WO2022168193A1 - Air-conditioning system - Google Patents

Air-conditioning system Download PDF

Info

Publication number
WO2022168193A1
WO2022168193A1 PCT/JP2021/003852 JP2021003852W WO2022168193A1 WO 2022168193 A1 WO2022168193 A1 WO 2022168193A1 JP 2021003852 W JP2021003852 W JP 2021003852W WO 2022168193 A1 WO2022168193 A1 WO 2022168193A1
Authority
WO
WIPO (PCT)
Prior art keywords
update program
distribution device
air conditioner
data
network server
Prior art date
Application number
PCT/JP2021/003852
Other languages
French (fr)
Japanese (ja)
Inventor
秀幸 中嶋
貴之 辻
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022579206A priority Critical patent/JPWO2022168193A1/ja
Priority to US18/254,026 priority patent/US20240093898A1/en
Priority to PCT/JP2021/003852 priority patent/WO2022168193A1/en
Publication of WO2022168193A1 publication Critical patent/WO2022168193A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data

Definitions

  • the present disclosure relates to air conditioning systems.
  • firmware and F/W operation control programs
  • firmware and F/W operation control programs
  • the present disclosure has been made to solve the problems described above, and aims to provide an air conditioning system that reduces work time and allows program updates regardless of the weather.
  • the present disclosure relates to air conditioning systems.
  • the air conditioning system includes an air conditioner capable of storing a control program in a nonvolatile manner, and an update controller connected to the air conditioner via a first network for updating the control program nonvolatilely stored in the air conditioner. and a distribution device that distributes the program to the air conditioner.
  • the work time required for updating the program is shortened, and the program can be updated regardless of the weather.
  • FIG. 1 is a block diagram showing one configuration example of an air conditioning system according to Embodiment 1.
  • FIG. 1 is a schematic diagram of an air conditioning system with a F/W update function through communication;
  • FIG. 1 is a diagram showing a configuration example of an air conditioning system in which an air conditioner also serves as a distribution device;
  • FIG. 1 is a diagram showing a configuration example of an air-conditioning system capable of performing F/W distribution by connecting maintenance equipment on site;
  • FIG. It is a figure which shows the structural example of the air conditioning system which collects information from an air conditioner.
  • 1 is a diagram showing a configuration example of an air conditioning system in which a network server manages a plurality of distribution devices;
  • FIG. 3 is a diagram showing a configuration example of an air conditioning system that provides F/W by manual rewriting instructions;
  • FIG. 3 is a diagram showing a configuration example of an air conditioning system that automatically provides F/W in response to the addition of new F/W;
  • 4 is a flowchart showing processing for automatically executing F/W distribution;
  • 1 is a diagram showing a configuration example of an air conditioning system in which a network server selects various settings related to F/W distribution;
  • FIG. FIG. 10 is a diagram showing a flow from acquisition of unit information to start of F/W distribution;
  • 4 is a diagram showing a flow of F/W distribution from the distribution device 2 to the air conditioner 1 and suspension, resumption, and cancellation of the distribution;
  • FIG. 10 is a diagram showing a flow of completion of F/W distribution, execution of update, and normal completion of update.
  • FIG. 4 is a diagram showing the flow of simultaneous delivery to multiple air conditioners by broadcast communication;
  • FIG. 10 is a diagram showing the flow of F/W distribution and F/W update procedures based on differential data;
  • FIG. 16 is a flowchart for explaining the details of the F/W difference data creation process in S152 of FIG. 15;
  • FIG. FIG. 16 is a flowchart for explaining the process of creating F/W update data using difference data, which is executed in S164 of FIG. 15;
  • FIG. 1 is a diagram showing a configuration example of an air conditioner in which a plurality of outdoor units configure the same refrigerant system;
  • FIG. It is a figure which shows the flow which updates F/W simultaneously with respect to several outdoor units.
  • FIG. 10 is a diagram showing a flow of operations according to success or failure of update of a plurality of outdoor units;
  • Embodiment 1. 1 is a block diagram showing a configuration example of an air conditioning system according to Embodiment 1.
  • the air conditioning system 100 includes a distribution device 2 and a network server 3.
  • the distribution device 2 is connected to the air conditioner 1 via a dedicated communication network 5 and distributes the update program for the air conditioner 1 .
  • the distribution device 2 collects data necessary for distributing the update program to the air conditioner 1 and the operation data of the air conditioner 1 via the communication network 5 .
  • the network server 3 is connected to the distribution device 2 and user terminals 4 via the Internet 6A and 6B.
  • the network server 3 stores update programs to be distributed to the air conditioners 1 .
  • the network server 3 also accumulates the operation data of the air conditioner 1 collected by the distribution device 2 .
  • the operation data includes, for example, data indicating remote control operation such as the time when the air conditioner 1 starts and ends operation, temperature setting change, cooling/heating operation switching, and data measured by sensors installed in refrigerant pipes and the like. and data indicating the state of the air conditioner 1, such as temperature and pressure.
  • the network server 3 transmits a program update command for the air conditioning equipment 1 received from the user terminal 4 to the distribution device 2 and transmits an update program to the distribution device 2 .
  • the distribution device 2 distributes the update program to the air conditioner 1 in response to receiving the update command or the update program.
  • the network server 3 may be connected to an application server operated by a maintenance company instead of the user terminal 4 .
  • the distribution device 2 includes a central processing unit (CPU: Central Processing Unit) 20, a storage device (ROM (Read Only Memory), RAM (Random Access Memory), hard disk, etc.) 21, an air conditioner connection section 22, a communication section 23.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • hard disk etc.
  • communication section 23 a communication section 23.
  • the CPU 20 expands the program stored in the ROM into the RAM or the like and executes it.
  • the program stored in the ROM is a program in which processing procedures for operating the distribution device 2 are described.
  • the CPU 20 executes processing as the FW update section 25, the data collection section 27, and the data reception section 28 according to these programs.
  • the FW update unit 25, the data collection unit 27, and the data reception unit 28 may be one control unit controlled by the same CPU as shown in FIG. It can be a department.
  • the FW update unit 25 downloads update firmware from the network server 3 and stores it in the storage device 21 .
  • the firmware is, for example, an operation control program for the air conditioner 1 or the distribution device 2, or data used for the operation control program.
  • the firmware is stored in a rewritable non-volatile storage device installed in the air conditioner 1 and the distribution device 2, and can be electrically rewritten. Rewriting such an operation control program or data used for it is referred to herein as firmware update. If the downloaded firmware is for the distribution device 2, the FW update unit 25 applies it to the distribution device 2 itself.
  • the FW update unit 25 transfers the downloaded firmware to the air conditioner 1 when the firmware is for the air conditioner.
  • the data receiving unit 28 When the data receiving unit 28 receives the information necessary for updating the program from the air conditioner 1 or the operation data of the air conditioner 1, it stores it in the storage device 21.
  • the data collection unit 27 collects the corresponding data of the air conditioner 1 from the storage device 21, which is the database of the remote distribution device. is extracted and transmitted to the network server 3.
  • the network server 3 includes a central processing unit (CPU: Central Processing Unit) 30, a storage device (ROM (Read Only Memory), RAM (Random Access Memory), hard disk, etc.) 31, a delivery device communication unit 32, an application communication 33.
  • CPU Central Processing Unit
  • storage device ROM (Read Only Memory), RAM (Random Access Memory), hard disk, etc.
  • delivery device communication unit 32, an application communication 33.
  • the CPU 30 expands the program stored in the ROM into the RAM or the like and executes it.
  • the program stored in the ROM is a program in which processing procedures for operating the network server 3 are described.
  • the CPU 30 executes processing as the FW update section 36, the device registration section 38, and the device management section 39 according to these programs.
  • the FW update unit 36, the device registration unit 38, and the device management unit 39 may be one control unit controlled by the same CPU as shown in FIG. can be Also, the network server 3 may be realized by a plurality of servers distributed on the Internet.
  • the air conditioning system 100 further includes a user terminal 4.
  • the application communication unit 33 communicates with the user terminal 4 via the Internet 6B.
  • the user terminal 4 for example, a personal computer, a tablet terminal, a smart phone, etc. can be used.
  • Application software is installed in the user terminal 4 .
  • the application software is configured to send a program update command to the network server according to the user's operation.
  • the application software also acquires various parameters of the air conditioner 1 from the network server 3 and displays them on the display unit of the user terminal 4 .
  • This display unit may be an application on the Internet, a client operating on an OS (Operating System), or a combination of another network server and a web browser.
  • the network server 3 may be connected to an application server operated by a maintenance company, and the maintenance company may monitor various parameters of the air conditioner 1 on the application server.
  • the device management unit 39 has a function to prevent users from operating remote delivery devices used by other users.
  • the storage device 31 accumulates information (equipment data) unique to the distribution device 2 .
  • the FW update unit 36 has a function of transmitting and managing the firmware of the distribution device 2 and the firmware of the air conditioner 1.
  • the device registration unit 38 has a function of registering the distribution device 2 with the network server 3 .
  • the distribution device communication unit 32 communicates with the distribution device 2 via the Internet 6A. Note that the distribution device communication unit 32 is distinguished from the application communication unit 33 and cannot directly connect the user terminal 4 to the distribution device 2 .
  • the storage device 21 for storing an update program for the air conditioner 1 such as firmware to be updated is arranged in the distribution device 2, but is provided in the outdoor unit, the indoor unit, the remote controller, etc. of the air conditioner 1.
  • the storage device 21 since the communication speed of the communication network 5 between the outdoor unit, the indoor unit, and the remote control is slow, it takes time for the data to reach the network server 3 even if the data is requested to be resent. For this reason, it is desirable to provide the storage device 21 inside the distribution device 2 that enables high-speed communication with the network server 3 by wired LAN, wireless LAN, or the like.
  • the device management unit 39 of the network server 3 shown in FIG. 1 has a function to prevent users from operating distribution devices used by other users. Therefore, when the distribution device 2 is started to be used, it is necessary to notify the network server 3 that the device is owned by the user. For this reason, the user or the person in charge of the installation works transmits the unique information of the distribution device 2 from the user terminal 4 to the network server 3 when the distribution device 2 is installed.
  • the information unique to the distribution device 2 may be any value that can uniquely identify the distribution device.
  • the unique information may be a serial number, or a combination of serial number and random number.
  • FIG. 2 is a schematic diagram of an air conditioning system with a F/W update function through communication.
  • the air conditioning system shown in FIG. 2 includes a network server 3 , a distribution device 2 and an air conditioner 1 .
  • the network server 3, the distribution device 2, and the air conditioner 1 form a communication network.
  • TCP/IP Transmission Control Protocol/Internet Protocol
  • TCP/IP Transmission Control Protocol/Internet Protocol
  • Communication between the distribution device 2 and the air conditioner 1 is performed according to the communication standard B.
  • Communication standard B is, for example, a manufacturer's own bus communication. Although not particularly limited, communication standard B often has a lower communication speed than communication standard A.
  • the distribution device 2 and the air conditioner 1 are arranged at the installation site F1.
  • the network server 3 is located at a remote site F2 far away from the installation site F1.
  • the air conditioning system shown in FIG. 2 includes a network server 3 that provides firmware (hereinafter referred to as F/W), a distribution device 2, and air conditioning equipment 1.
  • the distribution device 2 has a function of communicating with the network server 3 and the air conditioner 1 and distributes the F/W to the air conditioner 1 .
  • the air conditioner 1 has a storage area 1M for storing the downloaded F/W, and has an update function by the F/W.
  • the network server 3 provides the F/W to the distribution device 2, and the distribution device 2 provides the F/W to the air conditioner 1, whereby the F/W of the air conditioner 1 can be updated.
  • the distribution device 2 supports both the communication standard A of the network server 3 and the communication standard B of the air conditioner 1 . Therefore, by adding the distribution device 2 to the existing site, the F/W update function can be used from a remote location.
  • FIG. 3 is a diagram showing a configuration example of an air conditioning system in which air conditioning equipment also serves as a distribution device.
  • the air conditioner 11 when the air conditioner itself complies with the communication standard A of the network server 3, the air conditioner 11 on the same system can also serve as the distribution device 2.
  • FIG. The air conditioner 11 forms a communication network with other air conditioners 12 and 13 and has connectivity with the distribution device 2 directly or indirectly.
  • network server 3 and the distribution device 2 shown in FIGS. 2 and 3 may be replaced with tools or devices having similar functions, as described in FIG. 4 below.
  • FIG. 4 is a diagram showing a configuration example of an air conditioning system capable of performing F/W distribution by connecting maintenance equipment on site.
  • the network server 3 and distribution device 2 can be replaced with applications having similar F/W distribution functions.
  • the maintenance device 15 used by the operator for maintenance is directly connected to the communication network 5 of the air conditioners 11 and 12 at the installation site.
  • the maintenance device 15 functions as a communication protocol converter that converts the communication protocol between the USB standard of the personal computer and the communication standard B.
  • FIG. Although this method requires an operator to go to the installation site, it is sufficient if the maintenance device 15 can be connected to the communication network 5 .
  • the outdoor unit of the air conditioner 11 has a wireless mobile communication function and is configured to serve as the distribution device 2, it becomes unnecessary to search for the positions of the air conditioners 11 and 12.
  • FIG. In this way, even if communication terminals are not provided around the remote control and are provided inside the housing of the air conditioner, there is no need to connect to the communication terminals. It becomes unnecessary to remove the sheet metal.
  • FIG. 5 is a diagram showing a configuration example of an air conditioning system that collects information from air conditioners.
  • the distribution device 2 collects information about the connected air conditioners 11 to 13 when the power of the distribution device 2 is turned on or at regular intervals.
  • the information to be collected includes whether each air conditioner supports the F/W distribution function, F/W information supported by the air conditioner, current F/W version, communication method at the time of F/W distribution, distribution unit, and distribution. It includes information indicating the data compression method, the data format of distribution data, and the like.
  • the network server 3 can collect the information collected by the distribution device 2 at any timing, and by accessing the network server 3, the operator can also confirm the contents.
  • the network server 3 By collecting information on the air conditioners 11 to 13, the network server 3 sends the F/W to the distribution device 2 with the F/W type, F/W version, and data compression method that can be handled by the air conditioner to be updated. can provide.
  • the distribution device 2 can perform F/W distribution to the air conditioning equipment in a communication method and distribution unit suitable for the air conditioning equipment to be updated.
  • FIG. 6 is a diagram showing a configuration example of an air conditioning system in which a network server manages a plurality of distribution devices.
  • the air conditioning system 100 includes a plurality of equipment groups F1A to F1C and a network server 3 connected to distribution devices 2A to 2C of the equipment groups F1A to F1C via a second network 6A.
  • a plurality of equipment groups F1A are arranged at the installation site A and include air conditioners 1A and distribution devices 2A.
  • a plurality of equipment groups F1B are arranged at the installation site B and include air conditioners 1B and distribution devices 2B.
  • a plurality of equipment groups F1C are arranged at the installation site C and include air conditioners 1C and distribution devices 2C.
  • the network server 3 includes a plurality of update programs F/W(A) to F/W(C) and a plurality of update programs F/W(A) to F/W(A) to F/W(C) corresponding to the plurality of device groups F1A to F1C, respectively. and the information necessary to deliver each W(C).
  • the information necessary for distribution includes, for example, information specifying a distribution device indicating a distribution destination, an air conditioner information list indicating the configuration of air conditioners distributed by each distribution device, and the like.
  • the administrator can add the F/W to the network server 3 from the user terminal 4 located at the remote location F2A via the network 6B.
  • the network server 3 can manage multiple distribution devices 2A, 2B, and 2C, and can store multiple types of F/W.
  • the network server 3 can distribute F/W to a plurality of distribution devices 2A, 2B, 2C. It is also possible to compress the F/W by various compression methods and then provide it. Note that the F/W may be compressed and held from the beginning.
  • Each of the air conditioners 1A, 1B, and 1C has a function of decompressing the compressed F/W data.
  • one-to-many connection between the network server 3 and the distribution devices 2A to 2C is possible, enabling parallel processing of information aggregation and F/W update for each installation site F1A, F1B, and F1C. becomes.
  • the network server 3 can store a plurality of types of F/W, it is possible to support a plurality of types of air conditioners and to update the F/W using data of different F/W versions for the same device. .
  • by compressing data before distribution the throughput during F/W distribution can be improved.
  • FIG. 7 is a diagram showing a configuration example of an air conditioning system that provides F/W based on manual rewrite commands.
  • the network server 3 shown in FIG. 7 is configured to start providing F/W to the distribution device 2 in response to a rewrite command sent from the user terminal 4 by the operator.
  • FIG. 8 is a diagram showing a configuration example of an air conditioning system that automatically provides F/W in response to the addition of new F/W.
  • the network server 3 shown in FIG. 8 automatically starts providing F/W to the delivery apparatus 2 in response to the addition of new F/W or registration of a new version of F/W from the user terminal 4 by the operator. configured as
  • FIG. 9 is a flowchart showing processing for automatically executing F/W distribution.
  • the network server 3 sequentially refers to the air conditioner information list one by one from the beginning.
  • the network server 3 determines whether or not the F/W added by the operator from the user terminal 4 is for the reference model referred to in the air conditioner information list.
  • the process returns from step S7 to step S1 and moves to the next order in the information list.
  • step S2 if the added F/W is for the reference model, the network server 3 decides in step S3 whether or not to update the F/W of the reference model using time stamps. It is judged whether the judgment is based on the version.
  • step S3 if the determination method is version-based determination, in step S4, if the version number of the added F/W is greater than the version number of the target model's F/W, the network server 3 determines in step S6 Add the model being referenced to the update model list. On the other hand, in step S4, when the version number of the added F/W is equal to or less than the version number of the F/W of the target model, the network server 3 does not execute the addition process in step S6 and returns to step S1. The next position in the air conditioner information list is referred to, and the processes after step S2 are executed.
  • step S3 if the judgment method in step S3 is judgment by time stamp, and if the added F/W timestamp is larger (newer) than the F/W timestamp of the target model in step S5, The network server 3 adds the model being referenced to the update model list in step S6.
  • step S5 if the time stamp of the added F/W is not greater (same or older) than the time stamp of the F/W of the target model, the network server 3 executes the addition of step S6. Without doing so, the process returns to step S1, refers to the next position in the air conditioner information list, and executes the processes after step S2.
  • step S7 when all the devices in the air conditioning device information list have been referred to, the processing of the flowchart of FIG. 9 ends. Then, the network server 3 transmits the F/W to the corresponding distribution device so as to distribute the F/W added to the air conditioner existing in the completed update model list.
  • FIG. 10 is a diagram showing a configuration example of an air conditioning system in which a network server selects various settings related to F/W distribution.
  • the network server 3 When the network server 3 starts to provide the F/W to the distribution device 2, the network server 3 selects the F/W corresponding to the air conditioner from the collected air conditioner information, and also selects the F/W to be provided. Select the compression method and data format for the The network server 3 refers to the air conditioner information and selects the F/W compression method and data format so as to minimize the file size and maximize the throughput. Also, the distribution device 2 selects a communication method and a distribution unit.
  • the delivery time can be greatly shortened by selecting differential data.
  • difference data can be calculated by the procedure described in FIG. 16, which will be described later.
  • the differential data may be automatically selected under the condition that the data capacity is differential data+differential position list ⁇ full data.
  • the communication method from the distribution device 2 to the air conditioner 1 it is possible to select between regular communication and extended communication with an extended data part.
  • Some air conditioners use their own communication standards, and the communication speed is very low compared to general communication such as TCP/IP used in personal computers.
  • extended communication is prepared by extending the data part.
  • the communication with the extended data part means that the length of the data part is extended and the length of the header part is slightly extended in the method of transmitting the communication command including the header part and the data part.
  • communication commands are divided into a header part and a data part, and the header part has a fixed length.
  • the data portion is short when sending a large amount of data, the number of times of transmission increases, and the header portion is sent every time, reducing the effective throughput of communication. Therefore, by lengthening the data portion, it is possible to reduce the transmission of the header portion and increase the effective throughput.
  • the network server 3 can select the number of unit data (delivery unit R) for one continuous transmission when the delivery device 2 advances the delivery sequence to the air conditioner 1 at the time of F/W delivery.
  • the data received at the time of distribution is stored in the main storage device inside the air conditioner 1, but the area width of the main storage device that the target device can yield to this function differs for each air conditioner. Since the network server 3 stores this area width for each air conditioner, it is possible to make adjustments according to individual air conditioners.
  • the network server 3 collects the air conditioning equipment information acquired by the distribution device 2 on the network server 3 . Then, as shown in FIGS. 7, 8 and 10, the network server 3 uses the air conditioner information to distribute the F/W appropriate for the target air conditioner with appropriate settings to the air conditioner.
  • FIG. 11 is a diagram showing the flow from acquisition of unit information to start of F/W distribution.
  • a worker adds F/W to the network server 3 (S11).
  • the distribution device 2 requests the unit information of the air conditioners 11 and 12 (S12, S13), the air conditioners 11 and 12 each return the unit information (S14, S15).
  • the distribution device 2 When the network server 3 requests the unit information of the air conditioners 11 and 12 from the distribution device 2 (S16), the distribution device 2 returns the unit information of the air conditioners 11 and 12 to the network server 3 (S17).
  • the F/W distribution can be started by manual instruction by an operator as shown in FIG. 11(a) or by automatic distribution by a network server as shown in FIG. 11(b). be. Both of these start methods use a start command.
  • the network server 3 transmits the checksum of the F/W to the distribution device 2 (S21), and then the information specifying the target air conditioner 11 and the settings for distribution.
  • the F/W for update is transmitted to the distribution device 2 .
  • the distribution device 2 performs collation using the checksum value transmitted in advance to ensure the identity of the F/W (S23).
  • the checksum of W is transmitted (S24), and distribution of F/W is started with setting X (S25).
  • the hour setting Y is determined by self-judgment (S26).
  • the network server 3 transmits the checksum of the F/W to the distribution device 2 (S27), and then, together with the information specifying the target air conditioning equipment 11 and the setting Y for distribution, F/W is transmitted to distribution device 2 (S28).
  • the distribution device 2 performs collation using the checksum value transmitted in advance to ensure the identity of the F/W (S29).
  • the checksum of W is transmitted (S30), and distribution of F/W is started with setting Y (S31).
  • FIG. 12 is a diagram showing the flow of F/W distribution from the distribution device 2 to the air conditioner 1 and interruption, resumption, and cancellation of distribution.
  • the F/W When the F/W is distributed, it is divided into distribution units R and distributed.
  • the distribution device 2 transmits the unit data R times for each distribution unit R specified by the setting, and confirms the shortage on the side of the air conditioner.
  • steps S41 and S42 when the transmission of the last R-th data of the distribution unit R is completed, in step S43, the distribution device 2 confirms with the air conditioner 1 whether or not there is a shortage of data.
  • the air conditioner 1 simply determines whether or not the data number has been received. More specifically, since "data number + data" is included in the communication command, the received data number can be saved in the list and the missing number can be regarded as lacking. In step S44, the air conditioner 1 extracts the missing number "No. 5" which is the number that failed to be received.
  • step S44 the air conditioning equipment 1 whose shortage has been confirmed responds with "No. R+1" and "No. 5".
  • R+1 is the number next to the latest received number R, and is the number requested to be transmitted next.
  • No. 5" is the missing number among the R pieces of data.
  • the distribution device 2 transmits to the air conditioning equipment 1 the data of the number (No. 5) that is insufficient for the distribution unit in step S46. Then, in step S48, the distribution device 2 confirms again with the air conditioner 1 whether or not there is a shortage of data.
  • step S49 the air conditioner 1, which has been confirmed to be missing, responds with only "R+1", which is the next number after the latest received number R.
  • the distribution device 2 When the network server 3 confirms the progress of the distribution device 2 at a timely timing (S45), the distribution device 2 sends the progress status to the network, for example, "distributing, progress S %". Reply to server 3.
  • checksum is used only for confirmation after receiving all the data, as shown in S77 of FIG. 13 later.
  • the air conditioner 1 When receiving the divided F/W, the air conditioner 1 saves the data in the main storage device built in the air conditioner 1, and when the data for the distribution unit is complete or when the distribution device 2 notifies the distribution completion. The data is transferred to the auxiliary storage device built in the air conditioner 1 .
  • the F/W distribution can be interrupted (S50) and resumed (S53) from the network server 3.
  • the distribution device 2 Upon receiving the interruption instruction, the distribution device 2 interrupts the distribution of the F/W to the air conditioner 1 (S51, S52). Further, when receiving the restart instruction, the distribution device 2 restarts distribution of the F/W to the air conditioner 1 (S54). Then, when the reception of the distribution unit R by the air conditioner 1 is confirmed, the distribution device 2 moves on to transmission of the next distribution unit R (R+1st to 2Rth) (S54 to S58 in FIG. 12).
  • the F/W delivery can be instructed to stop (S59) from the network server 3.
  • the distribution device 2 stops distribution of the F/W to the air conditioner 1 (S60, S61).
  • FIG. 13 is a diagram showing the flow of F/W distribution completion-update execution-update normal completion.
  • steps S71 to S74 the transmission of the n+1th delivery unit R is executed in the same manner as in S41 to S44 of FIG. 12, and the missing nR+3 data is delivered in step S75, completing the delivery of the entire F/W. .
  • the air conditioner 1 When the distribution from the distribution device 2 is completed and all the F/W data is prepared (S75), the air conditioner 1 performs decompression processing if the compression method is specified in the settings (S76). After the decompression process is performed (if uncompressed, the data remains unchanged), the air conditioner 1 confirms the identity of the data using the checksum transmitted at the start of distribution (S77).
  • the network server 3 After confirming the completion of checksum verification on the air conditioning equipment 1 side (S78-S81), the network server 3 instructs F/W updating (S82, S83).
  • the F/W update start command may be either manual or automatic.
  • the air conditioner 1 instructed to update executes F/W update (S85) after operation is stopped (S84).
  • the distribution device 2 After instructing the air conditioner to update the F/W (S83), the distribution device 2 checks the F/W version and determines whether the F/W update was successful (S86, S87).
  • the distribution device replies that the update has been completed normally (S89).
  • update firmware is distributed from the network server 3 to the air conditioning equipment 1 via the distribution device 2 .
  • the update firmware in a form suitable for the air conditioner 1, such as a compression method, data format, and communication method.
  • Embodiment 2 In a configuration in which a plurality of air conditioners are connected to the distribution device 2 as shown in FIG. 5 and the like, it may be necessary to distribute the same update F/W to the plurality of air conditioners.
  • the F/W distribution may be performed by broadcast communication instead of performing F/W distribution individually in order to shorten the time. Since the F/W distribution command has a large amount of data to be transmitted, the use of broadcast communication can reduce the utilization rate of the communication network and improve the throughput.
  • FIG. 14 is a diagram showing the flow of simultaneous delivery to multiple air conditioners by broadcast communication.
  • the network server 3 acquires the unit information of each air conditioner collected in advance by the distribution device 2, and distributes the same F/W to which air conditioner among the air conditioners 11 to 13. figure out if there is
  • the network server 3 has determined that it is necessary to distribute the same F/W to the air conditioners 11 and 12 . Then, the network server 3 transmits the F/W checksum to the distribution device 2 in step S102, and provides the F/W to the distribution device 2 in step S103. At this time, in S103, the network server 3 transmits to the distribution apparatus 2 that the distribution targets are the air conditioners 11 and 12 and the setting X at the time of distribution.
  • step S104 the distribution device 2 verifies the received F/W checksum, and transmits the checksum to the air conditioners 11 and 12 to which the F/W is provided (S105). Subsequently, in step S106, the distribution device 2 transmits a F/W distribution start command to the air conditioners 11 and 12 to which the F/W is to be provided. On the other hand, as shown in step S107, the air conditioners 13 not to be provided have not received the F/W distribution start command.
  • step S106 and S107 whether or not the broadcast communication is received depends on whether or not the air conditioners 11 to 13 have received the F/W distribution start command transmitted by the distribution device 2. 13 can be determined.
  • the distribution device 2 sequentially transmits the 1st to Rth unit data to the bus-type communication network based on the distribution unit of the divided F/W. Then, in step S111, the distribution device 2 inquires of the air conditioners 11 and 12 whether any of the distribution units is insufficient (whether reception has failed).
  • step S112 the air conditioning equipment 11 responds that the 6th and R+1th items are insufficient, and the air conditioning equipment 12 responds that the R+1th item is insufficient. Further, as shown in step S113, since the air conditioner 13 that is not subject to F/W provision has not received the start command, the communications in steps S108 to S111 are discarded.
  • step S112 the distribution device 2 first transmits the sixth unit data to the bus-type communication network. Then, in step S115, the distribution apparatus 2 again inquires of the air conditioners 11 and 12 whether any of the distribution units is insufficient (whether reception has failed). This time, since the air conditioner 11 has successfully received the 6th unit data, both the air conditioners 11 and 12 respond that the R+1th unit data is insufficient (S116).
  • the distribution device 2 transmits the remaining F/W distribution units to the bus-type communication network in order of the R+1st distribution unit, the R+2th distribution unit, and so on.
  • the distribution device 2 can perform broadcast communication to a plurality of air conditioners and shorten the total transmission time.
  • Embodiment 3 In FIG. 10, it was mentioned that the data format when distributing the F/W may be the full format or the differential format. is reduced.
  • FIG. 15 is a diagram showing the flow of F/W distribution and F/W update procedures based on difference data.
  • steps S153 and S154 of FIG. 15 two of the checksum of the difference data and the checksum of the entire update F/W are transmitted when difference data is distributed. Then, in steps S157 and S163, the checksums of the difference data are compared, and in step S165, the overall checksums are compared to ensure that there are no errors after restoration.
  • step S151 the network server 3 acquires the unit information of the air conditioning equipment that the distribution device 2 has collected in advance.
  • the network server 3 acquires the unit information of the air conditioning equipment that the distribution device 2 has collected in advance.
  • step S152 the network server 3 creates difference data and a difference position list from the current F/W and the updated F/W.
  • step S153 the network server 3 transmits the created checksum of the differential data to the distribution device 2.
  • step S154 the network server 3 transmits the checksum of the entire F/W data to the distribution device 2.
  • the network server 3 transmits the differential data and the differential position list created in step S152 to the distribution device 2 in steps S155 and S156.
  • step S157 the distribution device 2 verifies the checksum of the received differential data. Then, the checksum of the differential data is transmitted to the air conditioner 1 in step S158, and the checksum of the entire F/W data is transmitted to the air conditioner 1 in step S159.
  • the distribution device 2 transmits the differential data and the differential position list received in steps S155 and S156 in steps S160 and S161.
  • step S162 the distribution of the F/W to the air conditioner 1 is completed, and in the case of compressed data, after the data is decompressed in the air conditioner 1, in step S163, the air conditioner 1 checks the difference data. The sums are collated, and in step S164, the entire data of the F/W for updating is created from the differential data, and in step S165, the checksums of the entire data are collated.
  • step S166 the distribution device 2 sends an inquiry to the air conditioner 1 to confirm the collation result. A reply is sent that the match was successful.
  • step S168 update processing is performed to apply the created update F/W to the air conditioner 1, and the F/W version is confirmed in the same procedure as S86 to S89 in FIG.
  • FIG. 16 is a flowchart for explaining the details of the F/W difference data creation process in S152 of FIG.
  • Difference data distribution can be executed if both the current F/W and the updated F/W are registered in the network server 3.
  • the network server When transmitting the data format as differential data, the network server compares the current F/W and updated F/W of the target air conditioning equipment for each delivery unit, and records the data and the differential position where there is a discrepancy.
  • step S131 the difference position is set to zero, and between steps S132 to S138, distribution units are compared in order from the difference position zero to the end of the data.
  • the difference position is an integer starting from 0, and 1 is added in step S137 when one comparison is completed.
  • step S133 the comparison start position is set to "difference position ⁇ distribution unit". Then, in step S134, the network server 3 determines whether or not there is a difference within the distribution unit width from the comparison start position.
  • the network server 3 adds the distribution unit data currently being referenced to the distribution data in step S135, and adds the difference position currently being compared to the difference position list in step S136. do. After that, the network server 3 adds 1 to the difference position in step S137. On the other hand, if there is no difference (NO in S134), the network server 3 adds 1 to the difference position in step S137 without executing the processes of steps S135 and S136, and repeats the processes of S133 to S137 again.
  • FIG. 17 is a flowchart for explaining the process of creating F/W update data using difference data, which is executed in S164 of FIG.
  • step S141 the air conditioner 1 transfers the F/W that is currently being executed in the air conditioner 1 to the update data area of the memory that the air conditioner 1 incorporates.
  • steps S142 to S147 a process of sequentially replacing delivery units indicated in the difference position list is executed.
  • step S143 the differential position is extracted from the differential position list, and in step S144, the rewrite start position is determined as the differential position.times.delivery unit.
  • step S145 the data for the distribution unit from the rewrite start position is rewritten with the corresponding received data for the distribution unit.
  • step S146 the air conditioner 1 advances the reference location of the difference position list and the reference location of the received data, and repeats the processing of S143 to S145 again. With such a procedure, the preparation of F/W for updating is completed.
  • Embodiment 4 A plurality of outdoor units may be connected to the same refrigerant system.
  • the required refrigerating capacity may change due to load fluctuations, and the refrigerating capacity may be increased or decreased depending on the number of units in operation.
  • FIG. 18 is a diagram showing a configuration example of an air conditioner in which a plurality of outdoor units configure the same refrigerant system.
  • the air conditioner 1 shown in FIG. 18 includes outdoor units 101-1 to 101-n, indoor units 102-1 to 103-m, and refrigerant pipes 103 and 104.
  • m and n are integers of 2 or more, and the number m of outdoor units and the number n of indoor units may be the same or different.
  • the outdoor units 101-1 to 101-n are connected in parallel between the refrigerant pipes 103 and 104, and constitute heat source equipment.
  • Indoor units 102-1 to 103-m are connected in parallel between refrigerant pipe 103 and refrigerant pipe 104, and constitute a load device.
  • a distribution device 2 is connected to the air conditioning equipment 1 to distribute update F/W.
  • the distribution device 2 may be built in the outdoor unit 101-1.
  • 19 and 20 show an example in which the outdoor unit 101-1 is the main outdoor unit and the outdoor units 101-2 to 101-m are secondary outdoor units. Therefore, in FIGS. 19 and 20, the main outdoor unit 101-1 and the secondary outdoor units 101-2 to 101-3 are used.
  • FIG. 19 is a diagram showing a flow of simultaneous update of F/W for a plurality of outdoor units.
  • step S181 when a plurality of outdoor units constitute the same refrigerant system, the F/W is distributed in advance to the plurality of outdoor units (main outdoor unit 101-1, secondary outdoor units 101-2 to 101-3). let it be completed.
  • the distribution device 2 When the distribution device 2 receives an update execution instruction from the network server 3 (S182), it recognizes multiple outdoor units of the same refrigerant system and instructs the main outdoor unit to update the F/W of the multiple outdoor units (S183).
  • the main outdoor unit 101-1 that has received this confirms that it is ready for updating itself. Along with this, the main outdoor unit 101-1 also confirms that the update preparations for the secondary outdoor units 101-2 to 101-3 are ready (S184).
  • the main outdoor unit 101-1 causes the slave outdoor units 101-2 and 101-3 to stop operating. Along with sending a command (S186), it also stops the operation of the compressor (S187).
  • the main outdoor unit 101-1 confirms that all of the main outdoor unit 101-1 and the secondary outdoor units 101-2 to 101-3 are ready for updating, and then the secondary outdoor units 101-2 to 101-3 (S188), and updates its own F/W (S189). Slave outdoor units 101-2 and 101-3 also update their F/W in accordance with the update instruction from main outdoor unit 101-1 (S190, S191).
  • the distribution device 2 makes an inquiry to the main outdoor unit 101-1 and the secondary outdoor units 101-2 and 101-3 to confirm the version of the F/W (S192).
  • the main outdoor unit 101-1 and secondary outdoor units 101-2 and 101-3 inform the distribution device 2 of the F/W version (S193). If the update is successful, the distribution device 2 is notified that the version is a new version after the update.
  • the distribution device 2 When the network server 3 confirms the progress with the distribution device 2 (S194), the distribution device 2 returns a notification to the effect that the update has been completed normally to the network server 3 (S195). In this way, the F/Ws are simultaneously updated for a plurality of outdoor units.
  • the air conditioner must temporarily suspend control in order to update the F/W.
  • the main outdoor unit adjusts the update timing using communication. For example, air conditioning is also stopped as shown in FIG. Also, if there are multiple outdoor units, the system is reconfigured at the time of rewrite recovery, so the recovery timing should be roughly aligned.
  • Embodiment 4 a mechanism is provided to restore the F/W version when a F/W version difference occurs after the update in the same refrigerant system outdoor unit.
  • the current F/W is stored in advance in the main storage device of each outdoor unit.
  • This mechanism is also realized by the main outdoor unit 101-1, which controls the system configuration of the air conditioner 1, confirming the states of the secondary outdoor units 101-2 and 101-3.
  • FIG. 20 is a diagram showing the flow of operations according to the success or failure of updating multiple outdoor units.
  • rollback processing is performed using backup data saved when the power is turned on ((a) in FIG. 20).
  • the slave outdoor unit 101-2 responds that the update has succeeded, and the slave outdoor unit 101-3 responds that the update has failed (S206).
  • the main outdoor unit 101-1 transmits an instruction to rewrite the F/W based on the backup data prepared in advance to the slave outdoor units 101-2 and 101-3 (S207), and the main outdoor unit 101-1 itself also updates the F/W based on the backup data. /W rewrite is executed (S208). Accordingly, slave outdoor units 101-2 and 101-3 also execute F/W rewriting with backup data (S209, S210).
  • backup data is created in preparation for the next F/W update ((b) of FIG. 20).
  • the main outdoor unit 101-1 transmits a backup instruction to the secondary outdoor units 101-2 and 101-3 (S217), and also backs up the successfully updated F/W (S218).
  • slave outdoor units 101-2 and 101-3 also back up the successfully updated F/W (S219, S220).
  • the air conditioning system 100 is connected to an air conditioner 1 capable of storing a control program in a nonvolatile manner, and connected to the air conditioner 1 via a first network 5, and stored in the air conditioner 1 in a nonvolatile manner. and a distribution device 2 for distributing an update program for updating the control program installed in the air conditioner 1 to the air conditioner 1. - ⁇
  • the air conditioning system 100 further comprises a network server 3 connected to the distribution device 2 via the second network 6A.
  • the distribution device 2 is configured to receive distribution of the update program from the network server 3 .
  • the distribution device 2 may be accommodated in the same housing as other air conditioners 11 different from the air conditioners 1 .
  • Distribution device 2 is configured to perform protocol conversion between communication standard B, which is the communication method of first network 5, and communication standard A, which is the communication method of second network 6A.
  • the distribution device 2 when the distribution device 2 is powered on or at regular intervals, the distribution device 2 sends an information list necessary for distribution of the update program for the air conditioners 11 to 13 to the air conditioners 11 to 13. are collected from and stored in the storage device 21 .
  • the network server 3 accesses the distribution device 2 and reads out the information list from the distribution device 2 before distributing the update program.
  • the network server 3 is configured to distribute the update program according to the information list.
  • the air conditioner information includes at least one of the compression method, data format, and communication method used when distributing the update program.
  • the data format includes a full data format and a differential data format.
  • the network server 3 compares the update program and the pre-update program as shown in FIG. difference position data indicating the position of the difference data;
  • the network server 3 is configured to distribute the generated difference data and difference position data to the distribution device 2 .
  • the distribution device 2 transfers the difference data and the difference position data to the air conditioner 1 .
  • the air conditioner 1 is configured to restore the update program based on the difference data and the difference position data, as shown in FIG. 17 .
  • the network server 3 distributes the F/W to the distribution device 2 according to the F/W type, F/W version, and compression method that can be handled by the air conditioner to be updated. can provide to In addition, the distribution device 2 can perform F/W distribution to the air conditioning equipment in a communication method and distribution unit suitable for the air conditioning equipment to be updated.
  • the update program transmitted from the worker's user terminal 4 (personal computer) in accordance with the USB standard can be transferred to the maintenance device 15 that also serves as the distribution device 2.
  • the protocol may be converted to the communication standard B and distributed.
  • the air conditioning system 100 includes a plurality of device groups F1A to F1C each including air conditioners 1A to 1C and distribution devices 2A to 2C, and a plurality of device groups F1A to F1C. and a network server 3 connected to the devices 2A-2C via a second network 6A.
  • the network server 3 includes a plurality of update programs F/W(A) to F/W(C) and a plurality of update programs F/W(A) to F/W(A) to F/W(C) corresponding to the plurality of device groups F1A to F1C, respectively. and the information necessary to deliver each W(C).
  • the information necessary for distribution includes, for example, distribution device information indicating distribution destinations, an air conditioner information list indicating the configuration of air conditioners distributed by each distribution device, and the like.
  • the network server 3 can store a plurality of types of F/W, it is possible to support a plurality of types of air conditioners and to update the F/W using data of different F/W versions for the same device. .
  • the throughput during F/W distribution can be improved.
  • the network server 3 is configured to distribute the update program to the distribution device corresponding to the received rewrite command from the worker.
  • the network server 3 is configured, as shown in FIG. 8, to distribute the update program to distribution devices corresponding to established rewrite conditions, such as the addition of a new F/W.
  • the air conditioner 1 includes a plurality of outdoor units 101-1 to 101-n commonly connected to one refrigerant circuit. As shown in FIG. 19, each of the plurality of outdoor units 101-1 to 101-n executes the distributed update program at the timing designated by the distribution device 2 or when the conditions designated by the distribution device 2 are met. It is configured to replace the pre-update program at the timing.
  • Each of the plurality of outdoor units 101-1 to 101-n is configured to store a pre-update program and an update program. As shown in (a) of FIG. 20, in each of the plurality of outdoor units 101-1 to 101-n, the pre-update program is normal to the update program in any of the plurality of outdoor units 101-1 to 101-n. is configured to use the pre-update program without using the update program.
  • each of the plurality of outdoor units 101-1 to 101-n is configured such that the pre-update program is for updating in all of the plurality of outdoor units 101-1 to 101-n.
  • the update program is used as the control program, and the pre-update program is rewritten with the update program.
  • the air conditioning system 100 shown in FIG. 1 further includes a network server 3 connected to the distribution device 2 via a second network.
  • the network server 3 includes a storage device 31 that stores an update program, and a CPU 30 that reads the update program from the storage device 31 and automatically delivers it to the delivery device 2 .
  • the CPU 30 compares the update program stored in the storage device 31 with the version or time stamp of the control program nonvolatilely stored in the air conditioner 1 .
  • the CPU 30 is configured to distribute the update program to the distribution device 2 when the version or time stamp indicates that the update program is newer than the control program.
  • the air conditioning system 100 shown in FIG. 1 further includes a network server 3 connected to the distribution device 2 via a second network.
  • the network server 3 includes a storage device 31 that stores an update program and a pre-update program, and a CPU 30 that reads out the update program from the storage device 31 and delivers it to the distribution device 2 .
  • the CPU 30 compares the update program and the pre-update program, and compares the difference data between the update program and the pre-update program with the first checksum indicating the checksum of the difference data. , and a second checksum indicating the checksum of the entire update program.
  • the distribution device 2 receives the difference data, the first checksum, and the second checksum from the network server 3 (S153, S154) and transfers them to the air conditioner 1 (S158, S159).
  • the air conditioner 1 checks the received difference data using the first checksum (S163), and checks the update program restored from the received difference data using the second checksum (S165). configured to
  • the air conditioning system 100 shown in FIG. 1 further includes a network server 3 connected to the distribution device 2 via a second network.
  • the network server 3 includes a storage device 31 that stores an update program and a pre-update program, and a CPU 30 that reads out the update program from the storage device 31 and delivers it to the distribution device 2 .
  • the CPU 30 shifts the comparison start position by unit width (S133), compares the update program and the pre-update program (S134), and compares the unit width in which the difference is detected. It is configured to add to the data (S135) and add the position of the added unit width data to the differential position data (S136).
  • the air conditioner 1 receives the difference data and the difference position data from the network server 3 via the distribution device 2 (S160, S161).
  • the air conditioner 1 restores the update program using the control program, difference data, and difference position data (S164, S131 to S138 in FIG. 17)).
  • Air conditioning equipment 1, 1A, 1B, 1C, 11, 12, 13 Air conditioning equipment, 2, 2A, 2B, 2C Distribution device, 3 Network server, 4 User terminal, 5 Communication network, 6A, 6B Internet, 15 Maintenance equipment, 21, 31 Storage device, 22 air conditioner connection unit, 23 communication unit, 25, 36 FW update unit, 27 data collection unit, 28 data reception unit, 32 distribution device communication unit, 33 application communication unit, 38 device registration unit, 39 device management unit , 100 air conditioning system, 101-1 to 101-3 outdoor units, 102-1 to 102-3 indoor units, 103, 104 refrigerant pipes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Stored Programmes (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

According to the present invention, an air-conditioning system (100) comprises air-conditioning equipment (1) and a distribution device (2) that is connected to the air-conditioning equipment (1) via a first network (5) and that distributes an updating program for the air-conditioning equipment (1) to the air-conditioning equipment (1). The distribution device (2) is preferably configured such that a distribution of the updating program is received from a network server (3) connected to the distribution device (2) via a second network (6A). The distribution device (2) is configured such that protocol conversion is performed between the communication mode of the first network (5) and the communication mode of the second network (6A).

Description

空気調和システムair conditioning system
 本開示は、空気調和システムに関する。 The present disclosure relates to air conditioning systems.
 大規模な空気調和システムでは、多機能化および制御性の向上等を目的として、各種の運転制御プログラム(以下、ファームウエア、F/Wとも記載する)のバージョンアップが行なわれることが多い。運転制御プログラムのバージョンアップを容易とするために、書換え可能な不揮発性記憶装置に運転制御プログラムを記憶させた空気調和装置が知られている。 In large-scale air conditioning systems, various operation control programs (hereinafter also referred to as firmware and F/W) are often upgraded for the purpose of increasing functionality and improving controllability. 2. Description of the Related Art There is known an air conditioner in which an operation control program is stored in a rewritable nonvolatile storage device in order to facilitate version upgrade of the operation control program.
特許第3819583号公報Japanese Patent No. 3819583
 従来、空調機器の運転制御プログラムを更新する場合は、サービスマンが据付現場へ赴いて対象機器を捜索し、電源遮断を実行してプログラム更新を行なう必要があり、場合によっては作業のために空調機器の筐体の板金の取り外しも必要であった。また、現場が遠方であれば移動の時間がかかり、電源遮断および板金取り外し等の作業自体も時間を要するため、サービス提供の即応性にも欠けていた。加えて、空冷室外機であれば屋上等の屋根が無い環境に設置されることが多いため、天候によっては対応が難しい場合もあった。 Conventionally, when updating the operation control program of an air conditioner, it is necessary for a service person to go to the installation site, search for the target equipment, and execute the power shutdown to update the program. It was also necessary to remove the sheet metal from the housing of the equipment. In addition, if the site is far away, it takes time to move, and it takes time to cut off the power and remove the sheet metal, so the responsiveness of service provision is lacking. In addition, since the air-cooled outdoor unit is often installed in an environment without a roof such as a rooftop, it may be difficult to deal with the weather depending on the weather.
 本開示は、上記のような課題を解決するためになされたものであって、作業時間を短縮し、天候に左右されずにプログラム更新が可能な空気調和システムを提供することを目的とする。 The present disclosure has been made to solve the problems described above, and aims to provide an air conditioning system that reduces work time and allows program updates regardless of the weather.
 本開示は、空気調和システムに関する。空気調和システムは、制御プログラムを不揮発的に記憶可能な空調機器と、空調機器と第1のネットワークを介して接続され、空調機器に不揮発的に記憶されている制御プログラムを更新するための更新用プログラムを空調機器に配信する配信装置とを備える。 The present disclosure relates to air conditioning systems. The air conditioning system includes an air conditioner capable of storing a control program in a nonvolatile manner, and an update controller connected to the air conditioner via a first network for updating the control program nonvolatilely stored in the air conditioner. and a distribution device that distributes the program to the air conditioner.
 本開示の空気調和システムによれば、プログラム更新に必要な作業時間が短縮され、天候に左右されずにプログラム更新が可能となる。 According to the air conditioning system of the present disclosure, the work time required for updating the program is shortened, and the program can be updated regardless of the weather.
実施の形態1に係る空気調和システムの一構成例を示すブロック図である。1 is a block diagram showing one configuration example of an air conditioning system according to Embodiment 1. FIG. 通信によるF/W更新機能を備えた空気調和システムの概略図である。1 is a schematic diagram of an air conditioning system with a F/W update function through communication; FIG. 空調機器が配信装置を兼ねた空気調和システムの構成例を示す図である。1 is a diagram showing a configuration example of an air conditioning system in which an air conditioner also serves as a distribution device; FIG. 現場でのメンテナンス機器接続によるF/W配信が実行可能な空気調和システムの構成例を示す図である。1 is a diagram showing a configuration example of an air-conditioning system capable of performing F/W distribution by connecting maintenance equipment on site; FIG. 空調機器からの情報収集を行なう空気調和システムの構成例を示す図である。It is a figure which shows the structural example of the air conditioning system which collects information from an air conditioner. ネットワークサーバが、複数の配信装置の管理を行なう空気調和システムの構成例を示す図である。1 is a diagram showing a configuration example of an air conditioning system in which a network server manages a plurality of distribution devices; FIG. 手動の書換え指令によるF/W提供を行なう空気調和システムの構成例を示す図である。FIG. 3 is a diagram showing a configuration example of an air conditioning system that provides F/W by manual rewriting instructions; 新F/W追加に応じて自動でのF/W提供を行なう空気調和システムの構成例を示す図である。FIG. 3 is a diagram showing a configuration example of an air conditioning system that automatically provides F/W in response to the addition of new F/W; 自動でF/W配信を実行するための処理を示すフローチャートである。4 is a flowchart showing processing for automatically executing F/W distribution; ネットワークサーバがF/W配信に関する各種設定の選択を行なう空気調和システムの構成例を示す図である。1 is a diagram showing a configuration example of an air conditioning system in which a network server selects various settings related to F/W distribution; FIG. ユニット情報取得からF/W配信開始までの流れを示す図である。FIG. 10 is a diagram showing a flow from acquisition of unit information to start of F/W distribution; 配信装置2から空調機器1へのF/W配信と配信の中断、再開、中止の流れを示す図である。4 is a diagram showing a flow of F/W distribution from the distribution device 2 to the air conditioner 1 and suspension, resumption, and cancellation of the distribution; FIG. F/W配信完了~更新実施~更新正常完了の流れを示す図である。FIG. 10 is a diagram showing a flow of completion of F/W distribution, execution of update, and normal completion of update. 同報通信による複数空調機器への同時配信の流れを示す図である。FIG. 4 is a diagram showing the flow of simultaneous delivery to multiple air conditioners by broadcast communication; 差分データによるF/W配信およびF/W更新手順の流れを示す図である。FIG. 10 is a diagram showing the flow of F/W distribution and F/W update procedures based on differential data; 図15のS152におけるF/Wの差分データ作成の処理の詳細を説明するためのフローチャートである。FIG. 16 is a flowchart for explaining the details of the F/W difference data creation process in S152 of FIG. 15; FIG. 図15のS164で実行される差分データによるF/W更新用データ作成の処理を説明するためのフローチャートである。FIG. 16 is a flowchart for explaining the process of creating F/W update data using difference data, which is executed in S164 of FIG. 15; FIG. 同一冷媒系統を複数室外機が構成する空調機器の構成例を示す図である。1 is a diagram showing a configuration example of an air conditioner in which a plurality of outdoor units configure the same refrigerant system; FIG. 複数の室外機に対してF/Wを同時更新する流れを示す図である。It is a figure which shows the flow which updates F/W simultaneously with respect to several outdoor units. 複数室外機の更新の成否に応じた動作の流れを示す図である。FIG. 10 is a diagram showing a flow of operations according to success or failure of update of a plurality of outdoor units;
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. A plurality of embodiments will be described below, but appropriate combinations of the configurations described in the respective embodiments have been planned since the filing of the application. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
 実施の形態1.
 図1は、実施の形態1に係る空気調和システムの一構成例を示すブロック図である。空気調和システム100は、配信装置2と、ネットワークサーバ3とを備える。
Embodiment 1.
1 is a block diagram showing a configuration example of an air conditioning system according to Embodiment 1. FIG. The air conditioning system 100 includes a distribution device 2 and a network server 3.
 配信装置2は、空調機器1と専用の通信網5によって接続され、空調機器1の更新用プログラムの配信を行なう。配信装置2は、通信網5を経由して、空調機器1に対して更新用ブログラムの配信に必要なデータの収集および、空調機器1の運転データの収集を行なう。 The distribution device 2 is connected to the air conditioner 1 via a dedicated communication network 5 and distributes the update program for the air conditioner 1 . The distribution device 2 collects data necessary for distributing the update program to the air conditioner 1 and the operation data of the air conditioner 1 via the communication network 5 .
 ネットワークサーバ3は、配信装置2およびユーザ端末4とインターネット6A,6Bを介して接続される。ネットワークサーバ3は、空調機器1に配信する更新用プログラムを記憶している。また、ネットワークサーバ3は、配信装置2が収集した空調機器1の運転データを蓄積する。運転データは、たとえば、空調機器1が運転開始および終了した時刻、温度の設定の変更、冷房/暖房の運転切替、などのリモコン操作を示すデータと、冷媒配管などに設置されたセンサで計測された温度および圧力などの空調機器1の状態を示すデータとを含む。 The network server 3 is connected to the distribution device 2 and user terminals 4 via the Internet 6A and 6B. The network server 3 stores update programs to be distributed to the air conditioners 1 . The network server 3 also accumulates the operation data of the air conditioner 1 collected by the distribution device 2 . The operation data includes, for example, data indicating remote control operation such as the time when the air conditioner 1 starts and ends operation, temperature setting change, cooling/heating operation switching, and data measured by sensors installed in refrigerant pipes and the like. and data indicating the state of the air conditioner 1, such as temperature and pressure.
 また、ネットワークサーバ3は、ユーザ端末4から受けた空調機器1に対するプログラム更新指令を配信装置2に送信したり、更新用プログラムを配信装置2に送信したりする。配信装置2は、更新指令または更新用プログラムの受信に応じて、空調機器1に更新用プログラムを配信する。なお、ネットワークサーバ3は、ユーザ端末4に代えて、保守業者が運営するアプリケーションサーバに接続されていても良い。 In addition, the network server 3 transmits a program update command for the air conditioning equipment 1 received from the user terminal 4 to the distribution device 2 and transmits an update program to the distribution device 2 . The distribution device 2 distributes the update program to the air conditioner 1 in response to receiving the update command or the update program. Note that the network server 3 may be connected to an application server operated by a maintenance company instead of the user terminal 4 .
 配信装置2は、中央処理装置(CPU:Central Processing Unit)20と、記憶装置(ROM(Read Only Memory)、RAM(Random Access Memory)およびハードディスクなど)21と、空調機接続部22と、通信部23とを含む。 The distribution device 2 includes a central processing unit (CPU: Central Processing Unit) 20, a storage device (ROM (Read Only Memory), RAM (Random Access Memory), hard disk, etc.) 21, an air conditioner connection section 22, a communication section 23.
 CPU20は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、配信装置2として動作する処理手順が記されたプログラムである。CPU20は、これらのプログラムに従って、FWアップデート部25、データ収集部27、データ受信部28としての処理を実行する。なお、FWアップデート部25、データ収集部27、およびデータ受信部28は、図1に示すように同じCPUが制御する1つの制御部であっても良いが、異なるCPUによって制御される別々の制御部であっても良い。 The CPU 20 expands the program stored in the ROM into the RAM or the like and executes it. The program stored in the ROM is a program in which processing procedures for operating the distribution device 2 are described. The CPU 20 executes processing as the FW update section 25, the data collection section 27, and the data reception section 28 according to these programs. Note that the FW update unit 25, the data collection unit 27, and the data reception unit 28 may be one control unit controlled by the same CPU as shown in FIG. It can be a department.
 FWアップデート部25は、ネットワークサーバ3から更新用のファームウエアをダウンロードして記憶装置21に記憶させる。ファームウエアは、たとえば、空調機器1もしくは配信装置2の運転制御プログラム、または運転制御プログラムに使用されるデータである。ファームウエアは、空調機器1および配信装置2に搭載されている書換可能な不揮発性記憶装置に記憶され、電気的に書換えることが可能である。このような運転制御プログラムまたはそれに使用されるデータを書換えることを本明細書ではファームウエアのアップデートという。FWアップデート部25は、ダウンロードしたファームウエアが配信装置2用のファームウエアであった場合、配信装置2自体に適用する。FWアップデート部25は、ダウンロードしたファームウエアが空調機器用のファームウエアであった場合、空調機器1に転送する。 The FW update unit 25 downloads update firmware from the network server 3 and stores it in the storage device 21 . The firmware is, for example, an operation control program for the air conditioner 1 or the distribution device 2, or data used for the operation control program. The firmware is stored in a rewritable non-volatile storage device installed in the air conditioner 1 and the distribution device 2, and can be electrically rewritten. Rewriting such an operation control program or data used for it is referred to herein as firmware update. If the downloaded firmware is for the distribution device 2, the FW update unit 25 applies it to the distribution device 2 itself. The FW update unit 25 transfers the downloaded firmware to the air conditioner 1 when the firmware is for the air conditioner.
 データ受信部28は、空調機器1からプログラム更新に必要な情報または空調機器1の運転データを受信したら、記憶装置21に保存する。 When the data receiving unit 28 receives the information necessary for updating the program from the air conditioner 1 or the operation data of the air conditioner 1, it stores it in the storage device 21.
 データ収集部27は、ネットワークサーバ3から空調機器1の運転データまたはプログラム更新に必要なデータの収集要求があった場合に、遠隔配信装置のデータベースである記憶装置21から空調機器1の対応するデータを取り出し、ネットワークサーバ3に送信する。 When the network server 3 requests the collection of operation data of the air conditioner 1 or data necessary for updating the program, the data collection unit 27 collects the corresponding data of the air conditioner 1 from the storage device 21, which is the database of the remote distribution device. is extracted and transmitted to the network server 3.
 ネットワークサーバ3は、中央処理装置(CPU:Central Processing Unit)30と、記憶装置(ROM(Read Only Memory)、RAM(Random Access Memory)およびハードディスクなど)31と、配信装置通信部32と、アプリケーション通信部33とを含む。 The network server 3 includes a central processing unit (CPU: Central Processing Unit) 30, a storage device (ROM (Read Only Memory), RAM (Random Access Memory), hard disk, etc.) 31, a delivery device communication unit 32, an application communication 33.
 CPU30は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、ネットワークサーバ3として動作する処理手順が記されたプログラムである。CPU30は、これらのプログラムに従って、FWアップデート部36、機器登録部38、機器管理部39としての処理を実行する。なお、FWアップデート部36、機器登録部38、機器管理部39は、図1に示すように同じCPUが制御する1つの制御部であっても良いが、異なるCPUによって制御される別々の制御部であっても良い。またインターネット上に分散配置された複数のサーバによってネットワークサーバ3が実現されても良い。 The CPU 30 expands the program stored in the ROM into the RAM or the like and executes it. The program stored in the ROM is a program in which processing procedures for operating the network server 3 are described. The CPU 30 executes processing as the FW update section 36, the device registration section 38, and the device management section 39 according to these programs. Note that the FW update unit 36, the device registration unit 38, and the device management unit 39 may be one control unit controlled by the same CPU as shown in FIG. can be Also, the network server 3 may be realized by a plurality of servers distributed on the Internet.
 空気調和システム100は、さらに、ユーザ端末4を備える。アプリケーション通信部33は、ユーザ端末4とインターネット6Bを介して通信する。ユーザ端末4としては、たとえば、パーソナルコンピュータ、タブレット端末、スマートフォンなどを使用することができる。ユーザ端末4には、アプリケーションソフトウエアがインストールされる。 The air conditioning system 100 further includes a user terminal 4. The application communication unit 33 communicates with the user terminal 4 via the Internet 6B. As the user terminal 4, for example, a personal computer, a tablet terminal, a smart phone, etc. can be used. Application software is installed in the user terminal 4 .
 アプリケーションソフトウエアは、ユーザの操作に従ってプログラムの更新指令をネットワークサーバに送信するように構成される。 The application software is configured to send a program update command to the network server according to the user's operation.
 また、アプリケーションソフトウエアは、ネットワークサーバ3から空調機器1の各種パラメータを取得して、ユーザ端末4の表示部に表示する。この表示部は、インターネット上のアプリケーションであってもよいし、OS(Operating System)上で動作するクライアントであってもよいし、他のネットワークサーバとWebブラウザの組み合わせであってもよい。なお、ユーザ端末4に代えて、保守業者が運営するアプリケーションサーバにネットワークサーバ3が接続され、アプリケーションサーバ上で保守業者が空調機器1の各種パラメータを監視しても良い。 The application software also acquires various parameters of the air conditioner 1 from the network server 3 and displays them on the display unit of the user terminal 4 . This display unit may be an application on the Internet, a client operating on an OS (Operating System), or a combination of another network server and a web browser. Instead of the user terminal 4, the network server 3 may be connected to an application server operated by a maintenance company, and the maintenance company may monitor various parameters of the air conditioner 1 on the application server.
 機器管理部39は、ユーザに、他のユーザが使用する遠隔配信装置を操作させないための機能を備える。記憶装置31は、配信装置2に固有の情報(機器データ)を蓄積する。 The device management unit 39 has a function to prevent users from operating remote delivery devices used by other users. The storage device 31 accumulates information (equipment data) unique to the distribution device 2 .
 FWアップデート部36は、配信装置2のファームウエア、および、空調機器1のファームウエアを送信および管理する機能を有する。 The FW update unit 36 has a function of transmitting and managing the firmware of the distribution device 2 and the firmware of the air conditioner 1.
 機器登録部38は、配信装置2をネットワークサーバ3に登録する機能を有する。
 配信装置通信部32は、配信装置2とインターネット6Aを介して通信を行なう。なお、配信装置通信部32は、アプリケーション通信部33とは区別されており、ユーザ端末4を配信装置2に直接的に接続することはできない。
The device registration unit 38 has a function of registering the distribution device 2 with the network server 3 .
The distribution device communication unit 32 communicates with the distribution device 2 via the Internet 6A. Note that the distribution device communication unit 32 is distinguished from the application communication unit 33 and cannot directly connect the user terminal 4 to the distribution device 2 .
 なお、これから更新するファームウエアなどの空調機器1の更新用プログラムを記憶する記憶装置21は、配信装置2内に配置されているが、空調機器1の室外機、室内機、リモコンなどに設けられてもよい。ただし、室外機、室内機、リモコン間の通信網5は通信速度が遅いため、データの再送を要求されてもネットワークサーバ3にデータが届くまでには時間を要する。このため、記憶装置21を、有線LAN、無線LAN等により高速にネットワークサーバ3に通信可能とした配信装置2の内部に設けるのが望ましい。 The storage device 21 for storing an update program for the air conditioner 1 such as firmware to be updated is arranged in the distribution device 2, but is provided in the outdoor unit, the indoor unit, the remote controller, etc. of the air conditioner 1. may However, since the communication speed of the communication network 5 between the outdoor unit, the indoor unit, and the remote control is slow, it takes time for the data to reach the network server 3 even if the data is requested to be resent. For this reason, it is desirable to provide the storage device 21 inside the distribution device 2 that enables high-speed communication with the network server 3 by wired LAN, wireless LAN, or the like.
 図1に示したネットワークサーバ3の機器管理部39は、ユーザに、他のユーザが使用する配信装置を操作させないための機能を備える。したがって、配信装置2の使用開始時に、ユーザ所有の装置であることをネットワークサーバ3に通知する必要がある。このため、ユーザまたは設置工事担当者は、配信装置2の設置時に配信装置2の固有の情報をユーザ端末4からネットワークサーバ3に送信する。 The device management unit 39 of the network server 3 shown in FIG. 1 has a function to prevent users from operating distribution devices used by other users. Therefore, when the distribution device 2 is started to be used, it is necessary to notify the network server 3 that the device is owned by the user. For this reason, the user or the person in charge of the installation works transmits the unique information of the distribution device 2 from the user terminal 4 to the network server 3 when the distribution device 2 is installed.
 配信装置2に固有の情報とは、配信装置を一意に特定できる値であれば何でもよい。たとえば、固有の情報は、製造番号であっても良く、製造番号と乱数の組み合わせなどでも良い。 The information unique to the distribution device 2 may be any value that can uniquely identify the distribution device. For example, the unique information may be a serial number, or a combination of serial number and random number.
 (ファームウエアの更新の説明)
 図2は、通信によるF/W更新機能を備えた空気調和システムの概略図である。図2に示す空気調和システムは、ネットワークサーバ3と、配信装置2と、空調機器1とを備える。ネットワークサーバ3と、配信装置2と、空調機器1とは、通信網を形成している。
(Description of firmware update)
FIG. 2 is a schematic diagram of an air conditioning system with a F/W update function through communication. The air conditioning system shown in FIG. 2 includes a network server 3 , a distribution device 2 and an air conditioner 1 . The network server 3, the distribution device 2, and the air conditioner 1 form a communication network.
 ネットワークサーバ3と配信装置2との間の通信は、通信規格Aで実行される。通信規格Aは、たとえば、インターネット6Aでは、一般的な通信方式であるTCP/IP(Transmission Control Protocol/Internet Protocol)での接続が想定される。TCP/IPは、インターネットを含む多くのコンピュータネットワークにおいて、標準的に利用されている通信プロトコルのセットである。 Communication between the network server 3 and the distribution device 2 is performed according to the communication standard A. For the communication standard A, for example, the Internet 6A is assumed to be connected by TCP/IP (Transmission Control Protocol/Internet Protocol), which is a general communication method. TCP/IP is a standard set of communication protocols used in many computer networks, including the Internet.
 配信装置2と空調機器1との間の通信は、通信規格Bで行なわれる。通信規格Bは、たとえば、メーカー独自のバス通信である。特に限定されないが、通信規格Bは、通信規格Aよりも通信速度が遅いことが多い。 Communication between the distribution device 2 and the air conditioner 1 is performed according to the communication standard B. Communication standard B is, for example, a manufacturer's own bus communication. Although not particularly limited, communication standard B often has a lower communication speed than communication standard A.
 配信装置2および空調機器1は、据付現場F1に配置される。ネットワークサーバ3は、据付現場F1から遠く離れた遠隔地F2に配置される。 The distribution device 2 and the air conditioner 1 are arranged at the installation site F1. The network server 3 is located at a remote site F2 far away from the installation site F1.
 図2に示す空気調和システムは、ファームウエア(以下、F/Wと記載する)を提供するネットワークサーバ3と、配信装置2と、空調機器1とを備える。配信装置2は、ネットワークサーバ3および空調機器1と通信する機能を持ち、空調機器1へF/Wを配信する。空調機器1は、ダウンロードしたF/Wを格納する記憶領域1Mを有し、当該F/Wによる更新機能を備える。 The air conditioning system shown in FIG. 2 includes a network server 3 that provides firmware (hereinafter referred to as F/W), a distribution device 2, and air conditioning equipment 1. The distribution device 2 has a function of communicating with the network server 3 and the air conditioner 1 and distributes the F/W to the air conditioner 1 . The air conditioner 1 has a storage area 1M for storing the downloaded F/W, and has an update function by the F/W.
 ネットワークサーバ3は配信装置2へF/Wを提供し、配信装置2が当該F/Wを空調機器1へ提供することによって、空調機器1のF/Wを更新することができる。 The network server 3 provides the F/W to the distribution device 2, and the distribution device 2 provides the F/W to the air conditioner 1, whereby the F/W of the air conditioner 1 can be updated.
 このような構成とすることによって、遠隔地F2から通信を介したF/W更新が可能であるため、空調機器1の据付現場F1へ遠隔地F2からサービスマンが赴く必要もなく、サービスの即応性が向上する。 By adopting such a configuration, it is possible to update the F/W from the remote location F2 via communication. improve sexuality.
 配信装置2は、ネットワークサーバ3の通信規格Aと空調機器1の通信規格Bの両方に対応する。したがって、既設の現場へ配信装置2を追加することによって、遠隔地からのF/W更新機能を利用することができる。 The distribution device 2 supports both the communication standard A of the network server 3 and the communication standard B of the air conditioner 1 . Therefore, by adding the distribution device 2 to the existing site, the F/W update function can be used from a remote location.
 図3は、空調機器が配信装置を兼ねた空気調和システムの構成例を示す図である。図3に示すように、空調機器自身がネットワークサーバ3の通信規格Aに対応する場合は、同一系統上の空調機器11が配信装置2も兼ねることが可能である。空調機器11は他空調機器12,13と通信網を形成しており、直接または間接的に配信装置2との接続性を有する。 FIG. 3 is a diagram showing a configuration example of an air conditioning system in which air conditioning equipment also serves as a distribution device. As shown in FIG. 3, when the air conditioner itself complies with the communication standard A of the network server 3, the air conditioner 11 on the same system can also serve as the distribution device 2. FIG. The air conditioner 11 forms a communication network with other air conditioners 12 and 13 and has connectivity with the distribution device 2 directly or indirectly.
 なお、図2、図3に示すネットワークサーバ3および配信装置2は、以下、図4で説明するように、同様の機能を持つツールまたは機器へ置換されても良い。 Note that the network server 3 and the distribution device 2 shown in FIGS. 2 and 3 may be replaced with tools or devices having similar functions, as described in FIG. 4 below.
 図4は、現場でのメンテナンス機器接続によるF/W配信が実行可能な空気調和システムの構成例を示す図である。ネットワークサーバ3および配信装置2は、図4に示すように、同様なF/W配信機能を備えたアプリケーションに置き換えることが可能である。この場合、作業者がメンテナンスに用いるメンテナンス機器15を、据付現場において空調機器11,12の通信網5に直接接続して使用する。メンテナンス機器15は、パーソナルコンピュータのUSB規格と通信規格Bとの間の通信プロトコルを変換する通信プロトコル変換器として働く。本手法では据付現場に作業者が赴く必要があるが、メンテナンス機器15を通信網5へ接続さえできれば良い。このため、空調機器11の室外機が、無線による移動通信機能を備え、配信装置2を兼ねるような構成とすれば、空調機器11,12の位置の捜索が不要となる。そうすれば、リモコン周りに通信端子が設けられておらず、空調機器の筐体内部に通信端子が設けられているような場合であっても、通信端子に接続する必要がないので筐体外装の板金の取り外し等が不要となる。 FIG. 4 is a diagram showing a configuration example of an air conditioning system capable of performing F/W distribution by connecting maintenance equipment on site. As shown in FIG. 4, the network server 3 and distribution device 2 can be replaced with applications having similar F/W distribution functions. In this case, the maintenance device 15 used by the operator for maintenance is directly connected to the communication network 5 of the air conditioners 11 and 12 at the installation site. The maintenance device 15 functions as a communication protocol converter that converts the communication protocol between the USB standard of the personal computer and the communication standard B. FIG. Although this method requires an operator to go to the installation site, it is sufficient if the maintenance device 15 can be connected to the communication network 5 . Therefore, if the outdoor unit of the air conditioner 11 has a wireless mobile communication function and is configured to serve as the distribution device 2, it becomes unnecessary to search for the positions of the air conditioners 11 and 12. FIG. In this way, even if communication terminals are not provided around the remote control and are provided inside the housing of the air conditioner, there is no need to connect to the communication terminals. It becomes unnecessary to remove the sheet metal.
 次に、ネットワークサーバ3から配信装置2に更新用プログラムを配信するにあたり、必要な情報をネットワークサーバ3が収集する処理について説明する。 Next, the process of collecting necessary information by the network server 3 when distributing the update program from the network server 3 to the distribution device 2 will be described.
 図5は、空調機器からの情報収集を行なう空気調和システムの構成例を示す図である。
 配信装置2は、配信装置2の電源がONされた時または一定周期で、接続されている空調機器11~13の情報を収集する。収集する情報は、各々の空調機器のF/W配信機能への対応可否、空調機器が対応するF/W情報、現在のF/Wバージョン、F/W配信時の通信方式、配信単位、配信データの圧縮方式、配信データのデータ形式等を示す情報含む。ネットワークサーバ3は配信装置2が集めた情報を任意のタイミングで収集可能であり、ネットワークサーバ3へアクセスすることによって、作業者も内容を確認可能である。
FIG. 5 is a diagram showing a configuration example of an air conditioning system that collects information from air conditioners.
The distribution device 2 collects information about the connected air conditioners 11 to 13 when the power of the distribution device 2 is turned on or at regular intervals. The information to be collected includes whether each air conditioner supports the F/W distribution function, F/W information supported by the air conditioner, current F/W version, communication method at the time of F/W distribution, distribution unit, and distribution. It includes information indicating the data compression method, the data format of distribution data, and the like. The network server 3 can collect the information collected by the distribution device 2 at any timing, and by accessing the network server 3, the operator can also confirm the contents.
 空調機器11~13の情報を収集することで、ネットワークサーバ3は、更新対象の空調機器が対応可能なF/W種類、F/Wバージョンおよびデータ圧縮方式で、F/Wを配信装置2へ提供できる。また、配信装置2は、更新対象の空調機器に適した通信方式および配信単位で、空調機器へのF/W配信を行なうことができる。 By collecting information on the air conditioners 11 to 13, the network server 3 sends the F/W to the distribution device 2 with the F/W type, F/W version, and data compression method that can be handled by the air conditioner to be updated. can provide. In addition, the distribution device 2 can perform F/W distribution to the air conditioning equipment in a communication method and distribution unit suitable for the air conditioning equipment to be updated.
 図6は、ネットワークサーバが、複数の配信装置の管理を行なう空気調和システムの構成例を示す図である。空気調和システム100は、複数の機器群F1A~F1Cと、複数の機器群F1A~F1Cの配信装置2A~2Cに第2のネットワーク6Aを介して接続されるネットワークサーバ3とを備える。 FIG. 6 is a diagram showing a configuration example of an air conditioning system in which a network server manages a plurality of distribution devices. The air conditioning system 100 includes a plurality of equipment groups F1A to F1C and a network server 3 connected to distribution devices 2A to 2C of the equipment groups F1A to F1C via a second network 6A.
 複数の機器群F1Aは、据付現場Aに配置され、空調機器1Aと配信装置2Aとを含む。複数の機器群F1Bは、据付現場Bに配置され、空調機器1Bと配信装置2Bとを含む。複数の機器群F1Cは、据付現場Cに配置され、空調機器1Cと配信装置2Cとを含む。 A plurality of equipment groups F1A are arranged at the installation site A and include air conditioners 1A and distribution devices 2A. A plurality of equipment groups F1B are arranged at the installation site B and include air conditioners 1B and distribution devices 2B. A plurality of equipment groups F1C are arranged at the installation site C and include air conditioners 1C and distribution devices 2C.
 ネットワークサーバ3は、複数の機器群F1A~F1Cのそれぞれに対応する複数の更新用プログラムF/W(A)~F/W(C)と複数の更新用プログラムF/W(A)~F/W(C)をそれぞれ配信するために必要な情報とを記憶するように構成される。配信するために必要な情報は、たとえば、配信先を示す配信装置を特定する情報、各配信装置が配信する空調機器の構成を示す空調機器情報リストなどを含む。 The network server 3 includes a plurality of update programs F/W(A) to F/W(C) and a plurality of update programs F/W(A) to F/W(A) to F/W(C) corresponding to the plurality of device groups F1A to F1C, respectively. and the information necessary to deliver each W(C). The information necessary for distribution includes, for example, information specifying a distribution device indicating a distribution destination, an air conditioner information list indicating the configuration of air conditioners distributed by each distribution device, and the like.
 管理者は、遠隔地F2Aに配置されているユーザ端末4からネットワーク6Bを経由して、F/Wをネットワークサーバ3に追加することができる。 The administrator can add the F/W to the network server 3 from the user terminal 4 located at the remote location F2A via the network 6B.
 ネットワークサーバ3は、複数の配信装置2A,2B,2Cを管理することができ、複数種類のF/Wを格納することができる。ネットワークサーバ3は、複数の配信装置2A,2B,2Cに対してF/Wを配信できる。また、F/Wを種々の圧縮方式で圧縮してから提供することも可能である。なお、最初からF/Wを圧縮して保持していても良い。また、空調機器1A,1B,1Cの各々は、圧縮されたF/Wのデータを解凍する機能を持つ。 The network server 3 can manage multiple distribution devices 2A, 2B, and 2C, and can store multiple types of F/W. The network server 3 can distribute F/W to a plurality of distribution devices 2A, 2B, 2C. It is also possible to compress the F/W by various compression methods and then provide it. Note that the F/W may be compressed and held from the beginning. Each of the air conditioners 1A, 1B, and 1C has a function of decompressing the compressed F/W data.
 図6に示すように、ネットワークサーバ3と配信装置2A~2Cとが1対多の接続が可能であるため、据付現場F1A,F1B,F1Cごとの情報集約およびF/W更新の並行処理が可能となる。また、ネットワークサーバ3が複数種類のF/Wを格納可能であるため、複数種類の空調機器への対応、および同一機器に対するF/Wバージョン違いのデータを用いたF/W更新が可能となる。加えて、配信前にデータを圧縮することによって、F/W配信時のスループットを向上できる。 As shown in FIG. 6, one-to-many connection between the network server 3 and the distribution devices 2A to 2C is possible, enabling parallel processing of information aggregation and F/W update for each installation site F1A, F1B, and F1C. becomes. In addition, since the network server 3 can store a plurality of types of F/W, it is possible to support a plurality of types of air conditioners and to update the F/W using data of different F/W versions for the same device. . In addition, by compressing data before distribution, the throughput during F/W distribution can be improved.
 図7は、手動の書換え指令によるF/W提供を行なう空気調和システムの構成例を示す図である。図7に示すネットワークサーバ3は、作業者がユーザ端末4から送信する書換え指令により配信装置2へのF/W提供を開始するように構成される。 FIG. 7 is a diagram showing a configuration example of an air conditioning system that provides F/W based on manual rewrite commands. The network server 3 shown in FIG. 7 is configured to start providing F/W to the distribution device 2 in response to a rewrite command sent from the user terminal 4 by the operator.
 図8は、新F/W追加に応じて自動でのF/W提供を行なう空気調和システムの構成例を示す図である。図8に示すネットワークサーバ3は、作業者がユーザ端末4から新しいF/Wを追加またはF/Wの新バージョンの登録に応じて、自動的に配信装置2へのF/W提供を開始するように構成される。 FIG. 8 is a diagram showing a configuration example of an air conditioning system that automatically provides F/W in response to the addition of new F/W. The network server 3 shown in FIG. 8 automatically starts providing F/W to the delivery apparatus 2 in response to the addition of new F/W or registration of a new version of F/W from the user terminal 4 by the operator. configured as
 図8の構成によれば、作業者からの手動による指示だけでなく、条件を設定することで必要な空調機器への配信を自動で行なうことができる。 According to the configuration in FIG. 8, it is possible to automatically distribute to the necessary air conditioning equipment by setting conditions, in addition to manual instructions from the operator.
 図9は、自動でF/W配信を実行するための処理を示すフローチャートである。まずステップS1からステップS7の間で、ネットワークサーバ3は、空調機器情報リストを初めから順番に1つずつ参照する。ステップS2において、ネットワークサーバ3は、作業者がユーザ端末4から追加したF/Wが、空調機器情報リストで参照している参照機種向けか否かを判断する。ステップS2において、追加したF/Wが参照機種向けではなかった場合には、ステップS7からステップS1に戻り、情報リストの次の順番に移る。 FIG. 9 is a flowchart showing processing for automatically executing F/W distribution. First, from step S1 to step S7, the network server 3 sequentially refers to the air conditioner information list one by one from the beginning. In step S2, the network server 3 determines whether or not the F/W added by the operator from the user terminal 4 is for the reference model referred to in the air conditioner information list. In step S2, if the added F/W is not for the reference model, the process returns from step S7 to step S1 and moves to the next order in the information list.
 ステップS2において、追加したF/Wが参照機種向けであった場合には、ネットワークサーバ3は、ステップS3において、参照機種のF/Wを更新するか否かの判定方式がタイムスタンプによる判定であるかバージョンによる判定であるかを判断する。 In step S2, if the added F/W is for the reference model, the network server 3 decides in step S3 whether or not to update the F/W of the reference model using time stamps. It is judged whether the judgment is based on the version.
 ステップS3において判定方式がバージョンによる判定であった場合、ステップS4において、ネットワークサーバ3は、対象機種のF/Wのバージョン番号よりも追加されたF/Wのバージョン番号が大きいときには、ステップS6において更新機種リストに参照中の機種を追加する。一方、ステップS4において、ネットワークサーバ3は、追加されたF/Wのバージョン番号が対象機種のF/Wのバージョン番号以下であるときには、ステップS6の追加処理を実行せず、ステップS1に戻って空調機器情報リストの次の位置を参照してステップS2以降の処理を実行する。 In step S3, if the determination method is version-based determination, in step S4, if the version number of the added F/W is greater than the version number of the target model's F/W, the network server 3 determines in step S6 Add the model being referenced to the update model list. On the other hand, in step S4, when the version number of the added F/W is equal to or less than the version number of the F/W of the target model, the network server 3 does not execute the addition process in step S6 and returns to step S1. The next position in the air conditioner information list is referred to, and the processes after step S2 are executed.
 一方、ステップS3において判定方式がタイムスタンプによる判定であった場合、ステップS5において、対象機種のF/Wのタイムスタンプよりも追加されたF/Wのタイムスタンプが大きい(新しい)場合には、ネットワークサーバ3は、ステップS6において更新機種リストに参照中の機種を追加する。一方、ステップS5において、対象機種のF/Wのタイムスタンプと比べて追加されたF/Wのタイムスタンプが大きくない(同じか古い)場合には、ネットワークサーバ3は、ステップS6の追加を実行せずに、ステップS1に戻って空調機器情報リストの次の位置を参照してステップS2以降の処理を実行する。 On the other hand, if the judgment method in step S3 is judgment by time stamp, and if the added F/W timestamp is larger (newer) than the F/W timestamp of the target model in step S5, The network server 3 adds the model being referenced to the update model list in step S6. On the other hand, in step S5, if the time stamp of the added F/W is not greater (same or older) than the time stamp of the F/W of the target model, the network server 3 executes the addition of step S6. Without doing so, the process returns to step S1, refers to the next position in the air conditioner information list, and executes the processes after step S2.
 ステップS7において、空調機器情報リストの機器がすべて参照済みとなった場合には、図9のフローチャートの処理は終了する。そして、ネットワークサーバ3は、完成した更新機種リストに存在する空調機器に対して追加されたF/Wを配信するように、対応する配信装置にF/Wを送信する。 In step S7, when all the devices in the air conditioning device information list have been referred to, the processing of the flowchart of FIG. 9 ends. Then, the network server 3 transmits the F/W to the corresponding distribution device so as to distribute the F/W added to the air conditioner existing in the completed update model list.
 図10は、ネットワークサーバがF/W配信に関する各種設定の選択を行なう空気調和システムの構成例を示す図である。 FIG. 10 is a diagram showing a configuration example of an air conditioning system in which a network server selects various settings related to F/W distribution.
 ネットワークサーバ3が配信装置2にF/Wの提供を開始する際、ネットワークサーバ3は、収集した空調機器情報からその空調機器に対応するF/Wの選択に加えて、提供されるF/Wの圧縮方式およびデータ形式を選択する。ネットワークサーバ3は、空調機器情報を参照して、ファイルサイズが最小、かつスループットが最大となるように、F/Wの圧縮方式およびデータ形式を選択する。また、配信装置2は通信方式および配信単位を選択する。 When the network server 3 starts to provide the F/W to the distribution device 2, the network server 3 selects the F/W corresponding to the air conditioner from the collected air conditioner information, and also selects the F/W to be provided. Select the compression method and data format for the The network server 3 refers to the air conditioner information and selects the F/W compression method and data format so as to minimize the file size and maximize the throughput. Also, the distribution device 2 selects a communication method and a distribution unit.
 ネットワークサーバ3から空調機器1に配信するF/Wの圧縮方式を空調機器ごとに適宜選択可能とすることで、機器ごとの圧縮方式の差異に対応したり、新F/Wから新圧縮方式に対応したりすることなどが可能となる。新圧縮方式を適用したF/Wを圧縮した状態で配信する場合は、空調機器のF/W自体に新圧縮方式の解凍プロトコルを実装する必要がある。なお、無圧縮でF/Wを配信しても良い。 By making it possible to appropriately select the compression method of the F/W distributed from the network server 3 to the air conditioner 1 for each air conditioner, it is possible to cope with the difference in the compression method for each device, and to change from a new F/W to a new compression method. It is possible to respond to When the F/W to which the new compression method is applied is distributed in a compressed state, it is necessary to implement the decompression protocol of the new compression method in the F/W itself of the air conditioner. Note that the F/W may be distributed without compression.
 ネットワークサーバ3から配信装置2への送信、配信装置2から空調機器1への送信時の、データ形式については、フルデータか差分データかを選択する。小規模な変更によるF/Wのバージョン更新の場合、差分データを選択することによって配信時間の大幅な短縮が図れる。たとえば、後に説明する図16に記載した手順で差分データを計算することができる。この場合、データの容量が、差分データ+差分位置リスト<フルデータ、となることを条件に差分データを自動選択するようにすると良い。 For the data format when transmitting from the network server 3 to the distribution device 2 and when transmitting from the distribution device 2 to the air conditioner 1, select either full data or differential data. In the case of a F/W version update due to a small-scale change, the delivery time can be greatly shortened by selecting differential data. For example, difference data can be calculated by the procedure described in FIG. 16, which will be described later. In this case, the differential data may be automatically selected under the condition that the data capacity is differential data+differential position list<full data.
 配信装置2から空調機器1への通信方式については、定常通信かデータ部を拡張した拡張通信かを選択することができる。 As for the communication method from the distribution device 2 to the air conditioner 1, it is possible to select between regular communication and extended communication with an extended data part.
 空調機器は独自の通信規格を採用している場合もあり、パソコン等で用いるTCP/IPのような一般的な通信と比べて通信速度が非常に低い。大容量データの通信時の通信速度を定常通信よりも速くするため、データ部を拡張した拡張通信が用意される。データ部を拡張した通信とは、ヘッダ部とデータ部とを含む通信コマンドを送信する方式において、データ部の長さを伸ばし、ヘッダ部の長さもわずかに伸ばしたものである。 Some air conditioners use their own communication standards, and the communication speed is very low compared to general communication such as TCP/IP used in personal computers. In order to make the communication speed during large-capacity data communication faster than that of regular communication, extended communication is prepared by extending the data part. The communication with the extended data part means that the length of the data part is extended and the length of the header part is slightly extended in the method of transmitting the communication command including the header part and the data part.
 一般に、通信コマンドはヘッダ部とデータ部に分かれ、ヘッダ部は固定長である。しかし、大容量のデータを送る際にデータ部が短いと、送信回数が増え、その分ヘッダ部が毎回送られて通信の実効スループットが下がる。そのため、データ部を長くとることでヘッダ部の送信を減らして実効スループットを上げることができる。ただし、拡張通信と定常通信の両方に対応可能とする場合は、どちらの方式で通信するのかをヘッダ部で示すために、ヘッダ部を拡張する必要がある。 Generally, communication commands are divided into a header part and a data part, and the header part has a fixed length. However, if the data portion is short when sending a large amount of data, the number of times of transmission increases, and the header portion is sent every time, reducing the effective throughput of communication. Therefore, by lengthening the data portion, it is possible to reduce the transmission of the header portion and increase the effective throughput. However, if it is possible to support both extended communication and regular communication, it is necessary to extend the header section in order to indicate in the header section which method is to be used for communication.
 F/Wの配信は大容量データを扱うため、拡張通信に対応する機器については配信時間の大幅な短縮が図れる。 Since F/W distribution handles large amounts of data, the distribution time can be greatly reduced for devices that support extended communication.
 また、ネットワークサーバ3は、F/W配信時に空調機器1に対して、配信装置2が配信シーケンスを進める際の1連続送信あたりの単位データの数(配信単位R)を選択することができる。配信時に受信したデータは空調機器1の内部の主記憶装置に保存されるが、対象機器が本機能に明け渡すことができる主記憶装置の領域幅は空調機器ごとに異なる。この領域幅をネットワークサーバ3が空調機器ごとに記憶しているので、個々の空調機器に応じた調整が可能となる。 In addition, the network server 3 can select the number of unit data (delivery unit R) for one continuous transmission when the delivery device 2 advances the delivery sequence to the air conditioner 1 at the time of F/W delivery. The data received at the time of distribution is stored in the main storage device inside the air conditioner 1, but the area width of the main storage device that the target device can yield to this function differs for each air conditioner. Since the network server 3 stores this area width for each air conditioner, it is possible to make adjustments according to individual air conditioners.
 図5および図6に示すように、ネットワークサーバ3は、配信装置2が取得した空調機器情報をネットワークサーバ3上に集約する。そして図7,図8および図10に示すように、ネットワークサーバ3は、対象となる空調機器に適切なF/Wを、適切な設定で当該空調機器へ配信するために空調機器情報を用いる。 As shown in FIGS. 5 and 6, the network server 3 collects the air conditioning equipment information acquired by the distribution device 2 on the network server 3 . Then, as shown in FIGS. 7, 8 and 10, the network server 3 uses the air conditioner information to distribute the F/W appropriate for the target air conditioner with appropriate settings to the air conditioner.
 図11は、ユニット情報取得からF/W配信開始までの流れを示す図である。作業者がネットワークサーバ3にF/Wを追加する(S11)。また、配信装置2は、空調機器11,12のユニット情報を要求すると(S12,S13)、空調機器11,12は、各々ユニット情報を返信する(S14,S15)。 FIG. 11 is a diagram showing the flow from acquisition of unit information to start of F/W distribution. A worker adds F/W to the network server 3 (S11). Also, when the distribution device 2 requests the unit information of the air conditioners 11 and 12 (S12, S13), the air conditioners 11 and 12 each return the unit information (S14, S15).
 ネットワークサーバ3が配信装置2に対して空調機器11,12のユニット情報を要求すると(S16)、配信装置2は、空調機器11,12のユニット情報をネットワークサーバ3に返信する(S17)。 When the network server 3 requests the unit information of the air conditioners 11 and 12 from the distribution device 2 (S16), the distribution device 2 returns the unit information of the air conditioners 11 and 12 to the network server 3 (S17).
 F/W配信の開始方法は、図11中の(a)に示すように、作業者による手動指示による方法、または図11中の(b)に示すように、ネットワークサーバによる自動配信による方法がある。これらの開始方法では、ともに開始コマンドを用いる。 The F/W distribution can be started by manual instruction by an operator as shown in FIG. 11(a) or by automatic distribution by a network server as shown in FIG. 11(b). be. Both of these start methods use a start command.
 図11中の(a)に示す手動によるF/Wの配信の場合、作業者がネットワークサーバ3にユニット情報を要求すると(S18)、ネットワークサーバ3は、事前に収集してあったユニット情報を作業者の端末に送信する(S19)。作業者は、提供されたユニット情報を見て、対象となる空調機器11を特定する情報と配信する際の設定Xを含むF/W更新指令をネットワークサーバ3に送信する(S20)。 In the case of manual F/W distribution shown in FIG. 11(a), when the operator requests unit information from the network server 3 (S18), the network server 3 sends the previously collected unit information. It is transmitted to the terminal of the worker (S19). The operator looks at the provided unit information and transmits to the network server 3 an F/W update command including information specifying the target air conditioner 11 and setting X for distribution (S20).
 F/W更新指令を受けて、ネットワークサーバ3は、F/Wのチェックサムを配信装置2に送信し(S21)、続いて、対象となる空調機器11を特定する情報および配信する際の設定Xとともに、更新用のF/Wを配信装置2に送信する。配信装置2は、F/Wの同一性を担保するため事前に送信したチェックサム値を用いて照合を行ない(S23)、問題がなければ、対象に指定された空調機器11に対してF/Wのチェックサムを送信するとともに(S24)、F/Wの配信を設定Xで開始する(S25)。 In response to the F/W update command, the network server 3 transmits the checksum of the F/W to the distribution device 2 (S21), and then the information specifying the target air conditioner 11 and the settings for distribution. Along with X, the F/W for update is transmitted to the distribution device 2 . The distribution device 2 performs collation using the checksum value transmitted in advance to ensure the identity of the F/W (S23). The checksum of W is transmitted (S24), and distribution of F/W is started with setting X (S25).
 一方、図11中の(b)に示すネットワークサーバ3から自動配信する場合は、ネットワークサーバ3は、事前に収集してあったユニット情報に基づき、配信対象の空調機器11と空調機器11に対する配信時の設定Yとを自己判断で決定する(S26)。 On the other hand, when automatic distribution is performed from the network server 3 shown in FIG. The hour setting Y is determined by self-judgment (S26).
 続いて、ネットワークサーバ3は、F/Wのチェックサムを配信装置2に送信し(S27)、続いて、対象となる空調機器11を特定する情報および配信する際の設定Yとともに、更新用のF/Wを配信装置2に送信する(S28)。配信装置2は、F/Wの同一性を担保するため事前に送信したチェックサム値を用いて照合を行ない(S29)、問題がなければ、対象に指定された空調機器11に対してF/Wのチェックサムを送信するとともに(S30)、F/Wの配信を設定Yで開始する(S31)。 Subsequently, the network server 3 transmits the checksum of the F/W to the distribution device 2 (S27), and then, together with the information specifying the target air conditioning equipment 11 and the setting Y for distribution, F/W is transmitted to distribution device 2 (S28). The distribution device 2 performs collation using the checksum value transmitted in advance to ensure the identity of the F/W (S29). The checksum of W is transmitted (S30), and distribution of F/W is started with setting Y (S31).
 図12は、配信装置2から空調機器1へのF/W配信と配信の中断、再開、中止の流れを示す図である。 FIG. 12 is a diagram showing the flow of F/W distribution from the distribution device 2 to the air conditioner 1 and interruption, resumption, and cancellation of distribution.
 F/Wは配信する際に、配信単位Rに分割して配信される。配信装置2は設定で指定された配信単位Rごとに単位データをR回送信し、空調機器側での不足を確認する。ステップS41~S42において、配信単位Rの最後であるR番目のデータの送信が終了すると、ステップS43において、配信装置2は、データの不足の有無を空調機器1に確認する。 When the F/W is distributed, it is divided into distribution units R and distributed. The distribution device 2 transmits the unit data R times for each distribution unit R specified by the setting, and confirms the shortage on the side of the air conditioner. In steps S41 and S42, when the transmission of the last R-th data of the distribution unit R is completed, in step S43, the distribution device 2 confirms with the air conditioner 1 whether or not there is a shortage of data.
 たとえば、空調機器1は、単純にデータの番号を受信したか否かにより不足判定を行なう。より具体的には、通信コマンドに“データ番号+データ”が載っているため、受信したデータ番号をリストに保存し、欠けた番号を不足とすることができる。空調機器1はステップS44において、受信に失敗した番号である欠けた番号である「5番」を抽出する。 For example, the air conditioner 1 simply determines whether or not the data number has been received. More specifically, since "data number + data" is included in the communication command, the received data number can be saved in the list and the missing number can be regarded as lacking. In step S44, the air conditioner 1 extracts the missing number "No. 5" which is the number that failed to be received.
 ステップS44において、不足を確認された空調機器1は、「R+1番」と、「5番」を応答する。「R+1番」は、受け取り済みの最新の番号Rの次の番号であり、次に送信を要求する番号である。また「5番」は、R個のデータのうち欠けている番号である。このように応答することによって、これにより空調機器1はデータの全体数を把握する必要がないため、通信および制御を簡単にできる。 In step S44, the air conditioning equipment 1 whose shortage has been confirmed responds with "No. R+1" and "No. 5". "R+1" is the number next to the latest received number R, and is the number requested to be transmitted next. "No. 5" is the missing number among the R pieces of data. By responding in this way, the air conditioning equipment 1 does not need to grasp the total number of data, so communication and control can be simplified.
 空調機器からの応答に応じて、配信装置2は、ステップS46において配信単位に対して不足となっている番号(5番)のデータを空調機器1に送信する。そしてステップS48において、配信装置2は、データの不足の有無を空調機器1に再び確認する。 In response to the response from the air conditioning equipment, the distribution device 2 transmits to the air conditioning equipment 1 the data of the number (No. 5) that is insufficient for the distribution unit in step S46. Then, in step S48, the distribution device 2 confirms again with the air conditioner 1 whether or not there is a shortage of data.
 5番目のデータの再送によって、欠番が解消したため、ステップS49において、不足を確認された空調機器1は、受け取り済みの最新の番号Rの次の番号である「R+1番」のみを応答する。 By retransmitting the 5th data, the missing number is eliminated, so in step S49, the air conditioner 1, which has been confirmed to be missing, responds with only "R+1", which is the next number after the latest received number R.
 なお、適時のタイミングで、ネットワークサーバ3は、配信装置2に対して進捗の確認をすると(S45)、配信装置2は、たとえば、「配信中、進捗S%」というように、進捗状況をネットワークサーバ3に返信する。 When the network server 3 confirms the progress of the distribution device 2 at a timely timing (S45), the distribution device 2 sends the progress status to the network, for example, "distributing, progress S %". Reply to server 3.
 なお、チェックサムは、後に図13のS77に示すように、全データ受信後の確認にのみ用いている。 Note that the checksum is used only for confirmation after receiving all the data, as shown in S77 of FIG. 13 later.
 空調機器1は、分割されたF/Wを受信すると空調機器1に内蔵する主記憶装置にデータを保存し、配信単位分のデータが揃うか、または配信装置2から配信完了を通知されると空調機器1に内蔵する補助記憶装置へとデータを移す。 When receiving the divided F/W, the air conditioner 1 saves the data in the main storage device built in the air conditioner 1, and when the data for the distribution unit is complete or when the distribution device 2 notifies the distribution completion. The data is transferred to the auxiliary storage device built in the air conditioner 1 .
 また、F/W配信は、図12中の(a)に示すように、ネットワークサーバ3から、中断指示(S50)および再開指示(S53)が可能である。 In addition, as shown in (a) of FIG. 12, the F/W distribution can be interrupted (S50) and resumed (S53) from the network server 3.
 中断指示を受けると、配信装置2は、空調機器1に対するF/Wの配信を中断する(S51,S52)。また、再開指示を受けると、配信装置2は、空調機器1に対するF/Wの配信を再開する(S54)。そして空調機器1の配信単位Rの受信を確認できたら、配信装置2は次の配信単位R(R+1番目~2R番目)の送信に移る(図12のS54~S58)。 Upon receiving the interruption instruction, the distribution device 2 interrupts the distribution of the F/W to the air conditioner 1 (S51, S52). Further, when receiving the restart instruction, the distribution device 2 restarts distribution of the F/W to the air conditioner 1 (S54). Then, when the reception of the distribution unit R by the air conditioner 1 is confirmed, the distribution device 2 moves on to transmission of the next distribution unit R (R+1st to 2Rth) (S54 to S58 in FIG. 12).
 また、F/W配信は、図12中の(b)に示すように、ネットワークサーバ3から、中止指示(S59)が可能である。中止指示を受けると、配信装置2は、空調機器1に対するF/Wの配信を中止する(S60,S61)。 Also, as shown in FIG. 12(b), the F/W delivery can be instructed to stop (S59) from the network server 3. Upon receiving the stop instruction, the distribution device 2 stops distribution of the F/W to the air conditioner 1 (S60, S61).
 図13は、F/W配信完了~更新実施~更新正常完了の流れを示す図である。ステップS71~S74では、n+1回目の配信単位Rの送信が図12のS41~S44と同様に実行され、不足したnR+3番のデータがステップS75で配信され、F/Wの全体の配信が完了する。 FIG. 13 is a diagram showing the flow of F/W distribution completion-update execution-update normal completion. In steps S71 to S74, the transmission of the n+1th delivery unit R is executed in the same manner as in S41 to S44 of FIG. 12, and the missing nR+3 data is delivered in step S75, completing the delivery of the entire F/W. .
 空調機器1は、配信装置2からの配信が完了してF/Wの全データが揃うと(S75)、設定で圧縮方式が指定されている場合は解凍処理を行なう(S76)。解凍処理実施後(非圧縮の場合はそのまま)、空調機器1は、配信開始時に送信されたチェックサムを用いてデータの同一性を確認する(S77)。 When the distribution from the distribution device 2 is completed and all the F/W data is prepared (S75), the air conditioner 1 performs decompression processing if the compression method is specified in the settings (S76). After the decompression process is performed (if uncompressed, the data remains unchanged), the air conditioner 1 confirms the identity of the data using the checksum transmitted at the start of distribution (S77).
 ネットワークサーバ3は、空調機器1側のチェックサム照合完了を確認後(S78~S81)、F/W更新実施を指示する(S82,S83)。F/W更新実施の開始指令は、手動、自動のいずれでもよい。更新を指示された空調機器1は運転停止(S84)後にF/W更新を実行する(S85)。 After confirming the completion of checksum verification on the air conditioning equipment 1 side (S78-S81), the network server 3 instructs F/W updating (S82, S83). The F/W update start command may be either manual or automatic. The air conditioner 1 instructed to update executes F/W update (S85) after operation is stopped (S84).
 配信装置2は、空調機器へのF/W更新実施を指示(S83)した後、F/Wバージョンを確認して、F/W更新が成功したかを判定する(S86,S87)。 After instructing the air conditioner to update the F/W (S83), the distribution device 2 checks the F/W version and determines whether the F/W update was successful (S86, S87).
 ネットワークサーバ3が進捗確認を行なうと(S88)、配信装置は、更新が正常に完了した旨を返信する(S89)。 When the network server 3 confirms the progress (S88), the distribution device replies that the update has been completed normally (S89).
 以上説明したように、実施の形態1の空気調和システムでは、ネットワークサーバ3から更新用ファームウエアを配信装置2経由で空調機器1に配信する。その際に、圧縮方式、データ形式、通信方式など、空調機器1に適した形態で、更新用ファームウエアを配信することが可能である。また、手動または自動で配信装置から空調機器に配信開始を指示することが可能である。さらに、更新処理の中断および再開、または中止を行なうこともできる。 As described above, in the air conditioning system of Embodiment 1, update firmware is distributed from the network server 3 to the air conditioning equipment 1 via the distribution device 2 . At that time, it is possible to distribute the update firmware in a form suitable for the air conditioner 1, such as a compression method, data format, and communication method. In addition, it is possible to manually or automatically instruct the air conditioner to start distribution from the distribution device. Furthermore, it is also possible to suspend and resume the update process, or cancel it.
 実施の形態2.
 図5などに示すように配信装置2に複数の空調機器が接続されている構成において、同一の更新用F/Wを複数の空調機器に向けて配信する必要がある場合がある。
Embodiment 2.
In a configuration in which a plurality of air conditioners are connected to the distribution device 2 as shown in FIG. 5 and the like, it may be necessary to distribute the same update F/W to the plurality of air conditioners.
 配信を個別に複数の空調機器に行なうのでは、時間を要する。空調機器と配信装置2がバス型の通信網を構成している場合、時間短縮のために、F/W配信を個別に行なうのではなく、同報通信で送信しても良い。F/W配信コマンドは送信データ量が多いため、同報通信を用いることで通信網の利用率を下げ、スループットを向上することができる。 It takes time to distribute to multiple air conditioners individually. When the air conditioner and the distribution device 2 constitute a bus-type communication network, the F/W distribution may be performed by broadcast communication instead of performing F/W distribution individually in order to shorten the time. Since the F/W distribution command has a large amount of data to be transmitted, the use of broadcast communication can reduce the utilization rate of the communication network and improve the throughput.
 図14は、同報通信による複数空調機器への同時配信の流れを示す図である。
 ネットワークサーバ3は、ステップS101において、配信装置2が事前に収集していた各空調機器のユニット情報を取得し、空調機器11~13のうちのどの空調機器に同一のF/Wを配信する必要があるかを把握する。
FIG. 14 is a diagram showing the flow of simultaneous delivery to multiple air conditioners by broadcast communication.
In step S101, the network server 3 acquires the unit information of each air conditioner collected in advance by the distribution device 2, and distributes the same F/W to which air conditioner among the air conditioners 11 to 13. figure out if there is
 図14に示す例では、空調機器11,12へ同一のF/Wを配信する必要がある旨をネットワークサーバ3が判断した。そして、ネットワークサーバ3は、ステップS102において、F/Wのチェックサムを配信装置2に送信し、ステップS103でF/Wを配信装置2に提供する。この時に、続いてS103において、ネットワークサーバ3は、配信対象が空調機器11および12であることと、配信時の設定Xとを配信装置2に送信する。 In the example shown in FIG. 14, the network server 3 has determined that it is necessary to distribute the same F/W to the air conditioners 11 and 12 . Then, the network server 3 transmits the F/W checksum to the distribution device 2 in step S102, and provides the F/W to the distribution device 2 in step S103. At this time, in S103, the network server 3 transmits to the distribution apparatus 2 that the distribution targets are the air conditioners 11 and 12 and the setting X at the time of distribution.
 配信装置2は、ステップS104で、受信したF/Wのチェックサムを照合し、F/Wの提供対象である空調機器11および12にチェックサムを送信する(S105)。続いて、配信装置2は、ステップS106で、F/Wの提供対象である空調機器11および12にF/W配信開始コマンドを送信する。一方、ステップS107に示すように、提供対象でない空調機器13は、F/W配信開始コマンドを非受信である。 In step S104, the distribution device 2 verifies the received F/W checksum, and transmits the checksum to the air conditioners 11 and 12 to which the F/W is provided (S105). Subsequently, in step S106, the distribution device 2 transmits a F/W distribution start command to the air conditioners 11 and 12 to which the F/W is to be provided. On the other hand, as shown in step S107, the air conditioners 13 not to be provided have not received the F/W distribution start command.
 ステップS106,S107に示すように、同報通信を受信するか否かは、配信装置2が送信するF/W配信開始コマンドを空調機器11~13が受信したか否かにより、空調機器11~13の各々が判断することができる。 As shown in steps S106 and S107, whether or not the broadcast communication is received depends on whether or not the air conditioners 11 to 13 have received the F/W distribution start command transmitted by the distribution device 2. 13 can be determined.
 続いて、ステップS108~S110に示すように、配信装置2は、分割されたF/Wの配信単位に基づき単位データの1番目からR番目を順にバス型の通信網に送信する。そして、ステップS111において、配信装置2は、配信単位のいずれかが不足していないか(受信に失敗していないか)、空調機器11および12に問い合わせる。 Subsequently, as shown in steps S108 to S110, the distribution device 2 sequentially transmits the 1st to Rth unit data to the bus-type communication network based on the distribution unit of the divided F/W. Then, in step S111, the distribution device 2 inquires of the air conditioners 11 and 12 whether any of the distribution units is insufficient (whether reception has failed).
 その結果、ステップS112において、空調機器11は、6番目とR+1番目が不足していると応答し、空調機器12は、R+1番目が不足していると応答する。また、ステップS113に示すように、F/W提供対象でない空調機器13においては、開始コマンドを非受信であるためステップS108~S111の通信は読み捨てられる。 As a result, in step S112, the air conditioning equipment 11 responds that the 6th and R+1th items are insufficient, and the air conditioning equipment 12 responds that the R+1th item is insufficient. Further, as shown in step S113, since the air conditioner 13 that is not subject to F/W provision has not received the start command, the communications in steps S108 to S111 are discarded.
 ステップS112の応答結果を見て、配信装置2は、まず6番目の単位データをバス型通信網に送信する。そして、ステップS115において、再び配信装置2は、配信単位のいずれかが不足していないか(受信に失敗していないか)、空調機器11および12に問い合わせる。今度は、空調機器11が6番目の単位データの受信に成功したため、空調機器11、12の両方が、R+1番目が不足していると応答する(S116)。 Upon seeing the response result of step S112, the distribution device 2 first transmits the sixth unit data to the bus-type communication network. Then, in step S115, the distribution apparatus 2 again inquires of the air conditioners 11 and 12 whether any of the distribution units is insufficient (whether reception has failed). This time, since the air conditioner 11 has successfully received the 6th unit data, both the air conditioners 11 and 12 respond that the R+1th unit data is insufficient (S116).
 すると、ステップS117、S118以降、配信装置2は配信単位のR+1番目、R+2番目・・・と順に残りのF/Wの配信単位をバス型通信網に送信する。 Then, after steps S117 and S118, the distribution device 2 transmits the remaining F/W distribution units to the bus-type communication network in order of the R+1st distribution unit, the R+2th distribution unit, and so on.
 このようにして、配信装置2は、複数の空調機器に同報通信を実行し、送信時間の合計時間を短縮することができる。 In this way, the distribution device 2 can perform broadcast communication to a plurality of air conditioners and shorten the total transmission time.
 実施の形態3.
 図10では、F/Wを配信する場合のデータ形式がフル形式の場合と差分形式の場合とがあることに言及したが、実施の形態3では、データ形式を差分形式として、配信するデータ量を削減する場合について説明する。
Embodiment 3.
In FIG. 10, it was mentioned that the data format when distributing the F/W may be the full format or the differential format. is reduced.
 図15は、差分データによるF/W配信およびF/W更新手順の流れを示す図である。図15のステップS153,S154では、差分データによる配信時は差分データのチェックサムと更新F/W全体のチェックサムの二つを送信する。そして、ステップS157,S163で差分データのチェックサムの照合を行なうとともに、ステップS165において、全体のチェックサムの照合を行なうことによって、復元後の誤りがないことを担保する。 FIG. 15 is a diagram showing the flow of F/W distribution and F/W update procedures based on difference data. In steps S153 and S154 of FIG. 15, two of the checksum of the difference data and the checksum of the entire update F/W are transmitted when difference data is distributed. Then, in steps S157 and S163, the checksums of the difference data are compared, and in step S165, the overall checksums are compared to ensure that there are no errors after restoration.
 より詳細には、ステップS151において、ネットワークサーバ3は、配信装置2が事前に収集していた空調機器のユニット情報を取得する。そして、ネットワークサーバ3が情報を解析した結果、空調機器1にF/Wを配信する必要があること、および空調機器1の現在のF/Wがネットワークサーバ3に登録済みであることが判明する。 More specifically, in step S151, the network server 3 acquires the unit information of the air conditioning equipment that the distribution device 2 has collected in advance. As a result of analysis of the information by the network server 3, it becomes clear that the F/W needs to be distributed to the air conditioner 1 and that the current F/W of the air conditioner 1 has already been registered in the network server 3. .
 続いて、ステップS152において、ネットワークサーバ3は、現在のF/Wと更新F/Wとから、差分データおよび差分位置リストを作成する。 Subsequently, in step S152, the network server 3 creates difference data and a difference position list from the current F/W and the updated F/W.
 そして、ステップS153において、ネットワークサーバ3は、作成した差分データのチェックサムを配信装置2に送信し、続いてステップS154において、ネットワークサーバ3は、F/Wの全体データのチェックサムを配信装置2に送信する。 Then, in step S153, the network server 3 transmits the created checksum of the differential data to the distribution device 2. Subsequently, in step S154, the network server 3 transmits the checksum of the entire F/W data to the distribution device 2. Send to
 その後、ネットワークサーバ3は、ステップS152において作成した差分データおよび差分位置リストを、ステップS155およびS156において配信装置2に送信する。 After that, the network server 3 transmits the differential data and the differential position list created in step S152 to the distribution device 2 in steps S155 and S156.
 続いて、ステップS157において、配信装置2は受信した差分データのチェックサムを照合する。そして、ステップS158において差分データのチェックサムを空調機器1に送信し、ステップS159においてF/Wの全体データのチェックサムを空調機器1に送信する。 Subsequently, in step S157, the distribution device 2 verifies the checksum of the received differential data. Then, the checksum of the differential data is transmitted to the air conditioner 1 in step S158, and the checksum of the entire F/W data is transmitted to the air conditioner 1 in step S159.
 その後、配信装置2は、ステップS155およびS156において受信した差分データおよび差分位置リストをステップS160およびS161において送信する。 After that, the distribution device 2 transmits the differential data and the differential position list received in steps S155 and S156 in steps S160 and S161.
 ステップS162においてF/Wの空調機器1への配信が完了し、圧縮されたデータの場合であれば空調機器1においてデータの解凍まで完了した後に、ステップS163において空調機器1は、差分データのチェックサムを照合し、ステップS164において差分データから更新用のF/Wの全体データを作成し、ステップS165において全体データのチェックサムを照合する。 In step S162, the distribution of the F/W to the air conditioner 1 is completed, and in the case of compressed data, after the data is decompressed in the air conditioner 1, in step S163, the air conditioner 1 checks the difference data. The sums are collated, and in step S164, the entire data of the F/W for updating is created from the differential data, and in step S165, the checksums of the entire data are collated.
 その後、ステップS166において配信装置2から空調機器1に向けて照合結果を確認する問い合わせが送信され、これに応じてステップS167において空調機器1から配信装置2にF/Wの全体データのチェックサムの照合が成功した旨の回答が送信される。 After that, in step S166, the distribution device 2 sends an inquiry to the air conditioner 1 to confirm the collation result. A reply is sent that the match was successful.
 さらにステップS168において、作成された更新用のF/Wを空調機器1に適用する更新処理が実施され、F/Wバージョンの確認が図13のS86~S89と同様な手順で実行される。 Furthermore, in step S168, update processing is performed to apply the created update F/W to the air conditioner 1, and the F/W version is confirmed in the same procedure as S86 to S89 in FIG.
 図16は、図15のS152におけるF/Wの差分データ作成の処理の詳細を説明するためのフローチャートである。 FIG. 16 is a flowchart for explaining the details of the F/W difference data creation process in S152 of FIG.
 差分データ配信はネットワークサーバ3に現在F/Wと更新F/Wの両方が登録されていれば実行可能である。 Difference data distribution can be executed if both the current F/W and the updated F/W are registered in the network server 3.
 データ形式を差分データで送信する場合、ネットワークサーバは対象の空調機器の現在F/Wと更新F/Wを配信単位ごとに比較し、不一致となった箇所のデータと差分位置を記録する。 When transmitting the data format as differential data, the network server compares the current F/W and updated F/W of the target air conditioning equipment for each delivery unit, and records the data and the differential position where there is a discrepancy.
 まずステップS131において、差分位置をゼロに設定し、ステップS132~S138の間で、差分位置ゼロからデータ末端まで順に配信単位の比較を行なう。差分位置は、ゼロから始まる整数であり、一回の比較が終了すると、ステップS137で1が加算される。 First, in step S131, the difference position is set to zero, and between steps S132 to S138, distribution units are compared in order from the difference position zero to the end of the data. The difference position is an integer starting from 0, and 1 is added in step S137 when one comparison is completed.
 ステップS133では、比較開始位置が、差分位置×配信単位に設定される。そして、ステップS134において、ネットワークサーバ3は、比較開始位置から配信単位幅内に差分があるか否かを判断する。 In step S133, the comparison start position is set to "difference position×distribution unit". Then, in step S134, the network server 3 determines whether or not there is a difference within the distribution unit width from the comparison start position.
 差分がある場合(S134でYES)、ネットワークサーバ3は、ステップS135において配信用データに現在参照中の配信単位のデータを追加するとともに、ステップS136において差分位置リストに現在比較中の差分位置を追加する。その後、ネットワークサーバ3は、ステップS137において、差分位置に1を追加する。一方、差分が無い場合(S134でNO)、ネットワークサーバ3は、ステップS135、S136の処理は実行せずに、ステップS137において、差分位置に1を追加し、再びS133~S137の処理を繰り返す。 If there is a difference (YES in S134), the network server 3 adds the distribution unit data currently being referenced to the distribution data in step S135, and adds the difference position currently being compared to the difference position list in step S136. do. After that, the network server 3 adds 1 to the difference position in step S137. On the other hand, if there is no difference (NO in S134), the network server 3 adds 1 to the difference position in step S137 without executing the processes of steps S135 and S136, and repeats the processes of S133 to S137 again.
 図17は、図15のS164で実行される差分データによるF/W更新用データ作成の処理を説明するためのフローチャートである。 FIG. 17 is a flowchart for explaining the process of creating F/W update data using difference data, which is executed in S164 of FIG.
 配信開始時の設定において、データ形式を差分データで指定し、差分位置のリストを送信することにより空調機器側で差分データによる書換えを行なうことができる。このとき空調機器1では、以下の手順で更新用のF/Wが復元される。 By specifying the data format as difference data in the settings at the start of distribution and sending a list of difference positions, it is possible to rewrite the difference data on the air conditioning equipment side. At this time, in the air conditioner 1, the update F/W is restored in the following procedure.
 まずステップS141において、空調機器1は、現在空調機器1において実行中のF/Wを、空調機器1が内蔵しているメモリの更新データ領域に転写する。ステップS142~S147の間で、差分位置リストに示される配信単位を順に置換する処理が実行される。まずステップS143において、差分位置リストから差分位置が抽出され、ステップS144において、書換え開始位置が、差分位置×配信単位とされる。そして、ステップS145において書換え開始位置から配信単位分のデータを、これに対応する受信した配信単位のデータで書換える。さらにステップS146において、空調機器1は、差分位置リストの参照箇所と受信データの参照箇所とを進めて、再びS143~S145の処理を繰り返す。このような手順で、更新用のF/Wの作成が終了する。 First, in step S141, the air conditioner 1 transfers the F/W that is currently being executed in the air conditioner 1 to the update data area of the memory that the air conditioner 1 incorporates. Between steps S142 to S147, a process of sequentially replacing delivery units indicated in the difference position list is executed. First, in step S143, the differential position is extracted from the differential position list, and in step S144, the rewrite start position is determined as the differential position.times.delivery unit. Then, in step S145, the data for the distribution unit from the rewrite start position is rewritten with the corresponding received data for the distribution unit. Furthermore, in step S146, the air conditioner 1 advances the reference location of the difference position list and the reference location of the received data, and repeats the processing of S143 to S145 again. With such a procedure, the preparation of F/W for updating is completed.
 実施の形態3の空気調和システムによれば、差分を転送することによって、F/Wの容量が大きく、変更部分が少ないような場合に、更新用F/Wの配信時間を短縮することができる。 According to the air conditioning system of Embodiment 3, by transferring the difference, it is possible to shorten the delivery time of the update F/W when the F/W has a large capacity and the number of changed parts is small. .
 実施の形態4.
 同一冷媒系統に複数の室外機が接続される場合がある。たとえば、負荷の変動によって必要な冷凍能力を変化させる場合があり、稼働台数で冷凍能力の増減を行なうような場合が考えられる。
Embodiment 4.
A plurality of outdoor units may be connected to the same refrigerant system. For example, the required refrigerating capacity may change due to load fluctuations, and the refrigerating capacity may be increased or decreased depending on the number of units in operation.
 図18は、同一冷媒系統を複数室外機が構成する空調機器の構成例を示す図である。図18に示す空調機器1は、室外機101-1~101-nと、室内機102-1~103-mと、冷媒配管103,104とを含む。 FIG. 18 is a diagram showing a configuration example of an air conditioner in which a plurality of outdoor units configure the same refrigerant system. The air conditioner 1 shown in FIG. 18 includes outdoor units 101-1 to 101-n, indoor units 102-1 to 103-m, and refrigerant pipes 103 and 104.
 m,nは、2以上の整数であり、室外機の台数mと室内機の台数nは同じであっても異なっていても良い。室外機101-1~101-nは、冷媒配管103と冷媒配管104との間に並列接続され、熱源機を構成する。室内機102-1~103-mは、冷媒配管103と冷媒配管104との間に並列接続され、負荷装置を構成する。空調機器1には配信装置2が接続され、更新用のF/Wが配信される。 m and n are integers of 2 or more, and the number m of outdoor units and the number n of indoor units may be the same or different. The outdoor units 101-1 to 101-n are connected in parallel between the refrigerant pipes 103 and 104, and constitute heat source equipment. Indoor units 102-1 to 103-m are connected in parallel between refrigerant pipe 103 and refrigerant pipe 104, and constitute a load device. A distribution device 2 is connected to the air conditioning equipment 1 to distribute update F/W.
 このような構成である空気調和システムにおいて、何らかの要因でF/W更新が失敗した場合、複数の室外機間でF/Wバージョンが異なると、空気調和システム全体に影響を及ぼす可能性がある。したがって、F/Wのバージョンアップをする場合、適切な手順で行なう必要がある。この手順について、図19および図20を用いて説明する。 In an air conditioning system with such a configuration, if the F/W update fails for some reason, the entire air conditioning system may be affected if the F/W versions differ among multiple outdoor units. Therefore, when upgrading the F/W, it is necessary to follow an appropriate procedure. This procedure will be described with reference to FIGS. 19 and 20. FIG.
 なお、室外機101-1に配信装置2が内蔵されていても良い。図19および図20では、室外機101-1が主室外機となり、室外機101-2~101-mが従室外機となる例を示す。したがって、図19および図20では、主室外機101-1と表記し、従室外機101-2~101-3と表記する。 The distribution device 2 may be built in the outdoor unit 101-1. 19 and 20 show an example in which the outdoor unit 101-1 is the main outdoor unit and the outdoor units 101-2 to 101-m are secondary outdoor units. Therefore, in FIGS. 19 and 20, the main outdoor unit 101-1 and the secondary outdoor units 101-2 to 101-3 are used.
 図19は、複数の室外機に対してF/Wを同時更新する流れを示す図である。
 ステップS181において、同一冷媒系統を複数室外機が構成する場合は、複数の室外機(主室外機101-1、従室外機101-2~101-3)に対して予めF/Wの配信を完了させておく。
FIG. 19 is a diagram showing a flow of simultaneous update of F/W for a plurality of outdoor units.
In step S181, when a plurality of outdoor units constitute the same refrigerant system, the F/W is distributed in advance to the plurality of outdoor units (main outdoor unit 101-1, secondary outdoor units 101-2 to 101-3). let it be completed.
 配信装置2はネットワークサーバ3から更新実施指示を受けると(S182)、同一冷媒系統の複数室外機を認識し、複数室外機でのF/W更新実施を主室外機へ指示する(S183)。 When the distribution device 2 receives an update execution instruction from the network server 3 (S182), it recognizes multiple outdoor units of the same refrigerant system and instructs the main outdoor unit to update the F/W of the multiple outdoor units (S183).
 これを受信した主室外機101-1は、自身の更新準備ができていることを確認する。これとともに、さらに、主室外機101-1は、従室外機101-2~101-3の更新準備ができていることを確認する(S184)。 The main outdoor unit 101-1 that has received this confirms that it is ready for updating itself. Along with this, the main outdoor unit 101-1 also confirms that the update preparations for the secondary outdoor units 101-2 to 101-3 are ready (S184).
 従室外機101-2,101-3から更新準備が完了している旨の応答があった場合(S185)、主室外機101-1は、従室外機101-2,101-3に運転停止指令を送信するとともに(S186)、自身も圧縮機の運転を停止する(S187)。 When the slave outdoor units 101-2 and 101-3 respond that the update preparation is complete (S185), the main outdoor unit 101-1 causes the slave outdoor units 101-2 and 101-3 to stop operating. Along with sending a command (S186), it also stops the operation of the compressor (S187).
 主室外機101-1は、主室外機101-1および従室外機101-2~101-3のすべてにおいて更新準備ができていることを確認した後に、従室外機101-2~101-3へ更新指示を送るとともに(S188)、自身のF/W更新を行なう(S189)。従室外機101-2,101-3も、主室外機101-1からの更新指示に応じて、各々F/Wの更新を行なう(S190,S191)。 The main outdoor unit 101-1 confirms that all of the main outdoor unit 101-1 and the secondary outdoor units 101-2 to 101-3 are ready for updating, and then the secondary outdoor units 101-2 to 101-3 (S188), and updates its own F/W (S189). Slave outdoor units 101-2 and 101-3 also update their F/W in accordance with the update instruction from main outdoor unit 101-1 (S190, S191).
 その後、配信装置2は、主室外機101-1および従室外機101-2,101-3に対して、F/Wのバージョンを確認する問い合わせを行なう(S192)。これに応じて、主室外機101-1および従室外機101-2,101-3は、F/Wのバージョンを配信装置2に連絡する(S193)。更新に成功していれば、更新後の新しいバージョンであることが、配信装置2に通知される。 After that, the distribution device 2 makes an inquiry to the main outdoor unit 101-1 and the secondary outdoor units 101-2 and 101-3 to confirm the version of the F/W (S192). In response, the main outdoor unit 101-1 and secondary outdoor units 101-2 and 101-3 inform the distribution device 2 of the F/W version (S193). If the update is successful, the distribution device 2 is notified that the version is a new version after the update.
 ネットワークサーバ3は、配信装置2に進捗を確認すると(S194)、配信装置2は、更新が正常に完了した旨の通知をネットワークサーバ3に返信する(S195)。このようにして、複数の室外機に対してF/Wが同時更新される。 When the network server 3 confirms the progress with the distribution device 2 (S194), the distribution device 2 returns a notification to the effect that the update has been completed normally to the network server 3 (S195). In this way, the F/Ws are simultaneously updated for a plurality of outdoor units.
 以上説明したように、F/W配信完了後、空調機器はF/W更新を行なうため一時制御を中断しなければならない。このとき、更新対象の機器が室外機であり、複数室外機で1冷媒系統が構成される場合は、実施の形態4では、主室外機が通信を用いて更新タイミングを調整する。たとえば、図19に示したように空調の停止も行なう。また、複数室外機が存在する場合は書換え復帰時にシステム再構成を行なうため、およその復帰タイミングを揃える。 As described above, after the F/W distribution is completed, the air conditioner must temporarily suspend control in order to update the F/W. At this time, when the device to be updated is an outdoor unit and a plurality of outdoor units constitute one refrigerant system, in the fourth embodiment, the main outdoor unit adjusts the update timing using communication. For example, air conditioning is also stopped as shown in FIG. Also, if there are multiple outdoor units, the system is reconfigured at the time of rewrite recovery, so the recovery timing should be roughly aligned.
 複数室外機で1冷媒系統が構成される場合は、共有の冷媒配管103,104を用いて制御を行なっているため、タイミングを揃えてF/W更新を行なうことで冷媒制御への影響を減少させることができる。 When one refrigerant system is composed of multiple outdoor units, control is performed using the shared refrigerant pipes 103 and 104, so updating the F/W at the same timing reduces the effect on refrigerant control. can be made
 ただし、ステップS189,S190,S191のいずれかにおいて、更新が失敗する場合も考えられる。このような場合には、異なるバージョンのF/Wが同時に実行されると、冷凍サイクルに不具合が生じる可能性があるので、バージョンを元に戻した方が良い。 However, it is conceivable that the update may fail in any of steps S189, S190, and S191. In such a case, if different versions of F/W are executed at the same time, the refrigeration cycle may malfunction, so it is better to restore the version.
 そこで、実施の形態4では、同一冷媒系統室外機内で更新後にF/Wバージョン差異が発生した場合、F/Wバージョンを戻す仕組みを設ける。バージョンを戻すため、事前に現状F/Wは各室外機の主記憶装置に保存しておく。また、この仕組みも空調機器1のシステム構成を司る主室外機101-1が従室外機101-2,101-3の状態を確認して実現する。 Therefore, in Embodiment 4, a mechanism is provided to restore the F/W version when a F/W version difference occurs after the update in the same refrigerant system outdoor unit. In order to restore the version, the current F/W is stored in advance in the main storage device of each outdoor unit. This mechanism is also realized by the main outdoor unit 101-1, which controls the system configuration of the air conditioner 1, confirming the states of the secondary outdoor units 101-2 and 101-3.
 図20は、複数室外機の更新の成否に応じた動作の流れを示す図である。バージョン差異発生時は、電源ON時等に保存したバックアップデータを用いたロールバック処理を実施する(図20の(a))。 FIG. 20 is a diagram showing the flow of operations according to the success or failure of updating multiple outdoor units. When a version difference occurs, rollback processing is performed using backup data saved when the power is turned on ((a) in FIG. 20).
 以下に、S202,S203において主室外機101-1および従室外機101-2が更新に成功し、S204において従室外機101-3が更新に失敗した場合を例示する。 The following is an example of a case where the update of the main outdoor unit 101-1 and the secondary outdoor unit 101-2 succeeds in S202 and S203, and the update of the secondary outdoor unit 101-3 fails in S204.
 主室外機101-1がF/Wの更新の成否を問い合わせると(S205)、従室外機101-2が更新成功、従室外機101-3が更新失敗した旨を応答する(S206)。 When the main outdoor unit 101-1 inquires about the success or failure of updating the F/W (S205), the slave outdoor unit 101-2 responds that the update has succeeded, and the slave outdoor unit 101-3 responds that the update has failed (S206).
 すると、主室外機101-1は、従室外機101-2,101-3に対して予め用意していたバックアップデータによるF/W書換え指示を送信するとともに(S207)、自己もバックアップデータによるF/W書換えを実行する(S208)。応じて、従室外機101-2,101-3もバックアップデータによるF/W書換えを実行する(S209,S210)。 Then, the main outdoor unit 101-1 transmits an instruction to rewrite the F/W based on the backup data prepared in advance to the slave outdoor units 101-2 and 101-3 (S207), and the main outdoor unit 101-1 itself also updates the F/W based on the backup data. /W rewrite is executed (S208). Accordingly, slave outdoor units 101-2 and 101-3 also execute F/W rewriting with backup data (S209, S210).
 一方、バージョン差異が無い場合は、次回のF/W更新に備えてバックアップデータの作成が行なわれる(図20の(b))。 On the other hand, if there is no version difference, backup data is created in preparation for the next F/W update ((b) of FIG. 20).
 以下に、S212,S213,S214において、主室外機101-1および従室外機101-2,101-3が更新に成功した場合を例示する。 Below, in S212, S213 and S214, a case where the update of the main outdoor unit 101-1 and the secondary outdoor units 101-2 and 101-3 is successful will be exemplified.
 主室外機101-1がF/Wの更新の成否を問い合わせると(S215)、従室外機101-2,101-3がともに更新成功した旨を応答する(S216)。 When the main outdoor unit 101-1 inquires about the success or failure of the F/W update (S215), both the secondary outdoor units 101-2 and 101-3 respond that the update has succeeded (S216).
 すると、主室外機101-1は、従室外機101-2,101-3に対してバックアップ指示を送信するとともに(S217)、自己も更新に成功したF/Wのバックアップを行なう(S218)。応じて、従室外機101-2,101-3も更新に成功したF/Wのバックアップを行なう(S219,S220)。バックアップデータを用意しておくことによって、次回の更新に失敗した場合、F/Wを元のバージョンに戻すことが可能となる。 Then, the main outdoor unit 101-1 transmits a backup instruction to the secondary outdoor units 101-2 and 101-3 (S217), and also backs up the successfully updated F/W (S218). In response, slave outdoor units 101-2 and 101-3 also back up the successfully updated F/W (S219, S220). By preparing backup data, it becomes possible to return the F/W to the original version if the next update fails.
 図20のような制御を実行することによって、F/Wの更新にいずれかの室外機が失敗した場合に、元のバージョンに戻すことが可能となる。したがって、同一冷媒系統の複数の室外機において、バージョンが異なるF/Wによって制御が実行される事態を回避することができる。 By executing the control as shown in FIG. 20, it is possible to return to the original version when any of the outdoor units fails to update the F/W. Therefore, it is possible to avoid a situation in which a plurality of outdoor units of the same refrigerant system are controlled by F/Ws of different versions.
 (まとめ)
 本実施の形態に係る空気調和システム100は、制御プログラムを不揮発的に記憶可能な空調機器1と、空調機器1と第1のネットワーク5を介して接続され、空調機器1に不揮発的に記憶されている制御プログラムを更新するための更新用プログラムを空調機器1に配信する配信装置2とを備える。
(summary)
The air conditioning system 100 according to the present embodiment is connected to an air conditioner 1 capable of storing a control program in a nonvolatile manner, and connected to the air conditioner 1 via a first network 5, and stored in the air conditioner 1 in a nonvolatile manner. and a distribution device 2 for distributing an update program for updating the control program installed in the air conditioner 1 to the air conditioner 1. - 特許庁
 空気調和システム100は、配信装置2と第2のネットワーク6Aを介して接続されたネットワークサーバ3をさらに備える。配信装置2は、ネットワークサーバ3から、更新用プログラムの配信を受けるように構成される。 The air conditioning system 100 further comprises a network server 3 connected to the distribution device 2 via the second network 6A. The distribution device 2 is configured to receive distribution of the update program from the network server 3 .
 このような構成とすることによって、遠隔地から通信を介したF/W更新が可能であるため、空調機器1の据付現場へサービスマンが赴く必要もなく、サービスの即応性が向上する。 By adopting such a configuration, it is possible to update the F/W from a remote location via communication, so there is no need for a service person to go to the installation site of the air conditioning equipment 1, and service responsiveness is improved.
 図3に示すように、配信装置2は、空調機器1とは異なる他の空調機器11と同じ筐体に収容されても良い。配信装置2は、第1のネットワーク5の通信方式である通信規格Bと第2のネットワーク6Aの通信方式である通信規格Aとのプロトコル変換を行なうように構成される。 As shown in FIG. 3, the distribution device 2 may be accommodated in the same housing as other air conditioners 11 different from the air conditioners 1 . Distribution device 2 is configured to perform protocol conversion between communication standard B, which is the communication method of first network 5, and communication standard A, which is the communication method of second network 6A.
 図5に示すように、配信装置2は、配信装置2に電源が投入されたときにまたは一定周期で、空調機器11~13の更新用プログラムの配信に必要な情報リストを空調機器11~13から収集して記憶装置21に記憶する。ネットワークサーバ3は、更新用プログラムの配信を行なう時点より前に、配信装置2にアクセスして配信装置2から情報リストを読み出す。ネットワークサーバ3は、情報リストに従って更新用プログラムの配信を行なうように構成される。 As shown in FIG. 5, when the distribution device 2 is powered on or at regular intervals, the distribution device 2 sends an information list necessary for distribution of the update program for the air conditioners 11 to 13 to the air conditioners 11 to 13. are collected from and stored in the storage device 21 . The network server 3 accesses the distribution device 2 and reads out the information list from the distribution device 2 before distributing the update program. The network server 3 is configured to distribute the update program according to the information list.
 図10に示すように、空調機器の情報は、更新用プログラムを配信する際の、圧縮方式、データ形式、通信方式の少なくとも1つを含む。 As shown in FIG. 10, the air conditioner information includes at least one of the compression method, data format, and communication method used when distributing the update program.
 図10に示すように、データ形式は、フルデータ形式と差分データ形式とを含む。ネットワークサーバ3は、データ形式が差分データ形式であった場合、図16に示すように、更新用プログラムと更新前プログラムの比較を行ない、更新用プログラムと更新前プログラムとの間の差分データと、差分データの位置を示す差分位置データとを生成する。図15に示すように、ネットワークサーバ3は、生成した差分データおよび差分位置データを配信装置2に配信するように構成される。図15に示すように、配信装置2は、差分データおよび差分位置データを空調機器1に転送する。空調機器1は、図17に示すように、差分データおよび差分位置データに基づいて更新用プログラムを復元するように構成される。 As shown in FIG. 10, the data format includes a full data format and a differential data format. When the data format is the differential data format, the network server 3 compares the update program and the pre-update program as shown in FIG. difference position data indicating the position of the difference data; As shown in FIG. 15 , the network server 3 is configured to distribute the generated difference data and difference position data to the distribution device 2 . As shown in FIG. 15 , the distribution device 2 transfers the difference data and the difference position data to the air conditioner 1 . The air conditioner 1 is configured to restore the update program based on the difference data and the difference position data, as shown in FIG. 17 .
 以上のように、空調機器の情報を収集することで、ネットワークサーバ3は、更新対象の空調機器が対応可能なF/W種類、F/Wバージョン、圧縮方式で、F/Wを配信装置2へ提供できる。また、配信装置2は、更新対象の空調機器に適した通信方式および配信単位で、空調機器へのF/W配信を行なうことができる。 As described above, by collecting information about air conditioners, the network server 3 distributes the F/W to the distribution device 2 according to the F/W type, F/W version, and compression method that can be handled by the air conditioner to be updated. can provide to In addition, the distribution device 2 can perform F/W distribution to the air conditioning equipment in a communication method and distribution unit suitable for the air conditioning equipment to be updated.
 なお、図4に示すように、ネットワークサーバに接続されない場合でも、USB規格で作業者のユーザ端末4(パーソナルコンピュータ)から送信される更新用プログラムを、配信装置2と兼用されるメンテナンス機器15で通信規格Bにプロトコル変換して配信しても良い。 As shown in FIG. 4, even if the network server is not connected, the update program transmitted from the worker's user terminal 4 (personal computer) in accordance with the USB standard can be transferred to the maintenance device 15 that also serves as the distribution device 2. The protocol may be converted to the communication standard B and distributed.
 図6に示すように、空気調和システム100は、各々が、空調機器1A~1Cと配信装置2A~2Cとを含んだ、複数の機器群F1A~F1Cと、複数の機器群F1A~F1Cの配信装置2A~2Cに第2のネットワーク6Aを介して接続されるネットワークサーバ3とを備える。ネットワークサーバ3は、複数の機器群F1A~F1Cのそれぞれに対応する複数の更新用プログラムF/W(A)~F/W(C)と複数の更新用プログラムF/W(A)~F/W(C)をそれぞれ配信するために必要な情報とを記憶するように構成される。配信するために必要な情報は、たとえば、配信先を示す配信装置の情報、各配信装置が配信する空調機器の構成を示す空調機器情報リストなどを含む。 As shown in FIG. 6, the air conditioning system 100 includes a plurality of device groups F1A to F1C each including air conditioners 1A to 1C and distribution devices 2A to 2C, and a plurality of device groups F1A to F1C. and a network server 3 connected to the devices 2A-2C via a second network 6A. The network server 3 includes a plurality of update programs F/W(A) to F/W(C) and a plurality of update programs F/W(A) to F/W(A) to F/W(C) corresponding to the plurality of device groups F1A to F1C, respectively. and the information necessary to deliver each W(C). The information necessary for distribution includes, for example, distribution device information indicating distribution destinations, an air conditioner information list indicating the configuration of air conditioners distributed by each distribution device, and the like.
 このような構成では、ネットワークサーバ3と配信装置2A~2Cとが1対多の接続が可能であるため、据付現場ごとの情報集約およびF/W更新の並行処理が可能となる。また、ネットワークサーバ3が複数種類のF/Wを格納可能であるため、複数種類の空調機器への対応、および同一機器に対するF/Wバージョン違いのデータを用いたF/W更新が可能となる。加えて、配信前にデータを圧縮することによって、F/W配信時のスループットを向上できる。 With such a configuration, one-to-many connections between the network server 3 and the distribution devices 2A to 2C are possible, so parallel processing of information aggregation and F/W update for each installation site is possible. In addition, since the network server 3 can store a plurality of types of F/W, it is possible to support a plurality of types of air conditioners and to update the F/W using data of different F/W versions for the same device. . In addition, by compressing data before distribution, the throughput during F/W distribution can be improved.
 ネットワークサーバ3は、図7に示すように、受信した作業者からの書換え指令に対応する配信装置に更新用プログラムの配信を行なうように構成される。または、ネットワークサーバ3は、図8に示すように、たとえば新しいF/Wが追加されたなどの、成立した書換え条件に対応する配信装置に、更新用プログラムの配信を行なうように構成される。 As shown in FIG. 7, the network server 3 is configured to distribute the update program to the distribution device corresponding to the received rewrite command from the worker. Alternatively, the network server 3 is configured, as shown in FIG. 8, to distribute the update program to distribution devices corresponding to established rewrite conditions, such as the addition of a new F/W.
 図8の構成によれば、作業者からの手動による指示だけでなく、条件を設定することで必要な空調機器への配信を自動で行なうことができる。 According to the configuration in FIG. 8, it is possible not only to manually instruct the operator, but also to automatically distribute to the necessary air conditioning equipment by setting the conditions.
 図18に示すように、空調機器1は、1つの冷媒回路に共通に接続された複数の室外機101-1~101-nを含む。図19に示すように、複数の室外機101-1~101-nの各々は、配信された更新用プログラムを、配信装置2で指定されたタイミングまたは、配信装置2が指定する条件が成立するタイミングで、更新前プログラムと置換するように構成される。 As shown in FIG. 18, the air conditioner 1 includes a plurality of outdoor units 101-1 to 101-n commonly connected to one refrigerant circuit. As shown in FIG. 19, each of the plurality of outdoor units 101-1 to 101-n executes the distributed update program at the timing designated by the distribution device 2 or when the conditions designated by the distribution device 2 are met. It is configured to replace the pre-update program at the timing.
 複数の室外機101-1~101-nの各々は、更新前プログラムと更新用プログラムとを記憶するように構成される。図20の(a)に示すように、複数の室外機101-1~101-nの各々は、複数の室外機101-1~101-nのいずれかにおいて更新前プログラムが更新用プログラムに正常に更新できなかった場合には、更新用プログラムを使用せずに更新前プログラムを使用するように構成される。 Each of the plurality of outdoor units 101-1 to 101-n is configured to store a pre-update program and an update program. As shown in (a) of FIG. 20, in each of the plurality of outdoor units 101-1 to 101-n, the pre-update program is normal to the update program in any of the plurality of outdoor units 101-1 to 101-n. is configured to use the pre-update program without using the update program.
 より好ましくは、図20の(b)に示すように、複数の室外機101-1~101-nの各々は、複数の室外機101-1~101-nのすべてにおいて更新前プログラムが更新用プログラムに正常に更新できた場合には、更新用プログラムを制御プログラムとして使用するとともに、更新前プログラムを更新用プログラムに書き換えるように構成される。 More preferably, as shown in (b) of FIG. 20, each of the plurality of outdoor units 101-1 to 101-n is configured such that the pre-update program is for updating in all of the plurality of outdoor units 101-1 to 101-n. When the program is successfully updated, the update program is used as the control program, and the pre-update program is rewritten with the update program.
 好ましくは、図1に示す空気調和システム100は、配信装置2と第2のネットワークを介して接続されたネットワークサーバ3をさらに備える。ネットワークサーバ3は、更新用プログラムを保存する記憶装置31と、記憶装置31から更新用プログラムを読み出して配信装置2に自動的に配信するCPU30とを備える。図9に示すように、CPU30は、記憶装置31に保存されている更新用プログラムと空調機器1に不揮発的に記憶されている制御プログラムのバージョンまたはタイムスタンプを比較する。CPU30は、バージョンまたはタイムスタンプによって更新用プログラムのほうが制御プログラムよりも新しいことが示された場合は、更新用プログラムを配信装置2に配信するように構成される。 Preferably, the air conditioning system 100 shown in FIG. 1 further includes a network server 3 connected to the distribution device 2 via a second network. The network server 3 includes a storage device 31 that stores an update program, and a CPU 30 that reads the update program from the storage device 31 and automatically delivers it to the delivery device 2 . As shown in FIG. 9, the CPU 30 compares the update program stored in the storage device 31 with the version or time stamp of the control program nonvolatilely stored in the air conditioner 1 . The CPU 30 is configured to distribute the update program to the distribution device 2 when the version or time stamp indicates that the update program is newer than the control program.
 好ましくは、図1に示す空気調和システム100は、配信装置2と第2のネットワークを介して接続されたネットワークサーバ3をさらに備える。ネットワークサーバ3は、更新用プログラムと更新前プログラムとを保存する記憶装置31と、記憶装置31から更新用プログラムを読み出して配信装置2に配信するCPU30とを備える。図15のステップS152において、CPU30は、更新用プログラムと更新前プログラムとの比較を行ない、更新用プログラムと更新前プログラムとの間の差分データと、差分データのチェックサムを示す第1チェックサムと、更新用プログラム全体のチェックサムを示す第2チェックサムとを生成する。配信装置2は、差分データ、第1チェックサム、および第2チェックサムをネットワークサーバ3から受けて(S153,S154)空調機器1に転送し(S158,S159)する。空調機器1は、第1チェックサムを用いて受信した差分データの照合を行ない(S163)、第2チェックサムを用いて受信した差分データから復元された更新用プログラムの照合を行なう(S165)ように構成される。 Preferably, the air conditioning system 100 shown in FIG. 1 further includes a network server 3 connected to the distribution device 2 via a second network. The network server 3 includes a storage device 31 that stores an update program and a pre-update program, and a CPU 30 that reads out the update program from the storage device 31 and delivers it to the distribution device 2 . In step S152 of FIG. 15, the CPU 30 compares the update program and the pre-update program, and compares the difference data between the update program and the pre-update program with the first checksum indicating the checksum of the difference data. , and a second checksum indicating the checksum of the entire update program. The distribution device 2 receives the difference data, the first checksum, and the second checksum from the network server 3 (S153, S154) and transfers them to the air conditioner 1 (S158, S159). The air conditioner 1 checks the received difference data using the first checksum (S163), and checks the update program restored from the received difference data using the second checksum (S165). configured to
 好ましくは、図1に示す空気調和システム100は、配信装置2と第2のネットワークを介して接続されたネットワークサーバ3をさらに備える。ネットワークサーバ3は、更新用プログラムと更新前プログラムとを保存する記憶装置31と、記憶装置31から更新用プログラムを読み出して配信装置2に配信するCPU30とを備える。図16にしめされるように、CPU30は、比較開始位置を単位幅ごとにずらしながら(S133)更新用プログラムと更新前プログラムとの比較を行ない(S134)、差分が検出された単位幅を差分データに追加し(S135)、追加した単位幅のデータの位置を差分位置データに追加する(S136)ように構成される。 Preferably, the air conditioning system 100 shown in FIG. 1 further includes a network server 3 connected to the distribution device 2 via a second network. The network server 3 includes a storage device 31 that stores an update program and a pre-update program, and a CPU 30 that reads out the update program from the storage device 31 and delivers it to the distribution device 2 . As shown in FIG. 16, the CPU 30 shifts the comparison start position by unit width (S133), compares the update program and the pre-update program (S134), and compares the unit width in which the difference is detected. It is configured to add to the data (S135) and add the position of the added unit width data to the differential position data (S136).
 より好ましくは、空調機器1は、差分データと差分位置データとを配信装置2を経由してネットワークサーバ3から受信する(S160,S161)。空調機器1は、制御プログラムと差分データと差分位置データとを用いて更新用プログラムを復元する(S164、図17のS131~S138))。 More preferably, the air conditioner 1 receives the difference data and the difference position data from the network server 3 via the distribution device 2 (S160, S161). The air conditioner 1 restores the update program using the control program, difference data, and difference position data (S164, S131 to S138 in FIG. 17)).
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of the claims rather than the description of the above-described embodiments, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 1,1A,1B,1C,11,12,13 空調機器、2,2A,2B,2C 配信装置、3 ネットワークサーバ、4 ユーザ端末、5 通信網、6A,6B インターネット、15 メンテナンス機器、21,31 記憶装置、22 空調機接続部、23 通信部、25,36 FWアップデート部、27 データ収集部、28 データ受信部、32 配信装置通信部、33 アプリケーション通信部、38 機器登録部、39 機器管理部、100 空気調和システム、101-1~101-3 室外機、102-1~102-3 室内機、103,104 冷媒配管。 1, 1A, 1B, 1C, 11, 12, 13 Air conditioning equipment, 2, 2A, 2B, 2C Distribution device, 3 Network server, 4 User terminal, 5 Communication network, 6A, 6B Internet, 15 Maintenance equipment, 21, 31 Storage device, 22 air conditioner connection unit, 23 communication unit, 25, 36 FW update unit, 27 data collection unit, 28 data reception unit, 32 distribution device communication unit, 33 application communication unit, 38 device registration unit, 39 device management unit , 100 air conditioning system, 101-1 to 101-3 outdoor units, 102-1 to 102-3 indoor units, 103, 104 refrigerant pipes.

Claims (15)

  1.  制御プログラムを不揮発的に記憶可能な空調機器と、
     前記空調機器と第1のネットワークを介して接続され、前記空調機器に不揮発的に記憶されている前記制御プログラムを更新するための更新用プログラムを前記空調機器に配信する配信装置とを備える、空気調和システム。
    an air conditioner capable of storing a control program in a non-volatile manner;
    a distribution device connected to the air conditioner via a first network and configured to distribute an update program for updating the control program stored in the air conditioner in a nonvolatile manner to the air conditioner. harmonious system.
  2.  前記配信装置と第2のネットワークを介して接続されたネットワークサーバをさらに備え、
     前記配信装置は、前記ネットワークサーバから、前記更新用プログラムの配信を受けるように構成される、請求項1に記載の空気調和システム。
    further comprising a network server connected to the distribution device via a second network;
    2. The air conditioning system according to claim 1, wherein said distribution device is configured to receive distribution of said update program from said network server.
  3.  前記配信装置は、前記第1のネットワークの通信方式と前記第2のネットワークの通信方式とのプロトコル変換を行なうように構成される、請求項2に記載の空気調和システム。 The air conditioning system according to claim 2, wherein the distribution device is configured to perform protocol conversion between the communication method of the first network and the communication method of the second network.
  4.  前記配信装置は、前記配信装置に電源が投入されたとき、または一定周期で、前記空調機器の前記更新用プログラムの配信に必要な情報を前記空調機器から収集して記憶し、
     前記ネットワークサーバは、前記配信装置にアクセスして前記配信装置から前記情報を読み出し、前記情報に従って前記更新用プログラムの配信を行なうように構成される、請求項2に記載の空気調和システム。
    The distribution device collects and stores information necessary for distribution of the update program for the air conditioner from the air conditioner when the power of the distribution device is turned on or at regular intervals,
    3. The air conditioning system according to claim 2, wherein said network server accesses said distribution device, reads said information from said distribution device, and distributes said update program according to said information.
  5.  前記情報は、前記更新用プログラムを配信する際の、圧縮方式、データ形式、通信方式の少なくとも1つを含む、請求項4に記載の空気調和システム。 The air conditioning system according to claim 4, wherein the information includes at least one of a compression method, a data format, and a communication method when distributing the update program.
  6.  前記データ形式は、フルデータ形式と差分データ形式とを含み、
     前記ネットワークサーバは、前記データ形式が前記差分データ形式であった場合、前記更新用プログラムと更新前プログラムの比較を行ない、前記更新用プログラムと前記更新前プログラムとの間の差分データと、前記差分データの位置を示す差分位置データとを生成し、生成した前記差分データおよび前記差分位置データを前記配信装置に配信するように構成され、
     前記配信装置は、前記差分データおよび前記差分位置データを前記空調機器に転送し、
     前記空調機器は、前記差分データおよび前記差分位置データに基づいて前記更新用プログラムを復元するように構成される、請求項5に記載の空気調和システム。
    the data format includes a full data format and a differential data format;
    When the data format is the difference data format, the network server compares the update program and the pre-update program, and compares the update program and the pre-update program with the difference data and the difference data. and generating difference position data indicating a position of data, and distributing the generated difference data and the difference position data to the distribution device,
    The distribution device transfers the difference data and the difference position data to the air conditioner,
    6. The air conditioning system according to claim 5, wherein said air conditioner is configured to restore said update program based on said differential data and said differential position data.
  7.  前記配信装置は、第1配信装置であり、前記空調機器は、第1空調機器であり、
     第2空調機器と、
     前記第2空調機器に対応する第2配信装置と、
     前記第1配信装置および前記第2配信装置に第2のネットワークを介して接続されるネットワークサーバとをさらに備え、
     前記ネットワークサーバは、前記第1空調機器および前記第2空調機器にそれぞれ対応する第1更新用プログラムおよび第2更新用プログラムと、前記第1更新用プログラムおよび前記第2更新用プログラムをそれぞれ配信するために必要な第1情報および第2情報とを記憶するように構成される、請求項1に記載の空気調和システム。
    The distribution device is a first distribution device, the air conditioner is a first air conditioner,
    a second air conditioner;
    a second distribution device corresponding to the second air conditioner;
    a network server connected to the first distribution device and the second distribution device via a second network;
    The network server distributes a first update program and a second update program respectively corresponding to the first air conditioner and the second air conditioner, and the first update program and the second update program. 2. An air conditioning system according to claim 1, configured to store the first information and the second information necessary for.
  8.  前記ネットワークサーバは、前記第1配信装置および前記第2配信装置のうち、受信した作業者からの書換え指令に対応する配信装置、または、成立した書換え条件に対応する配信装置に、対応する更新用プログラムの配信を行なうように構成される、請求項7に記載の空気調和システム。 The network server updates the distribution device corresponding to the received rewrite command from the worker or the distribution device corresponding to the established rewrite condition, out of the first distribution device and the second distribution device, to the corresponding update 8. The air conditioning system of claim 7, configured to provide program distribution.
  9.  前記空調機器は、1つの冷媒回路に共通に接続された複数の室外機を含み、
     前記複数の室外機の各々は、
     前記複数の室外機の各々は、配信された前記更新用プログラムを、前記配信装置で指定されたタイミングまたは、前記配信装置が指定する条件が成立するタイミングで、更新前プログラムと置換するように構成される、請求項1に記載の空気調和システム。
    The air conditioner includes a plurality of outdoor units commonly connected to one refrigerant circuit,
    each of the plurality of outdoor units,
    Each of the plurality of outdoor units is configured to replace the distributed update program with the pre-update program at the timing designated by the distribution device or at the timing when a condition designated by the distribution device is satisfied. The air conditioning system of claim 1, wherein:
  10.  前記複数の室外機の各々は、前記更新前プログラムと前記更新用プログラムとを記憶するように構成され、
     前記複数の室外機の各々は、前記複数の室外機のいずれかにおいて前記更新前プログラムが前記更新用プログラムに正常に更新できなかった場合には、前記更新用プログラムを使用せずに前記更新前プログラムを使用するように構成される、請求項9に記載の空気調和システム。
    each of the plurality of outdoor units is configured to store the pre-update program and the update program;
    In each of the plurality of outdoor units, if the pre-update program cannot be normally updated to the update program in any of the plurality of outdoor units, the pre-update program is not used and the update program is not used. 10. The air conditioning system of claim 9, configured to use a program.
  11.  前記複数の室外機の各々は、前記複数の室外機のすべてにおいて前記更新前プログラムが前記更新用プログラムに正常に更新できた場合には、前記更新用プログラムを前記制御プログラムとして使用するとともに、前記更新前プログラムを前記更新用プログラムに書き換えるように構成される、請求項10に記載の空気調和システム。 Each of the plurality of outdoor units uses the update program as the control program when the pre-update program can be successfully updated to the update program in all of the plurality of outdoor units, and 11. The air conditioning system according to claim 10, configured to rewrite a pre-update program with the update program.
  12.  前記配信装置と第2のネットワークを介して接続されたネットワークサーバをさらに備え、
     前記ネットワークサーバは、
     前記更新用プログラムを保存する記憶装置と、
     前記記憶装置から前記更新用プログラムを読み出して前記配信装置に自動的に配信する処理装置とを備え、
     前記処理装置は、前記記憶装置に保存されている前記更新用プログラムと前記空調機器に不揮発的に記憶されている前記制御プログラムのバージョンまたはタイムスタンプを比較し、前記バージョンまたは前記タイムスタンプによって前記更新用プログラムのほうが前記制御プログラムよりも新しいことが示された場合は、前記更新用プログラムを前記配信装置に配信するように構成される、請求項1に記載の空気調和システム。
    further comprising a network server connected to the distribution device via a second network;
    The network server is
    a storage device that stores the update program;
    a processing device that reads the update program from the storage device and automatically distributes it to the distribution device;
    The processing device compares the version or time stamp of the update program stored in the storage device with the version or time stamp of the control program nonvolatilely stored in the air conditioner, and performs the update based on the version or time stamp. 2. The air conditioning system according to claim 1, configured to distribute the update program to the distribution device when it is indicated that the update program is newer than the control program.
  13.  前記配信装置と第2のネットワークを介して接続されたネットワークサーバをさらに備え、
     前記ネットワークサーバは、
     前記更新用プログラムと更新前プログラムとを保存する記憶装置と、
     前記記憶装置から前記更新用プログラムを読み出して前記配信装置に配信する処理装置とを備え、
     前記処理装置は、前記更新用プログラムと前記更新前プログラムとの比較を行ない、前記更新用プログラムと前記更新前プログラムとの間の差分データと、前記差分データのチェックサムを示す第1チェックサムと、前記更新用プログラム全体のチェックサムを示す第2チェックサムとを生成し、
     前記配信装置は、前記差分データ、前記第1チェックサム、および前記第2チェックサムを前記ネットワークサーバから受けて前記空調機器に転送し、
     前記空調機器は、前記第1チェックサムを用いて受信した差分データの照合を行ない、前記第2チェックサムを用いて前記受信した差分データから復元された更新用プログラムの照合を行なうように構成される、請求項1に記載の空気調和システム。
    further comprising a network server connected to the distribution device via a second network;
    The network server is
    a storage device for storing the update program and the pre-update program;
    a processing device that reads the update program from the storage device and distributes it to the distribution device;
    The processing device compares the update program and the pre-update program, and includes difference data between the update program and the pre-update program and a first checksum indicating a checksum of the difference data. , and a second checksum indicating a checksum of the entire update program;
    The distribution device receives the difference data, the first checksum, and the second checksum from the network server and transfers them to the air conditioner;
    The air conditioner is configured to verify the difference data received using the first checksum and to verify the update program restored from the received difference data using the second checksum. The air conditioning system of claim 1, wherein the air conditioning system is
  14.  前記配信装置と第2のネットワークを介して接続されたネットワークサーバをさらに備え、
     前記ネットワークサーバは、
     前記更新用プログラムと更新前プログラムとを保存する記憶装置と、
     前記記憶装置から前記更新用プログラムを読み出して前記配信装置に配信する処理装置とを備え、
     前記処理装置は、比較開始位置を単位幅ごとにずらしながら前記更新用プログラムと前記更新前プログラムとの比較を行ない、差分が検出された単位幅を差分データに追加し、追加した単位幅のデータの位置を差分位置データに追加するように構成される、請求項1に記載の空気調和システム。
    further comprising a network server connected to the distribution device via a second network;
    The network server is
    a storage device for storing the update program and the pre-update program;
    a processing device that reads the update program from the storage device and distributes it to the distribution device;
    The processing device compares the update program and the pre-update program while shifting the comparison start position by unit width, adds the unit width in which the difference is detected to the difference data, and adds the added unit width data. 2. The air conditioning system of claim 1, configured to add the position of to the differential position data.
  15.  前記空調機器は、前記差分データと前記差分位置データとを前記配信装置を経由して前記ネットワークサーバから受信し、
     前記空調機器は、前記制御プログラムと前記差分データと前記差分位置データとを用いて前記更新用プログラムを復元する、請求項14に記載の空気調和システム。
    the air conditioner receives the difference data and the difference position data from the network server via the distribution device;
    15. The air conditioning system according to claim 14, wherein said air conditioner restores said update program using said control program, said differential data, and said differential position data.
PCT/JP2021/003852 2021-02-03 2021-02-03 Air-conditioning system WO2022168193A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022579206A JPWO2022168193A1 (en) 2021-02-03 2021-02-03
US18/254,026 US20240093898A1 (en) 2021-02-03 2021-02-03 Air-conditioning system
PCT/JP2021/003852 WO2022168193A1 (en) 2021-02-03 2021-02-03 Air-conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/003852 WO2022168193A1 (en) 2021-02-03 2021-02-03 Air-conditioning system

Publications (1)

Publication Number Publication Date
WO2022168193A1 true WO2022168193A1 (en) 2022-08-11

Family

ID=82741260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003852 WO2022168193A1 (en) 2021-02-03 2021-02-03 Air-conditioning system

Country Status (3)

Country Link
US (1) US20240093898A1 (en)
JP (1) JPWO2022168193A1 (en)
WO (1) WO2022168193A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002032460A (en) * 2000-07-17 2002-01-31 Mitsubishi Heavy Ind Ltd Maintenance management supporting method and remote operating method for air conditioner
JP2005346190A (en) * 2004-05-31 2005-12-15 Toshiba Corp Home electric appliance information communication system
JP2006260476A (en) * 2005-03-18 2006-09-28 Ricoh Co Ltd Software introducing method and its device, program and storage medium
JP2008215637A (en) * 2007-02-28 2008-09-18 Daikin Ind Ltd Remote management system of air conditioner and initializing device of air conditioner
JP2009003830A (en) * 2007-06-25 2009-01-08 Daikin Ind Ltd Remote control device and remote control system
JP2014164553A (en) * 2013-02-26 2014-09-08 Canon Inc Distribution system and distribution method of distribution system
WO2016031260A1 (en) * 2014-08-28 2016-03-03 三菱重工業株式会社 Control program delivery system and method therefor
JP2017156925A (en) * 2016-03-01 2017-09-07 キヤノン株式会社 Information processing device, information processing device control method, and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002032460A (en) * 2000-07-17 2002-01-31 Mitsubishi Heavy Ind Ltd Maintenance management supporting method and remote operating method for air conditioner
JP2005346190A (en) * 2004-05-31 2005-12-15 Toshiba Corp Home electric appliance information communication system
JP2006260476A (en) * 2005-03-18 2006-09-28 Ricoh Co Ltd Software introducing method and its device, program and storage medium
JP2008215637A (en) * 2007-02-28 2008-09-18 Daikin Ind Ltd Remote management system of air conditioner and initializing device of air conditioner
JP2009003830A (en) * 2007-06-25 2009-01-08 Daikin Ind Ltd Remote control device and remote control system
JP2014164553A (en) * 2013-02-26 2014-09-08 Canon Inc Distribution system and distribution method of distribution system
WO2016031260A1 (en) * 2014-08-28 2016-03-03 三菱重工業株式会社 Control program delivery system and method therefor
JP2017156925A (en) * 2016-03-01 2017-09-07 キヤノン株式会社 Information processing device, information processing device control method, and program

Also Published As

Publication number Publication date
JPWO2022168193A1 (en) 2022-08-11
US20240093898A1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
WO2021083244A1 (en) Multi-device batch firmware upgrade method for mesh network device
JP6760813B2 (en) Software update device, software update method, software update system
EP1956461A2 (en) Local controller, remote management controller and method for automatically updating the local controller of an air conditioner system
US6400729B1 (en) Protocol conversion system for data communication between different types of open networks
KR101256547B1 (en) Air conditioner, method for controlling outdoor units of the air conditioner, and central control system having the same
KR101300259B1 (en) Air conditioner, air conditioning system having the same, and method for controlling outdoor unit of the system
EP3011446B1 (en) Synchronized update of multiple devices in a local network
CN102567438A (en) Method for providing access to data items from a distributed storage system
CN101951410A (en) Method for automatically and remotely upgrading embedded terminal
WO2011156998A1 (en) System and method for implementing automatic configuration for equipments
CN101789980A (en) Batch upgrading method based on cluster network
CN103942080A (en) Electronic device information transmission method
CN102055607A (en) Method and system for updating network devices
CN103516735A (en) Method and apparatus for upgrading network node
CN113721966A (en) Node upgrading method and device, storage medium and electronic device
WO2022168193A1 (en) Air-conditioning system
CN104167822A (en) Parameter configuration method for distribution network automation terminal device
KR101807429B1 (en) Remote management apparatus and method fof updating batch parameter of smartmeter
CN115268976A (en) Automatic upgrading method and system for multi-data center collection Agent version
JP2003337717A (en) Fault recovery synchronizing system of online transaction process
JP2019211882A (en) Communication system
CN104158906A (en) Server agent manipulation system and manipulation method
CN104185199A (en) Base station self-starting method and device and control method and device thereof
CN111209012A (en) Linux system-oriented software agent end automatic deployment method
CN112527369B (en) Resource updating method of intelligent terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924590

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18254026

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022579206

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924590

Country of ref document: EP

Kind code of ref document: A1