WO2022168504A1 - Safety system for nuclear power plant - Google Patents

Safety system for nuclear power plant Download PDF

Info

Publication number
WO2022168504A1
WO2022168504A1 PCT/JP2021/048682 JP2021048682W WO2022168504A1 WO 2022168504 A1 WO2022168504 A1 WO 2022168504A1 JP 2021048682 W JP2021048682 W JP 2021048682W WO 2022168504 A1 WO2022168504 A1 WO 2022168504A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
pressure
cooling water
reactor
safety system
Prior art date
Application number
PCT/JP2021/048682
Other languages
French (fr)
Japanese (ja)
Inventor
隆久 松崎
智彦 池側
宏昌 千年
聖 平野
Original Assignee
日立Geニュークリア・エナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Geニュークリア・エナジー株式会社 filed Critical 日立Geニュークリア・エナジー株式会社
Publication of WO2022168504A1 publication Critical patent/WO2022168504A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/04Safety arrangements

Definitions

  • the present invention relates to the safety system of nuclear power plants.
  • the isolation condenser has a heat exchanger placed in a cooling water pool installed at a position higher than the core.
  • the steam generated by the decay heat of the core is guided to the heat exchanger, cooled by the cooling water in the cooling water pool, and condensed.
  • the increase in temperature and pressure of the reactor pressure vessel or steam generator is suppressed. Decay heat removal can continue as the water condensed in the IC heat exchanger is fed back to the reactor pressure vessel or steam generator by gravity.
  • Some boiling water reactors are equipped with an automatic depressurization system for depressurizing the reactor pressure vessel in addition to the IC (see Patent Document 1, for example).
  • the automatic depressurization system depressurizes the reactor pressure vessel by releasing the steam in the reactor pressure vessel to a pressure suppression pool provided in the reactor containment vessel. Since the steam from the reactor pressure vessel is discharged into the cooling water and condensed in the pressure suppression pool, pressure rise in the reactor containment vessel can be suppressed.
  • the automatic depressurization system depressurizes the reactor pressure vessel to 0.5 MPa or less by forcibly opening a safety valve provided in the main steam pipe.
  • the present invention has been made to solve the above problems, and its object is to simplify the structure of the reactor containment vessel, and to provide the same even when the emergency condenser is inoperative.
  • a nuclear plant safety system is provided that can depressurize a reactor pressure vessel or steam generator without using dynamic equipment.
  • the present application includes a plurality of means for solving the above-mentioned problems, but if one example is given, the steam from the reactor pressure vessel or the steam generator stored in the reactor containment vessel is condensed by cooling and the above-mentioned atomic
  • a safety system for a nuclear plant comprising an emergency condenser returning to a reactor pressure vessel or said steam generator, comprising a water source for storing cooling water located outside said reactor containment vessel, and said reactor containment vessel.
  • a reservoir positioned inside a container and positioned below the water source and capable of receiving and storing cooling water discharged from the water source; a first line leading to a reservoir, a first valve provided on the first line for switching the first line to an open state or a closed state, one side directly to the reactor pressure vessel or the steam generator a second line connected directly or indirectly and having the other side open at a position lower than an assumed water level when the cooling water from the water source is stored in the storage section; and a second valve for switching the second line between an open state and a closed state, the first valve and the second valve depending on the pressure inside the reactor pressure vessel or the steam generator. characterized in that it is configured to open the valve by
  • the first valve and the second valve can be opened. Since the steam from the reactor pressure vessel or the steam generator is introduced into the cooling water discharged from the water source to the reservoir and condenses, the reactor pressure vessel can be installed without providing a pressure suppression pool in the reactor containment vessel. Depressurization is possible. That is, the structure of the reactor containment vessel can be simplified, and the reactor pressure vessel can be depressurized without using dynamic equipment even when the isolation condenser is inoperative. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
  • FIG. 1 is a schematic system diagram showing a boiling water nuclear power plant equipped with a first embodiment of a nuclear power plant safety system according to the present invention
  • FIG. FIG. 2 is a schematic diagram showing an example of the structure of a drain valve and a pressure reducing valve that constitute a part of the first embodiment of the nuclear plant safety system of the present invention shown in FIG. 1
  • FIG. 3 is a schematic diagram showing an operating state (valve open state) of the drain valve and the pressure reducing valve shown in FIG. 2 when IC is not operated
  • FIG. 2 is a schematic diagram showing an example of the structure of a fusion valve forming part of the first embodiment of the nuclear plant safety system of the present invention shown in FIG. 1;
  • FIG. 2 is a schematic system diagram showing an operating state of an isolation condenser (IC) in the first embodiment of the nuclear plant safety system of the present invention shown in FIG. 1;
  • FIG. 2 is a schematic system diagram showing an operating state when an IC is not operating in the first embodiment of the safety system of the nuclear power plant of the present invention shown in FIG. 1;
  • FIG. 2 is a schematic system diagram showing a nuclear power plant equipped with a second embodiment of a safety system for a nuclear power plant according to the present invention;
  • FIG. 5 is a schematic system diagram showing a nuclear plant equipped with a third embodiment of the nuclear plant safety system of the present invention;
  • FIG. 10 is a schematic system diagram showing a nuclear power plant equipped with a fourth embodiment of the safety system of the nuclear power plant of the present invention;
  • FIG. 11 is a schematic system diagram showing a nuclear plant equipped with a fifth embodiment of the nuclear plant safety system of the present invention
  • FIG. 5 is a block diagram showing a modification of the valve drive system for driving the pressure reducing valves forming part of the first to fifth embodiments of the nuclear plant safety system of the present invention
  • FIG. 12 is a block diagram showing a state when the pressure reducing valve is operating (opening) in the modification of the pressure reducing valve driving system shown in FIG. 11
  • FIG. 5 is a block diagram showing a modification of the valve drive system for driving the drain valves constituting part of the first to fifth embodiments of the nuclear plant safety system of the present invention
  • FIG. 14 is a block diagram showing a state when the drain valve is actuated (opened) in the modification of the drain valve drive system shown in FIG. 13;
  • 1 is a schematic system diagram showing a pressurized water type nuclear power plant equipped with an embodiment of a nuclear power plant safety system according to the present invention;
  • FIG. 14 is a block diagram showing a state when the drain valve is actuated (opened) in the modification of the drain valve drive system shown in FIG. 13;
  • 1 is a schematic system diagram showing a pressurized water type nuclear power plant equipped with an embodiment of a nuclear power plant safety system according to the present invention;
  • FIG. 1 is a schematic system diagram showing a boiling water nuclear power plant equipped with a first embodiment of a nuclear power plant safety system according to the present invention. Note that FIG. 1 shows the state of the plant during normal operation.
  • a reactor pressure vessel 13 containing a reactor core 12 is stored in a reactor containment vessel 11 of a nuclear power plant 1 .
  • the pressure inside the reactor containment vessel 11 is substantially the same as the atmospheric pressure outside the reactor containment vessel 11 during normal operation.
  • the reactor pressure vessel 13 is a region where steam is generated by nuclear fission reaction heat or decay heat of the reactor core 12, and a liquid phase portion 13a is formed on the lower side and a gas phase portion 13b (mainly steam) is formed on the upper side.
  • a main steam pipe 14 is connected to the reactor pressure vessel 13 to send steam generated in the reactor pressure vessel 13 to a turbine (not shown).
  • the main steam pipe 14 penetrates the reactor containment vessel 11 .
  • Main steam isolation valves 15 capable of shutting off the main steam pipe 14 are installed inside and outside the reactor containment vessel 11 in the main steam pipe 14 .
  • the nuclear plant 1 has an emergency recovery system that releases thermal energy outside the system (outside the reactor containment vessel 11) as a safety system for maintaining the nuclear plant 1 in a safe state when an abnormality occurs in the nuclear reactor. It further comprises a water vessel 30 (hereinafter referred to as IC) and a depressurization protection system 40 for depressurizing the reactor pressure vessel 13 when the IC 30 does not operate. Since the nuclear power plant 1 is provided with the decompression protection system 40, the conventional automatic decompression system including the pressure suppression pool for decompressing the reactor pressure vessel 13 is eliminated.
  • IC water vessel 30
  • depressurization protection system 40 for depressurizing the reactor pressure vessel 13 when the IC 30 does not operate. Since the nuclear power plant 1 is provided with the decompression protection system 40, the conventional automatic decompression system including the pressure suppression pool for decompressing the reactor pressure vessel 13 is eliminated.
  • the IC 30 condenses steam from the reactor pressure vessel 13 by cooling and returns it to the reactor pressure vessel 13 again.
  • the IC 30 includes an IC cooling water pool 31 that stores cooling water, an IC heat exchanger 32 arranged in the IC cooling water pool 31, an inlet (upper side) of the IC heat exchanger 32, and the main steam pipe 14 (nuclear reactor).
  • the IC steam supply line 33 connecting the gas phase portion 13b) of the pressure vessel 13, the outlet (lower side) of the IC heat exchanger 32 and the lower portion of the reactor pressure vessel 13 (the portion corresponding to the liquid phase portion 13a) and an IC return line 34 connecting the An IC start valve 35 for starting the IC 30 is installed on the IC return line 34 .
  • the IC cooling water pool 31 is installed outside the reactor containment vessel 11 and is positioned above the reactor core 12, precisely at a position higher than the normal water level 13c in the reactor pressure vessel 13. .
  • the IC cooling water pool 31 has, for example, an opening 31a and is open to the atmosphere.
  • the IC steam supply line 33 supplies steam in the reactor pressure vessel 13 to the IC heat exchanger 32 .
  • the IC heat exchanger 32 cools and condenses the steam from the reactor pressure vessel 13 supplied through the IC steam supply line 33 with the cooling water in the IC cooling water pool 31 .
  • the IC return line 34 returns water produced in the IC heat exchanger 32 to the reactor pressure vessel 13 .
  • the IC start-up valve 35 is closed during normal operation, but is opened when the pressure of the reactor pressure vessel 13 rises above a predetermined value, for example, when a signal indicating a pressure rise is input. is configured to
  • the IC30 is multiplexed to improve the safety of the nuclear plant 1.
  • three to four ICs 30 are installed.
  • the depressurization protection system 40 protects the reactor pressure vessel 13 by depressurizing the reactor pressure vessel 13 when the IC 30 does not operate and the pressure inside the reactor pressure vessel 13 deviates from the normal range and rises. It is configured to start using the steam whose pressure has increased in the reactor pressure vessel 13 .
  • the decompression protection system 40 is positioned inside the IC cooling water pool 31 of the IC 30 as a water source for storing cooling water, and inside the reactor containment vessel 11 and below the IC cooling water pool 31. an intermediate tank 41; a drain line 42 connecting the IC cooling water pool 31 and the intermediate tank 41; a drain valve 43 and a check valve 44 provided on the drain line 42; 41 and a pressure reducing valve 46 provided on the pressure reducing line 45 .
  • the intermediate tank 41 is configured in an empty state in which cooling water is not stored during normal operation, and receives and stores the cooling water discharged from the IC cooling water pool 31 only when the IC 30 does not operate. It is a tank installed to function as a reservoir that allows The weight of the intermediate tank 41 is reduced because it does not store cooling water during normal operation. Therefore, the intermediate tank 41 has a reduced load during an earthquake that may cause failure.
  • the intermediate tank 41 is located away from the reactor pressure vessel 13 , for example, directly below the IC cooling water pool 31 . Control rods and a large number of pipes (not shown) are often arranged below and around the reactor pressure vessel 13, and this is suitable when the installation space for the intermediate tank 41 cannot be secured.
  • the drain line 42 guides at least part of the cooling water stored in the IC cooling water pool 31 to the intermediate tank 41 .
  • one side of the drain line 42 is connected to the bottom of the IC cooling water pool 31, and the other side is opened at a position higher than the assumed water level 41a when the intermediate tank 41 stores the cooling water from the cooling water tank.
  • the drain line 42 is arranged inside the reactor containment vessel 11 over its entire length, for example.
  • a check valve 44 and a drain valve 43 are arranged on the drain line 42 in this order from the upper side (upstream side).
  • the check valve 44 and the drain valve 43 are arranged inside the reactor containment vessel 11, for example.
  • the check valve 44 is configured to allow flow from the IC cooling water pool 31 toward the intermediate tank 41 while blocking flow from the intermediate tank 41 toward the IC cooling water pool 31 .
  • the check valve 44 prevents the gas inside the reactor containment vessel 11 from being released to the outside of the reactor containment vessel 11 through the drain line 42 .
  • the drain valve 43 switches the drain line 42 between an open state and a closed state.
  • the drain valve 43 is closed during normal operation, and is configured to open (activate) when the pressure inside the reactor pressure vessel 13 deviates from the normal range and rises.
  • the drain valve 43 is opened by utilizing the pressure of steam generated in the reactor pressure vessel 13.
  • the steam pressure in the reactor pressure vessel 13 is transmitted through the pressure transmission pipe 70.
  • the valve is configured to be switched between the valve open state and the valve closed state according to the pressure.
  • the structure of the drain valve 43 will be described later.
  • the pressure transmission pipe 70 connects the upper portion (the gas phase portion 13b) of the reactor pressure vessel 13 and a later-described valve opening/closing mechanism 54 (see FIGS. 2 and 3 described later) of the drain valve 43. It is a pipe that transmits the pressure of the container 13 to the drain valve 43 .
  • One side of the decompression line 45 is indirectly connected to the upper portion (gas phase portion 13b) of the reactor pressure vessel 13 via the main steam pipe 14, and the other side receives cooling water from the IC cooling water pool 31. It is installed so as to open at a position lower than the assumed water level 41 a when stored in the intermediate tank 41 .
  • the decompression line 45 guides part of the steam in the reactor pressure vessel 13 to the intermediate tank 41 and introduces it into the cooling water from the IC cooling water pool 31 stored in the intermediate tank 41 .
  • the pressure reducing valve 46 switches the pressure reducing line 45 between an open state and a closed state.
  • the pressure reducing valve 46 is closed during normal operation, and is configured to open (activate) when the pressure inside the reactor pressure vessel 13 deviates from the normal range and rises.
  • the pressure reducing valve 46 is opened using the pressure of the steam generated in the reactor pressure vessel 13. For example, the pressure inside the reactor pressure vessel 13 is transmitted through the pressure transmission pipe 70. , the valve is configured to be switched between an open state and a closed state according to the pressure.
  • the pressure reducing valve 46 is configured to open at a pressure higher than that of the drain valve 43 . That is, the pressure reducing valve 46 is configured to start later than the drain valve 43 .
  • the structure of the pressure reducing valve 46 will be described later.
  • the pressure transmission pipe 70 connects the upper portion (the gas phase portion 13b) of the reactor pressure vessel 13 and a later-described valve opening/closing mechanism 54 (see FIGS. 2 and 3 described later) of the pressure reducing valve 46. It is a pipe that transmits the pressure of the container 13 to the pressure reducing valve 46 .
  • a floor water injection line 47 is connected to the intermediate tank 41 .
  • the floor surface water injection line 47 discharges the stored cooling water discharged from the IC cooling water pool 31 to the intermediate tank 41 to the floor surface 11 a of the reactor containment vessel 11 .
  • the floor surface water injection line 47 extends from the bottom of the intermediate tank 41 toward the floor surface 11 a of the reactor containment vessel 11 , for example.
  • the floor surface water injection line 47 is configured assuming a case where a core meltdown occurs.
  • a melting valve 48 that closes the floor surface water injection line 47 is provided on the floor surface water injection line 47 .
  • the melting valve 48 is arranged, for example, at the end of the floor surface water injection line 47 near the floor surface 11a.
  • the melting valve 48 is normally closed, and is configured to be opened (activated) by being melted by the heat around the melting valve 48 .
  • the structure of the melting valve 48 will be described later.
  • FIG. 2 is a schematic diagram showing an example of the structure of a drain valve and a pressure reducing valve that constitute a part of the first embodiment of the nuclear plant safety system of the present invention shown in FIG.
  • FIG. 3 is a schematic diagram showing an operating state (valve open state) of the drain valve and the pressure reducing valve shown in FIG. 2 when the IC is not operated.
  • the structures of the drain valve and pressure reducing valve are similar. The difference between the drain valve and the pressure reducing valve is that the piping to be installed is different and the working pressure (valve opening pressure) is different.
  • the drain valve 43 and the pressure reducing valve 46 have a valve seat 51 provided in the drain line 42 (the pressure reducing line 45 in the case of the pressure reducing valve 46) and a valve body 52 that can be brought into contact with and separated from the valve seat 51. , a valve spring 53 that biases the valve body 52 toward the valve seat 51 (in the valve closing direction), and a valve opening/closing mechanism 54 that displaces the valve body 52 with respect to the valve seat 51 .
  • the valve seat 51 has an opening 51a (see also FIG. 3) that forms part of the flow path of the drain line 42 (the pressure reducing line 45 in the case of the pressure reducing valve 46). The opening 51a is closed when the valve body 52 is seated.
  • the drain valve 43 and the pressure reducing valve 46 are configured such that the valve body 52 is pressed against the valve seat 51 by the biasing force of the valve spring 53 to open the drain line 42 (the pressure reducing line 45 in the case of the pressure reducing valve 46 ). is configured to close the
  • the valve opening/closing mechanism 54 is configured to be directly operated by the pressure of the steam generated in the reactor pressure vessel 13 supplied through the pressure transmission pipe 70 .
  • the valve opening/closing mechanism 54 includes a cylinder tube 55 to which the pressure of the reactor pressure vessel 13 is input, a piston 56 slidably arranged in the cylinder tube 55, the piston 56, and the valve body 52. and a piston rod 57 connecting the
  • the piston 56 divides the interior of the cylinder tube 55 into a first chamber 55a and a second chamber 55b, and is displaced within the cylinder tube 55 by receiving the pressure in the first chamber 55a and the pressure in the second chamber 55b.
  • the piston rod 57 extends from the first chamber 55 a side of the piston 56 to the outside of the cylinder tube 55 and is connected to the valve body 52 .
  • a pressure transmission pipe 70 is connected to the first chamber 55 a of the cylinder tube 55 to supply steam in the reactor pressure vessel 13 .
  • the second chamber 55b has an opening 55c and is open to the outside of the cylinder tube 55 (inside the reactor containment vessel 11).
  • a latch 58 with which the piston 56 engages is provided in the cylinder tube 55, as shown in FIG.
  • the latch 58 mechanically holds the piston 56 when the piston 56 is displaced toward the second chamber 55b of the cylinder tube 55 and the valve body 52 is released. That is, the latch 58 maintains the open state in which the drain valve 43 or the pressure reducing valve 46 is operated.
  • the opening pressure of the drain valve 43 and the pressure reducing valve 46 is adjusted by adjusting the biasing force of the valve spring 53 . That is, the drain valve 43 and the pressure reducing valve 46 are opened when the pressure of the steam inside the reactor pressure vessel 13 transmitted through the pressure transmission pipe 70 rises above the threshold value.
  • the valve opening pressures (threshold values) of the drain valve 43 and the pressure reducing valve 46 are set to be higher than the maximum pressure of the reactor pressure vessel 13 when the IC 30 is in operation. This setting can prevent loss of the heat removal function of the IC 30 due to malfunction of the drain valve 43 and the pressure reducing valve 46 .
  • the opening pressure of the drain valve 43 is set to be lower than the opening pressure of the pressure reducing valve 46 . That is, the drain valve 43 is configured to start earlier than the pressure reducing valve 46 .
  • the high pressure state in the reactor pressure vessel 13 causes the pressure transmission pipe 70 to flow through the first chamber 55a of the cylinder tube 55 shown in FIG. 3, the piston 56 in the cylinder tube 55 is displaced toward the second chamber 55b against the biasing force of the valve spring 53. As shown in FIG. As the piston 56 is displaced, the valve body 52 is displaced away from the valve seat 51, so that the opening 51a of the valve seat 51 closed by the valve body 52 is opened. As described above, the drain valve 43 and the pressure reducing valve 46 are configured so that the pressure in the reactor pressure vessel 13 is transmitted to the first chamber 55a of the cylinder tube 55 through the pressure transmission pipe 70.
  • the valve When the pressure in the reactor pressure vessel 13 becomes a high pressure state deviating from the normal range, the valve is automatically opened without any operation by the operator and without using dynamic equipment. Further, the piston 56 is displaced toward the second chamber 55b and engaged with the latch 58, so that the valve body 52 can be maintained in the open state.
  • FIG. 4 is a schematic diagram showing an example of the structure of a fusion valve forming part of the first embodiment of the nuclear plant safety system of the present invention shown in FIG.
  • a melting valve 48 is provided at the end of the floor water injection line 47 .
  • the melting valve 48 includes, for example, an end plug 61 capable of closing an end opening of the floor water injection line 47, a swing arm 62 rotatably attached to the end of the floor water injection line 47, and a floor water injection line. 47 and capable of supporting the swing arm 62; a swing lever 64 rotatably attached to the swing arm 62; and a weight 66 attached to the swing lever 64 via a wire 65. , and a low melting point mounting member 67 for mounting the weight 66 to the end of the floor water injection line 47 .
  • One end of the swing arm 62 is rotatably attached to the end of the floor surface water injection line 47 via a rotating pin 62a, and the other end is detachably supported by a support arm 63.
  • An end plug 61 is fixed to the swing arm 62 so as to close the end opening of the floor surface water injection line 47 when the swing arm 62 is supported by the support arm 63 .
  • the support arm 63 has an engaging portion 63a with which the other end of the swing arm 62 engages.
  • One end of the swing lever 64 is rotatably attached to the other end of the swing arm 62 via a pivot pin 64a, and one end of a wire 65 is joined to the other end.
  • the low-melting-point mounting member 67 is made of a low-melting-point metal, and is broken by melting or softening when a predetermined temperature is exceeded.
  • the end plug 61 is disengaged from the opening of the floor surface water injection line 47, and the floor surface water injection line 47 is opened.
  • the melt valve 48 uses dynamic equipment without being operated by an operator. automatically open without
  • FIG. 5 is a schematic system diagram showing the operating state of the IC in the first embodiment of the nuclear plant safety system of the present invention shown in FIG.
  • FIG. 6 is a schematic system diagram showing the operating state when the IC is not in operation in the first embodiment of the nuclear plant safety system of the present invention shown in FIG.
  • nuclear fission in the core 12 is stopped by inserting control rods. to stop the plant.
  • the main steam isolation valve 15 is closed and the steam is discharged from the reactor pressure vessel 13 to the outside of the containment vessel 11. to prevent it from leaking out.
  • the IC start valve 35 of the IC 30 opens (starts) as shown in FIG.
  • the steam in the reactor pressure vessel 13 is supplied to the IC heat exchanger 32 through the IC steam supply line 33 .
  • the IC heat exchanger 32 is cooled by the cooling water in the surrounding IC cooling water pool 31, the steam flowing into the IC heat exchanger 32 is condensed by cooling and returns to water.
  • the condensed water generated in the IC heat exchanger 32 returns to the reactor pressure vessel 13 through the IC return line 34 due to gravity due to the difference in density from the steam in the IC steam supply line 33, and is used to cool the reactor core 12 again. .
  • the IC 30 returns the steam from the reactor pressure vessel 13 to water only by opening the IC start-up valve 35, and supplies it to the reactor pressure vessel 13 again by its own weight, thereby releasing the decay heat of the core 12. keep removing. That is, the IC 30 can release the decay heat of the core 12 to the outside of the system without using a pump (dynamic device) or an emergency power supply for driving the pump.
  • the IC30 is multiplexed to improve safety. However, it is assumed that all the ICs 30 do not operate, although it is very unlikely. In this case, the decay heat of the core 12 cannot be removed, so the pressure rise in the reactor pressure vessel 13 continues.
  • the pressure of the reactor pressure vessel 13 is transmitted to the drain valve 43 via the pressure transmission pipe 70, thereby , the drain valve 43 opens (see also FIG. 3).
  • the drain valve 43 is opened, the cooling water in the IC cooling water pool 31 is drained through the drain line 42 by gravity into the intermediate tank 41 which is empty during normal operation. As a result, the cooling water discharged from the IC cooling water pool 31 is stored in the intermediate tank 41 to form a water surface 41b.
  • the pressure in the reactor pressure vessel 13 is transmitted to the pressure reducing valve 46 via the pressure transmission pipe 70, thereby opening the pressure reducing valve 46.
  • the opening pressure of the pressure reducing valve 46 is set to be higher than the opening pressure of the drain valve 43 , so the pressure reducing valve 46 opens later than the drain valve 43 .
  • the decompression valve 46 By opening the decompression valve 46 , the steam in the reactor pressure vessel 13 is discharged to the intermediate tank 41 through the main steam pipe 14 and the decompression line 45 . As a result, the pressure in the reactor pressure vessel 13 is reduced, and high-pressure damage to the reactor pressure vessel 13 can be prevented.
  • the end opening of the decompression line 45 is positioned below the water surface 41 b of the intermediate tank 41 . As a result, the steam discharged from the reactor pressure vessel 13 to the intermediate tank 41 is introduced into the cooling water stored in the intermediate tank 41 and condensed. It shifts to the cooling water inside. Therefore, compared with the case where the steam in the reactor pressure vessel 13 is released into the space inside the reactor containment vessel 11 as it is, the pressure rise in the reactor containment vessel 11 can be suppressed.
  • the containment vessel 11 is not provided with a pressure suppression pool.
  • the intermediate tank 41 that stores the cooling water discharged from the IC cooling water pool 31 can exhibit the same function as the pressure suppression pool.
  • This embodiment uses the IC cooling water pool 31 as a water source for injecting water into the intermediate tank 41 .
  • the decompression protection system 40 operates when the IC 30 does not operate. Therefore, substantially all of the cooling water in the IC cooling water pool 31 remains when the decompression protection system 40 is activated. By injecting the cooling water from the unused IC cooling water pool 31 into the intermediate tank 41, the cooling water can be used without waste. There is no
  • the depressurization protection system 40 causes the pressure-increased steam in the reactor pressure vessel 13 to open the drain valve 43 and the pressure reducing valve. 46 is opened to introduce steam in the reactor pressure vessel 13 into the cooling water discharged from the IC cooling water pool 31 to the intermediate tank 41 .
  • the reactor pressure vessel 13 is decompressed to prevent high-pressure damage of the reactor pressure vessel 13, and the pressure increase in the reactor containment vessel 11 can be suppressed.
  • the nuclear power plant 1 includes a depressurization protection system 40 for depressurizing the reactor pressure vessel 13 when the IC 30 is inoperative, but does not include a system for injecting water into the reactor pressure vessel 13. .
  • the reason for this is that the pressure of the reactor pressure vessel 13 is 7 MPa or more, so if water is to be injected into the reactor pressure vessel 13 by gravity, the water source must be placed at a position higher than the reactor pressure vessel 13 by 700 m or more. Because it is unrealistic.
  • the core 12 may melt due to decay heat without being cooled.
  • the molten core melts and damages the lower portion of the reactor pressure vessel 13 .
  • the molten core drops and spreads on the floor surface 11a of the reactor containment vessel 11, raising the ambient temperature of the reactor containment vessel 11.
  • the melting valve 48 opens. By opening the melting valve 48 , the cooling water discharged and stored in the intermediate tank 41 is discharged to the molten core on the floor 11 a of the containment vessel 11 through the floor water injection line 47 . This cooling water cools the molten core, and the severe accident ends. In this way, even if the IC 30 does not operate, the melt valve 48 is opened without any operation by the operator, and the cooling water is injected into the molten core by its own weight without using any dynamic equipment, thereby converging the accident. can be made
  • the safety system of the nuclear power plant 1 cools and condenses the steam from the reactor pressure vessel 13 stored in the reactor containment vessel 11,
  • the IC 30 is provided with an IC 30 that returns to the reactor containment vessel 11, and an IC cooling water pool 31 of the IC 30 as a water source for storing cooling water installed outside the reactor containment vessel 11, and an IC An intermediate tank 41 as a storage unit positioned below the cooling water pool 31 (water source) and capable of receiving and storing cooling water discharged from the IC cooling water pool 31 (water source), and the IC cooling water pool.
  • a drain valve 43 that switches the drain line 42 (first line) to an open state or a closed state, one side of which is indirectly connected to the reactor pressure vessel 13, and the other side of which is connected to the IC cooling water
  • the pressure reduction line 45 (second line) that opens at a position lower than the assumed water level 41a when the cooling water from the pool 31 (water source) is stored in the intermediate tank 41 (storage section), and the pressure reduction line 45 (second line) ) and a pressure reducing valve 46 (second valve) for switching the pressure reducing line 45 (second line) between an open state and a closed state.
  • the drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) are configured to open according to the height of the pressure inside the reactor pressure vessel 13 .
  • the drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) are opened.
  • the cooling water discharged from the IC cooling water pool 31 (water source) to the intermediate tank 41 (reservoir) is introduced with steam from the reactor pressure vessel 13 and condensed.
  • the reactor pressure vessel 13 can be depressurized without providing a pressure suppression pool. That is, the structure of the reactor containment vessel 11 can be simplified, and the reactor pressure vessel 13 can be depressurized without using dynamic equipment even when the IC 30 is inoperative.
  • the IC 30 includes an IC cooling water pool 31 that stores cooling water for cooling the steam from the reactor pressure vessel 13, and the IC cooling water pool 31 also serves as the water source described above. .
  • the configuration of the safety system of the nuclear power plant 1 can be simplified. can be
  • the above-described storage section is the intermediate tank 41 (tank) installed inside the reactor containment vessel 11 . According to this configuration, it is possible to easily secure the reservoir in the containment vessel 11 .
  • the intermediate tank 41 is arranged at a position away from the reactor pressure vessel 13 .
  • the intermediate tank 41 can be arranged in an area around the reactor pressure vessel 13 where a large number of devices are arranged.
  • the safety system of the nuclear power plant 1 is connected to the intermediate tank 41 and discharges the cooling water discharged from the IC cooling water pool 31 (water source) to the intermediate tank 41 to the floor surface 11a of the reactor containment vessel 11. and a melting valve 48 (third valve ).
  • the melting valve 48 (third valve) is configured to open upon receiving heat from the surroundings of the melting valve 48 (third valve).
  • the heat of the molten core opens the melting valve 48 without the operator's operation, and the intermediate tank 41
  • the accident can be resolved by injecting water into the molten core using the weight of the stored cooling water without using dynamic equipment.
  • the pressure at which the pressure reducing valve 46 (second valve) opens is set to be higher than the pressure at which the drain valve 43 (first valve) opens. According to this configuration, after the drain valve 43 (first valve) is opened and the cooling water from the IC cooling water pool 31 is stored in the intermediate tank 41, the pressure reducing valve 46 (second valve) is opened. Therefore, the steam in the reactor pressure vessel 13 can be reliably introduced into the cooling water in the intermediate tank 41 and condensed. Therefore, since the energy of the steam in the reactor pressure vessel 13 is transferred to the cooling water, the pressure rise in the reactor containment vessel 11 can be reliably suppressed.
  • the drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) are configured to open using the pressure of the steam generated in the reactor pressure vessel 13. there is According to this configuration, when the steam pressure in the reactor pressure vessel 13 rises due to the non-operation of the IC 30, the drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) are operated without the operator's operation. can be automatically opened.
  • the drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) are supplied with the steam generated in the reactor pressure vessel through the pressure transmission pipe 70, thereby It is designed to be directly actuated by pressure. According to this configuration, if the pressure transmission pipe 70 is used as a valve driving system for driving the drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) using the steam in the reactor pressure vessel 13, Therefore, the valve drive system can be configured simply.
  • the safety system of the nuclear power plant 1 is provided on the drain line 42 (first line) and allows the flow toward the intermediate tank 41 (reservoir), while the IC cooling water pool 31 ( There is also a check valve 44 that prevents flow towards the water source. According to this configuration, it is possible to prevent the gas inside the reactor containment vessel 11 from being discharged to the outside of the reactor containment vessel 11 via the drain line 42 .
  • FIG. 7 is a schematic system diagram showing a nuclear power plant equipped with a second embodiment of the nuclear power plant safety system of the present invention.
  • parts having the same reference numerals as those shown in FIGS. 1 to 6 are the same parts, so detailed description thereof will be omitted.
  • the safety system of the nuclear power plant according to the second embodiment of the present invention shown in FIG. instead of the intermediate tank 41 of the depressurization protection system 40 of the first embodiment, the bottom of the containment vessel 11 including the floor surface 11a is used as the reservoir of 40A.
  • the depressurization protection system 40A of the present embodiment discharges the cooling water of the IC cooling water pool 31 directly to the floor surface 11a of the reactor containment vessel 11, and stores the discharged cooling water at the bottom of the reactor containment vessel 11.
  • the depressurization protection system 40A includes an IC cooling water pool 31 as a water source similar to that of the first embodiment, and an IC cooling water pool 31 extending from the IC cooling water pool 31 to the vicinity of the floor surface 11a of the reactor containment vessel 11. a drain line 42A, a drain valve 43 and a check valve 44 similar to those in the first embodiment arranged on the drain line 42A, and a main steam pipe 14 branched from the floor surface 11a of the reactor containment vessel 11. and a pressure reducing valve 46 similar to that of the first embodiment installed on the pressure reducing line 45A.
  • the drain line 42 ⁇ /b>A directly injects at least part of the cooling water stored in the IC cooling water pool 31 to the floor surface 11 a of the reactor containment vessel 11 .
  • the decompression line 45A is configured to open at a position lower than the assumed water level 11b when the cooling water from the IC cooling water pool 31 is stored in the bottom of the reactor containment vessel 11 . That is, the decompression line 45A introduces the steam inside the reactor pressure vessel 13 into the cooling water from the IC cooling water pool 31 stored at the bottom of the reactor containment vessel 11 .
  • the pressure of the reactor pressure vessel 13 is transmitted to the drain valve 43 through the pressure transmission pipe 70, as in the first embodiment.
  • the drain valve 43 is opened.
  • the cooling water in the IC cooling water pool 31 is discharged directly onto the floor surface 11a of the reactor containment vessel 11 through the drain line 42A, and flows from the IC cooling water pool 31 to the bottom of the reactor containment vessel 11. The discharged cooling water is stored.
  • the pressure of the reactor pressure vessel 13 is transmitted via the pressure transmission pipe 70, so that the pressure reducing valve 46 opens later than the drain valve 43.
  • the steam in the reactor pressure vessel 13 is introduced through the decompression line 45A into the cooling water stored in the bottom of the containment vessel 11 and condensed. is transferred to the cooling water.
  • the reactor pressure vessel 13 is decompressed to prevent high-pressure damage of the reactor pressure vessel 13, and the pressure increase in the reactor containment vessel 11 can be suppressed.
  • most of the radioactive substances contained in the steam are captured by the scrubbing effect of the cooling water stored at the bottom of the containment vessel 11 and retained in the cooling water.
  • cooling water is spread over the floor surface 11a of the reactor containment vessel 11 before core meltdown occurs. Therefore, when a core meltdown occurs, the molten core falls into the cooling water that has already spread over the floor surface 11a, so that it is atomized and solidified into granules. Since the atomized molten core has an increased contact area with cooling water and is efficiently cooled, a severe accident can be contained more quickly.
  • the decompression line 45A is configured to open below the surface of the cooling water stored in the bottom of the reactor containment vessel 11 (position lower than the assumed water level 11b). Therefore, when the depressurization protection system 40A is activated, the steam in the reactor pressure vessel 13 is blown into the cooling water stored in the bottom of the reactor containment vessel 11, resulting in a large number of air bubbles (also called voids) in the cooling water. ) is included. It is known that when voids are contained in the water, the risk of a steam explosion due to the molten core falling into the cooling water can be reduced.
  • the water level of the cooling water drained from the IC cooling water pool 31 to the floor surface 11 a of the reactor containment vessel 11 is set to reach the bottom surface of the reactor pressure vessel 13 .
  • the amount it becomes possible to directly cool the bottom of the reactor pressure vessel 13 from the outside with the cooling water discharged from the IC cooling water pool 31 when the depressurization protection system 40A is activated.
  • the molten core can be cooled while remaining inside the reactor pressure vessel 13, and the molten core can be severely cooled without falling onto the floor surface 11a of the containment vessel 11. accidents can be brought to an end. Therefore, post-accident treatment such as removal of molten fuel is facilitated.
  • the pressure in the reactor pressure vessel 13 deviates from the normal range due to the non-operation of the IC 30. Even if it rises, the drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) are opened, so that the water flows from the IC cooling water pool 31 (water source) to the bottom (reservoir) of the reactor containment vessel 11. Since steam from the reactor pressure vessel 13 is introduced into the discharged cooling water and condensed, the reactor pressure vessel 13 can be depressurized without providing a pressure suppression pool in the reactor containment vessel 11 . That is, the structure of the reactor containment vessel 11 can be simplified, and the reactor pressure vessel 13 can be depressurized without using dynamic equipment even when the IC 30 is inoperative.
  • the above-described storage section is the bottom section including the floor surface 11a of the containment vessel 11 .
  • the decompression protection system 40A of the present embodiment has a configuration in which the intermediate tank 41 is omitted from the configuration of the decompression protection system 40 of the first embodiment. By effectively utilizing the space occupied by the intermediate tank 41, the size of the reactor containment vessel 11 can be reduced.
  • FIG. 8 is a schematic system diagram showing a nuclear power plant equipped with a nuclear power plant safety system according to a third embodiment of the present invention.
  • parts having the same reference numerals as those shown in FIGS. 1 to 7 are the same parts, and detailed description thereof will be omitted.
  • a pressure vessel cooling tank 41B is installed in the area where the bottom of the reactor pressure vessel 13 is located as a reservoir.
  • the depressurization protection system 40B of the present embodiment discharges the cooling water from the IC cooling water pool 31 to the pressure vessel cooling tank 41B, and the cooling water from the IC cooling water pool 31 stored in the pressure vessel cooling tank 41B reduces the reactor pressure. It is configured to directly cool the bottom of the container 13 from the outside.
  • the depressurization protection system 40B includes a pressure vessel cooling tank 41B arranged in the reactor containment vessel 11, a drain line 42B connecting the IC cooling water pool 31 and the pressure vessel cooling tank 41B, and a drain line 42B.
  • the pressure vessel cooling tank 41B stores the cooling water discharged from the IC cooling water pool 31 as a water source. is positioned below the surface of the cooling water.
  • the drain line 42B guides at least part of the cooling water stored in the IC cooling water pool 31 to the pressure vessel cooling tank 41B.
  • the decompression line 45B is configured to open at a position lower than the assumed water level 41a when the cooling water from the IC cooling water pool 31 is stored in the pressure vessel cooling tank 41B. That is, the decompression line 45B introduces the steam inside the reactor pressure vessel 13 into the cooling water from the IC cooling water pool 31 stored in the pressure vessel cooling tank.
  • the drain valve 43 is opened by the pressure of the reactor pressure vessel 13, as in the first embodiment.
  • the cooling water in the IC cooling water pool 31 is drained through the drain line 42B into the pressure vessel cooling tank 41B, and the cooling water discharged from the IC cooling water pool 31 is stored in the pressure vessel cooling tank 41B.
  • the pressure in the reactor pressure vessel 13 causes the pressure reducing valve 46 to open later than the drain valve 43 .
  • the steam in the reactor pressure vessel 13 is introduced into the cooling water stored in the pressure vessel cooling tank 41B through the decompression line 45B and is condensed. energy is transferred to the cooling water.
  • the reactor pressure vessel 13 is decompressed to prevent high-pressure damage of the reactor pressure vessel 13, and the pressure increase in the reactor containment vessel 11 can be suppressed.
  • most of the radioactive substances contained in the steam are captured by the scrubbing effect of the cooling water in the pressure vessel cooling tank 41B and retained in the cooling water.
  • the pressure vessel cooling tank 41B is arranged in the area where the bottom of the reactor pressure vessel 13 is located. Therefore, even if a core meltdown occurs and the molten core falls to the bottom of the reactor pressure vessel 13, the depressurization protection system 40B is already operating, so the reactor pressure is maintained by the cooling water stored in the pressure vessel cooling tank 41B.
  • the molten core that collects at the bottom of vessel 13 can be cooled from the outside. Therefore, the severe accident can be brought to an end while the molten reactor core remains in the reactor pressure vessel 13 without falling onto the floor 11a of the containment vessel 11. becomes easier.
  • the cooling water stored in the pressure vessel cooling tank 41B is discharged from the reactor pressure vessel 13 through the decompression line 45B. It is heated by the released steam. Therefore, when the molten core falls to the bottom of the reactor pressure vessel 13, the already heated cooling water in the pressure vessel cooling tank 41B quickly boils. Therefore, the cooling water in the pressure vessel cooling tank 41B can efficiently cool the bottom of the reactor pressure vessel 13 from the outside by boiling heat transfer.
  • the pressure in the reactor pressure vessel 13 deviates from the normal range due to the non-operation of the IC 30. Even if it rises, the drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) are opened, so that the IC cooling water pool 31 (water source) is discharged to the pressure vessel cooling tank 41B (reservoir). Since steam from the reactor pressure vessel 13 is introduced into the cooled water and condensed, the reactor pressure vessel 13 can be depressurized without providing a pressure suppression pool in the reactor containment vessel 11 . That is, the structure of the reactor containment vessel 11 can be simplified, and the reactor pressure vessel 13 can be depressurized without using dynamic equipment even when the IC 30 is inoperative.
  • the pressure vessel cooling tank 41B stores cooling water from the IC cooling water pool 31 (water source)
  • the bottom of the reactor pressure vessel 13 is positioned below the surface of the cooling water. are placed in According to this configuration, when the depressurization protection system 40B is activated due to the inactivation of the IC 30, the cooling water discharged from the IC cooling water pool 31 (water source) and stored in the pressure vessel cooling tank 41B is used to cool the reactor pressure vessel 13. The bottom can be cooled externally.
  • FIG. 9 is a schematic system diagram showing a nuclear power plant equipped with a nuclear power plant safety system according to a fourth embodiment of the present invention.
  • parts having the same reference numerals as those shown in FIGS. 1 to 8 are the same parts, and detailed description thereof will be omitted.
  • the fourth embodiment of the nuclear plant safety system of the present invention shown in FIG. 9 differs from the first embodiment in that the drain valve 43C and check valve 44C of the decompression protection system 40C is located outside the Specifically, the drain line 42C of the depressurization protection system 40C extends from the bottom side of the side wall of the IC cooling water pool 31 to the outside of the containment vessel 11 and then to the intermediate tank 41 inside the containment vessel 11. exist.
  • the drain valve 43C and the check valve 44C are provided at a portion of the drain line 42C that extends outside the containment vessel 11 .
  • drain valve 43 ⁇ /b>C Since the drain valve 43 ⁇ /b>C is arranged outside the containment vessel 11 , a portion of the pressure transmission pipe 70 ⁇ /b>C for driving the drain valve 43 ⁇ /b>C extends to the outside of the containment vessel 11 .
  • Other configurations and structures are similar to those of the first embodiment.
  • the structure of the reactor containment vessel 11 can be simplified, and the IC 30 is unnecessary. Even in operation, the reactor pressure vessel 13 can be depressurized without the use of dynamic equipment.
  • the drain valve 43C (first valve) is arranged outside the reactor containment vessel 11 .
  • access to the drain valve 43C (first valve) is easier than in the case of the first embodiment in which the drain valve 43 (first valve) is arranged inside the reactor containment vessel 11. easier. Therefore, the drain valve 43C (first valve) can be opened by an operator's operation, and maintenance of the drain valve 43C (first valve) is facilitated.
  • FIG. 10 is a schematic system diagram showing a nuclear plant equipped with a nuclear plant safety system according to a fifth embodiment of the present invention.
  • parts having the same reference numerals as those shown in FIGS. 1 to 9 are the same parts, so detailed description thereof will be omitted.
  • a cooling water storage tank 49 is separately provided instead of the IC cooling water pool 31 as a water source for 40D.
  • the depressurization protection system 40 ⁇ /b>D of the present embodiment discharges the cooling water in the cooling water storage tank 49 to the intermediate tank 41 , and the cooling water from the cooling water storage tank 49 stored in the intermediate tank 41 is used to restore steam in the reactor pressure vessel 13 . is condensed.
  • the cooling water storage tank 49 of the depressurization protection system 40 ⁇ /b>D is installed at a position higher than the intermediate tank 41 outside the reactor containment vessel 11 .
  • the drain line 42 ⁇ /b>D connects the cooling water storage tank 49 and the intermediate tank 41 and guides the cooling water in the cooling water storage tank 49 to the intermediate tank 41 .
  • Other configurations of the reduced pressure protection system 40D are the same as those of the first embodiment.
  • the pressure of the reactor pressure vessel 13 causes the drain valve 43 to open, and The stored cooling water is drained to the intermediate tank 41 through the drain line 42D, and the cooling water discharged from the cooling water storage tank 49 is stored in the intermediate tank 41.
  • FIG. 1 the pressure of the reactor pressure vessel 13 causes the drain valve 43 to open, and The stored cooling water is drained to the intermediate tank 41 through the drain line 42D, and the cooling water discharged from the cooling water storage tank 49 is stored in the intermediate tank 41.
  • the pressure in the reactor pressure vessel 13 causes the pressure reducing valve 46 to open later than the drain valve 43 , and the steam in the reactor pressure vessel 13 flows through the pressure reducing line 45 . It is introduced into the cooling water stored in the intermediate tank 41 through which it condenses. As a result, the reactor pressure vessel 13 is decompressed to prevent high-pressure damage of the reactor pressure vessel 13, and the pressure increase in the reactor containment vessel 11 can be suppressed.
  • the pressure in the reactor pressure vessel 13 deviates from the normal range due to the non-operation of the IC 30. Even if it rises, the drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) are opened, so that the cooling water discharged from the cooling water storage tank 49 (water source) to the intermediate tank 41 (storage section) Since steam from the reactor pressure vessel 13 is introduced into the water and condensed, the reactor pressure vessel 13 can be depressurized without providing a pressure suppression pool in the reactor containment vessel 11 . That is, the structure of the reactor containment vessel 11 can be simplified, and the reactor pressure vessel 13 can be depressurized without using dynamic equipment even when the IC 30 is inoperative.
  • FIG. 11 is a block diagram showing a modification of the valve drive system for driving the pressure reducing valve, which constitutes a part of the first to fifth embodiments of the nuclear plant safety system of the present invention.
  • parts having the same reference numerals as those shown in FIGS. 1 to 10 are the same parts, and detailed description thereof will be omitted.
  • the modified example of the valve drive system for the pressure reducing valve 46 shown in FIG. instead of the high-pressure steam from the reactor pressure vessel 13, a pressure source that supplies a high-pressure gas different from the high-pressure steam in the reactor pressure vessel 13 is used.
  • the pressure of the reactor pressure vessel 13 is controlled by the pressure reducing valve 46 via the pressure transmission pipe 70 directly connected to the reactor pressure vessel 13. is configured to be transmitted to the valve opening/closing mechanism 54 (see FIGS. 2 and 3). Therefore, it may become difficult to arrange the piping from the reactor pressure vessel 13 to the pressure reducing valve 46 . Therefore, in the valve drive system 70E1 of this modified example, a pressure source that can be arranged in the vicinity of the pressure reducing valve 46 is separately installed.
  • the pressure reducing valve 46 is composed of a gas-actuated valve that is operated by a gas such as air or nitrogen. It is operated using a pressure source different from the steam in the reactor pressure vessel 13 when it rises.
  • the pressure reducing valve driving system 70E1 includes a high-pressure gas generator 71 that generates a high-pressure gas G (air, nitrogen, etc.) having a pressure equal to or higher than a first predetermined value, and a high-pressure gas G generated by the high-pressure gas generator 71.
  • a gas pressure accumulator 72 that accumulates pressure, a breakable rupture disk 73, a fluid pressure converter 74 that breaks the rupture disk 73 according to the input pressure, and a switching that switches the flow path according to the pressure on the upstream side.
  • a valve 75 is provided.
  • the high pressure gas generator 71 is connected to the primary side of the fluid pressure converter 74 via the first supply line 81 .
  • the gas pressure accumulator 72 is connected to the primary side of the fluid pressure converter 74 and the high pressure gas generator 71 via a second supply line 82 connected to the first supply line 81.
  • a cylinder can be used.
  • a first check valve 76 and a second check valve 77 are provided upstream and downstream of the connection point with the second supply line 82 on the first supply line 81 .
  • the primary side of the fluid pressure converter 74 is also connected via a third supply line 83 to the valve opening/closing mechanism 54 (see FIGS. 2 and 3) of the pressure reducing valve 46 .
  • the fluid pressure converter 74 communicates between the second check valve 77 and the rupture disk 73 via the primary side.
  • the high-pressure gas generator 71 and the gas pressure accumulator 72 supply a high-pressure gas G of a first predetermined value or higher to the valve opening/closing mechanism 54 of the pressure reducing valve 46 via the first supply line 81, the second supply line 82, and the third supply line 83. (see FIGS. 2 and 3).
  • the secondary side of the fluid pressure converter 74 is connected to the reactor pressure vessel 13 via a bleed line 84 connected to the pressure reducing line 45 .
  • the bleed line 84 introduces the steam from the reactor pressure vessel 13 supplied to the decompression line 45 to the fluid pressure converter 74 .
  • the bleed line 84 can be connected to the decompression line 45 in the vicinity of the installation position of the decompression valve 46, and the routing of the piping up to the fluid pressure converter 74 is the pressure transmission of the decompression protection system 40 of the first embodiment. Easier than with tube 70 .
  • the pressure of the fluid F1 input to the secondary side through the bleed line 84 reaches the second threshold value (the same value as the valve opening pressure of the pressure reducing valve 46 in the first to fifth embodiments).
  • the rupture disk 73 is broken by the gas from the high-pressure gas generator 71 or the gas pressure accumulator 72 .
  • the switching valve 75 is installed on the third supply line 83 .
  • gas having a pressure equal to or higher than a second predetermined value flows into the third supply line 83 on the downstream side of the rupture disk 73, the switching valve 75 switches the flow path to allow the third supply line 83 to communicate with the gas. In this case, the third supply line 83 is cut off.
  • the second predetermined value which is the switching pressure of the switching valve 75 is set to a pressure sufficiently lower than the first predetermined value of the high pressure gas G generated by the high pressure gas generator 71 .
  • FIG. 12 is a block diagram showing a state of the pressure reducing valve operating (opening) in the modification of the pressure reducing valve drive system shown in FIG.
  • the shape of the rupture disk schematically shows that it is in a fractured state.
  • the IC 30 When the IC 30 (see FIG. 1) is operating, the removal of decay heat from the core 12 continues, so the pressure in the reactor pressure vessel 13 will not rise abnormally. In this case, even if the pressure of the fluid F1 (steam) supplied from the reactor pressure vessel 13 to the decompression line 45 is input to the secondary side of the fluid pressure converter 74 via the extraction line 84, as shown in FIG. Moreover, the rupture disk 73 is not broken. If the normal state of the rupture disk 73 is maintained, the rupture disk 73 blocks the supply of the high pressure gas G from the high pressure gas generator 71 and the gas pressure accumulator 72 to the pressure reducing valve 46 . Therefore, when the IC 30 is operating, the pressure reducing valve 46 will not operate.
  • the second pressure of the fluid F1 (steam) supplied from the reactor pressure vessel 13 to the extraction line 84 When the pressure exceeding the threshold is input to the secondary side of the fluid pressure converter 74, as shown in FIG.
  • the disk 73 is acted upon and fractured.
  • the switching valve 75 is switched so that the third supply line 83 is communicated. By switching the switching valve 75, the high-pressure gas G is supplied to the valve opening/closing mechanism 54 (see FIGS.
  • the high pressure gas G is accumulated in the gas pressure accumulator 72 . Therefore, even if the pressure reducing valve drive system 70E1 loses power, the supply of the high pressure gas G to the pressure reducing valve 46 can be maintained for a period of time corresponding to the volume of the gas pressure accumulator 72 .
  • the pressure reducing valve 46 (second valve) is configured to operate when gas having a pressure equal to or higher than the first predetermined value (predetermined value) is supplied from the valve drive system 70E1. It is.
  • the valve drive system 70E1 includes a high-pressure gas generator 71 and a gas pressure accumulator 72 as gas supply sources that supply gas having a pressure equal to or higher than a first predetermined value (predetermined value), and a high-pressure gas generator 71 and a gas pressure accumulator 72 ( supply line 81, 82, 83 for guiding the gas from the gas supply source) to the pressure reducing valve 46 (second valve), a rupture disk 73 provided to close the supply line 83, and the gas from the reactor pressure vessel 13
  • a second threshold threshold
  • a fluid pressure converter 74 as a rupture operation unit that ruptures the rupture disk 73, and pressure reduction from the rupture disk 73 on the supply lines 81, 82, 83 Provided on the
  • the high pressure gas generator 71 and the gas pressure accumulator 72 (gas supply source) for driving the pressure reducing valve 46 (second valve) can be arranged in the vicinity of the pressure reducing valve 46 (second valve). , the degree of freedom in routing of piping (supply line) for supplying pressure to the pressure reducing valve 46 (second valve) can be increased.
  • FIG. 13 is a block diagram showing a modification of the valve drive system for driving the drain valves, which constitutes a part of the first to fifth embodiments of the nuclear plant safety system of the present invention.
  • FIG. 14 is a block diagram showing a state of the drain valve operating (opening) in the modification of the drain valve driving system shown in FIG. 13 and 14, the parts having the same reference numerals as those shown in FIGS. 1 to 12 are the same parts, and detailed description thereof will be omitted.
  • the shape of the rupture disk schematically shows that it is in a fractured state.
  • the drain valve driving system 70E2 that drives the drain valve 43 has the same configuration as the pressure reducing valve driving system 70E1, and includes a pipe (drain line 42) in which the drain valve 43 is installed and a pipe (drain line 42) in which the pressure reducing valve 46 is installed. Only part of the configuration is different due to the fact that the decompression line 45) is different.
  • the drain valve drive system 70E2 includes a high-pressure gas generator 71, a gas pressure accumulator 72, a rupture disk 73, a fluid pressure converter 74, and a switching valve 75, similar to the pressure reducing valve drive system 70E1.
  • the secondary side of the fluid pressure converter 74 is connected to the reactor pressure vessel 13 via a bleed line 84E2 connected to the main steam pipe 14 or the reduced pressure line 45 .
  • the pressure of the fluid F2 input to the secondary side through the bleed line 84E2 reaches the first threshold value (the same value as the opening pressure of the drain valve 43 in the first to fifth embodiments).
  • the steam bleed line 84E2 introduces steam from the reactor pressure vessel 13 supplied to the main steam pipe 14 or the decompression line 45 to the fluid pressure converter 74 .
  • the extraction line 84E2 can be connected to a portion of the main steam pipe 14 or the decompression line 45 near the installation position of the drain valve 43, and the routing of the piping up to the fluid pressure converter 74 is similar to that of the first embodiment. This is easier than with the pressure transmission tube 70 of the decompression protection system 40 .
  • the third supply line 83E2 is connected to the valve opening/closing mechanism 54 of the drain valve 43 (see FIGS. 2 and 3).
  • the drain valve 43 (first valve) is configured to operate when gas having a pressure equal to or higher than the first predetermined value (predetermined value) is supplied from the valve drive system 70E2. It is a thing.
  • the valve driving system 70E2 includes a high-pressure gas generator 71 and a gas pressure accumulator 72 as gas supply sources that supply gas having a pressure equal to or higher than a first predetermined value (predetermined value), and a high-pressure gas generator 71 and a gas pressure accumulator 72 ( gas supply source) to the drain valve 43 (first valve), a rupture disk 73 provided to close the supply line 83E2, A fluid pressure converter 74 as a breaking operation unit that breaks the rupture disk 73 when steam is introduced and the pressure of the steam exceeds a first threshold (threshold value), and supply lines 81, 82, 83E2 than the rupture disk 73.
  • the third supply line 83E2 is cut off when the gas supplied from the high-pressure gas generator 71 or the gas pressure accumulator 72 (gas supply source) flows downstream from the rupture disk 73. and a switching valve 75 for switching from the state to the communication state.
  • the high-pressure gas generator 71 and the gas pressure accumulator 72 (gas supply source) for driving the drain valve 43 (first valve) can be arranged in the vicinity of the drain valve 43 (first valve). , the degree of freedom in handling of the piping (supply line) for supplying pressure to the drain valve 43 (first valve) can be increased.
  • FIG. 15 is a schematic system diagram showing a pressurized water nuclear plant equipped with an embodiment of the nuclear plant safety system of the present invention.
  • parts having the same reference numerals as those shown in FIGS. 1 to 14 are the same parts, so detailed description thereof will be omitted.
  • a reactor pressure vessel 23 containing a core 12 and a steam generator 24 for generating steam are installed in the reactor containment vessel 11F of the pressurized water nuclear power plant 1F.
  • the reactor pressure vessel 23 and the steam generator 24 are connected so that cooling water circulates.
  • the IC30F as a safety system of the pressurized water type nuclear power plant 1F condenses the steam from the steam generator 24 by cooling and returns it to the steam generator 24 again.
  • the components of IC30F are the same as those of IC30 of the boiling water nuclear power plant 1 .
  • the IC steam supply line 33 connects the inlet (upper side) of the IC heat exchanger 32 and the upper part of the steam generator 24 (gas phase portion 24b).
  • the IC return line 34 connects the outlet (lower side) of the IC heat exchanger 32 and the lower portion of the steam generator 24 (liquid phase portion 24a).
  • Components of the depressurization protection system 40F are the same as those of the depressurization protection system 40 of the boiling water nuclear power plant 1 .
  • the decompression line 45 introduces part of the steam in the steam generator 24 into the cooling water stored in the intermediate tank 41 .
  • the drain valve 43 and the pressure reducing valve 46 are configured to open using the steam pressure of the steam generator 24 .
  • One side of the pressure transmission pipe 70 is connected to the upper portion of the steam generator 24 (gas phase portion 24b).
  • the operation of the depressurization protection system 40F is similar to that of the depressurization protection system 40 of the boiling water nuclear power plant 1 . Therefore, the depressurization protection system 40F of the pressurized water nuclear power plant 1F can also obtain the same effects as the depressurization protection system 40 of the boiling water nuclear plant 1.
  • the safety system of the nuclear power plant 1F condenses the steam from the steam generator 24 stored in the reactor containment vessel 11F by cooling and condenses the steam generator 24 again.
  • It is equipped with an IC 30F that returns to the reactor containment vessel 11F, is installed outside the reactor containment vessel 11F, and is located inside the IC 30F IC cooling water pool 31 and the reactor containment vessel 11F as a water source for storing cooling water.
  • An intermediate tank 41 as a storage unit positioned below the IC cooling water pool 31 (water source) and capable of receiving and storing the cooling water discharged from the IC cooling water pool 31 (water source), and the IC cooling water.
  • a drain line 42 (first line) that is connected to the pool 31 (water source) and guides the cooling water of the IC cooling water pool 31 (water source) to the intermediate tank 41 (reservoir), and on the drain line 42 (first line)
  • a drain valve 43 (first valve) is provided to switch the drain line 42 (first line) to an open state or a closed state, and one side is directly or indirectly connected to the steam generator 24, and the other side is connected to the IC
  • a pressure reduction line 45 (second line) that opens at a position lower than the assumed water level 41a when the cooling water from the cooling water pool 31 (water source) is stored in the intermediate tank 41 (reservoir), and a pressure reduction line 45 (second line) and a pressure reducing valve 46 (second valve) for switching the pressure reducing line 45 (second line) between an open state and a closed state.
  • the drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) are configured to open according to the height of the pressure inside the steam generator 24 .
  • the drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) are opened.
  • the cooling water discharged from the IC cooling water pool 31 (water source) to the intermediate tank 41 (reservoir) is introduced with the steam from the steam generator 24 and condensed, so the pressure in the reactor containment vessel 11F is suppressed.
  • the steam generator 24 can be depressurized without providing a pool. That is, the structure of the reactor containment vessel 11F can be simplified, and the pressure of the steam generator 24 can be reduced without using dynamic equipment even when the IC 30F is inoperative.
  • the present invention is not limited to the first to fifth embodiments described above, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations.
  • it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • the pressure of steam generated in the reactor pressure vessel 13 or the steam generator 24 is used to operate the drain valves 43, 43C and the pressure reducing valve 46.
  • An example configured to open the valve is shown.
  • the drain valve and pressure reducing valve may be configured to open without using the steam generated in the reactor pressure vessel 13 or the steam generator 24 .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

This safety system for a nuclear power plant comprises: an IC cooling water pool installed outside a reactor container; an intermediate tank positioned inside the reactor container and lower than the IC cooling water pool, the intermediate tank receiving and being capable of storing cooling water discharged from the IC cooling water pool; a drain line that leads cooling water from the IC cooling water pool to the intermediate tank; a drain valve provided on the drain line; a pressure reduction line, one side of which is connected to a reactor pressure vessel, and the other side of which opens at a position lower than the water level assumed when cooling water from the IC cooling water pool is stored in the intermediate tank; and a pressure reduction valve provided on the pressure reduction line. The drain valve and the pressure reduction valve open in accordance with the degree of pressure in the reactor pressure vessel.

Description

原子力プラントの安全系Nuclear plant safety system
 本発明は、原子力プラントの安全系に関する。 The present invention relates to the safety system of nuclear power plants.
 原子力プラントでは、定期検査やプラントの一部に不具合が生じた場合など、プラントを停止させる必要がある場合、反応度制御系である制御棒を炉心に挿入して核分裂反応を停止させることで原子炉を停止させる。原子炉の停止後も、炉心は崩壊熱により発熱するので、崩壊熱を原子炉から系外に放出して除去する必要がある。 In a nuclear power plant, when it is necessary to stop the plant, such as during periodic inspections or when there is a problem with a part of the plant, the nuclear fission reaction is stopped by inserting control rods, which are reactivity control systems, into the core. Shut down the furnace. Since the core generates heat due to decay heat even after the reactor is shut down, it is necessary to release the decay heat from the reactor to the outside of the system.
 崩壊熱を系外に放出して原子炉を冷却する装置の1つとして、非常用復水器(以下、ICと称す)がある。ICは、炉心よりも高い位置に設置された冷却水プール内に熱交換器を配置したものである。ICでは、炉心の崩壊熱により発生した蒸気を熱交換器に導いて冷却水プールの冷却水により冷却して凝縮させる。原子炉圧力容器または蒸気発生器からの蒸気を凝縮させることで、原子炉圧力容器または蒸気発生器の温度及び圧力の上昇を抑制している。ICの熱交換器で凝縮した水は重力によって再び原子炉圧力容器または蒸気発生器に供給されるので、崩壊熱の除去を継続することができる。ICの動作には非常用電源や動的機器が必要ないので、プラントの安全性が向上すると共にプラントの設備コストも削減することができる。ICの除熱量は、原子炉圧力容器または蒸気発生器の圧力低下に伴い低下する。そのため、ICによる除熱機能を維持するためには、一般的に、原子炉圧力容器を1MPa以上の圧力に保つ必要がある。 One of the devices that releases decay heat to the outside of the system to cool the reactor is the isolation condenser (hereinafter referred to as IC). The IC has a heat exchanger placed in a cooling water pool installed at a position higher than the core. In the IC, the steam generated by the decay heat of the core is guided to the heat exchanger, cooled by the cooling water in the cooling water pool, and condensed. By condensing the steam from the reactor pressure vessel or steam generator, the increase in temperature and pressure of the reactor pressure vessel or steam generator is suppressed. Decay heat removal can continue as the water condensed in the IC heat exchanger is fed back to the reactor pressure vessel or steam generator by gravity. Since the operation of the IC does not require an emergency power supply or active equipment, plant safety is improved and plant equipment costs can be reduced. The amount of heat removed by the IC decreases as the reactor pressure vessel or steam generator pressure decreases. Therefore, in order to maintain the heat removal function of the IC, it is generally necessary to keep the reactor pressure vessel at a pressure of 1 MPa or higher.
 沸騰水型原子炉(BWR)では、ICに加えて、原子炉圧力容器を減圧するための自動減圧系を備えているものがある(例えば、特許文献1を参照)。自動減圧系は、原子炉圧力容器の蒸気を原子炉格納容器内に設けた圧力抑制プールに逃がすことで、原子炉圧力容器を減圧するものである。圧力抑制プールでは原子炉圧力容器からの蒸気が冷却水中に排出されて凝縮するので、原子炉格納容器の圧力上昇を抑制することができる。自動減圧系は、主蒸気管に設けられた安全弁を強制的に開くことで原子炉圧力容器を0.5MPa以下に減圧する。 Some boiling water reactors (BWR) are equipped with an automatic depressurization system for depressurizing the reactor pressure vessel in addition to the IC (see Patent Document 1, for example). The automatic depressurization system depressurizes the reactor pressure vessel by releasing the steam in the reactor pressure vessel to a pressure suppression pool provided in the reactor containment vessel. Since the steam from the reactor pressure vessel is discharged into the cooling water and condensed in the pressure suppression pool, pressure rise in the reactor containment vessel can be suppressed. The automatic depressurization system depressurizes the reactor pressure vessel to 0.5 MPa or less by forcibly opening a safety valve provided in the main steam pipe.
特開2002-122689号公報JP-A-2002-122689
 特許文献1に記載の沸騰水型原子力発電プラントのように原子炉格納容器内に圧力抑制プールを設けている場合、原子炉格納容器の構造が複雑化するので、コストが増大する。圧力抑制プールを削除することができれば、原子炉格納容器の構造が簡素化されるので、コストを低減することができる。 When a pressure suppression pool is provided in the reactor containment vessel as in the boiling water nuclear power plant described in Patent Document 1, the structure of the reactor containment vessel becomes complicated, increasing costs. If the suppression pool can be eliminated, the structure of the reactor containment vessel can be simplified, and costs can be reduced.
 また、原子力プラントのコストを低減するには、注水用ポンプなどの動的機器や非常用電源の削除も重要である。動的機器や非常用電源を削除することで、動的機器や非常用電源そのもののコストを低減することができると共に、それらのメンテナンスに係るコストも低減することができる。 Also, in order to reduce the cost of nuclear power plants, it is important to eliminate dynamic equipment such as water injection pumps and emergency power sources. By eliminating the active equipment and the emergency power supply, the cost of the active equipment and the emergency power supply itself can be reduced, and the cost associated with their maintenance can also be reduced.
 特許文献1に記載の沸騰水型原子力発電プラントのように自動減圧系及びICの両方を備えている場合、自動減圧系が誤作動すると、原子炉圧力容器が減圧されてしまうので、ICの除熱機能を有効に活用できない状態が発生する懸念がある。そこで、ICの除熱機能の活用を重視し、安全弁を含む自動減圧系を削除したプラントコンセプトが提案されている。ICの能力を最大限活用するプラントコンセプトでは、圧力抑制プールが削除されていると共に、非常用電源や注水用ポンプが不要なので、コストを低減することが可能である。 In the case where both an automatic pressure reducing system and an IC are provided as in the boiling water nuclear power plant described in Patent Document 1, if the automatic pressure reducing system malfunctions, the reactor pressure vessel will be depressurized. There is a concern that a state in which the thermal function cannot be effectively used may occur. Therefore, a plant concept has been proposed in which the automatic depressurization system including the safety valve is eliminated, emphasizing the utilization of the heat removal function of the IC. A plant concept that makes the most of the IC's capabilities eliminates the pressure suppression pool and eliminates the need for an emergency power supply or water injection pump, thereby reducing costs.
 このプラントコンセプトでは、安全性の観点からICを多重化している。したがって、全てのICが作動しない可能性は極めて低い。しかし、万が一全てのICが作動しなかった場合、このコンセプトのプラントでは、自動減圧系が削除されているので、原子炉圧力容器を減圧することができないことが想定される。原子炉圧力容器を減圧できないと、最終的には、原子炉圧力容器が高圧で破損する恐れがある。したがって、ICが不作動の場合を想定したときに、原子炉圧力容器を減圧することを考える必要がある。 In this plant concept, ICs are multiplexed from the viewpoint of safety. Therefore, it is extremely unlikely that all ICs will not work. However, in the unlikely event that all the ICs do not operate, it is assumed that the reactor pressure vessel cannot be depressurized in this concept plant because the automatic depressurization system is omitted. Failure to depressurize the reactor pressure vessel may eventually lead to the reactor pressure vessel being damaged by the high pressure. Therefore, it is necessary to consider depressurizing the reactor pressure vessel when assuming that the IC is inoperative.
 本発明は、上記の問題点を解消するためになされたものであり、その目的は、原子炉格納容器の構造を簡素化することができ、かつ、非常用復水器が不作動の場合でも動的機器を用いずに原子炉圧力容器または蒸気発生器を減圧することができる原子力プラントの安全系を提供するものである。 SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and its object is to simplify the structure of the reactor containment vessel, and to provide the same even when the emergency condenser is inoperative. A nuclear plant safety system is provided that can depressurize a reactor pressure vessel or steam generator without using dynamic equipment.
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、原子炉格納容器に格納された原子炉圧力容器又は蒸気発生器からの蒸気を冷却により凝縮させて再び前記原子炉圧力容器又は前記蒸気発生器に戻す非常用復水器を備えた原子力プラントの安全系であって、前記原子炉格納容器の外部に配置され、冷却水を貯留する水源と、前記原子炉格納容器の内部に位置すると共に前記水源よりも下方に位置し、前記水源から排出される冷却水を受け止めて貯留することが可能な貯留部と、前記水源に接続され、前記水源の冷却水を前記貯留部に導く第1ラインと、前記第1ライン上に設けられ、前記第1ラインを開放状態又は閉止状態に切り換える第1弁と、一方側は前記原子炉圧力容器又は前記蒸気発生器に直接的又は間接的に接続されると共に、他方側は前記水源からの冷却水が前記貯留部に貯留されるときの想定水位よりも低い位置で開口する第2ラインと、前記第2ライン上に設けられ、前記第2ラインを開放状態又は閉止状態に切り換える第2弁とを備え、前記第1弁及び前記第2弁は、前記原子炉圧力容器又は前記蒸気発生器内の圧力の高さに応じて開弁するように構成されていることを特徴とする。 The present application includes a plurality of means for solving the above-mentioned problems, but if one example is given, the steam from the reactor pressure vessel or the steam generator stored in the reactor containment vessel is condensed by cooling and the above-mentioned atomic A safety system for a nuclear plant comprising an emergency condenser returning to a reactor pressure vessel or said steam generator, comprising a water source for storing cooling water located outside said reactor containment vessel, and said reactor containment vessel. a reservoir positioned inside a container and positioned below the water source and capable of receiving and storing cooling water discharged from the water source; a first line leading to a reservoir, a first valve provided on the first line for switching the first line to an open state or a closed state, one side directly to the reactor pressure vessel or the steam generator a second line connected directly or indirectly and having the other side open at a position lower than an assumed water level when the cooling water from the water source is stored in the storage section; and a second valve for switching the second line between an open state and a closed state, the first valve and the second valve depending on the pressure inside the reactor pressure vessel or the steam generator. characterized in that it is configured to open the valve by
 本発明によれば、非常用復水器の不作動により原子炉圧力容器又は蒸気発生器内の圧力が通常範囲を逸脱して上昇しても、第1弁及び第2弁が開弁することで、水源から貯留部に排出された冷却水中に原子炉圧力容器又は蒸気発生器からの蒸気が導入されて凝縮するので、原子炉格納容器に圧力抑制プールを設けることなく、原子炉圧力容器を減圧することができる。すなわち、原子炉格納容器の構造を簡素化することができ、かつ、非常用復水器が不作動の場合でも動的機器を用いずに原子炉圧力容器を減圧することができる。
  上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, even if the pressure in the reactor pressure vessel or the steam generator rises outside the normal range due to non-operation of the isolation condenser, the first valve and the second valve can be opened. Since the steam from the reactor pressure vessel or the steam generator is introduced into the cooling water discharged from the water source to the reservoir and condenses, the reactor pressure vessel can be installed without providing a pressure suppression pool in the reactor containment vessel. Depressurization is possible. That is, the structure of the reactor containment vessel can be simplified, and the reactor pressure vessel can be depressurized without using dynamic equipment even when the isolation condenser is inoperative.
Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の原子力プラントの安全系の第1の実施の形態を備えた沸騰水型の原子力プラントを示す概略系統図である。1 is a schematic system diagram showing a boiling water nuclear power plant equipped with a first embodiment of a nuclear power plant safety system according to the present invention; FIG. 図1に示す本発明の原子力プラントの安全系の第1の実施の形態の一部を構成するドレン弁及び減圧弁の構造の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of the structure of a drain valve and a pressure reducing valve that constitute a part of the first embodiment of the nuclear plant safety system of the present invention shown in FIG. 1; 図2に示すドレン弁及び減圧弁におけるIC不作動時の作動状態(開弁状態)を示す模式図である。FIG. 3 is a schematic diagram showing an operating state (valve open state) of the drain valve and the pressure reducing valve shown in FIG. 2 when IC is not operated; 図1に示す本発明の原子力プラントの安全系の第1の実施の形態の一部を構成する溶融弁の構造の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of the structure of a fusion valve forming part of the first embodiment of the nuclear plant safety system of the present invention shown in FIG. 1; 図1に示す本発明の原子力プラントの安全系の第1の実施の形態における非常用復水器(IC)の作動状態を示す概略系統図である。FIG. 2 is a schematic system diagram showing an operating state of an isolation condenser (IC) in the first embodiment of the nuclear plant safety system of the present invention shown in FIG. 1; 図1に示す本発明の原子力プラントの安全系の第1の実施の形態におけるIC不作動時の作動状態を示す概略系統図である。FIG. 2 is a schematic system diagram showing an operating state when an IC is not operating in the first embodiment of the safety system of the nuclear power plant of the present invention shown in FIG. 1; 本発明の原子力プラントの安全系の第2の実施の形態を備えた原子力プラントを示す概略系統図である。FIG. 2 is a schematic system diagram showing a nuclear power plant equipped with a second embodiment of a safety system for a nuclear power plant according to the present invention; 本発明の原子力プラントの安全系の第3の実施の形態を備えた原子力プラントを示す概略系統図である。FIG. 5 is a schematic system diagram showing a nuclear plant equipped with a third embodiment of the nuclear plant safety system of the present invention; 本発明の原子力プラントの安全系の第4の実施の形態を備えた原子力プラントを示す概略系統図である。FIG. 10 is a schematic system diagram showing a nuclear power plant equipped with a fourth embodiment of the safety system of the nuclear power plant of the present invention; 本発明の原子力プラントの安全系の第5の実施の形態を備えた原子力プラントを示す概略系統図である。FIG. 11 is a schematic system diagram showing a nuclear plant equipped with a fifth embodiment of the nuclear plant safety system of the present invention; 本発明の原子力プラントの安全系の第1~第5の実施の形態の一部を構成する減圧弁を駆動するための弁駆動システムの変形例を示すブロック図である。FIG. 5 is a block diagram showing a modification of the valve drive system for driving the pressure reducing valves forming part of the first to fifth embodiments of the nuclear plant safety system of the present invention; 図11に示す減圧弁駆動システムの変形例における減圧弁作動時(開弁時)の状態を示すブロック図である。FIG. 12 is a block diagram showing a state when the pressure reducing valve is operating (opening) in the modification of the pressure reducing valve driving system shown in FIG. 11; 本発明の原子力プラントの安全系の第1~第5の実施の形態の一部を構成するドレン弁を駆動するための弁駆動システムの変形例を示すブロック図である。FIG. 5 is a block diagram showing a modification of the valve drive system for driving the drain valves constituting part of the first to fifth embodiments of the nuclear plant safety system of the present invention; 図13に示すドレン弁駆動システムの変形例におけるドレン弁作動時(開弁時)の状態を示すブロック図である。FIG. 14 is a block diagram showing a state when the drain valve is actuated (opened) in the modification of the drain valve drive system shown in FIG. 13; 本発明の原子力プラントの安全系の実施の形態を備えた加圧水型の原子力プラントを示す概略系統図である。1 is a schematic system diagram showing a pressurized water type nuclear power plant equipped with an embodiment of a nuclear power plant safety system according to the present invention; FIG.
 以下、本発明の原子力プラントの安全系の実施の形態について図面を用いて説明する。以下で説明する第1~第5の実施の形態は、本発明を沸騰水型原子炉(BWR)に適用した例である。 An embodiment of a safety system for a nuclear power plant according to the present invention will be described below with reference to the drawings. First to fifth embodiments described below are examples in which the present invention is applied to a boiling water reactor (BWR).
 [第1の実施の形態]
  本発明の原子力プラントの安全系の第1の実施の形態を備えた原子力プラントの構成について図1を用いて説明する。図1は本発明の原子力プラントの安全系の第1の実施の形態を備えた沸騰水型の原子力プラントを示す概略系統図である。なお、図1はプラントの通常運転時の状態を示している。
[First embodiment]
A configuration of a nuclear power plant equipped with a first embodiment of a safety system for a nuclear power plant according to the present invention will be described with reference to FIG. FIG. 1 is a schematic system diagram showing a boiling water nuclear power plant equipped with a first embodiment of a nuclear power plant safety system according to the present invention. Note that FIG. 1 shows the state of the plant during normal operation.
 図1において、原子力プラント1の原子炉格納容器11には、炉心12を内包する原子炉圧力容器13が格納されている。原子炉格納容器11内の圧力は、通常運転時において、原子炉格納容器11の外部の大気圧とほぼ同じとなっている。原子炉圧力容器13は、炉心12の核分裂反応熱又は崩壊熱によって蒸気が発生する領域であり、下側に液相部13aが上側に気相部13b(主に蒸気)が形成される。原子炉圧力容器13には、原子炉圧力容器13で発生した蒸気をタービン(図示せず)に送る主蒸気管14が接続されている。主蒸気管14は、原子炉格納容器11を貫通している。主蒸気管14における原子炉格納容器11の内側及び外側にはそれぞれ、主蒸気管14を遮断可能な主蒸気隔離弁15が設置されている。 In FIG. 1, a reactor pressure vessel 13 containing a reactor core 12 is stored in a reactor containment vessel 11 of a nuclear power plant 1 . The pressure inside the reactor containment vessel 11 is substantially the same as the atmospheric pressure outside the reactor containment vessel 11 during normal operation. The reactor pressure vessel 13 is a region where steam is generated by nuclear fission reaction heat or decay heat of the reactor core 12, and a liquid phase portion 13a is formed on the lower side and a gas phase portion 13b (mainly steam) is formed on the upper side. A main steam pipe 14 is connected to the reactor pressure vessel 13 to send steam generated in the reactor pressure vessel 13 to a turbine (not shown). The main steam pipe 14 penetrates the reactor containment vessel 11 . Main steam isolation valves 15 capable of shutting off the main steam pipe 14 are installed inside and outside the reactor containment vessel 11 in the main steam pipe 14 .
 原子力プラント1は、原子炉に異常が発生したときに原子力プラント1を安全な状態に維持するための安全系として、系外(原子炉格納容器11の外部)に熱エネルギを放出する非常用復水器30(以下、ICと称する)と、IC30が作動しないときに原子炉圧力容器13を減圧する減圧保護系40とを更に備えている。この原子力プラント1は、減圧保護系40を備えることで、原子炉圧力容器13を減圧するための従来構成の圧力抑制プールを含む自動減圧系を削除した構成となっている。 The nuclear plant 1 has an emergency recovery system that releases thermal energy outside the system (outside the reactor containment vessel 11) as a safety system for maintaining the nuclear plant 1 in a safe state when an abnormality occurs in the nuclear reactor. It further comprises a water vessel 30 (hereinafter referred to as IC) and a depressurization protection system 40 for depressurizing the reactor pressure vessel 13 when the IC 30 does not operate. Since the nuclear power plant 1 is provided with the decompression protection system 40, the conventional automatic decompression system including the pressure suppression pool for decompressing the reactor pressure vessel 13 is eliminated.
 IC30は、原子炉圧力容器13からの蒸気を冷却により凝縮させて再び原子炉圧力容器13に戻すものである。IC30は、冷却水を貯留するIC冷却水プール31と、IC冷却水プール31内に配置されたIC熱交換器32と、IC熱交換器32の入口(上側)と主蒸気管14(原子炉圧力容器13の気相部13b)とを接続するIC蒸気供給ライン33と、IC熱交換器32の出口(下側)と原子炉圧力容器13の下部(液相部13aに相当する部分)とを接続するIC戻りライン34とを備えている。IC戻りライン34上には、IC30を起動させるためのIC起動弁35が設置されている。 The IC 30 condenses steam from the reactor pressure vessel 13 by cooling and returns it to the reactor pressure vessel 13 again. The IC 30 includes an IC cooling water pool 31 that stores cooling water, an IC heat exchanger 32 arranged in the IC cooling water pool 31, an inlet (upper side) of the IC heat exchanger 32, and the main steam pipe 14 (nuclear reactor The IC steam supply line 33 connecting the gas phase portion 13b) of the pressure vessel 13, the outlet (lower side) of the IC heat exchanger 32 and the lower portion of the reactor pressure vessel 13 (the portion corresponding to the liquid phase portion 13a) and an IC return line 34 connecting the An IC start valve 35 for starting the IC 30 is installed on the IC return line 34 .
 IC冷却水プール31は、原子炉格納容器11の外部に設置され、且つ、炉心12よりも上方の位置、正確には原子炉圧力容器13内の通常水位13cよりも高い位置に配置されている。IC冷却水プール31は、例えば、開口部31aを有しており、大気に開放されている。IC蒸気供給ライン33は、原子炉圧力容器13内の蒸気をIC熱交換器32に供給するものである。IC熱交換器32は、IC蒸気供給ライン33を介して供給される原子炉圧力容器13からの蒸気をIC冷却水プール31内の冷却水により冷却して凝縮させるものである。IC戻りライン34は、IC熱交換器32にて生成された水を原子炉圧力容器13に戻すものである。IC起動弁35は、通常運転中は閉弁している一方、原子炉圧力容器13の圧力が所定値よりも上昇した場合、例えば圧力上昇を検知した信号が入力された場合に開弁するように構成されている。 The IC cooling water pool 31 is installed outside the reactor containment vessel 11 and is positioned above the reactor core 12, precisely at a position higher than the normal water level 13c in the reactor pressure vessel 13. . The IC cooling water pool 31 has, for example, an opening 31a and is open to the atmosphere. The IC steam supply line 33 supplies steam in the reactor pressure vessel 13 to the IC heat exchanger 32 . The IC heat exchanger 32 cools and condenses the steam from the reactor pressure vessel 13 supplied through the IC steam supply line 33 with the cooling water in the IC cooling water pool 31 . The IC return line 34 returns water produced in the IC heat exchanger 32 to the reactor pressure vessel 13 . The IC start-up valve 35 is closed during normal operation, but is opened when the pressure of the reactor pressure vessel 13 rises above a predetermined value, for example, when a signal indicating a pressure rise is input. is configured to
 原子力プラント1では、IC30が多重化されており、原子力プラント1の安全性の向上が図られている。例えば、3系統から4系統のIC30(図1中、1系統のみを図示)が設置されている。 In the nuclear plant 1, the IC30 is multiplexed to improve the safety of the nuclear plant 1. For example, three to four ICs 30 (only one is shown in FIG. 1) are installed.
 減圧保護系40は、IC30が作動せずに原子炉圧力容器13内の圧力が通常範囲から逸脱して上昇した場合に、原子炉圧力容器13を減圧させることで原子炉圧力容器13を保護するものであり、原子炉圧力容器13の圧力上昇した蒸気を利用して起動するように構成されている。具体的には、減圧保護系40は、冷却水を貯留する水源としてのIC30のIC冷却水プール31と、原子炉格納容器11の内部に位置すると共にIC冷却水プール31よりも下方に位置する中間タンク41と、IC冷却水プール31と中間タンク41と接続するドレンライン42と、ドレンライン42上に設けられたドレン弁43及び逆止弁44と、主蒸気管14から分岐して中間タンク41に接続された減圧ライン45と、減圧ライン45上に設けられた減圧弁46とを備えている。 The depressurization protection system 40 protects the reactor pressure vessel 13 by depressurizing the reactor pressure vessel 13 when the IC 30 does not operate and the pressure inside the reactor pressure vessel 13 deviates from the normal range and rises. It is configured to start using the steam whose pressure has increased in the reactor pressure vessel 13 . Specifically, the decompression protection system 40 is positioned inside the IC cooling water pool 31 of the IC 30 as a water source for storing cooling water, and inside the reactor containment vessel 11 and below the IC cooling water pool 31. an intermediate tank 41; a drain line 42 connecting the IC cooling water pool 31 and the intermediate tank 41; a drain valve 43 and a check valve 44 provided on the drain line 42; 41 and a pressure reducing valve 46 provided on the pressure reducing line 45 .
 中間タンク41は、通常運転時では冷却水を貯留していない空の状態に構成されており、IC30が作動しない場合に限ってIC冷却水プール31から排出される冷却水を受け止めて貯留することが可能な貯留部として機能するように設置されたタンクである。中間タンク41は、通常運転時に冷却水を貯留していない分、重量が小さくなっている。このため、中間タンク41は、故障を引き起こす虞のある地震時の荷重が低減されている。中間タンク41は、原子炉圧力容器13から離れた位置に配置されており、例えば、IC冷却水プール31の真下の位置に配置されている。原子炉圧力容器13の下方や周辺は、図示しない制御棒や多数の配管が配置されていること多く、中間タンク41の設置スペースを確保することができない場合に好適である。 The intermediate tank 41 is configured in an empty state in which cooling water is not stored during normal operation, and receives and stores the cooling water discharged from the IC cooling water pool 31 only when the IC 30 does not operate. It is a tank installed to function as a reservoir that allows The weight of the intermediate tank 41 is reduced because it does not store cooling water during normal operation. Therefore, the intermediate tank 41 has a reduced load during an earthquake that may cause failure. The intermediate tank 41 is located away from the reactor pressure vessel 13 , for example, directly below the IC cooling water pool 31 . Control rods and a large number of pipes (not shown) are often arranged below and around the reactor pressure vessel 13, and this is suitable when the installation space for the intermediate tank 41 cannot be secured.
 ドレンライン42は、IC冷却水プール31に貯留されている冷却水の少なくとも一部を中間タンク41に導くものである。例えば、ドレンライン42の一方側はIC冷却水プール31の底部に接続され、他方側は中間タンク41が冷却水タンクからの冷却水を貯留したときの想定水位41aよりも高い位置で開口するように構成されている。ドレンライン42は、例えば、全長に亘って原子炉格納容器11内に配置されている。 The drain line 42 guides at least part of the cooling water stored in the IC cooling water pool 31 to the intermediate tank 41 . For example, one side of the drain line 42 is connected to the bottom of the IC cooling water pool 31, and the other side is opened at a position higher than the assumed water level 41a when the intermediate tank 41 stores the cooling water from the cooling water tank. is configured to The drain line 42 is arranged inside the reactor containment vessel 11 over its entire length, for example.
 ドレンライン42上には、上側(上流側)から順に逆止弁44及びドレン弁43が配置されている。逆止弁44及びドレン弁43は、例えば、原子炉格納容器11の内部に配置されている。 A check valve 44 and a drain valve 43 are arranged on the drain line 42 in this order from the upper side (upstream side). The check valve 44 and the drain valve 43 are arranged inside the reactor containment vessel 11, for example.
 逆止弁44は、IC冷却水プール31から中間タンク41に向かう流れを許容する一方、中間タンク41からIC冷却水プール31に向かう流れを阻止するように構成されている。逆止弁44は、原子炉格納容器11内の気体がドレンライン42を介して原子炉格納容器11の外部に放出されることを防止するものである。 The check valve 44 is configured to allow flow from the IC cooling water pool 31 toward the intermediate tank 41 while blocking flow from the intermediate tank 41 toward the IC cooling water pool 31 . The check valve 44 prevents the gas inside the reactor containment vessel 11 from being released to the outside of the reactor containment vessel 11 through the drain line 42 .
 ドレン弁43は、ドレンライン42を開放状態又は閉止状態に切り換えるものである。ドレン弁43は、通常運転時には閉弁しており、原子炉圧力容器13内の圧力が通常範囲を逸脱して上昇したときに開弁する(起動する)ように構成されている。ドレン弁43は、原子炉圧力容器13で発生した蒸気の圧力を利用して開弁するものであり、例えば、原子炉圧力容器13内の蒸気の圧力が圧力伝送管70を介して伝送されることで、当該圧力に応じて開弁状態及び閉弁状態が切り換えられるように構成されている。ドレン弁43の構造については後述する。圧力伝送管70は、原子炉圧力容器13の上部(気相部13b)とドレン弁43の後述の弁開閉機構54(後述の図2及び図3参照)とを接続しており、原子炉圧力容器13の圧力をドレン弁43に伝送する配管である。 The drain valve 43 switches the drain line 42 between an open state and a closed state. The drain valve 43 is closed during normal operation, and is configured to open (activate) when the pressure inside the reactor pressure vessel 13 deviates from the normal range and rises. The drain valve 43 is opened by utilizing the pressure of steam generated in the reactor pressure vessel 13. For example, the steam pressure in the reactor pressure vessel 13 is transmitted through the pressure transmission pipe 70. Thus, the valve is configured to be switched between the valve open state and the valve closed state according to the pressure. The structure of the drain valve 43 will be described later. The pressure transmission pipe 70 connects the upper portion (the gas phase portion 13b) of the reactor pressure vessel 13 and a later-described valve opening/closing mechanism 54 (see FIGS. 2 and 3 described later) of the drain valve 43. It is a pipe that transmits the pressure of the container 13 to the drain valve 43 .
 減圧ライン45は、一方側が原子炉圧力容器13の上部(気相部13b)に主蒸気管14を介して間接的に接続されていると共に、他方側はIC冷却水プール31からの冷却水が中間タンク41に貯留されるときの想定水位41aよりも低い位置で開口するように設置されている。減圧ライン45は、原子炉圧力容器13内の蒸気の一部を中間タンク41に導いて中間タンク41に貯留されるIC冷却水プール31からの冷却水に導入するものである。 One side of the decompression line 45 is indirectly connected to the upper portion (gas phase portion 13b) of the reactor pressure vessel 13 via the main steam pipe 14, and the other side receives cooling water from the IC cooling water pool 31. It is installed so as to open at a position lower than the assumed water level 41 a when stored in the intermediate tank 41 . The decompression line 45 guides part of the steam in the reactor pressure vessel 13 to the intermediate tank 41 and introduces it into the cooling water from the IC cooling water pool 31 stored in the intermediate tank 41 .
 減圧弁46は、減圧ライン45を開放状態又は閉止状態に切り換えるものである。減圧弁46は、通常運転時には閉止されており、原子炉圧力容器13内の圧力が通常範囲を逸脱して上昇したときに開弁する(起動する)ように構成されている。減圧弁46は、原子炉圧力容器13で発生した蒸気の圧力を利用して開弁するものであり、例えば、原子炉圧力容器13内の圧力が圧力伝送管70を介して伝送されることで、当該圧力に応じて開弁状態及び閉弁状態が切り換えられるように構成されている。減圧弁46は、ドレン弁43よりも高い圧力で開弁するように構成されている。すなわち、減圧弁46は、その起動がドレン弁43の起動よりも遅くなるように構成されている。減圧弁46の構造については後述する。圧力伝送管70は、原子炉圧力容器13の上部(気相部13b)と減圧弁46の後述の弁開閉機構54(後述の図2及び図3参照)とを接続しており、原子炉圧力容器13の圧力を減圧弁46に伝送する配管である。 The pressure reducing valve 46 switches the pressure reducing line 45 between an open state and a closed state. The pressure reducing valve 46 is closed during normal operation, and is configured to open (activate) when the pressure inside the reactor pressure vessel 13 deviates from the normal range and rises. The pressure reducing valve 46 is opened using the pressure of the steam generated in the reactor pressure vessel 13. For example, the pressure inside the reactor pressure vessel 13 is transmitted through the pressure transmission pipe 70. , the valve is configured to be switched between an open state and a closed state according to the pressure. The pressure reducing valve 46 is configured to open at a pressure higher than that of the drain valve 43 . That is, the pressure reducing valve 46 is configured to start later than the drain valve 43 . The structure of the pressure reducing valve 46 will be described later. The pressure transmission pipe 70 connects the upper portion (the gas phase portion 13b) of the reactor pressure vessel 13 and a later-described valve opening/closing mechanism 54 (see FIGS. 2 and 3 described later) of the pressure reducing valve 46. It is a pipe that transmits the pressure of the container 13 to the pressure reducing valve 46 .
 中間タンク41には、床面注水ライン47が接続されている。床面注水ライン47は、IC冷却水プール31から中間タンク41に排出されて貯留された冷却水を原子炉格納容器11の床面11aに放出するものである。床面注水ライン47は、例えば、中間タンク41の底部から原子炉格納容器11の床面11aに向かって延在している。床面注水ライン47は、炉心溶融が発生した場合を想定した構成である。 A floor water injection line 47 is connected to the intermediate tank 41 . The floor surface water injection line 47 discharges the stored cooling water discharged from the IC cooling water pool 31 to the intermediate tank 41 to the floor surface 11 a of the reactor containment vessel 11 . The floor surface water injection line 47 extends from the bottom of the intermediate tank 41 toward the floor surface 11 a of the reactor containment vessel 11 , for example. The floor surface water injection line 47 is configured assuming a case where a core meltdown occurs.
 床面注水ライン47上には、床面注水ライン47を閉止する溶融弁48が設けられている。溶融弁48は、例えば、床面注水ライン47における床面11a近傍の端部に配置されている。溶融弁48は、通常時には閉弁しており、溶融弁48の周囲の熱を受けて溶融することで開弁する(起動する)ように構成されている。溶融弁48の構造については後述する。 A melting valve 48 that closes the floor surface water injection line 47 is provided on the floor surface water injection line 47 . The melting valve 48 is arranged, for example, at the end of the floor surface water injection line 47 near the floor surface 11a. The melting valve 48 is normally closed, and is configured to be opened (activated) by being melted by the heat around the melting valve 48 . The structure of the melting valve 48 will be described later.
 次に、本発明の原子力プラントの安全系の第1の実施の形態の一部を構成するドレン弁及び減圧弁の構造の一例について図2及び図3を用いて説明する。図2は図1に示す本発明の原子力プラントの安全系の第1の実施の形態の一部を構成するドレン弁及び減圧弁の構造の一例を示す模式図である。図3は図2に示すドレン弁及び減圧弁におけるIC不作動時の作動状態(開弁状態)を示す模式図である。ドレン弁および減圧弁の構造は同様なものである。ドレン弁と減圧弁の相違点は、設置される配管が異なること及び作動圧力(開弁圧力)が異なることである。 Next, an example of the structure of the drain valve and the pressure reducing valve, which constitute a part of the first embodiment of the nuclear plant safety system of the present invention, will be described with reference to FIGS. 2 and 3. FIG. FIG. 2 is a schematic diagram showing an example of the structure of a drain valve and a pressure reducing valve that constitute a part of the first embodiment of the nuclear plant safety system of the present invention shown in FIG. FIG. 3 is a schematic diagram showing an operating state (valve open state) of the drain valve and the pressure reducing valve shown in FIG. 2 when the IC is not operated. The structures of the drain valve and pressure reducing valve are similar. The difference between the drain valve and the pressure reducing valve is that the piping to be installed is different and the working pressure (valve opening pressure) is different.
 図2において、ドレン弁43及び減圧弁46は、ドレンライン42(減圧弁46の場合、減圧ライン45)に設けられた弁座51と、弁座51に対して接離可能な弁体52と、弁体52を弁座51側(閉弁方向)に付勢する弁ばね53と、弁体52を弁座51に対して変位させる弁開閉機構54とを備えている。弁座51は、ドレンライン42(減圧弁46の場合、減圧ライン45)の流路の一部を構成する開口部51a(図3も参照)を有している。開口部51aは、弁体52が着座することで閉塞される。ドレン弁43及び減圧弁46は、原子力プラント1の通常運転時において、弁体52が弁ばね53の付勢力によって弁座51に押し付けられてドレンライン42(減圧弁46の場合、減圧ライン45)を閉止するように構成されている。弁開閉機構54は、原子炉圧力容器13で発生した蒸気が圧力伝送管70を介して供給されることで蒸気の圧力により直接的に作動するように構成されている。 In FIG. 2, the drain valve 43 and the pressure reducing valve 46 have a valve seat 51 provided in the drain line 42 (the pressure reducing line 45 in the case of the pressure reducing valve 46) and a valve body 52 that can be brought into contact with and separated from the valve seat 51. , a valve spring 53 that biases the valve body 52 toward the valve seat 51 (in the valve closing direction), and a valve opening/closing mechanism 54 that displaces the valve body 52 with respect to the valve seat 51 . The valve seat 51 has an opening 51a (see also FIG. 3) that forms part of the flow path of the drain line 42 (the pressure reducing line 45 in the case of the pressure reducing valve 46). The opening 51a is closed when the valve body 52 is seated. During normal operation of the nuclear power plant 1 , the drain valve 43 and the pressure reducing valve 46 are configured such that the valve body 52 is pressed against the valve seat 51 by the biasing force of the valve spring 53 to open the drain line 42 (the pressure reducing line 45 in the case of the pressure reducing valve 46 ). is configured to close the The valve opening/closing mechanism 54 is configured to be directly operated by the pressure of the steam generated in the reactor pressure vessel 13 supplied through the pressure transmission pipe 70 .
 具体的には、弁開閉機構54は、原子炉圧力容器13の圧力が入力されるシリンダチューブ55と、シリンダチューブ55内に摺動可能に配置されたピストン56と、ピストン56と弁体52とを接続するピストンロッド57とを有している。ピストン56は、シリンダチューブ55内を第1室55aと第2室55bとに分離し、第1室55a内の圧力及び第2室55b内の圧力を受けてシリンダチューブ55内で変位する。ピストンロッド57は、ピストン56の第1室55a側からシリンダチューブ55の外側に延在して弁体52に接続されている。シリンダチューブ55の第1室55aには、圧力伝送管70が接続されており、原子炉圧力容器13内の蒸気が供給される。第2室55bは、開口部55cを有しており、シリンダチューブ55の外部(原子炉格納容器11内)に開放されている。 Specifically, the valve opening/closing mechanism 54 includes a cylinder tube 55 to which the pressure of the reactor pressure vessel 13 is input, a piston 56 slidably arranged in the cylinder tube 55, the piston 56, and the valve body 52. and a piston rod 57 connecting the The piston 56 divides the interior of the cylinder tube 55 into a first chamber 55a and a second chamber 55b, and is displaced within the cylinder tube 55 by receiving the pressure in the first chamber 55a and the pressure in the second chamber 55b. The piston rod 57 extends from the first chamber 55 a side of the piston 56 to the outside of the cylinder tube 55 and is connected to the valve body 52 . A pressure transmission pipe 70 is connected to the first chamber 55 a of the cylinder tube 55 to supply steam in the reactor pressure vessel 13 . The second chamber 55b has an opening 55c and is open to the outside of the cylinder tube 55 (inside the reactor containment vessel 11).
 シリンダチューブ55内には、図3に示すように、ピストン56が係合するラッチ58が設けられている。ラッチ58は、ピストン56がシリンダチューブ55の第2室55b側に変位して弁体52が離座した状態のときに、ピストン56を機械的に保持するものである。すなわち、ラッチ58は、ドレン弁43または減圧弁46が作動した開弁状態に維持するものである。 A latch 58 with which the piston 56 engages is provided in the cylinder tube 55, as shown in FIG. The latch 58 mechanically holds the piston 56 when the piston 56 is displaced toward the second chamber 55b of the cylinder tube 55 and the valve body 52 is released. That is, the latch 58 maintains the open state in which the drain valve 43 or the pressure reducing valve 46 is operated.
 ドレン弁43及び減圧弁46は、弁ばね53の付勢力を調整することで開弁圧力が調整される。すなわち、ドレン弁43及び減圧弁46は、圧力伝送管70を介して伝送される原子炉圧力容器13内の蒸気の圧力が閾値を超えて上昇した場合に開弁する。ドレン弁43及び減圧弁46の開弁圧力(閾値)は、IC30の作動時における原子炉圧力容器13の最高圧力よりも高くなるように設定されている。この設定により、ドレン弁43及び減圧弁46の誤作動によってIC30の除熱機能の喪失を防止することができる。また、ドレン弁43の開弁圧力は、減圧弁46の開弁圧力より低くなるように設定されている。すなわち、ドレン弁43は、減圧弁46よりも早く起動するように構成されている。 The opening pressure of the drain valve 43 and the pressure reducing valve 46 is adjusted by adjusting the biasing force of the valve spring 53 . That is, the drain valve 43 and the pressure reducing valve 46 are opened when the pressure of the steam inside the reactor pressure vessel 13 transmitted through the pressure transmission pipe 70 rises above the threshold value. The valve opening pressures (threshold values) of the drain valve 43 and the pressure reducing valve 46 are set to be higher than the maximum pressure of the reactor pressure vessel 13 when the IC 30 is in operation. This setting can prevent loss of the heat removal function of the IC 30 due to malfunction of the drain valve 43 and the pressure reducing valve 46 . Also, the opening pressure of the drain valve 43 is set to be lower than the opening pressure of the pressure reducing valve 46 . That is, the drain valve 43 is configured to start earlier than the pressure reducing valve 46 .
 何らか理由によりIC30が作動せずに原子炉圧力容器13の圧力が上昇した場合、図2に示すシリンダチューブ55の第1室55aに原子炉圧力容器13内の高圧状態が圧力伝送管70を介して伝送されると、図3に示すように、シリンダチューブ55内のピストン56が弁ばね53の付勢力に抗して第2室55b側に変位する。このピストン56の変位に伴い弁体52が弁座51から離れる方向に変位することで、弁体52により閉塞されていた弁座51の開口部51aが開口する。このように、ドレン弁43及び減圧弁46は、原子炉圧力容器13内の圧力が圧力伝送管70を介してシリンダチューブ55の第1室55aに伝送される構成なので、IC30の不作動などで原子炉圧力容器13の圧力が通常範囲を逸脱した高圧状態になったときに、操作員が操作を行うことなく且つ動的機器を用いることなく自動的に開弁する。また、ピストン56が第2室55b側に変位しラッチ58に係合することで、弁体52の開弁状態を維持することができる。 When the IC 30 does not operate for some reason and the pressure in the reactor pressure vessel 13 rises, the high pressure state in the reactor pressure vessel 13 causes the pressure transmission pipe 70 to flow through the first chamber 55a of the cylinder tube 55 shown in FIG. 3, the piston 56 in the cylinder tube 55 is displaced toward the second chamber 55b against the biasing force of the valve spring 53. As shown in FIG. As the piston 56 is displaced, the valve body 52 is displaced away from the valve seat 51, so that the opening 51a of the valve seat 51 closed by the valve body 52 is opened. As described above, the drain valve 43 and the pressure reducing valve 46 are configured so that the pressure in the reactor pressure vessel 13 is transmitted to the first chamber 55a of the cylinder tube 55 through the pressure transmission pipe 70. When the pressure in the reactor pressure vessel 13 becomes a high pressure state deviating from the normal range, the valve is automatically opened without any operation by the operator and without using dynamic equipment. Further, the piston 56 is displaced toward the second chamber 55b and engaged with the latch 58, so that the valve body 52 can be maintained in the open state.
 次に、本発明の原子力プラントの安全系の第1の実施の形態の一部を構成する溶融弁の構造の一例について図4を用いて説明する。図4は図1に示す本発明の原子力プラントの安全系の第1の実施の形態の一部を構成する溶融弁の構造の一例を示す模式図である。 Next, an example of the structure of the fusion valve, which constitutes part of the first embodiment of the safety system of the nuclear power plant of the present invention, will be described with reference to FIG. FIG. 4 is a schematic diagram showing an example of the structure of a fusion valve forming part of the first embodiment of the nuclear plant safety system of the present invention shown in FIG.
 図4において、床面注水ライン47の端部には、溶融弁48が設けられている。溶融弁48は、例えば、床面注水ライン47の端部開口を閉塞可能な端栓61と、床面注水ライン47の端部に回動可能に取り付けられたスイングアーム62と、床面注水ライン47の端部に接続されスイングアーム62を支持可能な支持アーム63と、スイングアーム62に回動可能に取り付けられたスイングレバー64と、スイングレバー64にワイヤ65を介して取り付けられたウェイト66と、ウェイト66を床面注水ライン47の端部に取り付ける低融点取付部材67とを備えている。 In FIG. 4, a melting valve 48 is provided at the end of the floor water injection line 47 . The melting valve 48 includes, for example, an end plug 61 capable of closing an end opening of the floor water injection line 47, a swing arm 62 rotatably attached to the end of the floor water injection line 47, and a floor water injection line. 47 and capable of supporting the swing arm 62; a swing lever 64 rotatably attached to the swing arm 62; and a weight 66 attached to the swing lever 64 via a wire 65. , and a low melting point mounting member 67 for mounting the weight 66 to the end of the floor water injection line 47 .
 スイングアーム62は、一端側が床面注水ライン47の端部に回動ピン62aを介して回動可能に取り付けられていると共に、他端側が支持アーム63に脱落可能に支持されている。スイングアーム62には、スイングアーム62が支持アーム63に支持されている状態において、端栓61が床面注水ライン47の端部開口を閉塞するように固定されている。支持アーム63は、スイングアーム62の他端側が係合する係合部63aを有している。スイングレバー64は、一端側がスイングアーム62の他端側に回動ピン64aを介して回動可能に取り付けられていると共に、他端側にはワイヤ65の一端部が接合されている。低融点取付部材67は、低融点の金属により形成されており、所定の温度を超えた場合に溶融又は軟化により破断するものである。 One end of the swing arm 62 is rotatably attached to the end of the floor surface water injection line 47 via a rotating pin 62a, and the other end is detachably supported by a support arm 63. An end plug 61 is fixed to the swing arm 62 so as to close the end opening of the floor surface water injection line 47 when the swing arm 62 is supported by the support arm 63 . The support arm 63 has an engaging portion 63a with which the other end of the swing arm 62 engages. One end of the swing lever 64 is rotatably attached to the other end of the swing arm 62 via a pivot pin 64a, and one end of a wire 65 is joined to the other end. The low-melting-point mounting member 67 is made of a low-melting-point metal, and is broken by melting or softening when a predetermined temperature is exceeded.
 溶融弁48の周囲の温度が上昇して低融点取付部材67が溶断されると、ウェイト66が自重によって落下し、ウェイト66の落下の衝撃荷重がワイヤ65を介してスイングレバー64に伝えられる。これにより、スイングレバー64が回動ピン64aを中心に支持アーム63を押し出すように回転動作し、その結果、支持アーム63の係合部63aとスイングアーム62との係合が解除される。支持アーム63との係合が解除されたスイングアーム62は、支持アーム63による支持がなくなることで、ウェイト66が垂れ下がる状態になるように回動ピン62aを中心に回転動作する。スイングアーム62の回動に伴い端栓61が床面注水ライン47の開口部から外れ、床面注水ライン47が開口状態となる。このように、原子炉格納容器11内における溶融弁48の近傍の温度が通常範囲を逸脱した高温状態になった場合、溶融弁48は、操作員が操作を行うことなく且つ動的機器を用いることなく自動的に開弁する。 When the temperature around the melting valve 48 rises and the low-melting-point mounting member 67 melts, the weight 66 drops due to its own weight, and the impact load of the weight 66 dropping is transmitted to the swing lever 64 via the wire 65 . As a result, the swing lever 64 rotates around the pivot pin 64a so as to push out the support arm 63, and as a result, the engagement between the engaging portion 63a of the support arm 63 and the swing arm 62 is released. The swing arm 62 disengaged from the support arm 63 is no longer supported by the support arm 63, so that the weight 66 hangs down. As the swing arm 62 rotates, the end plug 61 is disengaged from the opening of the floor surface water injection line 47, and the floor surface water injection line 47 is opened. In this way, when the temperature in the vicinity of the melt valve 48 in the reactor containment vessel 11 becomes a high temperature state deviating from the normal range, the melt valve 48 uses dynamic equipment without being operated by an operator. automatically open without
 次に、本発明の原子力プラントの安全系の第1の実施の形態における動作について図1~図6を用いて説明する。図5は図1に示す本発明の原子力プラントの安全系の第1の実施の形態におけるICの作動状態を示す概略系統図である。図6は図1に示す本発明の原子力プラントの安全系の第1の実施の形態におけるIC不作動時の作動状態を示す概略系統図である。 Next, the operation of the safety system of the nuclear power plant according to the first embodiment of the present invention will be explained using FIGS. 1 to 6. FIG. FIG. 5 is a schematic system diagram showing the operating state of the IC in the first embodiment of the nuclear plant safety system of the present invention shown in FIG. FIG. 6 is a schematic system diagram showing the operating state when the IC is not in operation in the first embodiment of the nuclear plant safety system of the present invention shown in FIG.
 図1に示す原子力プラント1では、定期検査などでプラントを停止させる場合やプラントに悪影響を及ぼす可能性のある事象(例えば、地震)が発生した場合、制御棒の挿入により炉心12の核分裂を停止させることでプラントを停止させる。その際、地震などによってタービン(図示せず)などに不具合が発生している可能性がある場合、主蒸気隔離弁15を閉止し、原子炉圧力容器13から原子炉格納容器11の外部へ蒸気が流出することを防止する。 In the nuclear power plant 1 shown in FIG. 1, when the plant is to be stopped for periodic inspections, etc., or when an event (for example, an earthquake) that may adversely affect the plant occurs, nuclear fission in the core 12 is stopped by inserting control rods. to stop the plant. At that time, if there is a possibility that a turbine (not shown) or the like is malfunctioning due to an earthquake or the like, the main steam isolation valve 15 is closed and the steam is discharged from the reactor pressure vessel 13 to the outside of the containment vessel 11. to prevent it from leaking out.
 原子炉の停止後も、原子炉圧力容器13内では、炉心12の崩壊熱により蒸気が発生し続ける。この状態が継続すると、原子炉圧力容器13の圧力が上昇する。原子炉圧力容器13の圧力上昇を検知すると、図5に示すように、IC30のIC起動弁35が開弁する(起動する)。IC起動弁35の開弁により、原子炉圧力容器13内の蒸気がIC蒸気供給ライン33を通ってIC熱交換器32に供給される。IC熱交換器32は、周囲のIC冷却水プール31の冷却水によって冷却されているので、IC熱交換器32に流入した蒸気は冷却により凝縮して水に戻る。IC熱交換器32で生じた凝縮水は、IC蒸気供給ライン33の蒸気との密度差により重力でIC戻りライン34を通って原子炉圧力容器13に戻り、再び炉心12の冷却に利用される。 Even after the reactor is shut down, steam continues to be generated inside the reactor pressure vessel 13 due to the decay heat of the core 12 . If this state continues, the pressure in the reactor pressure vessel 13 will rise. When the pressure rise of the reactor pressure vessel 13 is detected, the IC start valve 35 of the IC 30 opens (starts) as shown in FIG. By opening the IC start-up valve 35 , the steam in the reactor pressure vessel 13 is supplied to the IC heat exchanger 32 through the IC steam supply line 33 . Since the IC heat exchanger 32 is cooled by the cooling water in the surrounding IC cooling water pool 31, the steam flowing into the IC heat exchanger 32 is condensed by cooling and returns to water. The condensed water generated in the IC heat exchanger 32 returns to the reactor pressure vessel 13 through the IC return line 34 due to gravity due to the difference in density from the steam in the IC steam supply line 33, and is used to cool the reactor core 12 again. .
 このように、IC30は、IC起動弁35が開弁するだけで、原子炉圧力容器13からの蒸気を水に戻して自重により再び原子炉圧力容器13に供給することで炉心12の崩壊熱を除去し続ける。すなわち、IC30は、ポンプ(動的機器)やポンプ駆動用の非常用電源などを用いることなく、炉心12の崩壊熱を系外に放出することができる。 In this way, the IC 30 returns the steam from the reactor pressure vessel 13 to water only by opening the IC start-up valve 35, and supplies it to the reactor pressure vessel 13 again by its own weight, thereby releasing the decay heat of the core 12. keep removing. That is, the IC 30 can release the decay heat of the core 12 to the outside of the system without using a pump (dynamic device) or an emergency power supply for driving the pump.
 IC30は多重化されており、安全性の向上が図られている。しかし、非常に低い可能性ではあるが、全系統のIC30が作動しない場合を想定しておく。この場合、炉心12の崩壊熱を除去することができないので、原子炉圧力容器13の圧力上昇が継続する。 The IC30 is multiplexed to improve safety. However, it is assumed that all the ICs 30 do not operate, although it is very unlikely. In this case, the decay heat of the core 12 cannot be removed, so the pressure rise in the reactor pressure vessel 13 continues.
 このような事態が生じて原子炉圧力容器13の圧力が閾値を超えて上昇した場合、原子炉圧力容器13の圧力が圧力伝送管70を介してドレン弁43に伝送されることで、図6に示すように、ドレン弁43が開弁する(図3も参照)。ドレン弁43の開弁により、通常運転時には空の状態の中間タンク41に対してIC冷却水プール31の冷却水が重力によってドレンライン42を通して排出される。これにより、中間タンク41には、IC冷却水プール31から排出された冷却水が貯留されて水面41bが形成される。 When such a situation occurs and the pressure of the reactor pressure vessel 13 rises above the threshold, the pressure of the reactor pressure vessel 13 is transmitted to the drain valve 43 via the pressure transmission pipe 70, thereby , the drain valve 43 opens (see also FIG. 3). When the drain valve 43 is opened, the cooling water in the IC cooling water pool 31 is drained through the drain line 42 by gravity into the intermediate tank 41 which is empty during normal operation. As a result, the cooling water discharged from the IC cooling water pool 31 is stored in the intermediate tank 41 to form a water surface 41b.
 さらに、原子炉圧力容器13の圧力が圧力伝送管70を介して減圧弁46に伝送されることで、減圧弁46が開弁する。本実施の形態においては、減圧弁46の開弁圧力がドレン弁43の開弁圧力よりも高くなるように設定されているので、減圧弁46はドレン弁43よりも遅れて開弁することになる。 Further, the pressure in the reactor pressure vessel 13 is transmitted to the pressure reducing valve 46 via the pressure transmission pipe 70, thereby opening the pressure reducing valve 46. In the present embodiment, the opening pressure of the pressure reducing valve 46 is set to be higher than the opening pressure of the drain valve 43 , so the pressure reducing valve 46 opens later than the drain valve 43 . Become.
 減圧弁46の開弁により、原子炉圧力容器13内の蒸気が主蒸気管14及び減圧ライン45を通って中間タンク41に排出される。これにより、原子炉圧力容器13が減圧され、原子炉圧力容器13の高圧破損を防止することができる。本実施の形態においては、減圧ライン45の端部開口が中間タンク41の水面41bよりも低い位置にある。これにより、原子炉圧力容器13から中間タンク41に排出された蒸気が中間タンク41内に貯留されている冷却水中に導入されて凝縮し、原子炉圧力容器13内の蒸気のエネルギが中間タンク41内の冷却水に移行する。したがって、原子炉圧力容器13の蒸気が原子炉格納容器11内の空間にそのまま放出される場合と比べて、原子炉格納容器11の圧力上昇を抑制することができる。 By opening the decompression valve 46 , the steam in the reactor pressure vessel 13 is discharged to the intermediate tank 41 through the main steam pipe 14 and the decompression line 45 . As a result, the pressure in the reactor pressure vessel 13 is reduced, and high-pressure damage to the reactor pressure vessel 13 can be prevented. In the present embodiment, the end opening of the decompression line 45 is positioned below the water surface 41 b of the intermediate tank 41 . As a result, the steam discharged from the reactor pressure vessel 13 to the intermediate tank 41 is introduced into the cooling water stored in the intermediate tank 41 and condensed. It shifts to the cooling water inside. Therefore, compared with the case where the steam in the reactor pressure vessel 13 is released into the space inside the reactor containment vessel 11 as it is, the pressure rise in the reactor containment vessel 11 can be suppressed.
 中間タンク41に排出された蒸気が冷却水によって凝縮される際、蒸気中に含まれる放射性物質の大半がスクラビング効果によって中間タンク41内の冷却水によって捕獲され、当該冷却水中に保持される。したがって、この後に、万が一蒸気が原子炉格納容器11の外部に放出されたとしても、原子炉格納容器11外に放出される放射性物質の量を抑制することができる。本実施の形態では、原子炉格納容器11に圧力抑制プールを設けていない。しかし、IC冷却水プール31から排出された冷却水を貯留する中間タンク41が圧力抑制プールと同様な機能を発揮することができる。 When the steam discharged to the intermediate tank 41 is condensed by the cooling water, most of the radioactive substances contained in the steam are captured by the cooling water in the intermediate tank 41 due to the scrubbing effect and retained in the cooling water. Therefore, even if steam is released outside the containment vessel 11 thereafter, the amount of radioactive substances released outside the containment vessel 11 can be suppressed. In this embodiment, the containment vessel 11 is not provided with a pressure suppression pool. However, the intermediate tank 41 that stores the cooling water discharged from the IC cooling water pool 31 can exhibit the same function as the pressure suppression pool.
 なお、減圧ライン45を通って中間タンク41に流入する蒸気流量が非常に多い場合、原子炉格納容器11の圧力上昇の速度が速くなる。そのため、原子炉圧力容器13の減圧の速度が可能な限り遅くなるように減圧ライン45の配管径を設計することが好ましい。もしくは、減圧ライン45の中途位置にオリフィス(図示せず)を設けることで、減圧ライン45を通る蒸気流量を制限するように構成することが可能である。また、主蒸気管14に元々設けられている流量制限器(図示せず)を利用して中間タンク41に流入する蒸気流量を制限する構成も可能である。 It should be noted that when the flow rate of steam flowing into the intermediate tank 41 through the decompression line 45 is very large, the speed of pressure increase in the reactor containment vessel 11 increases. Therefore, it is preferable to design the diameter of the decompression line 45 so that the rate of decompression of the reactor pressure vessel 13 is as slow as possible. Alternatively, by providing an orifice (not shown) in the middle of the pressure reducing line 45, it is possible to restrict the steam flow rate passing through the pressure reducing line 45. Further, a configuration is also possible in which a flow rate restrictor (not shown) originally provided in the main steam pipe 14 is used to limit the flow rate of steam flowing into the intermediate tank 41 .
 本実施の形態は、中間タンク41に注水する水源として、IC冷却水プール31を用いている。減圧保護系40は、IC30が作動しない場合に作動するものである。したがって、減圧保護系40の作動時には、IC冷却水プール31の冷却水は略全量残存している。活用されていないIC冷却水プール31の冷却水を中間タンク41に注水することで、冷却水を無駄なく利用することができ、中間タンク41に注水する冷却水を貯留するタンクを新たに設ける必要が無い。 This embodiment uses the IC cooling water pool 31 as a water source for injecting water into the intermediate tank 41 . The decompression protection system 40 operates when the IC 30 does not operate. Therefore, substantially all of the cooling water in the IC cooling water pool 31 remains when the decompression protection system 40 is activated. By injecting the cooling water from the unused IC cooling water pool 31 into the intermediate tank 41, the cooling water can be used without waste. There is no
 このように、減圧保護系40は、IC30が作動せずに原子炉圧力容器13内の圧力が閾値を超えて上昇した場合、原子炉圧力容器13の圧力上昇した蒸気によりドレン弁43及び減圧弁46が開弁することで起動し、IC冷却水プール31から中間タンク41に排出された冷却水に原子炉圧力容器13の蒸気を導入する。これにより、原子炉圧力容器13が減圧されて原子炉圧力容器13の高圧破損を防止することができると共に、原子炉格納容器11の圧力上昇を抑制することができる。 In this way, when the IC 30 does not operate and the pressure in the reactor pressure vessel 13 rises above the threshold value, the depressurization protection system 40 causes the pressure-increased steam in the reactor pressure vessel 13 to open the drain valve 43 and the pressure reducing valve. 46 is opened to introduce steam in the reactor pressure vessel 13 into the cooling water discharged from the IC cooling water pool 31 to the intermediate tank 41 . As a result, the reactor pressure vessel 13 is decompressed to prevent high-pressure damage of the reactor pressure vessel 13, and the pressure increase in the reactor containment vessel 11 can be suppressed.
 本実施の形態に係る原子力プラント1は、IC30が不作動のとき、原子炉圧力容器13を減圧する減圧保護系40を備えているが、原子炉圧力容器13内に注水する系統は備えていない。この理由は、原子炉圧力容器13の圧力が7MPa以上なので、原子炉圧力容器13内に重力により注水しようとすると、水源を原子炉圧力容器13よりも700m以上高い位置に配置する必要があり、非現実的であるからである。 The nuclear power plant 1 according to the present embodiment includes a depressurization protection system 40 for depressurizing the reactor pressure vessel 13 when the IC 30 is inoperative, but does not include a system for injecting water into the reactor pressure vessel 13. . The reason for this is that the pressure of the reactor pressure vessel 13 is 7 MPa or more, so if water is to be injected into the reactor pressure vessel 13 by gravity, the water source must be placed at a position higher than the reactor pressure vessel 13 by 700 m or more. Because it is unrealistic.
 このため、IC30が作動しない場合には、炉心12が冷却されずに崩壊熱によって溶融する恐れがある。溶融炉心は、原子炉圧力容器13の下部を溶融して破損させる。原子炉圧力容器13の下部が破損すると、溶融炉心が原子炉格納容器11の床面11a上に落下して拡がり、原子炉格納容器11の雰囲気温度を上昇させる。 Therefore, if the IC 30 does not operate, the core 12 may melt due to decay heat without being cooled. The molten core melts and damages the lower portion of the reactor pressure vessel 13 . When the lower portion of the reactor pressure vessel 13 is damaged, the molten core drops and spreads on the floor surface 11a of the reactor containment vessel 11, raising the ambient temperature of the reactor containment vessel 11.
 溶融炉心の熱エネルギにより原子炉格納容器11の雰囲気温度が異常な高温になると、溶融弁48が開弁する。溶融弁48の開弁により、中間タンク41内に排出されて貯留されていた冷却水が床面注水ライン47を介して原子炉格納容器11の床面11a上の溶融炉心に放出される。この冷却水により溶融炉心が冷却され、過酷事故が収束する。このように、IC30が作動しない状況でも、操作員が操作を行うことなく溶融弁48が開弁し且つ動的機器を用いることなく冷却水の自重により溶融炉心に注水することで、事故を収束させることができる。 When the temperature of the atmosphere in the containment vessel 11 becomes abnormally high due to the thermal energy of the molten core, the melting valve 48 opens. By opening the melting valve 48 , the cooling water discharged and stored in the intermediate tank 41 is discharged to the molten core on the floor 11 a of the containment vessel 11 through the floor water injection line 47 . This cooling water cools the molten core, and the severe accident ends. In this way, even if the IC 30 does not operate, the melt valve 48 is opened without any operation by the operator, and the cooling water is injected into the molten core by its own weight without using any dynamic equipment, thereby converging the accident. can be made
 上述したように、第1の実施の形態に係る原子力プラント1の安全系は、原子炉格納容器11に格納された原子炉圧力容器13からの蒸気を冷却により凝縮させて再び原子炉圧力容器13に戻すIC30を備えたものであって、原子炉格納容器11の外部に設置され冷却水を貯留する水源としてのIC30のIC冷却水プール31と、原子炉格納容器11の内部に位置すると共にIC冷却水プール31(水源)よりも下方に位置し、IC冷却水プール31(水源)から排出される冷却水を受け止めて貯留することが可能な貯留部としての中間タンク41と、IC冷却水プール31(水源)に接続され、IC冷却水プール31(水源)の冷却水を中間タンク41(貯留部)に導くドレンライン42(第1ライン)と、ドレンライン42(第1ライン)上に設けられ、ドレンライン42(第1ライン)を開放状態又は閉止状態に切り換えるドレン弁43(第1弁)と、一方側は原子炉圧力容器13に間接的に接続されると共に他方側はIC冷却水プール31(水源)からの冷却水が中間タンク41(貯留部)に貯留されたときの想定水位41aよりも低い位置で開口する減圧ライン45(第2ライン)と、減圧ライン45(第2ライン)上に設けられ、減圧ライン45(第2ライン)を開放状態又は閉止状態に切り換える減圧弁46(第2弁)とを備える。ドレン弁43(第1弁)及び減圧弁46(第2弁)は、原子炉圧力容器13内の圧力の高さに応じて開弁するように構成されている。 As described above, the safety system of the nuclear power plant 1 according to the first embodiment cools and condenses the steam from the reactor pressure vessel 13 stored in the reactor containment vessel 11, The IC 30 is provided with an IC 30 that returns to the reactor containment vessel 11, and an IC cooling water pool 31 of the IC 30 as a water source for storing cooling water installed outside the reactor containment vessel 11, and an IC An intermediate tank 41 as a storage unit positioned below the cooling water pool 31 (water source) and capable of receiving and storing cooling water discharged from the IC cooling water pool 31 (water source), and the IC cooling water pool. 31 (water source) to lead the cooling water of the IC cooling water pool 31 (water source) to the intermediate tank 41 (reservoir), and provided on the drain line 42 (first line) A drain valve 43 (first valve) that switches the drain line 42 (first line) to an open state or a closed state, one side of which is indirectly connected to the reactor pressure vessel 13, and the other side of which is connected to the IC cooling water The pressure reduction line 45 (second line) that opens at a position lower than the assumed water level 41a when the cooling water from the pool 31 (water source) is stored in the intermediate tank 41 (storage section), and the pressure reduction line 45 (second line) ) and a pressure reducing valve 46 (second valve) for switching the pressure reducing line 45 (second line) between an open state and a closed state. The drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) are configured to open according to the height of the pressure inside the reactor pressure vessel 13 .
 この構成によれば、IC30の不作動により原子炉圧力容器13内の圧力が通常範囲を逸脱して上昇しても、ドレン弁43(第1弁)及び減圧弁46(第2弁)が開弁することで、IC冷却水プール31(水源)から中間タンク41(貯留部)に排出された冷却水に原子炉圧力容器13からの蒸気が導入されて凝縮するので、原子炉格納容器11に圧力抑制プールを設けることなく、原子炉圧力容器13を減圧することができる。すなわち、原子炉格納容器11の構造を簡素化することができ、かつ、IC30が不作動の場合でも動的機器を用いずに原子炉圧力容器13を減圧することができる。 According to this configuration, even if the pressure in the reactor pressure vessel 13 deviates from the normal range and rises due to non-operation of the IC 30, the drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) are opened. As a result, the cooling water discharged from the IC cooling water pool 31 (water source) to the intermediate tank 41 (reservoir) is introduced with steam from the reactor pressure vessel 13 and condensed. The reactor pressure vessel 13 can be depressurized without providing a pressure suppression pool. That is, the structure of the reactor containment vessel 11 can be simplified, and the reactor pressure vessel 13 can be depressurized without using dynamic equipment even when the IC 30 is inoperative.
 また、本実施の形態においては、IC30が原子炉圧力容器13からの蒸気を冷却するための冷却水を貯留するIC冷却水プール31を含み、IC冷却水プール31が上述の水源を兼ねている。この構成によれば、中間タンク41に排出する冷却水を予め貯留している減圧保護系40の水源として、冷却水タンクを別途設置する必要がないので、原子力プラント1の安全系の構成を簡略化することができる。 Further, in the present embodiment, the IC 30 includes an IC cooling water pool 31 that stores cooling water for cooling the steam from the reactor pressure vessel 13, and the IC cooling water pool 31 also serves as the water source described above. . According to this configuration, since it is not necessary to separately install a cooling water tank as a water source of the decompression protection system 40 that stores cooling water to be discharged to the intermediate tank 41 in advance, the configuration of the safety system of the nuclear power plant 1 can be simplified. can be
 また、本実施の形態においては、上述の貯留部が原子炉格納容器11内に設置された中間タンク41(タンク)である。この構成によれば、原子炉格納容器11内に貯留部を容易に確保することができる。 Also, in the present embodiment, the above-described storage section is the intermediate tank 41 (tank) installed inside the reactor containment vessel 11 . According to this configuration, it is possible to easily secure the reservoir in the containment vessel 11 .
 さらに、本実施の形態においては、中間タンク41は、原子炉圧力容器13から離れた位置に配置されている。この構成によれば、中間タンク41の配置位置として、機器が多数配置される原子炉圧力容器13の周辺領域を回避することができるので、中間タンク41の配置スペースを確保しやすい。 Furthermore, in this embodiment, the intermediate tank 41 is arranged at a position away from the reactor pressure vessel 13 . According to this configuration, the intermediate tank 41 can be arranged in an area around the reactor pressure vessel 13 where a large number of devices are arranged.
 また、本実施の形態に係る原子力プラント1の安全系は、中間タンク41に接続されIC冷却水プール31(水源)から中間タンク41に排出された冷却水を原子炉格納容器11の床面11aに放出可能な床面注水ライン47(第3ライン)と、床面注水ライン47(第3ライン)上に設けられ床面注水ライン47(第3ライン)を閉止する溶融弁48(第3弁)とを更に備えている。溶融弁48(第3弁)は、溶融弁48(第3弁)の周囲の熱を受けて開弁するように構成されている。 Further, the safety system of the nuclear power plant 1 according to the present embodiment is connected to the intermediate tank 41 and discharges the cooling water discharged from the IC cooling water pool 31 (water source) to the intermediate tank 41 to the floor surface 11a of the reactor containment vessel 11. and a melting valve 48 (third valve ). The melting valve 48 (third valve) is configured to open upon receiving heat from the surroundings of the melting valve 48 (third valve).
 この構成によれば、原子炉格納容器11の床面11a上に溶融炉心が拡がってしまった場合でも、溶融炉心の熱により溶融弁48が操作員の操作なしに開弁し、中間タンク41に貯留されている冷却水の自重により動的機器を用いることなく溶融炉心に注水することで、当該事故を収束させることができる。 According to this configuration, even if the molten core spreads above the floor surface 11a of the containment vessel 11, the heat of the molten core opens the melting valve 48 without the operator's operation, and the intermediate tank 41 The accident can be resolved by injecting water into the molten core using the weight of the stored cooling water without using dynamic equipment.
 また、本実施の形態においては、減圧弁46(第2弁)の開弁する圧力がドレン弁43(第1弁)の開弁する圧力よりも高くなるように設定されている。この構成によれば、ドレン弁43(第1弁)が開弁してIC冷却水プール31からの冷却水が中間タンク41に貯留された後に、減圧弁46(第2弁)を開弁させることができるので、原子炉圧力容器13の蒸気を中間タンク41の冷却水中に確実に導入して凝縮させることができる。したがって、原子炉圧力容器13の蒸気のエネルギが冷却水中に移行されるので、原子炉格納容器11の圧力上昇を確実に抑制することができる。 Further, in the present embodiment, the pressure at which the pressure reducing valve 46 (second valve) opens is set to be higher than the pressure at which the drain valve 43 (first valve) opens. According to this configuration, after the drain valve 43 (first valve) is opened and the cooling water from the IC cooling water pool 31 is stored in the intermediate tank 41, the pressure reducing valve 46 (second valve) is opened. Therefore, the steam in the reactor pressure vessel 13 can be reliably introduced into the cooling water in the intermediate tank 41 and condensed. Therefore, since the energy of the steam in the reactor pressure vessel 13 is transferred to the cooling water, the pressure rise in the reactor containment vessel 11 can be reliably suppressed.
 また、本実施の形態においては、ドレン弁43(第1弁)及び減圧弁46(第2弁)が原子炉圧力容器13で発生した蒸気の圧力を利用して開弁するように構成されている。この構成によれば、IC30の不作動により原子炉圧力容器13内の蒸気圧力が上昇したときに、操作員が操作することなくドレン弁43(第1弁)及び減圧弁46(第2弁)を自動的に開弁させることができる。 Further, in the present embodiment, the drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) are configured to open using the pressure of the steam generated in the reactor pressure vessel 13. there is According to this configuration, when the steam pressure in the reactor pressure vessel 13 rises due to the non-operation of the IC 30, the drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) are operated without the operator's operation. can be automatically opened.
 また、本実施の形態においては、ドレン弁43(第1弁)及び減圧弁46(第2弁)は原子炉圧力容器で発生した蒸気が圧力伝送管70を介して供給されることで蒸気の圧力により直接的に作動するように構成されている。この構成によれば、原子炉圧力容器13の蒸気を利用してドレン弁43(第1弁)及び減圧弁46(第2弁)を駆動させる弁駆動システムとして、圧力伝送管70を使用すればよいので、弁駆動システムを簡素に構成することができる。 Further, in the present embodiment, the drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) are supplied with the steam generated in the reactor pressure vessel through the pressure transmission pipe 70, thereby It is designed to be directly actuated by pressure. According to this configuration, if the pressure transmission pipe 70 is used as a valve driving system for driving the drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) using the steam in the reactor pressure vessel 13, Therefore, the valve drive system can be configured simply.
 また、本実施の形態に係る原子力プラント1の安全系は、ドレンライン42(第1ライン)上に設けられ、中間タンク41(貯留部)に向かう流れを許容する一方、IC冷却水プール31(水源)に向かう流れを阻止する逆止弁44を更に備えている。この構成によれば、原子炉格納容器11内の気体のドレンライン42を介した原子炉格納容器11外への放出を防止することができる。 In addition, the safety system of the nuclear power plant 1 according to the present embodiment is provided on the drain line 42 (first line) and allows the flow toward the intermediate tank 41 (reservoir), while the IC cooling water pool 31 ( There is also a check valve 44 that prevents flow towards the water source. According to this configuration, it is possible to prevent the gas inside the reactor containment vessel 11 from being discharged to the outside of the reactor containment vessel 11 via the drain line 42 .
 [第2の実施の形態]
  次に、本発明の原子力プラントの安全系の第2の実施の形態について図7を用いて説明する。図7は本発明の原子力プラントの安全系の第2の実施の形態を備えた原子力プラントを示す概略系統図である。なお、図7において、図1~図6に示す符号と同符合のものは、同様な部分であるので、詳細な説明は省略する。
[Second embodiment]
Next, a second embodiment of a safety system for a nuclear power plant according to the present invention will be described with reference to FIG. FIG. 7 is a schematic system diagram showing a nuclear power plant equipped with a second embodiment of the nuclear power plant safety system of the present invention. In FIG. 7, parts having the same reference numerals as those shown in FIGS. 1 to 6 are the same parts, so detailed description thereof will be omitted.
 図7に示す本発明の第2の実施の形態に係る原子力プラントの安全系が第1の実施の形態と相違する点は、IC冷却水プール31からドレンされる冷却水を貯留する減圧保護系40Aの貯留部として、第1の実施の形態の減圧保護系40の中間タンク41の代わりに、原子炉格納容器11における床面11aを含む底部を用いることである。本実施の形態の減圧保護系40Aは、IC冷却水プール31の冷却水を原子炉格納容器11の床面11aに直接排出し、排出された冷却水を原子炉格納容器11の底部にて貯留させる。 The safety system of the nuclear power plant according to the second embodiment of the present invention shown in FIG. Instead of the intermediate tank 41 of the depressurization protection system 40 of the first embodiment, the bottom of the containment vessel 11 including the floor surface 11a is used as the reservoir of 40A. The depressurization protection system 40A of the present embodiment discharges the cooling water of the IC cooling water pool 31 directly to the floor surface 11a of the reactor containment vessel 11, and stores the discharged cooling water at the bottom of the reactor containment vessel 11. Let
 具体的には、減圧保護系40Aは、第1の実施の形態と同様な水源としてのIC冷却水プール31と、IC冷却水プール31から原子炉格納容器11の床面11aの近傍まで延在するドレンライン42Aと、ドレンライン42A上に配置された第1の実施の形態と同様なドレン弁43及び逆止弁44と、主蒸気管14から分岐して原子炉格納容器11の床面11aの近傍まで延在する減圧ライン45Aと、減圧ライン45A上に設置された第1の実施の形態と同様な減圧弁46とを備えている。ドレンライン42Aは、IC冷却水プール31に貯留されている冷却水の少なくとも一部を原子炉格納容器11の床面11aに直接注水するものである。減圧ライン45Aは、IC冷却水プール31からの冷却水が原子炉格納容器11の底部に貯留されるときの想定水位11bよりも低い位置で開口するように構成されている。すなわち、減圧ライン45Aは、原子炉格納容器11の底部に貯留されるIC冷却水プール31からの冷却水中に原子炉圧力容器13内の蒸気を導入するものである。 Specifically, the depressurization protection system 40A includes an IC cooling water pool 31 as a water source similar to that of the first embodiment, and an IC cooling water pool 31 extending from the IC cooling water pool 31 to the vicinity of the floor surface 11a of the reactor containment vessel 11. a drain line 42A, a drain valve 43 and a check valve 44 similar to those in the first embodiment arranged on the drain line 42A, and a main steam pipe 14 branched from the floor surface 11a of the reactor containment vessel 11. and a pressure reducing valve 46 similar to that of the first embodiment installed on the pressure reducing line 45A. The drain line 42</b>A directly injects at least part of the cooling water stored in the IC cooling water pool 31 to the floor surface 11 a of the reactor containment vessel 11 . The decompression line 45A is configured to open at a position lower than the assumed water level 11b when the cooling water from the IC cooling water pool 31 is stored in the bottom of the reactor containment vessel 11 . That is, the decompression line 45A introduces the steam inside the reactor pressure vessel 13 into the cooling water from the IC cooling water pool 31 stored at the bottom of the reactor containment vessel 11 .
 本実施の形態においては、全系統のIC30が作動しない場合、第1の実施の形態の場合と同様に、原子炉圧力容器13の圧力が圧力伝送管70を介してドレン弁43に伝送されることでドレン弁43が開弁する。ドレン弁43の開弁により、IC冷却水プール31の冷却水がドレンライン42Aを通して原子炉格納容器11の床面11a上に直接排出され、原子炉格納容器11の底部にIC冷却水プール31から排出された冷却水が貯留される。 In this embodiment, when the ICs 30 of all systems do not operate, the pressure of the reactor pressure vessel 13 is transmitted to the drain valve 43 through the pressure transmission pipe 70, as in the first embodiment. As a result, the drain valve 43 is opened. By opening the drain valve 43, the cooling water in the IC cooling water pool 31 is discharged directly onto the floor surface 11a of the reactor containment vessel 11 through the drain line 42A, and flows from the IC cooling water pool 31 to the bottom of the reactor containment vessel 11. The discharged cooling water is stored.
 さらに、第1の実施の形態と同様に、原子炉圧力容器13の圧力が圧力伝送管70を介して伝送されることで減圧弁46がドレン弁43よりも遅れて開弁する。減圧弁46の開弁により、原子炉圧力容器13内の蒸気は減圧ライン45Aを通って原子炉格納容器11の底部に貯留された冷却水中に導入されて凝縮するので、原子炉圧力容器13内の蒸気のエネルギが当該冷却水に移行する。これにより、原子炉圧力容器13が減圧されて原子炉圧力容器13の高圧破損を防止することができると共に、原子炉格納容器11の圧力上昇を抑制することができる。また、蒸気中に含まれる放射性物質の大半が原子炉格納容器11の底部に貯留されている冷却水のスクラビング効果によって捕獲され、冷却水中に保持される。 Furthermore, as in the first embodiment, the pressure of the reactor pressure vessel 13 is transmitted via the pressure transmission pipe 70, so that the pressure reducing valve 46 opens later than the drain valve 43. By opening the decompression valve 46, the steam in the reactor pressure vessel 13 is introduced through the decompression line 45A into the cooling water stored in the bottom of the containment vessel 11 and condensed. is transferred to the cooling water. As a result, the reactor pressure vessel 13 is decompressed to prevent high-pressure damage of the reactor pressure vessel 13, and the pressure increase in the reactor containment vessel 11 can be suppressed. Also, most of the radioactive substances contained in the steam are captured by the scrubbing effect of the cooling water stored at the bottom of the containment vessel 11 and retained in the cooling water.
 本実施の形態においては、炉心溶融が発生する前に原子炉格納容器11の床面11a上に冷却水が張られる。そのため、炉心溶融が発生した場合、溶融炉心は既に床面11a上に張られている冷却水中に落下するので、微粒化されて粒状に固化する。微粒化された溶融炉心は冷却水との接触面積が増えて効率的に冷却されるので、過酷事故をより迅速に収束することができる。 In the present embodiment, cooling water is spread over the floor surface 11a of the reactor containment vessel 11 before core meltdown occurs. Therefore, when a core meltdown occurs, the molten core falls into the cooling water that has already spread over the floor surface 11a, so that it is atomized and solidified into granules. Since the atomized molten core has an increased contact area with cooling water and is efficiently cooled, a severe accident can be contained more quickly.
 本実施の形態においては、原子炉格納容器11の底部に貯留される冷却水の水面下(想定水位11bよりも低い位置)に減圧ライン45Aが開口するように構成されている。したがって、減圧保護系40Aが作動した場合、原子炉圧力容器13の蒸気が原子炉格納容器11の底部に貯留されている冷却水中に吹き込まれるので、当該冷却水中には多数の気泡(ボイドとも呼ばれる)が含まれた状態となる。水中にボイドが含まれる場合には、溶融炉心の冷却水中への落下による水蒸気爆発の発生リスクを低減ですることができるという知見がある。 In the present embodiment, the decompression line 45A is configured to open below the surface of the cooling water stored in the bottom of the reactor containment vessel 11 (position lower than the assumed water level 11b). Therefore, when the depressurization protection system 40A is activated, the steam in the reactor pressure vessel 13 is blown into the cooling water stored in the bottom of the reactor containment vessel 11, resulting in a large number of air bubbles (also called voids) in the cooling water. ) is included. It is known that when voids are contained in the water, the risk of a steam explosion due to the molten core falling into the cooling water can be reduced.
 なお、本実施の形態においては、IC冷却水プール31から原子炉格納容器11の床面11aにドレンする冷却水の水位を原子炉圧力容器13の底面に達するようにIC冷却水プール31の貯留量を設定することで、減圧保護系40Aが作動したときに、IC冷却水プール31から排出された冷却水により原子炉圧力容器13の底部を外部から直接冷却することが可能となる。この場合、炉心溶融が発生しても、溶融炉心を原子炉圧力容器13内に留めた状態で冷却することができ、溶融炉心を原子炉格納容器11の床面11a上に落下させることなく過酷事故を収束させることができる。したがって、溶融燃料の取出しなどの事故後の処理が容易になる。 In the present embodiment, the water level of the cooling water drained from the IC cooling water pool 31 to the floor surface 11 a of the reactor containment vessel 11 is set to reach the bottom surface of the reactor pressure vessel 13 . By setting the amount, it becomes possible to directly cool the bottom of the reactor pressure vessel 13 from the outside with the cooling water discharged from the IC cooling water pool 31 when the depressurization protection system 40A is activated. In this case, even if a core meltdown occurs, the molten core can be cooled while remaining inside the reactor pressure vessel 13, and the molten core can be severely cooled without falling onto the floor surface 11a of the containment vessel 11. accidents can be brought to an end. Therefore, post-accident treatment such as removal of molten fuel is facilitated.
 上述した第2の実施の形態に係る原子力プラントの安全系においては、第1の実施の形態の場合と同様に、IC30の不作動により原子炉圧力容器13内の圧力が通常範囲を逸脱して上昇しても、ドレン弁43(第1弁)及び減圧弁46(第2弁)が開弁することで、IC冷却水プール31(水源)から原子炉格納容器11の底部(貯留部)に排出された冷却水に原子炉圧力容器13からの蒸気が導入されて凝縮するので、原子炉格納容器11に圧力抑制プールを設けることなく、原子炉圧力容器13を減圧することができる。すなわち、原子炉格納容器11の構造を簡素化することができ、かつ、IC30が不作動の場合でも動的機器を用いずに原子炉圧力容器13を減圧することができる。 In the safety system of the nuclear power plant according to the second embodiment described above, as in the case of the first embodiment, the pressure in the reactor pressure vessel 13 deviates from the normal range due to the non-operation of the IC 30. Even if it rises, the drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) are opened, so that the water flows from the IC cooling water pool 31 (water source) to the bottom (reservoir) of the reactor containment vessel 11. Since steam from the reactor pressure vessel 13 is introduced into the discharged cooling water and condensed, the reactor pressure vessel 13 can be depressurized without providing a pressure suppression pool in the reactor containment vessel 11 . That is, the structure of the reactor containment vessel 11 can be simplified, and the reactor pressure vessel 13 can be depressurized without using dynamic equipment even when the IC 30 is inoperative.
 また、本実施の形態においては、上述の貯留部が原子炉格納容器11の床面11aを含む底部である。この構成によれば、本実施の形態の減圧保護系40Aが第1の実施の形態の減圧保護系40の構成に対して中間タンク41を省略した構成となるので、原子炉格納容器11内の中間タンク41が占有していた空間を有効活用することで、原子炉格納容器11の小型化を図ることができる。 In addition, in the present embodiment, the above-described storage section is the bottom section including the floor surface 11a of the containment vessel 11 . According to this configuration, the decompression protection system 40A of the present embodiment has a configuration in which the intermediate tank 41 is omitted from the configuration of the decompression protection system 40 of the first embodiment. By effectively utilizing the space occupied by the intermediate tank 41, the size of the reactor containment vessel 11 can be reduced.
 [第3の実施の形態]
  次に、本発明の原子力プラントの安全系の第3の実施の形態について図8を用いて説明する。図8は本発明の原子力プラントの安全系の第3の実施の形態を備えた原子力プラントを示す概略系統図である。なお、図8において、図1~図7に示す符号と同符合のものは、同様な部分であるので、その詳細な説明は省略する。
[Third embodiment]
Next, a third embodiment of a safety system for a nuclear power plant according to the present invention will be described with reference to FIG. FIG. 8 is a schematic system diagram showing a nuclear power plant equipped with a nuclear power plant safety system according to a third embodiment of the present invention. In FIG. 8, parts having the same reference numerals as those shown in FIGS. 1 to 7 are the same parts, and detailed description thereof will be omitted.
 図8に示す本発明の原子力プラントの安全系の第3の実施の形態が第1の実施の形態と異なる点は、IC冷却水プール31からドレンされる冷却水を貯留する減圧保護系40Bの貯留部として、第1の実施の形態の減圧保護系40の中間タンク41の代わりに、原子炉圧力容器13の底部が位置する領域に圧力容器冷却タンク41Bを設置することである。本実施の形態の減圧保護系40Bは、IC冷却水プール31の冷却水を圧力容器冷却タンク41Bに排出し、圧力容器冷却タンク41Bが貯留するIC冷却水プール31からの冷却水により原子炉圧力容器13の底部を外部から直接冷却するように構成されている。 The third embodiment of the nuclear plant safety system of the present invention shown in FIG. Instead of the intermediate tank 41 of the depressurization protection system 40 of the first embodiment, a pressure vessel cooling tank 41B is installed in the area where the bottom of the reactor pressure vessel 13 is located as a reservoir. The depressurization protection system 40B of the present embodiment discharges the cooling water from the IC cooling water pool 31 to the pressure vessel cooling tank 41B, and the cooling water from the IC cooling water pool 31 stored in the pressure vessel cooling tank 41B reduces the reactor pressure. It is configured to directly cool the bottom of the container 13 from the outside.
 具体的には、減圧保護系40Bは、原子炉格納容器11内に配置された圧力容器冷却タンク41Bと、IC冷却水プール31と圧力容器冷却タンク41Bと接続するドレンライン42Bと、ドレンライン42B上の第1の実施の形態と同様なドレン弁43及び逆止弁44と、主蒸気管14から分岐して圧力容器冷却タンク41Bに接続された減圧ライン45Bと、減圧ライン45B上の第1の実施の形態と同様な減圧弁46とを備えている。圧力容器冷却タンク41Bは、水源としてのIC冷却水プール31から排出された冷却水を貯留するものであり、IC冷却水プール31からの冷却水を貯留したときに、原子炉圧力容器13の底部が当該冷却水の水面下に位置するように配置されている。ドレンライン42Bは、IC冷却水プール31に貯留されている冷却水の少なくとも一部を圧力容器冷却タンク41Bに導くものである。減圧ライン45Bは、IC冷却水プール31からの冷却水が圧力容器冷却タンク41Bに貯留されるときの想定水位41aよりも低い位置で開口するように構成されている。すなわち、減圧ライン45Bは、原子炉圧力容器13内の蒸気を圧力容器冷却タンクに貯留されるIC冷却水プール31からの冷却水中に導入するものである。 Specifically, the depressurization protection system 40B includes a pressure vessel cooling tank 41B arranged in the reactor containment vessel 11, a drain line 42B connecting the IC cooling water pool 31 and the pressure vessel cooling tank 41B, and a drain line 42B. The same drain valve 43 and check valve 44 as in the above first embodiment, the pressure reduction line 45B branched from the main steam pipe 14 and connected to the pressure vessel cooling tank 41B, and the first and a pressure reducing valve 46 similar to the embodiment of . The pressure vessel cooling tank 41B stores the cooling water discharged from the IC cooling water pool 31 as a water source. is positioned below the surface of the cooling water. The drain line 42B guides at least part of the cooling water stored in the IC cooling water pool 31 to the pressure vessel cooling tank 41B. The decompression line 45B is configured to open at a position lower than the assumed water level 41a when the cooling water from the IC cooling water pool 31 is stored in the pressure vessel cooling tank 41B. That is, the decompression line 45B introduces the steam inside the reactor pressure vessel 13 into the cooling water from the IC cooling water pool 31 stored in the pressure vessel cooling tank.
 本実施の形態においては、全系統のIC30が作動しない場合、第1の実施の形態の場合と同様に、原子炉圧力容器13の圧力によりドレン弁43が開弁する。ドレン弁43の開弁により、IC冷却水プール31の冷却水がドレンライン42Bを通して圧力容器冷却タンク41Bにドレンされ、圧力容器冷却タンク41BにIC冷却水プール31から排出された冷却水が貯留される。 In this embodiment, when the ICs 30 of all systems do not operate, the drain valve 43 is opened by the pressure of the reactor pressure vessel 13, as in the first embodiment. By opening the drain valve 43, the cooling water in the IC cooling water pool 31 is drained through the drain line 42B into the pressure vessel cooling tank 41B, and the cooling water discharged from the IC cooling water pool 31 is stored in the pressure vessel cooling tank 41B. be.
 さらに、第1の実施の形態の場合と同様に、原子炉圧力容器13の圧力により減圧弁46がドレン弁43よりも遅れて開弁する。減圧弁46の開弁により、原子炉圧力容器13内の蒸気は減圧ライン45Bを通って圧力容器冷却タンク41Bに貯留された冷却水中に導入されて凝縮するので、原子炉圧力容器13内の蒸気のエネルギが当該冷却水に移行する。これにより、原子炉圧力容器13が減圧されて原子炉圧力容器13の高圧破損を防止することができると共に、原子炉格納容器11の圧力上昇を抑制することができる。また、蒸気中に含まれる放射性物質の大半が圧力容器冷却タンク41Bの冷却水のスクラビング効果によって捕獲され、冷却水中に保持される。 Furthermore, as in the case of the first embodiment, the pressure in the reactor pressure vessel 13 causes the pressure reducing valve 46 to open later than the drain valve 43 . By opening the decompression valve 46, the steam in the reactor pressure vessel 13 is introduced into the cooling water stored in the pressure vessel cooling tank 41B through the decompression line 45B and is condensed. energy is transferred to the cooling water. As a result, the reactor pressure vessel 13 is decompressed to prevent high-pressure damage of the reactor pressure vessel 13, and the pressure increase in the reactor containment vessel 11 can be suppressed. Also, most of the radioactive substances contained in the steam are captured by the scrubbing effect of the cooling water in the pressure vessel cooling tank 41B and retained in the cooling water.
 本実施の形態においては、圧力容器冷却タンク41Bが原子炉圧力容器13の底部が位置する領域に配置されている。したがって、炉心溶融が発生して溶融炉心が原子炉圧力容器13の底部に落下しても、減圧保護系40Bが既に作動しているので、圧力容器冷却タンク41Bが貯留する冷却水によって原子炉圧力容器13の底部に溜まる溶融炉心を外部から冷却することができる。したがって、溶融炉心を原子炉格納容器11の床面11a上に落下させることなく原子炉圧力容器13内に留めた状態で過酷事故を収束させることができ、溶融燃料の取出しなど、事故後の処理が容易になる。 In this embodiment, the pressure vessel cooling tank 41B is arranged in the area where the bottom of the reactor pressure vessel 13 is located. Therefore, even if a core meltdown occurs and the molten core falls to the bottom of the reactor pressure vessel 13, the depressurization protection system 40B is already operating, so the reactor pressure is maintained by the cooling water stored in the pressure vessel cooling tank 41B. The molten core that collects at the bottom of vessel 13 can be cooled from the outside. Therefore, the severe accident can be brought to an end while the molten reactor core remains in the reactor pressure vessel 13 without falling onto the floor 11a of the containment vessel 11. becomes easier.
 また、本実施の形態においては、溶融炉心が原子炉圧力容器13の底部に落下する前に、圧力容器冷却タンク41Bに貯留されている冷却水は原子炉圧力容器13から減圧ライン45Bを介して放出される蒸気により加熱されている。そのため、溶融炉心が原子炉圧力容器13の底部に落下すると、既に加熱されている圧力容器冷却タンク41Bの冷却水は速やかに沸騰する。したがって、圧力容器冷却タンク41Bの冷却水は、沸騰熱伝達によって原子炉圧力容器13の底部を外部から効率よく冷却することができる。 In addition, in the present embodiment, before the molten core drops to the bottom of the reactor pressure vessel 13, the cooling water stored in the pressure vessel cooling tank 41B is discharged from the reactor pressure vessel 13 through the decompression line 45B. It is heated by the released steam. Therefore, when the molten core falls to the bottom of the reactor pressure vessel 13, the already heated cooling water in the pressure vessel cooling tank 41B quickly boils. Therefore, the cooling water in the pressure vessel cooling tank 41B can efficiently cool the bottom of the reactor pressure vessel 13 from the outside by boiling heat transfer.
 上述した第3の実施の形態に係る原子力プラントの安全系においては、第1の実施の形態の場合と同様に、IC30の不作動により原子炉圧力容器13内の圧力が通常範囲を逸脱して上昇しても、ドレン弁43(第1弁)及び減圧弁46(第2弁)が開弁することで、IC冷却水プール31(水源)から圧力容器冷却タンク41B(貯留部)に排出された冷却水に原子炉圧力容器13からの蒸気が導入されて凝縮するので、原子炉格納容器11に圧力抑制プールを設けることなく、原子炉圧力容器13を減圧することができる。すなわち、原子炉格納容器11の構造を簡素化することができ、かつ、IC30が不作動の場合でも動的機器を用いずに原子炉圧力容器13を減圧することができる。 In the safety system of the nuclear power plant according to the third embodiment described above, as in the case of the first embodiment, the pressure in the reactor pressure vessel 13 deviates from the normal range due to the non-operation of the IC 30. Even if it rises, the drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) are opened, so that the IC cooling water pool 31 (water source) is discharged to the pressure vessel cooling tank 41B (reservoir). Since steam from the reactor pressure vessel 13 is introduced into the cooled water and condensed, the reactor pressure vessel 13 can be depressurized without providing a pressure suppression pool in the reactor containment vessel 11 . That is, the structure of the reactor containment vessel 11 can be simplified, and the reactor pressure vessel 13 can be depressurized without using dynamic equipment even when the IC 30 is inoperative.
 また、本実施の形態においては、圧力容器冷却タンク41BがIC冷却水プール31(水源)からの冷却水を貯留したときに原子炉圧力容器13の底部が当該冷却水の水面下に位置するように配置されている。この構成によれば、IC30の不作動により減圧保護系40Bが作動した場合、IC冷却水プール31(水源)から圧力容器冷却タンク41Bに排出されて貯留された冷却水によって原子炉圧力容器13の底部を外部から冷却することができる。 Further, in the present embodiment, when the pressure vessel cooling tank 41B stores cooling water from the IC cooling water pool 31 (water source), the bottom of the reactor pressure vessel 13 is positioned below the surface of the cooling water. are placed in According to this configuration, when the depressurization protection system 40B is activated due to the inactivation of the IC 30, the cooling water discharged from the IC cooling water pool 31 (water source) and stored in the pressure vessel cooling tank 41B is used to cool the reactor pressure vessel 13. The bottom can be cooled externally.
 [第4の実施の形態]
  次に、本発明の原子力プラントの安全系の第4の実施の形態について図9を用いて説明する。図9は本発明の原子力プラントの安全系の第4の実施の形態を備えた原子力プラントを示す概略系統図である。なお、図9において、図1~図8に示す符号と同符合のものは、同様な部分であるので、その詳細な説明は省略する。
[Fourth embodiment]
Next, a fourth embodiment of a safety system for a nuclear power plant according to the present invention will be described with reference to FIG. FIG. 9 is a schematic system diagram showing a nuclear power plant equipped with a nuclear power plant safety system according to a fourth embodiment of the present invention. In FIG. 9, parts having the same reference numerals as those shown in FIGS. 1 to 8 are the same parts, and detailed description thereof will be omitted.
 図9に示す本発明の原子力プラントの安全系の第4の実施の形態が第1の実施の形態と異なる点は、減圧保護系40Cのドレン弁43C及び逆止弁44Cが原子炉格納容器11の外部に配置されていることである。具体的には、減圧保護系40Cのドレンライン42Cは、IC冷却水プール31の側壁における底部側から原子炉格納容器11外に延在してから原子炉格納容器11内の中間タンク41まで延在している。ドレン弁43C及び逆止弁44Cは、ドレンライン42C上における原子炉格納容器11の外部に延在している部分に設けられている。ドレン弁43Cが原子炉格納容器11の外部に配置されているので、ドレン弁43Cを駆動するための圧力伝送管70Cの一部分が原子炉格納容器11の外部まで延びている。それ以外の構成及び構造は、第1の実施の形態と同様なものである。 The fourth embodiment of the nuclear plant safety system of the present invention shown in FIG. 9 differs from the first embodiment in that the drain valve 43C and check valve 44C of the decompression protection system 40C is located outside the Specifically, the drain line 42C of the depressurization protection system 40C extends from the bottom side of the side wall of the IC cooling water pool 31 to the outside of the containment vessel 11 and then to the intermediate tank 41 inside the containment vessel 11. exist. The drain valve 43C and the check valve 44C are provided at a portion of the drain line 42C that extends outside the containment vessel 11 . Since the drain valve 43</b>C is arranged outside the containment vessel 11 , a portion of the pressure transmission pipe 70</b>C for driving the drain valve 43</b>C extends to the outside of the containment vessel 11 . Other configurations and structures are similar to those of the first embodiment.
 上述した第4の実施の形態に係る原子力プラントの安全系においては、第1の実施の形態の場合と同様に、原子炉格納容器11の構造を簡素化することができ、かつ、IC30が不作動の場合でも動的機器を用いずに原子炉圧力容器13を減圧することができる。 In the nuclear plant safety system according to the fourth embodiment described above, as in the case of the first embodiment, the structure of the reactor containment vessel 11 can be simplified, and the IC 30 is unnecessary. Even in operation, the reactor pressure vessel 13 can be depressurized without the use of dynamic equipment.
 本実施の形態においては、ドレン弁43C(第1弁)が原子炉格納容器11の外側に配置されている。この構成によれば、ドレン弁43(第1弁)が原子炉格納容器11の内部に配置されている第1の実施の形態の場合よりも、ドレン弁43C(第1弁)へのアクセスが容易となる。したがって、ドレン弁43C(第1弁)を操作員の操作により開弁することが可能となると共に、ドレン弁43C(第1弁)のメンテナンスが容易になる。 In this embodiment, the drain valve 43C (first valve) is arranged outside the reactor containment vessel 11 . According to this configuration, access to the drain valve 43C (first valve) is easier than in the case of the first embodiment in which the drain valve 43 (first valve) is arranged inside the reactor containment vessel 11. easier. Therefore, the drain valve 43C (first valve) can be opened by an operator's operation, and maintenance of the drain valve 43C (first valve) is facilitated.
 [第5の実施の形態]
  次に、本発明の原子力プラントの安全系の第5の実施の形態について図10を用いて説明する。図10は本発明の原子力プラントの安全系の第5の実施の形態を備えた原子力プラントを示す概略系統図である。なお、図10において、図1~図9に示す符号と同符合のものは、同様な部分であるので、詳細な説明は省略する。
[Fifth embodiment]
Next, a fifth embodiment of the nuclear plant safety system of the present invention will be described with reference to FIG. FIG. 10 is a schematic system diagram showing a nuclear plant equipped with a nuclear plant safety system according to a fifth embodiment of the present invention. In FIG. 10, parts having the same reference numerals as those shown in FIGS. 1 to 9 are the same parts, so detailed description thereof will be omitted.
 図10に示す本発明の原子力プラントの安全系の第5の実施の形態が第1の実施の形態と異なる点は、貯留部としての中間タンク41に排出する冷却水を予め貯留する減圧保護系40Dの水源として、IC冷却水プール31の代わりに、冷却水貯留タンク49を別途備えていることである。本実施の形態の減圧保護系40Dは、冷却水貯留タンク49の冷却水を中間タンク41に排出し、中間タンク41が貯留する冷却水貯留タンク49からの冷却水により原子炉圧力容器13の蒸気を凝縮させるものである。具体的には、減圧保護系40Dの冷却水貯留タンク49は、原子炉格納容器11の外部において中間タンク41より高い位置に設置されている。ドレンライン42Dは、冷却水貯留タンク49と中間タンク41とを接続しており、冷却水貯留タンク49の冷却水を中間タンク41に導くものである。減圧保護系40Dのそれ以外の構成は第1の実施の形態と同様である。 The fifth embodiment of the safety system for a nuclear power plant of the present invention shown in FIG. A cooling water storage tank 49 is separately provided instead of the IC cooling water pool 31 as a water source for 40D. The depressurization protection system 40</b>D of the present embodiment discharges the cooling water in the cooling water storage tank 49 to the intermediate tank 41 , and the cooling water from the cooling water storage tank 49 stored in the intermediate tank 41 is used to restore steam in the reactor pressure vessel 13 . is condensed. Specifically, the cooling water storage tank 49 of the depressurization protection system 40</b>D is installed at a position higher than the intermediate tank 41 outside the reactor containment vessel 11 . The drain line 42</b>D connects the cooling water storage tank 49 and the intermediate tank 41 and guides the cooling water in the cooling water storage tank 49 to the intermediate tank 41 . Other configurations of the reduced pressure protection system 40D are the same as those of the first embodiment.
 本実施の形態においては、全系統のIC30が作動しない場合、第1の実施の形態の場合と同様に、原子炉圧力容器13の圧力によりドレン弁43が開弁し、冷却水貯留タンク49に貯留されている冷却水がドレンライン42Dを通して中間タンク41にドレンされ、中間タンク41に冷却水貯留タンク49から排出された冷却水が貯留される。 In the present embodiment, when the ICs 30 of all systems do not operate, the pressure of the reactor pressure vessel 13 causes the drain valve 43 to open, and The stored cooling water is drained to the intermediate tank 41 through the drain line 42D, and the cooling water discharged from the cooling water storage tank 49 is stored in the intermediate tank 41. FIG.
 さらに、第1の実施の形態の場合と同様に、原子炉圧力容器13の圧力により減圧弁46がドレン弁43よりも遅れて開弁し、原子炉圧力容器13内の蒸気が減圧ライン45を通って中間タンク41に貯留された冷却水中に導入されて凝縮する。これにより、原子炉圧力容器13が減圧されて原子炉圧力容器13の高圧破損を防止することができると共に、原子炉格納容器11の圧力上昇を抑制することができる。 Furthermore, as in the case of the first embodiment, the pressure in the reactor pressure vessel 13 causes the pressure reducing valve 46 to open later than the drain valve 43 , and the steam in the reactor pressure vessel 13 flows through the pressure reducing line 45 . It is introduced into the cooling water stored in the intermediate tank 41 through which it condenses. As a result, the reactor pressure vessel 13 is decompressed to prevent high-pressure damage of the reactor pressure vessel 13, and the pressure increase in the reactor containment vessel 11 can be suppressed.
 上述した第5の実施の形態に係る原子力プラントの安全系においては、第1の実施の形態の場合と同様に、IC30の不作動により原子炉圧力容器13内の圧力が通常範囲を逸脱して上昇しても、ドレン弁43(第1弁)及び減圧弁46(第2弁)が開弁することで、冷却水貯留タンク49(水源)から中間タンク41(貯留部)に排出された冷却水に原子炉圧力容器13からの蒸気が導入されて凝縮するので、原子炉格納容器11に圧力抑制プールを設けることなく、原子炉圧力容器13を減圧することができる。すなわち、原子炉格納容器11の構造を簡素化することができ、かつ、IC30が不作動の場合でも動的機器を用いずに原子炉圧力容器13を減圧することができる。 In the safety system of the nuclear power plant according to the fifth embodiment described above, as in the case of the first embodiment, the pressure in the reactor pressure vessel 13 deviates from the normal range due to the non-operation of the IC 30. Even if it rises, the drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) are opened, so that the cooling water discharged from the cooling water storage tank 49 (water source) to the intermediate tank 41 (storage section) Since steam from the reactor pressure vessel 13 is introduced into the water and condensed, the reactor pressure vessel 13 can be depressurized without providing a pressure suppression pool in the reactor containment vessel 11 . That is, the structure of the reactor containment vessel 11 can be simplified, and the reactor pressure vessel 13 can be depressurized without using dynamic equipment even when the IC 30 is inoperative.
 [減圧弁の弁駆動システムの変形例]
  次に、本発明の原子力プラントの安全系の第1~第5の実施の形態の一部を構成する減圧弁を駆動するための弁駆動システムの変形例の構成について図11を用いて説明する。図11は本発明の原子力プラントの安全系の第1~第5の実施の形態の一部を構成する減圧弁を駆動するための弁駆動システムの変形例を示すブロック図である。なお、図11において、図1~図10に示す符号と同符合のものは、同様な部分であるので、その詳細な説明は省略する。
[Modification of valve drive system for pressure reducing valve]
Next, the configuration of a modification of the valve drive system for driving the pressure reducing valves constituting a part of the first to fifth embodiments of the nuclear plant safety system of the present invention will be described with reference to FIG. . FIG. 11 is a block diagram showing a modification of the valve drive system for driving the pressure reducing valve, which constitutes a part of the first to fifth embodiments of the nuclear plant safety system of the present invention. In FIG. 11, parts having the same reference numerals as those shown in FIGS. 1 to 10 are the same parts, and detailed description thereof will be omitted.
 図11に示す減圧弁46の弁駆動システムの変形例が第1~第5の実施の形態の減圧弁46の弁駆動システムと異なる点は、減圧弁46を駆動させる圧力源として、原子炉圧力容器13からの高圧蒸気の代わりに、原子炉圧力容器13の高圧蒸気とは異なる高圧気体を供給する圧力源を用いることである。第1~第5の実施の形態の減圧弁46の弁駆動システムでは、原子炉圧力容器13に直接的に接続された圧力伝送管70を介して、原子炉圧力容器13の圧力が減圧弁46の弁開閉機構54(図2及び図3参照)に伝送されるように構成されている。そのため、原子炉圧力容器13から減圧弁46までの配管の取り回しが難しくなる場合がある。そこで、本変形例の弁駆動システム70E1では、減圧弁46の近傍に配置可能な圧力源を別途設置する。 The modified example of the valve drive system for the pressure reducing valve 46 shown in FIG. Instead of the high-pressure steam from the reactor pressure vessel 13, a pressure source that supplies a high-pressure gas different from the high-pressure steam in the reactor pressure vessel 13 is used. In the valve drive system of the pressure reducing valve 46 of the first to fifth embodiments, the pressure of the reactor pressure vessel 13 is controlled by the pressure reducing valve 46 via the pressure transmission pipe 70 directly connected to the reactor pressure vessel 13. is configured to be transmitted to the valve opening/closing mechanism 54 (see FIGS. 2 and 3). Therefore, it may become difficult to arrange the piping from the reactor pressure vessel 13 to the pressure reducing valve 46 . Therefore, in the valve drive system 70E1 of this modified example, a pressure source that can be arranged in the vicinity of the pressure reducing valve 46 is separately installed.
 減圧弁46は空気や窒素などの気体により作動する気体作動弁で構成され、減圧弁46を駆動する減圧弁駆動システム70E1は、原子炉圧力容器13内の蒸気の圧力が第2閾値を超えて上昇した場合に原子炉圧力容器13の蒸気とは異なる圧力源を用いて作動させるものである。具体的には、減圧弁駆動システム70E1は、第1所定値以上の圧力の高圧気体G(空気や窒素など)を発生させる高圧気体発生装置71と、高圧気体発生装置71により発生した高圧気体Gを蓄圧する気体蓄圧装置72と、破断可能なラプチャディスク73と、入力される圧力に応じてラプチャディスク73の破断操作を行う流体圧力コンバータ74と、上流側の圧力に応じて流路を切り替える切替弁75とを備えている。 The pressure reducing valve 46 is composed of a gas-actuated valve that is operated by a gas such as air or nitrogen. It is operated using a pressure source different from the steam in the reactor pressure vessel 13 when it rises. Specifically, the pressure reducing valve driving system 70E1 includes a high-pressure gas generator 71 that generates a high-pressure gas G (air, nitrogen, etc.) having a pressure equal to or higher than a first predetermined value, and a high-pressure gas G generated by the high-pressure gas generator 71. A gas pressure accumulator 72 that accumulates pressure, a breakable rupture disk 73, a fluid pressure converter 74 that breaks the rupture disk 73 according to the input pressure, and a switching that switches the flow path according to the pressure on the upstream side. A valve 75 is provided.
 高圧気体発生装置71は、第1供給ライン81を介して流体圧力コンバータ74の一次側に接続されている。気体蓄圧装置72は、第1供給ライン81に接続された第2供給ライン82を介して流体圧力コンバータ74の一次側及び高圧気体発生装置71に接続されており、例えば、ボンベを用いることができる。第1供給ライン81上における第2供給ライン82との接続点の上流側及び下流側に第1逆止弁76及び第2逆止弁77が設けられている。流体圧力コンバータ74の一次側は、また、第3供給ライン83を介して減圧弁46の弁開閉機構54(図2及び図3参照)に接続されている。流体圧力コンバータ74は、一次側を介して第2逆止弁77とラプチャディスク73の間を連通させている。高圧気体発生装置71及び気体蓄圧装置72は、第1供給ライン81や第2供給ライン82及び第3供給ライン83を介して第1所定値以上の高圧気体Gを減圧弁46の弁開閉機構54(図2及び図3参照)に供給するものである。 The high pressure gas generator 71 is connected to the primary side of the fluid pressure converter 74 via the first supply line 81 . The gas pressure accumulator 72 is connected to the primary side of the fluid pressure converter 74 and the high pressure gas generator 71 via a second supply line 82 connected to the first supply line 81. For example, a cylinder can be used. . A first check valve 76 and a second check valve 77 are provided upstream and downstream of the connection point with the second supply line 82 on the first supply line 81 . The primary side of the fluid pressure converter 74 is also connected via a third supply line 83 to the valve opening/closing mechanism 54 (see FIGS. 2 and 3) of the pressure reducing valve 46 . The fluid pressure converter 74 communicates between the second check valve 77 and the rupture disk 73 via the primary side. The high-pressure gas generator 71 and the gas pressure accumulator 72 supply a high-pressure gas G of a first predetermined value or higher to the valve opening/closing mechanism 54 of the pressure reducing valve 46 via the first supply line 81, the second supply line 82, and the third supply line 83. (see FIGS. 2 and 3).
 流体圧力コンバータ74の二次側は、減圧ライン45に接続された抽気ライン84を介して原子炉圧力容器13に接続されている。抽気ライン84は、減圧ライン45に供給された原子炉圧力容器13からの蒸気を流体圧力コンバータ74に導入するものである。抽気ライン84は、減圧ライン45における減圧弁46の設置位置の近傍に接続することが可能であり、流体圧力コンバータ74までの配管の取り回しが第1の実施の形態の減圧保護系40の圧力伝送管70の場合よりも容易である。流体圧力コンバータ74は、二次側に抽気ライン84を介して入力される流体F1の圧力が第2閾値(第1~第5の実施の形態の減圧弁46の開弁圧力と同じ値)を超えると、高圧気体発生装置71又は気体蓄圧装置72からの気体によりラプチャディスク73を破断させる破断操作部として構成されている。切替弁75は、第3供給ライン83上に設置されている。切替弁75は、第2所定値以上の圧力の気体がラプチャディスク73よりも下流側の第3供給ライン83に流入すると、流路を切り替えて第3供給ライン83を連通させる一方、それ以外の場合は第3供給ライン83を遮断するように構成されている。切替弁75の切替圧力である第2所定値は、高圧気体発生装置71が発生する高圧気体Gの第1所定値よりも十分に低い圧力に設定されている。 The secondary side of the fluid pressure converter 74 is connected to the reactor pressure vessel 13 via a bleed line 84 connected to the pressure reducing line 45 . The bleed line 84 introduces the steam from the reactor pressure vessel 13 supplied to the decompression line 45 to the fluid pressure converter 74 . The bleed line 84 can be connected to the decompression line 45 in the vicinity of the installation position of the decompression valve 46, and the routing of the piping up to the fluid pressure converter 74 is the pressure transmission of the decompression protection system 40 of the first embodiment. Easier than with tube 70 . In the fluid pressure converter 74, the pressure of the fluid F1 input to the secondary side through the bleed line 84 reaches the second threshold value (the same value as the valve opening pressure of the pressure reducing valve 46 in the first to fifth embodiments). When exceeded, the rupture disk 73 is broken by the gas from the high-pressure gas generator 71 or the gas pressure accumulator 72 . The switching valve 75 is installed on the third supply line 83 . When gas having a pressure equal to or higher than a second predetermined value flows into the third supply line 83 on the downstream side of the rupture disk 73, the switching valve 75 switches the flow path to allow the third supply line 83 to communicate with the gas. In this case, the third supply line 83 is cut off. The second predetermined value which is the switching pressure of the switching valve 75 is set to a pressure sufficiently lower than the first predetermined value of the high pressure gas G generated by the high pressure gas generator 71 .
 次に、減圧弁駆動システムの変形例の動作について図12を用いて説明する。図12は図11に示す減圧弁駆動システムの変形例における減圧弁作動時(開弁時)の状態を示すブロック図である。図12中、ラプチャディスクの形状は破断状態であることを模式的に示したものである。 Next, the operation of the modification of the pressure reducing valve driving system will be explained using FIG. FIG. 12 is a block diagram showing a state of the pressure reducing valve operating (opening) in the modification of the pressure reducing valve drive system shown in FIG. In FIG. 12, the shape of the rupture disk schematically shows that it is in a fractured state.
 IC30(図1参照)が作動している場合、炉心12の崩壊熱の除去が継続されるので、原子炉圧力容器13の圧力が異常に上昇することはない。この場合、原子炉圧力容器13から減圧ライン45に供給されている流体F1(蒸気)の圧力が抽気ライン84を介して流体圧力コンバータ74の二次側に入力されても、図11に示すように、ラプチャディスク73が破断されることはない。ラプチャディスク73の正常な状態が維持されていれば、ラプチャディスク73により、高圧気体発生装置71及び気体蓄圧装置72から減圧弁46への高圧気体Gの供給が阻止されている。したがって、IC30が作動している場合、減圧弁46が作動することはない。 When the IC 30 (see FIG. 1) is operating, the removal of decay heat from the core 12 continues, so the pressure in the reactor pressure vessel 13 will not rise abnormally. In this case, even if the pressure of the fluid F1 (steam) supplied from the reactor pressure vessel 13 to the decompression line 45 is input to the secondary side of the fluid pressure converter 74 via the extraction line 84, as shown in FIG. Moreover, the rupture disk 73 is not broken. If the normal state of the rupture disk 73 is maintained, the rupture disk 73 blocks the supply of the high pressure gas G from the high pressure gas generator 71 and the gas pressure accumulator 72 to the pressure reducing valve 46 . Therefore, when the IC 30 is operating, the pressure reducing valve 46 will not operate.
 一方、全系統のIC30が作動せず、原子炉圧力容器13の圧力が第2閾値を超えて上昇した場合、原子炉圧力容器13から抽気ライン84に供給された流体F1(蒸気)の第2閾値を超えた圧力が流体圧力コンバータ74の二次側に入力されることで、図12に示すように、流体圧力コンバータ74が高圧気体発生装置71または気体蓄圧装置72からの高圧気体Gをラプチャディスク73に作用させて破断させる。ラプチャディスク73の破断により、高圧気体発生装置71又は気体蓄圧装置72からの高圧気体Gが第3供給ライン83に流入し、第3供給ライン83が連通するように切替弁75が切り替えられる。切替弁75の切替により、高圧気体Gが減圧弁46の弁開閉機構54(図2及び図3参照)に供給され、減圧弁46が開弁する。減圧弁46の開弁により減圧ライン45が連通することで、原子炉圧力容器13内の蒸気が減圧ライン45を介して中間タンク41内の冷却水中に放出され、原子炉圧力容器13が減圧される。 On the other hand, when the ICs 30 of all systems do not operate and the pressure of the reactor pressure vessel 13 exceeds the second threshold value, the second pressure of the fluid F1 (steam) supplied from the reactor pressure vessel 13 to the extraction line 84 When the pressure exceeding the threshold is input to the secondary side of the fluid pressure converter 74, as shown in FIG. The disk 73 is acted upon and fractured. When the rupture disk 73 is broken, the high-pressure gas G from the high-pressure gas generator 71 or the gas pressure accumulator 72 flows into the third supply line 83, and the switching valve 75 is switched so that the third supply line 83 is communicated. By switching the switching valve 75, the high-pressure gas G is supplied to the valve opening/closing mechanism 54 (see FIGS. 2 and 3) of the pressure reducing valve 46, and the pressure reducing valve 46 is opened. By opening the decompression valve 46 to open the decompression line 45, the steam in the reactor pressure vessel 13 is released into the cooling water in the intermediate tank 41 through the decompression line 45, and the reactor pressure vessel 13 is decompressed. be.
 ここで、ラプチャディスク73の破断後に、原子炉圧力容器13から供給される流体F1の圧力が減圧弁46の起動により低下して第2閾値未満に低下したと仮定する。この場合、減圧弁駆動システム70E1では、ラプチャディスク73が既に破断しているので、電源喪失が発生していなければ、高圧気体発生装置71による高圧気体Gの供給が継続される。また、電源喪失が発生した場合であっても、気体蓄圧装置72からの高圧気体Gの供給が継続される。このため、切替弁75の流路切替による第3供給ライン83の連通状態が維持されるので、減圧弁46の開弁状態が維持される。したがって、原子炉圧力容器13からの蒸気の中間タンク41内の冷却水中への放出が継続され、原子炉圧力容器13の圧力上昇を抑制することができる。 Here, it is assumed that after the rupture disk 73 is broken, the pressure of the fluid F1 supplied from the reactor pressure vessel 13 drops below the second threshold due to activation of the pressure reducing valve 46 . In this case, in the pressure reducing valve drive system 70E1, the rupture disk 73 has already broken, so the supply of the high pressure gas G by the high pressure gas generator 71 is continued unless power loss occurs. Moreover, even when power supply is lost, the supply of the high-pressure gas G from the gas pressure accumulator 72 is continued. Therefore, the communication state of the third supply line 83 is maintained by switching the flow path of the switching valve 75, so that the pressure reducing valve 46 is maintained in the open state. Therefore, the steam from the reactor pressure vessel 13 continues to be released into the cooling water in the intermediate tank 41, and pressure rise in the reactor pressure vessel 13 can be suppressed.
 なお、本変形例の減圧弁駆動システム70E1においては、気体蓄圧装置72に高圧気体Gが蓄積されている。したがって、減圧弁駆動システム70E1が電源を喪失した場合であっても、気体蓄圧装置72の容積に応じた時間に亘って減圧弁46への高圧気体Gの供給を維持することができる。 It should be noted that in the pressure reducing valve drive system 70E1 of this modified example, the high pressure gas G is accumulated in the gas pressure accumulator 72 . Therefore, even if the pressure reducing valve drive system 70E1 loses power, the supply of the high pressure gas G to the pressure reducing valve 46 can be maintained for a period of time corresponding to the volume of the gas pressure accumulator 72 .
 上述したように、本変形例においては、減圧弁46(第2弁)が弁駆動システム70E1から第1所定値(所定値)以上の圧力の気体が供給されることで作動するよう構成されるものである。弁駆動システム70E1は、第1所定値(所定値)以上の圧力の気体を供給する気体供給源としての高圧気体生成装置71及び気体蓄圧装置72と、高圧気体生成装置71及び気体蓄圧装置72(気体供給源)からの気体を減圧弁46(第2弁)に導く供給ライン81、82、83と、供給ライン83を閉止するように設けられたラプチャディスク73と、原子炉圧力容器13からの蒸気が導入され、当該蒸気の圧力が第2閾値(閾値)を超えるとラプチャディスク73を破断させる破断操作部としての流体圧力コンバータ74と、供給ライン81、82、83上におけるラプチャディスク73より減圧弁46(第2弁)側に設けられ、高圧気体生成装置71又は気体蓄圧装置72(気体供給源)から供給された気体がラプチャディスク73より下流側に流入すると第3供給ライン83を遮断状態から連通状態に切り替える切替弁75とを有する。 As described above, in this modification, the pressure reducing valve 46 (second valve) is configured to operate when gas having a pressure equal to or higher than the first predetermined value (predetermined value) is supplied from the valve drive system 70E1. It is. The valve drive system 70E1 includes a high-pressure gas generator 71 and a gas pressure accumulator 72 as gas supply sources that supply gas having a pressure equal to or higher than a first predetermined value (predetermined value), and a high-pressure gas generator 71 and a gas pressure accumulator 72 ( supply line 81, 82, 83 for guiding the gas from the gas supply source) to the pressure reducing valve 46 (second valve), a rupture disk 73 provided to close the supply line 83, and the gas from the reactor pressure vessel 13 When steam is introduced and the pressure of the steam exceeds a second threshold (threshold value), a fluid pressure converter 74 as a rupture operation unit that ruptures the rupture disk 73, and pressure reduction from the rupture disk 73 on the supply lines 81, 82, 83 Provided on the valve 46 (second valve) side, when the gas supplied from the high-pressure gas generator 71 or the gas pressure accumulator 72 (gas supply source) flows downstream from the rupture disk 73, the third supply line 83 is shut off. and a switching valve 75 for switching from the communication state to the communication state.
 この構成によれば、減圧弁46(第2弁)を駆動する高圧気体生成装置71及び気体蓄圧装置72(気体供給源)を減圧弁46(第2弁)の近傍に配置することができるので、減圧弁46(第2弁)に圧力を供給する配管(供給ライン)の取り回しの自由度を高めることができる。 According to this configuration, the high pressure gas generator 71 and the gas pressure accumulator 72 (gas supply source) for driving the pressure reducing valve 46 (second valve) can be arranged in the vicinity of the pressure reducing valve 46 (second valve). , the degree of freedom in routing of piping (supply line) for supplying pressure to the pressure reducing valve 46 (second valve) can be increased.
 [ドレン弁の弁駆動システムの変形例]
  次に、本発明の原子力プラントの安全系の第1~第5の実施の形態の一部を構成するドレン弁を駆動するための弁駆動システムの変形例について図13及び図14を用いて説明する。図13は本発明の原子力プラントの安全系の第1~第5の実施の形態の一部を構成するドレン弁を駆動するための弁駆動システムの変形例を示すブロック図である。図14は図12に示すドレン弁駆動システムの変形例におけるドレン弁作動時(開弁時)の状態を示すブロック図である。なお、図13及び図14において、図1~図12に示す符号と同符合のものは、同様な部分であるので、その詳細な説明は省略する。図14中、ラプチャディスクの形状は破断状態であることを模式的に示したものである。
[Modified Example of Valve Drive System for Drain Valve]
Next, a modified example of the valve drive system for driving the drain valve, which constitutes a part of the first to fifth embodiments of the nuclear plant safety system of the present invention, will be described with reference to FIGS. 13 and 14. do. FIG. 13 is a block diagram showing a modification of the valve drive system for driving the drain valves, which constitutes a part of the first to fifth embodiments of the nuclear plant safety system of the present invention. FIG. 14 is a block diagram showing a state of the drain valve operating (opening) in the modification of the drain valve driving system shown in FIG. 13 and 14, the parts having the same reference numerals as those shown in FIGS. 1 to 12 are the same parts, and detailed description thereof will be omitted. In FIG. 14, the shape of the rupture disk schematically shows that it is in a fractured state.
 図13に示すドレン弁43の弁駆動システムの変形例が第1~第5の実施の形態のドレン弁43の弁駆動システムと異なる点は、ドレン弁43を駆動させる圧力源として、原子炉圧力容器13からの蒸気の代わりに、原子炉圧力容器13の高圧蒸気とは異なる高圧気体を供給する圧力源を用いることである。ドレン弁43を駆動するドレン弁駆動システム70E2は、減圧弁駆動システム70E1と同様な構成であり、ドレン弁43が設置されている配管(ドレンライン42)と減圧弁46が設置されている配管(減圧ライン45)とが異なることに起因して構成の一部が異なっているのみである。 The modification of the valve drive system for the drain valve 43 shown in FIG. Instead of the steam from the vessel 13, a pressure source that supplies a high pressure gas different from the high pressure steam in the reactor pressure vessel 13 is used. The drain valve driving system 70E2 that drives the drain valve 43 has the same configuration as the pressure reducing valve driving system 70E1, and includes a pipe (drain line 42) in which the drain valve 43 is installed and a pipe (drain line 42) in which the pressure reducing valve 46 is installed. Only part of the configuration is different due to the fact that the decompression line 45) is different.
 具体的には、ドレン弁駆動システム70E2は、減圧弁駆動システム70E1と同様に、高圧気体発生装置71、気体蓄圧装置72、ラプチャディスク73、流体圧力コンバータ74、切替弁75を備えている。流体圧力コンバータ74の二次側は、主蒸気管14又は減圧ライン45に接続された抽気ライン84E2を介して原子炉圧力容器13に接続されている。流体圧力コンバータ74は、二次側に抽気ライン84E2を介して入力される流体F2の圧力が第1閾値(第1~第5の実施の形態のドレン弁43の開弁圧力と同じ値)を超えると、高圧気体発生装置71又は気体蓄圧装置72からの気体によりラプチャディスク73を破断させる破断操作部として構成されている。抽気ライン84E2は、主蒸気管14又は減圧ライン45に供給された原子炉圧力容器13からの蒸気を流体圧力コンバータ74に導入するものである。抽気ライン84E2は、ドレン弁43の設置位置の近傍の主蒸気管14又は減圧ライン45の部分に接続することが可能であり、流体圧力コンバータ74までの配管の取り回しが第1の実施の形態の減圧保護系40の圧力伝送管70の場合よりも容易となる。第3供給ライン83E2は、ドレン弁43の弁開閉機構54(図2及び図3参照)に接続されている。 Specifically, the drain valve drive system 70E2 includes a high-pressure gas generator 71, a gas pressure accumulator 72, a rupture disk 73, a fluid pressure converter 74, and a switching valve 75, similar to the pressure reducing valve drive system 70E1. The secondary side of the fluid pressure converter 74 is connected to the reactor pressure vessel 13 via a bleed line 84E2 connected to the main steam pipe 14 or the reduced pressure line 45 . In the fluid pressure converter 74, the pressure of the fluid F2 input to the secondary side through the bleed line 84E2 reaches the first threshold value (the same value as the opening pressure of the drain valve 43 in the first to fifth embodiments). When exceeded, the rupture disk 73 is broken by the gas from the high-pressure gas generator 71 or the gas pressure accumulator 72 . The steam bleed line 84E2 introduces steam from the reactor pressure vessel 13 supplied to the main steam pipe 14 or the decompression line 45 to the fluid pressure converter 74 . The extraction line 84E2 can be connected to a portion of the main steam pipe 14 or the decompression line 45 near the installation position of the drain valve 43, and the routing of the piping up to the fluid pressure converter 74 is similar to that of the first embodiment. This is easier than with the pressure transmission tube 70 of the decompression protection system 40 . The third supply line 83E2 is connected to the valve opening/closing mechanism 54 of the drain valve 43 (see FIGS. 2 and 3).
 全系統のIC30が作動せず、原子炉圧力容器13の圧力が第1閾値を超えて上昇した場合、図14に示すように、原子炉圧力容器13から主蒸気管14又は減圧ライン45に供給されている流体F2(蒸気)の第1閾値を超えた圧力が抽気ライン84E2を介して流体圧力コンバータ74の二次側に入力されるので、ラプチャディスク73が破断する。ラプチャディスク73の破断により、高圧気体発生装置71又は気体蓄圧装置72からの高圧気体Gが第3供給ライン83E2に流入し、第3供給ライン83E2が連通するように切替弁75の流路が切り替えられる。切替弁75の切替により、高圧気体Gがドレン弁43の弁開閉機構54(図2及び図3参照)に供給され、ドレン弁43が開弁する。ドレン弁43の開弁によりドレンライン42が連通することで、IC冷却水プール31又は冷却水貯留タンク49の冷却水がドレンライン42を介して放出される。 When the ICs 30 of all systems do not operate and the pressure of the reactor pressure vessel 13 rises above the first threshold, as shown in FIG. Since the pressure of the fluid F2 (steam) that is being pumped exceeds the first threshold is input to the secondary side of the fluid pressure converter 74 via the bleed line 84E2, the rupture disk 73 ruptures. By breaking the rupture disk 73, the high-pressure gas G from the high-pressure gas generator 71 or the gas pressure accumulator 72 flows into the third supply line 83E2, and the flow path of the switching valve 75 is switched so that the third supply line 83E2 is communicated. be done. By switching the switching valve 75, the high-pressure gas G is supplied to the valve opening/closing mechanism 54 (see FIGS. 2 and 3) of the drain valve 43, and the drain valve 43 is opened. By opening the drain valve 43 and connecting the drain line 42 , the cooling water in the IC cooling water pool 31 or the cooling water storage tank 49 is discharged through the drain line 42 .
 上述したように、本変形例においては、ドレン弁43(第1弁)が弁駆動システム70E2から第1所定値(所定値)以上の圧力の気体が供給されることで作動するように構成されるものである。弁駆動システム70E2は、第1所定値(所定値)以上の圧力の気体を供給する気体供給源としての高圧気体生成装置71及び気体蓄圧装置72と、高圧気体生成装置71及び気体蓄圧装置72(気体供給源)からの気体をドレン弁43(第1弁)に導く供給ライン81、82、83E2と、供給ライン83E2を閉止するように設けられたラプチャディスク73と、原子炉圧力容器13からの蒸気が導入され、当該蒸気の圧力が第1閾値(閾値)を超えるとラプチャディスク73を破断させる破断操作部としての流体圧力コンバータ74と、供給ライン81、82、83E2上におけるラプチャディスク73よりもドレン弁43(第1弁)側に設けられ、高圧気体生成装置71又は気体蓄圧装置72(気体供給源)から供給された気体がラプチャディスク73より下流側に流入すると第3供給ライン83E2を遮断状態から連通状態に切り替える切替弁75とを有する。 As described above, in the present modification, the drain valve 43 (first valve) is configured to operate when gas having a pressure equal to or higher than the first predetermined value (predetermined value) is supplied from the valve drive system 70E2. It is a thing. The valve driving system 70E2 includes a high-pressure gas generator 71 and a gas pressure accumulator 72 as gas supply sources that supply gas having a pressure equal to or higher than a first predetermined value (predetermined value), and a high-pressure gas generator 71 and a gas pressure accumulator 72 ( gas supply source) to the drain valve 43 (first valve), a rupture disk 73 provided to close the supply line 83E2, A fluid pressure converter 74 as a breaking operation unit that breaks the rupture disk 73 when steam is introduced and the pressure of the steam exceeds a first threshold (threshold value), and supply lines 81, 82, 83E2 than the rupture disk 73. Provided on the drain valve 43 (first valve) side, the third supply line 83E2 is cut off when the gas supplied from the high-pressure gas generator 71 or the gas pressure accumulator 72 (gas supply source) flows downstream from the rupture disk 73. and a switching valve 75 for switching from the state to the communication state.
 この構成によれば、ドレン弁43(第1弁)を駆動する高圧気体生成装置71及び気体蓄圧装置72(気体供給源)をドレン弁43(第1弁)の近傍に配置することができるので、ドレン弁43(第1弁)に圧力を供給する配管(供給ライン)の取り回しの自由度を高めることができる。 According to this configuration, the high-pressure gas generator 71 and the gas pressure accumulator 72 (gas supply source) for driving the drain valve 43 (first valve) can be arranged in the vicinity of the drain valve 43 (first valve). , the degree of freedom in handling of the piping (supply line) for supplying pressure to the drain valve 43 (first valve) can be increased.
 [その他]
  なお、上述した第1~第5の実施の形態においては、本発明を沸騰水型原子炉に適用した例を示したが、本発明を加圧水型原子炉(PWR)にも適用することができる。加圧水型原子炉に適用した実施の形態について図15を用いて説明する。図15は本発明の原子力プラントの安全系の実施の形態を備えた加圧水型の原子力プラントを示す概略系統図である。なお、図15において、図1~図14に示す符号と同符合のものは、同様な部分であるので、詳細な説明は省略する。
[others]
In addition, in the first to fifth embodiments described above, an example in which the present invention is applied to a boiling water reactor has been shown, but the present invention can also be applied to a pressurized water reactor (PWR). . An embodiment applied to a pressurized water reactor will be described with reference to FIG. FIG. 15 is a schematic system diagram showing a pressurized water nuclear plant equipped with an embodiment of the nuclear plant safety system of the present invention. In FIG. 15, parts having the same reference numerals as those shown in FIGS. 1 to 14 are the same parts, so detailed description thereof will be omitted.
 図15において、加圧水型の原子力プラント1Fの原子炉格納容器11F内には、炉心12を内包する原子炉圧力容器23と、蒸気を発生させる蒸気発生器24とが設置されている。原子炉圧力容器23と蒸気発生器24は、冷却水が循環するように接続されている。 In FIG. 15, a reactor pressure vessel 23 containing a core 12 and a steam generator 24 for generating steam are installed in the reactor containment vessel 11F of the pressurized water nuclear power plant 1F. The reactor pressure vessel 23 and the steam generator 24 are connected so that cooling water circulates.
 加圧水型の原子力プラント1Fの安全系としてのIC30Fは、蒸気発生器24からの蒸気を冷却により凝縮させて再び蒸気発生器24に戻すものである。IC30Fの構成機器は、沸騰水型の原子力プラント1のIC30の構成機器と同じである。ただし、IC蒸気供給ライン33は、IC熱交換器32の入口(上側)と蒸気発生器24の上部(気相部24b)とを接続するものである。また、IC戻りライン34は、IC熱交換器32の出口(下側)と蒸気発生器24の下部(液相部24a)とを接続するものである。 The IC30F as a safety system of the pressurized water type nuclear power plant 1F condenses the steam from the steam generator 24 by cooling and returns it to the steam generator 24 again. The components of IC30F are the same as those of IC30 of the boiling water nuclear power plant 1 . However, the IC steam supply line 33 connects the inlet (upper side) of the IC heat exchanger 32 and the upper part of the steam generator 24 (gas phase portion 24b). The IC return line 34 connects the outlet (lower side) of the IC heat exchanger 32 and the lower portion of the steam generator 24 (liquid phase portion 24a).
 加圧水型の原子力プラント1Fの安全系としての減圧保護系40Fは、IC30Fが作動せずに蒸気発生器24内の圧力が通常範囲から逸脱して上昇した場合に、蒸気発生器24を減圧させることで蒸気発生器24を保護するものであり、蒸気発生器24の圧力上昇した蒸気を利用して起動するように構成されている。減圧保護系40Fの構成機器は、沸騰水型の原子力プラント1の減圧保護系40の構成機器と同じである。ただし、減圧ライン45は、蒸気発生器24内の蒸気の一部を中間タンク41に貯留される冷却水中に導入するものである。また、ドレン弁43及び減圧弁46は、蒸気発生器24の蒸気の圧力を利用して開弁するように構成されている。圧力伝送管70の一方側は、蒸気発生器24の上部(気相部24b)に接続されている。この減圧保護系40Fの動作は、沸騰水型の原子力プラント1の減圧保護系40の動作と同様である。したがって、加圧水型の原子力プラント1Fの減圧保護系40Fにおいても、沸騰水型の原子力プラント1の減圧保護系40と同様な効果を得ることができる。 A decompression protection system 40F as a safety system of the pressurized water nuclear power plant 1F depressurizes the steam generator 24 when the IC 30F does not operate and the pressure inside the steam generator 24 rises outside the normal range. and protects the steam generator 24 with the steam generator 24, and is configured to be activated using the steam whose pressure has increased. Components of the depressurization protection system 40F are the same as those of the depressurization protection system 40 of the boiling water nuclear power plant 1 . However, the decompression line 45 introduces part of the steam in the steam generator 24 into the cooling water stored in the intermediate tank 41 . Also, the drain valve 43 and the pressure reducing valve 46 are configured to open using the steam pressure of the steam generator 24 . One side of the pressure transmission pipe 70 is connected to the upper portion of the steam generator 24 (gas phase portion 24b). The operation of the depressurization protection system 40F is similar to that of the depressurization protection system 40 of the boiling water nuclear power plant 1 . Therefore, the depressurization protection system 40F of the pressurized water nuclear power plant 1F can also obtain the same effects as the depressurization protection system 40 of the boiling water nuclear plant 1.
 上述したように、PWRに適用した本実施の形態に係る原子力プラント1Fの安全系は、原子炉格納容器11Fに格納された蒸気発生器24からの蒸気を冷却により凝縮させて再び蒸気発生器24に戻すIC30Fを備えたものであって、原子炉格納容器11Fの外部に設置され、冷却水を貯留する水源としてのIC30FのIC冷却水プール31と、原子炉格納容器11Fの内部に位置すると共にIC冷却水プール31(水源)よりも下方に位置し、IC冷却水プール31(水源)から排出される冷却水を受け止めて貯留することが可能な貯留部としての中間タンク41と、IC冷却水プール31(水源)に接続され、IC冷却水プール31(水源)の冷却水を中間タンク41(貯留部)に導くドレンライン42(第1ライン)と、ドレンライン42(第1ライン)上に設けられ、ドレンライン42(第1ライン)を開放状態又は閉止状態に切り換えるドレン弁43(第1弁)と、一方側は蒸気発生器24に直接的又は間接的に接続され、他方側はIC冷却水プール31(水源)からの冷却水が中間タンク41(貯留部)に貯留されたときの想定水位41aより低い位置で開口する減圧ライン45(第2ライン)と、減圧ライン45(第2ライン)上に設けられ、減圧ライン45(第2ライン)を開放状態又は閉止状態に切り換える減圧弁46(第2弁)とを備える。ドレン弁43(第1弁)及び減圧弁46(第2弁)は、蒸気発生器24内の圧力の高さに応じて開弁するように構成されている。 As described above, the safety system of the nuclear power plant 1F according to the present embodiment applied to the PWR condenses the steam from the steam generator 24 stored in the reactor containment vessel 11F by cooling and condenses the steam generator 24 again. It is equipped with an IC 30F that returns to the reactor containment vessel 11F, is installed outside the reactor containment vessel 11F, and is located inside the IC 30F IC cooling water pool 31 and the reactor containment vessel 11F as a water source for storing cooling water. An intermediate tank 41 as a storage unit positioned below the IC cooling water pool 31 (water source) and capable of receiving and storing the cooling water discharged from the IC cooling water pool 31 (water source), and the IC cooling water. A drain line 42 (first line) that is connected to the pool 31 (water source) and guides the cooling water of the IC cooling water pool 31 (water source) to the intermediate tank 41 (reservoir), and on the drain line 42 (first line) A drain valve 43 (first valve) is provided to switch the drain line 42 (first line) to an open state or a closed state, and one side is directly or indirectly connected to the steam generator 24, and the other side is connected to the IC A pressure reduction line 45 (second line) that opens at a position lower than the assumed water level 41a when the cooling water from the cooling water pool 31 (water source) is stored in the intermediate tank 41 (reservoir), and a pressure reduction line 45 (second line) and a pressure reducing valve 46 (second valve) for switching the pressure reducing line 45 (second line) between an open state and a closed state. The drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) are configured to open according to the height of the pressure inside the steam generator 24 .
 この構成によれば、IC30Fの不作動により蒸気発生器24内の圧力が通常範囲を逸脱して上昇しても、ドレン弁43(第1弁)及び減圧弁46(第2弁)が開弁することで、IC冷却水プール31(水源)から中間タンク41(貯留部)に排出された冷却水に蒸気発生器24からの蒸気が導入されて凝縮するので、原子炉格納容器11Fに圧力抑制プールを設けることなく、蒸気発生器24を減圧することができる。すなわち、原子炉格納容器11Fの構造を簡素化することができ、かつ、IC30Fが不作動の場合でも動的機器を用いずに蒸気発生器24を減圧することができる。 According to this configuration, even if the pressure in the steam generator 24 deviates from the normal range and rises due to non-operation of the IC 30F, the drain valve 43 (first valve) and the pressure reducing valve 46 (second valve) are opened. By doing so, the cooling water discharged from the IC cooling water pool 31 (water source) to the intermediate tank 41 (reservoir) is introduced with the steam from the steam generator 24 and condensed, so the pressure in the reactor containment vessel 11F is suppressed. The steam generator 24 can be depressurized without providing a pool. That is, the structure of the reactor containment vessel 11F can be simplified, and the pressure of the steam generator 24 can be reduced without using dynamic equipment even when the IC 30F is inoperative.
 また、本発明は上述した第1~第5の実施の形態に限られるものではなく、様々な変形例が含まれる。上記した実施形態は本発明をわかり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。 Also, the present invention is not limited to the first to fifth embodiments described above, and includes various modifications. The above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. For example, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is also possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
 例えば、第1~第5の実施の形態及びその他の実施の形態においては、ドレン弁43、43C及び減圧弁46を原子炉圧力容器13又は蒸気発生器24で発生した蒸気の圧力を利用して開弁するように構成する例を示した。しかし、ドレン弁及び減圧弁は、原子炉圧力容器13又は蒸気発生器24で発生した蒸気を利用せずに開弁する構成も可能である。例えば、原子炉圧力容器13や蒸気発生器24の圧力を検出する圧力センサの検出信号に基づき開弁指令を出力することで、ドレン弁及び減圧弁を開弁させるように構成することが可能である。 For example, in the first to fifth embodiments and other embodiments, the pressure of steam generated in the reactor pressure vessel 13 or the steam generator 24 is used to operate the drain valves 43, 43C and the pressure reducing valve 46. An example configured to open the valve is shown. However, the drain valve and pressure reducing valve may be configured to open without using the steam generated in the reactor pressure vessel 13 or the steam generator 24 . For example, by outputting a valve opening command based on a detection signal from a pressure sensor that detects the pressure of the reactor pressure vessel 13 or the steam generator 24, it is possible to open the drain valve and the pressure reducing valve. be.
 また、第1~第5の実施の形態及びその他の実施の形態においては、減圧ライン45を原子炉圧力容器13又は蒸気発生器24に主蒸気管14を介して間接的に接続した構成の例を示した。しかし、減圧ラインを原子炉圧力容器13又は蒸気発生器24に直接的に接続する構成も可能である。 Further, in the first to fifth embodiments and other embodiments, examples of configurations in which the decompression line 45 is indirectly connected to the reactor pressure vessel 13 or the steam generator 24 via the main steam pipe 14 showed that. However, configurations are also possible in which the vacuum line is directly connected to the reactor pressure vessel 13 or the steam generator 24 .
 11、11F…原子炉格納容器、 11a…床面(貯留部)、 13…原子炉圧力容器、 24…蒸気発生器、 30、30F…非常用復水器、 31…IC冷却水プール(水源)、 41…中間タンク(貯留部;タンク)、 41B…圧力容器冷却タンク(貯留部;タンク)、 42、42A、42B、42C、42D…ドレンライン(第1ライン)、 43、43C…ドレン弁(第1弁)、 44、44C…逆止弁、 45、45A、45B…減圧ライン(第2ライン)、 46…減圧弁(第2弁)、 47…床面注水ライン(第3ライン)、 48…溶融弁(第3弁)、 49…冷却水貯留タンク(水源)、 70…圧力伝送管、 70E1…減圧弁駆動システム(弁駆動システム)、 70E2…ドレン弁駆動システム(弁駆動システム)、 71…高圧気体生成装置(気体供給源)、 72…気体蓄圧装置(気体供給源)、 73…ラプチャディスク、 74…流体圧力コンバータ(破断操作部)、 75…切替弁、 81…第1供給ライン(供給ライン)、 82…第2供給ライン(供給ライン)、 83、83E2…第3供給ライン(供給ライン)、 11b、41a…想定水位 11, 11F... Reactor containment vessel, 11a... Floor surface (reservoir), 13... Reactor pressure vessel, 24... Steam generator, 30, 30F... Isolation condenser, 31... IC cooling water pool (water source) 41... intermediate tank (reservoir; tank), 41B... pressure vessel cooling tank (reservoir; tank), 42, 42A, 42B, 42C, 42D... drain line (first line), 43, 43C... drain valve ( 1st valve), 44, 44C... check valve, 45, 45A, 45B... decompression line (second line), 46... decompression valve (second valve), 47... floor water injection line (third line), 48 ...melting valve (third valve), 49...cooling water storage tank (water source), 70...pressure transmission pipe, 70E1...reducing valve drive system (valve drive system), 70E2...drain valve drive system (valve drive system), 71 ... high-pressure gas generator (gas supply source), 72 ... gas accumulator (gas supply source), 73 ... rupture disk, 74 ... fluid pressure converter (breaking operation unit), 75 ... switching valve, 81 ... first supply line ( supply line), 82... second supply line (supply line), 83, 83E2... third supply line (supply line), 11b, 41a... assumed water level

Claims (14)

  1.  原子炉格納容器に格納された原子炉圧力容器又は蒸気発生器からの蒸気を冷却により凝縮させて再び前記原子炉圧力容器又は前記蒸気発生器に戻す非常用復水器を備えた原子力プラントの安全系であって、
     前記原子炉格納容器の外部に配置され、冷却水を貯留する水源と、
     前記原子炉格納容器の内部に位置すると共に前記水源よりも下方に位置し、前記水源から排出される冷却水を受け止めて貯留することが可能な貯留部と、
     前記水源に接続され、前記水源の冷却水を前記貯留部に導く第1ラインと、
     前記第1ライン上に設けられ、前記第1ラインを開放状態又は閉止状態に切り換える第1弁と、
     一方側は前記原子炉圧力容器又は前記蒸気発生器に直接的又は間接的に接続されると共に、他方側は前記水源からの冷却水が前記貯留部に貯留されるときの想定水位よりも低い位置で開口する第2ラインと、
     前記第2ライン上に設けられ、前記第2ラインを開放状態又は閉止状態に切り換える第2弁とを備え、
     前記第1弁及び前記第2弁は、前記原子炉圧力容器又は前記蒸気発生器内の圧力の高さに応じて開弁するように構成されている
     ことを特徴とする原子力プラントの安全系。
    Safety of a nuclear power plant equipped with an emergency condenser that condenses steam from a reactor pressure vessel or steam generator housed in a reactor containment vessel by cooling and returns it to the said reactor pressure vessel or said steam generator again is a system,
    a water source that is arranged outside the reactor containment vessel and stores cooling water;
    a reservoir located inside the reactor containment vessel and below the water source, capable of receiving and storing cooling water discharged from the water source;
    a first line connected to the water source and guiding cooling water from the water source to the reservoir;
    a first valve provided on the first line for switching the first line between an open state and a closed state;
    One side is directly or indirectly connected to the reactor pressure vessel or the steam generator, and the other side is located at a position lower than the assumed water level when the cooling water from the water source is stored in the reservoir. a second line that opens at
    A second valve provided on the second line and switching the second line to an open state or a closed state,
    A safety system for a nuclear plant, wherein the first valve and the second valve are configured to open according to the pressure level within the reactor pressure vessel or the steam generator.
  2.  請求項1に記載の原子力プラントの安全系において、
     前記非常用復水器は、前記原子炉圧力容器又は前記蒸気発生器からの蒸気を冷却するための冷却水を貯留する冷却水プールを含み、
     前記非常用復水器の前記冷却水プールは、前記水源を兼ねている
     ことを特徴とする原子力プラントの安全系。
    In the nuclear plant safety system according to claim 1,
    The isolation condenser includes a cooling water pool that stores cooling water for cooling steam from the reactor pressure vessel or the steam generator,
    The safety system of a nuclear power plant, wherein the cooling water pool of the isolation condenser also serves as the water source.
  3.  請求項1に記載の原子力プラントの安全系において、
     前記貯留部は、前記原子炉格納容器の内部に設置されたタンクである
     ことを特徴とする原子力プラントの安全系。
    In the nuclear plant safety system according to claim 1,
    A nuclear plant safety system, wherein the storage unit is a tank installed inside the reactor containment vessel.
  4.  請求項3に記載の原子力プラントの安全系において、
     前記タンクは、前記原子炉圧力容器又は前記蒸気発生器から離れた位置に配置されている
     ことを特徴とする原子力プラントの安全系。
    In the nuclear plant safety system according to claim 3,
    A safety system for a nuclear plant, wherein the tank is arranged at a position distant from the reactor pressure vessel or the steam generator.
  5.  請求項4に記載の原子力プラントの安全系において、
     前記タンクに接続され、前記水源から前記タンクに排出された冷却水を前記原子炉格納容器の床面に放出可能な第3ラインと、
     前記第3ライン上に設けられ、前記第3ラインを閉止する第3弁とを更に備え、
     前記第3弁は、前記第3弁の周囲の熱を受けて開弁するように構成されている
     ことを特徴とする原子力プラントの安全系。
    In the nuclear plant safety system according to claim 4,
    a third line connected to the tank and capable of discharging cooling water discharged from the water source to the tank onto the floor of the containment vessel;
    A third valve provided on the third line and closing the third line,
    The safety system of a nuclear power plant, wherein the third valve is configured to open by receiving heat around the third valve.
  6.  請求項3に記載の原子力プラントの安全系において、
     前記タンクは、前記水源からの冷却水を貯留したときに、前記原子炉圧力容器又は前記蒸気発生器の底部が当該冷却水の水面下に位置するように配置されている
     ことを特徴とする原子力プラントの安全系。
    In the nuclear plant safety system according to claim 3,
    The tank is arranged so that the bottom of the reactor pressure vessel or the steam generator is positioned below the surface of the cooling water when the cooling water from the water source is stored. Plant safety system.
  7.  請求項1に記載の原子力プラントの安全系において、
     前記貯留部は、前記原子炉格納容器の床面を含む底部である
     ことを特徴とする原子力プラントの安全系。
    In the nuclear plant safety system according to claim 1,
    A safety system for a nuclear power plant, wherein the storage section is a bottom including a floor surface of the containment vessel.
  8.  請求項1に記載の原子力プラントの安全系において、
     前記第1弁は、前記原子炉格納容器の外側に配置されている
     ことを特徴とする原子力プラントの安全系。
    In the nuclear plant safety system according to claim 1,
    A nuclear plant safety system, wherein the first valve is arranged outside the reactor containment vessel.
  9.  請求項1に記載の原子力プラントの安全系において、
     前記第2弁が開弁する圧力は、前記第1弁が開弁する圧力より高くなるように設定されている
     ことを特徴とする原子力プラントの安全系。
    In the nuclear plant safety system according to claim 1,
    A safety system for a nuclear power plant, wherein the pressure at which the second valve opens is set to be higher than the pressure at which the first valve opens.
  10.  請求項1に記載の原子力プラントの安全系において、
     前記第1弁及び前記第2弁は、前記原子炉圧力容器又は前記蒸気発生器で発生した蒸気の圧力を利用して開弁するように構成されている
     ことを特徴とする原子力プラントの安全系。
    In the nuclear plant safety system according to claim 1,
    A safety system for a nuclear plant, wherein the first valve and the second valve are configured to open using the pressure of steam generated in the reactor pressure vessel or the steam generator. .
  11.  請求項10に記載の原子力プラントの安全系において、
     前記第1弁及び前記第2弁は、前記原子炉圧力容器又は前記蒸気発生器で発生した蒸気が圧力伝送管を介して供給されることで蒸気の圧力により直接的に作動するように構成されている
     ことを特徴とする原子力プラントの安全系。
    In the nuclear plant safety system according to claim 10,
    The first valve and the second valve are configured to be directly operated by the pressure of the steam generated in the reactor pressure vessel or the steam generator supplied through a pressure transmission pipe. A safety system of a nuclear power plant characterized by:
  12.  請求項10に記載の原子力プラントの安全系において、
     前記第1弁は、弁駆動システムから所定値以上の圧力の気体が供給されることで作動するように構成されており、
     前記弁駆動システムは、
     前記所定値以上の圧力の気体を供給する気体供給源と、
     前記気体供給源からの気体を前記第1弁に導く供給ラインと、
     前記供給ラインを閉止するように設けられたラプチャディスクと、
     前記原子炉圧力容器又は前記蒸気発生器からの蒸気が導入され、当該蒸気の圧力が閾値を超えると前記ラプチャディスクを破断させる破断操作部と、
     前記供給ライン上における前記ラプチャディスクよりも前記第1弁側に設けられ、前記気体供給源から供給された気体が前記ラプチャディスクより下流側に流入すると前記供給ラインを連通させるように切り替える切替弁とを有する
     ことを特徴とする原子力プラントの安全系。
    In the nuclear plant safety system according to claim 10,
    The first valve is configured to operate by being supplied with gas having a pressure equal to or higher than a predetermined value from a valve drive system,
    The valve drive system includes:
    a gas supply source that supplies a gas having a pressure equal to or higher than the predetermined value;
    a supply line that guides gas from the gas supply source to the first valve;
    a rupture disk arranged to close the supply line;
    a rupture operation unit into which steam is introduced from the reactor pressure vessel or the steam generator, and which ruptures the rupture disk when the pressure of the steam exceeds a threshold value;
    a switching valve provided closer to the first valve than the rupture disk on the supply line and switching the supply line to communicate when gas supplied from the gas supply source flows downstream of the rupture disk; A nuclear plant safety system characterized by comprising:
  13.  請求項10に記載の原子力プラントの安全系において、
     前記第2弁は、弁駆動システムから所定値以上の圧力の気体が供給されることで作動するように構成されており、
     前記弁駆動システムは、
     前記所定値以上の圧力の気体を供給する気体供給源と、
     前記気体供給源からの気体を前記第2弁に導く供給ラインと、
     前記供給ラインを閉止するように設けられたラプチャディスクと、
     前記原子炉圧力容器又は前記蒸気発生器からの蒸気が導入され、当該蒸気の圧力が閾値を超えると前記ラプチャディスクを破断させる破断操作部と、
     前記供給ライン上における前記ラプチャディスクよりも前記第2弁側に設けられ、前記気体供給源から供給された気体が前記ラプチャディスクより下流側に流入すると前記供給ラインを連通させるように切り替える切替弁とを有する
     ことを特徴とする原子力プラントの安全系。
    In the nuclear plant safety system according to claim 10,
    The second valve is configured to operate by being supplied with gas having a pressure equal to or higher than a predetermined value from a valve drive system,
    The valve drive system includes:
    a gas supply source that supplies a gas having a pressure equal to or higher than the predetermined value;
    a supply line that guides gas from the gas supply source to the second valve;
    a rupture disk arranged to close the supply line;
    a rupture operation unit into which steam is introduced from the reactor pressure vessel or the steam generator, and which ruptures the rupture disk when the pressure of the steam exceeds a threshold value;
    a switching valve provided closer to the second valve than the rupture disk on the supply line and switching the supply line to communicate when gas supplied from the gas supply source flows downstream of the rupture disk; A nuclear plant safety system characterized by comprising:
  14.  請求項1に記載の原子力プラントの安全系において、
     前記第1ライン上に設けられ、前記貯留部に向かう流れを許容する一方、前記水源に向かう流れを阻止する逆止弁を更に備えている
     ことを特徴とする原子力プラントの安全系。
    In the nuclear plant safety system according to claim 1,
    A safety system for a nuclear power plant, further comprising: a check valve provided on the first line to allow flow toward the reservoir while blocking flow toward the water source.
PCT/JP2021/048682 2021-02-05 2021-12-27 Safety system for nuclear power plant WO2022168504A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-017653 2021-02-05
JP2021017653A JP7431184B2 (en) 2021-02-05 2021-02-05 Nuclear plant safety system

Publications (1)

Publication Number Publication Date
WO2022168504A1 true WO2022168504A1 (en) 2022-08-11

Family

ID=82742261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048682 WO2022168504A1 (en) 2021-02-05 2021-12-27 Safety system for nuclear power plant

Country Status (2)

Country Link
JP (1) JP7431184B2 (en)
WO (1) WO2022168504A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498198A (en) * 1990-08-16 1992-03-30 Toshiba Corp Core cooling facility for nuclear power plant
JP2014085227A (en) * 2012-10-24 2014-05-12 Hitachi-Ge Nuclear Energy Ltd Static decay heat removal system and nuclear power plant facilities
JP2020173201A (en) * 2019-04-12 2020-10-22 日立Geニュークリア・エナジー株式会社 Emergency condenser system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498198A (en) * 1990-08-16 1992-03-30 Toshiba Corp Core cooling facility for nuclear power plant
JP2014085227A (en) * 2012-10-24 2014-05-12 Hitachi-Ge Nuclear Energy Ltd Static decay heat removal system and nuclear power plant facilities
JP2020173201A (en) * 2019-04-12 2020-10-22 日立Geニュークリア・エナジー株式会社 Emergency condenser system

Also Published As

Publication number Publication date
JP7431184B2 (en) 2024-02-14
JP2022120630A (en) 2022-08-18

Similar Documents

Publication Publication Date Title
JP4675926B2 (en) Boiling water reactor
JP3194818B2 (en) Method for reducing leakage of heat transfer tubes of pressurized water reactor and steam generator
US5268943A (en) Nuclear reactor with makeup water assist from residual heat removal system
KR100856501B1 (en) The safety features of an integral reactor using a passive spray system
EP3667678B1 (en) Depressurisation valve
JP2009517639A (en) Injection system and accompanying operating method
JP4956316B2 (en) Emergency core cooling system
Chang et al. SMART behavior under over-pressurizing accident conditions
JPH05134078A (en) Spare safe injecting system for atomic reactor plant
US10366796B2 (en) Passive depressurization system for pressurized containers
JP5642091B2 (en) Reactor transient mitigation system
JP5676905B2 (en) Relief safety valve drive system
WO2022168504A1 (en) Safety system for nuclear power plant
EP2549484B1 (en) Nuclear power plant
JP2018179693A (en) Reactor containment vessel venting system
JP2015078847A (en) Static decay heat removal system and nuclear power plant
CN210403221U (en) Reactor water injection and heat removal device
JP7381783B2 (en) Boric acid water injection device
JPH04109197A (en) Reactor core decay heat removing device for pressurized water reactor
JP2007205923A (en) Nuclear power generation plant with boiling water reactor
JP2006097543A (en) Pressure release device for low-pressure steam piping system in power generation plant
JPH09105795A (en) Reactor container spray system
JP5985232B2 (en) Criticality prevention device, nuclear power plant and criticality prevention method
JPH0283495A (en) Core cooling apparatus for emergency
Lekakh et al. ACR-1000 passive features

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924889

Country of ref document: EP

Kind code of ref document: A1