WO2022168834A1 - Optical film, polarization plate, and display device - Google Patents

Optical film, polarization plate, and display device Download PDF

Info

Publication number
WO2022168834A1
WO2022168834A1 PCT/JP2022/003853 JP2022003853W WO2022168834A1 WO 2022168834 A1 WO2022168834 A1 WO 2022168834A1 JP 2022003853 W JP2022003853 W JP 2022003853W WO 2022168834 A1 WO2022168834 A1 WO 2022168834A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical film
obliquely stretched
width direction
easy
Prior art date
Application number
PCT/JP2022/003853
Other languages
French (fr)
Japanese (ja)
Inventor
翠 木暮
晋平 畠山
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2022579553A priority Critical patent/JPWO2022168834A1/ja
Priority to CN202280013173.XA priority patent/CN116848442A/en
Publication of WO2022168834A1 publication Critical patent/WO2022168834A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/03Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
    • B32B7/035Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features using arrangements of stretched films, e.g. of mono-axially stretched films arranged alternately
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to optical films, polarizing plates and display devices.
  • Polarizing plates are usually used in displays such as organic EL displays (OLED) and liquid crystal displays (LCD).
  • a polarizing plate includes a polarizer and an optical film having a function to protect it and an optical compensation function.
  • a polarizing plate is produced by bonding a polarizer and an optical film together.
  • an optical film having an easy-adhesion layer is sometimes used in order to facilitate adhesion to the polarizer.
  • an easy-adhesion film containing a transparent film substrate and an easy-adhesion layer is known (for example, Patent Document 1).
  • the transparent film substrate is an acrylic resin film stretched in the horizontal and vertical directions, and the easy-adhesion layer contains urethane resin as a binder resin and fine particles.
  • optical films containing the easy-adhesion layer contain film substrates that are either stretched in the horizontal direction or the vertical direction, or are not stretched.
  • the saber-form, which is used as an index of distortion of such a film substrate, is usually set to be less than 10 mm.
  • the polarizing plate is produced by unrolling a strip-shaped polarizing plate wound into a roll and cutting it to a predetermined length. Therefore, it is required to prevent the formation of fine scratches on the surface of the optical film as much as possible when the strip-shaped polarizing plate is wound into a roll.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an optical film, a polarizing plate, and a display device that can suppress fine scratches due to winding and make it difficult for white marks to occur.
  • the present invention relates to optical films, polarizing plates and display devices.
  • the optical film of the present invention is a strip-shaped film comprising an obliquely stretched film having a slow axis tilted with respect to the width direction of the film in the plane of the film, and an easy-adhesion layer disposed on the surface of the obliquely stretched film.
  • the midpoints in the width direction of the film are respectively m0, m1, and m2 at the 0 m position, 10 m position, and 20 m position in the direction perpendicular to the width direction of the obliquely stretched film, m0 and the above
  • the saber form represented by the distance of m1 in the width direction of the film from the center line connecting m2 is 10 mm or more, and the indentation elastic modulus of the easily adhesive layer is 1.5 to 3.0 GPa.
  • the polarizing plate of the present invention includes a polarizer, the optical film of the present invention arranged on at least one surface of the polarizer, and an adhesive layer arranged between the polarizer and the easily adhesive layer.
  • the display device of the present invention includes a display element and the polarizing plate of the present invention, and the optical film is arranged between the display element and the polarizer.
  • an optical film it is possible to provide an optical film, a polarizing plate, and a display device that can prevent fine scratches and make it difficult for white traces to occur due to winding.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of an optical film according to one embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a method for measuring saber form.
  • FIG. 3 is a schematic diagram showing the configuration of an obliquely stretched film manufacturing apparatus.
  • FIG. 4 is a schematic diagram showing the configuration of the extending portion of FIG.
  • FIG. 5A is a cross-sectional view showing the configuration of a polarizing plate according to one embodiment of the present invention
  • FIG. 5B is an exploded view showing the arrangement relationship of a polarizer, a retardation film, and a protective film that constitute the polarizing plate of FIG. 5A. It is a perspective view.
  • FIG. 6 is a schematic cross-sectional view showing the configuration of an organic EL display device according to one embodiment of the present invention.
  • a film with a large saber form tends to have uneven winding hardness in the width direction of the film. That is, in the width direction of the film, there are likely to be areas where the winding hardness is relatively high and areas where the winding hardness is relatively low.
  • the portion with low winding hardness tends to sag the film, and tends to cause local torsional deformation during winding (or unwinding). Since the torsionally deformed portion is convex, it easily comes into contact with the adjacent easy-adhesion layer. Since the easy-adhesion layer is relatively soft, twist deformation is likely to be transferred, and it is considered that white marks are formed.
  • the present inventors have found that by setting the indentation modulus of the easy-adhesion layer to a certain value or higher (moderately high), it is possible to suppress the white marks that tend to occur when a diagonally stretched film having a large saber form is used. I found
  • the indentation elastic modulus of the easy-adhesion layer is 1.5 GPa or more, white marks can be suppressed. Further, by setting the indentation elastic modulus of the easy-adhesion layer to 3.0 GPa or less, the adhesion to the polarizer can be less likely to be impaired.
  • the indentation modulus of the easy-adhesion layer can be adjusted, for example, by the composition of the easy-adhesion layer and the degree of cross-linking. For example, by using polyolefin or a cross-linked product thereof as the easy-adhesion layer, the indentation modulus of the easy-adhesion layer can be increased.
  • the configuration of the present invention will be described in detail below.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of an optical film 10 according to one embodiment of the present invention. As shown in FIG. 1, the optical film 10 includes an obliquely stretched film 11 and an easily adhesive layer 12 disposed on its surface.
  • the obliquely stretched film contains a thermoplastic resin.
  • the thermoplastic resin is not particularly limited, it is preferably a resin transparent to a desired wavelength from the viewpoint of use in optical applications.
  • resins include polycarbonates (PC), polyesters, cycloolefinic resins (COP), polyethersulfones, polyimides, (meth)acrylic resins, polysulfones, polyarylates, polyolefins, polyvinyl chloride, fumaric acid Diester resins are included.
  • cycloolefin resin (COP), diester fumarate resin, and polyester are preferred.
  • the cycloolefin-based resin may be a homopolymer or copolymer containing structural units derived from cycloolefin (cyclic olefin).
  • the cycloolefin may be either a polycyclic cycloolefin or a monocyclic cycloolefin, preferably a polycyclic cycloolefin.
  • polycyclic cycloolefins include norbornene, methylnorbornene, dimethylnorbornene, ethylnorbornene, ethylidenenorbornene, butylnorbornene (norbornene monomers), dicyclopentadiene, dihydrodicyclopentadiene, methyldicyclopentadiene.
  • dimethyldicyclopentadiene tetracyclododecene, methyltetracyclododecene, dimethylcyclotetradodecene, tricyclopentadiene, tetracyclopentadiene.
  • norbornene-based monomers are preferred.
  • the cycloolefin-based resin is a polymer containing structural units derived from norbornene-based monomers.
  • a norbornene-based monomer is represented by the following formula (1).
  • R 1 to R 4 in formula (1) each represent a hydrogen atom, a halogen atom, a hydrocarbon group, or a polar group.
  • halogen atoms include fluorine atoms and chlorine atoms.
  • the hydrocarbon group is a hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms, more preferably 1 or 2 carbon atoms.
  • hydrocarbon groups include alkyl groups such as methyl, ethyl, propyl and butyl groups.
  • the hydrocarbon group further has a divalent linking group such as a linking group containing an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom (e.g., a carbonyl group, an imino group, an ether bond, a silyl ether bond, a thioether bond, etc.).
  • polar groups include linking groups such as carboxy groups, hydroxy groups, alkoxy groups, alkoxycarbonyl groups, aryloxycarbonyl groups, amino groups, amido groups, and methylene groups (—(CH 2 ) n —, where n is 1 Groups in which these groups are bonded via the above integers) are included. Among them, an alkoxycarbonyl group and an aryloxycarbonyl group are preferable, and an alkoxycarbonyl group is more preferable.
  • At least one of R 1 to R 4 is preferably a polar group.
  • a cycloolefin resin containing a structural unit derived from a norbornene monomer having a polar group is easily dissolved in a solvent, for example, when forming a film by a solution casting method, and tends to increase the glass transition temperature of the resulting film.
  • R 1 and R 2 of R 1 to R 4 may be hydrogen atoms.
  • p in formula (1) represents an integer from 0 to 2. From the viewpoint of enhancing the heat resistance of the optical film, p is preferably 1-2.
  • Examples of norbornene-based monomers having polar groups include the following.
  • the content of structural units derived from norbornene-based monomers can be 50 to 100 mol% of the total structural units constituting the cycloolefin-based resin.
  • the cycloolefin-based resin may further contain a structural unit derived from another monomer copolymerizable with the structural unit derived from the norbornene-based monomer.
  • examples of other copolymerizable monomers include norbornene-based monomers having no polar groups, and cycloolefin-based monomers having no norbornene skeleton such as cyclobutene, cyclopentene, cycloheptene, and dicyclopentadiene.
  • the weight average molecular weight Mw of the cycloolefin resin is not particularly limited, but is preferably 20,000 to 300,000, more preferably 30,000 to 250,000, and even more preferably 40,000 to 200,000. .
  • Mw of the cycloolefin resin is within the above range, the mechanical properties of the film can be enhanced without impairing the moldability.
  • the Mw of the cycloolefin resin can be measured by gel permeation chromatography (GPC). Specifically, it can be measured under the following conditions using HLC8220GPC manufactured by Tosoh Corporation. (Measurement condition) Eluent: THF Column: TSKgel GMHXL x 2 manufactured by Tosoh Corporation Flow rate: 1.0 mL/min Sample concentration: 0.1% by mass Injection volume: 100 ⁇ L Detector: RI Calibration curve: standard polystyrene Column temperature: 40°C
  • the glass transition temperature Tg of the cycloolefin resin is generally preferably 110°C or higher, more preferably 110 to 350°C, and more preferably 120 to 250°C.
  • Tg of the cycloolefin-based resin is 110°C or higher, the heat resistance of the resulting film is likely to be enhanced, and when it is 350°C or lower, thermal deterioration of the cycloolefin-based resin during molding can be easily suppressed.
  • Tg can be measured by a method based on JIS K 7121-2012 or ASTM D 3418-82 using DSC (Differential Scanning Colorimetry).
  • the fumarate diester-based resin may be a resin containing a structural unit derived from diisopropyl fumarate and a structural unit derived from a fumarate diester having an alkyl group having 1 or 2 carbon atoms.
  • the alkyl group having 1 or 2 carbon atoms in the fumarate diester having an alkyl group having 1 or 2 carbon atoms is a methyl group or an ethyl group, which is a halogen atom such as a fluorine atom or a chlorine atom, an ether group, an ester group, or It may be substituted with an amino group.
  • Examples of fumarate diesters having an alkyl group having 1 or 2 carbon atoms include dimethyl fumarate and diethyl fumarate.
  • the content of structural units derived from diisopropyl fumarate is preferably 50 to 99 mol%, more preferably 60 to 95 mol%;
  • the content of the structural unit derived from the fumaric acid diester may preferably be 1 to 50 mol %, more preferably 5 to 40 mol %.
  • diester fumarate resins include diisopropyl fumarate/dimethyl fumarate copolymer and diisopropyl fumarate/diethyl fumarate copolymer.
  • the fumaric acid diester resin may further contain structural units derived from other monomers.
  • other monomers include styrene, styrenes such as ⁇ -methylstyrene; (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, etc.
  • ( meth)acrylic acid esters vinyl esters such as vinyl acetate and vinyl propionate; (meth)acrylonitrile; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and butyl vinyl ether; N-methylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide olefins such as ethylene and propylene; and fumarate diesters other than fumarate diesters such as di-n-butyl fumarate and bis(2-ethylhexyl) fumarate.
  • vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and butyl vinyl ether
  • N-methylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide olefins such as ethylene and propylene
  • fumarate diesters other than fumarate diesters such as di-n-butyl fumarate and bis(2-ethy
  • the number average molecular weight of the fumaric acid diester resin is preferably 50,000 to 250,000.
  • the number average molecular weight of the diester fumaric acid resin can be measured by the same method as described above.
  • the polyester is a polymer obtained by polycondensation reaction of a diol component and a dicarboxylic acid component (however, it is different from a diester fumaric acid resin), and known ones can be used.
  • the polyester is preferably a polyester having an aromatic ring.
  • a polyester containing a fluorene group-containing monomer unit described in Japanese Patent No. 6495075 can be used.
  • a diol component comprising 9,9-bis(aryl-hydroxy(poly)alkoxyaryl)fluorene and optionally further comprising a C2-10 (preferably C2-4) aliphatic diol;
  • a polyester obtained by a polycondensation reaction of a dicarboxylic acid and a dicarboxylic acid component including a non-fluorene aromatic dicarboxylic acid can be used. Films comprising such polyesters can provide films with birefringence and reverse wavelength dispersion.
  • the content of the thermoplastic resin is preferably 50% by mass or more, more preferably 70 to 99% by mass, relative to the obliquely stretched film.
  • the obliquely stretched film may further contain other components as necessary.
  • other components include various additives (plasticizers, ultraviolet absorbers, retardation modifiers, antioxidants, deterioration inhibitors, release aids, surfactants), dyes, fine particles, and the like.
  • the fine particles can form unevenness on the surface of the obliquely stretched film and impart lubricity.
  • the fine particles may be inorganic fine particles or resin fine particles.
  • inorganic fine particles include fine particles such as silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, and calcium carbonate, preferably silicon dioxide particles (for example, Nippon Shokubai Co., Ltd., "Seahoster Series" KE-P20 , KE-P30, etc.).
  • resin fine particles include (meth)acrylic crosslinked resin fine particles (for example, "Eposter series” MX100W, etc.).
  • the average particle size of the microparticles can be, for example, 50-500 nm, preferably 100-300 nm. Within the above range, both transparency and anti-blocking properties can be achieved.
  • the thickness of the obliquely stretched film is not particularly limited, it is, for example, 10 to 200 ⁇ m, preferably 10 to 60 ⁇ m, more preferably 10 to 50 ⁇ m.
  • the saber form of the obliquely stretched film is preferably 10 mm or more.
  • the saber form of the obliquely stretched film is 10 mm or more, it has moderate distortion, so that the winding hardness when wound into a roll can be moderately loosened, and the optical film or the polarizing plate including the same can be wound. Occasionally, it is easy to suppress scratches on the optical film.
  • the upper limit of the saber foam is not particularly limited, it can be set to, for example, 30 mm from the viewpoint of not impairing handling performance.
  • the saber form of the obliquely stretched film is more preferably 10 to 30 mm, more preferably 15 to 30 mm.
  • Fig. 2 is a schematic diagram showing a method for measuring saber form.
  • Saber form can be measured by the following method. When the midpoints in the width direction at the 0 m position, 10 m position, and 20 m position in the longitudinal direction of the film (direction perpendicular to the width direction of the film) are m0, m1, and m2, respectively, It is measured as the distance X across the width of the film of m1 (see Figure 2).
  • the saber form can be adjusted, for example, by adjusting the temperature of the stretching zone during oblique stretching or the difference between the temperature of the stretching zone and the temperature of the heat setting zone.
  • the temperature (T2) of the stretching zone during oblique stretching should be near the Tg of the film, and the temperature (T3) of the heat setting zone Z3 should be about the same as or higher than the temperature (T2) of the stretching zone.
  • it is preferable to increase the saber form by reducing ⁇ T ( T2 ⁇ T3) (preferably by setting it to a negative value with a large absolute value).
  • the thickness unevenness in the width direction of the obliquely stretched film is preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less, and even more preferably 0.5 to 1.5 ⁇ m. If the thickness unevenness in the width direction is 3 ⁇ m or less, contact unevenness in the locally contacting portion can be reduced when the easy-adhesion layer is further provided and wound up. Further, when the thickness unevenness in the width direction is 0.5 ⁇ m or more, when the film is wound, the winding hardness can be moderately loosened, and scratches can be made more difficult to occur.
  • the thickness deviation can be measured using a known film thickness meter, for example, an offline contact film thickness meter (manufactured by YAMABUN). Specifically, the thickness of the film is measured at intervals of 1 mm along the width direction from one end to the other end in the width direction of the film. Then, the value of maximum value - minimum value is taken as the thickness deviation in the width direction of the film.
  • a known film thickness meter for example, an offline contact film thickness meter (manufactured by YAMABUN). Specifically, the thickness of the film is measured at intervals of 1 mm along the width direction from one end to the other end in the width direction of the film. Then, the value of maximum value - minimum value is taken as the thickness deviation in the width direction of the film.
  • the angle of the slow axis with respect to the width direction of the film may be more than 0° and less than 90° with respect to the width direction of the film.
  • the orientation angle ⁇ is preferably 20 to 70 ° with respect to the width direction of the film from the viewpoint of productivity when processing a polarizing plate and visibility when used as a display device. , preferably 40-50°.
  • the orientation angle ⁇ is 40 to 50°, the anti-reflection performance against external light is excellent when processed into a circularly polarizing plate and mounted on a display device, which is particularly preferable.
  • the in-plane slow axis of the obliquely stretched film is measured by a known phase difference measuring device, such as an automatic birefringence meter AxoScan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics) or an automatic birefringence meter KOBRA-21ADH (Oji Measurement It can be confirmed at a measurement wavelength of 550 nm or 590 nm by a device (manufactured by Kikiki Co., Ltd.).
  • a phase difference measuring device such as an automatic birefringence meter AxoScan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics) or an automatic birefringence meter KOBRA-21ADH (Oji Measurement It can be confirmed at a measurement wavelength of 550 nm or 590 nm by a device (manufactured by Kikiki Co., Ltd.).
  • the in-plane retardation Ro of the obliquely stretched film can be appropriately set according to the application.
  • the in-plane retardation Ro measured at a measurement wavelength of 550 nm at 23° C. and 55% RH is preferably 95 to 170 nm, more preferably 130 to 150 nm.
  • Ro is within the above range, it is possible to appropriately adjust the black tint in a non-luminous state when processed into a circularly polarizing plate and mounted in a self-luminous display device, which is preferable.
  • Ro (nx-ny) x d (In formula (1), nx represents the refractive index in the in-plane slow axis direction of the film (the direction in which the refractive index is maximized), ny represents the refractive index in the direction perpendicular to the in-plane slow axis of the film, d represents the thickness (nm) of the film. )
  • Ro can be measured by the following method. 1) The obliquely stretched film is conditioned in an environment of 23°C and 55% RH for 24 hours. The average refractive index of this obliquely stretched film is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer. 2) The in-plane retardation Ro of the film after humidity conditioning at a measurement wavelength of 550 nm is measured using an automatic birefringence meter Axo Scan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics) in an environment of 23 ° C. and 55% RH. Measure below.
  • Axo Scan Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics
  • the in-plane retardation Ro of the obliquely stretched film can be adjusted by, for example, the type of resin, the type and amount of additives, stretching conditions, and the like.
  • the easy-adhesion layer has a function of enhancing adhesion between the obliquely stretched film and the polarizer.
  • the indentation modulus of the easily adhesive layer is 1.5 to 3.0 GPa.
  • the film has appropriate hardness, so that when the optical film is wound into a roll, it is possible to prevent the formation of white marks due to the occurrence of local contact portions.
  • the adhesiveness to the polarizer is less likely to be impaired.
  • the indentation elastic modulus of the easily adhesive layer is more preferably 2.0 to 2.5 GPa.
  • the indentation modulus of the easily adhesive layer can be measured by an indentation test by a nanoindentation method in accordance with ISO14577, specifically by Oliver-Pharr analysis.
  • the indentation elastic modulus (composite elastic modulus Er) was measured using a nanoindentation (Triboscope) (manufactured by HYSITRON, indenter Berkovich type) as a measuring device, with a maximum indentation depth of 20 nm. It can be obtained by measuring the relationship between the thicknesses.
  • the indentation modulus of the easy-adhesion layer can be adjusted by adjusting the composition of the easy-adhesion layer (such as the type of resin) and the degree of cross-linking.
  • the indentation modulus can be increased by including polyolefin or a crosslinked product thereof in the composition constituting the easy adhesion layer, or by increasing the degree of crosslinkage of the crosslinked product.
  • the composition of the easy-adhesion layer should improve the adhesion between the obliquely stretched film and the polarizer, and should satisfy the above range for the indentation elastic modulus.
  • the easy-adhesion layer contains a resin-containing composition (easy-adhesion layer composition) or a crosslinked product thereof.
  • Resins include polyurethane, polyolefin, polyester, polyvinylidene chloride, acrylic polymer, modified silicone polymer, styrene-butadiene rubber, and the like. These resins may be used singly or in combination of two or more. For example, polyolefins and polyurethanes can be combined.
  • Polyurethane is a polymer obtained by reaction of, for example, a polyol compound and a polyisocyanate compound.
  • Polyether polyol is included as a polyol component constituting polyurethane.
  • Polytetramethylene glycol is more preferable as the polyether polyol.
  • Examples of commercially available polyurethane products include DIC Corporation, trade names "Hydran Series" AP-201, AP-40F, HW-140SF, WLS-202, and Daiichi Kogyo Seiyaku Co., Ltd., trade names.
  • the polyolefin is preferably an acid-modified polyolefin.
  • the acid-modified polyolefin is an olefin polymer containing structural units derived from unsaturated carboxylic acid, and may be a random copolymer or a graft copolymer.
  • unsaturated carboxylic acids can be (meth)acrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, and the like.
  • the content of structural units derived from unsaturated carboxylic acid may be 0.1 to 25% by weight, preferably 0.5 to 15% by weight, based on the total structural units.
  • the olefin can be an alkene of 2-6 carbon atoms such as ethylene, propylene.
  • the content of structural units derived from olefins may be 50% by mass or more, preferably 70% by mass or more, based on all structural units.
  • the olefinic polymer may further contain structural units derived from other copolymer components such as (meth)acrylic acid esters.
  • acid-modified polyolefins examples include ethylene-(meth)acrylic acid copolymer, ethylene-(meth)acrylic acid-maleic anhydride copolymer, acid-modified polyethylene, acid-modified polypropylene, acid-modified ethylene-propylene resin, acid Modified ethylene-butene resins, acid-modified propylene-butene resins, acid-modified ethylene-propylene-butene resins, and the like are included.
  • Examples of commercially available polyolefin products include Unitika Ltd., trade name "Arrow Base Series” SB-1200, SE-1010, SE-1013N, SE-1030N, SD-1010, TC-4010, TD-4010, Toho Chemical Co., Ltd., "High Tech Series” S3148, S3121, S8512, P-5060N, P-9018, Mitsui Chemicals, Inc., trade name "Unistall Series” S-120, S-75N, V100, H -200, H-300, EV210H, manufactured by Mitsui Chemicals Co., Ltd., trade name "Chemipearl Series” XHP-400, manufactured by Sumitomo Seika Co., Ltd., trade name "Saixen Series” Zaixen A, Zaixen L, Toyobo ( NZ-1004, NZ-1005, NZ-1022, etc. manufactured by Co., Ltd. under the trade name of “Hardren Series”.
  • polyester examples include Toyobo Co., Ltd., trade names "Vylonal Series” MD1400, MD1480, MD1245, MD1500; Z-730, RZ-142, Z-687 and the like.
  • Polyvinylidene chloride examples include Asahi Kasei Co., Ltd.'s trade name "Saran Latex Series” L509.
  • acrylic polymers examples include those manufactured by Nippon Shokubai Co., Ltd. under the trade name of "Epocross WS Series” WS-700, and manufactured by Shin-Nakamura Chemical Co., Ltd. under the trade name of "New Coat Series”.
  • modified silicone-based polymers include DIC Corporation's trade names "Ceranate Series” WSA1060 and WSA1070, and Asahi Kasei Chemicals Corporation's H7620, H7630 and H7650.
  • styrene-butadiene rubber examples include NIPOL LX415, NIPOL LX407, NIPOL V1004, NIPOL MH8101, and SX1105 manufactured by Zeon Corporation.
  • crosslinking agent The resin is preferably crosslinked with a crosslinking agent.
  • cross-linking agents include oxazoline compounds, carbodiimide compounds, isocyanate compounds, epoxy compounds, and the like.
  • the oxazoline compound can be a compound having two or more oxazoline groups in the molecule.
  • oxazoline compounds include Epocross (registered trademark) series (manufactured by Nippon Shokubai Co., Ltd.) such as WS-700 manufactured by Nippon Shokubai Co., Ltd.
  • a carbodiimide compound can be a compound having two or more carbodiimide groups in the molecule.
  • carbodiimide compounds include Nisshinbo Chemical Co., Ltd., trade name "Carbodilite Series" V-02, V-02-L2, SV-02, V-04 and E-02.
  • the isocyanate compound is a compound containing two or more isocyanate groups in one molecule, and may be any of aliphatic isocyanate, aromatic isocyanate, and alicyclic isocyanate.
  • isocyanate compounds include hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, isophorone diisocyanate, xylylene diisocyanate.
  • the isocyanate compound may be masked with a blocking agent.
  • the epoxy compound is a compound having one or more epoxy groups in the molecule, or when using a polymer (epoxy resin) having two or more epoxy groups in the molecule, a functional group having reactivity with the epoxy group.
  • a compound having two or more groups in the molecule may be used in combination.
  • functional groups reactive with epoxy groups include carboxy groups, phenolic hydroxyl groups, mercapto groups, and primary or secondary aromatic amino groups. Considering three-dimensional curability, it is particularly preferable to have two or more of these functional groups in one molecule.
  • Polymers having one or more epoxy groups in the molecule include, for example, epoxy resins, bisphenol A type epoxy resin derived from bisphenol A and epichlorohydrin, bisphenol F type epoxy derived from bisphenol F and epichlorohydrin. resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolak type epoxy resin, alicyclic epoxy resin, diphenyl ether type epoxy resin, hydroquinone type epoxy resin, Naphthalene type epoxy resin, biphenyl type epoxy resin, fluorene type epoxy resin, polyfunctional epoxy resin such as trifunctional epoxy resin and tetrafunctional epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, hydantoin type epoxy resin , isocyanurate type epoxy resins, aliphatic chain epoxy resins, etc.
  • epoxy resins bisphenol A type epoxy resin derived from bisphenol A and epichlorohydrin
  • epoxy resins may be halogenated or hydrogenated.
  • examples of commercially available epoxy resin products include JER Coat 828, 1001, 801N, 806, 807, 152, 604, 630, 871, YX8000, YX8034, YX4000 manufactured by Japan Epoxy Resin Co., Ltd., and Epiclon manufactured by DIC Corporation. 830, EXA835LV, HP4032D, HP820, ADEKA Co., Ltd. EP4100 series, EP4000 series, EPU series, Daicel Chemical Co., Ltd. celoxide series (2021, 2021P, 2083, 2085, 3000, etc.), Epolead series, EHPE series, Nippon Steel Chemical Co., Ltd.
  • the content of the cross-linking agent may be set so that the indentation modulus of the easy-adhesion layer is within the above range. ⁇ 20 parts by mass.
  • the easy-adhesion layer may further contain other components than the above as needed.
  • other ingredients include fine particles (matting agents), leveling agents, polymerization initiators, polymerization accelerators, viscosity modifiers, slip agents, dispersants, plasticizers, heat stabilizers, light stabilizers, lubricants, Oxidizing agents, flame retardants, colorants, antistatic agents, compatibilizers and the like are included.
  • the easy-adhesion layer preferably contains polyolefin or a crosslinked product thereof from the viewpoint of making the indentation elastic modulus equal to or higher than a certain level.
  • the crosslinked product of polyolefin is more preferably a crosslinked product of acid-modified polyolefin (a crosslinked product of a composition containing acid-modified polyolefin and a cross-linking agent).
  • the polyolefin content is preferably 40% by mass or more, more preferably 50% by mass or more, and even more preferably 60% by mass or more relative to the resin contained in the composition.
  • the resin contained in the composition may be of one type, or may be of two or more types, and may include, for example, a polyolefin and a urethane-based resin.
  • the easy-adhesion layer preferably further contains fine particles (matting agent) in order to impart anti-blocking properties. Fine particles similar to those described above can be used.
  • the thickness of the easy-adhesion layer is not particularly limited, and is preferably 10-1000 nm, more preferably 20-500 nm, and still more preferably 50-400 nm.
  • the method for producing an optical film of the present invention includes the steps of 1) preparing an obliquely stretched film, and 2) forming an easily adhesive layer on the surface of the obliquely stretched film, preferably 3). A step of winding the obtained optical film into a roll is further included.
  • the diagonally stretched film can be obtained, for example, by diagonally stretching the original film.
  • the original film can be obtained by a solution casting film forming method or a melt casting film forming method.
  • the solvent used for the dope contains at least an organic solvent (good solvent) capable of dissolving the resin.
  • good solvents include chlorinated organic solvents such as methylene chloride; and non-chlorinated organic solvents such as methyl acetate, ethyl acetate, acetone and tetrahydrofuran, preferably methylene chloride.
  • the solvent to be used may further contain a poor solvent such as an aliphatic alcohol having 1 to 4 carbon atoms such as methanol and ethanol, from the viewpoint of enhancing the releasability of the cast film from the support.
  • the support used is not particularly limited, and may be, for example, a drum-shaped or belt-shaped metal support.
  • the metal support can be a mirror-finished stainless steel belt or a cast metal plated-surfaced drum.
  • the surface temperature of the metal support is set to -50°C to a temperature at which the solvent does not boil and foam, preferably 0 to 100°C, more preferably 5 to 30°C.
  • the amount of residual solvent in the film when peeled from the metal support is preferably within the desired range.
  • a roll drying method (a method in which the web is alternately passed through a number of rolls arranged vertically to dry) or a method in which the web is dried while being conveyed by a tenter method is adopted.
  • the dope is cast on a metal support, but the dope is not limited to this, and may be cast on a peelable temporary support (releasable support).
  • Peelable means that the object can be peeled off without damaging the other films and layers included in the laminated structure, and that the tensile stress due to the peeling is smaller than the breaking point stress of the other films and layers.
  • the peelable support is used for the purpose of imparting self-holding properties to the film substrate and improving handleability.
  • the peelable support is not particularly limited as long as it is a film that can maintain self-holding properties, but it is preferable to use a resin film. It is preferably composed of a resin (for example, a polyester-based resin) that is insoluble in water.
  • melt-casting film forming method a resin composition containing the above resin is melted by heating to a fluidity temperature and then cast in a melted state, and then solidified by cooling to obtain a raw film.
  • Melt-casting film-forming methods include melt extrusion (molding), press molding, inflation, injection molding, blow molding, and stretch molding.
  • the melt extrusion method is preferable from the viewpoint that it is easy to melt.
  • the raw materials used in the melt extrusion method are usually preferably kneaded and pelletized in advance.
  • Pelletization is performed, for example, by supplying the above resin and any other components to an extruder with a feeder, kneading using a single-screw or twin-screw extruder, extruding from a die into strands, water-cooling or air-cooling, It can be done by cutting.
  • the other components may be mixed with the resin before being supplied to the extruder, or the resin and the other components may be supplied to the extruder by separate feeders.
  • the melting temperature when extruding the pellets using a single-screw or twin-screw extruder is (Tg + 30) ⁇ (Tg + 70) °C (Tg: glass transition temperature of the resin), or about 200 ⁇ 300 °C.
  • Tg glass transition temperature of the resin
  • the cast melt is nipped between a cooling roll and an elastic touch roll, and the melt is solidified on the cooling roll.
  • the film temperature on the side of the touch roll is preferably Tg (glass transition temperature) of the film or higher and Tg+110° C. or lower.
  • a known roll can be used as the roll having an elastic surface for such purpose.
  • the elastic touch roll is also called a pinching rotary body.
  • Diagonal stretching Next, the raw film thus obtained is stretched in an oblique direction to obtain an obliquely stretched film. Diagonal stretching can be performed using a known apparatus as disclosed in JP-A-2018-180163, for example.
  • FIG. 3 is a schematic diagram showing the configuration of the obliquely stretched film manufacturing apparatus 20.
  • FIG. 4 is a schematic diagram showing the configuration of the extending portion 25. As shown in FIG.
  • the manufacturing apparatus 20 includes, in order from the upstream side in the film transport direction, a film feeding unit 22, a transport direction changing unit 23, a guide roll 24, a stretching unit 25, a guide roll 26, a transport direction changing unit 27, a film It includes a cutting device 28 and a film take-up 29 (see FIG. 3).
  • one end side of the film in the width direction is gripped by a plurality of gripping tools (including gripping tools Ci), and the other end side is gripped by a plurality of gripping tools (including gripping tools Co).
  • a plurality of gripping tools including gripping tools Ci
  • a plurality of gripping tools including gripping tools Co
  • one of the gripping tools on the one end side and the other end side is relatively advanced
  • the other gripping tool for example, running along the rail Ro
  • the saber form of the obliquely stretched film can be adjusted by adjusting the temperature of the stretching zone and the heat setting zone during oblique stretching, the stretching ratio, the transport speed, and the like.
  • the heating zone Z of the stretching section 25 may consist of a preheating zone Z1, a stretching zone Z2 and a heat setting zone Z3 (see FIG. 4).
  • the preheating zone Z1 is a section at the entrance of the heating zone Z in which the grippers Ci and Co gripping both ends of the film travel while maintaining a constant spacing (in the film width direction) on the left and right.
  • the stretching zone Z2 is a section in which the diagonal stretching process described above is performed. At this time, if necessary, the film may be stretched in the longitudinal direction or the transverse direction before and after the diagonal stretching.
  • the heat setting zone Z3 is a section in which a heat setting process for fixing the optical axis (slow axis) of the film is performed after the oblique stretching process. The heat setting zone Z3 can facilitate fixing the orientation state of the resin molecules.
  • the temperature (T1) of the preheating zone Z1 is preferably Tg-(Tg+30)°C.
  • the temperature (T2) of the drawing zone Z2 is preferably Tg-(Tg+30)°C, more preferably Tg-(Tg+25)°C.
  • the temperature (T3) of the heat fixing zone Z3 is preferably (Tg-20) to (Tg+30)°C, more preferably (Tg-10) to (Tg+25)°C.
  • the temperature (T2) of the stretching zone Z2 is brought as close as possible to the Tg of the film, and the temperature (T3) of the heat setting zone Z3 is set to It is preferably equal to or higher than the temperature of the draw zone (T2).
  • a difference in elongation of the film between the rail Ro side and the rail Ri side during diagonal stretching tends to occur (Fig. 4), the saber form tends to be large.
  • the temperature (T1 to T3) in each zone indicates the temperature of the atmosphere in each zone.
  • the ambient temperature and the surface temperature of the film can be substantially the same.
  • the temperature distribution in the width direction of the film in the stretching zone Z2 can be controlled, for example, by adjusting the opening of nozzles for sending hot air into the thermostatic chamber so that there is a difference in the width direction, or by arranging heaters in the width direction and controlling the heating. can be done with
  • the stretching ratio R (W/Wo) in the stretching step is preferably 1.3 to 3.0. 0, more preferably 1.5 to 2.8 (see FIG. 4).
  • the draw ratio is within this range, thickness unevenness in the width direction of the film is reduced, which is preferable.
  • the above draw ratio R is equal to the ratio (W2/W1) when the interval W1 between both ends of the clip gripped at the entrance of the tenter becomes the interval W2 at the exit of the tenter.
  • An easy-adhesion layer is formed on the surface of the obtained diagonally stretched film.
  • the easy-adhesion layer can be formed by applying (applying) the composition for the easy-adhesion layer to the surface of the obliquely stretched film, followed by drying or heating.
  • the easy-adhesion layer may be formed only on one side of the obliquely stretched film, or may be formed on both sides.
  • the easy-adhesion layer composition can be a solution in which the aforementioned components (resin, optional cross-linking agent, other components, etc.) are dispersed or dissolved in a solvent (eg, water).
  • a solvent eg, water
  • the total solid content concentration of the easy adhesion layer composition can be set according to the type of components, solubility, coating viscosity, wettability, thickness after coating, and the like. In order to obtain an easily adhesive layer with high surface uniformity, the total solid content concentration is preferably 1 to 100 parts by mass, more preferably 1 to 50 parts by mass with respect to 100 parts by mass of the solvent.
  • any appropriate viscosity can be adopted as the viscosity of the easy-adhesion layer composition within a range that allows coating.
  • the viscosity is preferably 1 to 50 (mPa ⁇ sec), more preferably 2 to 10 (mPa ⁇ sec) when measured at a shear rate of 1000 (1/s) at 23°C. If it is said range, the easy-adhesion layer excellent in surface uniformity can be formed.
  • the easy-adhesion layer composition can be prepared by any method.
  • a commercially available solution or dispersion may be used, a solvent may be added to a commercially available solution or dispersion, or a solid content may be dissolved or dispersed in various solvents and used.
  • any method may be used to apply the composition for the easy-adhesion layer, and for example, a method using a gravure die or a coater may be used.
  • the surface of the obliquely stretched film may be subjected to solvent modification, corona treatment, plasma treatment, or the like as preliminary treatment for improving wettability.
  • the obtained optical film may be further wound into a roll.
  • Winding of the optical film can be performed by a known method (for example, constant torque method, constant tension method, taper tension method, etc.).
  • the winding length of the optical film can be, for example, 1000 to 7200 m.
  • the width of the optical film can be, for example, 1000-3000 mm.
  • the polarizing plate of the present invention includes a polarizer and the optical film of the present invention arranged on at least one surface of the polarizer.
  • FIG. 5A is a cross-sectional view showing the configuration of the polarizing plate 30 according to one embodiment of the present invention.
  • FIG. 5B is an exploded perspective view showing the positional relationship among the polarizer 31, the optical film 10, and the protective film 32 that constitute the polarizing plate 30.
  • FIG. 5A is a cross-sectional view showing the configuration of the polarizing plate 30 according to one embodiment of the present invention.
  • FIG. 5B is an exploded perspective view showing the positional relationship among the polarizer 31, the optical film 10, and the protective film 32 that constitute the polarizing plate 30.
  • FIG. 5A is a cross-sectional view showing the configuration of the polarizing plate 30 according to one embodiment of the present invention.
  • FIG. 5B is an exploded perspective view showing the positional relationship among the polarizer 31, the optical film 10, and the protective film 32 that constitute the polarizing plate 30.
  • FIG. 5B is an exploded perspective view showing the positional relationship among the polarizer 31, the optical film 10, and the protective film 32 that constitute
  • the polarizing plate 30 includes a polarizer 31, an optical film 10 arranged on one side thereof, a protective film 32 arranged on the other side, a polarizer 31 and the optical film 10 and two adhesive layers 33 disposed between the polarizer 31 and the protective film 33 .
  • the polarizing plate 30 may be a long polarizing plate, or may be a sheet-like polarizing plate obtained by cutting a long polarizing plate along the width direction perpendicular to the longitudinal direction.
  • Polarizer 31 is an element that passes only light with a plane of polarization in a certain direction.
  • a polarizer can generally be a polyvinyl alcohol-based polarizing film.
  • polyvinyl alcohol-based polarizing films include polyvinyl alcohol-based films dyed with iodine and those dyed with dichroic dyes.
  • the polyvinyl alcohol-based polarizing film may be a film obtained by uniaxially stretching a polyvinyl alcohol-based film and then dyeing it with iodine or a dichroic dye (preferably a film further subjected to durability treatment with a boron compound); A film obtained by dyeing an alcohol-based film with iodine or a dichroic dye and then uniaxially stretching the film (preferably, a film further subjected to a durability treatment with a boron compound) may be used.
  • the absorption axis of a polarizer is usually parallel to the direction of maximum stretch.
  • the thickness of the polarizer is 5-40 ⁇ m, preferably 5-30 ⁇ m.
  • optical film 10 The optical film is arranged so that the easy-adhesion layer faces the polarizer (see FIG. 5A).
  • the in-plane slow axis of the obliquely stretched film constituting the optical film is inclined, for example, by 10 to 80° with respect to one side (eg, side 10a) of the rectangular film outline in the film plane (see FIG. 5B). ).
  • the side 10a is a side corresponding to the width direction of the obliquely stretched strip film.
  • the angle of the in-plane slow axis with respect to the side 10a in the film plane is preferably 30 to 60°, more preferably 40 to 50°.
  • the angle between the in-plane slow axis of the obliquely stretched film and the absorption axis (or transmission axis) of the polarizer is, for example, 10 to 80°, preferably 30 to 60°, more preferably 40 to 50°.
  • a hard coat layer for example, a hard coat layer, a low refractive index layer, an antireflection layer, and a liquid crystal (positive C-type plate) are appropriately provided on the surface of the obliquely stretched film opposite to the polarizer, depending on the application. good too.
  • the protective film may be a transparent resin film (eg, cellulose ester film, cycloolefin resin, acrylic resin, etc.). Also, the protective film may be an optical compensation film that compensates for optical properties such as viewing angle expansion. For example, the protective film may be the optical film described above.
  • Adhesive layer 33 An adhesive layer can be disposed between the polarizer and the optical film and between the polarizer and the protective film, respectively.
  • the adhesive layer can be a layer obtained from a water-based adhesive or a cured product layer of an ultraviolet curable adhesive.
  • the water-based adhesive can be, for example, an adhesive containing a vinyl alcohol-based polymer; an adhesive containing a water-soluble cross-linking agent for a vinyl alcohol-based polymer such as boric acid, borax, glutaraldehyde, melamine, or oxalic acid. These adhesives may further contain other additives and catalysts such as acids as necessary.
  • UV-curable adhesive composition As the UV-curable adhesive composition, a photo-radical polymerization type composition using photo-radical polymerization, a photo-cationic polymerization type composition using photo-cationic polymerization, and a hybrid composition using both photo-radical polymerization and photo-cation polymerization. things are known.
  • a radically polymerizable compound containing a polar group such as a hydroxy group or a carboxyl group and a radically polymerizable compound containing no polar group described in JP-A-2008-009329 are contained in a specific proportion. composition) and the like are known.
  • the radically polymerizable compound is preferably a compound having a radically polymerizable ethylenically unsaturated bond.
  • Preferred examples of compounds having a radically polymerizable ethylenically unsaturated bond include compounds having a (meth)acryloyl group.
  • Examples of compounds having a (meth)acryloyl group include N-substituted (meth)acrylamide compounds and (meth)acrylate compounds.
  • (Meth)acrylamide means acrylamide or methacrylamide.
  • photocationically polymerizable composition As the photocationically polymerizable composition, as disclosed in JP-A-2011-028234, ( ⁇ ) a cationic polymerizable compound, ( ⁇ ) a photocationic polymerization initiator, and ( ⁇ ) light having a wavelength longer than 380 nm and ( ⁇ ) a naphthalene-based photosensitizing aid.
  • a cationic polymerizable compound As the photocationically polymerizable composition, as disclosed in JP-A-2011-028234, ( ⁇ ) a cationic polymerizable compound, ( ⁇ ) a photocationic polymerization initiator, and ( ⁇ ) light having a wavelength longer than 380 nm and ( ⁇ ) a naphthalene-based photosensitizing aid.
  • other ultraviolet curable adhesives may be used.
  • the thickness of the adhesive layer is not particularly limited, it can be, for example, 0.01 to 10 ⁇ m, preferably about 0.01 to 5 ⁇ m.
  • a polarizing plate can be obtained through a process of laminating an optical film, a polarizer and a protective film via an adhesive.
  • the adhesive the above-described water-based adhesive or ultraviolet curing adhesive is used.
  • a method for producing a polarizing plate using an ultraviolet curable adhesive includes 1) a step of pretreating a retardation film or a protective film, and 2) laminating a retardation film, a polarizer and a protective film with an ultraviolet curable adhesive.
  • Step 3) includes a step of curing the ultraviolet curable adhesive.
  • Pretreatment process The surface of the optical film or protective film to be adhered to the polarizer is subjected to an easy-adhesion treatment.
  • the easy-adhesion treatment includes corona treatment, plasma treatment, and the like.
  • the optical film the easy-adhesion layer is pretreated.
  • an ultraviolet curable adhesive is applied to the adhesive surface of at least one of the polarizer and the optical film (or protective film).
  • the method of applying the UV-curable adhesive is not particularly limited, and for example, a doctor blade, wire bar, die coater, comma coater, gravure coater, or the like can be used.
  • the ultraviolet curable adhesive may be uniformly spread by applying pressure with a roller or the like.
  • the polarizer and the optical film (or protective film) are pasted together via an ultraviolet curable adhesive.
  • the lamination can be performed, for example, by sandwiching and pressurizing a polarizer and an optical film (or a facing film) laminated with an ultraviolet curable adhesive interposed therebetween with pressure rollers or the like.
  • the ultraviolet curable adhesive is irradiated with ultraviolet rays to obtain a cationically polymerizable compound (e.g., an epoxy compound or an oxetane compound) or a radically polymerizable compound (e.g., an acrylate compound, an acrylamide compound, etc.).
  • a cationically polymerizable compound e.g., an epoxy compound or an oxetane compound
  • a radically polymerizable compound e.g., an acrylate compound, an acrylamide compound, etc.
  • the irradiation conditions of the ultraviolet rays may be any conditions as long as the ultraviolet curing adhesive can be cured.
  • the dose of ultraviolet rays (accumulated light dose) is, for example, 50 to 1500 mJ/cm 2 , preferably 100 to 500 mJ/cm 2 .
  • the display device of the present invention includes a display element and the polarizing plate of the present invention.
  • the display element can be an organic EL element, an inorganic EL element, a liquid crystal element, or the like.
  • the polarizing plate is arranged on the viewing side of the display element.
  • the optical film is arranged between the polarizer and the display element; specifically, it is preferably arranged so that the obliquely stretched film faces the display element side.
  • the protective film is arranged on the viewing side of the polarizer.
  • the protective film may be further subjected to surface treatments such as hard coat treatment, anti-reflection treatment, anti-sticking treatment, and anti-glare treatment, if necessary.
  • the protective film may be treated, if necessary, to improve visibility when viewed through polarized sunglasses (typically, imparting (elliptical) circular polarization function, imparting ultra-high retardation ) may be applied. By performing such processing, excellent visibility can be achieved even when the display screen is viewed through polarized lenses such as polarized sunglasses. That is, the polarizing plate is also suitable for display devices that can be used outdoors. In that case, the optical film described above may be used as the protective film.
  • FIG. 6 is a cross-sectional schematic diagram showing the configuration of an organic EL display device 40 (display device) according to one embodiment of the present invention.
  • the organic EL display device 40 includes an organic EL element 50 (display element) and a polarizing plate 30 (circularly polarizing plate).
  • Organic EL element 50 has a metal electrode 52, a light emitting layer 53, a transparent electrode (such as ITO) 54, and a sealing layer 55 in this order on a transparent substrate 51 such as a glass plate or a transparent film.
  • a transparent substrate 51 such as a glass plate or a transparent film.
  • the metal electrode 52 can function as a cathode.
  • a substance with a small work function is preferably used in order to facilitate electron injection and increase luminous efficiency, and Mg--Ag and Al--Li are usually used.
  • the light-emitting layer 53 is a laminate of organic thin films. It may be a laminate with an electron injection layer made of a perylene derivative or the like, or a laminate of these hole injection layers, light emitting layers, and electron injection layers.
  • the transparent electrode 54 can function as an anode.
  • the transparent electrode 54 can typically be composed of a transparent conductor such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the sealing layer 55 can be a transparent substrate such as a glass plate or a transparent film, or a sealing film such as a sealant.
  • the polarizing plate 30 may be a circularly polarizing plate (the polarizing plate described above) arranged on the surface of the organic EL element 50 on the viewing side.
  • the polarizing plate 30 can suppress reflection of external light entering from the outside of the organic EL display device 40 due to indoor lighting or the like.
  • the composition of the fluorene group-containing polyester is as follows: diol component: 9,9-bis[4-(2-hydroxyethoxy)3-phenylphenyl]fluorene (BOPPEF) 80 mol%, ethylene glycol (EG) 20 mol%, dicarboxylic acid component : 85 mol % of 1,4-cyclohexanedicarboxylic acid (CHDA) and 15 mol % of terephthalic acid (TPA).
  • the resulting polyester had a Tg of 139° C. and an Mw of 29,700.
  • the Tg and Mw of the resin were measured by the following methods.
  • Tg The Tg of the resin was measured according to JIS K 7121-2012 using DSC (Differential Scanning Colorimetry).
  • Mw The Mw of the resin was measured using gel permeation chromatography (HLC8220GPC manufactured by Tosoh Corporation) under the following conditions. (Measurement condition) Eluent: THF Column: TSKgel GMHXL x 2 manufactured by Tosoh Corporation Flow rate: 1.0 mL/min Sample concentration: 0.1% by mass Injection volume: 100 ⁇ L Detector: RI Calibration curve: standard polystyrene
  • a dope having the following composition was prepared.
  • dichloromethane and ethanol were added to a pressurized dissolution tank.
  • the above cycloolefin resin (G7810) was put into a pressurized dissolution tank containing a mixed solution of dichloromethane and ethanol while stirring.
  • the microparticle addition liquid prepared above was added, heated to 80° C., and completely dissolved with stirring. At this time, the temperature was raised from room temperature at a rate of 5°C/min, dissolved in 30 minutes, and then lowered at a rate of 3°C/min.
  • the resulting solution was filtered through a filter to prepare a dope.
  • Cycloolefin resin 100 parts by mass Dichloromethane: 230 parts by mass
  • Ethanol 15 parts by mass
  • Microparticle additive liquid 5 parts by mass
  • the dope was uniformly cast on a stainless steel belt at a temperature of 31° C. and a width of 1800 mm.
  • the temperature of the stainless steel belt was controlled at 20°C.
  • the solvent was evaporated on the stainless belt until the residual solvent amount in the cast dope reached 100% by mass, and the dope was peeled off from the stainless belt to obtain a film.
  • the film was stretched 1.16 times in the transport direction, and then stretched 1.3 times in the width direction at 128°C.
  • the obtained film is dried at 120° C. for 15 minutes while being transported by a number of rollers in a drying zone, and the end portion sandwiched between tenter clips is slit with a laser cutter and wound up to obtain a raw film 1 having a thickness of 78 ⁇ m. made.
  • a raw film 2 having a thickness of 90 ⁇ m was obtained in the same manner as the raw film 1 except that the cycloolefin-based resin was changed to the polyester (fluorene group-containing polyester).
  • the raw film 1 thus obtained is set in the film feeding section 22 of the obliquely stretched film manufacturing apparatus 20 shown in FIG. to obtain a belt-like obliquely stretched film 1 having a thickness of 45 ⁇ m. Then, the obliquely stretched film 1 was conveyed to the film winding section 29 and wound into a roll.
  • the saber foam was adjusted by the temperatures of the stretching zone (T2) and the heat setting zone (T3). Specifically, the draw ratio is 1.73 times, the temperature in the drawing zone (T2) of the drawing section 25 is (Tg+23)° C., and the temperature in the heat setting zone (T3) is Tg+22° C. (Tg is the film glass transition temperature) (see FIG. 4).
  • Diagonally stretched films 2 to 8 and 10 were prepared in the same manner as for diagonally stretched film 1, except that the stretching conditions (stretching temperature in the stretching zone and heat setting zone) and the type of raw film were changed as shown in Table 1. Obtained.
  • the obtained roll body of the raw film 3 (laminated film) is set in the film feeding unit 22 of the obliquely stretched film manufacturing apparatus 20 shown in FIG. and diagonally stretched in the stretching section 25 to obtain a long diagonally stretched film 9 having a thickness of 75 ⁇ m as a laminated film. Then, the obliquely stretched film 10 was conveyed to the film winding section 29 and wound into a roll.
  • the draw ratio is 2.0 times, the temperature in the drawing zone (T2) of the drawing section 25 is (Tg+0)° C., and the temperature in the heat setting zone (T3) of the drawing section 25 is (Tg-3 )° C. (Tg is the glass transition temperature of the peelable support) (see FIG. 4).
  • the in-plane retardation Ro and the orientation angle ⁇ of the obliquely stretched film 10 were measured by peeling off the peelable support and using a single layer made of diisopropyl fumarate.
  • Thickness deviation Using an offline contact film thickness gauge (manufactured by YAMABUN), the thickness of the film is measured at intervals of 1 mm along the width direction of the obliquely stretched film from one end to the other end in the width direction. was measured. Then, (maximum value of film thickness - minimum value of film thickness) was defined as "thickness deviation in width direction”. The thickness deviation of the obliquely stretched film 10 was measured with the peelable support attached (laminated state).
  • crosslinking agent crosslinking agent
  • WS-700 manufactured by Nippon Shokubai Co., Ltd.
  • Denacol EX-313 manufactured by Nagase ChemteX Co., Ltd.
  • Fine particles KE-P30 manufactured by Nippon Shokubai Co., Ltd.
  • Polyolefin resin aqueous dispersion E-1 (in polyolefin resin amount) 100 parts by mass Crosslinking agent (WS-700 manufactured by Nippon Shokubai Co., Ltd.): 5 parts by mass Fine particles (KE-P30 manufactured by Nippon Shokubai Co., Ltd.): 8 parts by mass
  • composition B for Easy Adhesion Layer The compounding ratio of the polyolefin resin aqueous dispersion E-1 and the polyurethane resin aqueous dispersion U-1 was changed so that the content ratio of the polyolefin resin and the polyurethane resin was the value shown in Table 2, and Nagase ChemteX was used as the cross-linking agent.
  • An easy-adhesion layer composition B was prepared in the same manner as the easy-adhesion layer composition A except that Denacol EX-313 manufactured by Co., Ltd. was changed to 3 parts by mass.
  • Table 2 shows the compositions of the easily adhesive layer compositions A to E thus obtained.
  • Optical Films 2 to 14 were obtained in the same manner as Optical Film 1, except that the combination of the obliquely stretched film and the easy-adhesion layer composition was changed as shown in Table 3.
  • the optical film 13 was prepared by applying the easy-adhesion layer composition to the diisopropyl polyfumarate layer side of the obliquely stretched film 10 (laminated film).
  • the white marks, scratches (on the polarizing plate), and display characteristics (on the display device) of the optical films 1 to 14 were evaluated by the following methods.
  • the optical film prepared above, the polarizer prepared above, and a TAC film (40 ⁇ m thick) were adhered via a UV adhesive to obtain a layer configuration of TAC film/UV adhesive layer/polarizer/UV adhesive layer/optical film.
  • Polarizing plates (circularly polarizing plates) 1 to 12 and 14 were obtained.
  • the UV adhesive the adhesive composition described in Production Example 2 of Japanese Patent No. 5971498 was used.
  • the optical film was arranged so that the surface on the easy adhesion layer side was on the UV adhesion layer side.
  • the angle between the slow axis of the obliquely stretched optical film and the absorption axis of the polarizer was 45°.
  • the optical film 13 after peeling off the peelable support, the optical film 13 was attached to the polarizer so that the easy-adhesion side faces the UV adhesive layer side, thereby producing the circularly polarizing plate 13.
  • the obtained circularly polarizing plate was taken out with a length of 3 m, and S-light was applied to evaluate the presence or absence and degree of scratches on the surface.
  • less than 5% of the observed area
  • 5% or more of the observed area and less than 10% of the observed area
  • a level that does not pose a practical problem ⁇ 10% or more of the observed area, which is a practical problem
  • a level of ⁇ or higher was judged to be good.
  • Table 3 shows the evaluation results of the optical films 1 to 14.
  • the optical films 1 to 4, 6 to 11, 13 and 14 (Examples) in which the indentation elastic modulus of the easily adhesive layer is 1.5 GPa or more have a saber foam of 10 mm or more in the obliquely stretched film. It can be seen that white traces can be suppressed in spite of the large . However, the optical film 11 with a saber form exceeding 30 mm was slightly inferior in handleability.
  • optical film 12 in which the saber form of the obliquely stretched film is less than 10 mm has many scratches on the film surface and many light leaks in the display device.
  • optical film 5 in which the saber form of the obliquely stretched film is 10 mm or more and the indentation elastic modulus of the easy-adhesive layer is less than 1.5 GPa has white marks.
  • an optical film it is possible to provide an optical film, a polarizing plate, and a display device that can suppress fine scratches due to winding and make it difficult for white marks to occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)

Abstract

This belt-like optical film includes, in a film surface, an obliquely stretched film that has a slow axis inclined with respect to the width direction of the optical film, and an easily adhesive layer that is disposed on a surface of the obliquely stretched film. When the middle points in the width direction of the obliquely stretched film at 0m position, 10m position, and 20m position in a direction orthogonal to the width direction of the film are defined as m0, m1, and m2, a saber form which is represented by a distance of the m1 to the center line connecting the m0 and the m2 in the width direction of the film is not less than 10 mm and the indentation elastic modulus of the easily adhesive layer is 1.5-3.0 GPa.

Description

光学フィルム、偏光板および表示装置Optical films, polarizing plates and display devices
 本発明は、光学フィルム、偏光板および表示装置に関する。 The present invention relates to optical films, polarizing plates and display devices.
 有機ELディスプレイ(OLED)や液晶ディスプレイ(LCD)などのディスプレイには、通常、偏光板が用いられている。偏光板は、偏光子と、それを保護する機能や光学補償機能を有する光学フィルムとを含む。 Polarizing plates are usually used in displays such as organic EL displays (OLED) and liquid crystal displays (LCD). A polarizing plate includes a polarizer and an optical film having a function to protect it and an optical compensation function.
 偏光板は、偏光子と、光学フィルムとを貼り合わせて作製される。その際、偏光子と接着させやすくするために、易接着層を有する光学フィルムが用いられることがある。 A polarizing plate is produced by bonding a polarizer and an optical film together. In that case, an optical film having an easy-adhesion layer is sometimes used in order to facilitate adhesion to the polarizer.
 易接着層を含む光学フィルムとしては、例えば、透明フィルム基材と、易接着層とを含む易接着フィルムが知られている(例えば特許文献1)。透明フィルム基材は、横方向および縦方向に延伸されたアクリル系樹脂フィルムであり、易接着層は、バインダ樹脂としてのウレタン樹脂と、微粒子とを含む。 As an optical film containing an easy-adhesion layer, for example, an easy-adhesion film containing a transparent film substrate and an easy-adhesion layer is known (for example, Patent Document 1). The transparent film substrate is an acrylic resin film stretched in the horizontal and vertical directions, and the easy-adhesion layer contains urethane resin as a binder resin and fine particles.
 このように、易接着層を含む光学フィルムの多くは、横方向もしくは縦方向に延伸されているか、または延伸されていないフィルム基材を含む。そのようなフィルム基材の歪みの指標とされるサーベルフォームは、通常、10mm未満と小さく設定される。 Thus, many of the optical films containing the easy-adhesion layer contain film substrates that are either stretched in the horizontal direction or the vertical direction, or are not stretched. The saber-form, which is used as an index of distortion of such a film substrate, is usually set to be less than 10 mm.
特開2020-23170号公報Japanese Patent Application Laid-Open No. 2020-23170
 ところで、近年、ディスプレイの高画質化が進んでおり、4Kや8Kといった高精細な表示装置の開発が進められている。高精細な表示装置の偏光板などに使用される光学フィルムには、従来よりも一層高い面品質が求められることから、従来問題とされなかったような微細な傷なども欠陥となりやすい。 By the way, in recent years, the image quality of displays has improved, and the development of high-definition display devices such as 4K and 8K is underway. Optical films used in polarizing plates of high-definition display devices are required to have a higher surface quality than ever before, so fine scratches and the like, which have not been regarded as a problem in the past, are likely to become defects.
 特に偏光板は、ロール状に巻き取られた帯状の偏光板を繰り出し、所定の長さに切断して作製される。そのため、帯状の偏光板をロール状に巻き取る際などに、光学フィルムの表面に微細な傷ができるだけ形成されないようにすることが求められる。 In particular, the polarizing plate is produced by unrolling a strip-shaped polarizing plate wound into a roll and cutting it to a predetermined length. Therefore, it is required to prevent the formation of fine scratches on the surface of the optical film as much as possible when the strip-shaped polarizing plate is wound into a roll.
 このようなロール状に巻き取った際の傷を抑制するためには、フィルムを緩めに巻き取ることが有効であり;フィルムを緩めに巻き取るには、フィルム基材のサーベルフォームを適度に大きくすることが有効である。しかしながら、そのようなサーベルフォームが大きなフィルム基材に易接着層を積層した状態で巻き取ると、白色痕(白色の跡)が残りやすいという問題があった。このような白色痕は、特にフィルム基材として斜め延伸フィルムを用いた場合、縦延伸や横延伸フィルムよりもサーベルフォームが大きくなりやすいため、顕著に生じやすい。また、そのような白色痕を有する偏光板は、表示装置の表示特性を低下させる原因になりやすい。 Loosely winding the film is effective in suppressing scratches when the film is wound into a roll. It is effective to However, there is a problem that when such a saber foam is wound in a state where an easy-adhesion layer is laminated on a large film substrate, white traces (white traces) tend to remain. Such white marks are likely to occur remarkably particularly when an obliquely stretched film is used as the film substrate, because the saber form tends to be larger than that of a longitudinally stretched or transversely stretched film. In addition, a polarizing plate having such white marks tends to deteriorate the display characteristics of the display device.
 本発明は上記事情に鑑みてなされたものであり、巻き取りによる微細な傷を抑制しつつ、白色痕を生じにくくしうる光学フィルム、偏光板および表示装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an optical film, a polarizing plate, and a display device that can suppress fine scratches due to winding and make it difficult for white marks to occur.
 本発明は、光学フィルム、偏光板および表示装置に関する。 The present invention relates to optical films, polarizing plates and display devices.
 本発明の光学フィルムは、フィルム面内において、フィルムの幅方向に対して傾斜した遅相軸を有する斜め延伸フィルムと、前記斜め延伸フィルムの表面上に配置された易接着層とを含む帯状の光学フィルムであって、前記斜め延伸フィルムの幅方向と直交する方向の0m位置、10m位置、20m位置における、フィルムの幅方向の中点をそれぞれm0、m1およびm2としたとき、前記m0と前記m2とを結ぶ中心線に対する、前記m1の前記フィルムの幅方向の距離で表されるサーベルフォームが10mm以上であり、前記易接着層の押し込み弾性率が、1.5~3.0GPaである。 The optical film of the present invention is a strip-shaped film comprising an obliquely stretched film having a slow axis tilted with respect to the width direction of the film in the plane of the film, and an easy-adhesion layer disposed on the surface of the obliquely stretched film. In the optical film, when the midpoints in the width direction of the film are respectively m0, m1, and m2 at the 0 m position, 10 m position, and 20 m position in the direction perpendicular to the width direction of the obliquely stretched film, m0 and the above The saber form represented by the distance of m1 in the width direction of the film from the center line connecting m2 is 10 mm or more, and the indentation elastic modulus of the easily adhesive layer is 1.5 to 3.0 GPa.
 本発明の偏光板は、偏光子と、その少なくとも一方の面に配置された、本発明の光学フィルムと、前記偏光子と前記易接着層との間に配置された接着層とを含む。 The polarizing plate of the present invention includes a polarizer, the optical film of the present invention arranged on at least one surface of the polarizer, and an adhesive layer arranged between the polarizer and the easily adhesive layer.
 本発明の表示装置は、表示素子と、本発明の偏光板とを含み、前記光学フィルムは、前記表示素子と前記偏光子との間に配置されている。 The display device of the present invention includes a display element and the polarizing plate of the present invention, and the optical film is arranged between the display element and the polarizer.
 本発明によれば、微細な傷を防止しつつ、巻き取りによる白色の跡を生じにくくしうる光学フィルム、偏光板および表示装置を提供することができる。 According to the present invention, it is possible to provide an optical film, a polarizing plate, and a display device that can prevent fine scratches and make it difficult for white traces to occur due to winding.
図1は、本発明の一形態に係る光学フィルムの構成を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing the configuration of an optical film according to one embodiment of the present invention. 図2は、サーベルフォームの測定方法を示す模式図である。FIG. 2 is a schematic diagram showing a method for measuring saber form. 図3は、斜め延伸フィルムの製造装置の構成を示す模式図である。FIG. 3 is a schematic diagram showing the configuration of an obliquely stretched film manufacturing apparatus. 図4は、図3の延伸部の構成を示す模式図である。FIG. 4 is a schematic diagram showing the configuration of the extending portion of FIG. 図5Aは、本発明の一形態に係る偏光板の構成を示す断面図であり、図5Bは、図5Aの偏光板を構成する偏光子、位相差フィルム、および保護フィルムの配置関係を示す分解斜視図である。FIG. 5A is a cross-sectional view showing the configuration of a polarizing plate according to one embodiment of the present invention, and FIG. 5B is an exploded view showing the arrangement relationship of a polarizer, a retardation film, and a protective film that constitute the polarizing plate of FIG. 5A. It is a perspective view. 図6は、本発明の一形態に係る有機EL表示装置の構成を示す断面模式図である。FIG. 6 is a schematic cross-sectional view showing the configuration of an organic EL display device according to one embodiment of the present invention.
 サーベルフォームが一定以上の斜め延伸フィルムを用いた光学フィルムをロール状に巻き取った状態で保存した際に、白色痕(白跡欠陥)を生じる原因は明らかではないが、以下のように推測される。 Although the cause of the occurrence of white marks (white mark defects) when an optical film using an obliquely stretched film with saber form above a certain level is wound up in a roll and stored, is not clear, it is speculated as follows. be.
 サーベルフォームが大きいフィルムは、フィルムの幅方向の巻き硬さに偏りが生じやすい。すなわち、フィルムの幅方向において、巻き硬さが相対的に高い部分と低い部分とが生じやすい。巻き硬さが低い部分はフィルムがたるみやすく、巻き取り時(または巻き出し時)に局所的にねじれ変形を生じやすい。ねじれ変形部分は凸となるため、隣接する易接着層に当接しやすい。易接着層は比較的柔らかいため、ねじれ変形が転写されやすく、白色痕になると考えられる。 A film with a large saber form tends to have uneven winding hardness in the width direction of the film. That is, in the width direction of the film, there are likely to be areas where the winding hardness is relatively high and areas where the winding hardness is relatively low. The portion with low winding hardness tends to sag the film, and tends to cause local torsional deformation during winding (or unwinding). Since the torsionally deformed portion is convex, it easily comes into contact with the adjacent easy-adhesion layer. Since the easy-adhesion layer is relatively soft, twist deformation is likely to be transferred, and it is considered that white marks are formed.
 これに対し、本発明者らは、易接着層の押し込み弾性率を一定以上にする(適度に高くする)ことで、サーベルフォームが大きい斜め延伸フィルムを用いたときに生じやすい白色痕を抑制できることを見出した。 On the other hand, the present inventors have found that by setting the indentation modulus of the easy-adhesion layer to a certain value or higher (moderately high), it is possible to suppress the white marks that tend to occur when a diagonally stretched film having a large saber form is used. I found
 すなわち、易接着層の押し込み弾性率を1.5GPa以上とすることで、白色痕を抑制することができる。また、易接着層の押し込み弾性率を3.0GPa以下とすることで、偏光子との接着性を損なわれにくくしうる。 That is, by setting the indentation elastic modulus of the easy-adhesion layer to 1.5 GPa or more, white marks can be suppressed. Further, by setting the indentation elastic modulus of the easy-adhesion layer to 3.0 GPa or less, the adhesion to the polarizer can be less likely to be impaired.
 易接着層の押し込み弾性率は、例えば易接着層の組成や架橋度などによって調整することができる。例えば、易接着層として、ポリオレフィンまたはその架橋物を用いることで、易接着層の押し込み弾性率を高くすることができる。以下、本発明の構成について、詳細に説明する。 The indentation modulus of the easy-adhesion layer can be adjusted, for example, by the composition of the easy-adhesion layer and the degree of cross-linking. For example, by using polyolefin or a cross-linked product thereof as the easy-adhesion layer, the indentation modulus of the easy-adhesion layer can be increased. The configuration of the present invention will be described in detail below.
 1.光学フィルム
 図1は、本発明の一形態に係る光学フィルム10の構成を示す断面模式図である。図1に示されるように、光学フィルム10は、斜め延伸フィルム11と、その表面上に配置された易接着層12とを含む。
1. 1. Optical Film FIG. 1 is a schematic cross-sectional view showing the configuration of an optical film 10 according to one embodiment of the present invention. As shown in FIG. 1, the optical film 10 includes an obliquely stretched film 11 and an easily adhesive layer 12 disposed on its surface.
 1-1.斜め延伸フィルム11
 斜め延伸フィルムは、熱可塑性樹脂を含む。熱可塑性樹脂は、特に制限されないが、光学用途に使用する観点では、所望の波長に対して透明な樹脂であることが好ましい。そのような樹脂の例には、ポリカーボネート(PC)、ポリエステル、シクロオレフィン系樹脂(COP)、ポリエーテルスルホン、ポリイミド、(メタ)アクリル系樹脂、ポリスルホン、ポリアリレート、ポリオレフィン、ポリ塩化ビニル、フマル酸ジエステル系樹脂が含まれる。中でも、シクロオレフィン系樹脂(COP)、フマル酸ジエステル系樹脂、およびポリエステルが好ましい。
1-1. Obliquely stretched film 11
The obliquely stretched film contains a thermoplastic resin. Although the thermoplastic resin is not particularly limited, it is preferably a resin transparent to a desired wavelength from the viewpoint of use in optical applications. Examples of such resins include polycarbonates (PC), polyesters, cycloolefinic resins (COP), polyethersulfones, polyimides, (meth)acrylic resins, polysulfones, polyarylates, polyolefins, polyvinyl chloride, fumaric acid Diester resins are included. Among them, cycloolefin resin (COP), diester fumarate resin, and polyester are preferred.
 <シクロオレフィン系樹脂(COP)>
 シクロオレフィン系樹脂は、シクロオレフィン(環状オレフィン)に由来する構造単位を含む単独重合体または共重合体でありうる。
<Cycloolefin resin (COP)>
The cycloolefin-based resin may be a homopolymer or copolymer containing structural units derived from cycloolefin (cyclic olefin).
 シクロオレフィンは、多環式のシクロオレフィンと単環式のシクロオレフィンのいずれであってもよいが、好ましくは多環式のシクロオレフィンである。多環式のシクロオレフィンの例には、ノルボルネン、メチルノルボルネン、ジメチルノルボルネン、エチルノルボルネン、エチリデンノルボルネン、ブチルノルボルネン(以上、ノルボルネン系単量体)、ジシクロペンタジエン、ジヒドロジシクロペンタジエン、メチルジシクロペンタジエン、ジメチルジシクロペンタジエン、テトラシクロドデセン、メチルテトラシクロドデセン、ジメチルシクロテトラドデセン、トリシクロペンタジエン、テトラシクロペンタジエンが挙げられる。中でも、ノルボルネン系単量体であることが好ましい。 The cycloolefin may be either a polycyclic cycloolefin or a monocyclic cycloolefin, preferably a polycyclic cycloolefin. Examples of polycyclic cycloolefins include norbornene, methylnorbornene, dimethylnorbornene, ethylnorbornene, ethylidenenorbornene, butylnorbornene (norbornene monomers), dicyclopentadiene, dihydrodicyclopentadiene, methyldicyclopentadiene. , dimethyldicyclopentadiene, tetracyclododecene, methyltetracyclododecene, dimethylcyclotetradodecene, tricyclopentadiene, tetracyclopentadiene. Among them, norbornene-based monomers are preferred.
 すなわち、シクロオレフィン系樹脂は、ノルボルネン系単量体に由来する構造単位を含む重合体である。ノルボルネン系単量体は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000001
That is, the cycloolefin-based resin is a polymer containing structural units derived from norbornene-based monomers. A norbornene-based monomer is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
 式(1)のR~Rは、それぞれ水素原子、ハロゲン原子、炭化水素基、または極性基を表す。 R 1 to R 4 in formula (1) each represent a hydrogen atom, a halogen atom, a hydrocarbon group, or a polar group.
 ハロゲン原子の例には、フッ素原子、塩素原子が含まれる。 Examples of halogen atoms include fluorine atoms and chlorine atoms.
 炭化水素基は、炭素原子数が1~10、好ましくは1~4、より好ましくは1または2の炭化水素基である。炭化水素基の例には、メチル基、エチル基、プロピル基、ブチル基などのアルキル基が含まれる。炭化水素基は、酸素原子、窒素原子、硫黄原子またはケイ素原子を含む連結基(例えばカルボニル基、イミノ基、エーテル結合、シリルエーテル結合、チオエーテル結合など)の2価の連結基をさらに有していてもよい。 The hydrocarbon group is a hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms, more preferably 1 or 2 carbon atoms. Examples of hydrocarbon groups include alkyl groups such as methyl, ethyl, propyl and butyl groups. The hydrocarbon group further has a divalent linking group such as a linking group containing an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom (e.g., a carbonyl group, an imino group, an ether bond, a silyl ether bond, a thioether bond, etc.). may
 極性基の例には、カルボキシ基、ヒドロキシ基、アルコキシ基、アルコキシカルボニル基、アリロキシカルボニル基、アミノ基、アミド基、およびメチレン基などの連結基(-(CH-、nは1以上の整数)を介してこれらの基が結合した基が含まれる。中でも、アルコキシカルボニル基およびアリールオキシカルボニル基が好ましく、アルコキシカルボニル基がより好ましい。 Examples of polar groups include linking groups such as carboxy groups, hydroxy groups, alkoxy groups, alkoxycarbonyl groups, aryloxycarbonyl groups, amino groups, amido groups, and methylene groups (—(CH 2 ) n —, where n is 1 Groups in which these groups are bonded via the above integers) are included. Among them, an alkoxycarbonyl group and an aryloxycarbonyl group are preferable, and an alkoxycarbonyl group is more preferable.
 中でも、R~Rのうち少なくとも1つは、極性基であることが好ましい。極性基を有するノルボルネン系単量体に由来する構造単位を含むシクロオレフィン系樹脂は、例えば溶液流延法で製膜する際に、溶剤に溶解させやすく、得られるフィルムのガラス転移温度を高めやすい。また、R~RのうちRおよびRは、水素原子であってもよい。 Among them, at least one of R 1 to R 4 is preferably a polar group. A cycloolefin resin containing a structural unit derived from a norbornene monomer having a polar group is easily dissolved in a solvent, for example, when forming a film by a solution casting method, and tends to increase the glass transition temperature of the resulting film. . Also, R 1 and R 2 of R 1 to R 4 may be hydrogen atoms.
 式(1)のpは、0~2の整数を示す。光学フィルムの耐熱性を高める観点では、pは、1~2であることが好ましい。 "p" in formula (1) represents an integer from 0 to 2. From the viewpoint of enhancing the heat resistance of the optical film, p is preferably 1-2.
 極性基を有するノルボルネン系単量体の例には、以下のものが含まれる。
Figure JPOXMLDOC01-appb-C000002
Examples of norbornene-based monomers having polar groups include the following.
Figure JPOXMLDOC01-appb-C000002
 ノルボルネン系単量体に由来する構造単位の含有量は、シクロオレフィン系樹脂を構成する全構造単位に対して50~100モル%でありうる。 The content of structural units derived from norbornene-based monomers can be 50 to 100 mol% of the total structural units constituting the cycloolefin-based resin.
 シクロオレフィン系樹脂は、ノルボルネン系単量体に由来する構造単位と共重合可能な他の単量体に由来する構造単位をさらに含んでいてもよい。共重合可能な他の単量体の例には、極性基を有しないノルボルネン系単量体や、シクロブテン、シクロペンテン、シクロヘプテン、ジシクロペンタジエンなどのノルボルネン骨格を有しないシクロオレフィン系単量体が含まれる。 The cycloolefin-based resin may further contain a structural unit derived from another monomer copolymerizable with the structural unit derived from the norbornene-based monomer. Examples of other copolymerizable monomers include norbornene-based monomers having no polar groups, and cycloolefin-based monomers having no norbornene skeleton such as cyclobutene, cyclopentene, cycloheptene, and dicyclopentadiene. be
 シクロオレフィン系樹脂の重量平均分子量Mwは、特に制限されないが、2万~30万であることが好ましく、3万~25万であることがより好ましく、4万~20万であることがさらに好ましい。シクロオレフィン系樹脂のMwが上記範囲にあると、成形加工性を損なうことなく、フィルムの機械的特性を高めうる。 The weight average molecular weight Mw of the cycloolefin resin is not particularly limited, but is preferably 20,000 to 300,000, more preferably 30,000 to 250,000, and even more preferably 40,000 to 200,000. . When the Mw of the cycloolefin resin is within the above range, the mechanical properties of the film can be enhanced without impairing the moldability.
 シクロオレフィン系樹脂のMwは、ゲルパーミエーションクロマトグラフィー(GPC)により測定することができる。具体的には、東ソー社製HLC8220GPCを用いて、以下の条件で測定することができる。
 (測定条件)
 溶離液:THF
 カラム:東ソー社製 TSKgel GMHXL×2本
 流速:1.0mL/min
 試料濃度:0.1質量%
 注入量:100μL
 検出器:RI
 検量線:標準ポリスチレン
 カラム温度:40℃
The Mw of the cycloolefin resin can be measured by gel permeation chromatography (GPC). Specifically, it can be measured under the following conditions using HLC8220GPC manufactured by Tosoh Corporation.
(Measurement condition)
Eluent: THF
Column: TSKgel GMHXL x 2 manufactured by Tosoh Corporation Flow rate: 1.0 mL/min
Sample concentration: 0.1% by mass
Injection volume: 100 μL
Detector: RI
Calibration curve: standard polystyrene Column temperature: 40°C
 シクロオレフィン系樹脂のガラス転移温度Tgは、通常、110℃以上であることが好ましく、110~350℃であることがより好ましく、120~250℃であることがより好ましい。シクロオレフィン系樹脂のTgが110℃以上であると、得られるフィルムの耐熱性を高めやすく、350℃以下であると、成形加工時のシクロオレフィン系樹脂の熱劣化を抑制しやすい。 The glass transition temperature Tg of the cycloolefin resin is generally preferably 110°C or higher, more preferably 110 to 350°C, and more preferably 120 to 250°C. When the Tg of the cycloolefin-based resin is 110°C or higher, the heat resistance of the resulting film is likely to be enhanced, and when it is 350°C or lower, thermal deterioration of the cycloolefin-based resin during molding can be easily suppressed.
 Tgは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012またはASTM D 3418-82に準拠した方法で測定することができる。 Tg can be measured by a method based on JIS K 7121-2012 or ASTM D 3418-82 using DSC (Differential Scanning Colorimetry).
 <フマル酸ジエステル系樹脂>
 フマル酸ジエステル系樹脂は、フマル酸ジイソプロピルに由来する構造単位と、炭素数1または2のアルキル基を有するフマル酸ジエステルに由来する構造単位とを含む樹脂でありうる。
<Fumarate diester resin>
The fumarate diester-based resin may be a resin containing a structural unit derived from diisopropyl fumarate and a structural unit derived from a fumarate diester having an alkyl group having 1 or 2 carbon atoms.
 炭素数1または2のアルキル基を有するフマル酸ジエステルにおける炭素数1または2のアルキル基は、メチル基またはエチル基であり、これらはフッ素原子や塩素原子などのハロゲン原子、エーテル基、エステル基もしくはアミノ基で置換されていてもよい。炭素数1または2のアルキル基を有するフマル酸ジエステルとしては、例えばフマル酸ジメチル、フマル酸ジエチルが挙げられる。 The alkyl group having 1 or 2 carbon atoms in the fumarate diester having an alkyl group having 1 or 2 carbon atoms is a methyl group or an ethyl group, which is a halogen atom such as a fluorine atom or a chlorine atom, an ether group, an ester group, or It may be substituted with an amino group. Examples of fumarate diesters having an alkyl group having 1 or 2 carbon atoms include dimethyl fumarate and diethyl fumarate.
 位相差特性や強度の観点から、フマル酸ジイソプロピルに由来する構造単位の含有量は、好ましくは50~99モル%、より好ましくは60~95モル%であり;炭素数1または2のアルキル基を有するフマル酸ジエステルに由来する構造単位の含有量は、好ましくは1~50モル%、より好ましくは5~40モル%でありうる。 From the viewpoint of retardation properties and strength, the content of structural units derived from diisopropyl fumarate is preferably 50 to 99 mol%, more preferably 60 to 95 mol%; The content of the structural unit derived from the fumaric acid diester may preferably be 1 to 50 mol %, more preferably 5 to 40 mol %.
 フマル酸ジエステル系樹脂の例には、フマル酸ジイソプロピル/フマル酸ジメチル共重合体、フマル酸ジイソプロピル/フマル酸ジエチル共重合体などが挙げられる。 Examples of diester fumarate resins include diisopropyl fumarate/dimethyl fumarate copolymer and diisopropyl fumarate/diethyl fumarate copolymer.
 フマル酸ジエステル系樹脂は、他の単量体に由来する構造単位をさらに含んでもよい。他の単量体の例には、スチレン、α-メチルスチレンなどのスチレン類;(メタ)アクリル酸;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステル;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;(メタ)アクリロニトリル;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類;N-メチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド等のN-置換マレイミド類;エチレン、プロピレン等のオレフィン類;あるいはフマル酸ジn-ブチル、フマル酸ビス(2-エチルヘキシル)等のフマル酸ジエステル以外のフマル酸ジエステル類を挙げることができる。 The fumaric acid diester resin may further contain structural units derived from other monomers. Examples of other monomers include styrene, styrenes such as α-methylstyrene; (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, etc. ( meth)acrylic acid esters; vinyl esters such as vinyl acetate and vinyl propionate; (meth)acrylonitrile; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and butyl vinyl ether; N-methylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide olefins such as ethylene and propylene; and fumarate diesters other than fumarate diesters such as di-n-butyl fumarate and bis(2-ethylhexyl) fumarate.
 フマル酸ジエステル系樹脂の数平均分子量は、50000~250000であることが好ましい。フマル酸ジエステル系樹脂の数平均分子量は、上記と同様の方法で測定することができる。 The number average molecular weight of the fumaric acid diester resin is preferably 50,000 to 250,000. The number average molecular weight of the diester fumaric acid resin can be measured by the same method as described above.
 <ポリエステル>
 ポリエステルは、ジオール成分とジカルボン酸成分を重縮合反応させて得られる重合体(ただし、フマル酸ジエステル系樹脂とは異なる)であり、公知のものを用いることができる。中でも、ポリエステルは、芳香環を有するポリエステルであることが好ましく、例えば特許第6495075号明細書に記載のフルオレン基含有モノマー単位を含むポリエステルを使用できる。
<Polyester>
The polyester is a polymer obtained by polycondensation reaction of a diol component and a dicarboxylic acid component (however, it is different from a diester fumaric acid resin), and known ones can be used. Among them, the polyester is preferably a polyester having an aromatic ring. For example, a polyester containing a fluorene group-containing monomer unit described in Japanese Patent No. 6495075 can be used.
 すなわち、9,9-ビス(アリール-ヒドロキシ(ポリ)アルコキシアリール)フルオレンを含み、必要に応じてC2~10(好ましくはC2~4)の脂肪族ジオールをさらに含みうるジオール成分と、脂環式ジカルボン酸および非フルオレン芳香族ジカルボン酸を含むジカルボン酸成分とを重縮合反応させて得られるポリエステルなどを使用できる。そのようなポリエステルを含むフィルムは、複屈折および逆波長分散性を有するフィルムを付与しうる。 That is, a diol component comprising 9,9-bis(aryl-hydroxy(poly)alkoxyaryl)fluorene and optionally further comprising a C2-10 (preferably C2-4) aliphatic diol; A polyester obtained by a polycondensation reaction of a dicarboxylic acid and a dicarboxylic acid component including a non-fluorene aromatic dicarboxylic acid can be used. Films comprising such polyesters can provide films with birefringence and reverse wavelength dispersion.
 熱可塑性樹脂の含有量は、斜め延伸フィルムに対して50質量%以上であることが好ましく、70~99質量%であることがより好ましい。 The content of the thermoplastic resin is preferably 50% by mass or more, more preferably 70 to 99% by mass, relative to the obliquely stretched film.
 (他の成分)
 斜め延伸フィルムは、必要に応じて他の成分をさらに含んでもよい。他の成分の例には、各種添加剤(可塑剤、紫外線吸収剤、リタデーション調整剤、酸化防止剤、劣化防止剤、剥離助剤、界面活性剤)や染料、微粒子などが含まれる。
(other ingredients)
The obliquely stretched film may further contain other components as necessary. Examples of other components include various additives (plasticizers, ultraviolet absorbers, retardation modifiers, antioxidants, deterioration inhibitors, release aids, surfactants), dyes, fine particles, and the like.
 微粒子(マット剤)は、斜め延伸フィルムの表面に凹凸を形成し、滑り性を付与しうる。微粒子は、無機微粒子であってもよいし、樹脂微粒子であってもよい。無機微粒子の例には、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウムなどの微粒子が含まれ、好ましくは二酸化ケイ素粒子(例えば日本触媒(株)製、「シーホスターシリーズ」KE-P20、KE-P30など)である。樹脂微粒子の例には、(メタ)アクリル系樹脂架橋微粒子(例えば「エポスターシリーズ」MX100W等)などが含まれる。微粒子の平均粒子径は、例えば50~500nm、好ましくは100~300nmでありうる。上記の範囲であれば、透明性とアンチブロッキング性を両立することができる。 The fine particles (matting agent) can form unevenness on the surface of the obliquely stretched film and impart lubricity. The fine particles may be inorganic fine particles or resin fine particles. Examples of inorganic fine particles include fine particles such as silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, and calcium carbonate, preferably silicon dioxide particles (for example, Nippon Shokubai Co., Ltd., "Seahoster Series" KE-P20 , KE-P30, etc.). Examples of resin fine particles include (meth)acrylic crosslinked resin fine particles (for example, "Eposter series" MX100W, etc.). The average particle size of the microparticles can be, for example, 50-500 nm, preferably 100-300 nm. Within the above range, both transparency and anti-blocking properties can be achieved.
 (厚み)
 斜め延伸フィルムの厚みは、特に制限されないが、例えば10~200μm、好ましくは10~60μm、より好ましくは10~50μmである。
(thickness)
Although the thickness of the obliquely stretched film is not particularly limited, it is, for example, 10 to 200 μm, preferably 10 to 60 μm, more preferably 10 to 50 μm.
 (サーベルフォーム)
 斜め延伸フィルムのサーベルフォームは、10mm以上であることが好ましい。斜め延伸フィルムのサーベルフォームが10mm以上であると、適度な歪みを有するため、ロール状に巻き取った時の巻き硬さを適度に緩めることができ、光学フィルムまたはそれを含む偏光板の巻き取り時に光学フィルムに傷がつくのを抑制しやすい。サーベルフォームの上限値は、特に制限されないが、ハンドリング性を損なわないようにする観点などから、例えば30mmとしうる。斜め延伸フィルムのサーベルフォームは、10~30mmであることがより好ましく、15~30mmであることがより好ましい。
(saber form)
The saber form of the obliquely stretched film is preferably 10 mm or more. When the saber form of the obliquely stretched film is 10 mm or more, it has moderate distortion, so that the winding hardness when wound into a roll can be moderately loosened, and the optical film or the polarizing plate including the same can be wound. Occasionally, it is easy to suppress scratches on the optical film. Although the upper limit of the saber foam is not particularly limited, it can be set to, for example, 30 mm from the viewpoint of not impairing handling performance. The saber form of the obliquely stretched film is more preferably 10 to 30 mm, more preferably 15 to 30 mm.
 図2は、サーベルフォームの測定方法を示す模式図である。サーベルフォームは、以下の方法で測定することができる。フィルムの長手方向(フィルムの幅方向と直交する方向)の0m位置、10m位置、20m位置における幅方向の中点をそれぞれm0、m1およびm2としたとき、m0とm2とを結ぶ中心線に対する、m1のフィルムの幅方向の距離Xとして測定される(図2参照)。 Fig. 2 is a schematic diagram showing a method for measuring saber form. Saber form can be measured by the following method. When the midpoints in the width direction at the 0 m position, 10 m position, and 20 m position in the longitudinal direction of the film (direction perpendicular to the width direction of the film) are m0, m1, and m2, respectively, It is measured as the distance X across the width of the film of m1 (see Figure 2).
 サーベルフォームは、例えば斜め延伸時の延伸ゾーンの温度や、延伸ゾーンの温度と熱固定ゾーンの温度との差によって調整することができる。例えば、斜め延伸時の延伸ゾーンの温度(T2)をフィルムのTg近傍とし、かつ熱固定ゾーンZ3の温度(T3)を延伸ゾーンの温度(T2)と同程度かそれよりも高くすること、具体的にはΔT(=T2-T3)を小さくすること(好ましくは絶対値の大きな負の値にすること)により、サーベルフォームを大きくすることが好ましい。 The saber form can be adjusted, for example, by adjusting the temperature of the stretching zone during oblique stretching or the difference between the temperature of the stretching zone and the temperature of the heat setting zone. For example, the temperature (T2) of the stretching zone during oblique stretching should be near the Tg of the film, and the temperature (T3) of the heat setting zone Z3 should be about the same as or higher than the temperature (T2) of the stretching zone. Practically, it is preferable to increase the saber form by reducing ΔT (=T2−T3) (preferably by setting it to a negative value with a large absolute value).
 (厚み偏差)
 斜め延伸フィルムの幅方向の厚みムラは、3μm以下であることが好ましく、2μm以下であることがより好ましく、0.5~1.5μmであることがさらに好ましい。幅方向の厚みムラが3μm以下であると、易接着層をさらに設けて巻き取ったときに、局所的に接触する部分における接触ムラを低減しうる。また、幅方向の厚みムラが0.5μm以上であると、フィルムを巻き取った際に、巻き硬さを適度に緩くしやすく、傷をより生じにくくしうる。
(Thickness deviation)
The thickness unevenness in the width direction of the obliquely stretched film is preferably 3 μm or less, more preferably 2 μm or less, and even more preferably 0.5 to 1.5 μm. If the thickness unevenness in the width direction is 3 μm or less, contact unevenness in the locally contacting portion can be reduced when the easy-adhesion layer is further provided and wound up. Further, when the thickness unevenness in the width direction is 0.5 μm or more, when the film is wound, the winding hardness can be moderately loosened, and scratches can be made more difficult to occur.
 厚み偏差は、公知の膜厚計、例えばオフライン接触式膜厚計(YAMABUN社製)を用いて測定することができる。具体的には、フィルムの幅方向の一方の端部から他方の端部まで、幅方向に沿って1mm間隔でフィルムの厚みを測定する。そして、最大値-最小値の値を、フィルムの幅方向の厚み偏差とする。 The thickness deviation can be measured using a known film thickness meter, for example, an offline contact film thickness meter (manufactured by YAMABUN). Specifically, the thickness of the film is measured at intervals of 1 mm along the width direction from one end to the other end in the width direction of the film. Then, the value of maximum value - minimum value is taken as the thickness deviation in the width direction of the film.
 (配向角θ)
 斜め延伸フィルムの面内において、遅相軸のフィルムの幅方向に対する角度(配向角θ)は、フィルムの幅方向に対して0°超90°未満でありうる。中でも、λ/4位相差フィルムとして用いる場合、偏光板加工時の生産性や表示装置にしたときの視認性の観点から、配向角θは、フィルムの幅方向に対して好ましくは20~70°、好ましくは40~50°でありうる。配向角θが40~50°であると、円偏光板に加工してそれを表示装置に搭載したときの外光の反射防止性能が優れるため、特に好ましい。
(orientation angle θ)
In the plane of the obliquely stretched film, the angle of the slow axis with respect to the width direction of the film (orientation angle θ) may be more than 0° and less than 90° with respect to the width direction of the film. Among them, when used as a λ / 4 retardation film, the orientation angle θ is preferably 20 to 70 ° with respect to the width direction of the film from the viewpoint of productivity when processing a polarizing plate and visibility when used as a display device. , preferably 40-50°. When the orientation angle θ is 40 to 50°, the anti-reflection performance against external light is excellent when processed into a circularly polarizing plate and mounted on a display device, which is particularly preferable.
 斜め延伸フィルムの面内遅相軸は、公知の位相差測定装置、例えば自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)や自動複屈折率計KOBRA-21ADH(王子計測機器(株)製)により測定波長550nmまたは590nmで確認することができる。 The in-plane slow axis of the obliquely stretched film is measured by a known phase difference measuring device, such as an automatic birefringence meter AxoScan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics) or an automatic birefringence meter KOBRA-21ADH (Oji Measurement It can be confirmed at a measurement wavelength of 550 nm or 590 nm by a device (manufactured by Kikiki Co., Ltd.).
 (面内位相差Ro)
 斜め延伸フィルムの面内位相差Roは、用途に応じて適宜設定されうる。例えば、測定波長550nm、23℃55%RHの環境下で測定される面内位相差Roは、95~170nmであることが好ましく、130~150nmであることがより好ましい。Roが上記範囲内にあると、円偏光板加工して自発光型表示装置に搭載したときの、非発光状態での黒の色味を、適切なところに調整できるため好ましい。
(In-plane retardation Ro)
The in-plane retardation Ro of the obliquely stretched film can be appropriately set according to the application. For example, the in-plane retardation Ro measured at a measurement wavelength of 550 nm at 23° C. and 55% RH is preferably 95 to 170 nm, more preferably 130 to 150 nm. When Ro is within the above range, it is possible to appropriately adjust the black tint in a non-luminous state when processed into a circularly polarizing plate and mounted in a self-luminous display device, which is preferable.
 Roは、下記式で定義される。
 式(1):Ro=(nx-ny)×d
(式(1)中、
 nxは、フィルムの面内遅相軸方向(屈折率が最大となる方向)の屈折率を表し、
 nyは、フィルムの面内遅相軸に直交する方向の屈折率を表し、
 dは、フィルムの厚み(nm)を表す。)
Ro is defined by the following formula.
Formula (1): Ro = (nx-ny) x d
(In formula (1),
nx represents the refractive index in the in-plane slow axis direction of the film (the direction in which the refractive index is maximized),
ny represents the refractive index in the direction perpendicular to the in-plane slow axis of the film,
d represents the thickness (nm) of the film. )
 Roは、以下の方法で測定することができる。
 1)斜め延伸フィルムを23℃55%RHの環境下で24時間調湿する。この斜め延伸フィルムの平均屈折率をアッベ屈折計で測定し、厚みdを市販のマイクロメーターを用いて測定する。
 2)調湿後のフィルムの、測定波長550nmにおける面内位相差Roを、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃55%RHの環境下で測定する。
Ro can be measured by the following method.
1) The obliquely stretched film is conditioned in an environment of 23°C and 55% RH for 24 hours. The average refractive index of this obliquely stretched film is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer.
2) The in-plane retardation Ro of the film after humidity conditioning at a measurement wavelength of 550 nm is measured using an automatic birefringence meter Axo Scan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics) in an environment of 23 ° C. and 55% RH. Measure below.
 斜め延伸フィルムの面内位相差Roは、例えば、樹脂の種類や添加剤の種類、量、延伸条件などによって調整することができる。 The in-plane retardation Ro of the obliquely stretched film can be adjusted by, for example, the type of resin, the type and amount of additives, stretching conditions, and the like.
 1-2.易接着層12
 易接着層は、斜め延伸フィルムと偏光子との接着性を高める機能を有する。易接着層の押し込み弾性率は、1.5~3.0GPaである。押し込み弾性率が1.5GPa以上であると、適度な硬さを有するため、光学フィルムをロール状に巻き取った時に、局所的に接触する部分が生じることによる白色痕を形成されにくくしうる。3.0GPa以下であると、偏光子との接着性が損なわれにくい。同様の観点から、易接着層の押し込み弾性率は、2.0~2.5GPaであることがより好ましい。
1-2. Easy adhesion layer 12
The easy-adhesion layer has a function of enhancing adhesion between the obliquely stretched film and the polarizer. The indentation modulus of the easily adhesive layer is 1.5 to 3.0 GPa. When the indentation elastic modulus is 1.5 GPa or more, the film has appropriate hardness, so that when the optical film is wound into a roll, it is possible to prevent the formation of white marks due to the occurrence of local contact portions. When it is 3.0 GPa or less, the adhesiveness to the polarizer is less likely to be impaired. From the same point of view, the indentation elastic modulus of the easily adhesive layer is more preferably 2.0 to 2.5 GPa.
 易接着層の押し込み弾性率は、ISO14577に準拠したナノインデンテーション法による押し込み試験、具体的には、Oliver-Pharr解析により測定することができる。押し込み弾性率(複合弾性率Er)は、測定装置としてナノインデンテーション(Triboscope)(HYSITRON製、圧子バーコビッチ型)を用い、最大押込み深さ20nmにて、負荷時および除荷時の荷重と押込み深さの関係を測定することにより求めることができる。 The indentation modulus of the easily adhesive layer can be measured by an indentation test by a nanoindentation method in accordance with ISO14577, specifically by Oliver-Pharr analysis. The indentation elastic modulus (composite elastic modulus Er) was measured using a nanoindentation (Triboscope) (manufactured by HYSITRON, indenter Berkovich type) as a measuring device, with a maximum indentation depth of 20 nm. It can be obtained by measuring the relationship between the thicknesses.
 易接着層の押し込み弾性率は、易接着層の組成(樹脂の種類など)や架橋度などによって調整することができる。例えば、易接着層を構成する組成物に、ポリオレフィンまたはその架橋物などを含有させたり、架橋物の架橋度を高めたりすることで、押し込み弾性率を高めることができる。 The indentation modulus of the easy-adhesion layer can be adjusted by adjusting the composition of the easy-adhesion layer (such as the type of resin) and the degree of cross-linking. For example, the indentation modulus can be increased by including polyolefin or a crosslinked product thereof in the composition constituting the easy adhesion layer, or by increasing the degree of crosslinkage of the crosslinked product.
 易接着層の組成は、斜め延伸フィルムと偏光子との接着性を高め、かつ押し込み弾性率が上記範囲を満たすものであればよい。易接着層は、樹脂を含む組成物(易接着層用組成物)またはその架橋物を含む。 The composition of the easy-adhesion layer should improve the adhesion between the obliquely stretched film and the polarizer, and should satisfy the above range for the indentation elastic modulus. The easy-adhesion layer contains a resin-containing composition (easy-adhesion layer composition) or a crosslinked product thereof.
 (樹脂)
 樹脂は、ポリウレタン、ポリオレフィン、ポリエステル、ポリ塩化ビニリデン、アクリル系ポリマー、変性シリコーン系ポリマー、スチレンブタジエンゴムなどが含まれる。これらの樹脂は、一種類で用いてもよいし、2種類以上を組み合わせてもよい。例えば、ポリオレフィンとポリウレタンとを組み合わせることができる。
(resin)
Resins include polyurethane, polyolefin, polyester, polyvinylidene chloride, acrylic polymer, modified silicone polymer, styrene-butadiene rubber, and the like. These resins may be used singly or in combination of two or more. For example, polyolefins and polyurethanes can be combined.
 ポリウレタン:
 ポリウレタンは、例えばポリオール化合物とポリイソシアネート化合物との反応で得られる重合体である。ポリウレタンを構成するポリオール成分としてポリエーテルポリオールを含むものである。ポリエーテルポリオールとしては、ポリテトラメチレングリコールがより好ましい。
Polyurethane:
Polyurethane is a polymer obtained by reaction of, for example, a polyol compound and a polyisocyanate compound. Polyether polyol is included as a polyol component constituting polyurethane. Polytetramethylene glycol is more preferable as the polyether polyol.
 当該ポリウレタンの市販品の例には、DIC(株)製、商品名「ハイドランシリーズ」AP-201、AP-40F、HW-140SF、WLS-202、第一工業製薬(株)製、商品名「スーパーフレックスシリーズ」SF-210、SF460、SF870、SF420、SF-420NS、三井化学(株)製、商品名「タケラックシリーズ」W-615、W6010、W-6020、W-6061、W-405、W-5030、W-5661、W-512A-6、W-635、WPB-6601、WS-6021、WS-5000、WS-5100、WS-4000、WSA-5920、WF-764、アデカ(株)製、開発品「SPX-0882」などが挙げられる。 Examples of commercially available polyurethane products include DIC Corporation, trade names "Hydran Series" AP-201, AP-40F, HW-140SF, WLS-202, and Daiichi Kogyo Seiyaku Co., Ltd., trade names. “Super Flex Series” SF-210, SF460, SF870, SF420, SF-420NS, manufactured by Mitsui Chemicals, Inc., trade name “Takelac Series” W-615, W6010, W-6020, W-6061, W-405 , W-5030, W-5661, W-512A-6, W-635, WPB-6601, WS-6021, WS-5000, WS-5100, WS-4000, WSA-5920, WF-764, Adeka Co., Ltd. ), developed product “SPX-0882”.
 ポリオレフィン:
 ポリオレフィンは、酸変性ポリオレフィンであることが好ましい。酸変性ポリオレフィンは、不飽和カルボン酸に由来する構造単位を含むオレフィン系重合体であり、ランダム共重合体であってもよいし、グラフト共重合体であってもよい。不飽和カルボン酸の例には、(メタ)アクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸などでありうる。不飽和カルボン酸に由来する構造単位の含有量は、全構造単位に対して0.1~25質量%、好ましくは0.5~15質量%でありうる。オレフィンは、エチレン、プロピレンなどの炭素原子数2~6のアルケンでありうる。オレフィンに由来する構造単位の含有量は、全構造単位に対して50質量%以上、好ましくは70質量%以上でありうる。
 オレフィン系重合体は、(メタ)アクリル酸エステルなどの他の共重合成分に由来する構造単位をさらに含んでもよい。
Polyolefin:
The polyolefin is preferably an acid-modified polyolefin. The acid-modified polyolefin is an olefin polymer containing structural units derived from unsaturated carboxylic acid, and may be a random copolymer or a graft copolymer. Examples of unsaturated carboxylic acids can be (meth)acrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, and the like. The content of structural units derived from unsaturated carboxylic acid may be 0.1 to 25% by weight, preferably 0.5 to 15% by weight, based on the total structural units. The olefin can be an alkene of 2-6 carbon atoms such as ethylene, propylene. The content of structural units derived from olefins may be 50% by mass or more, preferably 70% by mass or more, based on all structural units.
The olefinic polymer may further contain structural units derived from other copolymer components such as (meth)acrylic acid esters.
 酸変性ポリオレフィンの例には、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸-無水マレイン酸共重合体、酸変性ポリエチレン、酸変性ポリプロピレン、酸変性エチレン-プロピレン樹脂、酸変性エチレン-ブテン樹脂、酸変性プロピレン-ブテン樹脂、酸変性エチレン-プロピレン-ブテン樹脂などが含まれる。
 ポリオレフィンの市販品の例には、ユニチカ(株)製、商品名「アローベースシリーズ」SB-1200、SE-1010、SE-1013N、SE-1030N、SD-1010、TC-4010、TD-4010、東邦化学(株)製、「ハイテックシリーズ」S3148、S3121、S8512、P-5060N、P-9018、三井化学(株)製、商品名「ユニストールシリーズ」S-120、S-75N、V100、H-200、H-300、EV210H、三井化学(株)製、商品名「ケミパールシリーズ」XHP-400、住友精化(株)製、商品名「ザイクセンシリーズ」ザイクセンA、ザイクセンL、東洋紡(株)製、商品名「ハードレンシリーズ」NZ-1004、NZ-1005、NZ-1022などが挙げられる。
Examples of acid-modified polyolefins include ethylene-(meth)acrylic acid copolymer, ethylene-(meth)acrylic acid-maleic anhydride copolymer, acid-modified polyethylene, acid-modified polypropylene, acid-modified ethylene-propylene resin, acid Modified ethylene-butene resins, acid-modified propylene-butene resins, acid-modified ethylene-propylene-butene resins, and the like are included.
Examples of commercially available polyolefin products include Unitika Ltd., trade name "Arrow Base Series" SB-1200, SE-1010, SE-1013N, SE-1030N, SD-1010, TC-4010, TD-4010, Toho Chemical Co., Ltd., "High Tech Series" S3148, S3121, S8512, P-5060N, P-9018, Mitsui Chemicals, Inc., trade name "Unistall Series" S-120, S-75N, V100, H -200, H-300, EV210H, manufactured by Mitsui Chemicals Co., Ltd., trade name "Chemipearl Series" XHP-400, manufactured by Sumitomo Seika Co., Ltd., trade name "Saixen Series" Zaixen A, Zaixen L, Toyobo ( NZ-1004, NZ-1005, NZ-1022, etc. manufactured by Co., Ltd. under the trade name of “Hardren Series”.
 ポリエステル:
 ポリエステルの例には、東洋紡(株)製、商品名「バイロナールシリーズ」MD1400、MD1480、MD1245、MD1500、互応化学工業(株)製、商品名「プラスコートシリーズ」Z-221、Z-561、Z-730、RZ-142、Z-687などが挙げられる。
polyester:
Examples of polyester include Toyobo Co., Ltd., trade names "Vylonal Series" MD1400, MD1480, MD1245, MD1500; Z-730, RZ-142, Z-687 and the like.
 ポリ塩化ビニリデン:
 ポリ塩化ビニリデンの例には、旭化成(株)製、商品名「サランラテックスシリーズ」L509などが挙げられる。アクリル系ポリマーの例には、日本触媒(株)製、商品名「エポクロスWSシリーズ」WS-700、新中村化学(株)製、商品名「ニューコートシリーズ」などが挙げられる。変性シリコーン系ポリマーの例には、DIC(株)製、商品名「セラネートシリーズ」WSA1060、WSA1070、旭化成ケミカルズ(株)製、H7620、H7630、H7650などが挙げられる。スチレンブタジエンゴムの例には、日本ゼオン(株)製、NIPOL LX415、NIPOL LX407、NIPOL V1004、NIPOL MH8101、SX1105などが挙げられる。
Polyvinylidene chloride:
Examples of polyvinylidene chloride include Asahi Kasei Co., Ltd.'s trade name "Saran Latex Series" L509. Examples of acrylic polymers include those manufactured by Nippon Shokubai Co., Ltd. under the trade name of "Epocross WS Series" WS-700, and manufactured by Shin-Nakamura Chemical Co., Ltd. under the trade name of "New Coat Series". Examples of modified silicone-based polymers include DIC Corporation's trade names "Ceranate Series" WSA1060 and WSA1070, and Asahi Kasei Chemicals Corporation's H7620, H7630 and H7650. Examples of styrene-butadiene rubber include NIPOL LX415, NIPOL LX407, NIPOL V1004, NIPOL MH8101, and SX1105 manufactured by Zeon Corporation.
 (架橋剤)
 上記樹脂は、架橋剤で架橋されていることが好ましい。架橋剤の例には、オキサゾリン化合物、カルボジイミド化合物、イソシアネート化合物、エポキシ化合物などが含まれる。
(crosslinking agent)
The resin is preferably crosslinked with a crosslinking agent. Examples of cross-linking agents include oxazoline compounds, carbodiimide compounds, isocyanate compounds, epoxy compounds, and the like.
 オキサゾリン化合物は、分子内に2個以上のオキサゾリン基を有する化合物でありうる。オキサゾリン化合物の例には、株式会社日本触媒製WS-700などのエポクロス(登録商標)シリーズ(日本触媒社製)が含まれる。 The oxazoline compound can be a compound having two or more oxazoline groups in the molecule. Examples of oxazoline compounds include Epocross (registered trademark) series (manufactured by Nippon Shokubai Co., Ltd.) such as WS-700 manufactured by Nippon Shokubai Co., Ltd.
 カルボジイミド化合物は、分子内に2個以上のカルボジイミド基を有する化合物でありうる。カルボジイミド化合物の例には、日清紡ケミカル(株)製、商品名「カルボジライトシリーズ」V-02、V-02-L2、SV-02、V-04、E-02などが挙げられる。 A carbodiimide compound can be a compound having two or more carbodiimide groups in the molecule. Examples of carbodiimide compounds include Nisshinbo Chemical Co., Ltd., trade name "Carbodilite Series" V-02, V-02-L2, SV-02, V-04 and E-02.
 イソシアネート化合物は、1分子中に2個以上のイソシアネート基を含有する化合物であり、脂肪族イソシアネート、芳香族イソシアネート、脂環式イソシアネートのいずれであってもよい。イソシアネート化合物の例には、ヘキサメチレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネートが含まれる。また、イソシアネート化合物は、ブロック剤でマスキング加工されたものであってもよい。 The isocyanate compound is a compound containing two or more isocyanate groups in one molecule, and may be any of aliphatic isocyanate, aromatic isocyanate, and alicyclic isocyanate. Examples of isocyanate compounds include hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, isophorone diisocyanate, xylylene diisocyanate. Also, the isocyanate compound may be masked with a blocking agent.
 エポキシ化合物は、分子内に1個以上のエポキシ基を有する化合物、または、分子内に2個以上のエポキシ基を有する高分子(エポキシ樹脂)を用いる場合は、エポキシ基との反応性を有する官能基を分子内に二つ以上有する化合物を併用してもよい。ここでエポキシ基との反応性を有する官能基とは、例えば、カルボキシ基、フェノール性水酸基、メルカプト基、1級または2級の芳香族アミノ基などが挙げられる。これらの官能基は、3次元硬化性を考慮して、一分子中に2つ以上有することが特に好ましい。
 分子内に1個以上のエポキシ基を有する高分子としては、例えば、エポキシ樹脂が挙げられ、ビスフェノールAとエピクロルヒドリンから誘導されるビスフェノールA型エポキシ樹脂、ビスフェノールFとエピクロルヒドリンから誘導されるビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フルオレン型エポキシ樹脂、3官能型エポキシ樹脂や4官能型エポキシ樹脂などの多官能型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、脂肪族鎖状エポキシ樹脂などがあり、これらのエポキシ樹脂はハロゲン化されていてもよく、水素添加されていてもよい。市販されているエポキシ樹脂製品としては、例えばジャパンエポキシレジン株式会社製のJERコート828、1001、801N、806、807、152、604、630、871、YX8000、YX8034、YX4000、DIC株式会社製のエピクロン830、EXA835LV、HP4032D、HP820、株式会社ADEKA製のEP4100シリーズ、EP4000シリーズ、EPUシリーズ、ダイセル化学株式会社製のセロキサイドシリーズ(2021、2021P、2083、2085、3000など)、エポリードシリーズ、EHPEシリーズ、新日鐵化学社製のYDシリーズ、YDFシリーズ、YDCNシリーズ、YDBシリーズ、フェノキシ樹脂(ビスフェノール類とエピクロルヒドリンより合成されるポリヒドロキシポリエーテルで両末端にエポキシ基を有する;YPシリーズなど)、ナガセケムテックス社製のデナコールシリーズ、共栄社化学社製のエポライトシリーズなどが挙げられるがこれらに限定されるものではない。これらのエポキシ樹脂は、2種以上を併用してもよい。
The epoxy compound is a compound having one or more epoxy groups in the molecule, or when using a polymer (epoxy resin) having two or more epoxy groups in the molecule, a functional group having reactivity with the epoxy group. A compound having two or more groups in the molecule may be used in combination. Examples of functional groups reactive with epoxy groups include carboxy groups, phenolic hydroxyl groups, mercapto groups, and primary or secondary aromatic amino groups. Considering three-dimensional curability, it is particularly preferable to have two or more of these functional groups in one molecule.
Polymers having one or more epoxy groups in the molecule include, for example, epoxy resins, bisphenol A type epoxy resin derived from bisphenol A and epichlorohydrin, bisphenol F type epoxy derived from bisphenol F and epichlorohydrin. resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolak type epoxy resin, alicyclic epoxy resin, diphenyl ether type epoxy resin, hydroquinone type epoxy resin, Naphthalene type epoxy resin, biphenyl type epoxy resin, fluorene type epoxy resin, polyfunctional epoxy resin such as trifunctional epoxy resin and tetrafunctional epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, hydantoin type epoxy resin , isocyanurate type epoxy resins, aliphatic chain epoxy resins, etc. These epoxy resins may be halogenated or hydrogenated. Examples of commercially available epoxy resin products include JER Coat 828, 1001, 801N, 806, 807, 152, 604, 630, 871, YX8000, YX8034, YX4000 manufactured by Japan Epoxy Resin Co., Ltd., and Epiclon manufactured by DIC Corporation. 830, EXA835LV, HP4032D, HP820, ADEKA Co., Ltd. EP4100 series, EP4000 series, EPU series, Daicel Chemical Co., Ltd. celoxide series (2021, 2021P, 2083, 2085, 3000, etc.), Epolead series, EHPE series, Nippon Steel Chemical Co., Ltd. YD series, YDF series, YDCN series, YDB series, phenoxy resin (polyhydroxy polyether synthesized from bisphenols and epichlorohydrin and having epoxy groups at both ends; YP series, etc.), Denacol series manufactured by Nagase Chemtex Co., Ltd., Epolite series manufactured by Kyoeisha Chemical Co., Ltd., and the like, but are not limited to these. These epoxy resins may be used in combination of two or more.
 架橋剤の含有量は、易接着層の押し込み弾性率が上記範囲となるように設定されればよく、例えば全固形分100質量部に対して、好ましくは2~30質量部、より好ましくは3~20質量部である。 The content of the cross-linking agent may be set so that the indentation modulus of the easy-adhesion layer is within the above range. ~20 parts by mass.
 (他の成分)
 易接着層は、必要に応じて上記以外の他の成分をさらに含んでもよい。他の成分の例には、微粒子(マット剤)、レベリング剤、重合開始剤、重合促進剤、粘度調整剤、スリップ剤、分散剤、可塑剤、熱安定剤、光安定剤、滑材、抗酸化剤、難燃剤、着色剤、帯電防止剤、相溶化剤などが挙げられる。
(other ingredients)
The easy-adhesion layer may further contain other components than the above as needed. Examples of other ingredients include fine particles (matting agents), leveling agents, polymerization initiators, polymerization accelerators, viscosity modifiers, slip agents, dispersants, plasticizers, heat stabilizers, light stabilizers, lubricants, Oxidizing agents, flame retardants, colorants, antistatic agents, compatibilizers and the like are included.
 中でも、易接着層は、押し込み弾性率を一定以上にする観点から、ポリオレフィンまたはその架橋物を含むことが好ましい。ポリオレフィンの架橋物は、酸変性ポリオレフィンの架橋物(酸変性ポリオレフィンと架橋剤とを含む組成物の架橋物)であることがより好ましい。 Above all, the easy-adhesion layer preferably contains polyolefin or a crosslinked product thereof from the viewpoint of making the indentation elastic modulus equal to or higher than a certain level. The crosslinked product of polyolefin is more preferably a crosslinked product of acid-modified polyolefin (a crosslinked product of a composition containing acid-modified polyolefin and a cross-linking agent).
 例えば、ポリオレフィンの含有量は、当該組成物に含まれる樹脂に対して40質量%以上であることが好ましく、50質量%以上であることがより好ましく、60質量%以上であることがさらに好ましい。また、当該組成物に含まれる樹脂は、1種類であってもよいし、2種類以上であってもよく、例えばポリオレフィンとウレタン系樹脂とを含んでもよい。ポリオレフィンとウレタン系樹脂とを含む場合、それらの質量比は、例えばポリオレフィン/ウレタン系樹脂=90/10~40/60質量比、好ましくは90/10~50/50質量比としうる。 For example, the polyolefin content is preferably 40% by mass or more, more preferably 50% by mass or more, and even more preferably 60% by mass or more relative to the resin contained in the composition. Moreover, the resin contained in the composition may be of one type, or may be of two or more types, and may include, for example, a polyolefin and a urethane-based resin. When polyolefin and urethane-based resin are included, their mass ratio can be, for example, polyolefin/urethane-based resin=90/10 to 40/60 mass ratio, preferably 90/10 to 50/50 mass ratio.
 例えば、易接着層は、アンチブロッキング性を付与するために、微粒子(マット剤)をさらに含むことが好ましい。微粒子は、上記と同様のものを使用できる。 For example, the easy-adhesion layer preferably further contains fine particles (matting agent) in order to impart anti-blocking properties. Fine particles similar to those described above can be used.
 易接着層の厚みは、特に制限されず、好ましくは10~1000nmであり、より好ましくは20~500nmであり、さらに好ましくは50~400nmである。 The thickness of the easy-adhesion layer is not particularly limited, and is preferably 10-1000 nm, more preferably 20-500 nm, and still more preferably 50-400 nm.
 2.光学フィルムの製造方法
 本発明の光学フィルムの製造方法は、1)斜め延伸フィルムを準備する工程と、2)斜め延伸フィルムの表面上に易接着層を形成する工程とを含み、好ましくは3)得られた光学フィルムをロール状に巻き取る工程をさらに含む。
2. Method for Producing Optical Film The method for producing an optical film of the present invention includes the steps of 1) preparing an obliquely stretched film, and 2) forming an easily adhesive layer on the surface of the obliquely stretched film, preferably 3). A step of winding the obtained optical film into a roll is further included.
 1)の工程について
 斜め延伸フィルムは、例えば、原反フィルムを斜め延伸して得ることができる。
About the process of 1) The diagonally stretched film can be obtained, for example, by diagonally stretching the original film.
 (原反フィルムの準備)
 原反フィルムは、溶液流延製膜法または溶融流延製膜法で得ることができる。
(Preparation of raw film)
The original film can be obtained by a solution casting film forming method or a melt casting film forming method.
 <溶液流延製膜法>
 溶液流延製膜法では、上記樹脂と任意の他の成分とを溶剤に溶解させてドープを調製する工程、得られたドープを支持体上に流延した後、乾燥および剥離して、原反フィルムを得る工程が行われる。
<Solution Casting Film Forming Method>
In the solution casting film forming method, the above resin and any other components are dissolved in a solvent to prepare a dope. A step of obtaining an anti-film is performed.
 ドープに用いられる溶剤は、少なくとも上記樹脂を溶解させうる有機溶媒(良溶媒)を含む。良溶媒の例には、メチレンクロライドなどの塩素系有機溶媒や;酢酸メチル、酢酸エチル、アセトン、テトラヒドロフランなどの非塩素系有機溶媒が含まれ、好ましくはメチレンクロライドである。用いられる溶媒は、流延膜の支持体からの剥離性を高める観点などから、メタノール、エタノールなどの炭素原子数1~4の脂肪族アルコールなどの貧溶媒をさらに含んでいてもよい。 The solvent used for the dope contains at least an organic solvent (good solvent) capable of dissolving the resin. Examples of good solvents include chlorinated organic solvents such as methylene chloride; and non-chlorinated organic solvents such as methyl acetate, ethyl acetate, acetone and tetrahydrofuran, preferably methylene chloride. The solvent to be used may further contain a poor solvent such as an aliphatic alcohol having 1 to 4 carbon atoms such as methanol and ethanol, from the viewpoint of enhancing the releasability of the cast film from the support.
 用いられる支持体は、特に制限されず、例えばドラム状またはベルト状の金属支持体でありうる。具体的には、金属支持体は、表面を鏡面仕上げしたステンレススティールベルトもしくは鋳物で表面をメッキ仕上げしたドラムでありうる。金属支持体の表面温度は、-50℃~溶剤が沸騰して発泡しない温度以下、好ましくは0~100℃、より好ましくは5~30℃に設定される。 The support used is not particularly limited, and may be, for example, a drum-shaped or belt-shaped metal support. Specifically, the metal support can be a mirror-finished stainless steel belt or a cast metal plated-surfaced drum. The surface temperature of the metal support is set to -50°C to a temperature at which the solvent does not boil and foam, preferably 0 to 100°C, more preferably 5 to 30°C.
 得られるフィルムが良好な平面性を示すためには、金属支持体から剥離する際のフィルムの残留溶媒量が所望の範囲であることが好ましい。ここで、残留溶媒量は、下記式で定義される。
 残留溶媒量(質量%または%)={(M-N)/N}×100
 なお、Mは、フィルムを製造中または製造後の任意の時点で採取した試料の質量(g)であり、NはMを115℃で1時間の加熱した後の質量(g)である。フィルム乾燥工程では、一般にロール乾燥方式(上下に配置した多数のロールにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。
In order for the obtained film to exhibit good flatness, the amount of residual solvent in the film when peeled from the metal support is preferably within the desired range. Here, the residual solvent amount is defined by the following formula.
Residual solvent amount (mass% or %) = {(MN) / N} × 100
Note that M is the mass (g) of a sample taken at an arbitrary point during or after the production of the film, and N is the mass (g) after heating M at 115° C. for 1 hour. In the film drying process, a roll drying method (a method in which the web is alternately passed through a number of rolls arranged vertically to dry) or a method in which the web is dried while being conveyed by a tenter method is adopted.
 本実施の形態では、ドープを金属支持体上に流延する例を示したが、これに限定されず、剥離可能な仮支持体(剥離性支持体)上に流延してもよい。 In this embodiment, an example in which the dope is cast on a metal support is shown, but the dope is not limited to this, and may be cast on a peelable temporary support (releasable support).
 剥離可能とは、積層構造に含まれるほかのフィルムや層にダメージを与えずに象物を剥離でき、当該剥離による引っ張り応力が他のフィルムや層の破断点応力よりも小さいことを意味する。剥離性支持体は、フィルム基材に自己保持性を付与し、ハンドリング性を向上させる目的で用いられる。剥離性支持体は、自己保持性を保つことのできるフィルムであれば特に制限されないが、樹脂フィルムを用いることが好ましく、生産性の観点から、フィルム基材の溶液流延で用いられる溶媒に対して不溶な樹脂(例えばポリエステル系樹脂)で構成されることが好ましい。 "Peelable" means that the object can be peeled off without damaging the other films and layers included in the laminated structure, and that the tensile stress due to the peeling is smaller than the breaking point stress of the other films and layers. The peelable support is used for the purpose of imparting self-holding properties to the film substrate and improving handleability. The peelable support is not particularly limited as long as it is a film that can maintain self-holding properties, but it is preferable to use a resin film. It is preferably composed of a resin (for example, a polyester-based resin) that is insoluble in water.
 <溶融流延製膜法>
 溶融流延製膜法では、上記樹脂を含む樹脂組成物を、流動性を示す温度まで加熱溶融させた状態で流延した後、冷却固化して、原反フィルムを得る。
<Melt casting film forming method>
In the melt-casting film forming method, a resin composition containing the above resin is melted by heating to a fluidity temperature and then cast in a melted state, and then solidified by cooling to obtain a raw film.
 溶融流延製膜法には、溶融押出(成形)法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などあるが、機械的強度および表面精度などに優れるフィルムが得られやすい観点から、溶融押出法が好ましい。 Melt-casting film-forming methods include melt extrusion (molding), press molding, inflation, injection molding, blow molding, and stretch molding. The melt extrusion method is preferable from the viewpoint that it is easy to melt.
 溶融押出法で用いられる原材料は、通常、予め混錬してペレット化しておくことが好ましい。ペレット化は、例えば上記樹脂や任意の他の成分などをフィーダーで押出し機に供給し、1軸や2軸の押出し機を用いて混錬し、ダイからストランド状に押出し、水冷または空冷し、カッティングして行うことができる。他の成分は、押出し機に供給する前に樹脂に混合しておいてもよいし、樹脂および他の成分をそれぞれ個別のフィーダーで押出し機に供給してもよい。 The raw materials used in the melt extrusion method are usually preferably kneaded and pelletized in advance. Pelletization is performed, for example, by supplying the above resin and any other components to an extruder with a feeder, kneading using a single-screw or twin-screw extruder, extruding from a die into strands, water-cooling or air-cooling, It can be done by cutting. The other components may be mixed with the resin before being supplied to the extruder, or the resin and the other components may be supplied to the extruder by separate feeders.
 次いで、得られたペレットを用いて製膜を行う。ペレットを1軸や2軸タイプの押出し機を用いて、押し出す際の溶融温度を(Tg+30)~(Tg+70)℃(Tg:樹脂のガラス転移温度)、あるいは、200~300℃程度としうる。そして、リーフディスクタイプのフィルターなどで濾過して異物を除去した後、Tダイからフィルム状に流延する。 Next, the obtained pellets are used to form a film. The melting temperature when extruding the pellets using a single-screw or twin-screw extruder is (Tg + 30) ~ (Tg + 70) °C (Tg: glass transition temperature of the resin), or about 200 ~ 300 °C. Then, after filtering with a leaf disk type filter or the like to remove foreign matter, it is cast into a film form from a T-die.
 次いで、流延した溶融物を、冷却ロールと弾性タッチロールとでニップし、溶融物を、冷却ロール上で固化させる。冷却ロールと弾性タッチロールとでフィルムをニップする際のタッチロール側のフィルム温度は、フィルムのTg(ガラス転移温度)以上Tg+110℃以下にすることが好ましい。このような目的で使用する弾性体表面を有するロールは、公知のロールを使用できる。弾性タッチロールは挟圧回転体ともいう。 Next, the cast melt is nipped between a cooling roll and an elastic touch roll, and the melt is solidified on the cooling roll. When the film is nipped between the cooling roll and the elastic touch roll, the film temperature on the side of the touch roll is preferably Tg (glass transition temperature) of the film or higher and Tg+110° C. or lower. A known roll can be used as the roll having an elastic surface for such purpose. The elastic touch roll is also called a pinching rotary body.
 冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。 When peeling the film from the cooling roll, it is preferable to control the tension to prevent deformation of the film.
 (斜め延伸)
 次いで、得られた原反フィルムを、斜め方向に延伸して、斜め延伸フィルムを得る。斜め延伸は、例えば特開2018-180163号公報に示されるような公知の装置を用いて行うことができる。
(Diagonal stretching)
Next, the raw film thus obtained is stretched in an oblique direction to obtain an obliquely stretched film. Diagonal stretching can be performed using a known apparatus as disclosed in JP-A-2018-180163, for example.
 図3は、斜め延伸フィルムの製造装置20の構成を示す模式図である。図4は、延伸部25の構成を示す模式図である。 FIG. 3 is a schematic diagram showing the configuration of the obliquely stretched film manufacturing apparatus 20. As shown in FIG. FIG. 4 is a schematic diagram showing the configuration of the extending portion 25. As shown in FIG.
 本実施の形態では、製造装置20は、フィルムの搬送方向上流側から順に、フィルム繰り出し部22、搬送方向変更部23、ガイドロール24、延伸部25、ガイドロール26、搬送方向変更部27、フィルム切断装置28およびフィルム巻き取り部29を含む(図3参照)。 In the present embodiment, the manufacturing apparatus 20 includes, in order from the upstream side in the film transport direction, a film feeding unit 22, a transport direction changing unit 23, a guide roll 24, a stretching unit 25, a guide roll 26, a transport direction changing unit 27, a film It includes a cutting device 28 and a film take-up 29 (see FIG. 3).
 そして、図3および4に示されるように、フィルムの幅方向の一端側を複数の把持具(把持具Ciを含む)で把持するとともに、他端側を複数の把持具(把持具Coを含む)で把持し、一端側および他端側の一方の把持具(例えばレールRiに沿って走行する複数の把持具)を相対的に先行させ、他方の把持具(例えばレールRoに沿って走行する複数の把持具)を相対的に遅延させてフィルムを搬送することにより、フィルムを幅手方向に対して斜め方向に延伸する。 Then, as shown in FIGS. 3 and 4, one end side of the film in the width direction is gripped by a plurality of gripping tools (including gripping tools Ci), and the other end side is gripped by a plurality of gripping tools (including gripping tools Co). ), one of the gripping tools on the one end side and the other end side (for example, a plurality of gripping tools running along the rail Ri) is relatively advanced, and the other gripping tool (for example, running along the rail Ro By conveying the film while relatively delaying the plurality of grippers, the film is stretched in a direction oblique to the width direction.
 上記の通り、斜め延伸フィルムのサーベルフォームは、斜め延伸時の延伸ゾーンと熱固定ゾーンの温度、延伸倍率、搬送速度などによって調整することができる。 As described above, the saber form of the obliquely stretched film can be adjusted by adjusting the temperature of the stretching zone and the heat setting zone during oblique stretching, the stretching ratio, the transport speed, and the like.
 (延伸条件)
 延伸部25の加熱ゾーンZは、予熱ゾーンZ1、延伸ゾーンZ2および熱固定ゾーンZ3で構成されうる(図4参照)。
(Stretching conditions)
The heating zone Z of the stretching section 25 may consist of a preheating zone Z1, a stretching zone Z2 and a heat setting zone Z3 (see FIG. 4).
 予熱ゾーンZ1とは、加熱ゾーンZの入口部において、フィルムの両端を把持した把持具Ci・Coが、左右で(フィルム幅方向に)一定の間隔を保ったまま走行する区間をいう。延伸ゾーンZ2とは、上述した斜め延伸工程が行われる区間をいう。このとき、必要に応じて、斜め延伸前後において縦方向あるいは横方向にフィルムを延伸してもよい。熱固定ゾーンZ3とは、斜め延伸工程の終了後、フィルムの光学軸(遅相軸)を固定する熱固定工程が行われる区間をいう。熱固定ゾーンZ3は、樹脂分子の配向状態を固定しやすくすることができる。 The preheating zone Z1 is a section at the entrance of the heating zone Z in which the grippers Ci and Co gripping both ends of the film travel while maintaining a constant spacing (in the film width direction) on the left and right. The stretching zone Z2 is a section in which the diagonal stretching process described above is performed. At this time, if necessary, the film may be stretched in the longitudinal direction or the transverse direction before and after the diagonal stretching. The heat setting zone Z3 is a section in which a heat setting process for fixing the optical axis (slow axis) of the film is performed after the oblique stretching process. The heat setting zone Z3 can facilitate fixing the orientation state of the resin molecules.
 原反フィルムのガラス転移温度をTgとしたとき、予熱ゾーンZ1の温度(T1)はTg~(Tg+30)℃であることが好ましい。延伸ゾーンZ2の温度(T2)はTg~(Tg+30)℃であることが好ましく、Tg~(Tg+25)℃であることがより好ましい。熱固定ゾーンZ3の温度(T3)は(Tg-20)~(Tg+30)℃であることが好ましく、(Tg-10)~(Tg+25)℃であることがより好ましい。 When the glass transition temperature of the original film is Tg, the temperature (T1) of the preheating zone Z1 is preferably Tg-(Tg+30)°C. The temperature (T2) of the drawing zone Z2 is preferably Tg-(Tg+30)°C, more preferably Tg-(Tg+25)°C. The temperature (T3) of the heat fixing zone Z3 is preferably (Tg-20) to (Tg+30)°C, more preferably (Tg-10) to (Tg+25)°C.
 そして、得られるフィルムのサーベルフォームを上記範囲にする観点では、延伸ゾーン25において、延伸ゾーンZ2の温度(T2)を、フィルムのTgにできるだけ近づけるとともに、熱固定ゾーンZ3の温度(T3)を、延伸ゾーンの温度(T2)と同程度かそれよりも高くすることが好ましい。具体的には、温度差ΔT(=T2-T3)を好ましくは-10~5℃、より好ましくは-10~2℃とすることで、サーベルフォームを適度に大きくすることができる。すなわち、温度差ΔTを小さい値(好ましくは絶対値の大きな負の値)にすることで、斜め延伸時のレールRo側とレールRi側のフィルムの伸びやすさに差が出やすくなるため(図4参照)、サーベルフォームは大きくなりやすい。 From the viewpoint of setting the saber form of the resulting film within the above range, in the stretching zone 25, the temperature (T2) of the stretching zone Z2 is brought as close as possible to the Tg of the film, and the temperature (T3) of the heat setting zone Z3 is set to It is preferably equal to or higher than the temperature of the draw zone (T2). Specifically, by setting the temperature difference ΔT (=T2−T3) to preferably −10 to 5° C., more preferably −10 to 2° C., the saber foam can be made moderately large. That is, by setting the temperature difference ΔT to a small value (preferably a negative value with a large absolute value), a difference in elongation of the film between the rail Ro side and the rail Ri side during diagonal stretching tends to occur (Fig. 4), the saber form tends to be large.
 各ゾーンにおける温度(T1~T3)は、各ゾーンの雰囲気の温度を示す。なお、雰囲気温度とフィルムの表面温度は、実質的には同じでありうる。 The temperature (T1 to T3) in each zone indicates the temperature of the atmosphere in each zone. In addition, the ambient temperature and the surface temperature of the film can be substantially the same.
 延伸ゾーンZ2におけるフィルムの幅方向の温度分布は、例えば温風を恒温室内に送り込むノズルの開度を幅方向で差を付けるように調整する方法やヒーターを幅方向に並べて加熱制御するなどの方法で行うことができる。 The temperature distribution in the width direction of the film in the stretching zone Z2 can be controlled, for example, by adjusting the opening of nozzles for sending hot air into the thermostatic chamber so that there is a difference in the width direction, or by arranging heaters in the width direction and controlling the heating. can be done with
 また、延伸前のフィルムの幅をWo(mm)とし、延伸後のフィルムの幅をW(mm)とすると、延伸工程における延伸倍率R(W/Wo)は、好ましくは1.3~3.0、より好ましくは1.5~2.8である(図4参照)。延伸倍率がこの範囲にあると、フィルムの幅方向の厚みムラが小さくなるので好ましい。斜め延伸テンターの延伸ゾーンZ2において、幅方向で延伸温度に差を付けると、幅方向厚みムラをさらに良好なレベルにすることが可能になる。なお、上記の延伸倍率Rは、テンター入口部で把持したクリップ両端の間隔W1がテンター出口部において間隔W2となったときの倍率(W2/W1)に等しい。 Further, if the width of the film before stretching is Wo (mm) and the width of the film after stretching is W (mm), the stretching ratio R (W/Wo) in the stretching step is preferably 1.3 to 3.0. 0, more preferably 1.5 to 2.8 (see FIG. 4). When the draw ratio is within this range, thickness unevenness in the width direction of the film is reduced, which is preferable. In the stretching zone Z2 of the diagonal stretching tenter, if the stretching temperature is different in the width direction, it is possible to bring the thickness unevenness in the width direction to a better level. The above draw ratio R is equal to the ratio (W2/W1) when the interval W1 between both ends of the clip gripped at the entrance of the tenter becomes the interval W2 at the exit of the tenter.
 2)の工程について
 得られた斜め延伸フィルムの表面上に、易接着層を形成する。例えば、易接着層は、易接着層用組成物を、斜め延伸フィルムの表面に付与(塗布)した後、乾燥または加熱させて形成することができる。易接着層は、斜め延伸フィルムの片面のみに形成してもよいし、両面に形成してもよい。
About the process of 2) An easy-adhesion layer is formed on the surface of the obtained diagonally stretched film. For example, the easy-adhesion layer can be formed by applying (applying) the composition for the easy-adhesion layer to the surface of the obliquely stretched film, followed by drying or heating. The easy-adhesion layer may be formed only on one side of the obliquely stretched film, or may be formed on both sides.
 易接着層用組成物は、前述の成分(樹脂、任意の架橋剤および他の成分など)を、溶媒(例えば水)に分散または溶解させた溶液でありうる。易接着層用組成物の全固形分濃度は、成分の種類、溶解性、塗工粘度、ぬれ性、塗工後の厚さなどによって設定されうる。表面均一性の高い易接着層を得るためには、全固形分濃度は、溶媒100質量部に対して、好ましくは1~100質量部、より好ましくは1~50質量部である。 The easy-adhesion layer composition can be a solution in which the aforementioned components (resin, optional cross-linking agent, other components, etc.) are dispersed or dissolved in a solvent (eg, water). The total solid content concentration of the easy adhesion layer composition can be set according to the type of components, solubility, coating viscosity, wettability, thickness after coating, and the like. In order to obtain an easily adhesive layer with high surface uniformity, the total solid content concentration is preferably 1 to 100 parts by mass, more preferably 1 to 50 parts by mass with respect to 100 parts by mass of the solvent.
 易接着層用組成物の粘度としては、塗工可能な範囲において任意の適切な粘度が採用され得る。当該粘度としては、23℃におけるせん断速度1000(1/s)で測定した値が、好ましくは1~50(mPa・sec)であり、さらに好ましくは2~10(mPa・sec)である。上記の範囲であれば、表面均一性に優れた易接着層を形成することができる。 Any appropriate viscosity can be adopted as the viscosity of the easy-adhesion layer composition within a range that allows coating. The viscosity is preferably 1 to 50 (mPa·sec), more preferably 2 to 10 (mPa·sec) when measured at a shear rate of 1000 (1/s) at 23°C. If it is said range, the easy-adhesion layer excellent in surface uniformity can be formed.
 易接着層用組成物は、任意の方法で調製されうる。例えば、市販の溶液もしくは分散液を用いてもよいし、市販の溶液もしくは分散液に溶媒を添加して用いてもよいし、固形分を各種溶媒に溶解または分散して用いてもよい。 The easy-adhesion layer composition can be prepared by any method. For example, a commercially available solution or dispersion may be used, a solvent may be added to a commercially available solution or dispersion, or a solid content may be dissolved or dispersed in various solvents and used.
 易接着層用組成物の付与方法は、任意の方法を用いてよく、例えばグラビアダイやコーターを用いた方法を用いることができる。易接着層を斜め延伸フィルムに付与する際には、ぬれ性を向上させるための予備処理として、斜め延伸フィルム表面の溶剤改質、コロナ処理、プラズマ処理などを施してもよい。 Any method may be used to apply the composition for the easy-adhesion layer, and for example, a method using a gravure die or a coater may be used. When providing the easy-adhesion layer to the obliquely stretched film, the surface of the obliquely stretched film may be subjected to solvent modification, corona treatment, plasma treatment, or the like as preliminary treatment for improving wettability.
 3)の工程について
 得られた光学フィルムは、さらにロール状に巻き取られてもよい。光学フィルムの巻き取りは、公知の方法(例えば定トルク法、定テンション法、テーパーテンション法など)で行うことができる。
Regarding Step 3) The obtained optical film may be further wound into a roll. Winding of the optical film can be performed by a known method (for example, constant torque method, constant tension method, taper tension method, etc.).
 光学フィルムの巻き長さは、例えば1000~7200mでありうる。光学フィルムの幅は、例えば1000~3000mmでありうる。 The winding length of the optical film can be, for example, 1000 to 7200 m. The width of the optical film can be, for example, 1000-3000 mm.
 3.偏光板
 本発明の偏光板は、偏光子と、その少なくとも一方の面に配置された本発明の光学フィルムとを含む。
3. Polarizing Plate The polarizing plate of the present invention includes a polarizer and the optical film of the present invention arranged on at least one surface of the polarizer.
 図5Aは、本発明の一形態に係る偏光板30の構成を示す断面図である。図5Bは、偏光板30を構成する偏光子31、上記光学フィルム10、および保護フィルム32の配置関係を示す分解斜視図である。 FIG. 5A is a cross-sectional view showing the configuration of the polarizing plate 30 according to one embodiment of the present invention. FIG. 5B is an exploded perspective view showing the positional relationship among the polarizer 31, the optical film 10, and the protective film 32 that constitute the polarizing plate 30. FIG.
 図5Aに示されるように、偏光板30は、偏光子31と、その一方の面に配置された光学フィルム10と、他方の面に配置された保護フィルム32と、偏光子31と光学フィルム10との間、および、偏光子31と保護フィルム33との間に配置された2つの接着層33とを含む。 As shown in FIG. 5A, the polarizing plate 30 includes a polarizer 31, an optical film 10 arranged on one side thereof, a protective film 32 arranged on the other side, a polarizer 31 and the optical film 10 and two adhesive layers 33 disposed between the polarizer 31 and the protective film 33 .
 偏光板30は、長尺状の偏光板であってもよく、長尺状の偏光板を、長手方向に垂直な幅方向に沿って切断した枚葉状の偏光板であってもよい。 The polarizing plate 30 may be a long polarizing plate, or may be a sheet-like polarizing plate obtained by cutting a long polarizing plate along the width direction perpendicular to the longitudinal direction.
 3-1.偏光子31
 偏光子は、一定方向の偏波面の光だけを通す素子である。偏光子は、通常、ポリビニルアルコール系偏光フィルムでありうる。ポリビニルアルコール系偏光フィルムの例には、ポリビニルアルコール系フィルムにヨウ素を染色させたものや、二色性染料を染色させたものが含まれる。
3-1. Polarizer 31
A polarizer is an element that passes only light with a plane of polarization in a certain direction. A polarizer can generally be a polyvinyl alcohol-based polarizing film. Examples of polyvinyl alcohol-based polarizing films include polyvinyl alcohol-based films dyed with iodine and those dyed with dichroic dyes.
 ポリビニルアルコール系偏光フィルムは、ポリビニルアルコール系フィルムを一軸延伸した後、ヨウ素または二色性染料で染色したフィルム(好ましくはホウ素化合物でさらに耐久性処理を施したフィルム)であってもよいし;ポリビニルアルコール系フィルムをヨウ素又は二色性染料で染色した後、一軸延伸したフィルム(好ましくは、更にホウ素化合物で耐久性処理を施したフィルム)であってもよい。偏光子の吸収軸は、通常、最大延伸方向と平行である。 The polyvinyl alcohol-based polarizing film may be a film obtained by uniaxially stretching a polyvinyl alcohol-based film and then dyeing it with iodine or a dichroic dye (preferably a film further subjected to durability treatment with a boron compound); A film obtained by dyeing an alcohol-based film with iodine or a dichroic dye and then uniaxially stretching the film (preferably, a film further subjected to a durability treatment with a boron compound) may be used. The absorption axis of a polarizer is usually parallel to the direction of maximum stretch.
 偏光子の厚みは、5~40μm、好ましくは5~30μmである。 The thickness of the polarizer is 5-40 μm, preferably 5-30 μm.
 3-2.光学フィルム10
 光学フィルムは、易接着層が偏光子側となるように配置される(図5A参照)。
3-2. optical film 10
The optical film is arranged so that the easy-adhesion layer faces the polarizer (see FIG. 5A).
 光学フィルムを構成する斜め延伸フィルムの面内遅相軸は、フィルム面内で、矩形状のフィルムの外形の一辺(例えば辺10a)に対して、例えば10~80°傾いている(図5B参照)。なお、辺10aは帯状の斜め延伸フィルムの幅方向に対応する辺である。フィルム面内で辺10aに対する面内遅相軸の角度は、好ましくは30~60°、より好ましく40~50°である。すなわち、斜め延伸フィルムの面内遅相軸と偏光子の吸収軸(または透過軸)とのなす角度は、例えば10~80°であり、好ましくは30~60°であり、より好ましくは40~50°である。 The in-plane slow axis of the obliquely stretched film constituting the optical film is inclined, for example, by 10 to 80° with respect to one side (eg, side 10a) of the rectangular film outline in the film plane (see FIG. 5B). ). The side 10a is a side corresponding to the width direction of the obliquely stretched strip film. The angle of the in-plane slow axis with respect to the side 10a in the film plane is preferably 30 to 60°, more preferably 40 to 50°. That is, the angle between the in-plane slow axis of the obliquely stretched film and the absorption axis (or transmission axis) of the polarizer is, for example, 10 to 80°, preferably 30 to 60°, more preferably 40 to 50°.
 斜め延伸フィルムの偏光子とは反対側の面には、用途に合わせて、他の層(例えばハードコート層、低屈折率層、反射防止層、液晶(ポジティブC型プレート)が適宜設けられてもよい。 Other layers (for example, a hard coat layer, a low refractive index layer, an antireflection layer, and a liquid crystal (positive C-type plate) are appropriately provided on the surface of the obliquely stretched film opposite to the polarizer, depending on the application. good too.
 3-3.保護フィルム32
 保護フィルムは、透明な樹脂フィルム(例えばセルロースエステルフィルム、シクロオレフィン系樹脂、アクリル樹脂など)でありうる。また、保護フィルムは、視野角拡大などの光学的な特性を補償する光学補償フィルムであってもよい。例えば、保護フィルムは、前述の光学フィルムであってもよい。
3-3. Protective film 32
The protective film may be a transparent resin film (eg, cellulose ester film, cycloolefin resin, acrylic resin, etc.). Also, the protective film may be an optical compensation film that compensates for optical properties such as viewing angle expansion. For example, the protective film may be the optical film described above.
 3-4.接着層33
 接着層は、偏光子と光学フィルムとの間、および、偏光子と保護フィルムとの間にそれぞれ配置されうる。接着層は、水系接着剤から得られる層、または、紫外線硬化型接着剤の硬化物層でありうる。
3-4. Adhesive layer 33
An adhesive layer can be disposed between the polarizer and the optical film and between the polarizer and the protective film, respectively. The adhesive layer can be a layer obtained from a water-based adhesive or a cured product layer of an ultraviolet curable adhesive.
 水系接着剤は、例えばビニルアルコール系ポリマーを含む接着剤;ホウ酸やホウ砂、グルタルアルデヒドやメラミン、シュウ酸などのビニルアルコール系ポリマーの水溶性架橋剤を含む接着剤などでありうる。これらの接着剤は、必要に応じて他の添加剤や酸などの触媒もさらに含んでいてもよい。 The water-based adhesive can be, for example, an adhesive containing a vinyl alcohol-based polymer; an adhesive containing a water-soluble cross-linking agent for a vinyl alcohol-based polymer such as boric acid, borax, glutaraldehyde, melamine, or oxalic acid. These adhesives may further contain other additives and catalysts such as acids as necessary.
 紫外線硬化型接着剤組成物としては、光ラジカル重合を利用した光ラジカル重合型組成物、光カチオン重合を利用した光カチオン重合型組成物、並びに光ラジカル重合及び光カチオン重合を併用したハイブリッド型組成物が知られている。 As the UV-curable adhesive composition, a photo-radical polymerization type composition using photo-radical polymerization, a photo-cationic polymerization type composition using photo-cationic polymerization, and a hybrid composition using both photo-radical polymerization and photo-cation polymerization. things are known.
 光ラジカル重合型組成物としては、特開2008-009329号公報に記載のヒドロキシ基やカルボキシ基等の極性基を含有するラジカル重合性化合物及び極性基を含有しないラジカル重合性化合物を特定割合で含む組成物)等が知られている。特に、ラジカル重合性化合物は、ラジカル重合可能なエチレン性不飽和結合を有する化合物であることが好ましい。ラジカル重合可能なエチレン性不飽和結合を有する化合物の好ましい例には、(メタ)アクリロイル基を有する化合物が含まれる。(メタ)アクリロイル基を有する化合物の例には、N置換(メタ)アクリルアミド系化合物、(メタ)アクリレート系化合物などが含まれる。(メタ)アクリルアミドは、アクリアミド又はメタクリアミドを意味する。 As the photoradical polymerizable composition, a radically polymerizable compound containing a polar group such as a hydroxy group or a carboxyl group and a radically polymerizable compound containing no polar group described in JP-A-2008-009329 are contained in a specific proportion. composition) and the like are known. In particular, the radically polymerizable compound is preferably a compound having a radically polymerizable ethylenically unsaturated bond. Preferred examples of compounds having a radically polymerizable ethylenically unsaturated bond include compounds having a (meth)acryloyl group. Examples of compounds having a (meth)acryloyl group include N-substituted (meth)acrylamide compounds and (meth)acrylate compounds. (Meth)acrylamide means acrylamide or methacrylamide.
 光カチオン重合型組成物としては、特開2011-028234号公報に開示されているような、(α)カチオン重合性化合物、(β)光カチオン重合開始剤、(γ)380nmより長い波長の光に極大吸収を示す光増感剤、及び(δ)ナフタレン系光増感助剤の各成分を含有する紫外線硬化型接着剤組成物が挙げられる。ただし、これ以外の紫外線硬化型接着剤が用いられてもよい。 As the photocationically polymerizable composition, as disclosed in JP-A-2011-028234, (α) a cationic polymerizable compound, (β) a photocationic polymerization initiator, and (γ) light having a wavelength longer than 380 nm and (δ) a naphthalene-based photosensitizing aid. However, other ultraviolet curable adhesives may be used.
 接着層の厚みは、特に限定されないが、例えば0.01~10μmであり、好ましくは0.01~5μm程度でありうる。 Although the thickness of the adhesive layer is not particularly limited, it can be, for example, 0.01 to 10 μm, preferably about 0.01 to 5 μm.
 3-5.偏光板30の製造方法
 偏光板は、光学フィルム、偏光子および保護フィルムを、接着剤を介して貼り合わせる工程を経て得ることができる。接着剤としては、前述の水系接着剤や紫外線硬化型接着剤が用いられる。
3-5. Manufacturing Method of Polarizing Plate 30 A polarizing plate can be obtained through a process of laminating an optical film, a polarizer and a protective film via an adhesive. As the adhesive, the above-described water-based adhesive or ultraviolet curing adhesive is used.
 例えば紫外線硬化型接着剤を用いた偏光板の製造方法は、1)位相差フィルムまたは保護フィルムを前処理する工程、2)位相差フィルム、偏光子および保護フィルムを紫外線硬化型接着剤で貼り合わせる工程、3)紫外線硬化型接着剤を硬化させる工程を含む。 For example, a method for producing a polarizing plate using an ultraviolet curable adhesive includes 1) a step of pretreating a retardation film or a protective film, and 2) laminating a retardation film, a polarizer and a protective film with an ultraviolet curable adhesive. Step 3) includes a step of curing the ultraviolet curable adhesive.
 1)前処理工程
 光学フィルムまたは保護フィルムの偏光子との接着面に、易接着処理を行う。易接着処理としては、コロナ処理、プラズマ処理等が挙げられる。光学フィルムについては、易接着層に前処理を行う。
1) Pretreatment process The surface of the optical film or protective film to be adhered to the polarizer is subjected to an easy-adhesion treatment. The easy-adhesion treatment includes corona treatment, plasma treatment, and the like. As for the optical film, the easy-adhesion layer is pretreated.
 2)貼合工程
 次いで、偏光子および光学フィルム(または保護フィルム)の少なくとも一方の接着面に、紫外線硬化型接着剤を塗布する。紫外線硬化型接着剤の塗布方法は、特に制限されず、例えばドクターブレード、ワイヤーバー、ダイコーター、コンマコーター、グラビアコーターなどを利用できる。また、偏光子および光学フィルム(または対向フィルム)との間に紫外線硬化型接着剤を塗布(流延)した後、ローラなどで加圧して紫外線硬化型接着剤を均一に押し広げてもよい。
2) Bonding Step Next, an ultraviolet curable adhesive is applied to the adhesive surface of at least one of the polarizer and the optical film (or protective film). The method of applying the UV-curable adhesive is not particularly limited, and for example, a doctor blade, wire bar, die coater, comma coater, gravure coater, or the like can be used. Alternatively, after applying (casting) the ultraviolet curable adhesive between the polarizer and the optical film (or the opposing film), the ultraviolet curable adhesive may be uniformly spread by applying pressure with a roller or the like.
 次いで、偏光子と光学フィルム(または保護フィルム)とを、紫外線硬化型接着剤を介して貼り合わせる。貼り合わせは、例えば、偏光子と光学フィルム(または対向フィルム)とを、紫外線硬化型接着剤を介して積層したものを、加圧ローラなどで挟んで加圧して行うことができる。 Next, the polarizer and the optical film (or protective film) are pasted together via an ultraviolet curable adhesive. The lamination can be performed, for example, by sandwiching and pressurizing a polarizer and an optical film (or a facing film) laminated with an ultraviolet curable adhesive interposed therebetween with pressure rollers or the like.
 3)硬化工程
 次いで、紫外線硬化型接着剤に紫外線を照射して、カチオン重合性化合物(例えば、エポキシ化合物やオキセタン化合物)やラジカル重合性化合物(例えば、アクリレート系化合物、アクリルアミド系化合物等)を含む紫外線硬化型接着剤を硬化させて、偏光子と光学フィルム(または対向フィルム)とを接着させる。
3) Curing step Next, the ultraviolet curable adhesive is irradiated with ultraviolet rays to obtain a cationically polymerizable compound (e.g., an epoxy compound or an oxetane compound) or a radically polymerizable compound (e.g., an acrylate compound, an acrylamide compound, etc.). The UV curable adhesive is cured to adhere the polarizer and the optical film (or the opposing film).
 紫外線の照射条件は、紫外線硬化型接着剤を硬化しうる条件であればよい。例えば、紫外線の照射量(積算光量)は、例えば50~1500mJ/cm、好ましくは100~500mJ/cmである。 The irradiation conditions of the ultraviolet rays may be any conditions as long as the ultraviolet curing adhesive can be cured. For example, the dose of ultraviolet rays (accumulated light dose) is, for example, 50 to 1500 mJ/cm 2 , preferably 100 to 500 mJ/cm 2 .
 4.表示装置
 本発明の表示装置は、表示素子と、本発明の偏光板とを含む。
4. Display Device The display device of the present invention includes a display element and the polarizing plate of the present invention.
 表示素子は、有機EL素子や無機EL素子、液晶素子などでありうる。 The display element can be an organic EL element, an inorganic EL element, a liquid crystal element, or the like.
 偏光板は、表示素子の視認側に配置される。偏光板において、光学フィルムは、偏光子と表示素子との間に配置されること;具体的には、斜め延伸フィルムが表示素子側となるように配置されることが好ましい。 The polarizing plate is arranged on the viewing side of the display element. In the polarizing plate, the optical film is arranged between the polarizer and the display element; specifically, it is preferably arranged so that the obliquely stretched film faces the display element side.
 偏光板において、保護フィルムは、偏光子の視認側に配置される。保護フィルムは、必要に応じてハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理などの表面処理がさらに施されていてもよい。あるいは、保護フィルムは、必要に応じて、偏光サングラスを介して視認する場合の視認性を改善する処理(代表的には、(楕)円偏光機能を付与すること、超高位相差を付与すること)が施されていてもよい。このような処理を施すことで、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも、優れた視認性を実現することができる。すなわち、偏光板は、屋外で用いられ得る表示装置にも好適である。その場合、保護フィルムとして、前述の光学フィルムを用いてもよい。 In the polarizing plate, the protective film is arranged on the viewing side of the polarizer. The protective film may be further subjected to surface treatments such as hard coat treatment, anti-reflection treatment, anti-sticking treatment, and anti-glare treatment, if necessary. Alternatively, the protective film may be treated, if necessary, to improve visibility when viewed through polarized sunglasses (typically, imparting (elliptical) circular polarization function, imparting ultra-high retardation ) may be applied. By performing such processing, excellent visibility can be achieved even when the display screen is viewed through polarized lenses such as polarized sunglasses. That is, the polarizing plate is also suitable for display devices that can be used outdoors. In that case, the optical film described above may be used as the protective film.
 図6は、本発明の一形態に係る有機EL表示装置40(表示装置)の構成を示す断面模式図である。有機EL表示装置40は、有機EL素子50(表示素子)と、偏光板30(円偏光板)とを含む。 FIG. 6 is a cross-sectional schematic diagram showing the configuration of an organic EL display device 40 (display device) according to one embodiment of the present invention. The organic EL display device 40 includes an organic EL element 50 (display element) and a polarizing plate 30 (circularly polarizing plate).
 (有機EL素子50)
 有機EL素子50は、ガラス板や透明フィルムなどの透明基板51上に、金属電極52、発光層53、透明電極(ITO等)54、および封止層55を、この順に有する。
(Organic EL element 50)
The organic EL element 50 has a metal electrode 52, a light emitting layer 53, a transparent electrode (such as ITO) 54, and a sealing layer 55 in this order on a transparent substrate 51 such as a glass plate or a transparent film.
 金属電極52は、陰極として機能しうる。金属電極52は、電子注入を容易にして発光効率を上げるには、仕事関数の小さな物質を用いることが好ましく、通常、Mg-Ag、Al-Liが用いられる。 The metal electrode 52 can function as a cathode. For the metal electrode 52, a substance with a small work function is preferably used in order to facilitate electron injection and increase luminous efficiency, and Mg--Ag and Al--Li are usually used.
 発光層53は、有機薄膜の積層体であり、例えばトリフェニルアミン誘導体などからなる正孔注入層とアントラセンなどの蛍光性の有機固体からなる発光層との積層体や、このような発光層とペリレン誘導体などからなる電子注入層との積層体、これらの正孔注入層、発光層、電子注入層の積層体などでありうる。 The light-emitting layer 53 is a laminate of organic thin films. It may be a laminate with an electron injection layer made of a perylene derivative or the like, or a laminate of these hole injection layers, light emitting layers, and electron injection layers.
 透明電極54は、陽極として機能しうる。透明電極54は、通常、酸化インジウムスズ(ITO)などの透明導電体で構成されうる。 The transparent electrode 54 can function as an anode. The transparent electrode 54 can typically be composed of a transparent conductor such as indium tin oxide (ITO).
 封止層55は、ガラス板や透明フィルムなどの透明基板や、封止剤などの封止膜でありうる。 The sealing layer 55 can be a transparent substrate such as a glass plate or a transparent film, or a sealing film such as a sealant.
 そして、金属電極52と透明電極54との間に電圧を印加することにより、発光層53に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネルギーが蛍光物質を励起し、励起された蛍光物質が基底状態に戻るときに光を放射して、発光する。 By applying a voltage between the metal electrode 52 and the transparent electrode 54, holes and electrons are injected into the light-emitting layer 53, and the energy generated by the recombination of these holes and electrons excites the fluorescent material. , and emits light when the excited fluorescent substance returns to the ground state, resulting in luminescence.
 (偏光板30)
 偏光板30は、有機EL素子50の視認側の面に配置された、円偏光板(上記偏光板)でありうる。偏光板30は、室内照明などにより有機EL表示装置40の外部から入射した外光の映り込みを抑制しうる。
(Polarizing plate 30)
The polarizing plate 30 may be a circularly polarizing plate (the polarizing plate described above) arranged on the surface of the organic EL element 50 on the viewing side. The polarizing plate 30 can suppress reflection of external light entering from the outside of the organic EL display device 40 due to indoor lighting or the like.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these.
 1.斜め延伸フィルムの材料および作製
 <材料>
 ・シクロオレフィン系樹脂
 JSR社製ARTON/G7810(下記構造単位を含むシクロオレフィン系樹脂、Tg=178℃、Mw=14万)
Figure JPOXMLDOC01-appb-C000003
 ・ポリエステル
 特許第6495075号明細書の実施例1(段落0181)に記載の方法で合成したフルオレン基含有ポリエステルを用いた。フルオレン基含有ポリエステルの組成は、ジオール成分:9,9-ビス[4-(2-ヒドロキシエトキシ)3-フェニルフェニル]フルオレン(BOPPEF)80モル%、エチレングリコール(EG)20モル%、ジカルボン酸成分:1,4-シクロヘキサンジカルボン酸(CHDA)が85モル%、テレフタル酸(TPA)が15モル%であった。得られたポリエステルのTgは139℃、Mwは29700であった。
 ・フマル酸ジエステル系樹脂
 特開2016-98371号公報の段落0081の合成例3に記載の方法で合成した、ポリフマル酸ジエステル(フマル酸ジイソプロピル単独重合体、Mw=364000、Mn=118000)を用いた。
1. Materials and production of obliquely stretched film <Materials>
・Cycloolefin-based resin ARTON/G7810 manufactured by JSR Corporation (cycloolefin-based resin containing the following structural units, Tg = 178°C, Mw = 140,000)
Figure JPOXMLDOC01-appb-C000003
- Polyester A fluorene group-containing polyester synthesized by the method described in Example 1 (paragraph 0181) of Japanese Patent No. 6495075 was used. The composition of the fluorene group-containing polyester is as follows: diol component: 9,9-bis[4-(2-hydroxyethoxy)3-phenylphenyl]fluorene (BOPPEF) 80 mol%, ethylene glycol (EG) 20 mol%, dicarboxylic acid component : 85 mol % of 1,4-cyclohexanedicarboxylic acid (CHDA) and 15 mol % of terephthalic acid (TPA). The resulting polyester had a Tg of 139° C. and an Mw of 29,700.
Fumaric acid diester-based resin Polyfumaric acid diester (diisopropyl fumarate homopolymer, Mw = 364000, Mn = 118000) synthesized by the method described in Synthesis Example 3 of paragraph 0081 of JP-A-2016-98371 was used. .
 樹脂のTgおよびMwは、以下の方法で測定した。 The Tg and Mw of the resin were measured by the following methods.
 (Tg)
 樹脂のTgは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012に準拠して測定した。
(Tg)
The Tg of the resin was measured according to JIS K 7121-2012 using DSC (Differential Scanning Colorimetry).
 (Mw)
 樹脂のMwは、ゲル浸透クロマトグラフィー(東ソー社製HLC8220GPC)を用いて、以下の条件で測定した。
 (測定条件)
 溶離液:THF
 カラム:東ソー社製 TSKgel GMHXL×2本 
 流速:1.0mL/min
 試料濃度:0.1質量%
 注入量:100μL
 検出器:RI
 検量線:標準ポリスチレン
(Mw)
The Mw of the resin was measured using gel permeation chromatography (HLC8220GPC manufactured by Tosoh Corporation) under the following conditions.
(Measurement condition)
Eluent: THF
Column: TSKgel GMHXL x 2 manufactured by Tosoh Corporation
Flow rate: 1.0 mL/min
Sample concentration: 0.1% by mass
Injection volume: 100 μL
Detector: RI
Calibration curve: standard polystyrene
 <原反フィルム1の作製>
 (微粒子添加液の調製)
 下記成分をディゾルバーで50分間撹拌混合した後、マントンゴーリンで分散を行った。さらに、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液を調製した。
  微粒子(アエロジルR972V:日本アエロジル社製):4質量部
  ジクロロメタン:48質量部
  エタノール:48質量部
<Preparation of raw film 1>
(Preparation of fine particle addition liquid)
After stirring and mixing the following components with a dissolver for 50 minutes, the mixture was dispersed with a Manton Gaulin. Further, dispersion was carried out using an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle addition liquid.
Fine particles (Aerosil R972V: manufactured by Nippon Aerosil Co., Ltd.): 4 parts by mass Dichloromethane: 48 parts by mass Ethanol: 48 parts by mass
 (ドープの調製)
 次いで、下記組成のドープを調製した。まず、加圧溶解タンクにジクロロメタンとエタノールを添加した。ジクロロメタンとエタノールの混合溶液の入った加圧溶解タンクに上記シクロオレフィン系樹脂(G7810)を撹拌しながら投入した。更に、溶媒投入開始後15分後に、上記で調製した微粒子添加液を投入して、これを80℃に加熱し、撹拌しながら、完全に溶解した。このとき、室温から5℃/minの昇温し、30分間で溶解した後、3℃/minで降温した。得られた溶液を、フィルターで濾過し、ドープを調製した。
  シクロオレフィン系樹脂:100質量部
  ジクロロメタン:230質量部
  エタノール:15質量部
  微粒子添加液:5質量部
(Preparation of dope)
Next, a dope having the following composition was prepared. First, dichloromethane and ethanol were added to a pressurized dissolution tank. The above cycloolefin resin (G7810) was put into a pressurized dissolution tank containing a mixed solution of dichloromethane and ethanol while stirring. Furthermore, 15 minutes after the start of the addition of the solvent, the microparticle addition liquid prepared above was added, heated to 80° C., and completely dissolved with stirring. At this time, the temperature was raised from room temperature at a rate of 5°C/min, dissolved in 30 minutes, and then lowered at a rate of 3°C/min. The resulting solution was filtered through a filter to prepare a dope.
Cycloolefin resin: 100 parts by mass Dichloromethane: 230 parts by mass Ethanol: 15 parts by mass Microparticle additive liquid: 5 parts by mass
 (製膜)
 次いで、無端ベルト流延装置を用い、ドープを温度31℃、1800mm幅でステンレスベルト上に均一に流延した。ステンレスベルトの温度は20℃に制御した。そして、ステンレスベルト上で、流延(キャスト)したドープ中の残留溶媒量が100質量%になるまで溶媒を蒸発させ、ステンレスベルト上から剥離して、膜状物を得た。剥離する際、膜状物を搬送方向に1.16倍延伸し、その後、128℃の条件下で幅方向に1.3倍延伸した。
 得られたフィルムを乾燥ゾーンの中で多数のローラで搬送しながら120℃で15分乾燥させ、テンタークリップで挟んだ端部をレーザーカッターでスリットして巻き取り、厚み78μmの原反フィルム1を作製した。
(film formation)
Then, using an endless belt casting apparatus, the dope was uniformly cast on a stainless steel belt at a temperature of 31° C. and a width of 1800 mm. The temperature of the stainless steel belt was controlled at 20°C. Then, the solvent was evaporated on the stainless belt until the residual solvent amount in the cast dope reached 100% by mass, and the dope was peeled off from the stainless belt to obtain a film. At the time of peeling, the film was stretched 1.16 times in the transport direction, and then stretched 1.3 times in the width direction at 128°C.
The obtained film is dried at 120° C. for 15 minutes while being transported by a number of rollers in a drying zone, and the end portion sandwiched between tenter clips is slit with a laser cutter and wound up to obtain a raw film 1 having a thickness of 78 μm. made.
 <原反フィルム2の作製>
 上記シクロオレフィン系樹脂を上記ポリエステル(フルオレン基含有ポリエステル)に変更した以外は、原反フィルム1と同様にして、厚み90μmの原反フィルム2を得た。
<Preparation of raw film 2>
A raw film 2 having a thickness of 90 μm was obtained in the same manner as the raw film 1 except that the cycloolefin-based resin was changed to the polyester (fluorene group-containing polyester).
 <原反フィルム3の作製>
 (剥離性支持体の作製)
 原反フィルム1の作製に用いたドープを溶液流延した後、乾燥および剥離して、膜状物を得た。得られた膜状物を、搬送方向に1倍、128℃の条件下で幅方向に1.1倍延伸した。延伸後に120℃で乾燥させ、端部をレーザーカッターでスリットして、剥離性支持体(厚み84μm)を得た。
<Preparation of raw film 3>
(Preparation of Peelable Support)
After solution casting the dope used in the preparation of raw film 1, it was dried and peeled off to obtain a film-like material. The resulting film-like material was stretched 1-fold in the transport direction and 1.1-fold in the width direction at 128°C. After stretching, the film was dried at 120° C., and the edges were slit with a laser cutter to obtain a peelable support (thickness: 84 μm).
 (積層フィルムの作製)
 上記ポリエステル(ポリフマル酸ジイソプロピル)100質量部に、ADEKA社製LA-F70を5質量部加えたものを、固形分20質量%でMEK/トルエン(7/3質量比)の混合溶媒に溶解させて、溶液とした。続いて、上記作製した剥離性支持体の表面上に、コンマコーターで上記調製した溶液を塗布し、乾燥させて、厚み40μmの樹脂層を形成した。それにより、剥離性支持体上に樹脂層が積層された帯状の積層フィルム(原反フィルム3)を得た。
(Production of laminated film)
5 parts by mass of LA-F70 manufactured by ADEKA Co., Ltd. was added to 100 parts by mass of the polyester (diisopropyl polyfumarate), and dissolved in a mixed solvent of MEK/toluene (7/3 mass ratio) at a solid content of 20% by mass. , as a solution. Subsequently, the above-prepared solution was applied on the surface of the peelable support prepared above with a comma coater and dried to form a resin layer having a thickness of 40 μm. As a result, a strip-shaped laminated film (original film 3) was obtained in which the resin layer was laminated on the peelable support.
 <斜め延伸フィルム1の作製>
 得られた原反フィルム1を、図3の斜め延伸フィルムの製造装置20のフィルム繰り出し部22にセットし、フィルム繰り出し部22から原反フィルム1を繰り出して延伸部25に供給し、延伸部25にて斜め延伸を行い、厚み45μmの帯状の斜め延伸フィルム1を得た。
 そして、斜め延伸フィルム1をフィルム巻き取り部29まで搬送して、ロール状に巻き取った。なお、サーベルフォームは、延伸ゾーン(T2)および熱固定ゾーン(T3)の温度によって調整した。具体的には、延伸倍率は1.73倍、延伸部25のうちの延伸ゾーン(T2)における温度は、(Tg+23)℃、熱固定ゾーン(T3)における温度は、Tg+22℃(Tgは、フィルムのガラス転移温度)で行った(図4参照)。
<Preparation of diagonally stretched film 1>
The raw film 1 thus obtained is set in the film feeding section 22 of the obliquely stretched film manufacturing apparatus 20 shown in FIG. to obtain a belt-like obliquely stretched film 1 having a thickness of 45 μm.
Then, the obliquely stretched film 1 was conveyed to the film winding section 29 and wound into a roll. The saber foam was adjusted by the temperatures of the stretching zone (T2) and the heat setting zone (T3). Specifically, the draw ratio is 1.73 times, the temperature in the drawing zone (T2) of the drawing section 25 is (Tg+23)° C., and the temperature in the heat setting zone (T3) is Tg+22° C. (Tg is the film glass transition temperature) (see FIG. 4).
 <斜め延伸フィルム2~8および10の作製>
 延伸条件(延伸ゾーン、熱固定ゾーンでの延伸温度)および原反フィルムの種類を表1に示されるように変更した以外は斜め延伸フィルム1と同様にして、斜め延伸フィルム2~8および10を得た。
<Production of obliquely stretched films 2 to 8 and 10>
Diagonally stretched films 2 to 8 and 10 were prepared in the same manner as for diagonally stretched film 1, except that the stretching conditions (stretching temperature in the stretching zone and heat setting zone) and the type of raw film were changed as shown in Table 1. Obtained.
 <斜め延伸フィルム9の作製>
 得られた原反フィルム3(積層フィルム)のロール体を、図3の斜め延伸フィルムの製造装置20のフィルム繰り出し部22にセットし、フィルム繰り出し部22から原反フィルム3を繰り出して延伸部25に供給し、延伸部25にて斜め延伸を行い、積層フィルムとしての厚みが75μmの長尺状の斜め延伸フィルム9を得た。
 そして、斜め延伸フィルム10をフィルム巻き取り部29まで搬送してロール状に巻き取った。なお、延伸倍率は2.0倍、延伸部25のうちの延伸ゾーン(T2)における温度は、(Tg+0)℃、延伸部25のうちの熱固定ゾーン(T3)における温度は、(Tg-3)℃(Tgは、剥離性支持体のガラス転移温度)で行った(図4参照)。
<Production of obliquely stretched film 9>
The obtained roll body of the raw film 3 (laminated film) is set in the film feeding unit 22 of the obliquely stretched film manufacturing apparatus 20 shown in FIG. and diagonally stretched in the stretching section 25 to obtain a long diagonally stretched film 9 having a thickness of 75 μm as a laminated film.
Then, the obliquely stretched film 10 was conveyed to the film winding section 29 and wound into a roll. The draw ratio is 2.0 times, the temperature in the drawing zone (T2) of the drawing section 25 is (Tg+0)° C., and the temperature in the heat setting zone (T3) of the drawing section 25 is (Tg-3 )° C. (Tg is the glass transition temperature of the peelable support) (see FIG. 4).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 <評価>
 得られた斜め延伸フィルムの光学特性(配向角、面内位相差Ro)、サーベルフォームおよび厚み偏差を、以下の方法で測定した。
<Evaluation>
The optical properties (orientation angle, in-plane retardation Ro), saber form and thickness deviation of the obtained obliquely stretched film were measured by the following methods.
 (1)光学特性(面内位相差Ro、配向角θ)
 (面内位相差Ro)
 23℃55%RHの環境下で、Axometrics社製Axoscanを用い、波長550nmにおける複屈折を測定し、前述の式(1)から面内位相差値Roを算出した。
(1) Optical properties (in-plane retardation Ro, orientation angle θ)
(In-plane retardation Ro)
Under the environment of 23° C. and 55% RH, the birefringence at a wavelength of 550 nm was measured using Axoscan manufactured by Axometrics, and the in-plane retardation value Ro was calculated from the above formula (1).
 (配向角θ)
 自動複屈折率計KOBRA-21ADH(王子計測機器(株)製)を用いて、波長590nmにて測定し、フィルムの幅方向をθ=0°とし、幅方向と遅相軸とのなす角度をθとした。
(orientation angle θ)
Measured at a wavelength of 590 nm using an automatic birefringence meter KOBRA-21ADH (manufactured by Oji Scientific Instruments Co., Ltd.). θ.
 なお、斜め延伸フィルム10の面内位相差Roと配向角θの測定は、剥離性支持体を剥離し、ポリフマル酸ジイソプロピルからなる層を単層で行った。 The in-plane retardation Ro and the orientation angle θ of the obliquely stretched film 10 were measured by peeling off the peelable support and using a single layer made of diisopropyl fumarate.
 (2)サーベルフォーム
 図2に示されるように、フィルムを長手方向に20m切り出し、0m位置、10m位置、20m位置における、フィルムの幅方向の中央点m0、m1およびm2をそれぞれマークした。0m位置と20m位置の中央点(m0およびm2)を通るように糸を張り、10m位置における中央点m1のマークと糸との距離Xを測定し、これを「サーベルフォーム」とした。なお、斜め延伸フィルム10のサーベルフォームの測定は、剥離性支持体が付いたまま(積層状態)で行った。
(2) Saber Form As shown in FIG. 2, 20 m of the film was cut in the longitudinal direction, and the center points m0, m1 and m2 in the width direction of the film were marked at the 0 m, 10 m and 20 m positions, respectively. A thread was stretched so as to pass through the center points (m0 and m2) at the 0 m position and the 20 m position, and the distance X between the mark of the center point m1 at the 10 m position and the thread was measured, and this was defined as "saber form". In addition, the measurement of the saber form of the obliquely stretched film 10 was performed with the peelable support attached (laminated state).
 (3)厚み偏差
 オフライン接触式膜厚計(YAMABUN社製)を用い、斜め延伸フィルムの幅方向の一方の端部から他方の端部まで、フィルムの幅方向に沿って1mm間隔でフィルムの厚みを測定した。そして、(フィルム厚みの最大値-フィルム厚みの最小値)を「幅方向の厚み偏差」とした。なお、斜め延伸フィルム10の厚み偏差は、剥離性支持体が付いたまま(積層状態)で測定した。
(3) Thickness deviation Using an offline contact film thickness gauge (manufactured by YAMABUN), the thickness of the film is measured at intervals of 1 mm along the width direction of the obliquely stretched film from one end to the other end in the width direction. was measured. Then, (maximum value of film thickness - minimum value of film thickness) was defined as "thickness deviation in width direction". The thickness deviation of the obliquely stretched film 10 was measured with the peelable support attached (laminated state).
 2.易接着層用組成物の調製
 (ポリオレフィン樹脂水性分散体E-1の製造)
 ヒーター付きの密閉できる耐圧1リットル容ガラス容器を備えた撹拌機を用いて、60.0gのポリオレフィン樹脂〔ボンダインHX-8290、住友化学工業社製〕、60.0gのイソプロパノール(和光純薬社製)、2.2gのトリエチルアミン(和光純薬社製)および177.8gの蒸留水をガラス容器内に仕込み、撹拌翼の回転速度を300rpmとして撹拌したところ、容器底部には樹脂粒状物の沈澱は認められず、浮遊状態となっていることが確認された。そこで、この状態を保ちつつ、10分後にヒーターの電源を入れ加熱した。そして系内温度を120℃に保ってさらに20分間撹拌した。その後、空冷にて、回転速度300rpmのまま攪拌しつつ室温(約25℃)まで冷却した後、300メッシュのステンレス製フィルター(線径0.035mm、平織)で加圧濾過(空気圧0.2MPa)し、乳白色の均一なポリオレフィン樹脂水性分散体E-1を得た。
2. Preparation of easy-adhesion layer composition (manufacture of polyolefin resin aqueous dispersion E-1)
60.0 g of polyolefin resin [Bondine HX-8290, Sumitomo Chemical Co., Ltd.], 60.0 g of isopropanol (Wako Pure Chemical Industries, Ltd.) ), 2.2 g of triethylamine (manufactured by Wako Pure Chemical Industries, Ltd.) and 177.8 g of distilled water were placed in a glass container and stirred at a rotation speed of 300 rpm. It was confirmed that it was in a floating state. Therefore, while maintaining this state, the power of the heater was turned on after 10 minutes to heat. Then, the temperature in the system was kept at 120° C. and the mixture was further stirred for 20 minutes. Then, after cooling to room temperature (approximately 25° C.) with air cooling while stirring at a rotation speed of 300 rpm, pressure filtration (air pressure 0.2 MPa) through a 300-mesh stainless steel filter (wire diameter 0.035 mm, plain weave). to obtain a milky white homogeneous polyolefin resin aqueous dispersion E-1.
 (ポリウレタン樹脂水性分散体U-1の製造)
 攪拌機、温度計、窒素シール管、冷却器のついた反応器に、平均分子量1970のポリテトラメチレングリコールを345質量部、イソホロンジイソシアネートを77.8質量部、ジブチルチンジラウレートを0.03質量部仕込み、80℃で2時間反応させた。次いで、この反応液を50℃まで冷却した後、ジメチルプロパノールアミンを11.7質量部、トリエチルアミンを8.85質量部、アセトンを177質量部添加し3時間反応させた。さらにこの反応液にアセトンを175質量部加えて30℃まで冷却し、イソホロンジイソシアネートが13.4質量部、モノエタノ-ルアミンが1.07質量部、イソプロピルアルコールが87.9質量部、水が1039質量部からなる混合液を加えて高速攪拌し、この液よりアセトンとIPAを留去して、ポリエーテル型ポリウレタン樹脂水性分散体U-1を得た。
(Production of polyurethane resin aqueous dispersion U-1)
345 parts by mass of polytetramethylene glycol having an average molecular weight of 1970, 77.8 parts by mass of isophorone diisocyanate, and 0.03 parts by mass of dibutyltin dilaurate were charged into a reactor equipped with a stirrer, thermometer, nitrogen seal tube, and cooler. and 80° C. for 2 hours. After cooling the reaction solution to 50° C., 11.7 parts by mass of dimethylpropanolamine, 8.85 parts by mass of triethylamine and 177 parts by mass of acetone were added and reacted for 3 hours. Further, 175 parts by mass of acetone was added to the reaction solution and cooled to 30° C., resulting in 13.4 parts by mass of isophorone diisocyanate, 1.07 parts by mass of monoethanolamine, 87.9 parts by mass of isopropyl alcohol, and 1039 parts by mass of water. A mixed liquid consisting of three parts was added and stirred at high speed, and acetone and IPA were distilled off from this liquid to obtain a polyether type polyurethane resin aqueous dispersion U-1.
 (架橋剤)
 株式会社日本触媒製WS-700
 ナガセケムテックス社製デナコールEX-313
(crosslinking agent)
WS-700 manufactured by Nippon Shokubai Co., Ltd.
Denacol EX-313 manufactured by Nagase ChemteX Co., Ltd.
 (その他)
 微粒子:株式会社日本触媒製KE-P30
(others)
Fine particles: KE-P30 manufactured by Nippon Shokubai Co., Ltd.
 <易接着層用組成物Aの調製>
 下記成分を、希釈剤(水/メタノール=50/50(質量%))で、固形分が2.8質量%になるように希釈して、易接着層用組成物Aを調製した。
 ポリオレフィン樹脂水性分散体E-1:(ポリオレフィン樹脂量で)100質量部
 架橋剤(株式会社日本触媒製WS-700):5質量部
 微粒子(株式会社日本触媒製KE-P30):8質量部
<Preparation of Composition A for Easy Adhesion Layer>
The following components were diluted with a diluent (water/methanol = 50/50 (% by mass)) so that the solid content was 2.8% by mass to prepare a composition A for an easy adhesion layer.
Polyolefin resin aqueous dispersion E-1: (in polyolefin resin amount) 100 parts by mass Crosslinking agent (WS-700 manufactured by Nippon Shokubai Co., Ltd.): 5 parts by mass Fine particles (KE-P30 manufactured by Nippon Shokubai Co., Ltd.): 8 parts by mass
 <易接着層用組成物Bの調製>
 ポリオレフィン樹脂とポリウレタン樹脂の含有比率が表2に示される値となるように、ポリオレフィン樹脂水性分散体E-1とポリウレタン樹脂水性分散体U-1の配合比を変更し、架橋剤をナガセケムテックス社製デナコールEX-313:3質量部に変更した以外は易接着層用組成物Aと同様にして易接着層用組成物Bを作製した。
<Preparation of Composition B for Easy Adhesion Layer>
The compounding ratio of the polyolefin resin aqueous dispersion E-1 and the polyurethane resin aqueous dispersion U-1 was changed so that the content ratio of the polyolefin resin and the polyurethane resin was the value shown in Table 2, and Nagase ChemteX was used as the cross-linking agent. An easy-adhesion layer composition B was prepared in the same manner as the easy-adhesion layer composition A except that Denacol EX-313 manufactured by Co., Ltd. was changed to 3 parts by mass.
 <易接着層用組成物C~Eの調製>
 ポリオレフィン樹脂とポリウレタン樹脂の含有比率が表2に示される値となるように、ポリオレフィン樹脂水性分散体E-1とポリウレタン樹脂水性分散体U-1の配合比を変更した以外は易接着層用組成物Aと同様にして易接着層用組成物C~Eを作製した。
<Preparation of Compositions C to E for Easy Adhesion Layer>
The easy-adhesion layer composition except that the compounding ratio of the polyolefin resin aqueous dispersion E-1 and the polyurethane resin aqueous dispersion U-1 was changed so that the content ratio of the polyolefin resin and the polyurethane resin was the value shown in Table 2. Easy adhesion layer compositions C to E were prepared in the same manner as in product A.
 得られた易接着層用組成物A~Eの組成を、表2に示す。 Table 2 shows the compositions of the easily adhesive layer compositions A to E thus obtained.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 3.光学フィルムの作製および評価
 <光学フィルム1の作製>
 斜め延伸フィルム1を速度20m/分で搬送しながら、コロナ処理装置(春日電機社製)を用いて、出力2kWの条件で照射し、斜め延伸フィルム1の表面処理を行った。次いで、減圧押し出しダイコーターを用いて、易接着層用組成物Bを塗布した後、120℃の雰囲気下で乾燥および硬化させて、厚み0.22μmの易接着層を形成し、光学フィルム1を得た。
3. Preparation and Evaluation of Optical Film <Preparation of Optical Film 1>
While conveying the obliquely stretched film 1 at a speed of 20 m/min, the obliquely stretched film 1 was subjected to surface treatment by irradiation under the condition of an output of 2 kW using a corona treatment device (manufactured by Kasuga Denki Co., Ltd.). Then, using a vacuum extrusion die coater, the easy-adhesion layer composition B is applied, dried and cured in an atmosphere of 120° C. to form an easy-adhesion layer having a thickness of 0.22 μm, and the optical film 1 is obtained. Obtained.
 <光学フィルム2~14の作製>
 斜め延伸フィルムと易接着層用組成物の組み合わせを表3に示されるように変更した以外は光学フィルム1と同様にして、光学フィルム2~14を得た。なお、光学フィルム13については、斜め延伸フィルム10(積層フィルム)のポリフマル酸ジイソプロピル層の側に易接着層用組成物を塗布して作製した。
<Production of optical films 2 to 14>
Optical Films 2 to 14 were obtained in the same manner as Optical Film 1, except that the combination of the obliquely stretched film and the easy-adhesion layer composition was changed as shown in Table 3. The optical film 13 was prepared by applying the easy-adhesion layer composition to the diisopropyl polyfumarate layer side of the obliquely stretched film 10 (laminated film).
 <評価>
 得られた光学フィルム1~14の易接着層の押し込み弾性率を、以下の方法で測定した。
<Evaluation>
The indentation elastic moduli of the easily adhesive layers of the obtained optical films 1 to 14 were measured by the following method.
 (押し込み弾性率)
 得られた積層体の易接着層の押し込み弾性率を、ナノインデンテーション(Triboscope)(HYSITRON製、圧子バーコビッチ型)を用い、最大押込み深さ20nmにて測定した。N=5で測定して、平均値を採用した。
(indentation modulus)
The indentation elastic modulus of the easily adhesive layer of the obtained laminate was measured using a nanoindentation (Triboscope) (manufactured by HYSITRON, indenter Berkovich type) at a maximum indentation depth of 20 nm. Measurements were taken at N=5 and the average value was adopted.
 また、光学フィルム1~14の白色痕、(偏光板での)傷、および(表示装置での)表示特性を、以下の方法で評価した。 In addition, the white marks, scratches (on the polarizing plate), and display characteristics (on the display device) of the optical films 1 to 14 were evaluated by the following methods.
 (1)白色痕
 得られた光学フィルムを巻き取ったロール体からフィルムの長さ3m分を繰り出し、その表面を、ハロゲンランプを用いて観察し、白色痕の有無や度合いを評価した。
 ◎:白色痕がフィルム観察面積の5%未満
 ○:白色痕がフィルム観察面積の5%以上10%未満
 ×:白色痕がフィルム観察面積の10%以上
 ○以上であれば良好と判断した。
(1) White Marks A 3-m long film was unwound from the roll body on which the obtained optical film was wound, and its surface was observed using a halogen lamp to evaluate the presence and degree of white marks.
⊚: less than 5% of the film observed area ○: 5% or more and less than 10% of the film observed area ×: 10% or more of the film observed area
 (2)傷
 (偏光子の作製)
 厚み80μmのポリビニルアルコールフィルムを、0.3%のヨウ素水溶液中で染色した。その後、染色したポリビニルアルコールフィルムを4%のホウ酸水溶液および2%のヨウ化カリウム水溶液中で5倍まで延伸した後、50℃で4分間乾燥させて、偏光子を製造した。
(2) Scratches (Fabrication of polarizer)
A polyvinyl alcohol film with a thickness of 80 μm was dyed in a 0.3% iodine aqueous solution. After that, the dyed polyvinyl alcohol film was stretched up to 5 times in a 4% boric acid aqueous solution and a 2% potassium iodide aqueous solution, and then dried at 50° C. for 4 minutes to produce a polarizer.
 (偏光板の作製)
 そして、上記作製した光学フィルム、上記作製した偏光子およびTACフィルム(厚み40μm)を、UV接着剤を介して接着し、TACフィルム/UV接着層/偏光子/UV接着層/光学フィルムの層構成を有する偏光板(円偏光板)1~12および14を得た。UV接着剤としては、特許5971498号の製造例2に記載される接着剤組成物を用いた。光学フィルムは、易接着層側の面がUV接着層側となるように配置した。光学フィルムの斜め延伸フィルムの遅相軸と、偏光子の吸収軸とのなす角度は、45°であった。なお、光学フィルム13については、剥離性支持体を剥離してから易接着側の面がUV接着層側となるように偏光子と貼り合わせて、円偏光板13を作製した。
(Preparation of polarizing plate)
Then, the optical film prepared above, the polarizer prepared above, and a TAC film (40 μm thick) were adhered via a UV adhesive to obtain a layer configuration of TAC film/UV adhesive layer/polarizer/UV adhesive layer/optical film. Polarizing plates (circularly polarizing plates) 1 to 12 and 14 were obtained. As the UV adhesive, the adhesive composition described in Production Example 2 of Japanese Patent No. 5971498 was used. The optical film was arranged so that the surface on the easy adhesion layer side was on the UV adhesion layer side. The angle between the slow axis of the obliquely stretched optical film and the absorption axis of the polarizer was 45°. As for the optical film 13, after peeling off the peelable support, the optical film 13 was attached to the polarizer so that the easy-adhesion side faces the UV adhesive layer side, thereby producing the circularly polarizing plate 13.
 得られた円偏光板を3m長取り出し、S-lightを当てて、表面の傷の有無、度合いを評価した。
 〇:傷が観察面積の5%未満
 △:傷が観察面積の5%以上で10%未満であり、実用上問題とならないレベル
 ×:傷が観察面積の10%以上であり、実用上問題となるレベル
 △以上であれば良好と判断した。
The obtained circularly polarizing plate was taken out with a length of 3 m, and S-light was applied to evaluate the presence or absence and degree of scratches on the surface.
◯: less than 5% of the observed area △: 5% or more of the observed area and less than 10% of the observed area, a level that does not pose a practical problem ×: 10% or more of the observed area, which is a practical problem A level of △ or higher was judged to be good.
 (3)表示特性
 市販の有機エレクトロルミネッセンス表示装置パネルOLED55B9PJA(LG社製)から円偏光板を取り外した。発光パネル上に、上記で作製した円偏光板を、斜め延伸フィルム側が発光パネル側になるように、粘着剤NCF-N632(リンテック社製)で貼り合わせた。これを、黒表示させて、明視野下で観察し、下記の評価基準で評価した。
 〇:光抜けが見られる面積が、全画面中5%未満
 ×:光抜けが見られる面積が、全画面中5%以上
 ○であれば良好と判断した。
(3) Display characteristics The circularly polarizing plate was removed from a commercially available organic electroluminescence display panel OLED55B9PJA (manufactured by LG). The circularly polarizing plate prepared above was pasted onto the light-emitting panel with an adhesive NCF-N632 (manufactured by Lintec) so that the obliquely stretched film side faced the light-emitting panel. This was displayed in black, observed under a bright field, and evaluated according to the following evaluation criteria.
○: Less than 5% of the entire screen area where light leakage is observed. ×: 5% or more of the entire screen area where light leakage is observed.
 光学フィルム1~14の評価結果を表3に示す。 Table 3 shows the evaluation results of the optical films 1 to 14.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3に示されるように、易接着層の押し込み弾性率が1.5GPa以上である光学フィルム1~4、6~11、13および14(実施例)は、斜め延伸フィルムのサーベルフォームが10mm以上と大きいにも係わらず、白色痕を抑制できることがわかる。ただし、サーベルフォームが30mmを超える光学フィルム11は、ハンドリング性にやや劣っていた。 As shown in Table 3, the optical films 1 to 4, 6 to 11, 13 and 14 (Examples) in which the indentation elastic modulus of the easily adhesive layer is 1.5 GPa or more have a saber foam of 10 mm or more in the obliquely stretched film. It can be seen that white traces can be suppressed in spite of the large . However, the optical film 11 with a saber form exceeding 30 mm was slightly inferior in handleability.
 これに対し、斜め延伸フィルムのサーベルフォームが10mm未満である光学フィルム12(比較例)は、フィルム表面の傷が多く、表示装置における光抜けが多いことがわかる。一方、斜め延伸フィルムのサーベルフォームが10mm以上であるが、易接着層の押し込み弾性率が1.5GPa未満である光学フィルム5(比較例)は、白色痕が生じることがわかる。 On the other hand, the optical film 12 (comparative example) in which the saber form of the obliquely stretched film is less than 10 mm has many scratches on the film surface and many light leaks in the display device. On the other hand, optical film 5 (comparative example) in which the saber form of the obliquely stretched film is 10 mm or more and the indentation elastic modulus of the easy-adhesive layer is less than 1.5 GPa has white marks.
 本出願は、2021年2月8日出願の特願2021-018479に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2021-018479 filed on February 8, 2021. All contents described in the specification and drawings are incorporated herein by reference.
 本発明によれば、巻き取りによる微細な傷を抑制しつつ、白色痕を生じにくくしうる光学フィルム、偏光板および表示装置を提供することができる。 According to the present invention, it is possible to provide an optical film, a polarizing plate, and a display device that can suppress fine scratches due to winding and make it difficult for white marks to occur.
 10 光学フィルム
 11 斜め延伸フィルム
 12 易接着層
 20 製造装置
 22 フィルム繰り出し部
 23 搬送方向変更部
 24 ガイドロール
 25 延伸部
 26 ガイドロール
 27 搬送方向変更部
 28 フィルム切断装置
 29 フィルム巻き取り部
 30 偏光板
 31 偏光子
 32 保護フィルム
 33 接着層
 40 有機EL表示装置
 50 有機EL素子
REFERENCE SIGNS LIST 10 optical film 11 obliquely stretched film 12 easy-adhesive layer 20 manufacturing device 22 film feeding section 23 conveying direction changing section 24 guide roll 25 stretching section 26 guide roll 27 conveying direction changing section 28 film cutting device 29 film winding section 30 polarizing plate 31 Polarizer 32 Protective film 33 Adhesive layer 40 Organic EL display device 50 Organic EL element

Claims (10)

  1.  フィルム面内において、フィルムの幅方向に対して傾斜した遅相軸を有する斜め延伸フィルムと、前記斜め延伸フィルムの表面上に配置された易接着層とを含む帯状の光学フィルムであって、
     前記斜め延伸フィルムの幅方向と直交する方向の0m位置、10m位置、20m位置における、フィルムの幅方向の中点をそれぞれm0、m1およびm2としたとき、前記m0と前記m2とを結ぶ中心線に対する、前記m1の前記フィルムの幅方向の距離で表されるサーベルフォームが10mm以上であり、
     前記易接着層の押し込み弾性率が、1.5~3.0GPaである、
     光学フィルム。
    A strip-shaped optical film comprising an obliquely stretched film having a slow axis inclined with respect to the width direction of the film in the plane of the film, and an easy-adhesion layer disposed on the surface of the obliquely stretched film,
    When the midpoints in the width direction of the film are m0, m1, and m2 at the 0 m position, 10 m position, and 20 m position in the direction perpendicular to the width direction of the obliquely stretched film, the center line connecting the m0 and the m2. , the saber form represented by the distance in the width direction of the film of the m1 is 10 mm or more,
    The indentation modulus of the easily adhesive layer is 1.5 to 3.0 GPa,
    optical film.
  2.  前記易接着層の押し込み弾性率が、2.0~2.5GPaである、
     請求項1に記載の光学フィルム。
    The indentation modulus of the easy-adhesion layer is 2.0 to 2.5 GPa,
    The optical film according to claim 1.
  3.  前記易接着層は、ポリオレフィンまたはその架橋物を含む、
     請求項1または2に記載の光学フィルム。
    The easy-adhesion layer contains polyolefin or a crosslinked product thereof,
    The optical film according to claim 1 or 2.
  4.  前記斜め延伸フィルムの幅方向に1mm間隔で厚みを測定したときに、厚みの最大値と最小値の差で表される厚み偏差は、0.5~1.5μmである、
     請求項1~3のいずれか一項に記載の光学フィルム。
    When the thickness is measured at intervals of 1 mm in the width direction of the obliquely stretched film, the thickness deviation represented by the difference between the maximum thickness and the minimum thickness is 0.5 to 1.5 μm.
    The optical film according to any one of claims 1 to 3.
  5.  前記斜め延伸フィルムは、シクロオレフィン系樹脂、フマル酸ジエステル系樹脂またはポリエステル(ただし、フマル酸ジエステル系樹脂とは異なる)を含む、
     請求項1~4のいずれか一項に記載の光学フィルム。
    The obliquely stretched film contains a cycloolefin-based resin, a fumaric acid diester-based resin, or a polyester (but different from the fumaric acid diester-based resin).
    The optical film according to any one of claims 1 to 4.
  6.  前記斜め延伸フィルムの面内において、前記遅相軸の前記フィルムの幅方向に対する角度は、40~50°である、
     請求項1~5のいずれか一項に記載の光学フィルム。
    In the plane of the obliquely stretched film, the angle of the slow axis with respect to the width direction of the film is 40 to 50 °.
    The optical film according to any one of claims 1 to 5.
  7.  前記斜め延伸フィルムの、下記式(1)で表される波長550nmにおける面内位相差Roは、95~170nmである、
     請求項1~6のいずれか一項に記載の光学フィルム。
     式(1):Ro=(nx-ny)×d
    (式(1)中、
     nxは、遅相軸方向の屈折率を表し、
     nyは、フィルム面内において、前記遅相軸と直交する方向の屈折率を表し、
     dは、フィルムの厚み(nm)を表す)
    The in-plane retardation Ro of the obliquely stretched film at a wavelength of 550 nm represented by the following formula (1) is 95 to 170 nm.
    The optical film according to any one of claims 1-6.
    Formula (1): Ro = (nx-ny) x d
    (In formula (1),
    nx represents the refractive index in the slow axis direction,
    ny represents the refractive index in the direction perpendicular to the slow axis in the film plane,
    d represents the film thickness (nm))
  8.  偏光子と、
     その少なくとも一方の面に配置された、請求項1~7のいずれか一項に記載の光学フィルムと、
     前記偏光子と前記易接着層との間に配置された接着層とを含む、
     偏光板。
    a polarizer;
    The optical film according to any one of claims 1 to 7, disposed on at least one surface thereof;
    An adhesive layer disposed between the polarizer and the easy-adhesion layer,
    Polarizer.
  9.  表示素子と、
     請求項8に記載の偏光板とを含み、
     前記光学フィルムは、前記表示素子と前記偏光子との間に配置されている、
     表示装置。
    a display element;
    A polarizing plate according to claim 8,
    The optical film is arranged between the display element and the polarizer,
    display device.
  10.  前記表示素子は、有機EL素子または無機EL素子である、
     請求項9に記載の表示装置。
    The display element is an organic EL element or an inorganic EL element,
    The display device according to claim 9.
PCT/JP2022/003853 2021-02-08 2022-02-01 Optical film, polarization plate, and display device WO2022168834A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022579553A JPWO2022168834A1 (en) 2021-02-08 2022-02-01
CN202280013173.XA CN116848442A (en) 2021-02-08 2022-02-01 Optical film, polarizing plate, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021018479 2021-02-08
JP2021-018479 2021-02-08

Publications (1)

Publication Number Publication Date
WO2022168834A1 true WO2022168834A1 (en) 2022-08-11

Family

ID=82741480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003853 WO2022168834A1 (en) 2021-02-08 2022-02-01 Optical film, polarization plate, and display device

Country Status (4)

Country Link
JP (1) JPWO2022168834A1 (en)
CN (1) CN116848442A (en)
TW (1) TWI831126B (en)
WO (1) WO2022168834A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253832A (en) * 2009-04-27 2010-11-11 Teijin Dupont Films Japan Ltd Film roll of optical film
JP2015087694A (en) * 2013-11-01 2015-05-07 東洋紡株式会社 Polarizer protective film, polarizing plate, and liquid crystal display device
JP2016099397A (en) * 2014-11-18 2016-05-30 Jsr株式会社 Retardation film laminate, polarizing plate, and production method of retardation film laminate
WO2018042878A1 (en) * 2016-08-30 2018-03-08 日東電工株式会社 Polarizing plate
JP2019128467A (en) * 2018-01-25 2019-08-01 コニカミノルタ株式会社 Optical film and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253832A (en) * 2009-04-27 2010-11-11 Teijin Dupont Films Japan Ltd Film roll of optical film
JP2015087694A (en) * 2013-11-01 2015-05-07 東洋紡株式会社 Polarizer protective film, polarizing plate, and liquid crystal display device
JP2016099397A (en) * 2014-11-18 2016-05-30 Jsr株式会社 Retardation film laminate, polarizing plate, and production method of retardation film laminate
WO2018042878A1 (en) * 2016-08-30 2018-03-08 日東電工株式会社 Polarizing plate
JP2019128467A (en) * 2018-01-25 2019-08-01 コニカミノルタ株式会社 Optical film and method of manufacturing the same

Also Published As

Publication number Publication date
TW202237383A (en) 2022-10-01
JPWO2022168834A1 (en) 2022-08-11
CN116848442A (en) 2023-10-03
TWI831126B (en) 2024-02-01

Similar Documents

Publication Publication Date Title
TWI613470B (en) Polarizing plate with a retardation layer and image display apparatus
JP6376126B2 (en) Polarizing plate and display device having the same
TWI381196B (en) A polarizing plate, a method for manufacturing the same, an optical film, and an image display device
KR101679859B1 (en) Liquid crystal display device and polarizing plate used in the same
KR20190005836A (en) An optical film for an organic EL display device, a polarizing film for an organic EL display device, a polarizing film with a pressure-sensitive adhesive layer for an organic EL display device, and an organic EL display device
US10107946B2 (en) Polarizing plate with a retardation layer and image display apparatus
KR20150119024A (en) Organic electroluminescent display device and method for manufacturing same
TWI570463B (en) Polarizing plate, manufacturing method of polarizing plate, liquid crystal display device, and organic electroluminescent display device
TW201629550A (en) A polarizer
JPWO2016052732A1 (en) Optical film laminate, optical display device using the optical film laminate, and transparent protective film
JP6642553B2 (en) Polarizing plate and liquid crystal display device using the same
CN106468797B (en) Polarizing plate for curved image display panel
WO2022168834A1 (en) Optical film, polarization plate, and display device
JP2023118963A (en) Retardation film with easily adhesive layer, polarizing plate with retardation layer, and method of manufacturing retardation film with easily adhesive layer
JP7308592B2 (en) Optical film and its manufacturing method
KR20190109266A (en) Method for manufacturing optical laminate with adhesive layer
KR20180113919A (en) Optical film, polarizing plate, display device, and method of manufacturing optical film
JP2022150732A (en) Polarization plate with retardation layer and picture display unit using polarization plate with retardation layer
JPWO2019216122A1 (en) Base film for liquid crystal coating, optical film with temporary support including this, polarizing plate containing these, and method for manufacturing them
KR102650445B1 (en) Method for manufacturing retardation film with easy-adhesion layer, retardation film with easy-adhesion layer, and polarizer with retardation layer
CN114764161B (en) Method for producing obliquely stretched film
TWI750736B (en) Optical film, polarizing plate and organic EL display device
JP7261336B1 (en) Polarizer
WO2023074388A1 (en) Retardation layer-equipped polarizing plate and image display device
WO2022163131A1 (en) Film, film roll, and method for producing film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749706

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579553

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280013173.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749706

Country of ref document: EP

Kind code of ref document: A1