WO2022168952A1 - Novel prenylation enzyme - Google Patents

Novel prenylation enzyme Download PDF

Info

Publication number
WO2022168952A1
WO2022168952A1 PCT/JP2022/004501 JP2022004501W WO2022168952A1 WO 2022168952 A1 WO2022168952 A1 WO 2022168952A1 JP 2022004501 W JP2022004501 W JP 2022004501W WO 2022168952 A1 WO2022168952 A1 WO 2022168952A1
Authority
WO
WIPO (PCT)
Prior art keywords
arginine
amino acid
residue
peptide
acid sequence
Prior art date
Application number
PCT/JP2022/004501
Other languages
French (fr)
Japanese (ja)
Inventor
敏幸 脇本
龍文 沖野
研一 松田
チン スン パン
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Priority to JP2022579623A priority Critical patent/JPWO2022168952A1/ja
Publication of WO2022168952A1 publication Critical patent/WO2022168952A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/10Citrulline; Arginine; Ornithine
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof

Definitions

  • the present invention relates to prenylation-modifying enzymes for peptides and amino acids, substrates for the enzymes, and the like. Specifically, the present invention relates to an enzyme that transfers a prenyl group to an arginine residue or an arginine analogue residue in a peptide, or to an arginine or an arginine analogue, and a peptide that can be used as a substrate for the enzyme.
  • Cyanobactins peptide compounds produced by blue-green algae, often show regioselective prenylation modification.
  • a plurality of prenyltransferases have been discovered so far (Patent Document 1, Non-Patent Documents 1 to 3), and all of them exhibit high regioselectivity and tolerant substrate selectivity in vitro. Since these act on cyclic peptides, they are useful as diversity creation tools in the final stage of synthesis.
  • the prenylation sites of these enzymes are limited to the side chains of tryptophan, tyrosine, serine, and threonine residues and the N- and C-termini of linear peptides, which creates limited structural diversity. .
  • the present inventors have found a novel enzyme that transfers a prenyl group to an arginine residue in a peptide and a peptide that can be used as a substrate for this enzyme in cyanobacteria. , have completed the present invention.
  • the present invention provides: (1) An enzyme that transfers a prenyl group to an arginine residue or an arginine analogue residue, or an arginine or an arginine analogue in a peptide containing the following amino acid sequence: (a) the amino acid sequence of SEQ ID NO: 1; (b) an amino acid sequence having 58% or more identity to the amino acid sequence of SEQ ID NO: 1, or (c) deletion or substitution of 1 to several amino acid residues in the amino acid sequence shown in SEQ ID NO: 1 , inserted or added amino acid sequence.
  • nucleic acid comprising the following nucleotide sequence: (a) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 1; (b) a nucleotide sequence encoding an amino acid sequence having 58% or more identity to the amino acid sequence of SEQ ID NO: 1; (c) a nucleotide sequence encoding an amino acid sequence in which one to several amino acid residues are deleted, substituted, inserted or added in the amino acid sequence shown in SEQ ID NO: 1, or (d) the amino acid shown in SEQ ID NO: 1 A base sequence that hybridizes under stringent conditions to a base sequence complementary to the base sequence encoding the sequence.
  • a method for producing an enzyme that transfers a prenyl group to an arginine residue or an arginine analogue residue in a peptide, or an arginine or an arginine analogue comprising the following steps: (a) introducing the nucleic acid according to (2) or the vector according to (4) into a cell; (b) culturing the cells obtained in step (a); and (c) arginine residues or arginine analogue residues, or arginine or arginine analogues in peptides from the culture obtained in step (b). Obtaining an enzyme that prenylates the body.
  • a proline residue is adjacent to an arginine residue or an arginine analogue residue, and the proline residue is bound via its carboxyl group to the amino group of the arginine residue or the arginine analogue residue; (6) or (7).
  • the enzyme contains an amino acid sequence in which the 167th amino acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 is an amino acid residue other than histidine, or the amino acid sequence shown in SEQ ID NO: 1 Any one of (6) to (8), which comprises an amino acid sequence in which the amino acid residue corresponding to the 167th amino acid residue from the N-terminus is an amino acid residue other than histidine, and the prenylation is monoprenylation The method described in . (10) The method according to item (9), wherein the amino acid other than histidine is alanine.
  • an arginine residue or an arginine analogue comprising allowing the enzyme of claim 1 or 3 to act on a peptide containing an arginine residue or an arginine analogue residue, or a compound library containing arginine or an arginine analogue;
  • a proline residue is adjacent to an arginine residue or an arginine analogue residue, and the proline residue is bound to the amino group of the arginine residue or the arginine analogue residue through its carboxyl group; (11) or (12).
  • the enzyme contains an amino acid sequence in which the 167th amino acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 is an amino acid residue other than histidine, or the amino acid sequence shown in SEQ ID NO: 1 Any one of (11) to (13), which comprises an amino acid sequence in which the amino acid residue corresponding to the 167th amino acid residue from the N-terminus is an amino acid residue other than histidine, and the prenylation is monoprenylation The method described in . (15) The method according to item (14), wherein the amino acid other than histidine is alanine.
  • an enzyme that transfers a prenyl group to an arginine residue or arginine analogue residue in a peptide, or to arginine or an arginine analogue.
  • the enzymes can be used to create peptides and amino acids with diverse structures and functions.
  • the present invention provides peptides that can be used as substrates for the enzyme.
  • the enzyme can act on various peptides and amino acids to create new prenylated peptides and prenylated amino acids with diverse structures and functions.
  • FIG. 1 shows LC-MS charts of algicyclamide C (3) isolated from Microcystis aeruginosa NIE-88 (upper), chemically synthesized algicyclamide C (3) (middle), and a mixture of both (lower). It is a figure which compared.
  • FIG. 2 is a diagram comparing 1 H NMR charts of Argicyclamide C (3) isolated from Microcystis aeruginosa NIE-88 (upper) and chemically synthesized Argicyclamide C (3) (lower).
  • FIG. 3 is a diagram comparing 13 C NMR charts of Argicyclamide C (3) isolated from Microcystis aeruginosa NIE-88 (upper) and chemically synthesized Argicyclamide C (3) (lower).
  • FIG. 2 is a diagram comparing 1 H NMR charts of Argicyclamide C (3) isolated from Microcystis aeruginosa NIE-88 (upper) and chemically synthesized Argicyclamide C (3) (low
  • FIG. 4 is a reverse-phase HPLC chart showing the time-dependent changes (0 to 120 minutes) of substrates and products in the conversion reaction of algicyclamide C (3) to algicyclamide A (1) by the enzyme (AgcF) of the present invention.
  • Boiled AgcF is a chart of the reaction product using the enzyme of the present invention heat-inactivated before the reaction.
  • 1 (std) is a chart of algicyclamide A (1) standard
  • 2 (std) is a chart of algicyclamide B (2) standard
  • 3 (std) is a chart of algicyclamide C (3) standard.
  • FIG. 5 shows the ratio of monoprenylated and bisprenylated forms produced by prenylation reaction by allowing AgcF to act on a cyclic peptide in which each amino acid residue contained in the sequence of algicyclamide C is substituted with alanine. shows the results of examining The scheme in the figure shows the progress of the prenylation reaction of Argicyclamide C with AgcF.
  • FIG. 6 shows an HPLC chart of the monoprenylation reaction of Argicyclamide C by AgcF_H167A. The scheme in the figure shows the monoprenylation reaction of Argicyclamide C by AgcF_H167A.
  • FIG. 7A shows the UPLC chromatogram of the prenylation reaction of the substrate cyc [MEYPLSLRYPG] by the AgcF homolog recombinant UHCC0183PT (monitoring UV absorbance at 210 nm).
  • i indicates a chromatogram of a reaction solution containing recombinant UHCC0183PT.
  • ii is the chromatogram of the reaction without recombinant UHCC0183PT.
  • FIG. 7B shows the results of UPLC-MS analysis (positive mode) of the reaction mixture containing UHCC0183PT.
  • i indicates the extracted ion chromatogram at m/z 1443.0 corresponding to the bisprenylated form.
  • ii shows the extracted ion chromatogram at m/z 1375.0 corresponding to the monoprenylated form.
  • iii shows the extracted ion chromatogram at m/z 1307.0 corresponding to the substrate.
  • the present invention provides an enzyme that transfers a prenyl group to an arginine residue or an arginine analogue residue, or an arginine or an arginine analogue, in a peptide.
  • the enzyme is (a) the amino acid sequence of SEQ ID NO: 1; (b) an amino acid sequence having 58% or more identity to the amino acid sequence of SEQ ID NO: 1, or (c) deletion or substitution of 1 to several amino acid residues in the amino acid sequence shown in SEQ ID NO: 1 , including inserted or added amino acid sequences.
  • the enzyme of the present invention uses peptides containing arginine or arginine analogues, or arginine or arginine analogues (prenyl group acceptors) and prenyl group-containing compounds (prenyl group donors) as substrates, and arginine residues in peptides or It catalyzes the transfer of a prenyl group to an arginine analogue residue, or to arginine or an arginine analogue.
  • the enzyme of the present invention transfers a prenyl group to the side chain nitrogen atom of an arginine residue or arginine analogue residue in a peptide, or to the nitrogen atom of arginine or an arginine analogue (however, the above nitrogen atom does not constitute a peptide bond).
  • the prenyl group acceptor contains multiple nitrogen atoms to which a prenyl group can be bonded, the prenyl group may be transferred to one of them, or the prenyl group may be transferred to two or more of them.
  • a prenyl group may be bound to one nitrogen of the guanidine of the arginine residue, and two prenyl groups may be bound to the two nitrogens. groups may be attached.
  • the structure of the prenyl group acceptor peptide is not particularly limited, and may be linear, branched or cyclic.
  • the peptide may be a peptide in which a linear peptide and a cyclic peptide are bound.
  • the peptide is a cyclic peptide.
  • Peptides may be naturally occurring peptides or artificially created peptides.
  • the size of the peptide is not particularly limited, and may consist of, for example, several amino acids, several tens of amino acids, or a larger size.
  • a peptide may be an oligopeptide, polypeptide or protein.
  • the enzymes of the invention can be used to prenylate oligopeptides, polypeptides and proteins.
  • arginine residue or arginine analogue residue may be present at any position in the peptide. Arginine residues or arginine analogue residues may be present at the N-terminus, C-terminus, or both of the peptide, and may be internal to the peptide.
  • the proline residue is preferably adjacent to an arginine residue or an arginine analogue residue.
  • a proline residue is adjacent to an arginine residue or arginine analogue residue by binding the proline residue through its carboxyl group to the amino group of the arginine residue or arginine analogue residue.
  • Preferred peptides for prenylation by the enzymes of the invention are cyclic peptides in which proline residues are flanked by arginine or arginine analogue residues in the manner described above.
  • Amino acids that constitute peptides are usually amino acids that constitute proteins and are in the L-form, but they may be amino acids that do not constitute proteins, or may be in the D-form.
  • the amino acids that make up the peptide may be ⁇ -alanine, ⁇ -aminobutyric acid, ⁇ -aminocaproic acid, etc., and may also be alkylated, halogenated, esterified, aminated, carboxylated, nitrated, sulfonated, etc. It may be an amino acid that has been modified with a modified, phosphorylated, acetylated, glycosylated, lipidated, etc., or known protective group. Peptides containing these modified amino acids can be obtained by known methods.
  • Amino acid bonds in peptides are usually peptide bonds, but may contain other bonds such as ester bonds, and may have spacers such as methylene groups between amino acid residues.
  • the enzyme of the present invention can also use arginine or an arginine analogue as a prenyl group acceptor.
  • arginine analogues include derivatives of arginine, amino acids having similar structures to arginine, and derivatives thereof.
  • derivatives include modifications such as alkylation, halogenation, esterification, amination, carboxylation, nitration, sulfonation, phosphorylation, acetylation, glycosylation, lipidation, etc. It may be a compound.
  • the derivative may be one to which a known protecting group is attached. Derivatives are not limited to the above examples. Arginine analogs can be obtained by known methods.
  • analogs of arginine include, but are not limited to, ornithine, citrulline, and argininosuccinic acid, and derivatives thereof. The above comments also apply to analogue residues of arginine in peptides.
  • the prenyl group transferred by the enzyme of the present invention may be any prenyl group, such as dimethylallyl, geranyl, farnesyl, geranylgeranyl, geranylfarnesyl, hexaprenyl, octaprenyl, decaprenyl. etc., but not limited to these.
  • the size of the prenyl group transferred by the enzyme of the present invention preferably has 20 carbon atoms or less, more preferably 15 carbon atoms or less.
  • prenyl group-containing compound is not particularly limited, and may be any type of compound.
  • prenyl group-containing compounds include, but are not limited to, dimethylallyl diphosphate (DMAPP), geranyl diphosphate (GPP), farnesyl diphosphate (FPP), and the like.
  • the enzyme of the present invention is a novel enzyme in that it transfers a prenyl group to an arginine residue or arginine analogue residue in a peptide, or to arginine or an arginine analogue.
  • the enzyme of the present invention is useful as a peptide modification tool for creating new peptides with diverse structures and functions that have been impossible with conventional enzymes.
  • the enzyme of the present invention may be derived from any organism.
  • the enzymes of the invention are preferably of bacterial, more preferably cyanobacterial origin.
  • Enzymes of the present invention may be derived from cyanobacteria such as, for example, the genera Microcystis, Aphanizomenon, and Dolichospermum.
  • the enzyme of the invention may be, for example, one comprising the amino acid sequence shown in SEQ ID NO: 1 (AgcF).
  • the enzyme of the present invention can include its mutants.
  • the enzyme of the present invention includes the enzyme of the present invention and variants thereof.
  • a mutant of the enzyme of the present invention may contain a mutant sequence of the amino acid sequence shown in SEQ ID NO: 1.
  • the mutant of the enzyme of the present invention is 50% or more, for example, 58% or more, 60% or more, 70% or more, 80% or more, 90% or more, 92% or more of the amino acid sequence shown in SEQ ID NO: 1 , may include amino acid sequences with greater than 94%, greater than 96% or greater than 98% identity.
  • the identity of amino acid sequences can be examined using known means such as FASTA search and BLAST search.
  • the mutant of the enzyme of the present invention has one to several tens, preferably one to several amino acid residues deleted, substituted, inserted or added in the amino acid sequence shown in SEQ ID NO: 1. May contain sequences.
  • the number of amino acid residues to be deleted, substituted, inserted or added in SEQ ID NO: 1 is not limited to 1 to several, but 1 to several tens, preferably 1 to 40, more preferably may be 1 to 20, more preferably 1 to several. Dozens may be, for example, 20, 30, 40, 50, 60, 70, 80, 90, or any number between these values. Several may be, for example, 2, 3, 4, 5, 6, 7, 8 or 9.
  • Deletions, substitutions, insertions or additions of amino acid residues in protein amino acid sequences are known to those skilled in the art.
  • site-directed mutagenesis or known chemical techniques may be used to create deletions, substitutions, insertions or additions of amino acid residues in the amino acid sequences of the enzymes of the invention.
  • substitutions between homologous amino acids are preferred.
  • Cognate amino acids are known to those of skill in the art. Conservative amino acid substitutions are also preferred.
  • conservative amino acid substitutions include: substitutions between Phe, Trp, Tyr when the substituted amino acid is an aromatic amino acid, when the substituted amino acid is a hydrophobic amino acid for substitutions between Leu, Ile, and Val; substitutions between Gln and Asn when the amino acid to be substituted is a polar amino acid; Lys when the amino acid to be substituted is a basic amino acid; Substitution between Arg and His, substitution between Asp and Glu when the amino acid to be substituted is an acidic amino acid, substitution between Ser and Thr when the amino acid to be substituted is an amino acid having a hydroxyl group replacement.
  • mutants of the enzyme of the present invention include amino acid sequences shown in SEQ ID NO: 1 from the N-terminus of the 67th glycine, the 133rd glycine, the 219th cysteine, the 267th cysteine, and the 289th leucine. Enzymes are included that contain amino acid sequences in which the corresponding amino acid residues are the same as, their cognate amino acids, or amino acids with conservative amino acid substitutions therefrom.
  • the amino acid sequence of such a mutant enzyme is 50% or more, for example, 58% or more, 60% or more, 70% or more, 80% or more, 90% or more of the amino acid sequence shown in SEQ ID NO: 1, 92% or greater, 94% or greater, 96% or greater or 98% or greater identity.
  • preferred variants of the enzyme of the present invention include the 67th glycine, 133rd glycine, 219th cysteine, 267th cysteine and 289th cysteine from the N-terminal side of the amino acid sequence shown in SEQ ID NO: 1.
  • the amino acid residue corresponding to the th leucine is glycine, glycine or alanine, cysteine, cysteine, and leucine, respectively, and 58% or more, 60% or more, 70% or more, and 80% of the amino acid sequence shown in SEQ ID NO: 1 % or greater, 90% or greater, 92% or greater, 94% or greater, 96% or greater or 98% or greater amino acid sequences, including, but not limited to, such enzymes.
  • the "corresponding amino acid residue" in the amino acid sequence of the mutant enzyme can be found by considering the position counted from the N-terminus and the neighboring amino acid sequences, structural prediction by computer, and the like.
  • the mutant of the enzyme of the present invention may be naturally derived, or may be artificially produced using, for example, genetic engineering techniques.
  • Variants of the enzymes of the invention may be derived from any organism.
  • the variants of the enzymes of the invention are preferably of bacterial, more preferably cyanobacterial origin.
  • Variants of the enzymes of the invention may be derived from cyanobacteria such as, for example, the genera Microcystis, Aphanizomenon, Dolichospermum.
  • variants of the enzyme of the present invention include, but are not limited to, AgcF homologues UHCC0183PT and PCC9443PT.
  • the amino acid sequence of UHCC0183PT is shown in SEQ ID NO:6, and the nucleotide sequence of the gene encoding it is shown in SEQ ID NO:7.
  • the amino acid sequence of PCC9443PT is shown in SEQ ID NO:9, and the nucleotide sequence of the gene encoding it is shown in SEQ ID NO:10.
  • the amino acid sequence of UHCC0183PT (SEQ ID NO:6) has 59.86% identity to the amino acid sequence of AgcF (SEQ ID NO:1).
  • the amino acid sequence of PCC9443PT (SEQ ID NO:9) has 58.54% identity to the amino acid sequence of AgcF (SEQ ID NO:1).
  • the enzyme of the present invention can be obtained using a known method.
  • AgcF may be obtained by cloning the AgcF gene using PCR, ligating it into an expression vector, introducing the expression vector into host cells, and culturing the host cells. Mutations of the enzymes of the invention can also be obtained using known methods.
  • AgcF variants may be obtained by cloning AgcF homologues or orthologs, ligating into an expression vector, introducing the expression vector into host cells, and culturing the host cells.
  • An AgcF homolog may be obtained by synthesizing a gene with reference to the published sequence of the AgcF homolog, introducing it into a host cell, and culturing the host cell.
  • AgcF mutants can also be obtained by modifying the base sequence of the gene encoding AgcF using a known method such as site-directed mutagenesis, introducing the modified gene into host cells, and culturing the host cells. good.
  • Mutants of the enzyme of the present invention may be obtained by chemical methods such as chemical synthesis and chemical modification.
  • the mutant of the enzyme of the present invention may contain non-proteinogenic amino acids, D-form amino acids, modified amino acids, and the like.
  • An enzyme comprising an amino acid sequence in which the 167th amino acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 is a histidine residue, or an enzyme containing an amino acid sequence at the 167th amino acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1
  • Bisprenylation of arginine or arginine analogue residues, or arginine or arginine analogues in peptides is enhanced when enzymes containing amino acid sequences in which the corresponding amino acid residue is a histidine residue are used.
  • An enzyme comprising an amino acid sequence in which the 167th amino acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 is an amino acid residue other than histidine, or the 167th amino acid from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1
  • Bisprenylation of an arginine residue or an arginine analogue residue in a peptide is inhibited and monoprenylation is inhibited when an enzyme containing an amino acid sequence in which the amino acid residue corresponding to the residue is an amino acid residue other than histidine is used.
  • amino acid residues other than histidine include, but are not limited to, alanine residues.
  • the prenyl group transfer activity can be measured by a known method.
  • the enzyme of the present invention is added to a reaction solution containing a peptide containing an arginine residue and a compound containing a prenyl group, and the unit amount of the enzyme and the amount of prenylated peptide produced per unit time are determined by the prenylation of the enzyme of the present invention. It may also be used as an indicator of group transfer activity. Confirmation of production of the prenylated peptide and measurement of the production amount can be performed using known means and methods such as NMR, MS, HPLC and LC-MS.
  • the present invention provides the following nucleotide sequence: (a) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 1; (b) a nucleotide sequence encoding an amino acid sequence having 58% or more identity to the amino acid sequence of SEQ ID NO: 1; (c) a nucleotide sequence encoding an amino acid sequence in which one to several tens, preferably one to several amino acid residues are deleted, substituted, inserted or added in the amino acid sequence shown in SEQ ID NO: 1, or (d ) Providing a nucleic acid comprising a nucleotide sequence that hybridizes under stringent conditions to a nucleotide sequence complementary to the nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO:1.
  • amino acid sequences are as explained above.
  • the number of amino acid residues to be deleted, substituted, inserted or added is also as described above.
  • Stringent conditions include, for example: in a buffer containing 0.25 M Na 2 HPO 4 , pH 7.2, 7% SDS, 1 mM EDTA, 1 ⁇ Denhardt's solution at a temperature of 60 to 68° C., preferably 65° C., more preferably 68° C. Hybridize for 16 to 24 hours, then in a buffer containing 20 mM Na 2 HPO 4 , pH 7.2, 1% SDS, 1 mM EDTA at a temperature of 60 to 68°C, preferably 65°C, more preferably 68°C.
  • nucleic acids can include the DNAs described, DNAs complementary to the DNAs, and RNAs complementary to these DNAs.
  • a nucleotide sequence includes a degenerate sequence that encodes the desired amino acid sequence.
  • the present invention in another aspect, (e) the nucleotide sequence shown in SEQ ID NO: 2, or (f) a nucleotide sequence complementary to the nucleotide sequence shown in SEQ ID NO: 2, to provide a nucleic acid comprising a nucleotide sequence that hybridizes under stringent conditions. .
  • the base sequence (e) above is an example of the base sequence (a) that encodes the amino acid sequence shown in SEQ ID NO: 1.
  • the nucleotide sequence (f) above is an example of a nucleotide sequence (d) that hybridizes under stringent conditions to a nucleotide sequence complementary to the nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO:1.
  • nucleic acids can be obtained by methods known to those skilled in the art.
  • Said nucleic acid may be obtained by cloning the gene encoding the enzyme of the invention or its homologue or ortholog. Cloning techniques are known to those of skill in the art.
  • the source of the nucleic acid is not particularly limited, but is preferably bacteria, more preferably blue-green algae.
  • examples of the cyanobacteria from which the nucleic acid is derived include, but are not limited to, cyanobacteria belonging to the genera Microcystis, Aphanizomenon, and Dolichospermum.
  • the above nucleic acid may be obtained by artificial synthesis.
  • the present invention provides an enzyme encoded by the above nucleic acid that transfers a prenyl group to an arginine residue or an arginine analogue residue, or an arginine or arginine analogue residue in a peptide. .
  • the present invention provides a vector containing the above nucleic acid.
  • An expression vector is preferred as the vector.
  • Various expression vectors are known and can be appropriately selected and used. Methods for incorporating the DNA of the present invention into vectors are also known.
  • the above nucleic acid encodes the enzyme of the present invention.
  • the vector contains the nucleic acid. Therefore, the enzyme of the present invention can be produced by genetic engineering using the above nucleic acid or vector.
  • the present invention provides a method for producing an enzyme that transfers a prenyl group to an arginine residue or arginine analogue residue in a peptide, or arginine or an arginine analogue.
  • the method comprises the following steps: (a) introducing said nucleic acid or said vector into a cell; (b) culturing the cells obtained in step (a), and (c) from the culture obtained in step (b), an arginine residue or an arginine analog residue, or arginine or arginine in the peptide Obtaining an enzyme that transfers a prenyl group to an analogue.
  • the nucleic acid may be incorporated into an expression vector, introduced into cells, and the enzyme of the present invention obtained by culturing the cells.
  • the enzyme of the present invention may be obtained from a culture obtained by introducing the nucleic acid or the vector into cells using a known method such as the PEG method, electroporation, or particle gun method, and culturing the cells. good.
  • the cells used in the above method are not particularly limited, and may be microbial cells such as bacteria, yeast, filamentous fungi, and actinomycetes, plant cells, animal cells, and insect cells.
  • Preferred cells for use in this method include, but are not limited to, microbial cells such as E. coli and Bacillus subtilis.
  • Cell culture can be performed by a known method. Selection of cells and culture conditions is routine for those of skill in the art.
  • the cells are disrupted by known means such as ultrasonic waves, mills, homogenizers, etc. to obtain an extract, and then subjected to known means such as ammonium sulfate precipitation and chromatography.
  • the enzyme of the present invention can be obtained from the extract.
  • the enzyme of the present invention can be obtained by subjecting the culture medium to known means such as ammonium sulfate precipitation and chromatography.
  • the enzyme of the present invention may be obtained by extraction and purification from organisms such as bacteria, preferably cyanobacteria of the genus Microcystis, Aphanizomenon, and Dolichospermum.
  • organisms such as bacteria, preferably cyanobacteria of the genus Microcystis, Aphanizomenon, and Dolichospermum.
  • Known enzyme purification means and methods such as cell disruption, ammonium sulfate precipitation, and chromatography can be used.
  • the present invention provides the following (i) and (ii): (i) peptides containing arginine residues or arginine analogue residues, or arginine or arginine analogues (prenyl group receptors) (ii) prenyl group-containing compound (prenyl group donor) Provided is a method for producing a peptide in which an arginine residue or an arginine analogue residue is prenylated, or a prenylated arginine or an arginine analogue, comprising allowing the enzyme of the present invention to act on .
  • Peptides containing arginine residues or arginine analogues, arginine or arginine analogues, prenyl group-containing compounds, and prenyl groups contained in the compounds are as described above.
  • a peptide in which an arginine residue or an arginine analogue residue is prenylated, or a prenyl modified arginine or arginine analogs can be obtained.
  • Incubation conditions can be appropriately determined by those skilled in the art according to the properties and amount of the enzyme, the type and concentration of the substrate, and the like. Suitable conditions include, for example, room temperature to 37° C., pH 6 to 9, and reaction conditions for several hours, but are not limited to these conditions.
  • the enzyme of the present invention may be immobilized on a carrier and used.
  • Peptides in which arginine residues or arginine analogue residues are prenylated, or prenylated arginine or arginine analogues can be purified and isolated from the reaction solution using known techniques such as various chromatography. .
  • prenylated compounds can be confirmed by known means. For example, confirmation may be performed by analyzing the reaction mixture using high performance liquid chromatography (HPLC). Mass spectroscopy may be used to confirm the molecular weight of the product when the prenyl group acceptor is prenylated. NMR may be used to further determine the structure of the product. Product confirmation is preferably performed by comparison with a standard preparation of the prenylated compound.
  • the preparation of the prenylated compound may be a commercial product, one obtained by chemical synthesis, or one isolated from nature.
  • the present invention provides an arginine residue or an arginine analogue comprising allowing the enzyme of the present invention to act on a peptide containing an arginine residue or an arginine analogue residue, or a compound library containing arginine or an arginine analogue.
  • Peptides containing arginine residues or arginine analogue residues, or compound libraries containing arginine or arginine analogues can be obtained by known methods using arginine or arginine analogues as part of the starting material. Such known methods include, but are not limited to, combinatorial-split synthesis methods, peptide array methods, bead display methods, phage display methods, and the like.
  • a method for producing a compound library is preferably a cyclic peptide.
  • the proline residue is preferably adjacent to an arginine residue or an arginine analogue residue.
  • a proline residue is adjacent to an arginine residue or arginine analogue residue by binding the proline residue through its carboxyl group to the amino group of the arginine residue or arginine analogue residue.
  • the preferred peptide is a cyclic peptide, , in which proline residues are flanked by arginine or arginine analog residues in the manner described above.
  • a method for producing a compound library is an enzyme containing an amino acid sequence in which the 167th amino acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 is a histidine residue, or the 167th amino acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 It is preferred to use an enzyme comprising an amino acid sequence in which the amino acid residue corresponding to the group is a histidine residue.
  • an enzyme comprising an amino acid sequence in which the 167th amino acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 is an amino acid residue other than histidine, or the 167th from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 It is preferred to use an enzyme comprising an amino acid sequence in which the amino acid residue corresponding to the amino acid residue of is an amino acid residue other than histidine.
  • amino acid residues other than histidine include, but are not limited to, alanine residues.
  • amino acid residue corresponding to the 167th amino acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 in AgcF homolog UHCC0183PT is the 49th glutamic acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 6.
  • amino acid residue corresponding to the 167th amino acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 in AgcF homolog PCC9443PTT is the 49th glutamic acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 9. is the base.
  • a method of causing the enzyme of the present invention to act on a peptide containing an arginine residue or an arginine analogue residue, or a compound library containing arginine or an arginine analogue is a peptide in which an arginine residue or an arginine analogue residue is prenylated.
  • it may be according to the method described for the method for producing prenylated arginine or arginine analogues.
  • the present invention provides, in another aspect, a compound of formula (I): (I) [wherein R 1 is hydrogen or a prenyl group and R 2 is hydrogen or a prenyl group] to provide a compound represented by
  • the compound of formula (I) in which R 1 and R 2 are both hydrogen is algicyclamide C (see Examples).
  • Argicyclamide C was isolated and identified from Microcystis aeruginosa NIE-88, which is a blue-green algae, and is a compound that can be used as a substrate for the enzyme of the present invention.
  • This compound may be obtained from Microcystis aeruginosa NIE-88, or may be obtained by a known synthesis method (chemical synthesis method, enzymatic synthesis method, etc.).
  • a compound of formula (I) in which either one of R 1 and R 2 is a prenyl group is a monoprenylated compound.
  • Compounds of formula (I) in which both R 1 and R 2 are prenyl groups are bisprenylated.
  • These monoprenylated forms and bisprenylated forms may be obtained by allowing the enzyme of the present invention to act on the compound represented by formula (I) in which both R 1 and R 2 are hydrogen, or may be obtained by a known synthetic method ( chemical synthesis method, enzymatic synthesis method, etc.).
  • the present invention provides, in another aspect, a compound of formula (II): (II) [wherein R 1 is hydrogen or a prenyl group and R 2 is hydrogen or a prenyl group] to provide a compound represented by
  • a compound of formula (II) in which either one of R 1 and R 2 is a prenyl group is a monoprenylated compound.
  • Compounds of formula (II) in which both R 1 and R 2 are prenyl groups are bisprenylated.
  • These monoprenylated forms and bisprenylated forms may be obtained by allowing the enzyme of the present invention to act on the compound represented by formula (II) in which both R 1 and R 2 are hydrogen, or may be obtained by a known synthetic method ( chemical synthesis method, enzymatic synthesis method, etc.).
  • the present invention provides, in another aspect, a compound of formula (III): (III) [wherein R 1 is hydrogen or a prenyl group and R 2 is hydrogen or a prenyl group] to provide a compound represented by
  • a compound of formula (III) in which either one of R 1 and R 2 is a prenyl group is a monoprenylated compound.
  • Compounds of formula (III) in which both R 1 and R 2 are prenyl groups are bisprenylated.
  • These monoprenylated forms and bisprenylated forms may be obtained by allowing the enzyme of the present invention to act on the compound represented by formula (III) in which both R 1 and R 2 are hydrogen, or may be obtained by a known synthetic method ( chemical synthesis method, enzymatic synthesis method, etc.).
  • the present invention provides, in another aspect, a compound of formula (IV): (IV) [wherein R 1 is hydrogen or a prenyl group and R 2 is hydrogen or a prenyl group] to provide a compound represented by
  • a compound of formula (IV) in which either one of R 1 and R 2 is a prenyl group is a monoprenylated compound.
  • Compounds of formula (IV) in which both R 1 and R 2 are prenyl groups are bisprenylated.
  • These monoprenylated forms and bisprenylated forms may be obtained by allowing the enzyme of the present invention to act on the compound represented by formula (IV) in which both R 1 and R 2 are hydrogen, or may be obtained by a known synthetic method ( chemical synthesis method, enzymatic synthesis method, etc.).
  • High performance liquid chromatography was performed using a Shimadzu HPLC system equipped with an LC-20AD intelligent pump.
  • LC-MS experiments were performed using an amaZon SL-NPC (Bruker Daltonics). Fragmentation of precursor ions was performed with an amaZon SL-NPC at an amplitude of 1.0 V using helium gas.
  • Plasmid extraction was performed using the GenElute TM Plasmid Miniprep Kit (Sigma).
  • Microcystis aeruginosa NIES-88 culture, DNA extraction, and genome sequencing Microcystis aeruginosa NIES-88 was obtained from the National Institute for Environmental Studies. Microcystis aeruginosa NIES-88 was cultured in BG-11 medium with aeration (filtered air, 0.3 L/min) at 25° C. under 250 ⁇ E/m 2 s1 illumination with 12 L:12 D cycles. After 4-5 weeks of culture, cells were harvested by continuous flow centrifugation (10000 rpm). First, macromolecular DNA was extracted by crushing frozen cells using a mortar and pestle.
  • the cell powder was then dissolved in CTAB buffer (3% CTAB, 1.4 M NaCl, 0.2% ⁇ -mercaptoethanol, 20 mM EDTA, 100 mM Tris pH 8, RNase A) and incubated at 50°C for 30 minutes. After that, 750 ⁇ L of chloroform was added, gently inverted, and centrifuged at 15000 rpm for 5 minutes. The resulting top layer was slowly transferred to a centrifuge tube containing 200 ⁇ L of isopropanol. After the appearance of white filaments (precipitated DNA), the precipitated DNA was collected and used for genomic sequencing.
  • CTAB buffer 3% CTAB, 1.4 M NaCl, 0.2% ⁇ -mercaptoethanol, 20 mM EDTA, 100 mM Tris pH 8, RNase A
  • AgcF-F cgcggatcccatatgttgaaaagcaacaaaag
  • AgcF-R ccggaattcctagagcagataatatagattgagattc (SEQ ID NO: 4) was used to amplify a DNA fragment encoding the enzyme of the present invention (referred to as AgcF) from the genomic DNA of Microcystis aeruginosa NIES-88 using KOD One (registered trademark) PCR Master Mix (TOYOBO).
  • a DNA fragment encoding AgcF was inserted into the multiple cloning site of pUC19 using BamHI and EcoRI to obtain AgcF-pUC19. After confirming the sequence, the AgcF insert fragment was ligated into the NdeI and EcoRI sites of pCold-II to obtain AgcF-pCold-II.
  • AgcF gene expression was induced by adding IPTG to a final concentration of 0.1 mM and the cells were cultured overnight at 16°C. Cells were collected by centrifugation (3500 ⁇ g, 10 minutes) and disrupted with an ultrasonic homogenizer. After removing debris by centrifugation (17000 ⁇ g, 10 min), the fraction containing soluble protein was applied to a Ni-NTA affinity column (Merck Millipore). The column was washed with washing buffer and eluted with washing buffer containing 500 mM imidazole. The column was connected to an Amicon Ultra 0.5 mL filter (Merck Millipore). The concentration of the resulting protein solution was measured using a Bio-Rad protein assay kit. The amino acid sequence of the obtained recombinant AgcF is shown in SEQ ID NO:5.
  • Fmoc-L-Ile-2-chlorotrityl resin S2 was swollen in CH 2 Cl 2 for 2 hours and subjected to 7 cycles [Fmoc-L-Phe-OH, Fmoc-L-Val-OH, Fmoc-L-Arg(Pbf)-OH, Fmoc-L-Pro-OH , Fmoc-L-Pro-OH, Fmoc-L-Leu-OH, Fmoc-L-Val-OH] were subjected to a solid-phase peptide synthesis protocol (steps 1-4 below) to obtain resin-bound octapeptide S3. Obtained.
  • Step 1 The Fmoc group of the solid phase supported peptide was removed by using a 20% piperidine/DMF solution (10 min, room temperature).
  • Step 2 The resin in the reaction vessel was washed with DMF (x3) and CH2Cl2 ( x3).
  • Step 3 To a solution of F-moc protected building block (4 eq) was added DIC (4 eq) in NMP and Oxyma (4 eq in DMF). After 2-3 minutes of preactivation, the mixture was poured into the reaction vessel. The resulting mixture was stirred for 30 minutes.
  • Step 4 The resin in the reaction vessel was washed with DMF ( x3) and CH2Cl2 ( x3).
  • Reactions contained the following: 50 mM Tris-HCl (pH 8.0), 200 ⁇ M algicyclamide C, 1 mM DMAPP, 1 mM dithiothreitol, 500 mM NaCl, 50 mM MgCl 2 .
  • Recombinant AgcF was added to the reaction solution and the reaction was carried out at 37°C for 2 hours. The reaction solution was sampled over time and analyzed by reverse phase HPLC.
  • Figure 4 shows the evolution of substrates and reaction products. Consumption of substrate 3 and production of bis-prenylated product 1 were confirmed with the passage of reaction time. Formation of the mono-prenylated product 2 was also confirmed in the first half of the reaction (5 to 30 minutes). Only the substrate 3 peak was seen when the reaction was performed with AgcF that had been heat-inactivated prior to the reaction. These results confirmed that the prenyl group was indeed transferred to the arginine residue of 3 by AgcF to produce 1.
  • AgcF acts twice on arginine residues in peptides.
  • it is a novel enzyme that catalyzes bisprenylation of arginine residues.
  • AgcF does not catalyze the prenylation of lysine, serine, threonine, tryptophan, and tyrosine residues in peptides (data not shown). Therefore, more detailed substrate selectivity of AgcF was studied. In this experiment, the selectivity for sequences other than arginine in the substrate peptide was investigated.
  • a cyclic peptide was synthesized in which each amino acid residue contained in the sequence of algicyclamide C was replaced with alanine, and each peptide was reacted under the same conditions as in (7).
  • the results are shown in FIG. Bisprenylation proceeded predominantly for most of the substrates, and the production of the intermediate monoprenyl form was also confirmed. However, the progress of the reaction was not observed only when the proline located next to arginine was replaced with alanine.
  • the substrate was eluted at 4.7 minutes, the monoprenylated form at 5.3 minutes, and the bisprenylated form at 5.9 minutes.
  • the results of UPLC-MS analysis in FIG. 7B confirmed that each peak in the UPLC chromatogram was derived from the substrate, monoprenylated form, and bisprenylated form.
  • the present invention is useful in fields such as drug discovery and production of functional peptides.
  • SEQ ID NO: 1 shows the amino acid sequence of AgcF (wild type).
  • SEQ ID NO: 2 shows the base sequence of the gene encoding AgcF (wild type).
  • SEQ ID NO: 3 shows the nucleotide sequence of a forward primer for amplifying a DNA fragment encoding AgcF.
  • SEQ ID NO: 4 shows the nucleotide sequence of a reverse primer for amplifying a DNA fragment encoding AgcF.
  • SEQ ID NO:5 shows the amino acid sequence of recombinant AgcF.
  • SEQ ID NO: 6 shows the amino acid sequence of UHCC0183PT (wild type).
  • SEQ ID NO: 7 shows the base sequence of the gene encoding UHCC0183PT (wild type).
  • SEQ ID NO:8 shows the amino acid sequence of recombinant UHCC0183PT.
  • SEQ ID NO: 9 shows the amino acid sequence of PCC9443PT (wild type).
  • SEQ ID NO: 10 shows the nucleotide sequence of the gene encoding PCC9443PT (wild type).
  • SEQ ID NO: 11 shows the amino acid sequence of recombinant PCC9443PT.

Abstract

The present invention provides: an enzyme that transfers a prenyl group to an arginine residue or an arginine analog residue in a peptide, or to arginine or an arginine analog, wherein the enzyme includes an amino acid sequence represented by SEQ ID NO: 1 or a mutant sequence thereof; a peptide that can be used as a substrate for the enzyme; and a prenylated peptide.

Description

新規プレニル化酵素Novel prenylating enzyme
 本発明は、ペプチド類およびアミノ酸類のプレニル化修飾酵素および該酵素の基質等に関する。詳細には、本発明は、ペプチド中のアルギニン残基またはアルギニン類縁体残基、あるいはアルギニンまたはアルギニン類縁体にプレニル基を転移する酵素、および該酵素の基質として使用しうるペプチド等に関する。 The present invention relates to prenylation-modifying enzymes for peptides and amino acids, substrates for the enzymes, and the like. Specifically, the present invention relates to an enzyme that transfers a prenyl group to an arginine residue or an arginine analogue residue in a peptide, or to an arginine or an arginine analogue, and a peptide that can be used as a substrate for the enzyme.
 藍藻類の産生するペプチド化合物シアノバクチン類はしばしば位置選択的なプレニル化修飾が見られる。これまでに複数のプレニル基転移酵素が発見されており(特許文献1、非特許文献1~3)、試験管内でいずれも高い位置選択性および寛容な基質選択性を示す。これらは環状ペプチドに対して作用するため、合成終盤における多様性創出ツールとして有用である。しかしこれらの酵素のプレニル化部位は、トリプトファン、チロシン、セリン、スレオニン残基の側鎖および直鎖ペプチドのN-、C-末端のみであり、これによって創出される構造多様性は限定的である。 Cyanobactins, peptide compounds produced by blue-green algae, often show regioselective prenylation modification. A plurality of prenyltransferases have been discovered so far (Patent Document 1, Non-Patent Documents 1 to 3), and all of them exhibit high regioselectivity and tolerant substrate selectivity in vitro. Since these act on cyclic peptides, they are useful as diversity creation tools in the final stage of synthesis. However, the prenylation sites of these enzymes are limited to the side chains of tryptophan, tyrosine, serine, and threonine residues and the N- and C-termini of linear peptides, which creates limited structural diversity. .
米国特許出願公開公報US2010/0209414A1United States Patent Application Publication US2010/0209414A1
 多様な構造や機能を有するペプチドを創出する必要がある。そのためには、従来のプレニル基転移酵素とは異なる特性を有する酵素を見出す必要がある。また、そのような酵素の基質となるペプチド類やアミノ酸類を見出す必要もある。 It is necessary to create peptides with diverse structures and functions. For that purpose, it is necessary to find an enzyme that has properties different from those of conventional prenyltransferases. There is also a need to find peptides and amino acids that serve as substrates for such enzymes.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、ペプチド中のアルギニン残基にプレニル基を転移する新規酵素および該酵素の基質として使用しうるペプチドを藍藻類中に見出し、本発明を完成させるに至った。 As a result of intensive research to solve the above problems, the present inventors have found a novel enzyme that transfers a prenyl group to an arginine residue in a peptide and a peptide that can be used as a substrate for this enzyme in cyanobacteria. , have completed the present invention.
 したがって、本発明は以下のものを提供する:
 (1)下記アミノ酸配列を含む、ペプチド中のアルギニン残基またはアルギニン類縁体残基、あるいはアルギニンまたはアルギニン類縁体にプレニル基を転移する酵素:
  (a)配列番号:1のアミノ酸配列、
  (b)配列番号:1のアミノ酸配列に対して58%以上の同一性を有するアミノ酸配列、または
  (c)配列番号:1に示すアミノ酸配列において1ないし数個のアミノ酸残基が欠失、置換、挿入または付加されたアミノ酸配列。
 (2)下記塩基配列を含む核酸:
  (a)配列番号:1のアミノ酸配列をコードする塩基配列、
  (b)配列番号:1のアミノ酸配列に対して58%以上の同一性を有するアミノ酸配列をコードする塩基配列、
  (c)配列番号:1に示すアミノ酸配列において1ないし数個のアミノ酸残基が欠失、置換、挿入または付加されたアミノ酸配列をコードする塩基配列、または
  (d)配列番号:1に示すアミノ酸配列をコードする塩基配列に対して相補的な塩基配列にストリンジェントな条件下でハイブリダイズする塩基配列。
 (3)(2)に記載の核酸によりコードされる、ペプチド中のアルギニン残基またはアルギニン類縁体残基、あるいはアルギニンまたはアルギニン類縁体にプレニル基を転移する酵素。
 (4)(2)に記載の核酸を含むベクター。
 (5)下記工程を含む、ペプチド中のアルギニン残基またはアルギニン類縁体残基、あるいはアルギニンまたはアルギニン類縁体にプレニル基を転移する酵素の製造方法:
  (a)(2)に記載の核酸または(4)に記載のベクターを細胞に導入する工程、
  (b)工程(a)で得られた細胞を培養する工程、および
  (c)工程(b)で得られた培養物からペプチド中のアルギニン残基またはアルギニン類縁体残基、あるいはアルギニンまたはアルギニン類縁体をプレニル化する酵素を得る工程。
 (6)下記(i)および(ii):
 (i)アルギニン残基またはアルギニン類縁体残基を含むペプチド、あるいはアルギニンまたはアルギニン類縁体
 (ii)プレニル基含有化合物
に(1)または(3)に記載の酵素を作用させることを含む、アルギニン残基またはアルギニン類縁体残基がプレニル化されたペプチド、あるいはプレニル化されたアルギニンまたはアルギニン類縁体の製造方法。
 (7)ペプチドが環状ペプチドである、(6)記載の方法。
 (8)ペプチドにおいて、プロリン残基がアルギニン残基またはアルギニン類縁体残基に隣接しており、プロリン残基がそのカルボキシル基を介してアルギニン残基またはアルギニン類縁体残基のアミノ基に結合している、(6)または(7)記載の方法。
 (9)酵素が、配列番号:1に示すアミノ酸配列のN末端から167番目のアミノ酸残基がヒスチジン以外のアミノ酸残基であるアミノ酸配列を含むものであるか、あるいは配列番号:1に示すアミノ酸配列のN末端から167番目のアミノ酸残基に対応するアミノ酸残基がヒスチジン以外のアミノ酸残基であるアミノ酸配列を含むものであり、プレニル化がモノプレニル化である、(6)~(8)のいずれかに記載の方法。
 (10)ヒスチジン以外のアミノ酸がアラニンである、(9)項記載の方法。
 (11)アルギニン残基またはアルギニン類縁体残基を含むペプチド、あるいはアルギニンまたはアルギニン類縁体を含む化合物ライブラリーに請求項1または3に記載の酵素を作用させることを含む、アルギニン残基またはアルギニン類縁体残基がプレニル化されたペプチド、あるいはプレニル化されたアルギニンまたはアルギニン類縁体を含む化合物ライブラリーの製造方法。
 (12)ペプチドが環状ペプチドである、(11)記載の方法。
 (13)ペプチドにおいて、プロリン残基がアルギニン残基またはアルギニン類縁体残基に隣接しており、プロリン残基がそのカルボキシル基を介してアルギニン残基またはアルギニン類縁体残基のアミノ基に結合している、(11)または(12)記載の方法。
 (14)酵素が、配列番号:1に示すアミノ酸配列のN末端から167番目のアミノ酸残基がヒスチジン以外のアミノ酸残基であるアミノ酸配列を含むものであるか、あるいは配列番号:1に示すアミノ酸配列のN末端から167番目のアミノ酸残基に対応するアミノ酸残基がヒスチジン以外のアミノ酸残基であるアミノ酸配列を含むものであり、プレニル化がモノプレニル化である、(11)~(13)のいずれかに記載の方法。
 (15)ヒスチジン以外のアミノ酸がアラニンである、(14)項記載の方法。
 (16)式(I):
Figure JPOXMLDOC01-appb-C000005

                  (I)
[式中、Rは水素またはプレニル基であり、Rは水素またはプレニル基である]
で示される化合物。
 (17)式(II):
Figure JPOXMLDOC01-appb-C000006

                 (II)
[式中、Rは水素またはプレニル基であり、Rは水素またはプレニル基である]
で示される化合物。
 (18)式(III):
Figure JPOXMLDOC01-appb-C000007
                (III)
[式中、Rは水素またはプレニル基であり、Rは水素またはプレニル基である]
で示される化合物。
 (19)式(IV):
Figure JPOXMLDOC01-appb-C000008
                   (IV)
[式中、Rは水素またはプレニル基であり、Rは水素またはプレニル基である]
で示される化合物。
Accordingly, the present invention provides:
(1) An enzyme that transfers a prenyl group to an arginine residue or an arginine analogue residue, or an arginine or an arginine analogue in a peptide containing the following amino acid sequence:
(a) the amino acid sequence of SEQ ID NO: 1;
(b) an amino acid sequence having 58% or more identity to the amino acid sequence of SEQ ID NO: 1, or (c) deletion or substitution of 1 to several amino acid residues in the amino acid sequence shown in SEQ ID NO: 1 , inserted or added amino acid sequence.
(2) a nucleic acid comprising the following nucleotide sequence:
(a) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 1;
(b) a nucleotide sequence encoding an amino acid sequence having 58% or more identity to the amino acid sequence of SEQ ID NO: 1;
(c) a nucleotide sequence encoding an amino acid sequence in which one to several amino acid residues are deleted, substituted, inserted or added in the amino acid sequence shown in SEQ ID NO: 1, or (d) the amino acid shown in SEQ ID NO: 1 A base sequence that hybridizes under stringent conditions to a base sequence complementary to the base sequence encoding the sequence.
(3) An enzyme that transfers a prenyl group to an arginine residue or an arginine analogue residue in a peptide, or an arginine or an arginine analogue encoded by the nucleic acid of (2).
(4) A vector comprising the nucleic acid according to (2).
(5) A method for producing an enzyme that transfers a prenyl group to an arginine residue or an arginine analogue residue in a peptide, or an arginine or an arginine analogue, comprising the following steps:
(a) introducing the nucleic acid according to (2) or the vector according to (4) into a cell;
(b) culturing the cells obtained in step (a); and (c) arginine residues or arginine analogue residues, or arginine or arginine analogues in peptides from the culture obtained in step (b). Obtaining an enzyme that prenylates the body.
(6) the following (i) and (ii):
(i) a peptide containing an arginine residue or an arginine analogue residue, or an arginine or an arginine analogue (ii) an arginine residue comprising allowing the enzyme of (1) or (3) to act on a prenyl group-containing compound A method for producing a peptide having a prenylated group or arginine analogue residue, or a prenylated arginine or arginine analogue.
(7) The method according to (6), wherein the peptide is a cyclic peptide.
(8) in the peptide, a proline residue is adjacent to an arginine residue or an arginine analogue residue, and the proline residue is bound via its carboxyl group to the amino group of the arginine residue or the arginine analogue residue; (6) or (7).
(9) The enzyme contains an amino acid sequence in which the 167th amino acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 is an amino acid residue other than histidine, or the amino acid sequence shown in SEQ ID NO: 1 Any one of (6) to (8), which comprises an amino acid sequence in which the amino acid residue corresponding to the 167th amino acid residue from the N-terminus is an amino acid residue other than histidine, and the prenylation is monoprenylation The method described in .
(10) The method according to item (9), wherein the amino acid other than histidine is alanine.
(11) an arginine residue or an arginine analogue, comprising allowing the enzyme of claim 1 or 3 to act on a peptide containing an arginine residue or an arginine analogue residue, or a compound library containing arginine or an arginine analogue; A method for producing a compound library containing peptides prenylated at the amino acid residue, or prenylated arginines or arginine analogues.
(12) The method according to (11), wherein the peptide is a cyclic peptide.
(13) in the peptide, a proline residue is adjacent to an arginine residue or an arginine analogue residue, and the proline residue is bound to the amino group of the arginine residue or the arginine analogue residue through its carboxyl group; (11) or (12).
(14) The enzyme contains an amino acid sequence in which the 167th amino acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 is an amino acid residue other than histidine, or the amino acid sequence shown in SEQ ID NO: 1 Any one of (11) to (13), which comprises an amino acid sequence in which the amino acid residue corresponding to the 167th amino acid residue from the N-terminus is an amino acid residue other than histidine, and the prenylation is monoprenylation The method described in .
(15) The method according to item (14), wherein the amino acid other than histidine is alanine.
(16) Formula (I):
Figure JPOXMLDOC01-appb-C000005

(I)
[wherein R 1 is hydrogen or a prenyl group and R 2 is hydrogen or a prenyl group]
A compound represented by
(17) Formula (II):
Figure JPOXMLDOC01-appb-C000006

(II)
[wherein R 1 is hydrogen or a prenyl group and R 2 is hydrogen or a prenyl group]
A compound represented by
(18) Formula (III):
Figure JPOXMLDOC01-appb-C000007
(III)
[wherein R 1 is hydrogen or a prenyl group and R 2 is hydrogen or a prenyl group]
A compound represented by
(19) Formula (IV):
Figure JPOXMLDOC01-appb-C000008
(IV)
[wherein R 1 is hydrogen or a prenyl group and R 2 is hydrogen or a prenyl group]
A compound represented by
 本発明によれば、ペプチド中のアルギニン残基またはアルギニン類縁体残基、あるいはアルギニンまたはアルギニン類縁体にプレニル基を転移する酵素が提供される。該酵素を用いて、多様な構造および機能を有するペプチド類やアミノ酸類を創出することができる。さらに本発明によれば、該酵素の基質として使用しうるペプチドも提供される。様々なペプチド類やアミノ酸類に該酵素を作用させて、多様な構造および機能を有する新たなプレニル化ペプチド類およびプレニル化アミノ酸類を創出することができる。 According to the present invention, there is provided an enzyme that transfers a prenyl group to an arginine residue or arginine analogue residue in a peptide, or to arginine or an arginine analogue. The enzymes can be used to create peptides and amino acids with diverse structures and functions. Furthermore, the present invention provides peptides that can be used as substrates for the enzyme. The enzyme can act on various peptides and amino acids to create new prenylated peptides and prenylated amino acids with diverse structures and functions.
図1は、Microcystis aeruginosa NIE-88から単離されたアルギシクラミドC(3)(上段)、化学合成されたアルギシクラミドC(3)(中段)、および両者の混合物(下段)のLC-MSのチャートを比較した図である。Figure 1 shows LC-MS charts of algicyclamide C (3) isolated from Microcystis aeruginosa NIE-88 (upper), chemically synthesized algicyclamide C (3) (middle), and a mixture of both (lower). It is a figure which compared. 図2は、Microcystis aeruginosa NIE-88から単離されたアルギシクラミドC(3)(上段)および化学合成されたアルギシクラミドC(3)(下段)のH NMRのチャートを比較した図である。FIG. 2 is a diagram comparing 1 H NMR charts of Argicyclamide C (3) isolated from Microcystis aeruginosa NIE-88 (upper) and chemically synthesized Argicyclamide C (3) (lower). 図3は、Microcystis aeruginosa NIE-88から単離されたアルギシクラミドC(3)(上段)および化学合成されたアルギシクラミドC(3)(下段)の13C NMRのチャートを比較した図である。FIG. 3 is a diagram comparing 13 C NMR charts of Argicyclamide C (3) isolated from Microcystis aeruginosa NIE-88 (upper) and chemically synthesized Argicyclamide C (3) (lower). 図4は、本発明の酵素(AgcF)によるアルギシクラミドC(3)からアルギシクラミドA(1)への変換反応における、基質および生成物の経時的消長(0分~120分)を示す逆相HPLCチャートである。Boiled AgcFは反応前に熱失活した本発明の酵素を用いた反応物のチャートである。1(std)はアルギシクラミドA(1)標品、2(std)はアルギシクラミドB(2)標品、3(std)はアルギシクラミドC(3)標品のチャートである。FIG. 4 is a reverse-phase HPLC chart showing the time-dependent changes (0 to 120 minutes) of substrates and products in the conversion reaction of algicyclamide C (3) to algicyclamide A (1) by the enzyme (AgcF) of the present invention. is. Boiled AgcF is a chart of the reaction product using the enzyme of the present invention heat-inactivated before the reaction. 1 (std) is a chart of algicyclamide A (1) standard, 2 (std) is a chart of algicyclamide B (2) standard, and 3 (std) is a chart of algicyclamide C (3) standard. 図5右パネルは、アルギシクラミドCの配列に含まれるアミノ酸残基を1つずつアラニンに置換した環状ペプチドにAgcFを作用させてプレニル化反応を行って、生成したモノプレニル化体およびビスプレニル化体の割合を調べた結果を示す。図中のスキームは、AgcFによるアルギシクラミドCのプレニル化反応の進行を示す。The right panel of FIG. 5 shows the ratio of monoprenylated and bisprenylated forms produced by prenylation reaction by allowing AgcF to act on a cyclic peptide in which each amino acid residue contained in the sequence of algicyclamide C is substituted with alanine. shows the results of examining The scheme in the figure shows the progress of the prenylation reaction of Argicyclamide C with AgcF. 図6は、AgcF_H167AによるアルギシクラミドCのモノプレニル化反応を調べたHPLCのチャートを示す。図中のスキームは、AgcF_H167AによるアルギシクラミドCのモノプレニル化反応を示す。FIG. 6 shows an HPLC chart of the monoprenylation reaction of Argicyclamide C by AgcF_H167A. The scheme in the figure shows the monoprenylation reaction of Argicyclamide C by AgcF_H167A. 図7Aは、AgcFホモログである組換えUHCC0183PTによる基質cyc[MEYPLSLRYPG]のプレニル化反応物のUPLCクロマトグラムを示す(210nmのUV吸収をモニター)。iは組換えUHCC0183PTを含む反応液のクロマトグラムを示す。iiは組換えUHCC0183PTを含まない反応液のクロマトグラムである。図7Bは、UHCC0183PTを含む反応液のUPLC-MS分析(ポジティブモード)の結果を示す。iは、ビスプレニル化体に相当するm/z 1443.0の抽出イオンクロマトフラムを示す。iiは、モノプレニル化体に相当するm/z 1375.0の抽出イオンクロマトグラムを示す。iiiは、基質に相当するm/z 1307.0の抽出イオンクロマトグラムを示す。FIG. 7A shows the UPLC chromatogram of the prenylation reaction of the substrate cyc [MEYPLSLRYPG] by the AgcF homolog recombinant UHCC0183PT (monitoring UV absorbance at 210 nm). i indicates a chromatogram of a reaction solution containing recombinant UHCC0183PT. ii is the chromatogram of the reaction without recombinant UHCC0183PT. FIG. 7B shows the results of UPLC-MS analysis (positive mode) of the reaction mixture containing UHCC0183PT. i indicates the extracted ion chromatogram at m/z 1443.0 corresponding to the bisprenylated form. ii shows the extracted ion chromatogram at m/z 1375.0 corresponding to the monoprenylated form. iii shows the extracted ion chromatogram at m/z 1307.0 corresponding to the substrate.
 本明細書にて使用される用語は、特に断らない限り、生物学、生化学、化学、薬学、医学等の分野において通常に理解されている意味を有する。本明細書におけるアミノ酸の表記は公知の1文字法または3文字法による。 The terms used in this specification have meanings commonly understood in the fields of biology, biochemistry, chemistry, pharmacy, medicine, etc., unless otherwise specified. Amino acid designations herein are based on the known one-letter or three-letter system.
 本発明は、1つの態様において、ペプチド中のアルギニン残基またはアルギニン類縁体残基、あるいはアルギニンまたはアルギニン類縁体にプレニル基を転移する酵素を提供する。該酵素は、
  (a)配列番号:1のアミノ酸配列、
  (b)配列番号:1のアミノ酸配列に対して58%以上の同一性を有するアミノ酸配列、または
  (c)配列番号:1に示すアミノ酸配列において1ないし数個のアミノ酸残基が欠失、置換、挿入または付加されたアミノ酸配列
を含む。
In one aspect, the present invention provides an enzyme that transfers a prenyl group to an arginine residue or an arginine analogue residue, or an arginine or an arginine analogue, in a peptide. The enzyme is
(a) the amino acid sequence of SEQ ID NO: 1;
(b) an amino acid sequence having 58% or more identity to the amino acid sequence of SEQ ID NO: 1, or (c) deletion or substitution of 1 to several amino acid residues in the amino acid sequence shown in SEQ ID NO: 1 , including inserted or added amino acid sequences.
 本発明の酵素は、アルギニンまたはアルギニン類縁体を含むペプチド、あるいはアルギニンまたはアルギニン類縁体(プレニル基受容体)、およびプレニル基含有化合物(プレニル基供与体)を基質として、ペプチド中のアルギニン残基またはアルギニン類縁体残基、あるいはアルギニンまたはアルギニン類縁体にプレニル基を転移する反応を触媒する。詳細には、本発明の酵素は、ペプチド中のアルギニン残基またはアルギニン類縁体残基の側鎖の窒素原子、あるいはアルギニンまたはアルギニン類縁体の窒素原子にプレニル基を転移する(ただし、上記窒素原子はペプチド結合を構成しているものではない)。プレニル基受容体がプレニル基結合可能な窒素原子を複数個含む場合、それらの1つにプレニル基が転移されてもよく、2つ以上にプレニル基が転移されてもよい。例えば、アルギニン残基を含むペプチドをプレニル基受容体とする本発明の酵素によるプレニル基転移反応において、アルギニン残基のグアニジンの1つの窒素にプレニル基が結合してもよく、2つの窒素にプレニル基が結合してもよい。 The enzyme of the present invention uses peptides containing arginine or arginine analogues, or arginine or arginine analogues (prenyl group acceptors) and prenyl group-containing compounds (prenyl group donors) as substrates, and arginine residues in peptides or It catalyzes the transfer of a prenyl group to an arginine analogue residue, or to arginine or an arginine analogue. Specifically, the enzyme of the present invention transfers a prenyl group to the side chain nitrogen atom of an arginine residue or arginine analogue residue in a peptide, or to the nitrogen atom of arginine or an arginine analogue (however, the above nitrogen atom does not constitute a peptide bond). When the prenyl group acceptor contains multiple nitrogen atoms to which a prenyl group can be bonded, the prenyl group may be transferred to one of them, or the prenyl group may be transferred to two or more of them. For example, in the prenyl group transfer reaction by the enzyme of the present invention using a peptide containing an arginine residue as a prenyl group acceptor, a prenyl group may be bound to one nitrogen of the guanidine of the arginine residue, and two prenyl groups may be bound to the two nitrogens. groups may be attached.
 プレニル基受容体ペプチドの構造に特に制限はなく、直鎖、分枝または環状であってもよい。また例えばペプチドは直鎖状ペプチドと環状ペプチドが結合したペプチドであってもよい。好ましくは、ペプチドは環状ペプチドである。ペプチドは天然に存在するペプチドであってもよく、人工的に作成されたペプチドであってもよい。ペプチドのサイズは特に制限はなく、例えば数個のアミノ酸からなるものであってもよく、数十個のアミノ酸からなるものであってもよく、あるいはそれ以上のサイズであってもよい。本明細書において、ペプチドはオリゴペプチド、ポリペプチドまたはタンパク質であってもよい。本発明の酵素を用いてオリゴペプチド、ポリペプチドおよびタンパク質のプレニル化を行うことができる。 The structure of the prenyl group acceptor peptide is not particularly limited, and may be linear, branched or cyclic. Also, for example, the peptide may be a peptide in which a linear peptide and a cyclic peptide are bound. Preferably the peptide is a cyclic peptide. Peptides may be naturally occurring peptides or artificially created peptides. The size of the peptide is not particularly limited, and may consist of, for example, several amino acids, several tens of amino acids, or a larger size. As used herein, a peptide may be an oligopeptide, polypeptide or protein. The enzymes of the invention can be used to prenylate oligopeptides, polypeptides and proteins.
 アルギニン残基またはアルギニン類縁体残基はペプチドのいずれの位置に存在していてもよい。アルギニン残基またはアルギニン類縁体残基がペプチドのN末端、C末端、またはその両方に存在していてもよく、ペプチドの内部に存在していてもよい。 The arginine residue or arginine analogue residue may be present at any position in the peptide. Arginine residues or arginine analogue residues may be present at the N-terminus, C-terminus, or both of the peptide, and may be internal to the peptide.
 ペプチドにおいて、プロリン残基がアルギニン残基またはアルギニン類縁体残基に隣接していることが好ましい。プロリン残基がそのカルボキシル基を介してアルギニン残基またはアルギニン類縁体残基のアミノ基に結合することにより、プロリン残基がアルギニン残基またはアルギニン類縁体残基に隣接していることが好ましい。本発明の酵素によるプレニル化にとり好ましいペプチドは、環状ペプチドであって、その中で上記の様式にてプロリン残基がアルギニン残基またはアルギニン類縁体残基に隣接しているペプチドである。 In the peptide, the proline residue is preferably adjacent to an arginine residue or an arginine analogue residue. Preferably, a proline residue is adjacent to an arginine residue or arginine analogue residue by binding the proline residue through its carboxyl group to the amino group of the arginine residue or arginine analogue residue. Preferred peptides for prenylation by the enzymes of the invention are cyclic peptides in which proline residues are flanked by arginine or arginine analogue residues in the manner described above.
 ペプチドを構成するアミノ酸は、通常は、タンパク質を構成しているアミノ酸であり、L-体であるが、タンパク質を構成していないアミノ酸であってもよく、D-体であってもよい。例えば、ペプチドを構成するアミノ酸は、β-アラニン、γ-アミノ酪酸、ε-アミノカプロン酸などであってもよく、また例えばアルキル化、ハロゲン化、エステル化、アミノ化、カルボキシル化、ニトロ化、スルホン化、リン酸化、アセチル化、糖付加、脂質付加など、あるいは公知の保護基によって修飾されたアミノ酸であってもよい。これらの修飾されたアミノ酸を含むペプチドは、公知の方法にて得ることができる。 Amino acids that constitute peptides are usually amino acids that constitute proteins and are in the L-form, but they may be amino acids that do not constitute proteins, or may be in the D-form. For example, the amino acids that make up the peptide may be β-alanine, γ-aminobutyric acid, ε-aminocaproic acid, etc., and may also be alkylated, halogenated, esterified, aminated, carboxylated, nitrated, sulfonated, etc. It may be an amino acid that has been modified with a modified, phosphorylated, acetylated, glycosylated, lipidated, etc., or known protective group. Peptides containing these modified amino acids can be obtained by known methods.
 ペプチド中のアミノ酸の結合は、通常はペプチド結合であるが、エステル結合などの他の結合が含まれていてもよく、アミノ酸残基間にメチレン基などのスペーサーが存在していてもよい。 Amino acid bonds in peptides are usually peptide bonds, but may contain other bonds such as ester bonds, and may have spacers such as methylene groups between amino acid residues.
 本発明の酵素は、アルギニンまたはアルギニン類縁体をプレニル基受容体とすることもできる。本明細書において、アルギニン類縁体は、アルギニンの誘導体、ならびにアルギニンと類似構造を有するアミノ酸およびその誘導体を包含する。ここで、誘導体は修飾体を包含し、例えば、アルキル化、ハロゲン化、エステル化、アミノ化、カルボキシル化、ニトロ化、スルホン化、リン酸化、アセチル化、糖付加、脂質付加などが施された化合物であってもよい。また誘導体は、公知の保護基が付されたものであってもよい。誘導体は上例に限定されない。アルギニンの類縁体は、公知の方法により得ることができる。アルギニンの類縁体の典型例としては、限定するものではないが、オルニチン、シトルリン、およびアルギニノコハク酸、ならびにそれらの誘導体などが挙げられる。ペプチド中のアルギニンの類縁体残基についても上の説明が当てはまる。 The enzyme of the present invention can also use arginine or an arginine analogue as a prenyl group acceptor. As used herein, arginine analogues include derivatives of arginine, amino acids having similar structures to arginine, and derivatives thereof. Here, derivatives include modifications such as alkylation, halogenation, esterification, amination, carboxylation, nitration, sulfonation, phosphorylation, acetylation, glycosylation, lipidation, etc. It may be a compound. Moreover, the derivative may be one to which a known protecting group is attached. Derivatives are not limited to the above examples. Arginine analogs can be obtained by known methods. Representative examples of analogs of arginine include, but are not limited to, ornithine, citrulline, and argininosuccinic acid, and derivatives thereof. The above comments also apply to analogue residues of arginine in peptides.
 本発明の酵素により転移されるプレニル基は、いずれのプレニル基であってもよく、例えばジメチルアリル基、ゲラニル基、ファルネシル基、ゲラニルゲラニル基、ゲラニルファルネシル基、ヘキサプレニル基、オクタプレニル基、デカプレニル基などが挙げられるが、これらに限定されない。本発明の酵素により転移されるプレニル基のサイズは、好ましくは炭素数が20以下、より好ましくは15以下である。 The prenyl group transferred by the enzyme of the present invention may be any prenyl group, such as dimethylallyl, geranyl, farnesyl, geranylgeranyl, geranylfarnesyl, hexaprenyl, octaprenyl, decaprenyl. etc., but not limited to these. The size of the prenyl group transferred by the enzyme of the present invention preferably has 20 carbon atoms or less, more preferably 15 carbon atoms or less.
 プレニル基含有化合物(プレニル基供与体)は特に限定されず、いずれの種類の化合物であってもよい。プレニル基含有化合物の例としては、限定するものではないが、ジメチルアリル二リン酸(DMAPP)、ゲラニル二リン酸(GPP)、ファルネシル二リン酸(FPP)などが挙げられる。 The prenyl group-containing compound (prenyl group donor) is not particularly limited, and may be any type of compound. Examples of prenyl group-containing compounds include, but are not limited to, dimethylallyl diphosphate (DMAPP), geranyl diphosphate (GPP), farnesyl diphosphate (FPP), and the like.
 本発明の酵素は、ペプチド中のアルギニン残基またはアルギニン類縁体残基、あるいはアルギニンまたはアルギニン類縁体にプレニル基を転移するという点で新規な酵素である。本発明の酵素は、従来の酵素では不可能であった多様な構造および機能を持った新たなペプチドを創出するペプチド修飾ツールとして有用である。 The enzyme of the present invention is a novel enzyme in that it transfers a prenyl group to an arginine residue or arginine analogue residue in a peptide, or to arginine or an arginine analogue. The enzyme of the present invention is useful as a peptide modification tool for creating new peptides with diverse structures and functions that have been impossible with conventional enzymes.
 本発明の酵素はあらゆる生物に由来するものであってもよい。本発明の酵素は、好ましくは細菌、より好ましくは藍藻類由来である。本発明の酵素は、例えばMicrocystis属、Aphanizomenon属、Dolichospermum属などの藍藻に由来するものであってもよい。本発明の酵素は、例えば配列番号:1に示すアミノ酸配列を含むもの(AgcF)であってもよい。 The enzyme of the present invention may be derived from any organism. The enzymes of the invention are preferably of bacterial, more preferably cyanobacterial origin. Enzymes of the present invention may be derived from cyanobacteria such as, for example, the genera Microcystis, Aphanizomenon, and Dolichospermum. The enzyme of the invention may be, for example, one comprising the amino acid sequence shown in SEQ ID NO: 1 (AgcF).
 本発明の酵素はその変異体を包含しうる。本明細書において、特に断らない限り、本発明の酵素という場合は、本発明の酵素およびその変異体を包含するものとする。 The enzyme of the present invention can include its mutants. In the present specification, unless otherwise specified, the enzyme of the present invention includes the enzyme of the present invention and variants thereof.
 本発明の酵素の変異体は、配列番号:1に示すアミノ酸配列の変異配列を含んでいてもよい。 A mutant of the enzyme of the present invention may contain a mutant sequence of the amino acid sequence shown in SEQ ID NO: 1.
 例えば、本発明の酵素の変異体は、配列番号:1に示すアミノ酸配列に対して50%以上、例えば58%以上、60%以上、70%以上、80%以上、90%以上、92%以上、94%以上、96%以上または98%以上の同一性を有するアミノ酸配列を含んでいてもよい。アミノ酸配列の同一性は、FASTA検索やBLAST検索等の公知の手段を用いて調べることができる。 For example, the mutant of the enzyme of the present invention is 50% or more, for example, 58% or more, 60% or more, 70% or more, 80% or more, 90% or more, 92% or more of the amino acid sequence shown in SEQ ID NO: 1 , may include amino acid sequences with greater than 94%, greater than 96% or greater than 98% identity. The identity of amino acid sequences can be examined using known means such as FASTA search and BLAST search.
 また例えば、本発明の酵素の変異体は、配列番号:1に示すアミノ酸配列において1ないし数十個の、好ましくは1ないし数個のアミノ酸残基が欠失、置換、挿入または付加されたアミノ酸配列を含んでいてもよい。配列番号:1において欠失、置換、挿入または付加されるアミノ酸残基の数は1ないし数個に限定されることはなく、1個ないし数十個、好ましくは1個ないし40個、より好ましくは1個ないし20個、さらに好ましくは1個ないし数個であってもよい。数十個とは、例えば20個、30個、40個、50個、60個、70個、80個、90個、またはこれらの値の間の数であってもよい。数個とは、例えば2個、3個、4個、5個、6個、7個、8個または9個であってもよい。タンパク質のアミノ酸配列におけるアミノ酸残基の欠失、置換、挿入または付加は当業者に公知である。例えば部位特異的突然変異法や公知の化学的手法を用いて、本発明の酵素のアミノ酸配列におけるアミノ酸残基の欠失、置換、挿入または付加を生じさせてもよい。アミノ酸残基の置換の場合、同族アミノ酸同士の置換が好ましい。同族アミノ酸は当業者に公知である。保存的アミノ酸置換も好ましい。保存的アミノ酸置換の例としては以下のものが挙げられる:置換されるアミノ酸が芳香族アミノ酸である場合には、Phe、Trp、Tyr間での置換、置換されるアミノ酸が疎水性アミノ酸である場合には、Leu、Ile、Val間での置換、置換されるアミノ酸が極性アミノ酸である場合には、Gln、Asn間での置換、置換されるアミノ酸が塩基性アミノ酸である場合には、Lys、Arg、His間での置換、置換されるアミノ酸が酸性アミノ酸である場合には、Asp、Glu間での置換、置換されるアミノ酸がヒドロキシル基を持つアミノ酸である場合には、Ser、Thr間での置換。 Further, for example, the mutant of the enzyme of the present invention has one to several tens, preferably one to several amino acid residues deleted, substituted, inserted or added in the amino acid sequence shown in SEQ ID NO: 1. May contain sequences. The number of amino acid residues to be deleted, substituted, inserted or added in SEQ ID NO: 1 is not limited to 1 to several, but 1 to several tens, preferably 1 to 40, more preferably may be 1 to 20, more preferably 1 to several. Dozens may be, for example, 20, 30, 40, 50, 60, 70, 80, 90, or any number between these values. Several may be, for example, 2, 3, 4, 5, 6, 7, 8 or 9. Deletions, substitutions, insertions or additions of amino acid residues in protein amino acid sequences are known to those skilled in the art. For example, site-directed mutagenesis or known chemical techniques may be used to create deletions, substitutions, insertions or additions of amino acid residues in the amino acid sequences of the enzymes of the invention. In the case of substitution of amino acid residues, substitutions between homologous amino acids are preferred. Cognate amino acids are known to those of skill in the art. Conservative amino acid substitutions are also preferred. Examples of conservative amino acid substitutions include: substitutions between Phe, Trp, Tyr when the substituted amino acid is an aromatic amino acid, when the substituted amino acid is a hydrophobic amino acid for substitutions between Leu, Ile, and Val; substitutions between Gln and Asn when the amino acid to be substituted is a polar amino acid; Lys when the amino acid to be substituted is a basic amino acid; Substitution between Arg and His, substitution between Asp and Glu when the amino acid to be substituted is an acidic amino acid, substitution between Ser and Thr when the amino acid to be substituted is an amino acid having a hydroxyl group replacement.
 好ましい本発明の酵素の変異体の例として、配列番号:1に示すアミノ酸配列のN末端から67番目のグリシン、133番目のグリシン、219番目のシステイン、267番目のシステイン、および289番目のロイシンに対応するアミノ酸残基が、これらと同じあるか、これらの同族アミノ酸であるか、あるいはこれらと保存的アミノ酸置換されるアミノ酸であるアミノ酸配列を含む酵素が挙げられる。好ましくは、このような変異体酵素のアミノ酸配列は、配列番号:1に示すアミノ酸配列に対して50%以上、例えば58%以上、60%以上、70%以上、80%以上、90%以上、92%以上、94%以上、96%以上または98%以上の同一性を有する。このような好ましい本発明の酵素の変異体の例として、配列番号:1に示すアミノ酸配列のN末端側から67番目のグリシン、133番目のグリシン、219番目のシステイン、267番目のシステイン、および289番目のロイシンに対応するアミノ酸残基がそれぞれグリシン、グリシンまたはアラニン、システイン、システイン、およびロイシンであり、配列番号:1に示すアミノ酸配列に対して58%以上、60%以上、70%以上、80%以上、90%以上、92%以上、94%以上、96%以上または98%以上の同一性を有するアミノ酸配列を含む酵素が挙げられるが、このような酵素に限定されるものではない。酵素の変異体のアミノ酸配列中の「対応するアミノ酸残基」については、N末端から数えた位置およびその近傍のアミノ酸配列、コンピューターによる構造予測などを考慮して見つけることができる。 Preferred examples of mutants of the enzyme of the present invention include amino acid sequences shown in SEQ ID NO: 1 from the N-terminus of the 67th glycine, the 133rd glycine, the 219th cysteine, the 267th cysteine, and the 289th leucine. Enzymes are included that contain amino acid sequences in which the corresponding amino acid residues are the same as, their cognate amino acids, or amino acids with conservative amino acid substitutions therefrom. Preferably, the amino acid sequence of such a mutant enzyme is 50% or more, for example, 58% or more, 60% or more, 70% or more, 80% or more, 90% or more of the amino acid sequence shown in SEQ ID NO: 1, 92% or greater, 94% or greater, 96% or greater or 98% or greater identity. Examples of such preferred variants of the enzyme of the present invention include the 67th glycine, 133rd glycine, 219th cysteine, 267th cysteine and 289th cysteine from the N-terminal side of the amino acid sequence shown in SEQ ID NO: 1. The amino acid residue corresponding to the th leucine is glycine, glycine or alanine, cysteine, cysteine, and leucine, respectively, and 58% or more, 60% or more, 70% or more, and 80% of the amino acid sequence shown in SEQ ID NO: 1 % or greater, 90% or greater, 92% or greater, 94% or greater, 96% or greater or 98% or greater amino acid sequences, including, but not limited to, such enzymes. The "corresponding amino acid residue" in the amino acid sequence of the mutant enzyme can be found by considering the position counted from the N-terminus and the neighboring amino acid sequences, structural prediction by computer, and the like.
 本発明の酵素の変異体は、天然由来のものであってもよく、例えば遺伝子工学的手法を用いて人工的に作出されたものであってもよい。本発明の酵素の変異体はいずれの生物に由来するものであってもよい。本発明の酵素の変異体は、好ましくは細菌、より好ましくは藍藻類由来である。本発明の酵素の変異体は、例えばMicrocystis属、Aphanizomenon属、Dolichospermum属などの藍藻に由来するものであってもよい。 The mutant of the enzyme of the present invention may be naturally derived, or may be artificially produced using, for example, genetic engineering techniques. Variants of the enzymes of the invention may be derived from any organism. The variants of the enzymes of the invention are preferably of bacterial, more preferably cyanobacterial origin. Variants of the enzymes of the invention may be derived from cyanobacteria such as, for example, the genera Microcystis, Aphanizomenon, Dolichospermum.
 本発明の酵素の変異体の例として、AgcFのホモログであるUHCC0183PTおよびPCC9443PTが挙げられるが、これらに限定されない。UHCC0183PTのアミノ酸配列を配列番号:6に、それをコードする遺伝子の塩基配列を配列番号:7に示す。PCC9443PTのアミノ酸配列を配列番号:9に、それをコードする遺伝子の塩基配列を配列番号:10に示す。UHCC0183PTのアミノ酸配列(配列番号:6)は、AgcFのアミノ酸配列(配列番号:1)に対して59.86%の同一性を有している。PCC9443PTのアミノ酸配列(配列番号:9)は、AgcFのアミノ酸配列(配列番号:1)に対して58.54%の同一性を有している。 Examples of variants of the enzyme of the present invention include, but are not limited to, AgcF homologues UHCC0183PT and PCC9443PT. The amino acid sequence of UHCC0183PT is shown in SEQ ID NO:6, and the nucleotide sequence of the gene encoding it is shown in SEQ ID NO:7. The amino acid sequence of PCC9443PT is shown in SEQ ID NO:9, and the nucleotide sequence of the gene encoding it is shown in SEQ ID NO:10. The amino acid sequence of UHCC0183PT (SEQ ID NO:6) has 59.86% identity to the amino acid sequence of AgcF (SEQ ID NO:1). The amino acid sequence of PCC9443PT (SEQ ID NO:9) has 58.54% identity to the amino acid sequence of AgcF (SEQ ID NO:1).
 本発明の酵素を公知の方法を用いて得ることができる。例えば、PCRを用いてAgcF遺伝子をクローニングし、発現ベクターにライゲーションし、発現ベクターを宿主細胞に導入し、宿主細胞を培養することによって、AgcFを得てもよい。本発明の酵素の変異も公知の方法を用いて得ることができる。例えば、AgcFのホモログもしくはオーソログをクローニングし、発現ベクターにライゲーションし、発現ベクターを宿主細胞に導入し、宿主細胞を培養することによって、AgcFの変異体を得てもよい。AgcFホモログの公開配列を参考にして遺伝子を合成し、これを宿主細胞に導入し、宿主細胞を培養することによりAgcFホモログを得てもよい。部位特異的突然変異法などの公知の方法を用いてAgcFをコードする遺伝子の塩基配列を改変し、改変遺伝子を宿主細胞に導入し、宿主細胞を培養することによりAgcFの変異体を得てもよい。化学合成や化学修飾などの化学的方法などにより本発明の酵素の変異体を得てもよい。 The enzyme of the present invention can be obtained using a known method. For example, AgcF may be obtained by cloning the AgcF gene using PCR, ligating it into an expression vector, introducing the expression vector into host cells, and culturing the host cells. Mutations of the enzymes of the invention can also be obtained using known methods. For example, AgcF variants may be obtained by cloning AgcF homologues or orthologs, ligating into an expression vector, introducing the expression vector into host cells, and culturing the host cells. An AgcF homolog may be obtained by synthesizing a gene with reference to the published sequence of the AgcF homolog, introducing it into a host cell, and culturing the host cell. AgcF mutants can also be obtained by modifying the base sequence of the gene encoding AgcF using a known method such as site-directed mutagenesis, introducing the modified gene into host cells, and culturing the host cells. good. Mutants of the enzyme of the present invention may be obtained by chemical methods such as chemical synthesis and chemical modification.
 あるいは本発明の酵素の変異体は、タンパク質を構成していないアミノ酸、D-体アミノ酸、修飾されたアミノ酸などを含んでいてもよい。 Alternatively, the mutant of the enzyme of the present invention may contain non-proteinogenic amino acids, D-form amino acids, modified amino acids, and the like.
 本発明の酵素の変異体は、配列番号:1に示すアミノ酸配列を含む本発明の酵素の30%以上、好ましくは50%以上、より好ましくは70%以上、さらに好ましくは80%以上、最も好ましくは90%以上のプレニル基転移活性を有する。 30% or more, preferably 50% or more, more preferably 70% or more, even more preferably 80% or more, most preferably 80% or more, of the enzyme of the invention comprising the amino acid sequence shown in SEQ ID NO: 1 has a prenyl group transfer activity of 90% or more.
 配列番号:1に示すアミノ酸配列のN末端から167番目のアミノ酸残基がヒスチジン残基であるアミノ酸配列を含む酵素、あるいは配列番号:1に示すアミノ酸配列のN末端から167番目のアミノ酸残基に対応するアミノ酸残基がヒスチジン残基であるアミノ酸配列を含む酵素を用いた場合に、ペプチド中のアルギニン残基またはアルギニン類縁体残基、あるいはアルギニンまたはアルギニン類縁体のビスプレニル化が促進される。 An enzyme comprising an amino acid sequence in which the 167th amino acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 is a histidine residue, or an enzyme containing an amino acid sequence at the 167th amino acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 Bisprenylation of arginine or arginine analogue residues, or arginine or arginine analogues in peptides is enhanced when enzymes containing amino acid sequences in which the corresponding amino acid residue is a histidine residue are used.
 配列番号:1に示すアミノ酸配列のN末端から167番目のアミノ酸残基がヒスチジン以外のアミノ酸残基であるアミノ酸配列を含む酵素、あるいは配列番号:1に示すアミノ酸配列のN末端から167番目のアミノ酸残基に対応するアミノ酸残基がヒスチジン以外のアミノ酸残基であるアミノ酸配列を含む酵素を用いた場合に、ペプチド中のアルギニン残基またはアルギニン類縁体残基のビスプレニル化が抑制され、モノプレニル化が促進される。ヒスチジン以外のアミノ酸残基としてはアラニン残基が例示されるが、これに限定されない。  An enzyme comprising an amino acid sequence in which the 167th amino acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 is an amino acid residue other than histidine, or the 167th amino acid from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 Bisprenylation of an arginine residue or an arginine analogue residue in a peptide is inhibited and monoprenylation is inhibited when an enzyme containing an amino acid sequence in which the amino acid residue corresponding to the residue is an amino acid residue other than histidine is used. Promoted. Examples of amino acid residues other than histidine include, but are not limited to, alanine residues. 
 プレニル基転移活性は公知の方法にて測定することができる。例えば、アルギニン残基を含むペプチドおよびプレニル基を含む化合物を含む反応液に本発明の酵素を添加して、単位酵素量および単位時間あたりのプレニル化ペプチドの生成量を、本発明の酵素のプレニル基転移活性の指標としてもよい。プレニル化ペプチドの生成の確認および生成量の測定は、NMR、MS、HPLC、LC-MS等の公知の手段および公知の方法を用いて行うことができる。 The prenyl group transfer activity can be measured by a known method. For example, the enzyme of the present invention is added to a reaction solution containing a peptide containing an arginine residue and a compound containing a prenyl group, and the unit amount of the enzyme and the amount of prenylated peptide produced per unit time are determined by the prenylation of the enzyme of the present invention. It may also be used as an indicator of group transfer activity. Confirmation of production of the prenylated peptide and measurement of the production amount can be performed using known means and methods such as NMR, MS, HPLC and LC-MS.
 本発明は、もう1つの態様において、下記塩基配列:
  (a)配列番号:1のアミノ酸配列をコードする塩基配列、
  (b)配列番号:1のアミノ酸配列に対して58%以上の同一性を有するアミノ酸配列をコードする塩基配列、
  (c)配列番号:1に示すアミノ酸配列において1ないし数十個、好ましくは1ないし数個のアミノ酸残基が欠失、置換、挿入または付加されたアミノ酸配列をコードする塩基配列、または
  (d)配列番号:1に示すアミノ酸配列をコードする塩基配列に対して相補的な塩基配列にストリンジェントな条件下でハイブリダイズする塩基配列
を含む核酸を提供する。
In another aspect, the present invention provides the following nucleotide sequence:
(a) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 1;
(b) a nucleotide sequence encoding an amino acid sequence having 58% or more identity to the amino acid sequence of SEQ ID NO: 1;
(c) a nucleotide sequence encoding an amino acid sequence in which one to several tens, preferably one to several amino acid residues are deleted, substituted, inserted or added in the amino acid sequence shown in SEQ ID NO: 1, or (d ) Providing a nucleic acid comprising a nucleotide sequence that hybridizes under stringent conditions to a nucleotide sequence complementary to the nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO:1.
 アミノ酸配列の同一性については上で説明したとおりである。欠失、置換、挿入または付加されるアミノ酸残基の数についても上で説明したとおりである。 The identity of the amino acid sequences is as explained above. The number of amino acid residues to be deleted, substituted, inserted or added is also as described above.
 ストリンジェントな条件は当業者に公知であり、例えば下記条件が挙げられる:
 0.25M NaHPO、pH7.2、7% SDS、1mM EDTA、1×デンハルト溶液を含む緩衝液中で温度が60~68℃、好ましくは65℃、さらに好ましくは68℃の条件下で16~24時間ハイブリダイズさせ、さらに20mM NaHPO、pH7.2、1% SDS、1mM EDTAを含む緩衝液中で温度が60~68℃、好ましくは65℃、さらに好ましくは68℃の条件下で15分間の洗浄を2回行う条件;あるいは、
 25%ホルムアミド、より厳しい条件では50%ホルムアミド、4×SSC(塩化ナトリウム/クエン酸ナトリウム)、50mM HEPES pH7.0、10×デンハルト溶液、20μg/ml変性サケ精子DNAを含むハイブリダイゼーション溶液中、42℃で一晩プレハイブリダイゼーションを行った後、1×SSC、0.1% SDSを含む緩衝液中で37℃において、より厳しい条件としては0.5×SSC、0.1% SDSを含む緩衝液中で42℃において、さらに厳しい条件としては0.2×SSC、0.1%
SDSを含む緩衝液中で65℃において洗浄を行う条件。
 ストリンジェントな条件は上例に限定されないことはいうまでもない。
Stringent conditions are known to those of skill in the art and include, for example:
in a buffer containing 0.25 M Na 2 HPO 4 , pH 7.2, 7% SDS, 1 mM EDTA, 1× Denhardt's solution at a temperature of 60 to 68° C., preferably 65° C., more preferably 68° C. Hybridize for 16 to 24 hours, then in a buffer containing 20 mM Na 2 HPO 4 , pH 7.2, 1% SDS, 1 mM EDTA at a temperature of 60 to 68°C, preferably 65°C, more preferably 68°C. conditions with two 15 minute washes under
42 in a hybridization solution containing 25% formamide, or even 50% formamide, 4×SSC (sodium chloride/sodium citrate), 50 mM HEPES pH 7.0, 10× Denhardt's solution, 20 μg/ml denatured salmon sperm DNA. After overnight prehybridization at °C, in a buffer containing 1 x SSC, 0.1% SDS at 37 °C, or more stringent conditions, a buffer containing 0.5 x SSC, 0.1% SDS. 0.2 x SSC, 0.1% as a more severe condition at 42 ° C in liquid
Conditions for washing at 65° C. in buffer containing SDS.
Needless to say, stringent conditions are not limited to the above examples.
 本明細書において、核酸は、記載されたDNA、該DNAに相補的なDNA、およびこれらのDNAに相補的なRNAを包含しうる。 As used herein, nucleic acids can include the DNAs described, DNAs complementary to the DNAs, and RNAs complementary to these DNAs.
 本明細書において、塩基配列は、目的のアミノ酸配列をコードする縮重配列を包含する。 As used herein, a nucleotide sequence includes a degenerate sequence that encodes the desired amino acid sequence.
 本発明は、もう1つの態様において、
(e)配列番号:2に示す塩基配列、または
(f)配列番号:2に示す塩基配列に対して相補的な塩基配列にストリン
ジェントな条件下でハイブリダイズする塩基配列
を含む核酸を提供する。
The present invention, in another aspect,
(e) the nucleotide sequence shown in SEQ ID NO: 2, or (f) a nucleotide sequence complementary to the nucleotide sequence shown in SEQ ID NO: 2, to provide a nucleic acid comprising a nucleotide sequence that hybridizes under stringent conditions. .
 上記塩基配列(e)は、配列番号:1で示されるアミノ酸配列をコードする塩基配列(a)の一例である。上記塩基配列(f)は、配列番号:1に示すアミノ酸配列をコードする塩基配列に対して相補的な塩基配列にストリンジェントな条件下でハイブリダイズする塩基配列(d)の一例である。 The base sequence (e) above is an example of the base sequence (a) that encodes the amino acid sequence shown in SEQ ID NO: 1. The nucleotide sequence (f) above is an example of a nucleotide sequence (d) that hybridizes under stringent conditions to a nucleotide sequence complementary to the nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO:1.
 ストリンジェントな条件および核酸については上で説明したとおりである。 The stringent conditions and nucleic acids are as described above.
 上記核酸は当業者に公知の方法によって得ることができる。本発明の酵素をコードする遺伝子またはそのホモログもしくはオーソログをクローニングすることによって上記核酸を得てもよい。クローニングの手法は当業者に公知である。上記核酸の源となる生物は特に限定されないが、好ましくは細菌、より好ましくは藍藻類である。上記核酸の源となる藍藻類の例としては、Microcystis属、Aphanizomenon属、Dolichospermum属の藍藻が挙げられるが、これらに限定されない。あるいは上記核酸を人工合成によって得てもよい。 The above nucleic acids can be obtained by methods known to those skilled in the art. Said nucleic acid may be obtained by cloning the gene encoding the enzyme of the invention or its homologue or ortholog. Cloning techniques are known to those of skill in the art. The source of the nucleic acid is not particularly limited, but is preferably bacteria, more preferably blue-green algae. Examples of the cyanobacteria from which the nucleic acid is derived include, but are not limited to, cyanobacteria belonging to the genera Microcystis, Aphanizomenon, and Dolichospermum. Alternatively, the above nucleic acid may be obtained by artificial synthesis.
 本発明は、もう1つの態様において、上記核酸によりコードされる酵素であって、ペプチド中のアルギニン残基またはアルギニン類縁体残基、あるいはアルギニンまたはアルギニン類縁体にプレニル基を転移する酵素を提供する。 In another aspect, the present invention provides an enzyme encoded by the above nucleic acid that transfers a prenyl group to an arginine residue or an arginine analogue residue, or an arginine or arginine analogue residue in a peptide. .
 本発明は、もう1つの態様において、上記核酸を含むベクターを提供する。ベクターとしては発現ベクターが好ましい。様々な発現ベクターが公知であり、適宜選択して用いることができる。本発明のDNAのベクターへの組み込み方法も公知である。 In another aspect, the present invention provides a vector containing the above nucleic acid. An expression vector is preferred as the vector. Various expression vectors are known and can be appropriately selected and used. Methods for incorporating the DNA of the present invention into vectors are also known.
 上記核酸は本発明の酵素をコードするものである。また、上記ベクターは当該核酸を含むものである。ゆえに、上記核酸または上記ベクターを用いて、遺伝子工学的手法により本発明の酵素を製造することができる。 The above nucleic acid encodes the enzyme of the present invention. In addition, the vector contains the nucleic acid. Therefore, the enzyme of the present invention can be produced by genetic engineering using the above nucleic acid or vector.
 したがって、本発明は、もう1つの態様において、ペプチド中のアルギニン残基またはアルギニン類縁体残基、あるいはアルギニンまたはアルギニン類縁体にプレニル基を転移する酵素の製造方法を提供する。該方法は下記工程:
  (a)上記核酸また上記ベクターを細胞に導入する工程、
  (b)工程(a)で得られた細胞を培養する工程、および
  (c)工程(b)で得られた培養物から、ペプチド中のアルギニン残基またはアルギニン類縁体残基、あるいはアルギニンまたはアルギニン類縁体にプレニル基を転移する酵素を得る工程
を含む。
Accordingly, in another aspect, the present invention provides a method for producing an enzyme that transfers a prenyl group to an arginine residue or arginine analogue residue in a peptide, or arginine or an arginine analogue. The method comprises the following steps:
(a) introducing said nucleic acid or said vector into a cell;
(b) culturing the cells obtained in step (a), and (c) from the culture obtained in step (b), an arginine residue or an arginine analog residue, or arginine or arginine in the peptide Obtaining an enzyme that transfers a prenyl group to an analogue.
 例えば、上記核酸を発現ベクターに組み込んで細胞に導入し、細胞を培養して得られる培養物から本発明の酵素を得てもよい。また例えば、PEG法、エレクトロポレーションあるいはパーティクルガン法等の公知の方法を用いて上記核酸または上記ベクターを細胞に導入し、細胞を培養して得られる培養物から本発明の酵素を得てもよい。 For example, the nucleic acid may be incorporated into an expression vector, introduced into cells, and the enzyme of the present invention obtained by culturing the cells. Alternatively, for example, the enzyme of the present invention may be obtained from a culture obtained by introducing the nucleic acid or the vector into cells using a known method such as the PEG method, electroporation, or particle gun method, and culturing the cells. good.
 上記方法に使用する細胞は特に限定されず、細菌、酵母、糸状菌、放線菌などの微生物細胞、植物細胞、動物細胞、昆虫細胞であってもよい。この方法に使用する好ましい細胞としては、大腸菌や枯草菌などの微生物細胞が挙げられるが、これらに限定されない。 The cells used in the above method are not particularly limited, and may be microbial cells such as bacteria, yeast, filamentous fungi, and actinomycetes, plant cells, animal cells, and insect cells. Preferred cells for use in this method include, but are not limited to, microbial cells such as E. coli and Bacillus subtilis.
 細胞の培養は公知の方法にて行うことができる。細胞および培養条件の選択は当業者が通常行いうることである。 Cell culture can be performed by a known method. Selection of cells and culture conditions is routine for those of skill in the art.
 本発明の酵素を菌体内に生産する細胞の場合は、超音波、ミル、ホモジナイザー等の公知の手段によって菌体を破砕して抽出液を得て、硫安沈殿、クロマトグラフィー等の公知の手段によって抽出液から本発明の酵素を得ることができる。本発明の酵素を菌体外に生産する細胞の場合は、培養液を硫安沈殿、クロマトグラフィー等の公知の手段に付すことによって、本発明の酵素を得ることができる。 In the case of cells that produce the enzyme of the present invention within the cells, the cells are disrupted by known means such as ultrasonic waves, mills, homogenizers, etc. to obtain an extract, and then subjected to known means such as ammonium sulfate precipitation and chromatography. The enzyme of the present invention can be obtained from the extract. In the case of cells that extracellularly produce the enzyme of the present invention, the enzyme of the present invention can be obtained by subjecting the culture medium to known means such as ammonium sulfate precipitation and chromatography.
 上記の遺伝子工学的方法のほかに、生物体、例えば細菌、好ましくはMicrocystis属、Aphanizomenon属、Dolichospermum属などの藍藻類の菌体から抽出・精製することにより本発明の酵素を得てもよい。菌体破砕、硫安沈殿、クロマトグラフィー等の公知の酵素精製手段・方法を用いることができる。
In addition to the genetic engineering method described above, the enzyme of the present invention may be obtained by extraction and purification from organisms such as bacteria, preferably cyanobacteria of the genus Microcystis, Aphanizomenon, and Dolichospermum. Known enzyme purification means and methods such as cell disruption, ammonium sulfate precipitation, and chromatography can be used.
 本発明は、さらなる態様において、下記(i)および(ii):
 (i)アルギニン残基またはアルギニン類縁体残基を含むペプチド、あるいはアルギニンまたはアルギニン類縁体(プレニル基受容体)
 (ii)プレニル基含有化合物(プレニル基供与体)
に本発明の酵素を作用させることを含む、アルギニン残基またはアルギニン類縁体残基がプレニル化されたペプチド、あるいはプレニル化されたアルギニンまたはアルギニン類縁体の製造方法を提供する。
In a further aspect, the present invention provides the following (i) and (ii):
(i) peptides containing arginine residues or arginine analogue residues, or arginine or arginine analogues (prenyl group receptors)
(ii) prenyl group-containing compound (prenyl group donor)
Provided is a method for producing a peptide in which an arginine residue or an arginine analogue residue is prenylated, or a prenylated arginine or an arginine analogue, comprising allowing the enzyme of the present invention to act on .
 アルギニン残基またはアルギニン類縁体を含むペプチド、アルギニンまたはアルギニン類縁体、プレニル基含有化合物、および該化合物に含まれるプレニル基については上で説明したとおりである。 Peptides containing arginine residues or arginine analogues, arginine or arginine analogues, prenyl group-containing compounds, and prenyl groups contained in the compounds are as described above.
 プレニル基受容体およびプレニル基供与体を含む反応液に本発明の酵素を添加し、適当な条件下でインキュベーションすることにより、アルギニン残基またはアルギニン類縁体残基がプレニル化されたペプチド、あるいはプレニル化されたアルギニンまたはアルギニン類縁体を得ることができる。インキュベーションの条件は、酵素の特性や量、基質の種類や濃度などに応じて、当業者が適宜決定しうる。適当な条件としては、例えば室温~37℃、pH6~9において、数時間反応させる条件が挙げられるが、これらの条件に限定されない。本発明の酵素を担体に固定化して用いてもよい。 By adding the enzyme of the present invention to a reaction solution containing a prenyl group acceptor and a prenyl group donor and incubating under appropriate conditions, a peptide in which an arginine residue or an arginine analogue residue is prenylated, or a prenyl modified arginine or arginine analogs can be obtained. Incubation conditions can be appropriately determined by those skilled in the art according to the properties and amount of the enzyme, the type and concentration of the substrate, and the like. Suitable conditions include, for example, room temperature to 37° C., pH 6 to 9, and reaction conditions for several hours, but are not limited to these conditions. The enzyme of the present invention may be immobilized on a carrier and used.
 各種クロマトグラフィー等の公知の手法を用いて、アルギニン残基またはアルギニン類縁体残基がプレニル化されたペプチド、あるいはプレニル化されたアルギニンまたはアルギニン類縁体を反応液から精製、単離することができる。 Peptides in which arginine residues or arginine analogue residues are prenylated, or prenylated arginine or arginine analogues can be purified and isolated from the reaction solution using known techniques such as various chromatography. .
 これらのプレニル化された化合物の生成は公知の手段にて確認することができる。例えば、高速液体クロマトグラフィー(HPLC)を用いて反応液を分析することにより確認を行ってもよい。質量分析を用いて、プレニル基受容体がプレニル化された場合の分子量を有する生成物を確認してもよい。NMRを用いて生成物の構造を詳細に決定してもよい。生成物の確認は、プレニル化された化合物の標品と比較することにより行うことが好ましい。プレニル化された化合物の標品は市販品であってもよく、化学合成によって得られたものであってもよく、天然界から単離されたものであってもよい。 The production of these prenylated compounds can be confirmed by known means. For example, confirmation may be performed by analyzing the reaction mixture using high performance liquid chromatography (HPLC). Mass spectroscopy may be used to confirm the molecular weight of the product when the prenyl group acceptor is prenylated. NMR may be used to further determine the structure of the product. Product confirmation is preferably performed by comparison with a standard preparation of the prenylated compound. The preparation of the prenylated compound may be a commercial product, one obtained by chemical synthesis, or one isolated from nature.
 本発明は、さらなる態様において、アルギニン残基またはアルギニン類縁体残基を含むペプチド、あるいはアルギニンまたはアルギニン類縁体を含む化合物ライブラリーに本発明の酵素を作用させることを含む、アルギニン残基またはアルギニン類縁体残基がプレニル化されたペプチド、あるいはプレニル化されたアルギニンまたはアルギニン類縁体を含む化合物ライブラリーの製造方法を提供する。 In a further aspect, the present invention provides an arginine residue or an arginine analogue comprising allowing the enzyme of the present invention to act on a peptide containing an arginine residue or an arginine analogue residue, or a compound library containing arginine or an arginine analogue. Provided are methods for producing a compound library containing peptides prenylated at the amino acid residue, or prenylated arginines or arginine analogues.
 アルギニン残基またはアルギニン類縁体残基を含むペプチド、あるいはアルギニンまたはアルギニン類縁体を含む化合物ライブラリーは、原料の一部にアルギニンまたはアルギニン類縁体を用いて公知の方法により得ることができる。そのような公知の方法としては、コンビナトリアル-スプリット合成法、ペプチドアレイ法、ビーズディスプレイ法、ファージディスプレイ法などが挙げられるが、これらに限定されない。 Peptides containing arginine residues or arginine analogue residues, or compound libraries containing arginine or arginine analogues can be obtained by known methods using arginine or arginine analogues as part of the starting material. Such known methods include, but are not limited to, combinatorial-split synthesis methods, peptide array methods, bead display methods, phage display methods, and the like.
 上記のアルギニン残基またはアルギニン類縁体残基がプレニル化されたペプチド、あるいはプレニル化されたアルギニンまたはアルギニン類縁体の製造方法、ならびに化合物ライブラリーの製造方法において、ペプチドをプレニル基受容体として用いる場合は、環状ペプチドが好ましい。 When a peptide is used as a prenyl group acceptor in the above method for producing a peptide in which an arginine residue or an arginine analogue residue is prenylated, or a prenylated arginine or an arginine analogue, and a method for producing a compound library is preferably a cyclic peptide.
 ペプチドにおいて、プロリン残基がアルギニン残基またはアルギニン類縁体残基に隣接していることが好ましい。プロリン残基がそのカルボキシル基を介してアルギニン残基またはアルギニン類縁体残基のアミノ基に結合することにより、プロリン残基がアルギニン残基またはアルギニン類縁体残基に隣接していることが好ましい。上記のアルギニン残基またはアルギニン類縁体残基がプレニル化されたペプチド、あるいはプレニル化されたアルギニンまたはアルギニン類縁体の製造方法、ならびに化合物ライブラリーの製造方法において、好ましいペプチドは、環状ペプチドであって、その中で上記の様式にてプロリン残基がアルギニン残基またはアルギニン類縁体残基に隣接しているペプチドである。 In the peptide, the proline residue is preferably adjacent to an arginine residue or an arginine analogue residue. Preferably, a proline residue is adjacent to an arginine residue or arginine analogue residue by binding the proline residue through its carboxyl group to the amino group of the arginine residue or arginine analogue residue. In the method for producing a peptide in which an arginine residue or an arginine analogue residue is prenylated, or the method for producing a prenylated arginine or an arginine analogue, and the method for producing a compound library, the preferred peptide is a cyclic peptide, , in which proline residues are flanked by arginine or arginine analog residues in the manner described above.
 上記のアルギニン残基またはアルギニン類縁体残基がプレニル化されたペプチド、あるいはプレニル化されたアルギニンまたはアルギニン類縁体の製造方法、ならびに化合物ライブラリーの製造方法において、ビスプレニル化生成物を多く得たい場合は、配列番号:1に示すアミノ酸配列のN末端から167番目のアミノ酸残基がヒスチジン残基であるアミノ酸配列を含む酵素、あるいは配列番号:1に示すアミノ酸配列のN末端から167番目のアミノ酸残基に対応するアミノ酸残基がヒスチジン残基であるアミノ酸配列を含む酵素を用いることが好ましい。 When it is desired to obtain a large amount of bisprenylated products in the above-described method for producing a peptide in which an arginine residue or an arginine analog residue is prenylated, or a method for producing a prenylated arginine or an arginine analog, and a method for producing a compound library is an enzyme containing an amino acid sequence in which the 167th amino acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 is a histidine residue, or the 167th amino acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 It is preferred to use an enzyme comprising an amino acid sequence in which the amino acid residue corresponding to the group is a histidine residue.
 上記のアルギニン残基またはアルギニン類縁体残基がプレニル化されたペプチド、あるいはプレニル化されたアルギニンまたはアルギニン類縁体の製造方法、ならびに化合物ライブラリーの製造方法において、モノプレニル化生成物を多く得たい場合は、配列番号:1に示すアミノ酸配列のN末端から167番目のアミノ酸残基がヒスチジン以外のアミノ酸残基であるアミノ酸配列を含む酵素、あるいは配列番号:1に示すアミノ酸配列のN末端から167番目のアミノ酸残基に対応するアミノ酸残基がヒスチジン以外のアミノ酸残基であるアミノ酸配列を含む酵素を用いることが好ましい。ヒスチジン以外のアミノ酸残基としてはアラニン残基が例示されるが、これに限定されない。例えば、AgcFホモログUHCC0183PTにおける配列番号:1に示すアミノ酸配列のN末端から167番目のアミノ酸残基に対応するアミノ酸残基は、配列番号:6に示すアミノ酸配列のN末端から49番目のグルタミン酸残基である。また例えば、AgcFホモログPCC9443PTTにおける配列番号:1に示すアミノ酸配列のN末端から167番目のアミノ酸残基に対応するアミノ酸残基は、配列番号:9に示すアミノ酸配列のN末端から49番目のグルタミン酸残基である。 When it is desired to obtain a large amount of monoprenylated products in the above-described method for producing a peptide in which an arginine residue or an arginine analogue residue is prenylated, or a method for producing a prenylated arginine or an arginine analogue, and a method for producing a compound library is an enzyme comprising an amino acid sequence in which the 167th amino acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 is an amino acid residue other than histidine, or the 167th from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 It is preferred to use an enzyme comprising an amino acid sequence in which the amino acid residue corresponding to the amino acid residue of is an amino acid residue other than histidine. Examples of amino acid residues other than histidine include, but are not limited to, alanine residues. For example, the amino acid residue corresponding to the 167th amino acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 in AgcF homolog UHCC0183PT is the 49th glutamic acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 6. is. Further, for example, the amino acid residue corresponding to the 167th amino acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 1 in AgcF homolog PCC9443PTT is the 49th glutamic acid residue from the N-terminus of the amino acid sequence shown in SEQ ID NO: 9. is the base.
 アルギニン残基またはアルギニン類縁体残基を含むペプチド、あるいはアルギニンまたはアルギニン類縁体を含む化合物ライブラリーに本発明の酵素を作用させる方法は、アルギニン残基またはアルギニン類縁体残基がプレニル化されたペプチド、あるいはプレニル化されたアルギニンまたはアルギニン類縁体の製造方法に関して述べた方法に準じたものであってよい。 A method of causing the enzyme of the present invention to act on a peptide containing an arginine residue or an arginine analogue residue, or a compound library containing arginine or an arginine analogue is a peptide in which an arginine residue or an arginine analogue residue is prenylated. Alternatively, it may be according to the method described for the method for producing prenylated arginine or arginine analogues.
 得られた化合物ライブラリーをスクリーニングすることにより、目的に応じたプレニル化ペプチド類やプレニル化アミノ酸類を検索、取得することができる。 By screening the obtained compound library, it is possible to search and obtain prenylated peptides and prenylated amino acids according to the purpose.
 本発明は、もう1つの態様において、式(I):
Figure JPOXMLDOC01-appb-C000009

                  (I)
[式中、Rは水素またはプレニル基であり、Rは水素またはプレニル基である]
で示される化合物を提供する。
The present invention provides, in another aspect, a compound of formula (I):
Figure JPOXMLDOC01-appb-C000009

(I)
[wherein R 1 is hydrogen or a prenyl group and R 2 is hydrogen or a prenyl group]
to provide a compound represented by
 RおよびRがともに水素である式(I)の化合物はアルギシクラミドCである(実施例参照)。アルギシクラミドCは、藍藻類の1種であるMicrocystis aeruginosa NIE-88から単離、同定されたものであり、本発明の酵素の基質として使用しうる化合物である。この化合物をMicrocystis aeruginosa NIE-88から得てもよく、あるいは公知の合成法(化学合成法、酵素合成法など)により得てもよい。 The compound of formula (I) in which R 1 and R 2 are both hydrogen is algicyclamide C (see Examples). Argicyclamide C was isolated and identified from Microcystis aeruginosa NIE-88, which is a blue-green algae, and is a compound that can be used as a substrate for the enzyme of the present invention. This compound may be obtained from Microcystis aeruginosa NIE-88, or may be obtained by a known synthesis method (chemical synthesis method, enzymatic synthesis method, etc.).
 R、Rのいずれか一方がプレニル基である式(I)の化合物はモノプレニル化体である。RおよびRがともにプレニル基である式(I)の化合物はビスプレニル化体である。 A compound of formula (I) in which either one of R 1 and R 2 is a prenyl group is a monoprenylated compound. Compounds of formula (I) in which both R 1 and R 2 are prenyl groups are bisprenylated.
 これらのモノプレニル化体およびビスプレニル化体は、RおよびRがともに水素である式(I)で示される化合物に本発明の酵素を作用させることにより得てもよく、あるいは公知の合成法(化学合成法、酵素合成法など)により得てもよい。 These monoprenylated forms and bisprenylated forms may be obtained by allowing the enzyme of the present invention to act on the compound represented by formula (I) in which both R 1 and R 2 are hydrogen, or may be obtained by a known synthetic method ( chemical synthesis method, enzymatic synthesis method, etc.).
 式(I)で示される化合物は今回新たに単離、同定、合成されたものである。 The compound represented by formula (I) was newly isolated, identified and synthesized this time.
 本発明は、もう1つの態様において、式(II):
Figure JPOXMLDOC01-appb-C000010
                    (II)
[式中、Rは水素またはプレニル基であり、Rは水素またはプレニル基である]
で示される化合物を提供する。
The present invention provides, in another aspect, a compound of formula (II):
Figure JPOXMLDOC01-appb-C000010
(II)
[wherein R 1 is hydrogen or a prenyl group and R 2 is hydrogen or a prenyl group]
to provide a compound represented by
 RおよびRがともに水素である式(II)の化合物は本発明の酵素の基質として使用しうる。 Compounds of formula (II) in which R 1 and R 2 are both hydrogen may be used as substrates for enzymes of the invention.
 R、Rのいずれか一方がプレニル基である式(II)の化合物はモノプレニル化体である。RおよびRがともにプレニル基である式(II)の化合物はビスプレニル化体である。 A compound of formula (II) in which either one of R 1 and R 2 is a prenyl group is a monoprenylated compound. Compounds of formula (II) in which both R 1 and R 2 are prenyl groups are bisprenylated.
 これらのモノプレニル化体およびビスプレニル化体は、RおよびRがともに水素である式(II)で示される化合物に本発明の酵素を作用させることにより得てもよく、あるいは公知の合成法(化学合成法、酵素合成法など)により得てもよい。 These monoprenylated forms and bisprenylated forms may be obtained by allowing the enzyme of the present invention to act on the compound represented by formula (II) in which both R 1 and R 2 are hydrogen, or may be obtained by a known synthetic method ( chemical synthesis method, enzymatic synthesis method, etc.).
 式(II)で示される化合物は今回新たに合成、同定されたものである。 The compound represented by formula (II) was newly synthesized and identified this time.
 本発明は、もう1つの態様において、式(III):
Figure JPOXMLDOC01-appb-C000011
                (III)
[式中、Rは水素またはプレニル基であり、Rは水素またはプレニル基である]
で示される化合物を提供する。
The present invention provides, in another aspect, a compound of formula (III):
Figure JPOXMLDOC01-appb-C000011
(III)
[wherein R 1 is hydrogen or a prenyl group and R 2 is hydrogen or a prenyl group]
to provide a compound represented by
 RおよびRがともに水素である式(III)の化合物は本発明の酵素の基質として使用しうる。 Compounds of formula (III) in which R 1 and R 2 are both hydrogen may be used as substrates for enzymes of the invention.
 R、Rのいずれか一方がプレニル基である式(III)の化合物はモノプレニル化体である。RおよびRがともにプレニル基である式(III)の化合物はビスプレニル化体である。 A compound of formula (III) in which either one of R 1 and R 2 is a prenyl group is a monoprenylated compound. Compounds of formula (III) in which both R 1 and R 2 are prenyl groups are bisprenylated.
 これらのモノプレニル化体およびビスプレニル化体は、RおよびRがともに水素である式(III)で示される化合物に本発明の酵素を作用させることにより得てもよく、あるいは公知の合成法(化学合成法、酵素合成法など)により得てもよい。 These monoprenylated forms and bisprenylated forms may be obtained by allowing the enzyme of the present invention to act on the compound represented by formula (III) in which both R 1 and R 2 are hydrogen, or may be obtained by a known synthetic method ( chemical synthesis method, enzymatic synthesis method, etc.).
 式(III)で示される化合物は今回新たに合成、同定されたものである。 The compound represented by formula (III) was newly synthesized and identified this time.
 本発明は、もう1つの態様において、式(IV):
Figure JPOXMLDOC01-appb-C000012
                    (IV)
[式中、Rは水素またはプレニル基であり、Rは水素またはプレニル基である]
で示される化合物を提供する。
The present invention provides, in another aspect, a compound of formula (IV):
Figure JPOXMLDOC01-appb-C000012
(IV)
[wherein R 1 is hydrogen or a prenyl group and R 2 is hydrogen or a prenyl group]
to provide a compound represented by
 RおよびRがともに水素である式(IV)の化合物は本発明の酵素の基質として使用しうる。 Compounds of formula (IV) in which R 1 and R 2 are both hydrogen may be used as substrates for enzymes of the invention.
 R、Rのいずれか一方がプレニル基である式(IV)の化合物はモノプレニル化体である。RおよびRがともにプレニル基である式(IV)の化合物はビスプレニル化体である。 A compound of formula (IV) in which either one of R 1 and R 2 is a prenyl group is a monoprenylated compound. Compounds of formula (IV) in which both R 1 and R 2 are prenyl groups are bisprenylated.
 これらのモノプレニル化体およびビスプレニル化体は、RおよびRがともに水素である式(IV)で示される化合物に本発明の酵素を作用させることにより得てもよく、あるいは公知の合成法(化学合成法、酵素合成法など)により得てもよい。 These monoprenylated forms and bisprenylated forms may be obtained by allowing the enzyme of the present invention to act on the compound represented by formula (IV) in which both R 1 and R 2 are hydrogen, or may be obtained by a known synthetic method ( chemical synthesis method, enzymatic synthesis method, etc.).
 式(IV)で示される化合物は今回新たに合成、同定されたものである。 The compound represented by formula (IV) was newly synthesized and identified this time.
 以下に実施例を示して本発明をさらに詳細かつ具体的に説明するが、実施例は本発明の範囲を限定するものではない。 Although the present invention will be described in more detail and specifically by showing examples below, the examples are not intended to limit the scope of the present invention.
 (1)実験全般
 Hおよび13CNMRスペクトルは、JEOL ECA 500(HNMRの場合は500MHz)、JEOL ECX 400 P(HNMRの場合は400MHz)、JEOL ECS 400(HNMRの場合は400MHz)、またはBuruka AVANCE Neo(HNMRの場合は500MHz)で測定した。化学シフトは、内部標準(DMSO-d6,1H d 2.50,13C d 39.5)としての残留溶媒ピークに対するδ(ppm)で表す。ESI-MSスペクトルは、Thermo Scientific Exactive質量分析計またはSHIMADZU LCMS-2020分光光度計で測定した。旋光度はJASCO P-1030旋光計で測定した。高速液体クロマトグラフィー(HPLC)は、LC-20ADインテリジェントポンプを備えた島津HPLCシステムを用いて実施した。LC-MS実験はamaZon SL-NPC(Bruker Daltonics)を用いて実施した。前駆体イオンのフラグメンテーションは、ヘリウムガスを使用して振幅値1.0VにてamaZon SL-NPCを用いて実施した。GenEluteTM Plasmid Miniprep Kit(Sigma)を使用してプラスミド抽出を行った。
(1) General experiments 1 H and 13 C NMR spectra were obtained with JEOL ECA 500 (500 MHz for 1 H NMR), JEOL ECX 400 P (400 MHz for 1 H NMR), JEOL ECS 400 (400 MHz for 1 H NMR), or Buruka AVANCE Neo (500 MHz for 1 H NMR). Chemical shifts are expressed in δ (ppm) relative to the residual solvent peak as internal standard (DMSO-d6, 1H d 2.50, 13C d 39.5). ESI-MS spectra were measured on a Thermo Scientific Exactive mass spectrometer or SHIMADZU LCMS-2020 spectrophotometer. Optical rotations were measured with a JASCO P-1030 polarimeter. High performance liquid chromatography (HPLC) was performed using a Shimadzu HPLC system equipped with an LC-20AD intelligent pump. LC-MS experiments were performed using an amaZon SL-NPC (Bruker Daltonics). Fragmentation of precursor ions was performed with an amaZon SL-NPC at an amplitude of 1.0 V using helium gas. Plasmid extraction was performed using the GenElute Plasmid Miniprep Kit (Sigma).
 (2)Microcystis aeruginosa NIES-88の培養、DNA抽出、およびゲノムシークエンシング
 Microcystis aeruginosa NIES-88を国立研究開発法人国立環境研究所から得た。Microcystis aeruginosa NIES-88は、BG-11培地中、通気しながら(フィルターを通した空気、0.3L/分)、25℃で、250μE/m2s1の照明下、12L:12Dサイクルにて培養した。4~5週間培養後、細胞を連続フロー遠心分離(10000rpm)にて集めた。先ず、乳鉢と乳棒を用いて、凍結した細胞を破砕することにより高分子DNAを抽出した。次いで、細胞粉末をCTABバッファー(3% CTAB,1.4M NaCl,0.2% β-メルカプトエタノール,20mM EDTA,100mM Tris pH8,RNase A)に溶解し、50℃で30分インキュベーションした。その後、750μLのクロロホルムを添加し、おだやかに倒置し、15000rpmにて5分間遠心分離した。得られた上層を、200μLのイソプロパノールを入れた遠心チューブにゆっくりと移した。白色糸状物(沈殿DNA)が出現した後、沈殿DNAを集めてゲノムシークエンスに使用した。
(2) Microcystis aeruginosa NIES-88 culture, DNA extraction, and genome sequencing Microcystis aeruginosa NIES-88 was obtained from the National Institute for Environmental Studies. Microcystis aeruginosa NIES-88 was cultured in BG-11 medium with aeration (filtered air, 0.3 L/min) at 25° C. under 250 μE/m 2 s1 illumination with 12 L:12 D cycles. After 4-5 weeks of culture, cells were harvested by continuous flow centrifugation (10000 rpm). First, macromolecular DNA was extracted by crushing frozen cells using a mortar and pestle. The cell powder was then dissolved in CTAB buffer (3% CTAB, 1.4 M NaCl, 0.2% β-mercaptoethanol, 20 mM EDTA, 100 mM Tris pH 8, RNase A) and incubated at 50°C for 30 minutes. After that, 750 μL of chloroform was added, gently inverted, and centrifuged at 15000 rpm for 5 minutes. The resulting top layer was slowly transferred to a centrifuge tube containing 200 μL of isopropanol. After the appearance of white filaments (precipitated DNA), the precipitated DNA was collected and used for genomic sequencing.
 (3)Microcystis aeruginosa NIES-88からのアルギシクラミドA(1)、B(2)、およびC(3)の単離
Figure JPOXMLDOC01-appb-C000013

アルギシクラミドA(1):R=R=ジメチルアリル
アルギシクラミドB(2):R=ジメチルアリル、R=H
アルギシクラミドC(3):R=R=H
(アルギシクラミドは本発明者らによる命名)

 凍結乾燥した細胞(4~5週間培養物50Lから10.2g)をホモジナイズし、メタノール(200mLx3)にて抽出した。濃縮した抽出物を水と酢酸エチルに分配させ、酢酸エチル層を、さらにメタノールとヘキサンに分配させた。水粗抽出物(533.0mg)および酢酸エチル粗抽出物(55.6mg)の両方を、水性メタノール溶出システムを備えたODS(YMC-Gel、150ミクロン)にアプライした。メタノール溶出フラクションを、C18(Wakosil-II 5C18 AR,20x250mm,UV検出波長215nm,流速4.0mL/分)を用いるHPLC(0.1% TFAを含む40% MeCNにて0-12分、次いで、0.1% TFAを含む57% MeCNにて12-50分)にて精製して、1(23.0mg)、2(2.9mg)および3(2.6mg)を得た。
 アルギシクラミドA(1): 無色油状物質; [α]D25 -53.8 (c 0.26, MeOH);  HRESI(+)MS m/z 1058.7128 [M + H]+; calcd. for C57H92N11O8 + 1058.7125.
 アルギシクラミドB(2): 無色油状物質; [α]D25 -49.9 (c 0.20, MeOH); HRESI(+)MS m/z 990.6495 [M + H]+; calcd. for C52H84N11O8 + 990.6499.
 アルギシクラミドC(3): 無色油状物質; [α]D25 -49.3 (c 0.19, MeOH); HRESI(+)MS m/z 922.5873 [M + H]+; calcd. for C47H76N11O8 + 922.5873.
(3) Isolation of Argicyclamide A (1), B (2), and C (3) from Microcystis aeruginosa NIES-88
Figure JPOXMLDOC01-appb-C000013

Argicyclamide A (1): R 1 = R 2 = dimethylallyl Argicyclamide B (2): R 1 = dimethylallyl, R 2 = H
algicyclamide C (3): R 1 =R 2 =H
(Argicyclamide is named by the inventors)

Lyophilized cells (10.2 g from 50 L of 4-5 week culture) were homogenized and extracted with methanol (200 mL×3). The concentrated extract was partitioned between water and ethyl acetate, and the ethyl acetate layer was further partitioned between methanol and hexanes. Both the water crude extract (533.0 mg) and the ethyl acetate crude extract (55.6 mg) were applied to ODS (YMC-Gel, 150 microns) equipped with an aqueous methanol elution system. The methanol eluted fraction was subjected to HPLC (40% MeCN with 0.1% TFA for 0-12 minutes) using C18 (Wakosil-II 5C18 AR, 20×250 mm, UV detection wavelength 215 nm, flow rate 4.0 mL/min). Purification in 57% MeCN with 0.1% TFA for 12-50 min) gave 1 (23.0 mg), 2 (2.9 mg) and 3 (2.6 mg).
Argicyclamide A (1): colorless oil; [α]D 25 -53.8 (c 0.26, MeOH); HRESI(+)MS m/z 1058.7128 [M + H]+; calcd. for C 57 H 92 N 11 O 8 + 1058.7125.
Algicyclamide B (2): colorless oil; [α]D 25 -49.9 (c 0.20, MeOH); HRESI(+)MS m/z 990.6495 [M + H]+; calcd. for C 52 H 84 N 11 O 8 + 990.6499.
Argicyclamide C (3): colorless oil; [α]D 25 -49.3 (c 0.19, MeOH); HRESI (+)MS m/z 922.5873 [M + H]+; calcd. 8 + 922.5873.
 (4)プラスミドの構築
 設計したプライマー:
AgcF-F:cgcggatcccatatgttgaaaagcaacaaaaag (配列番号:3)
AgcF-R:ccggaattcctagagcagataatatagattgagattc (配列番号:4)
を用いて、KOD One(登録商標) PCR Master Mix(TOYOBO)によりMicrocystis aeruginosa NIES-88のゲノムDNAから本発明の酵素(AgcFという)をコードするDNAフラグメントを増幅した。
 AgcFをコードするDNAフラグメントを、BamHIおよびEcoRIを用いてpUC19のマルチクローニングサイトに挿入して、AgcF-pUC19を得た。配列を確認した後、AgcFのインサートフラグメントをpCold-IIのNdeIおよびEcoRI部位にライゲーションして、AgcF-pCold-IIを得た。
(4) Construction of plasmid Designed primers:
AgcF-F: cgcggatcccatatgttgaaaagcaacaaaaag (SEQ ID NO: 3)
AgcF-R: ccggaattcctagagcagataatatagattgagattc (SEQ ID NO: 4)
was used to amplify a DNA fragment encoding the enzyme of the present invention (referred to as AgcF) from the genomic DNA of Microcystis aeruginosa NIES-88 using KOD One (registered trademark) PCR Master Mix (TOYOBO).
A DNA fragment encoding AgcF was inserted into the multiple cloning site of pUC19 using BamHI and EcoRI to obtain AgcF-pUC19. After confirming the sequence, the AgcF insert fragment was ligated into the NdeI and EcoRI sites of pCold-II to obtain AgcF-pCold-II.
 (5)組換えAgcFの調製
 シャペロン発現プラスミドpGro7を有するE. coli BL21にAgcF-pCold-IIを導入した。50μg/mLのカナマイシンおよび30μg/mLのクロラムフェニコールを含有する2xYT培地にシングルコロニーを接種し、37℃で一晩増殖させた。50μg/mLのカナマイシンおよび30μg/mLのクロラムフェニコールおよび4mg/mLのL-アラビノースを含有する200mLの2xYT培地に、一晩培養物の1%を移し、次いで、37℃で3時間培養した。最終濃度0.1mMのIPTGを添加することによりAgcF遺伝子の発現を誘導し、細胞を16℃で一晩培養した。遠心分離(3500xg、10分)により細胞を集め、超音波ホモジナイザーで破砕した。遠心分離(17000xg、10分)により残渣を除去した後、可溶性タンパク質を含むフラクションを、洗浄バッファー(20mM Tris-HCl pH8.0,150mM NaCl,20mM イミダゾール)で平衡化したNi-NTAアフィニティーカラム(Merck Millipore)に供した。洗浄バッファーにてカラムを洗浄し、500mMイミダゾールを含む洗浄バッファーで溶出を行った。カラムをAmicon Ultra 0.5mLフィルター(Merck Millipore)に接続した。得られたタンパク質溶液の濃度をBio-Rad protein assay kitにより測定した。得られた組換えAgcFのアミノ酸配列を配列番号:5に示す。
(5) Preparation of Recombinant AgcF AgcF-pCold-II was introduced into E. coli BL21 harboring the chaperone expression plasmid pGro7. 2xYT medium containing 50 μg/mL kanamycin and 30 μg/mL chloramphenicol was inoculated with a single colony and grown overnight at 37°C. 1% of the overnight culture was transferred to 200 mL of 2xYT medium containing 50 μg/mL kanamycin and 30 μg/mL chloramphenicol and 4 mg/mL L-arabinose and then incubated for 3 hours at 37°C. . AgcF gene expression was induced by adding IPTG to a final concentration of 0.1 mM and the cells were cultured overnight at 16°C. Cells were collected by centrifugation (3500×g, 10 minutes) and disrupted with an ultrasonic homogenizer. After removing debris by centrifugation (17000×g, 10 min), the fraction containing soluble protein was applied to a Ni-NTA affinity column (Merck Millipore). The column was washed with washing buffer and eluted with washing buffer containing 500 mM imidazole. The column was connected to an Amicon Ultra 0.5 mL filter (Merck Millipore). The concentration of the resulting protein solution was measured using a Bio-Rad protein assay kit. The amino acid sequence of the obtained recombinant AgcF is shown in SEQ ID NO:5.
 (6)アルギシクラミドC(3)の全合成
Figure JPOXMLDOC01-appb-C000014

 Libraチューブ中の2-クロロトリエチル樹脂S1(100mg、0.160mmol)を、CHClにて30分膨潤させ、次いで、過剰な溶媒を除去した。CHCl(0.5mL)中のFmoc-l-Ile-OH(17.5mg,0.05 mmol)およびi-PrNEt(26 μL,0.15 mmol)の溶液に樹脂を添加し、37℃で1時間撹拌した。反応混合物を濾過し、DMF(x3)、CHCl(x3)、メタノールで洗浄し、AcO/CHCl(=1:4)で洗浄し、次いで、真空乾燥を1時間行ってFmoc-L-Ile-2-クロロトリチル樹脂S2を得た。
 S2をCHCl中で2時間膨潤させ、7サイクル[Fmoc-L-Phe-OH,Fmoc-L-Val-OH,Fmoc-L-Arg(Pbf)-OH,Fmoc-L-Pro-OH,Fmoc-L-Pro-OH,Fmoc-L-Leu-OH,Fmoc-L-Val-OH]の固相ペプチド合成プロトコール(下記工程1-4)に供して、樹脂に結合したオクタペプチドS3を得た。

 固相ペプチド合成プロトコール
 工程1:20%ピペリジン/DMF溶液を用いることにより(10分間、室温)、固相に支持されたペプチドのFmoc基を除去した。
 工程2:反応容器中の樹脂をDMF(x3)およびCHCl(x3)で洗浄した。
 工程3:F-mocにて保護されたビルディングブロック(4eq)の溶液に、NMP中のDIC(4eq)およびOxyma(DMF中4eq)を添加した。プレアクティベーションの2~3分後に、混合物を反応容器に注入した。得られた混合物を30分撹拌した。
 工程4:反応容器中の樹脂をDMF(x3)およびCHCl(x3)で洗浄した。工程1-4を繰り返すことによりアミノ酸を固相支持体上に濃縮した。
Figure JPOXMLDOC01-appb-C000015

 ペプチドS3にCHCl/(CF)CHOH(=70:30)(2.0mL)を添加し、20分撹拌し、反応生成物を濾過した。この手順を2回繰り返した。濾液を減圧乾燥して粗ペプチドS4を得て、これをさらに精製せずに次工程に使用した。S4をDMF/CHCl(=10:90)(50 mL)に溶解し、この溶液に2,6-ジメチルピリジン(28 μL,0.2 mmol)、HOAt(13.5 μL,0.1 mmol)およびPyBOP(52.0 mg,0.1 mmol)を添加した。40℃で一晩撹拌した後、反応混合物をEtOAc(x3)で抽出し、食塩水で洗浄し、MgSOにて乾燥させ、次いで濃縮して粗ペプチドS5を得た。S5残渣にTFA/フェノール/アニソール/DODT(=90:5:3:2)(2.0mL)を添加し、30分撹拌し、次いで反応混合物を濾過した。濾液をEtO(12mL)で希釈し、冷却し(-30℃)、次いで3500xgで10分間、4℃で遠心分離して粗ペプチド3を得た。逆相HPLC(Wakosil-II 5C18 AR, 20 x 250 mm カラム)(MeCN+0.1%TFA:HO+0.1%TFA(40:60)にて溶出)にて粗ペプチド3を精製して、ペプチド3(19工程で収量4.3 mg,収率9.3 %)を白色泡状物質として得た。
 合成されたペプチド3、Microcystis aeruginosa NIES-88から単離されたアルギシクラミドC(上記(3)参照)について、LC-MSの結果を比較した(図1)。両者のピークが同じ保持時間にて見られた。また、両者を混合した場合も、同じ保持時間にて1つのピークが見られた。
 合成されたペプチド3、Microcystis aeruginosa NIES-88から単離されたアルギシクラミドC(上記(3)参照)について、H NMR(500MHz,DMSO-d6)および13C NMR(125MHz,DMSO-d6)の結果を比較した(それぞれ図2および図3)。H NMRおよび13C NMRの両方において、合成されたペプチド3とMicrocystis aeruginosa NIES-88から単離されたアルギシクラミドCのチャートのパターンが一致した。
 これらの結果から、合成されたペプチド3は、Microcystis aeruginosa NIES-88から単離されたアルギシクラミドCと同一物質であることが確認された。
(6) Total Synthesis of Argicyclamide C (3)
Figure JPOXMLDOC01-appb-C000014

2-Chlorotriethyl resin S1 (100 mg, 0.160 mmol) in a Libra tube was swelled with CH 2 Cl 2 for 30 minutes, then excess solvent was removed. The resin was added to a solution of Fmoc-l-Ile-OH (17.5 mg, 0.05 mmol) and i - Pr NEt (26 μL, 0.15 mmol) in CH 2 Cl 2 (0.5 mL). , and stirred at 37° C. for 1 hour. The reaction mixture was filtered, washed with DMF (x 3), CH 2 Cl 2 (x 3), methanol, Ac 2 O/CH 2 Cl 2 (=1:4), and then vacuum dried for 1 hour. to obtain Fmoc-L-Ile-2-chlorotrityl resin S2.
S2 was swollen in CH 2 Cl 2 for 2 hours and subjected to 7 cycles [Fmoc-L-Phe-OH, Fmoc-L-Val-OH, Fmoc-L-Arg(Pbf)-OH, Fmoc-L-Pro-OH , Fmoc-L-Pro-OH, Fmoc-L-Leu-OH, Fmoc-L-Val-OH] were subjected to a solid-phase peptide synthesis protocol (steps 1-4 below) to obtain resin-bound octapeptide S3. Obtained.

Solid Phase Peptide Synthesis Protocol Step 1: The Fmoc group of the solid phase supported peptide was removed by using a 20% piperidine/DMF solution (10 min, room temperature).
Step 2 : The resin in the reaction vessel was washed with DMF (x3) and CH2Cl2 ( x3).
Step 3: To a solution of F-moc protected building block (4 eq) was added DIC (4 eq) in NMP and Oxyma (4 eq in DMF). After 2-3 minutes of preactivation, the mixture was poured into the reaction vessel. The resulting mixture was stirred for 30 minutes.
Step 4: The resin in the reaction vessel was washed with DMF ( x3) and CH2Cl2 ( x3). Amino acids were enriched onto the solid phase support by repeating steps 1-4.
Figure JPOXMLDOC01-appb-C000015

CH 2 Cl 2 /(CF 3 )CHOH (=70:30) (2.0 mL) was added to peptide S3, stirred for 20 minutes and the reaction product was filtered. This procedure was repeated twice. The filtrate was dried under vacuum to give crude peptide S4, which was used in the next step without further purification. S4 was dissolved in DMF/CH 2 Cl 2 (=10:90) (50 mL), and 2,6-dimethylpyridine (28 μL, 0.2 mmol), HOAt (13.5 μL, 0.2 mmol) were added to the solution. 1 mmol) and PyBOP (52.0 mg, 0.1 mmol) were added. After stirring overnight at 40° C., the reaction mixture was extracted with EtOAc (×3), washed with brine, dried over MgSO 4 and concentrated to give crude peptide S5. TFA/phenol/anisole/DODT (=90:5:3:2) (2.0 mL) was added to the S5 residue and stirred for 30 minutes, then the reaction mixture was filtered. The filtrate was diluted with Et 2 O (12 mL), chilled (−30° C.), and then centrifuged at 3500×g for 10 min at 4° C. to give crude peptide 3. Crude peptide 3 was purified by reversed-phase HPLC (Wakosil-II 5C18 AR, 20 x 250 mm column) (eluted with MeCN + 0.1% TFA: H 2 O + 0.1% TFA (40:60)) to give peptide 3 (4.3 mg over 19 steps, 9.3% yield) was obtained as a white foam.
LC-MS results were compared for synthesized peptide 3, algicyclamide C isolated from Microcystis aeruginosa NIES-88 (see (3) above) (FIG. 1). Both peaks were seen at the same retention time. Also, when both were mixed, one peak was observed at the same retention time.
1 H NMR (500 MHz, DMSO-d6) and 13 C NMR (125 MHz, DMSO-d6) results for synthesized peptide 3, algicyclamide C isolated from Microcystis aeruginosa NIES-88 (see (3) above). were compared (Figs. 2 and 3, respectively). In both 1 H NMR and 13 C NMR, the chart patterns of synthesized peptide 3 and algicyclamide C isolated from Microcystis aeruginosa NIES-88 matched.
These results confirmed that the synthesized peptide 3 was the same substance as algicyclamide C isolated from Microcystis aeruginosa NIES-88.
 (7)本発明の酵素(AgcF)によるアルギシクラミドC(3)からアルギシクラミドA(1)への変換(下スキーム)
Figure JPOXMLDOC01-appb-C000016

 プレニル基供与体としてジメチルアリル二リン酸(DMAPP)を用い、プレニル基受容体としてアルギシクラミドC(上記合成品3)を用いて、上記(5)の手順で得られた組換えAgcFによるプレニル基転移反応についてインビトロにて確認した。反応液(50μL)は以下のものを含んでいた:50mM Tris-HCl(pH8.0)、200μM アルギシクラミドC、1mM DMAPP、1mM ジチオスレイトール、500mM NaCl、50mM MgCl。組換えAgcFを反応液に添加して37℃で2時間反応を行った。反応液を経時的にサンプリングし、逆相HPLCにより分析した。
(7) Conversion of Argicyclamide C (3) to Argicyclamide A (1) by the enzyme (AgcF) of the present invention (lower scheme)
Figure JPOXMLDOC01-appb-C000016

Using dimethylallyl diphosphate (DMAPP) as a prenyl group donor and using algicyclamide C (the above synthetic product 3) as a prenyl group acceptor, prenyl group transfer by recombinant AgcF obtained by the above procedure (5) The reaction was confirmed in vitro. Reactions (50 μL) contained the following: 50 mM Tris-HCl (pH 8.0), 200 μM algicyclamide C, 1 mM DMAPP, 1 mM dithiothreitol, 500 mM NaCl, 50 mM MgCl 2 . Recombinant AgcF was added to the reaction solution and the reaction was carried out at 37°C for 2 hours. The reaction solution was sampled over time and analyzed by reverse phase HPLC.
 基質および反応生成物の消長を図4に示す。反応時間の経過とともに基質3の消費とbis-プレニル化体1の生成が確認された。反応前期(5~30分)にはモノ-プレニル化体2の生成も確認された。反応前に熱失活したAgcFを用いて反応を行った場合は、基質3のピークのみが見られた。これらの結果から、AgcFにより実際にプレニル基が3のアルギニン残基に転移され、1が生成したことが確認された。 Figure 4 shows the evolution of substrates and reaction products. Consumption of substrate 3 and production of bis-prenylated product 1 were confirmed with the passage of reaction time. Formation of the mono-prenylated product 2 was also confirmed in the first half of the reaction (5 to 30 minutes). Only the substrate 3 peak was seen when the reaction was performed with AgcF that had been heat-inactivated prior to the reaction. These results confirmed that the prenyl group was indeed transferred to the arginine residue of 3 by AgcF to produce 1.
 (8)プレニル基受容体ペプチド中のアミノ酸に関する研究-本発明の酵素(AgcF)の基質選択性
 上の実験結果からわかるように、AgcFは、ペプチド中のアルギニン残基に対して2回作用することで、アルギニン残基のビスプレニル化を触媒する新規酵素である。AgcFはペプチド中のリジン、セリン、スレオニン、トリプトファン、チロシン残基のプレニル化は触媒しないことも明らかになっている(データ示さず)。そこで、AgcFのより詳細な基質選択性について研究した。本実験では、基質ペプチド中のアルギニン以外の配列に対する選択性を調べた。
(8) Studies on Amino Acids in Prenyl Group Acceptor Peptides—Substrate Selectivity of the Enzyme of the Present Invention (AgcF) As can be seen from the above experimental results, AgcF acts twice on arginine residues in peptides. Thus, it is a novel enzyme that catalyzes bisprenylation of arginine residues. It has also been shown that AgcF does not catalyze the prenylation of lysine, serine, threonine, tryptophan, and tyrosine residues in peptides (data not shown). Therefore, more detailed substrate selectivity of AgcF was studied. In this experiment, the selectivity for sequences other than arginine in the substrate peptide was investigated.
 アルギシクラミドCの配列に含まれるアミノ酸残基を1つずつアラニンに置換した環状ペプチドを合成し、各ペプチドについて(7)と同様の条件にて反応を行った。結果を図5に示す。大半の基質についてビスプレニル化が優位に進行し、中間体であるモノプレニル体の生成も確認された。しかし、アルギニンの隣に位置するプロリンをアラニンに置換した場合のみ、反応の進行が認められなかった。これらの結果から、アルギニンに隣接するプロリンがAgcFの触媒活性に重要であること、プロリンン以外の配列に関しては、AgcFは寛容な選択性を有することがわかった。 A cyclic peptide was synthesized in which each amino acid residue contained in the sequence of algicyclamide C was replaced with alanine, and each peptide was reacted under the same conditions as in (7). The results are shown in FIG. Bisprenylation proceeded predominantly for most of the substrates, and the production of the intermediate monoprenyl form was also confirmed. However, the progress of the reaction was not observed only when the proline located next to arginine was replaced with alanine. These results indicate that prolines adjacent to arginine are important for the catalytic activity of AgcF, and that AgcF has a tolerant selectivity with respect to sequences other than prolines.
 (9)モノプレニル化を触媒する本発明の酵素(AgcF)の変異体
 遺伝子組換え法を用いて、AgcFのN末端から167番目のヒスチジン残基(H167)をアラニン残基に置換したAgcFの変異体(AgcF_H167A)を得た。この変異体を用いて、(7)と同様の条件にてアルギシクラミドCのプレニル化反応を行った。結果を図6に示す。酵素添加反応系のHPLCチャートにおいて、保持時間約6.4分のところに新たなピークの生成が認められた。質量分析(MS)により、この新たな生成物は、アルギシクラミドCのアルギニン残基がモノプレニル化体であることが明らかとなった。酵素添加反応系のHPLCチャートにおいて、ビスプレニル化体のピークは認められなかった。これらの結果から、AgcFのH167はアルギニン残基のビスプレニル化にとり重要な残基であること、AgcFのH167を他のアミノ酸に置換すると、ビスプレニル化が抑制され、モノプレニル化体が蓄積することがわかった。
(9) Mutant of the enzyme (AgcF) of the present invention that catalyzes monoprenylation A mutation of AgcF in which the 167th histidine residue (H167) from the N-terminus of AgcF is replaced with an alanine residue using a genetic recombination method body (AgcF_H167A) was obtained. Using this mutant, a prenylation reaction of algicyclamide C was performed under the same conditions as in (7). The results are shown in FIG. On the HPLC chart of the enzyme addition reaction system, a new peak was observed at a retention time of about 6.4 minutes. Mass spectrometry (MS) revealed that this new product was monoprenylated at the arginine residue of Argicyclamide C. No peak of the bisprenylated form was observed in the HPLC chart of the enzyme addition reaction system. These results show that H167 of AgcF is an important residue for bisprenylation of arginine residues, and that substitution of H167 of AgcF with other amino acids suppresses bisprenylation and accumulates monoprenylated forms. rice field.
 (10)AgcFホモログUHCC0183PTによるプレニル化反応
 (i)組換えUHCC0183PTの調製
 Aphanizomenon sp. UHCC 0183の有するAgcFホモログの公開配列(WP_168465419.1)を参考にして、大腸菌用にコドンを最適化した塩基配列を合成し、pColdIIのNdeI/HindIII部位に挿入してN末端Hisタグ融合タンパク質発現プラスミドUHCC0183PT-pColdIIを作製した。上記「(5)組換えAgcFの調製」と同様にして、組換えUHCC0183PTタンパク質を調製した。組換えUHCC018PTのアミノ酸配列を配列番号:8に示す。
 (ii)酵素反応基質
 下式に示す基質(プレニル基受容体)を合成し、使用した。
Figure JPOXMLDOC01-appb-C000017
 基質の合成は、上記「(6)アルギシクラミドC(3)全合成」と同様の手順で行った。
 (iii)UHCC0183PTによるプレニル化反応
 組換えUHCC0183PT、上記基質およびDMAPPを用いて、「(7)本発明の酵素(AgcF)によるアルギシクラミドC(3)からアルギシクラミドA(1)への変換」と同様の条件で酵素反応を行った。
 反応物をUPLCにて分析した。図7AのUPLCクロマトグラムに示すように、酵素依存的にモノプレニル化体とビスプレニル化体が生成した。基質が4.7分、モノプレニル化体が5.3分、ビスプレニル化体が5.9分に溶出した。図7BのUPLC-MS分析の結果から、UPLCクロマトグラムの各ピークが基質、モノプレニル化体、およびビスプレニル化体に由来するものであることが確認された。
(10) Prenylation reaction with AgcF homolog UHCC0183PT (i) Preparation of recombinant UHCC0183PT Base sequence codon-optimized for Escherichia coli with reference to published sequence (WP_168465419.1) of AgcF homolog possessed by Aphanizomenon sp. UHCC 0183 was synthesized and inserted into the NdeI/HindIII sites of pColdII to generate the N-terminal His-tag fusion protein expression plasmid UHCC0183PT-pColdII. A recombinant UHCC0183PT protein was prepared in the same manner as in "(5) Preparation of recombinant AgcF" above. The amino acid sequence of recombinant UHCC018PT is shown in SEQ ID NO:8.
(ii) Substrate for enzyme reaction A substrate (prenyl group acceptor) shown in the following formula was synthesized and used.
Figure JPOXMLDOC01-appb-C000017
Substrate synthesis was performed in the same manner as in "(6) Argicyclamide C (3) Total Synthesis" above.
(iii) Prenylation reaction with UHCC0183PT Using recombinant UHCC0183PT, the above substrate and DMAPP, The enzymatic reaction was performed under the conditions.
The reaction was analyzed by UPLC. As shown in the UPLC chromatogram of FIG. 7A, monoprenylated and bisprenylated forms were produced in an enzyme-dependent manner. The substrate was eluted at 4.7 minutes, the monoprenylated form at 5.3 minutes, and the bisprenylated form at 5.9 minutes. The results of UPLC-MS analysis in FIG. 7B confirmed that each peak in the UPLC chromatogram was derived from the substrate, monoprenylated form, and bisprenylated form.
 (11)AgcFホモログPCC9443PTによるプレニル化反応
 (i)組換えPCC9443PTの調製
 Microcystis aeruginosa PCC 9443の有するAgcFホモログの公開配列(WP_002767616)を参考にして、大腸菌用にコドンを最適化した塩基配列を合成した。上で説明した組換えUHCC0183PTの調製と同様の方法にて、組換えPC9443PTを得た。組換えPCC9443PTのアミノ酸配列を配列番号:11に示す。
 (ii)酵素反応基質
 下式に示す基質(プレニル基受容体)を合成し、使用した。
Figure JPOXMLDOC01-appb-C000018
 基質の合成は、上記「(6)アルギシクラミドC(3)全合成」と同様の手順で行った。
 (iii)PCC9443PTによるプレニル化反応
 組換えUHCC0183PT、上記基質およびDMAPPを用いて反応を行い、反応物をHPLCまたはUPLCにて分析し、プレニル化生成物を確認する。さらに、質量スペクトル分析にてプレニル化生成物を確認する。
(11) Prenylation reaction with AgcF homolog PCC9443PT (i) Preparation of recombinant PCC9443PT A nucleotide sequence with codons optimized for E. coli was synthesized with reference to the published sequence (WP_002767616) of the AgcF homolog of Microcystis aeruginosa PCC 9443. . Recombinant PC9443PT was obtained in a manner similar to the preparation of recombinant UHCC0183PT described above. The amino acid sequence of recombinant PCC9443PT is shown in SEQ ID NO:11.
(ii) Substrate for enzyme reaction A substrate (prenyl group acceptor) shown in the following formula was synthesized and used.
Figure JPOXMLDOC01-appb-C000018
Substrate synthesis was performed in the same manner as in "(6) Argicyclamide C (3) Total Synthesis" above.
(iii) Prenylation reaction with PCC9443PT A reaction is performed using recombinant UHCC0183PT, the above substrate and DMAPP, and the reaction is analyzed by HPLC or UPLC to confirm the prenylation product. In addition, mass spectroscopy confirms the prenylation product.
 本発明は、創薬、機能性ペプチドの製造等の分野において有用である。 The present invention is useful in fields such as drug discovery and production of functional peptides.
 配列番号:1は、AgcF(野生型)のアミノ酸配列を示す。
 配列番号:2は、AgcF(野生型)をコードする遺伝子の塩基配列を示す。
 配列番号:3は、AgcFをコードするDNAフラグメントを増幅するためのフォワードプライマーの塩基配列を示す。
 配列番号:4は、AgcFをコードするDNAフラグメントを増幅するためのリバースプライマーの塩基配列を示す。
 配列番号:5は、組換えAgcFのアミノ酸配列を示す。
 配列番号:6は、UHCC0183PT(野生型)のアミノ酸配列を示す。
 配列番号:7は、UHCC0183PT(野生型)をコードする遺伝子の塩基配列を示す。
 配列番号:8は、組換えUHCC0183PTのアミノ酸配列を示す。
 配列番号:9は、PCC9443PT(野生型)のアミノ酸配列を示す。
 配列番号:10は、PCC9443PT(野生型)をコードする遺伝子の塩基配列を示す。
 配列番号:11は、組換えPCC9443PTのアミノ酸配列を示す。
SEQ ID NO: 1 shows the amino acid sequence of AgcF (wild type).
SEQ ID NO: 2 shows the base sequence of the gene encoding AgcF (wild type).
SEQ ID NO: 3 shows the nucleotide sequence of a forward primer for amplifying a DNA fragment encoding AgcF.
SEQ ID NO: 4 shows the nucleotide sequence of a reverse primer for amplifying a DNA fragment encoding AgcF.
SEQ ID NO:5 shows the amino acid sequence of recombinant AgcF.
SEQ ID NO: 6 shows the amino acid sequence of UHCC0183PT (wild type).
SEQ ID NO: 7 shows the base sequence of the gene encoding UHCC0183PT (wild type).
SEQ ID NO:8 shows the amino acid sequence of recombinant UHCC0183PT.
SEQ ID NO: 9 shows the amino acid sequence of PCC9443PT (wild type).
SEQ ID NO: 10 shows the nucleotide sequence of the gene encoding PCC9443PT (wild type).
SEQ ID NO: 11 shows the amino acid sequence of recombinant PCC9443PT.

Claims (19)

  1.  下記アミノ酸配列を含む、ペプチド中のアルギニン残基またはアルギニン類縁体残基、あるいはアルギニンまたはアルギニン類縁体にプレニル基を転移する酵素:
      (a)配列番号:1のアミノ酸配列、
      (b)配列番号:1のアミノ酸配列に対して58%以上の同一性を有するアミノ酸配列、または
      (c)配列番号:1に示すアミノ酸配列において1ないし数個のアミノ酸残基が欠失、置換、挿入または付加されたアミノ酸配列。
    An enzyme that transfers a prenyl group to an arginine residue or an arginine analogue residue, or an arginine or an arginine analogue, in a peptide comprising the amino acid sequence:
    (a) the amino acid sequence of SEQ ID NO: 1;
    (b) an amino acid sequence having 58% or more identity to the amino acid sequence of SEQ ID NO: 1, or (c) deletion or substitution of 1 to several amino acid residues in the amino acid sequence shown in SEQ ID NO: 1 , inserted or added amino acid sequence.
  2.  下記塩基配列を含む核酸:
      (a)配列番号:1のアミノ酸配列をコードする塩基配列、
      (b)配列番号:1のアミノ酸配列に対して58%以上の同一性を有するアミノ酸配列をコードする塩基配列、
      (c)配列番号:1に示すアミノ酸配列において1ないし数個のアミノ酸残基が欠失、置換、挿入または付加されたアミノ酸配列をコードする塩基配列、または
      (d)配列番号:1に示すアミノ酸配列をコードする塩基配列に対して相補的な塩基配列にストリンジェントな条件下でハイブリダイズする塩基配列。
    A nucleic acid containing the following nucleotide sequence:
    (a) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 1;
    (b) a nucleotide sequence encoding an amino acid sequence having 58% or more identity to the amino acid sequence of SEQ ID NO: 1;
    (c) a nucleotide sequence encoding an amino acid sequence in which one to several amino acid residues are deleted, substituted, inserted or added in the amino acid sequence shown in SEQ ID NO: 1, or (d) the amino acid shown in SEQ ID NO: 1 A base sequence that hybridizes under stringent conditions to a base sequence complementary to the base sequence encoding the sequence.
  3.  請求項2に記載の核酸によりコードされる、ペプチド中のアルギニン残基またはアルギニン類縁体残基、あるいはアルギニンまたはアルギニン類縁体にプレニル基を転移する酵素。 An enzyme that transfers a prenyl group to an arginine residue or an arginine analogue residue in a peptide, or an arginine or an arginine analogue encoded by the nucleic acid according to claim 2.
  4.  請求項2に記載の核酸を含むベクター。 A vector comprising the nucleic acid according to claim 2.
  5.  下記工程を含む、ペプチド中のアルギニン残基またはアルギニン類縁体残基、あるいはアルギニンまたはアルギニン類縁体にプレニル基を転移する酵素の製造方法:
      (a)請求項2に記載の核酸または請求項4に記載のベクターを細胞に導入する工程、
      (b)工程(a)で得られた細胞を培養する工程、および
      (c)工程(b)で得られた培養物からペプチド中のアルギニン残基またはアルギニン類縁体残基、あるいはアルギニンまたはアルギニン類縁体をプレニル化する酵素を得る工程。
    A method for producing an enzyme that transfers a prenyl group to an arginine residue or an arginine analogue residue in a peptide, or an arginine or an arginine analogue, comprising the steps of:
    (a) introducing the nucleic acid of claim 2 or the vector of claim 4 into a cell;
    (b) culturing the cells obtained in step (a); and (c) arginine residues or arginine analogue residues, or arginine or arginine analogues in peptides from the culture obtained in step (b). Obtaining an enzyme that prenylates the body.
  6.  下記(i)および(ii):
     (i)アルギニン残基またはアルギニン類縁体残基を含むペプチド、あるいはアルギニンまたはアルギニン類縁体
     (ii)プレニル基含有化合物
    に請求項1または3に記載の酵素を作用させることを含む、アルギニン残基またはアルギニン類縁体残基がプレニル化されたペプチド、あるいはプレニル化されたアルギニンまたはアルギニン類縁体の製造方法。
    (i) and (ii) below:
    (i) a peptide containing an arginine residue or an arginine analogue residue, or an arginine or an arginine analogue (ii) an arginine residue or an arginine residue, comprising allowing the enzyme of claim 1 or 3 to act on a prenyl group-containing compound; A method for producing a peptide in which an arginine analogue residue is prenylated, or a prenylated arginine or arginine analogue.
  7.  ペプチドが環状ペプチドである、請求項6記載の方法。 The method according to claim 6, wherein the peptide is a cyclic peptide.
  8.  ペプチドにおいて、プロリン残基がアルギニン残基またはアルギニン類縁体残基に隣接しており、プロリン残基がそのカルボキシル基を介してアルギニン残基またはアルギニン類縁体残基のアミノ基に結合している、請求項6または7記載の方法。 In the peptide, a proline residue is adjacent to an arginine residue or an arginine analogue residue, and the proline residue is attached through its carboxyl group to the amino group of the arginine residue or arginine analogue residue. A method according to claim 6 or 7.
  9.  酵素が、配列番号:1に示すアミノ酸配列のN末端から167番目のアミノ酸残基がヒスチジン以外のアミノ酸残基であるアミノ酸配列を含むものであるか、あるいは配列番号:1に示すアミノ酸配列のN末端から167番目のアミノ酸残基に対応するアミノ酸残基がヒスチジン以外のアミノ酸残基であるアミノ酸配列を含むものであり、プレニル化がモノプレニル化である、請求項6~8のいずれか1項記載の方法。 The enzyme contains an amino acid sequence in which the 167th amino acid residue from the N-terminal of the amino acid sequence shown in SEQ ID NO: 1 is an amino acid residue other than histidine, or the amino acid sequence shown in SEQ ID NO: 1 The method according to any one of claims 6 to 8, wherein the amino acid residue corresponding to the 167th amino acid residue is an amino acid residue other than histidine, and the prenylation is monoprenylation. .
  10.  ヒスチジン以外のアミノ酸がアラニンである、請求項9項記載の方法。 The method according to claim 9, wherein the amino acid other than histidine is alanine.
  11.  アルギニン残基またはアルギニン類縁体残基を含むペプチド、あるいはアルギニンまたはアルギニン類縁体を含む化合物ライブラリーに請求項1または3に記載の酵素を作用させることを含む、アルギニン残基またはアルギニン類縁体残基がプレニル化されたペプチド、あるいはプレニル化されたアルギニンまたはアルギニン類縁体を含む化合物ライブラリーの製造方法。 Arginine residue or arginine analogue residue, comprising allowing the enzyme of claim 1 or 3 to act on a peptide containing arginine residue or arginine analogue residue, or a compound library containing arginine or arginine analogue residue is a prenylated peptide, or a compound library containing prenylated arginine or arginine analogues.
  12.  ペプチドが環状ペプチドである、請求項11記載の方法。 The method according to claim 11, wherein the peptide is a cyclic peptide.
  13.  ペプチドにおいて、プロリン残基がアルギニン残基またはアルギニン類縁体残基に隣接しており、プロリン残基がそのカルボキシル基を介してアルギニン残基またはアルギニン類縁体残基のアミノ基に結合している、請求項11または12記載の方法。 In the peptide, a proline residue is adjacent to an arginine residue or an arginine analogue residue, and the proline residue is attached through its carboxyl group to the amino group of the arginine residue or arginine analogue residue. 13. A method according to claim 11 or 12.
  14.  酵素が、配列番号:1に示すアミノ酸配列のN末端から167番目のアミノ酸残基がヒスチジン以外のアミノ酸残基であるアミノ酸配列を含むものであるか、あるいは配列番号:1に示すアミノ酸配列のN末端から167番目のアミノ酸残基に対応するアミノ酸残基がヒスチジン以外のアミノ酸残基であるアミノ酸配列を含むものであり、プレニル化がモノプレニル化である、請求項11~13のいずれか1項記載の方法。 The enzyme contains an amino acid sequence in which the 167th amino acid residue from the N-terminal of the amino acid sequence shown in SEQ ID NO: 1 is an amino acid residue other than histidine, or the amino acid sequence shown in SEQ ID NO: 1 The method according to any one of claims 11 to 13, wherein the amino acid residue corresponding to the 167th amino acid residue is an amino acid residue other than histidine, and the prenylation is monoprenylation. .
  15.  ヒスチジン以外のアミノ酸がアラニンである、請求項14項記載の方法。 The method according to claim 14, wherein the amino acid other than histidine is alanine.
  16.  式(I):
    Figure JPOXMLDOC01-appb-C000001

                      (I)
    [式中、Rは水素またはプレニル基であり、Rは水素またはプレニル基である]
    で示される化合物。
    Formula (I):
    Figure JPOXMLDOC01-appb-C000001

    (I)
    [wherein R 1 is hydrogen or a prenyl group and R 2 is hydrogen or a prenyl group]
    A compound represented by
  17.  式(II):
    Figure JPOXMLDOC01-appb-C000002

                     (II)
    [式中、Rは水素またはプレニル基であり、Rは水素またはプレニル基である]
    で示される化合物。
    Formula (II):
    Figure JPOXMLDOC01-appb-C000002

    (II)
    [wherein R 1 is hydrogen or a prenyl group and R 2 is hydrogen or a prenyl group]
    A compound represented by
  18.  式(III):
    Figure JPOXMLDOC01-appb-C000003
                    (III)
    [式中、Rは水素またはプレニル基であり、Rは水素またはプレニル基である]
    で示される化合物。
    Formula (III):
    Figure JPOXMLDOC01-appb-C000003
    (III)
    [wherein R 1 is hydrogen or a prenyl group and R 2 is hydrogen or a prenyl group]
    A compound represented by
  19.  式(IV):
    Figure JPOXMLDOC01-appb-C000004
                       (IV)
    [式中、Rは水素またはプレニル基であり、Rは水素またはプレニル基である]
    で示される化合物。
    Formula (IV):
    Figure JPOXMLDOC01-appb-C000004
    (IV)
    [wherein R 1 is hydrogen or a prenyl group and R 2 is hydrogen or a prenyl group]
    A compound represented by
PCT/JP2022/004501 2021-02-05 2022-02-04 Novel prenylation enzyme WO2022168952A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022579623A JPWO2022168952A1 (en) 2021-02-05 2022-02-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-017504 2021-02-05
JP2021017504 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022168952A1 true WO2022168952A1 (en) 2022-08-11

Family

ID=82741593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004501 WO2022168952A1 (en) 2021-02-05 2022-02-04 Novel prenylation enzyme

Country Status (2)

Country Link
JP (1) JPWO2022168952A1 (en)
WO (1) WO2022168952A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080490A1 (en) * 2018-10-17 2020-04-23 国立大学法人東京大学 Peptide library production method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080490A1 (en) * 2018-10-17 2020-04-23 国立大学法人東京大学 Peptide library production method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE UniProtKB/TrEMBL Uniprot; ANONYMOUS : "SubName: Full=Uncharacterized protein {ECO:0000313|EMBL:KXS89939.1};", XP055956481 *
OKADA MASAHIRO, SUGITA TOMOTOSHI, AKITA KOHEI, NAKASHIMA YU, TIAN TIAN, LI CHANG, MORI TAKAHIRO, ABE IKURO: "Stereospecific prenylation of tryptophan by a cyanobacterial post-translational modification enzyme", ORGANIC & BIOMOLECULAR CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, vol. 14, no. 40, 28 October 2016 (2016-10-28), pages 9639 - 9644, XP055956490, ISSN: 1477-0520, DOI: 10.1039/C6OB01759B *
PARAJULI ANIRUDRA, KWAK DANIEL H., DALPONTE LUCA, LEIKOSKI NIINA, GALICA TOMAS, UMEOBIKA UGOCHUKWU, TREMBLEAU LAURENT, BENT ANDREW: "A Unique Tryptophan C-Prenyltransferase from the Kawaguchipeptin Biosynthetic Pathway", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, VERLAG CHEMIE, vol. 55, no. 11, 7 March 2016 (2016-03-07), pages 3596 - 3599, XP055956487, ISSN: 1433-7851, DOI: 10.1002/anie.201509920 *
PHAN CHIN-SOON, MATSUDA KENICHI, BALLOO NANDANI, FUJITA KEI, WAKIMOTO TOSHIYUKI, OKINO TATSUFUMI: "Argicyclamides A–C Unveil Enzymatic Basis for Guanidine Bis-prenylation", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 143, no. 27, 14 July 2021 (2021-07-14), pages 10083 - 10087, XP055956492, ISSN: 0002-7863, DOI: 10.1021/jacs.1c05732 *

Also Published As

Publication number Publication date
JPWO2022168952A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
JP4544601B2 (en) Cyclic peptide
JP6430250B2 (en) Gene cluster for biosynthesis of glyceromycin and methylglyceromycin
US20160304571A1 (en) Synthesis of Site Specifically-Linked Ubiquitin
JP2011139667A (en) DIPEPTIDE HAVING PROLINE OR beta-ALANINE AT N-TERMINUS AND METHOD FOR ENZYMATICALLY SYNTHESIZING CYCLIC DIPEPTIDE THEREOF
Grigoreva et al. Identification and characterization of andalusicin: N-terminally dimethylated class III lantibiotic from Bacillus thuringiensis sv. andalousiensis
US20110091942A1 (en) Process for production of cis-4-hydroxy-l-proline
JP2001199997A (en) Transcellular carrier peptide
Kino et al. Dipeptide synthesis by L-amino acid ligase from Ralstonia solanacearum
WO2022168952A1 (en) Novel prenylation enzyme
Utkina et al. Heterologous expression of a synthetic gene encoding a novel hevein-type antimicrobial peptide of Leymus arenarius in Escherichia coli cells
WO1996013516A1 (en) Peptide sequence that forms mucin sugar chain and technique for modifying protein to be linked with mucin sugar chain
EP0258203B1 (en) Novel substrate peptides
CN111133105B (en) D-amino acid dehydrogenase
WO2009056901A1 (en) Cyclodipeptide synthases (cdss) and their use in the synthesis of linear dipeptides
JP2007319063A (en) Method for producing dipeptide
CA1305287C (en) Inhibitor peptides
Yamaji et al. Cyclothialidine analogs, novel DNA gyrase inhibitors
EP3792349A1 (en) Peptide macrocyclase
WO2023048262A1 (en) Peptide ligation using enzyme
JP2011239686A (en) Method of producing peptide and peptide derivative
Kanno et al. Sequence specificity and efficiency of protein N-terminal methionine elimination in wheat-embryo cell-free system
CN116640819B (en) Preparation method of alpha-amino acid lipid acyltransferase and application of alpha-amino acid lipid acyltransferase in dipeptide synthesis
WO2023068215A1 (en) Efficient chemo-enzymatic synthesis method for cyclic peptide
Krzyzaniak et al. Specific induction of Z-DNA conformation by a nuclear localization signal peptide of lupin glutaminyl tRNA synthetase
JP2584839B2 (en) Inhibitor peptide (I) and (II)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022579623

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749823

Country of ref document: EP

Kind code of ref document: A1