 1 to 4 , the outer peripheral surfaces of the first guide protrusions 1351d1, 1352d1, 1353d1 and the second guide protrusions 1351d2, 1352d2, 1353d2 and the main guide groove 1311a facing them. And vane bearings 136 and 137 may be provided between the inner peripheral surfaces 1311a1 and 1321a1 of the sub-guide groove 1321a. The vane bearings 136 and 137 may be variously applied to ball bearings, roller bearings, bush bearings, foil bearings, and the like. In the present embodiment, the example of the vane bearings 136 and 137 made of ball bearings will be mainly described, but the vane bearings 136 and 137 will be described again later.
상기와 같은 베인 로터리 압축기는 다음과 같이 동작된다.The vane rotary compressor as described above operates as follows.
즉, 구동모터(120)에 전원이 인가되면, 구동모터(120)의 회전자(122)와 회전자(122)에 결합된 회전축(123)이 회전을 하게 되고, 회전축(123)에 결합되거나 일체로 형성된 롤러(134)가 회전축(123)과 함께 회전을 하게 된다.That is, when power is applied to the drive motor 120 , the rotor 122 of the drive motor 120 and the rotary shaft 123 coupled to the rotor 122 rotate, and are coupled to the rotary shaft 123 or The integrally formed roller 134 rotates together with the rotating shaft 123 .
그러면, 베인슬롯의 역할을 하는 롤러(134)의 스윙부시(1343)에 미끄러지게 삽입된 복수의 베인(1351,1352,1353)이 롤러(134)의 회전에 의해 발생되는 원심력과 그 베인(1351,1352,1353)의 후방측에 구비된 배압챔버(1343)의 배압력에 의해 롤러(134)로부터 인출되거나 또는 인입되어, 각 베인(1351,1352,1353)의 베인선단부(1351b,1352b,1353b)가 실린더(133)의 내주면(1332)에 접하게 된다. Then, the plurality of vanes 1351,1352,1353 slidably inserted into the swing bush 1343 of the roller 134 serving as the vane slot are centrifugal force generated by the rotation of the roller 134 and the vanes 1351 , 1352 and 1353 are drawn out or drawn in from the roller 134 by the back pressure of the back pressure chamber 1343 provided on the rear side, and the vane tip portions 1351b, 1352b, and 1353b of each of the vanes 1351, 1352 and 1353. ) is in contact with the inner circumferential surface 1332 of the cylinder 133 .
그러면 실린더(133)의 압축공간(V)이 복수 개의 베인(1351,1352,1353)에 의해 그 복수의 베인(1351,1352,1353)의 개수만큼의 압축실(흡입실이나 토출실을 포함)(V1,V2,V3)로 구획되고, 각각의 압축실(V1,V2,V3)은 롤러(134)의 회전을 따라 이동하면서 실린더(133)의 내주면(1332) 형상과 롤러(134)의 편심에 의해 체적이 가변되며, 각각의 압축실(V1,V2,V3)로 흡입되는 냉매는 롤러(134)와 베인(1351,1352,1353)을 따라 이동하면서 압축되고, 이 냉매는 실린더(133)의 내주면(1331)에 구비된 토출구(1333a)(1333b)를 통해 케이싱(110)의 내부공간(110a)으로 토출되는 일련의 과정을 반복하게 된다. Then, the compression space (V) of the cylinder 133 is formed by a plurality of vanes (1351,1352,1353) by the number of the plurality of vanes (1351,1352,1353) as many compression chambers (including a suction chamber or a discharge chamber) It is partitioned by (V1, V2, V3), and each compression chamber (V1, V2, V3) moves along the rotation of the roller 134 while moving along the inner peripheral surface 1332 shape of the cylinder 133 and the eccentricity of the roller 134 The volume is changed by , and the refrigerant sucked into each compression chamber (V1, V2, V3) is compressed while moving along the rollers 134 and the vanes 1351, 1352, and 1353, and this refrigerant is compressed in the cylinder 133. A series of processes of being discharged into the inner space 110a of the casing 110 through the discharge ports 1333a and 1333b provided on the inner circumferential surface 1331 of the is repeated.
이때, 복수의 베인(1351,1352,1353)은 롤러(134)에서 각각 인출되어 그 베인(1351,1352,1353)의 전방면을 이루는 베인선단부(1351b,1352b,1353b)가 실린더(133)의 내주면(1332)에 접촉하여 압축실 사이를 분리하게 된다. At this time, the plurality of vanes 1351, 1352, and 1353 are drawn out from the roller 134, respectively, and the vane tip ends 1351b, 1352b, and 1353b forming the front surface of the vanes 1351,1352, and 1353b are of the cylinder 133. In contact with the inner peripheral surface 1332 is separated between the compression chamber.
하지만, 각 베인(1351,1352,1353)의 베인선단부(1351b,1352b,1353b)가 실린더(133)의 내주면(1331)과 항상 접촉된 상태로 미끄러져 이동을 하게 되면, 그 실린더(133)와 베인(1351,1352,1353) 사이의 마찰에 의한 기계적 손실(또는 마찰손실)이 크게 증가하게 될 수 있다. 반면, 이를 감안하여 각 베인(1351,1352,1353)에 대한 배압력을 낮추게 되면 각 베인(1351,1352,1353)의 베인선단부(1351b,1352b,1353b)가 실린더(133)의 내주면(1331)으로부터 이격되어 압축실 간 냉매누설이 발생될 수 있다. 특히 압축행정을 실시하는 과정에서는 해당 압축실의 압력이 증가하면서 베인(1351,1352,1353)은 압축실의 가스력을 받아 실린더(133)로부터 밀려나게 될 수 있다. 그러면 실린더(133)와 베인(1351,1352,1353) 사이가 더욱 이격되어 냉매누설이 증가될 수 있다.However, when the vane tip portions 1351b, 1352b, and 1353b of each of the vanes 1351, 1352 and 1353 slide and move while always in contact with the inner circumferential surface 1331 of the cylinder 133, the cylinder 133 and Mechanical loss (or friction loss) due to friction between the vanes 1351 , 1352 and 1353 may be greatly increased. On the other hand, when the back pressure for each vane 1351,1352,1353 is lowered in consideration of this, the vane tip ends 1351b, 1352b, and 1353b of each vane 1351,1352b, and 1353b are the inner peripheral surfaces 1331 of the cylinder 133. Refrigerant leakage may occur between the compression chambers as they are spaced apart from each other. In particular, in the process of performing the compression stroke, as the pressure in the corresponding compression chamber increases, the vanes 1351 , 1352 , and 1353 may be pushed out from the cylinder 133 by receiving the gas force of the compression chamber. Then, the cylinder 133 and the vanes (1351,1352,1353) are further spaced apart, the refrigerant leakage can be increased.
따라서, 베인후단부(1351c,1352c,1353c)에 작용하는 배압력을 적절하게 낮춰 실린더(133)의 내주면(1331)과 베인(1351,1352,1353)의 전방면 사이로 냉매가 누설되지 않는 범위내에서 실린더(133)와 베인(1351,1352,1353)이 이격된 상태로 상대운동을 하도록 할 수 있다. 이를 통해 실린더(133)와 베인(1351,1352,1353) 사이의 기계적 마찰손실을 줄이는 동시에, 베인(1351,1352,1353)에 작용하는 배압력은 확보하여 냉매누설을 억제할 수 있도록 하는 것이 바람직하다.Accordingly, by appropriately lowering the back pressure acting on the rear ends of the vanes 1351c, 1352c, and 1353c, the refrigerant does not leak between the inner circumferential surface 1331 of the cylinder 133 and the front surfaces of the vanes 1351,1352c, and 1353c. In the cylinder 133 and the vanes (1351,1352,1353) can be made to move relative to the spaced apart state. Through this, it is desirable to reduce the mechanical friction loss between the cylinder 133 and the vanes 1351,1352,1353 and at the same time secure the back pressure acting on the vanes 1351,1352,1353 to suppress refrigerant leakage. do.
이에, 본 실시예에서는 앞서 설명한 바와 같이 메인플레이트부(1311)에는 메인가이드홈(1311a)이, 서브플레이트부(1321)에는 서브가이드홈(1321a)이 각각 형성되고, 이들 메인가이드홈(1311a)과 서브가이드홈(1321a)을 마주보는 베인본체(1351a,1352a,1353a)의 축방향 상단에는 제1 가이드돌기(1351d1)(미도시)(미도시)가, 축방향 하단에는 제2 가이드돌기(1351d2)(미도시)(미도시)가 각각 형성될 수 있다. 이에 따라 제1 가이드돌기(1351d1)(미도시)(미도시)와 제2 가이드돌기(1351d2)(미도시)(미도시)가 메인가이드홈(1311a)과 서브가이드홈(1321a)에 걸려 베인돌출량이 제한되고, 이를 통해 실린더(133)와 베인(1351,1352,1353) 사이의 기계적 마찰손실을 줄이는 동시에 베인(1351,1352,1353)에 작용하는 배압력은 확보하여 냉매누설을 억제할 수 있다.Accordingly, in this embodiment, as described above, a main guide groove 1311a is formed in the main plate portion 1311 and a sub guide groove 1321a is formed in the sub-plate portion 1321, respectively, and these main guide grooves 1311a are formed. and a first guide protrusion 1351d1 (not shown) (not shown) at the upper end in the axial direction of the vane body 1351a, 1352a, 1353a facing the sub guide groove 1321a, and a second guide protrusion at the lower end in the axial direction ( 1351d2) (not shown) (not shown) may be formed, respectively. Accordingly, the first guide protrusion 1351d1 (not shown) (not shown) and the second guide protrusion 1351d2 (not shown) (not shown) are caught by the main guide groove 1311a and the sub guide groove 1321a and are cut off. The amount of protrusion is limited, thereby reducing the mechanical friction loss between the cylinder 133 and the vanes 1351,1352,1353, and at the same time securing the back pressure acting on the vanes 1351,1352,1353 to suppress refrigerant leakage. have.
상기와 같은 가이드홈(1311a)(1321a)과 가이드돌기(1351d,1352d,1353d)가 형성되는 경우에도 가이드홈(1311a)(1321a)과 가이드돌기(1351d,1352d,1353d) 사이에는 마찰손실이 발생될 수 있다. 이에 본 실시예는 가이드홈(1311a)(1321a)과 가이드돌기(1351d,1352d,1353d) 사이에 앞서 설명한 베인베어링(136)(137)이 각각 구비되어 가이드홈(1311a)(1321a)과 가이드돌기(1351d,1352d,1353d) 사이의 마찰손실을 줄일 수 있다. Even when the guide grooves 1311a, 1321a and the guide projections 1351d, 1352d, and 1353d are formed as described above, friction loss occurs between the guide grooves 1311a and 1321a and the guide projections 1351d, 1352d, and 1353d. can be Accordingly, in this embodiment, the vane bearings 136 and 137 described above are provided between the guide grooves 1311a and 1321a and the guide projections 1351d, 1352d, and 1353d, respectively, so that the guide grooves 1311a and 1321a and the guide projections are provided. The friction loss between (1351d,1352d,1353d) can be reduced.
도 5는 도 1에서 압축부를 확대하여 보인 단면도이고, 도 6은 도 5에서 베인베어링을 파단하여 보인 사시도이며, 도 7은 도 6의 베인베어링이 메인베어링에 장착된 상태를 보인 단면도이다.FIG. 5 is an enlarged cross-sectional view of the compression part in FIG. 1 , FIG. 6 is a perspective view showing the vane bearing in FIG. 5 after being broken, and FIG. 7 is a cross-sectional view showing the state in which the vane bearing of FIG. 6 is mounted to the main bearing.
도 5 내지 도 7을 참고하면, 본 실시예에 따른 메인가이드홈(1311a)과 이에 삽입되는 제1 가이드돌기(1351d1)(미도시)(미도시)의 사이 및/또는 서브가이드홈(1321a)과 이에 삽입되는 제2 가이드돌기(1351d2)(미도시)(미도시)의 사이에 각각 베인베어링(136))(137)이 구비될 수 있다. 5 to 7 , between the main guide groove 1311a and the first guide protrusion 1351d1 (not shown) (not shown) inserted therein and/or the sub guide groove 1321a according to the present embodiment Each of the vane bearings 136 and 137 may be provided between the second guide protrusion 1351d2 (not shown) (not shown) inserted therein.
앞서 설명한 바와 같이 베인베어링(136)(137)에는 볼베어링, 롤러베어링, 부시베어링, 포일베어링 등 다양하게 적용될 수 있으나, 본 실시예에서는 볼베어링으로 된 베인베어링(136)(137)을 중심으로 설명한다. As described above, the vane bearings 136 and 137 may be variously applied to ball bearings, roller bearings, bush bearings, foil bearings, etc., but in this embodiment, the vane bearings 136 and 137 made of ball bearings will be mainly described. .
또한, 베인베어링(136)(137)은 롤러(134)와 이를 마주보는 메인베어링(131)과 서브베어링(132) 사이로 연장되어 구비될 수도 있다. 본 실시예에서는 베인베어링(136)(137)이 가이드홈(1311a)(1321a)과 가이드돌기(1351d,1352d,1353d)의 사이 및 롤러(134)와 베어링(131)(132) 사이에 각각 구비되는 예를 중심으로 설명한다.In addition, the vane bearings 136 and 137 may extend between the roller 134 and the main bearing 131 and the sub bearing 132 facing them. In this embodiment, vane bearings 136 and 137 are provided between the guide grooves 1311a and 1321a and the guide projections 1351d, 1352d, and 1353d and between the roller 134 and the bearings 131 and 132, respectively. It will be explained based on examples.
또한, 베인베어링(136)(137)은 메인가이드홈(1311a)과 제1 가이드돌기(1351d1)(미도시)(미도시)의 사이에 설치된 것을 메인측 베인베어링(136)으로, 서브가이드홈(1321a)과 제2 가이드돌기(1351d2)(미도시)(미도시)의 사이에 설치된 것을 서브측 베인베어링(137)으로 각각 정의하며, 이하에서는 메인측 베인베어링을 대표예로 삼아 설명한다.In addition, the vane bearings 136 and 137 are installed between the main guide groove 1311a and the first guide projection 1351d1 (not shown) (not shown) as the main side vane bearing 136, and the sub guide groove What is installed between the 1321a and the second guide protrusion 1351d2 (not shown) (not shown) is defined as the sub-side vane bearing 137, respectively, and hereinafter, the main-side vane bearing will be described as a representative example.
본 실시예에 따른 베인베어링(136)은 외륜(1361), 내륜(1362), 다수의 볼(1363)을 포함할 수 있다.The vane bearing 136 according to the present embodiment may include an outer ring 1361 , an inner ring 1362 , and a plurality of balls 1363 .
외륜(1361)은 환형으로 형성되되 그 외륜(1361)의 중심(Oob)은 메인가이드홈(1311a)의 중심(Og)과 동일축선상에 위치하도록 형성될 수 있다. 다시 말해 외륜(1361)의 중심(Oob)은 롤러(134)의 회전중심(Or)에 대해 편심지게 구비될 수 있다. The outer ring 1361 may be formed in an annular shape so that the center Oob of the outer ring 1361 is positioned on the same axis as the center Og of the main guide groove 1311a. In other words, the center Oob of the outer ring 1361 may be provided eccentrically with respect to the rotation center Or of the roller 134 .
또한, 외륜(1361)의 외경은 메인가이드홈(1311a)의 내경과 거의 동일하게 형성되거나 또는 미세하게 작게 형성될 수 있다. 예를 들어 외륜(1361)의 외경이 메인가이드홈(1311a)의 내경에 거의 동일하게 형성되는 경우에는 외륜(1361)이 메인가이드홈(1311a)에 압입되어 고정되고, 외륜(1361)의 외경이 메인가이드홈(1311a)의 내경에 거의 동일하게 형성되는 경우에는 외륜(1361)이 메인가이드홈(1311a)에서 자유회전할 수 있다. 본 실시예에서는 외륜(1361)의 외경이 메인가이드홈(1311a)의 내경에 거의 동일하게 형성되어 외륜(1361)은 메인가이드홈(1311a)의 내주면에 압입되어 고정된 예를 중심으로 설명한다. In addition, the outer diameter of the outer ring 1361 may be formed to be substantially the same as the inner diameter of the main guide groove 1311a, or may be formed to be slightly smaller. For example, when the outer diameter of the outer ring 1361 is formed to be substantially the same as the inner diameter of the main guide groove 1311a, the outer ring 1361 is press-fitted into the main guide groove 1311a and fixed, and the outer diameter of the outer ring 1361 is When the inner diameter of the main guide groove 1311a is substantially the same, the outer ring 1361 can freely rotate in the main guide groove 1311a. In this embodiment, the outer diameter of the outer ring 1361 is formed to be substantially equal to the inner diameter of the main guide groove 1311a, and the outer ring 1361 is press-fitted to the inner circumferential surface of the main guide groove 1311a.
내륜(1362)은 제1 베어링부(1365), 제2 베어링부(1366)를 포함할 수 있다. 제1 베어링부(1365)는 환형으로 형성되고, 제2 베어링부(1366)는 중앙부가 빈 원판 형상으로 형성될 수 있다.The inner ring 1362 may include a first bearing part 1365 and a second bearing part 1366 . The first bearing part 1365 may be formed in an annular shape, and the second bearing part 1366 may be formed in a disk shape with an empty central part.
제1 베어링부(1365)의 외경은 외륜(1361)보다 작고 내경은 메인베어링구멍(1312a)의 내경보다는 크게 형성될 수 있다. 제1 베어링부(1365)의 중심(Ob1)은 외륜(1361)의 중심(Oob)과 동일축선상에 위치하도록, 다시 말해 제1 베어링부(1365)의 중심(Ob1)은 롤러(134)의 회전중심(Or)에 대해 편심지게 형성될 수 있다. 이에 따라 제1 베어링부(1365)를 포함한 내륜(1362)은 외륜(1361)의 내부에서 회전 가능하게 삽입될 수 있다.The outer diameter of the first bearing part 1365 may be smaller than the outer ring 1361 and the inner diameter may be larger than the inner diameter of the main bearing hole 1312a. The center Ob1 of the first bearing part 1365 is located on the same axis as the center Oob of the outer ring 1361 , that is, the center Ob1 of the first bearing part 1365 is the roller 134 . It may be formed eccentric with respect to the rotation center (Or). Accordingly, the inner ring 1362 including the first bearing part 1365 may be rotatably inserted inside the outer ring 1361 .
제2 베어링부(1366)는 제1 베어링부(1365)의 하단 또는 하단 주변의 외주면에서 플랜지 형상으로 연장될 수 있다. 제2 베어링부(1366)는 제1 베어링부(1365)와 단일체로 연장되어 형성되거나 또는 각각 형성하여 후조립될 수 있다. The second bearing unit 1366 may extend in a flange shape from the lower end of the first bearing unit 1365 or an outer peripheral surface around the lower end. The second bearing unit 1366 may be formed to extend as a single body with the first bearing unit 1365 , or may be formed separately and then assembled.
예를 들어, 제2 베어링부(1366)가 제1 베어링부(1365)에 단일체로 형성되는 경우에는 전체 내륜의 조립공정을 배제하여 제조비용을 낮출 수 있고, 제2 베어링부(1366)가 제1 베어링부(1365)에 조립되는 경우에는 제2 베어링부(1366)의 두께(t2)를 제1 베어링부(1365)의 두께(t1)보다 두껍게 형성하여 후술할 실링부(1367)(1377)를 용이하게 형성할 수 있다. For example, when the second bearing part 1366 is formed as a single body on the first bearing part 1365, the manufacturing cost can be reduced by excluding the assembly process of the entire inner ring, and the second bearing part 1366 is the second bearing part 1366. When assembled to the first bearing part 1365, the thickness t2 of the second bearing part 1366 is formed to be thicker than the thickness t1 of the first bearing part 1365, and the sealing parts 1367 and 1377 to be described later. can be easily formed.
하지만, 제1 베어링부(1365)와 제2 베어링부(1366)가 단일체로 형성되는 경우에도 제2 베어링부(1366)의 두께(t2)가 제1 베어링부(1365)의 두께(t1)보다 두껍게 형성될 수 있고, 별도의 실링부(1367)를 형성하지 않는 경우에도 제2 베어링부(1366)의 두께(t2)가 제1 베어링부(1365)의 두께(t1)보다 두껍게 형성될 수 있다. 이를 통해 제2 베어링부(1366)의 외주면(1366a)과 실린더(133)의 내주면(1331) 사이의 실링면적을 확보할 수 있다. However, even when the first bearing part 1365 and the second bearing part 1366 are formed as a single body, the thickness t2 of the second bearing part 1366 is greater than the thickness t1 of the first bearing part 1365 . The thickness t2 of the second bearing part 1366 may be thicker than the thickness t1 of the first bearing part 1365 even when a separate sealing part 1367 is not formed. . Through this, it is possible to secure a sealing area between the outer peripheral surface 1366a of the second bearing part 1366 and the inner peripheral surface 1331 of the cylinder 133 .
제2 베어링부(1366)의 내경(D1)은 배압챔버(1344)가 메인가이드홈(1311a)에 연통될 수 있는 정도, 예를 들어 메인가이드홈(1311a)의 내경(D2)보다는 작고 각각의 배압챔버(1344)의 내측단을 서로 연결하는 가상원의 직경(D3)보다는 크게 형성될 수 있다. 이에 따라 메인가이드홈(1311a)으로 유입되는 고압의 오일이 제2 베어링부(1366)에 의해 막히지 않고 각각의 배압챔버(1344)로 원활하게 유입될 수 있다. The inner diameter D1 of the second bearing part 1366 is smaller than the degree to which the back pressure chamber 1344 can communicate with the main guide groove 1311a, for example, the inner diameter D2 of the main guide groove 1311a. The diameter D3 of the virtual circle connecting the inner ends of the back pressure chamber 1344 may be larger than the diameter D3. Accordingly, the high-pressure oil flowing into the main guide groove 1311a may be smoothly introduced into each back pressure chamber 1344 without being blocked by the second bearing unit 1366 .
제2 베어링부(1366)의 외경(D12)은 실린더(133)의 내주면(1331), 즉 압축공간(V)의 내경(D4)과 거의 동일하거나 약간 작게 형성될 수 있다. 이에 따라 제2 베어링부(1366)는 실린더(133)의 내부공간, 즉 압축공간(V)에 회전 가능하게 삽입되어 제1 베어링부(1365)와 함께 롤러(134)의 회전중심(Or)을 중심으로 회전할 수 있다. 따라서 제1 베어링(1365)은 회전링부라고 정의되고, 제2 베어링부(1366)는 회전판부라고 정의될 수도 있다.The outer diameter D12 of the second bearing part 1366 may be substantially the same as or slightly smaller than the inner circumferential surface 1331 of the cylinder 133 , that is, the inner diameter D4 of the compression space V. Accordingly, the second bearing part 1366 is rotatably inserted into the inner space of the cylinder 133 , that is, the compression space V, and the center of rotation Or of the roller 134 together with the first bearing part 1365 . can be rotated around the center. Therefore, the first bearing 1365 may be defined as a rotating ring part, and the second bearing part 1366 may be defined as a rotating plate part.
이 경우, 제2 베어링부(1366)는 그 축방향 일측면이 이를 마주보는 메인플레이트부(1311)의 하면 또는 서브플레이트부(1321)의 상면으로부터 기설정된 간격(t3)만큼 이격되도록 형성될 수 있다. 예를 들어 제2 베어링부(1366)의 하단은 제1 베어링부(1365)의 하단보다 약간 길게 형성되어 제2 베어링부(1366)가 메인플레이트부(1311) 또는 서브플레이트부(1321)로부터 축방향으로 이격되도록 형성될 수 있다. 이에 따라 제2 베어리부가 회전을 할 때, 메인플레이트부(1311) 또는 서브플레이트부(1321)에 접촉되는 것을 억제하여 기계적 마찰손실을 줄일 수 있다.In this case, the second bearing part 1366 may be formed to be spaced apart by a predetermined distance t3 from the lower surface of the main plate part 1311 or the upper surface of the sub-plate part 1321 with one axial side surface facing it. have. For example, the lower end of the second bearing unit 1366 is slightly longer than the lower end of the first bearing unit 1365 , so that the second bearing unit 1366 moves from the main plate unit 1311 or the sub-plate unit 1321 to the shaft. It may be formed to be spaced apart in the direction. Accordingly, when the second bearing part rotates, it is possible to reduce the mechanical friction loss by suppressing contact with the main plate part 1311 or the sub-plate part 1321 .
또한, 롤러의 축방향 양측에 각각 구비되는 베인베어링(136)의 제2 베어링부(1366)는 실린더(133)의 내부공간을 이루는 압축공간(V)의 축방향 양측을 밀봉하여 실질적인 압축공간(V)을 형성하게 된다. 이에 따라 제2 베어링부(1366)의 외주면과 이를 마주보는 실린더(133)의 내주면(1331) 사이에는 압축공간(V)을 밀봉하기 위한 실링부(1367)가 더 구비될 수 있다. In addition, the second bearing part 1366 of the vane bearing 136 provided on both sides in the axial direction of the roller seals both sides of the compression space V constituting the inner space of the cylinder 133 in the axial direction to form a substantial compression space ( V) is formed. Accordingly, a sealing part 1367 for sealing the compression space V may be further provided between the outer peripheral surface of the second bearing part 1366 and the inner peripheral surface 1331 of the cylinder 133 facing it.
실링부(1367)는 제2 베어링부(1366)의 외주면에 원주방향을 따라 환형으로 구비되는 적어도 한 개 이상의 실링홈으로 이루어질 수 있다. 도 8 및 도 9는 도 5에서 베인베어링의 실링부에 대한 다른 실시예들을 보인 단면도들이다.The sealing part 1367 may be formed of at least one or more sealing grooves provided in an annular shape along the circumferential direction on the outer circumferential surface of the second bearing part 1366 . 8 and 9 are cross-sectional views showing other embodiments of the sealing part of the vane bearing in FIG. 5 .
예를 들어, 실링부(1367)는 도 5와 같이 한 개의 실링홈으로 이루어질 수도 있고, 도 8과 같이 축방향을 따라 기설정된 간격만큼 이격되어 배치되는 복수 개의 실링홈으로 이루어질 수도 있다. 이에 따라 실링부(1367)에는 오일 또는 냉매가 채워져 압축실 사이가 실링될 수 있다.For example, the sealing part 1367 may be formed of a single sealing groove as shown in FIG. 5 , or may include a plurality of sealing grooves arranged to be spaced apart by a predetermined interval along the axial direction as shown in FIG. 8 . Accordingly, the sealing part 1367 may be filled with oil or a refrigerant to seal between the compression chambers.
또는, 도 9와 같이, 실링부(1367)는 제2 베어링부(1366)의 외주면에 실링홈(1367a)을 형성하고, 실링홈(1367a)에 환형으로 된 실링부재(1367b)가 삽입될 수도 있다. 이 경우 실링부재(1367b)는 윤활성을 가지는 테프론 소재 등으로 이루어질 수 있다. Alternatively, as shown in FIG. 9 , the sealing part 1367 forms a sealing groove 1367a on the outer circumferential surface of the second bearing part 1366, and an annular sealing member 1367b may be inserted into the sealing groove 1367a. have. In this case, the sealing member 1367b may be made of a Teflon material having lubricity.
도 6 및 도 7을 참조하면, 다수의 볼(1363)은 외륜(1361)의 내주면과 내륜(1362)의 외주면 사이에 위치하도록 삽입될 수 있다. 이에 따라 베인(1351,1352,1353)의 제1 가이드돌기(1351d1)(미도시)(미도시)에 접촉되는 내륜(1362)은 외륜(1361)에 대해 상대운동을 할 수 있다.6 and 7 , a plurality of balls 1363 may be inserted to be positioned between the inner circumferential surface of the outer ring 1361 and the outer circumferential surface of the inner ring 1362 . Accordingly, the inner ring 1362 in contact with the first guide protrusion 1351d1 (not shown) (not shown) of the vanes 1351 , 1352 and 1353 may perform a relative motion with respect to the outer ring 1361 .
한편, 도 5를 참조하면, 서브베어링(132)의 서브가이드홈(1321a)과 베인(1351,1352,1353)의 제2 가이드돌기(1351d2)(미도시)(미도시) 사이에도 앞서 설명한 서브측 베인베어링(137)이 동일하게 적용될 수 있다. 서브측 베인베어링(137)은 메인측 베인베어링과 같이 외륜(1371), 내륜(1372), 다수의 볼(1373)로 이루어지며, 이에 대하여는 메인측 베인베어링(136)에 대한 설명으로 대신한다.Meanwhile, referring to FIG. 5 , the sub-guide groove 1321a of the sub-bearing 132 and the second guide protrusion 1351d2 (not shown) (not shown) of the vanes 1351 , 1352 and 1353 are also described above. The side vane bearing 137 may be equally applied. The sub-side vane bearing 137 is composed of an outer ring 1371 , an inner ring 1372 , and a plurality of balls 1373 like the main side vane bearing, and for this, the description of the main side vane bearing 136 is replaced.
도면으로 도시하지는 않았으나, 서브측 베인베어링(137)은 메인측 베인베어링(136)과 다른 형상으로 형성될 수도 있다. 예를 들어, 메인측 베인베어링(136)은 볼베어링으로, 서브측 베인베어링(137)은 롤러베어링이나 부시베어링 등으로 형성될 수도 있다.Although not shown in the drawings, the sub-side vane bearing 137 may be formed in a shape different from that of the main-side vane bearing 136 . For example, the main side vane bearing 136 may be formed of a ball bearing, and the sub-side vane bearing 137 may be formed of a roller bearing or a bush bearing.
상기와 같이 메인가이드홈(1311a)과 제1 가이드돌기(1351d1)(미도시)(미도시)의 사이, 서브가이드홈(1321a)과 제2 가이드돌기(1351d)(미도시)(미도시)의 사이에 볼베어링으로 된 베인베어링(136)(137)이 각각 설치됨에 따라, 각 베인(1351,1352,1353)의 가이드돌기(1351d,1352d,1353d)가 롤러(134)와 함께 회전을 하더라도 그 베인(1351,1352,1353)의 가이드돌기(1351d,1352d,1353d)가 접하는 베인베어링(136)(137)의 내륜(1362)(1372)이 다수의 볼(1363)에 의해 외륜(1361)에 대해 상대회전을 하게 된다. 이에 따라 각각의 베인(1351,1352,1353)이 가이드돌기(1351d,1352d,1353d)를 구비하면서도 그 가이드돌기(1351d,1352d,1353d)와 가이드홈(1311a)(1321a) 사이에서 발생될 수 있는 반경방향 마찰손실을 현저하게 낮출 수 있다. As described above, between the main guide groove 1311a and the first guide protrusion 1351d1 (not shown) (not shown), the sub guide groove 1321a and the second guide protrusion 1351d (not shown) (not shown) As the vane bearings 136 and 137 made of ball bearings are respectively installed between the The inner rings 1362 and 1372 of the vane bearings 136, 137 in contact with the guide projections 1351d, 1352d, and 1353d of the vanes 1351,1352,1353 are connected to the outer ring 1361 by a plurality of balls 1363. relative to the Accordingly, while each of the vanes 1351, 1352, and 1353 has guide projections 1351d, 1352d, and 1353d, the guide projections 1351d, 1352d, and 1353d and the guide grooves 1311a and 1321a can be generated between the The radial friction loss can be significantly reduced.
이와 동시에, 본 실시예에 따른 내륜(1362)은 가이드돌기(1351d,1352d,1353d)와 가이드홈(1311a)(1321a) 사이의 제1 베어링부(1365)(1375)는 물론, 메인플레이트부(1311)와 롤러(134)의 상측면 사이, 서브플레이트부(1321)와 롤러(134)의 하측면 사이로 연장되는 제2 베어링부(1366)(1376)가 구비되고, 제2 베어링부(1366)(1376)가 롤러(134)와 함께 회전할 수 있다. 이에 따라 메인베어링(131)과 롤러(134)의 사이 및 서브베어링(132)과 롤러(134)의 사이에서 발생되는 축방향 마찰손실도 현저하게 낮출 수 있다. At the same time, the inner ring 1362 according to the present embodiment includes the first bearing portions 1365 and 1375 between the guide projections 1351d, 1352d, and 1353d and the guide grooves 1311a and 1321a as well as the main plate portion ( 1311) and second bearing parts 1366 and 1376 extending between the upper surface of the roller 134 and between the sub-plate part 1321 and the lower surface of the roller 134 are provided, and a second bearing part 1366 is provided. 1376 may rotate with roller 134 . Accordingly, the axial friction loss generated between the main bearing 131 and the roller 134 and between the sub bearing 132 and the roller 134 can be significantly reduced.
이렇게 하여, 베인의 돌출량을 제한하여 베인선단부와 실린더 사이의 마찰손실을 억제하면서도, 가이드돌기와 가이드홈 사이에서의 반경방향 마찰손실과 메인베어링과 롤러의 사이 및 서브베어링과 롤러 사이에서의 축방향 마찰손실을 현저하게 낮출 수 있다. 이를 통해 압축부에서의 기계적 마찰손실을 줄여 압축기 효율을 높일 수 있다.In this way, while suppressing the friction loss between the vane tip and the cylinder by limiting the protrusion of the vane, the radial friction loss between the guide projection and the guide groove and the axial direction between the main bearing and the roller and between the sub bearing and the roller Friction loss can be significantly reduced. Through this, it is possible to increase the compressor efficiency by reducing the mechanical friction loss in the compression part.
한편, 베인베어링에 대한 다른 실시예가 있는 경우는 다음과 같다.On the other hand, the case of another embodiment of the vane bearing is as follows.
즉, 전술한 실시예에서는 내륜이 제1 베어링부와 제2 베어링부로 이루어지는 것이나, 경우에 따라서는 베인베어링의 외륜이 제1 베어링부와 제2 베어링부로 이루어질 수도 있다. 편의상, 이하에서는 메인측 베인베어링을 중심으로 설명하고, 서브측 베인베어링에 대해서는 메인측 베인베어링에 대한 설명으로 대신한다.That is, in the above-described embodiment, the inner ring is formed of the first bearing portion and the second bearing portion, but in some cases, the outer ring of the vane bearing may be formed of the first bearing portion and the second bearing portion. For convenience, hereinafter, the main-side vane bearing will be mainly described, and the sub-side vane bearing will be replaced with the description of the main-side vane bearing.
도 10은 베인베어링에 대한 다른 실시예를 보인 단면도이다.10 is a cross-sectional view showing another embodiment of the vane bearing.
도 10을 참고하면, 본 실시예에 따른 메인측 베인베어링(136)은 외륜(1361), 내륜(1362), 다수의 볼(1363)을 포함할 수 있다. 이들 외륜(1361), 내륜(1362), 다수의 볼(1363)은 전술한 실시예들과 유사하므로 이에 대한 구체적인 설명은 전술한 실시예에 대한 설명으로 대신한다.Referring to FIG. 10 , the main side vane bearing 136 according to the present embodiment may include an outer ring 1361 , an inner ring 1362 , and a plurality of balls 1363 . Since the outer ring 1361, the inner ring 1362, and the plurality of balls 1363 are similar to the above-described embodiments, a detailed description thereof is replaced with the description of the above-described embodiment.
다만, 본 실시예에서는 외륜(1361)이 제1 베어링부(1365)와 제2 베어링부(1366)로 이루어지고, 내륜(1362)은 환형으로 형성될 수 있다. 이 경우에도 제2 베어링부(1366)는 실린더(133)의 압축공간(V)에 삽입되어 그 압축공간(V)의 상측면을 형성할 수 있다.However, in this embodiment, the outer ring 1361 may be formed of a first bearing portion 1365 and a second bearing portion 1366, and the inner ring 1362 may be formed in an annular shape. Even in this case, the second bearing part 1366 may be inserted into the compression space V of the cylinder 133 to form an upper surface of the compression space V.
본 실시예에 따른 외륜(1361)의 제1 베어링부(1365)의 외주면(1365a)은 전술한 실시예와 같이 메인가이드홈(1311a)의 내주면(1311a1)에 압입되어 고정될 수도 있고, 메인가이드홈(1311a)의 내주면(1311a1)에 대해 회전 가능하게 삽입될 수도 있다.The outer circumferential surface 1365a of the first bearing part 1365 of the outer ring 1361 according to the present embodiment is press-fitted to the inner circumferential surface 1311a1 of the main guide groove 1311a as in the above-described embodiment and may be fixed, or the main guide It may be rotatably inserted with respect to the inner peripheral surface (1311a1) of the groove (1311a).
예를 들어, 외륜(1361)이 제1 베어링부(1365)가 전술한 실시예와 같이 메인가이드홈(1311a)에 압입되어 고정되는 경우에는 제2 베어링부(1366) 역시 메인플레이트부(1311)에 고정될 수 있다. 이에 따라 제2 베어링부(1366)의 외주면(1366a)과 실린더(133)의 내주면(1331) 사이를 밀착시켜 압축공간(V)의 누설을 더욱 효과적으로 억제할 수 있다. 뿐만 아니라, 제2 베어링부(1366)가 고정됨에 따라 실린더(133)의 내주면을 원형 외에 복수의 타원이 조합된 대칭형 타원 또는 비대칭형 타원 형상 등 다양하게 형성하여 압축효율을 높일 수 있다. For example, when the outer ring 1361 is fixed by being press-fitted into the main guide groove 1311a as in the above-described embodiment of the first bearing part 1365, the second bearing part 1366 is also the main plate part 1311. can be fixed to Accordingly, it is possible to more effectively suppress the leakage of the compression space (V) by close contact between the outer peripheral surface (1366a) of the second bearing part (1366) and the inner peripheral surface (1331) of the cylinder (133). In addition, as the second bearing part 1366 is fixed, the inner peripheral surface of the cylinder 133 may be formed in various ways such as a symmetrical oval or an asymmetrical ellipse in which a plurality of ellipses are combined in addition to a circular shape to increase the compression efficiency.
반면, 외륜(1361)이 제1 베어링부(1365)가 메인가이드홈(1311a)의 내주면(1311a1)에 대해 회전 가능하게 삽입되는 경우에는 전술한 실시예와 같이 제2 베어링부(1366)가 롤러(134)와 함께 회전을 하게 될 수 있다. 그러면 제1 베어링부(1365)에서의 반경방향 마찰손실은 물론 제2 베어링부(1366)에서의 축방향 마찰손실도 억제할 수 있어 압축기 효율이 향상될 수 있다.On the other hand, when the outer ring 1361 is rotatably inserted with the first bearing part 1365 with respect to the inner circumferential surface 1311a1 of the main guide groove 1311a, the second bearing part 1366 is the roller as in the above-described embodiment. It can be rotated with (134). Then, not only the radial friction loss in the first bearing part 1365 but also the axial friction loss in the second bearing part 1366 can be suppressed, so that the compressor efficiency can be improved.
한편, 베인베어링에 대한 또 다른 실시예가 있는 경우는 다음과 같다.On the other hand, another embodiment of the vane bearing is as follows.
즉, 전술한 실시예들에서는 베인베어링의 내륜 또는 외륜이 제1 베어링부와 제2 베어링부로 이루어지는 것이나, 경우에 따라서는 베인베어링의 내륜 또는 외륜이 제1 베어링부로만 이루어질 수도 있다. 편의상, 이하에서는 메인측 베인베어링을 중심으로 설명하고, 서브측 베인베어링에 대해서는 메인측 베인베어링에 대한 설명으로 대신한다.That is, in the above-described embodiments, the inner ring or outer ring of the vane bearing is formed of the first bearing portion and the second bearing portion, but in some cases, the inner ring or outer ring of the vane bearing may be formed of only the first bearing portion. For convenience, hereinafter, the main-side vane bearing will be mainly described, and the sub-side vane bearing will be replaced with the description of the main-side vane bearing.
도 11은 베인베어링에 대한 또 다른 실시예를 보인 단면도이다.11 is a cross-sectional view showing another embodiment of the vane bearing.
도 11을 참고하면, 본 실시예에 따른 베인베어링(136)은 외륜(1361), 내륜(1362), 다수의 볼(1363)을 포함할 수 있다. 이들 외륜(1361), 내륜(1362), 다수의 볼(1363)은 전술한 실시예들과 유사하므로 이에 대한 구체적인 설명은 전술한 실시예에 대한 설명으로 대신한다.Referring to FIG. 11 , the vane bearing 136 according to the present embodiment may include an outer ring 1361 , an inner ring 1362 , and a plurality of balls 1363 . Since the outer ring 1361, the inner ring 1362, and the plurality of balls 1363 are similar to the above-described embodiments, a detailed description thereof is replaced with the description of the above-described embodiment.
다만, 본 실시예에서는 외륜(1361) 및 내륜(1362)이 각각 제1 베어링부(1365)로만 이루어질 수 있다. 예를 들어 내륜(1362)은 링 형상으로 된 제1 베어링부(1365)로만 이루어져 메인가이드홈(1311a)의 내주면(1311a1)과 제1 가이드돌기(1351d1)(미도시)(미도시) 사이에만 구비될 수 있다. 제1 베어링부(1365)의 형상 및 규격은 전술한 실시예들에서의 제1 베어링부(1365)의 형상 및 규격과 동일하게 형성될 수 있다.However, in this embodiment, the outer ring 1361 and the inner ring 1362 may be formed of only the first bearing part 1365 , respectively. For example, the inner ring 1362 consists only of a ring-shaped first bearing part 1365 only between the inner circumferential surface 1311a1 of the main guide groove 1311a and the first guide protrusion 1351d1 (not shown) (not shown). can be provided. The shape and size of the first bearing unit 1365 may be the same as the shape and size of the first bearing unit 1365 in the above-described embodiments.
상기와 같이, 외륜(1361) 및 내륜(1362)이 제1 베어링부(1365)로만 이루어지는 경우에는 메인가이드홈(1311a)의 내주면(1311a1)과 제1 가이드돌기(1351d1)(미도시)(미도시) 사이에서 발생되는 반경방향 마찰손실을 억제할 수 있다.As described above, when the outer ring 1361 and the inner ring 1362 are formed of only the first bearing part 1365 , the inner circumferential surface 1311a1 of the main guide groove 1311a and the first guide protrusion 1351d1 (not shown) (not shown) It is possible to suppress the radial friction loss that occurs between the
또한, 본 실시예와 같이 제2 베어링부(1366)가 배제되는 경우에는 실린더(133)의 내주면(1331)을 다양하게 형성할 수 있다. 예를 들어, 실린더(133)의 내주면(1331)은 원형 외에 복수의 타원이 조합된 대칭형 타원 또는 비대칭형 타원 형상으로 형성될 수 있다. 이를 통해 압축공간(V)에서의 압축주기가 길어지도록 실린더(133)의 내주면(1331)을 형성할 수 있어 과압축으로 인한 압축손실을 줄일 수 있다. In addition, when the second bearing part 1366 is excluded as in the present embodiment, the inner peripheral surface 1331 of the cylinder 133 may be formed in various ways. For example, the inner circumferential surface 1331 of the cylinder 133 may be formed in a symmetrical oval or asymmetrical oval shape in which a plurality of ellipses are combined in addition to a circular shape. Through this, the inner circumferential surface 1331 of the cylinder 133 can be formed so that the compression cycle in the compression space V becomes longer, thereby reducing compression loss due to overcompression.
또한, 본 실시예와 같이 제2 베어링부(1366)가 배제되는 경우에는 토출구(미도시)가 메인플레이트부(1311) 또는 서브플레이트부(1321)에 형성될 수 있다. 이에 따라 토출구(미도시)가 실린더(133)의 내주면(1331)에 형성되는 경우 발생될 수 있는 베인선단부(1351b,1352b,1353b)에 대한 면압부족을 억제할 수 있다. 이를 통해 베인선단부(1351b,1352b,1353b) 또는 이를 마주보는 실린더(133)의 내주면(1331)에서의 부분적 손상을 억제하여 압축실 간 누설 및 그로 인한 압축효율의 저하를 미연에 억제할 수 있다.In addition, when the second bearing part 1366 is excluded as in the present embodiment, a discharge port (not shown) may be formed in the main plate part 1311 or the sub-plate part 1321 . Accordingly, when the discharge port (not shown) is formed on the inner peripheral surface 1331 of the cylinder 133, it is possible to suppress the lack of surface pressure on the vane tip portions 1351b, 1352b, and 1353b, which may occur. Through this, partial damage to the vane tip portions 1351b, 1352b, and 1353b or the inner circumferential surface 1331 of the cylinder 133 facing the same can be suppressed, thereby preventing leakage between compression chambers and a decrease in compression efficiency resulting therefrom in advance.
한편, 전술한 실시예들에서는 모두 롤러에 스윙부시가 구비된 예를 중심으로 살펴보았으나, 반드시 스윙부시가 구비될 필요는 없다. 예를 들어 통상적인 베인로터리 압축기와 같이 롤러의 외주면에 적어도 한 개 이상의 베인슬롯이 형성되고, 베인슬롯에 베인이 미끄러지게 삽입되는 경우에도 동일하게 적용될 수 있다.On the other hand, in the above-described embodiments, all of the examples in which the swing bush is provided on the roller have been mainly examined, but the swing bush is not necessarily provided. For example, at least one vane slot is formed on the outer circumferential surface of the roller like a conventional vane rotary compressor, and the same may be applied when the vane is slidably inserted into the vane slot.

Claims (15)

  1. 내주면이 환형으로 형성되는 실린더;a cylinder having an inner circumferential surface formed in an annular shape;
    상기 실린더의 축방향 양측에 각각 구비되어 상기 실린더와 함께 압축공간을 형성하고, 상기 압축공간을 형성하는 측면에 가이드홈이 구비되는 메인베어링 및 서브베어링;a main bearing and a sub-bearing respectively provided on both sides of the cylinder in the axial direction to form a compression space together with the cylinder, and a guide groove provided on a side surface forming the compression space;
    상기 실린더에 수용되어 회전축과 함께 회전하는 롤러;a roller accommodated in the cylinder and rotating together with the rotating shaft;
    상기 롤러에 미끄러지게 삽입되고, 상기 가이드홈에 원주방향을 따라 미끄러지도록 삽입되는 가이드돌기가 축방향으로 연장되는 적어도 한 개 이상의 베인; 및at least one vane slidably inserted into the roller and extending in the axial direction with a guide protrusion inserted into the guide groove to slide along the circumferential direction; and
    상기 메인베어링과 상기 서브베어링 중에서 적어도 어느 한쪽 베어링의 가이드홈과 상기 베인의 가이드돌기 사이에 구비되는 베어링부재를 포함하는 로터리 압축기.and a bearing member provided between a guide groove of at least one of the main bearing and the sub-bearing and a guide protrusion of the vane.
  2. 제1항에 있어서,According to claim 1,
    상기 베어링부재는,The bearing member is
    상기 가이드홈의 내주면에 삽입되는 외륜;an outer ring inserted into the inner circumferential surface of the guide groove;
    상기 외륜의 내측에 구비되며, 그 내주면이 상기 가이드돌기의 접촉면에 미끄러지게 접촉되는 내륜; 및an inner ring provided on the inner side of the outer ring, the inner circumferential surface of which is slidably in contact with the contact surface of the guide protrusion; and
    상기 외륜과 상기 내륜 사이에 구비되어 상기 외륜과 상기 내륜이 상대운동을 하도록 하는 미끄럼부재를 포함하는 로터리 압축기.and a sliding member provided between the outer ring and the inner ring to allow the outer ring and the inner ring to move relative to each other.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 외륜 또는 상기 내륜 중에서 어느 한 쪽은 상기 롤러와 이를 마주보는 상기 메인베어링과 상기 서브베어링 사이로 연장되는 회전판부가 더 구비되는 로터리 압축기.One of the outer ring and the inner ring is further provided with a rotating plate portion extending between the roller and the main bearing and the sub bearing facing them.
  4. 제1항에 있어서,According to claim 1,
    상기 베어링부재는,The bearing member is
    상기 메인베어링과 상기 서브베어링 중에서 적어도 어느 한쪽 베어링과 이를 반경방향으로 마주보는 상기 베인의 사이에 구비되는 제1 베어링부; 및 a first bearing part provided between at least one of the main bearing and the sub-bearing and the vane facing the same in a radial direction; and
    상기 메인베어링과 상기 서브베어링 중에서 적어도 어느 한쪽 베어링과 이를 축방향으로 마주보는 상기 롤러의 사이에 구비되는 제2 베어링부를 포함하는 로터리 압축기.and a second bearing part provided between at least one of the main bearing and the sub-bearing and the roller facing the same in the axial direction.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 제1 베어링부와 상기 제2 베어링부는 단일체로 형성되는 로터리 압축기.The first bearing part and the second bearing part are formed as a single body.
  6. 제4항에 있어서,5. The method of claim 4,
    상기 제2 베어링부는 상기 제1 베어링부보다 두껍게 형성되는 로터리 압축기.The second bearing part is formed to be thicker than the first bearing part.
  7. 제4항에 있어서,5. The method of claim 4,
    상기 제1 베어링부는 링 형상으로 형성되고, 상기 제2 베어링부는 원판 형상으로 형성되는 로터리 압축기.The first bearing portion is formed in a ring shape, and the second bearing portion is formed in a disk shape.
  8. 제4항에 있어서,5. The method of claim 4,
    상기 제1 베어링부는,The first bearing part,
    상기 메인베어링과 상기 서브베어링 중에서 적어도 어느 한 쪽 베어링의 가이드홈에 삽입되는 외륜;an outer ring inserted into a guide groove of at least one of the main bearing and the sub bearing;
    상기 외륜의 내측에 구비되며, 그 내주면이 상기 베인의 가이드돌기에 미끄러지게 접촉되는 내륜; 및an inner ring provided on the inner side of the outer ring, the inner circumferential surface of which is slidably in contact with the guide projection of the vane; and
    상기 외륜과 상기 내륜 사이에 구비되어 상기 외륜과 상기 내륜이 상대운동을 하도록 하는 미끄럼부재를 포함하고,a sliding member provided between the outer ring and the inner ring to allow the outer ring and the inner ring to perform relative motion;
    상기 제2 베어링부는,The second bearing part,
    상기 제1 베어링부의 상기 내륜의 일단 또는 상기 외륜의 일단에서 반경방향으로 연장되어 상기 롤러의 축방향 측면과 이를 마주보는 상기 메인베어링과 상기 서브베어링의 축방향 측면 상에 구비되는 로터리 압축기.A rotary compressor extending radially from one end of the inner ring or one end of the outer ring of the first bearing part and provided on the axial side of the roller and the axial side of the main bearing and the sub bearing facing the same.
  9. 제4항에 있어서,5. The method of claim 4,
    상기 제2 베어링부는 그 축방향 측면이 이를 마주보는 상기 메인베어링 또는 상기 서브베어링의 축방향 측면으로부터 이격되는 로터리 압축기.The second bearing portion is a rotary compressor in which an axial side thereof is spaced apart from an axial side of the main bearing or the sub-bearing facing it.
  10. 제4항에 있어서,5. The method of claim 4,
    상기 제2 베어링부는 그 외주면이 상기 실린더의 내주면을 마주보도록 상기 실린더의 내부에 삽입되는 로터리 압축기.The second bearing part is inserted into the cylinder so that the outer circumferential surface faces the inner circumferential surface of the cylinder.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 제2 베어링부의 외주면과 상기 실린더의 내주면 사이에는 실링부가 구비되는 로터리 압축기.A sealing part is provided between an outer peripheral surface of the second bearing part and an inner peripheral surface of the cylinder.
  12. 제10항에 있어서,11. The method of claim 10,
    상기 제2 베어링부는 그 외주면이 상기 실린더의 내주면과 동일한 형상으로 형성되는 로터리 압축기.The second bearing portion has an outer peripheral surface formed in the same shape as an inner peripheral surface of the cylinder.
  13. 제1항에 있어서,According to claim 1,
    상기 베어링부재는,The bearing member is
    상기 메인베어링과 상기 서브베어링 중에서 적어도 어느 한쪽 베어링과 이를 반경방향으로 마주보는 상기 베인의 사이에 구비되고,It is provided between at least one of the main bearing and the sub-bearing and the vane facing the same in the radial direction,
    상기 롤러의 축방향 측면은 이를 마주보는 상기 메인베어링의 축방향 측면과상기 서브베어링의 축방향 측면에 미끄럼 접촉되는 로터리 압축기.The axial side of the roller is in sliding contact with the axial side of the main bearing and the axial side of the sub bearing facing them.
  14. 제13항에 있어서,14. The method of claim 13,
    상기 실린더의 내주면은 원형 또는 타원형상으로 형성되고,The inner peripheral surface of the cylinder is formed in a circular or oval shape,
    상기 메인베어링의 축방향 측면과 상기 서브베어링의 축방향 측면 중에서 적어도 어느 한 쪽에 토출구가 형성되는 로터리 압축기. A rotary compressor in which a discharge port is formed in at least one of an axial side surface of the main bearing and an axial side surface of the sub bearing.
  15. 제1항 내지 제14항 중 어느 한 항에 있어서,15. The method according to any one of claims 1 to 14,
    상기 롤러에는 부시홈이 형성되고, 상기 부시홈에는 두 개 한 쌍의 스윙부시가 회전 가능하게 삽입되며, 상기 베인은 상기 스윙부시 사이에 미끄러지도록 삽입되는 로터리 압축기. A bush groove is formed in the roller, two and a pair of swing bushes are rotatably inserted into the bush groove, and the vane is slidably inserted between the swing bushes.
PCT/KR2022/000227 2021-02-04 2022-01-06 Rotary compressor WO2022169117A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280012833.2A CN116848322A (en) 2021-02-04 2022-01-06 Rotary compressor
EP22749871.4A EP4290078A1 (en) 2021-02-04 2022-01-06 Rotary compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210016193A KR102499761B1 (en) 2021-02-04 2021-02-04 Rotary compressor
KR10-2021-0016193 2021-02-04

Publications (1)

Publication Number Publication Date
WO2022169117A1 true WO2022169117A1 (en) 2022-08-11

Family

ID=82742257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/000227 WO2022169117A1 (en) 2021-02-04 2022-01-06 Rotary compressor

Country Status (4)

Country Link
EP (1) EP4290078A1 (en)
KR (1) KR102499761B1 (en)
CN (1) CN116848322A (en)
WO (1) WO2022169117A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988083A (en) * 1971-08-28 1976-10-26 Daihatsu Kogyo Company Limited Non-contact vane pump
JPH10506973A (en) * 1994-06-28 1998-07-07 トーマス・シー・エドワーズ Non-contact vane type fluid drainage machine with integrated vane guide assembly
KR20110095155A (en) 2010-02-17 2011-08-24 미쓰비시덴키 가부시키가이샤 Vane rotary type fluid apparatus and compressor
JP2012167578A (en) 2011-02-11 2012-09-06 Mitsubishi Electric Corp Vane type compressor
US20150064042A1 (en) 2012-04-02 2015-03-05 Calsonic Kansei Corporation Gas compressor
JP5777733B2 (en) * 2012-01-11 2015-09-09 三菱電機株式会社 Vane type compressor
KR20180091575A (en) * 2017-02-07 2018-08-16 엘지전자 주식회사 Hermetic compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988083A (en) * 1971-08-28 1976-10-26 Daihatsu Kogyo Company Limited Non-contact vane pump
JPH10506973A (en) * 1994-06-28 1998-07-07 トーマス・シー・エドワーズ Non-contact vane type fluid drainage machine with integrated vane guide assembly
KR20110095155A (en) 2010-02-17 2011-08-24 미쓰비시덴키 가부시키가이샤 Vane rotary type fluid apparatus and compressor
JP2012167578A (en) 2011-02-11 2012-09-06 Mitsubishi Electric Corp Vane type compressor
JP5777733B2 (en) * 2012-01-11 2015-09-09 三菱電機株式会社 Vane type compressor
US20150064042A1 (en) 2012-04-02 2015-03-05 Calsonic Kansei Corporation Gas compressor
KR20180091575A (en) * 2017-02-07 2018-08-16 엘지전자 주식회사 Hermetic compressor

Also Published As

Publication number Publication date
CN116848322A (en) 2023-10-03
KR20220112531A (en) 2022-08-11
EP4290078A1 (en) 2023-12-13
KR102499761B1 (en) 2023-02-15

Similar Documents

Publication Publication Date Title
WO2018164393A1 (en) Scroll compressor
WO2017188558A1 (en) Scroll compressor
WO2018056635A1 (en) Mutual rotation-type scroll compressor having back pressure structure applied thereto
WO2017188557A1 (en) Scroll compressor
WO2018190520A1 (en) Scroll compressor
WO2021002629A1 (en) Motor and compressor comprising same
WO2017188575A1 (en) Scroll compressor
WO2017188576A1 (en) Scroll compressor
WO2018194294A1 (en) Rotary compressor
WO2018117682A1 (en) Scroll compressor
WO2018147562A1 (en) Hermetic compressor
WO2018056634A1 (en) Mutual rotation type scroll compressor having position-changeable bearing applied thereto
WO2014014182A1 (en) Vane rotary compressor
WO2022169117A1 (en) Rotary compressor
JPH02146374A (en) Non-contact mechanical seal
WO2021015439A1 (en) Scroll compressor
WO2021015429A1 (en) Scroll compressor
WO2014196774A1 (en) Scroll compressor
WO2021015392A1 (en) Scroll compressor
WO2020116781A1 (en) High-pressure scroll compressor
WO2018174449A1 (en) Hermetic compressor
WO2016143952A1 (en) Scroll compressor
WO2023101123A1 (en) Rotary compressor
WO2018190544A1 (en) Scroll compressor
WO2022211331A1 (en) Rotary compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749871

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280012833.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022749871

Country of ref document: EP

Effective date: 20230904