WO2022167752A1 - Condenseur pour caloduc - Google Patents

Condenseur pour caloduc Download PDF

Info

Publication number
WO2022167752A1
WO2022167752A1 PCT/FR2022/050192 FR2022050192W WO2022167752A1 WO 2022167752 A1 WO2022167752 A1 WO 2022167752A1 FR 2022050192 W FR2022050192 W FR 2022050192W WO 2022167752 A1 WO2022167752 A1 WO 2022167752A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubes
condenser
heat pipe
wall
truncated
Prior art date
Application number
PCT/FR2022/050192
Other languages
English (en)
Inventor
Stéphane LIPS
Elise BERUT
Frédéric Lefevre
Valérie SARTRE
Thomas JOFFRE
Julien BAJOLET
Original Assignee
Centre National De La Recherche Scientifique
Universite Claude Bernard Lyon 1
Institut National Des Sciences Appliquees De Lyon
Centre Technique Industriel De La Plasturgie Et Des Composites
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Universite Claude Bernard Lyon 1, Institut National Des Sciences Appliquees De Lyon, Centre Technique Industriel De La Plasturgie Et Des Composites filed Critical Centre National De La Recherche Scientifique
Publication of WO2022167752A1 publication Critical patent/WO2022167752A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/02Heat exchange conduits with particular branching, e.g. fractal conduit arrangements

Definitions

  • the present invention relates to a condenser for a heat pipe and a method of manufacturing said heat pipe.
  • the present invention is particularly intended for the automotive, electronics, railway and aerospace fields.
  • a heat pipe generally takes the form of a sealed enclosure filled with a fluid in a state of liquid-vapor equilibrium.
  • One end of the heat pipe called “evaporator”
  • evaporator is located near an element to be cooled, also called “hot source”.
  • the fluid in the liquid state vaporizes by absorbing thermal energy emitted by the hot source.
  • the vapor then circulates in the heat pipe to the other end, called the “condenser”, located near a cooling system, called the “cold source”, where it condenses to return to the liquid state. Condensation transfers thermal energy to the cold source.
  • the liquid then returns to the evaporator by gravity or by capillarity.
  • a capillary structure can be created in order to ensure the return of condensate from the condenser to the evaporator, under the effect of a capillary driving pressure, in particular when the forces of gravity are not present or when the orientation of the heat pipe requires the flow of liquid to overcome gravity. Drying out of the evaporator is thus avoided.
  • a heat pipe requires meeting a number of criteria. Its envelope must meet particularly demanding tightness and stability constraints over time, otherwise incondensable gases will be introduced into the heat pipe and its thermal performance will deteriorate or the load will decrease. fluid filling, due to the passage of vapor molecules through the wall of the heat pipe.
  • a heat pipe is also subject to significant internal pressure variations that can range from a vacuum when filling the system to an overpressure of around 1 bar when its saturation temperature increases.
  • the heat pipe is generally used as an intermediary between the hot source and a finned heat sink which itself has a large exchange surface and transfers the heat by convection with the ambient air.
  • the heat pipe then serves as a simple thermal diffuser whose role is to spread the thermal power dissipated over a larger flat surface upstream of the finned heatsink.
  • This heatsink must be made of a solid metallic material in order to have sufficient thermal efficiency. Its weight is therefore high. Thus the bulk and the mass of the overall system are generally significant.
  • the performance of the heat exchange is not sufficient.
  • the object of the invention is to remedy the aforementioned drawbacks by proposing a heat pipe condenser making it possible to optimize heat exchanges, in particular during air cooling, not requiring the addition of an additional and easily adaptable finned heatsink. in various applications. Furthermore, the invention aims to provide a custom-made heat pipe condenser, the shape of which can vary depending on the desired application, which is more compact and whose weight is reduced compared to the heat pipe condensers of the prior art.
  • the subject of the invention is a heat pipe condenser comprising:
  • a plurality of tubes comprising a wall having an outer face and an inner face, said wall delimiting a space containing a heat transfer fluid
  • said tubes operating as a condenser intended to condense heat transfer fluid vapor in contact with a cold source
  • said tubes being intended to be connected to an evaporator, said heat pipe condenser being characterized in that:
  • said tubes are interconnected by branches so as to form a network of interconnected tubes and/or
  • the heat pipe condenser according to the invention makes it possible to significantly improve the heat exchanges.
  • the tubes form fins in which the fluid condenses, which makes it possible to ensure good heat transfer within them, therefore to increase the power dissipated in proportion to the length of the fins. Furthermore, the presence of a heatsink with solid fins is no longer necessary, which makes it possible to reduce the weight of the heat pipe.
  • the inventors have discovered that the cross section of the internal face of the wall of said non-circular tubes makes it possible to improve the drainage of the heat transfer fluid inside the tubes. the liquid collects in the corners due to capillary forces, which allows it to drain towards the evaporator by gravity and avoids the formation of stable liquid plugs degrading performance.
  • the interconnection of the tubes allows the circulation and the evacuation of the plugs of liquid not evacuated by drainage as well as the circulation of the incondensable gases possibly present at the upper ends of the tubes, which degrade the transfer of heat by condensation. Thanks to these different phenomena, the diameter of the tubes can be significantly reduced compared to a condenser with non-interconnected circular hollow fins without observing any blockage of the condensation. Reducing the diameter of the tubes makes it possible to increase the exchange coefficient and, above all, the exchange surface by multiplying the tubes. Finally, the interconnection of the tubes and the cross section of the internal face of the wall of the non-circular tubes allow an increase in the flow of condensation and the evacuation of a greater thermal power, in particular thanks to the increase in the surface. of exchange with respect to a heat pipe with circular hollow fins. Finally, the condenser according to the invention withstands vacuum depressions and temperatures ranging up to 120°C.
  • the network of interconnected tubes includes a vertical central tube surrounded by a plurality of vertical peripheral tubes, the diameter of the vertical central tube being greater than the diameters of the vertical peripheral tubes, the branches connecting the at least two vertical peripheral tubes and the branches being connected to the vertical central tube.
  • the network of interconnected tubes includes tubes interconnected by branches so as to form a regularly or irregularly repeated geometric pattern.
  • the geometric pattern is repeated regularly.
  • the heat exchanges are greater.
  • the geometric pattern is a polyhedron.
  • the exchange surfaces are larger, which makes it possible to transfer greater power.
  • the polyhedron is chosen from: the tetrahedron, the hexahedron, the octahedron, the regular dodecahedron, the icosahedron, the small stellated dodecahedron, the great stellated dodecahedron, the great dodecahedron, the great icosahedron, the cuboctahedron, icosidodecahedron, truncated tetrahedron, truncated cube, truncated octahedron, truncated dodecahedron, truncated icosahedron, truncated cuboctahedron, truncated icosidodecahedron, rhombicuboctahedron, snub cube, snub dodecahedron, and rhombicosidodecahedron .
  • the cross section of the inner face of the wall of said tubes has a hexagonal shape, a square shape, a triangular shape, a star shape or a non-polygonal shape such as a lobed shape.
  • the drainage of the heat transfer fluid towards the hot source is optimized. Increasing the condensate discharge rate improves condenser performance.
  • the cross section of the internal face of the wall of said tubes creates a preferential direction for the flow of the fluid. By optimizing the drainage of heat transfer fluid from the condenser to the evaporator, the performance of the heat pipe is improved.
  • the wall thickness of said tubes is greater than 0 mm and less than 2.0 mm.
  • the thickness of the wall of said tubes is less than 1.4 mm.
  • the thickness of the wall of said tubes is between 0.6 and 0.8 mm.
  • the pressure prevailing in the tubes is less than 1000 mbar.
  • the tubes are made of polymer or metal.
  • the tubes are made of polymer.
  • the polymer is selected from: photopolymers including acrylates, epoxies and methacrylates; thermoplastics and thermosets.
  • the metal is selected from: aluminum, titanium and steel.
  • the fluid is chosen from: water, pentane or a hydrofluoroether.
  • the cold source is air.
  • the invention also relates to a method comprising an additive manufacturing step.
  • the additive manufacturing step is carried out by stereolithography, by selective laser sintering, by selective laser melting, by electron beam melting, by molten wire deposition, by material jetting, by photopolymerization or by lamination of materials in sheets and/or plates.
  • the method according to the invention makes it possible to easily obtain a condenser for a heat pipe having a structure in which the tubes are interconnected and in which the cross section of the internal face of the wall of said tubes is non-circular.
  • the realization of architectural and interconnected hollow structures makes it possible to considerably increase the exchange surfaces within the heat pipe condenser, in particular by reducing the diameter of the tubes. This thus makes it possible to increase the capacity of the heat pipe to dissipate heat while reducing the mass and the bulk thereof.
  • FIG. 2 illustrates another example of a heat pipe condenser according to the invention
  • FIG. 3 illustrates another example of a heat pipe condenser according to the invention
  • FIG. 4 illustrates another example of a heat pipe condenser according to the invention
  • FIG. 5 illustrates an example of a non-circular cross-section of the internal face of the wall of said tubes of the condenser according to the invention
  • FIG. 6 illustrates an example of a non-circular cross-section of the internal face of the wall of said tubes of the condenser according to the invention
  • FIG. 7 illustrates another example of a non-circular cross-section of the internal face of the wall of said tubes of the condenser according to the invention
  • FIG. 8 illustrates another example of a non-circular cross-section of the internal face of the wall of said tubes of the condenser according to the invention
  • FIG. 9 illustrates an example showing the heat transfer fluid drainage speeds in the absence of condensation as a function of the shape of the cross section of the internal face of the wall of said tubes.
  • Figures 1 to 4 illustrate examples of condenser 1 for a heat pipe (not shown) comprising a plurality of tubes 2 comprising a wall 3 having an outer face 3a and an inner face 3b.
  • the wall 3 delimits a space containing a heat transfer fluid.
  • the internal face 3b of the wall 3 of the tubes 2 has a non-circular cross-section.
  • the tubes 2 operate as a condenser intended to condense heat transfer fluid vapor in contact with a cold source.
  • the cold source is air.
  • no external heatsink is required.
  • the end E1 of tubes 2 is intended to be connected to an evaporator (not shown).
  • the tubes 2 are interconnected by branches 2a so as to form a network of interconnected tubes.
  • Figure 1 illustrates an example of a heat pipe condenser 1 whose network of interconnected tubes 2 includes tubes 2 interconnected by branches 2a so as to form a regularly repeated geometric pattern.
  • the geometric pattern is a regular dodecahedron.
  • the thickness of the wall 3 of said tubes 2 is 0.8 mm.
  • Figure 2 illustrates an example of a heat pipe condenser 1 whose network of interconnected tubes 2 includes tubes 2 interconnected by branches 2a so as to form a regularly repeated geometric pattern.
  • the geometric pattern is a regular dodecahedron.
  • the thickness of the wall 3 of said tubes 2 is 1.2 mm.
  • Figure 3 illustrates an example of a heat pipe condenser 1 whose network of interconnected tubes 2 includes a central vertical tube 4 surrounded by a plurality of peripheral tubes vertical tubes 5, the diameter of the vertical central tube 4 being greater than the diameters of the vertical peripheral tubes 5.
  • the branches 2a connect at least two peripheral tubes and the branches 2a are connected to the vertical central tube 4.
  • the thickness of the wall 3 of said tubes 2 is 0.8 mm.
  • one end E1 of condenser 1 is in contact with an evaporator (not shown) which transforms the heat transfer fluid into vapour.
  • the steam rises along the vertical central tube 4 towards the end E2 of the tubes 2.
  • the steam will then move into the vertical peripheral tubes 5 and condense on the internal face 3b of the walls 3 of the tubes 2.
  • the fluid condensed coolant thus descends towards the end E1 of the tubes 2.
  • Figure 4 illustrates part of an example of a heat pipe condenser 1 whose network of interconnected tubes 2 includes tubes 2 interconnected by branches 2a so as to form an irregularly repeated geometric pattern.
  • the geometric pattern is a cuboctahedron.
  • the thickness of the wall 3 of said tubes 2 is 0.8 mm.
  • one end E1 of condenser 1 is in contact with an evaporator (not shown) which converts the heat transfer fluid into vapour.
  • the steam rises along the tubes 2 towards the end E2 of the tubes 2 and condenses on the internal face 3b of the walls 3 of the tubes 2.
  • the condensed heat transfer fluid thus descends towards the end E1 of the tubes 2.
  • the thickness of the wall of said tubes is between 0.6 and 0.8 mm. This thickness ensures the tightness of the structure and maintains the vacuum. Furthermore, the tubes have a sufficient diameter to avoid the formation of stable heat transfer fluid plugs which could hinder the circulation of the fluid in the condenser.
  • the heat transfer fluid is water.
  • Figures 5 to 8 illustrate examples of heat pipes having a non-circular cross section of the internal face 3b of the wall 3 of the tubes 2.
  • the cross section of the internal face 3b of the wall 3 of the tubes 2 has a hexagonal shape.
  • the cross section of the internal face 3b of the wall 3 of the tubes 2 has a square shape.
  • the cross section of the internal face 3b of the wall 3 of the tubes 2 has a triangular shape.
  • the cross section of the internal face 3b of the wall 3 of the tubes 2 has a lobed shape, that is to say non-polygonal.
  • the pressure in the tubes is around 20 mbar.
  • tubes 2 of condenser 1 are made of polymer.
  • the polymer can be an acrylate.
  • the method for manufacturing the heat pipe condenser 1 according to the invention comprises an additive manufacturing step.
  • the additive manufacturing step is performed by stereolithography.
  • the structure of the condenser according to the invention makes it possible to improve the mechanical resistance of the structure and to limit the effect of the residual stresses inherent in additive manufacturing. Indeed, the presence of branches makes it possible to avoid excessive macroscopic deformation of the part.
  • Two heat pipe condensers shown in Figure 1 and 3 were fabricated by stereolithography. These two condensers were made with polymer powder called High Temp Resin®.
  • the inner face of the wall of said condenser tubes has a circular cross section.
  • the wall thickness is 0.8 mm.
  • the heat pipe condenser tubes shown in Figure 1 have an inside diameter of 2 mm.
  • the peripheral tubes have a diameter of 2 mm and the central tube has a diameter of 10 mm.
  • the ends of the condensers were brought into contact with an evaporator transferring a power of 10 to 135 W.
  • the heat transfer fluid is water and the saturation pressure is between 110 and 960 mbar. Water vapor circulated from the evaporator to the condenser and was condensed along the inner face of the tube wall.
  • the temperature of the condenser was evaluated using an infrared thermal camera. The camera showed that the temperature prevailing in the two condensers was homogeneous throughout the test.
  • Insulated and open tubes were fabricated by stereolithography to study the influence of cross-section on drainage.
  • the tubes were made with polymer powder called High Temp Resin®.
  • High Temp Resin® polymer powder
  • the cross section of the inner face of the tube wall varied.
  • hydrofluoroether HFE-7100
  • the tests are carried out at atmospheric pressure and ambient temperature.
  • a plug of liquid 10 to 15 mm long is introduced using a syringe. Its speed of disappearance is then measured using a stopwatch and camera visualizations. Knowing the volume of the plug, the rate of drainage of the HFE is finally deduced.
  • Figure 9 illustrates the results of this test.
  • Figure 9 shows that when the cross section of the inner face of the wall of said tubes is circular, the HFE fluid is not drained (the plug does not disappear).
  • the cross-section of the internal face of the wall of said tubes is non-circular, in particular of hexagonal, square, triangular, lobed or star shape, the HFE fluid is drained.
  • the condenser according to the invention allows an improvement in the thermal performance and an increase in the transferable power compared to a traditional heat pipe with a dissipator or condenser with non-interconnected circular hollow fins.
  • the existence of a significant drainage in the non-circular sections and the destabilization of the liquid plugs thanks to the interconnections make possible a reduction in the diameter of the tubes and, thus, a significant increase in the exchange surface in external convection. by the multiplication of the tubes. This improves external cooling without causing condensation to lock inside the tubes.
  • optimization increases transferable power and thermal performance. It roughly consists in increasing the exchange surface of the fins while ensuring that it is operational, in particular by draining and destabilizing any liquid plugs formed by the heat transfer fluid.

Abstract

La présente invention concerne un condenseur (1) pour caloduc comprenant : - une pluralité de tubes (2) comprenant une paroi (3) ayant une face externe (3a) et une face interne (3b), ladite paroi (3) délimitant un espace contenant un fluide caloporteur, - lesdits tubes (2) opérant comme un condenseur destiné à condenser de la vapeur de fluide caloporteur au contact d'une source froide, - lesdits tubes (2) étant destinés à être reliés à un évaporateur, ledit condenseur pour caloduc (1) étant caractérisé en ce que : - lesdits tubes (2) sont reliés entre eux par des embranchements de sorte à former un réseau de tubes (2) interconnectés et/ou - ladite face interne (3b) de la paroi (3) desdits tubes (2) a une section transversale non-circulaire.

Description

DESCRIPTION
TITRE : Condenseur pour caloduc
La présente invention concerne un condenseur pour caloduc et un procédé de fabrication dudit caloduc. La présente invention est particulièrement destinée aux domaines de l’automobile, de l’électronique, du ferroviaire et de l’aérospatial.
Un caloduc se présente généralement sous la forme d’une enceinte étanche remplie d’un fluide à l'état d'équilibre liquide-vapeur. Une extrémité du caloduc, nommée « évaporateur », est située près d’un élément à refroidir, nommé également « source chaude ». Le fluide à l'état liquide se vaporise en absorbant de l'énergie thermique émise par la source chaude. La vapeur circule alors dans le caloduc jusqu'à l'autre extrémité, nommée « condenseur », située près d’un système de refroidissement, nommé « source froide » où elle se condense pour retourner à l'état liquide. La condensation permet de céder de l'énergie thermique à la source froide. Le liquide retourne alors à l'évaporateur par gravité ou par capillarité.
Dans les caloducs conventionnels, la vapeur et le liquide circulent entre l’évaporateur et le condenseur par une seule voie de communication. Une structure capillaire peut être créée afin d’assurer le retour du condensât du condenseur vers l’évaporateur, sous l’effet d’une pression motrice capillaire, en particulier lorsque les forces de gravité ne sont pas présentes ou lorsque l’orientation du caloduc nécessite à l’écoulement du liquide de vaincre la gravité. L’assèchement de l’évaporateur est ainsi évité.
La conception et la fabrication d’un caloduc nécessite de répondre à un certain nombre de critères. Son enveloppe doit répondre à des contraintes d’étanchéité et de stabilité dans le temps particulièrement exigeantes sous peine d’introduire des gaz incondensables au sein du caloduc et d’en détériorer les performances thermiques ou sous peine d’assister à une diminution de la charge de remplissage en fluide, due au passage de molécules de vapeur à travers la paroi du caloduc. Un caloduc est aussi soumis à des variations de pression interne importantes pouvant aller du vide lors du remplissage du système à une surpression de l’ordre de 1 bar lorsque sa température de saturation augmente.
Ces contraintes sont en opposition avec la nécessité de maintenir les parois en polymère ou en métal les plus fines possibles dans les zones d’évaporation et de condensation pour limiter l’augmentation excessive des résistances thermiques de conduction au sein du caloduc. De plus, quel que soit le matériau utilisé, une bonne tenue en température, une bonne tenue thermomécanique, notamment vis-à-vis de fortes différences de pression de part et d’autre de la paroi, et une parfaite compatibilité chimique avec le fluide sont requises. Enfin, le comportement du fluide au sein du caloduc se révèle délicat à prédire ainsi que les coefficients d’échange lors de la condensation du fluide. Les contraintes relatives à la géométrie d’un tel caloduc sont notamment liées aux procédés de mise en forme usuels des polymères et des métaux incluant l’injection, l’extrusion ou le rotomoulage. Les géométries réalisables sont techniquement limitées. En conséquence, les possibilités d’optimisation des surfaces d’échange sont relativement réduites. Or, une surface d’échange importante au niveau de la source froide est avantageuse, notamment lors d’un refroidissement par air. De ce fait, le caloduc est généralement utilisé comme intermédiaire entre la source chaude et un dissipateur thermique à ailettes qui, lui, présente une grande surface d’échange et transfère la chaleur par convection avec l’air ambiant. Le caloduc sert alors de simple diffuseur thermique dont le rôle est d’étaler la puissance thermique dissipée sur une plus grande surface plane en amont du dissipateur à ailettes. Ce dissipateur doit être constitué d’un matériau métallique massif afin de présenter une efficacité thermique suffisante. Son poids est donc élevé. Ainsi l’encombrement et la masse du système global sont généralement importants.
Par ailleurs, dans certaines applications, la performance de l’échange thermique n’est pas suffisante.
L’invention a pour but de remédier aux inconvénients précités en proposant un condenseur de caloduc permettant d’optimiser les échanges thermiques, notamment lors d’un refroidissement par air, ne nécessitant pas l’ajout d’un dissipateur à ailettes supplémentaire et facilement adaptable dans diverses applications. Par ailleurs, l’invention a pour but de proposer un condenseur de caloduc sur mesure dont la forme peut varier en fonction de l’application désirée, plus compacte et dont le poids est allégé par rapport aux condenseur de caloducs de l’art antérieur.
L’invention a pour objet un condenseur pour caloduc comprenant :
- une pluralité de tubes comprenant une paroi ayant une face externe et une face interne, ladite paroi délimitant un espace contenant un fluide caloporteur,
- lesdits tubes opérant comme un condenseur destiné à condenser de la vapeur de fluide caloporteur au contact d’une source froide,
- lesdits tubes étant destinés à être reliés à un évaporateur, ledit condenseur pour caloduc étant caractérisé en ce que :
- lesdits tubes sont reliés entre eux par des embranchements de sorte à former un réseau de tubes interconnectés et/ou
- ladite face interne de la paroi desdits tubes a une section transversale non-circulaire.
Le condenseur pour caloduc selon l’invention permet d’améliorer significativement les échanges thermiques. Les tubes forment des ailettes dans lesquelles le fluide se condense, ce qui permet d’assurer un bon transfert de chaleur en leur sein, donc d’augmenter la puissance dissipée proportionnellement à la longueur des ailettes. Par ailleurs, la présence d’un dissipateur à ailettes pleines n’est plus nécessaire ce qui permet de réduire le poids du caloduc. Les inventeurs ont découvert que la section transversale de la face interne de la paroi desdits tubes non-circulaire permet d’améliorer le drainage du fluide caloporteur à l’intérieur des tubes. Le liquide s’accumule dans les coins sous l’effet des forces capillaires, ce qui permet son drainage vers l’évaporateur par gravité et évite la formation de bouchons de liquide stables dégradant les performances. En outre, l’interconnexion des tubes permet la circulation et l’évacuation des bouchons de liquide non évacués par drainage ainsi que la circulation des gaz incondensables éventuellement présents aux extrémités supérieures des tubes, qui dégradent le transfert de chaleur par condensation. Grâce à ces différents phénomènes, le diamètre des tubes peut être significativement réduit par rapport à un condenseur à ailettes creuses circulaires non- interconnectées sans observer de blocage de la condensation. La réduction du diamètre des tubes permet d’augmenter le coefficient d’échange et, surtout, la surface d’échange en multipliant les tubes. Finalement, l’interconnexion des tubes et la section transversale de la face interne de la paroi des tubes non circulaire permettent une augmentation du débit de condensation et l’évacuation d’une plus grande puissance thermique, notamment grâce à l’augmentation de la surface d’échange par rapport à un caloduc à ailettes creuses circulaires. Enfin, le condenseur selon l’invention résiste à des dépressions sous vide et à des températures allant jusqu’à 120°C.
Dans une forme de réalisation, le réseau de tubes interconnectés inclut un tube central vertical entouré d’une pluralité de tubes périphériques verticaux, le diamètre du tube central vertical étant supérieur aux diamètres des tubes périphériques verticaux, les embranchements reliant aux moins deux tubes périphériques verticaux et les embranchements étant reliés au tube central vertical.
Dans une forme de réalisation, le réseau de tubes interconnectés inclut des tubes reliés entre eux par des embranchements de sorte à former un motif géométrique répété de manière régulière ou irrégulière. De préférence, le motif géométrique est répété de manière régulière. Dans cette forme de réalisation, les échanges thermiques sont plus importants.
Dans une forme de réalisation, le motif géométrique est un polyèdre. Dans cette forme de réalisation, les surfaces d’échanges sont plus grandes ce qui permet de transférer une puissance plus importante.
Dans une forme de réalisation, le polyèdre est choisi parmi : le tétraèdre, l’hexaèdre, l'octaèdre, le dodécaèdre régulier, l'icosaèdre, le petit dodécaèdre étoilé, le grand dodécaèdre étoilé, le grand dodécaèdre, le grand icosaèdre, le cuboctaèdre, l’icosidodécaèdre, le tétraèdre tronqué, le cube tronqué, l’octaèdre tronqué, le dodécaèdre tronqué, l’icosaèdre tronqué, le cuboctaèdre tronqué, l’icosidodécaèdre tronqué, le rhombicuboctaèdre, le cube adouci, le dodécaèdre adouci et le rhombicosidodécaèdre.
Dans une forme de réalisation, la section transversale de la face interne de la paroi desdits tubes présente une forme hexagonale, une forme carrée, une forme triangulaire, une forme d’étoile ou une forme non-polygonale telle qu’une forme lobée. Dans cette forme de réalisation, le drainage du fluide caloporteur vers la source chaude est optimisé. L’augmentation de la vitesse d’évacuation du condensât permet d’améliorer la performance du condenseur. La section transversale de la face interne de la paroi desdits tubes crée une direction préférentielle pour l’écoulement du fluide. En optimisant le drainage du fluide caloporteur du condenseur vers l’évaporateur, la performance du caloduc est améliorée.
Dans une forme de réalisation, l’épaisseur de la paroi desdits tubes est supérieure à 0 mm et inférieure à 2,0 mm. De préférence, l’épaisseur de la paroi desdits tubes est inférieure à 1 ,4 mm. Avantageusement, l’épaisseur de la paroi desdits tubes est comprise entre 0,6 et 0,8 mm. Le caloduc selon l’invention permet d’obtenir des parois plus fines que des caloducs traditionnels. En effet, si l’épaisseur de la paroi est suffisamment fine, la résistance liée à la conduction dans la paroi n’est pas limitante, même dans le cas de matériaux ayant une mauvaise conductivité thermique tels que les polymères. Dans cette forme de réalisation, l’épaisseur de la paroi permet de garantir l’étanchéité du condenseur pour caloduc tout en maintenant le vide dans lesdits tubes.
Dans une forme de réalisation, la pression régnant dans les tubes est inférieure à 1000 mbar.
Dans une forme de réalisation, les tubes sont en polymère ou en métal. De préférence, les tubes sont en polymère.
Dans une forme de réalisation, le polymère est choisi parmi : les photopolymères incluant les acrylates, les epoxy et les méthacrylates; les thermoplastiques et les thermodurcissables.
Dans une forme de réalisation, le métal est choisi parmi : l’aluminium, le titane et l’acier.
Dans une forme de réalisation, le fluide est choisi parmi : l’eau, le pentane ou un hydrofluoroéther.
Dans une forme de réalisation, la source froide est l’air.
L’invention concerne également un procédé comprenant une étape de fabrication additive. De préférence, l’étape de fabrication additive est réalisée par stéréolithographie, par frittage sélectif par laser, par fusion sélective par laser, par fusion par faisceaux d’électrons, par dépôt de fil en fusion, par projection de matériau, par photopolymérisation ou par stratification de matériaux en feuilles et/ou plaques.
Le procédé selon l’invention permet d’obtenir aisément un condenseur pour caloduc ayant une structure dans laquelle les tubes sont interconnectés et dans laquelle la section transversale de la face interne de la paroi desdits tubes est non-circulaire. La réalisation de structures architecturées et interconnectées creuses permet d’augmenter considérablement les surfaces d’échanges au sein du condenseur pour caloduc, notamment en réduisant le diamètre des tubes. Cela permet ainsi d’augmenter la capacité du caloduc à dissiper la chaleur tout en diminuant la masse et l’encombrement de celui-ci. L’invention sera mieux comprise, grâce à la description ci-après, qui se rapporte à un ou plusieurs modes de réalisation selon la présente invention, donné à titre d’exemples non limitatifs et expliqués avec référence aux dessins schématiques annexés, dans lesquels : [Fig. 1] illustre un exemple de condenseur pour caloduc selon l’invention,
[Fig. 2] illustre un autre exemple de condenseur pour caloduc selon l’invention,
[Fig. 3] illustre un autre exemple de condenseur pour caloduc selon l’invention,
[Fig. 4] illustre un autre exemple de condenseur pour caloduc selon l’invention,
[Fig. 5] illustre un exemple de section transversale non-circulaire de la face interne de la paroi desdits tubes du condenseur selon l’invention,
[Fig. 6] illustre un exemple de section transversale non-circulaire de la face interne de la paroi desdits tubes du condenseur selon l’invention,
[Fig. 7] illustre un autre exemple de section transversale non-circulaire de la face interne de la paroi desdits tubes du condenseur selon l’invention,
[Fig. 8] illustre un autre exemple de section transversale non-circulaire de la face interne de la paroi desdits tubes du condenseur selon l’invention et
[Fig. 9] illustre un exemple montrant les vitesses de drainage de fluide caloporteur en l’absence de condensation en fonction de la forme de la section transversale de la face interne de la paroi desdits tubes.
Les Figures 1 à 4 illustrent des exemples de condenseur 1 pour caloduc (non illustré) comprenant une pluralité de tubes 2 comprenant une paroi 3 ayant une face externe 3a et une face interne 3b. La paroi 3 délimite un espace contenant un fluide caloporteur. La face interne 3b de la paroi 3 des tubes 2 a une section transversale non-circulaire.
Les tubes 2 opèrent comme un condenseur destiné à condenser de la vapeur de fluide caloporteur au contact d’une source froide. Par exemple, la source froide est l’air. Ainsi, aucun dissipateur externe n’est nécessaire. L’extrémité E1 des tubes 2 est destinée à être reliés à un évaporateur (non illustré).
Les tubes 2 sont reliés entre eux par des embranchements 2a de sorte à former un réseau de tubes interconnectés.
La Figure 1 illustre un exemple de condenseur 1 de caloduc dont le réseau de tubes 2 interconnectés inclut des tubes 2 reliés entre eux par des embranchements 2a de sorte à former un motif géométrique répété de manière régulière. Par exemple, le motif géométrique est un dodécaèdre régulier. Par exemple, l’épaisseur de la paroi 3 desdits tubes 2 est de 0,8 mm.
La Figure 2 illustre un exemple de condenseur 1 de caloduc dont le réseau de tubes 2 interconnectés inclut des tubes 2 reliés entre eux par des embranchements 2a de sorte à former un motif géométrique répété de manière régulière. Par exemple, le motif géométrique est un dodécaèdre régulier. Par exemple, l’épaisseur de la paroi 3 desdits tubes 2 est de 1 ,2 mm.
La Figure 3 illuste un exemple de condenseur 1 de caloduc dont le réseau de tubes 2 interconnectés inclut un tube central vertical 4 entouré d’une pluralité de tubes périphériques verticaux 5, le diamètre du tube central vertical 4 étant supérieur aux diamètres des tubes périphériques verticaux 5. Les embranchements 2a relient aux moins deux tubes périphériques et les embranchements 2a sont reliés au tube central vertical 4. Par exemple, l’épaisseur de la paroi 3 desdits tubes 2 est de 0,8 mm.
Dans l’exemple de la Figure 3, une extrémité E1 du condenseur 1 est en contact avec un evaporateur (non illustré) qui transforme le fluide caloporteur en vapeur. La vapeur remonte le long du tube central vertical 4 en direction de l’extrémité E2 des tubes 2. La vapeur va alors se diriger dans les tubes périphériques verticaux 5 et se condenser sur la face interne 3b des parois 3 des tubes 2. Le fluide caloporteur condensé redescend ainsi vers l’extrémité E1 des tubes 2.
La Figure 4 illustre une partie d’un exemple de condenseur 1 de caloduc dont le réseau de tubes 2 interconnectés inclut des tubes 2 reliés entre eux par des embranchements 2a de sorte à former un motif géométrique répété de manière irrégulière. Par exemple, le motif géométrique est un cuboctaèdre. Par exemple, l’épaisseur de la paroi 3 desdits tubes 2 est de 0,8 mm.
Dans les exemples de condenseur 1 de caloduc illustrés Figures 1 , 2 et 4, une extrémité E1 du condenseur 1 est en contact avec un evaporateur (non illustré) qui transforme le fluide caloporteur en vapeur. La vapeur remonte le long des tubes 2 en direction de l’extrémité E2 des tubes 2 et se condense sur la face interne 3b des parois 3 des tubes 2. Le fluide caloporteur condensé redescend ainsi vers l’extrémité E1 des tubes 2.
De préférence, l’épaisseur de la paroi desdits tubes est comprise entre 0,6 et 0,8 mm. Cette épaisseur permet d’assurer l’étanchéité de la structure et de maintenir le vide. Par ailleurs, les tubes ont un diamètre suffisant pour éviter la formation de bouchons de fluide caloporteur stables qui pourraient entraver la circulation du fluide dans le condenseur.
Par exemple, le fluide caloporteur est l’eau.
Les Figures 5 à 8 illustrent des exemples de caloducs ayant une section transversale non-circulaire de la face interne 3b de la paroi 3 des tubes 2.
Dans la Figure 5, la section transversale de la face interne 3b de la paroi 3 des tubes 2 a une forme hexagonale.
Dans la Figure 6, la section transversale de la face interne 3b de la paroi 3 des tubes 2 a une forme carrée.
Dans la Figure 7, la section transversale de la face interne 3b de la paroi 3 des tubes 2 a une forme triangulaire.
Dans la Figure 8, la section transversale de la face interne 3b de la paroi 3 des tubes 2 a une forme lobée, c’est-à-dire non polygonale.
Par exemple, la pression régnant dans les tubes est d’environ 20 mbar.
Par exemple, les tubes 2 du condenseur 1 sont en polymère. Le polymère peut être un acrylate. Le procédé de fabrication du condenseur 1 pour caloduc selon l’invention comprend une étape de fabrication additive. Par exemple, l’étape de fabrication additive est réalisée par stéréolithographie.
La structure du condenseur selon l’invention permet d’améliorer la résistance mécanique de la structure et de limiter l’effet des contraintes résiduelles inhérentes à la fabrication additive. En effet, la présence d’embranchements permet d’éviter une déformation macroscopique trop importante de la pièce.
La présente invention est illustrée de manière non limitative par les exemples suivants.
Exemple 1 : Température
Deux condenseurs de caloduc illustrés Figure 1 et 3 ont été fabriqués par stéréolithographie. Ces deux condenseurs ont été réalisés avec de la poudre de polymère nommée High Temp Resin®. La face interne de la paroi desdits tubes des condenseurs a une section transversale de forme circulaire. L’épaisseur de paroi est de 0,8 mm. Les tubes du condenseur de caloduc illustré Figure 1 ont un diamètre intérieur de 2 mm. Pour le condenseur de caloduc illustré Figure 3, les tubes périphériques ont un diamètre de 2 mm et le tube central a un diamètre de 10 mm.
Les extrémités des condenseurs ont été mises en contact avec un évaporateur transférant une puissance de 10 à 135 W. Dans cet exemple, le fluide caloporteur est l’eau et la pression de saturation est comprise entre 110 et 960 mbar. La vapeur d’eau a circulé depuis l’évaporateur vers le condenseur et a été condensée le long de la face interne de la paroi des tubes.
La circulation de l’eau dans les tubes a été évaluée visuellement. Seuls des bouchons instables se sont formés. Grâce aux interconnexions, les bouchons retombent progressivement à l’évaporateur et ne bloquent pas le condenseur.
La température du condenseur a été évaluée à l’aide d’une caméra thermique infrarouge. La caméra a montré que la température qui régnait dans les deux condenseurs était homogène tout au long du test.
Exemple 2 : Drainage
Des tubes isolés et ouverts ont été fabriqués par stéréolithographie afin d’étudier l’influence de la section transversale sur le drainage. Les tubes ont été réalisés avec de la poudre de polymère nommée High Temp Resin®. La section transversale de la face interne de la paroi des tubes a varié.
Dans ce test, le fluide utilisé est l’hydrofluoroéther (HFE-7100).
Les essais sont menés à pression atmosphérique et température ambiante. Dans chaque tube testé, un bouchon de liquide de longueur 10 à 15 mm est introduit à l’aide d’une seringue. Sa vitesse de disparition est ensuite mesurée à l’aide d’un chronomètre et de visualisations par caméra. Connaissant le volume du bouchon, la vitesse de drainage du HFE est finalement déduite.
La Figure 9 illustre les résultats de ce test. La Figure 9 montre que lorsque la section transversale de la face interne de la paroi desdits tubes est circulaire, le fluide HFE n’est pas drainé (le bouchon ne disparaît pas). Au contraire, lorsque la section transversale de la face interne de la paroi desdits tubes est non-circulaire, en particulier de forme hexagonale, carrée, triangulaire, lobée ou étoile, le fluide HFE est drainé.
Ainsi, le condenseur selon l’invention permet une amélioration de la performance thermique et une augmentation de la puissance transférable comparé à un caloduc traditionnel avec dissipateur ou condenseur à ailettes creuses circulaires non-interconnectées. En effet, l’existence d’un drainage significatif dans les sections non circulaires et la déstabilisation des bouchons de liquide grâce aux interconnexions rendent possible une réduction du diamètre des tubes et, ainsi, une augmentation significative de la surface d’échange en convection externe par la multiplication des tubes. Le refroidissement externe est ainsi amélioré sans entraîner de blocage de la condensation à l’intérieur des tubes.
Enfin, l’utilisation de la fabrication additive pour la réalisation d’un condenseur à ailettes creuses est avantageuse car elle permet de réaliser une grande variété de structures de tubes spécifiques et interconnectées, à optimiser selon l’application envisagée. Comme évoqué précédemment, l’optimisation permet d’augmenter la puissance transférable et la performance thermique. Elle consiste grossièrement à augmenter la surface d’échange des ailettes tout en s’assurant que celle-ci soit opérationnelle, notamment en drainant et en déstabilisant les éventuels bouchons de liquide formés par le fluide caloporteur.

Claims

9 REVENDICATIONS
1. Condenseur (1 ) pour caloduc comprenant :
- une pluralité de tubes (2) comprenant une paroi (3) ayant une face externe (3a) et une face interne (3b), ladite paroi (3) délimitant un espace contenant un fluide caloporteur,
- lesdits tubes (2) opérant comme un condenseur destiné à condenser de la vapeur de fluide caloporteur au contact d’une source froide,
- lesdits tubes (2) étant destinés à être reliés à un évaporateur, ledit condenseur pour caloduc étant caractérisé en ce que :
- lesdits tubes (2) sont reliés entre eux par des embranchements de sorte à former un réseau de tubes (2) interconnectés et/ou
- ladite face interne (3b) de la paroi (3) desdits tubes (2) a une section transversale non-circulaire choisie parmi : une forme triangulaire, une forme d’étoile ou une forme non-polygonale telle qu’une forme lobée.
2. Condenseur (1 ) pour caloduc selon la revendication 1 , dans lequel le réseau de tubes (2) interconnectés inclut un tube central vertical (4) entouré d’une pluralité de tubes périphériques verticaux (5), le diamètre du tube central vertical (4) étant supérieur aux diamètres des tubes périphériques verticaux (5), les embranchements reliant aux moins deux tubes périphériques verticaux (5) et les embranchements étant reliés au tube central vertical (4).
3. Condenseur (1 ) pour caloduc selon la revendication 1 , dans lequel le réseau de tubes (2) interconnectés inclut des tubes (2) reliés entre eux par des embranchements (2a) de sorte à former un motif géométrique répété de manière régulière ou irrégulière.
4. Condenseur (1 ) pour caloduc selon la revendication 3, dans lequel le motif géométrique est un polyèdre.
5. Condenseur (1 ) pour caloduc selon la revendication 4, dans lequel polyèdre est choisi parmi : le tétraèdre, l’hexaèdre, l'octaèdre, le dodécaèdre régulier, l'icosaèdre, le petit dodécaèdre étoilé, le grand dodécaèdre étoilé, le grand dodécaèdre, le grand icosaèdre, le cuboctaèdre, I’ icosidodécaèdre, le tétraèdre tronqué, le cube tronqué, l’octaèdre tronqué, le dodécaèdre tronqué, l’icosaèdre tronqué, le cuboctaèdre tronqué, l’icosidodécaèdre tronqué, le rhombicuboctaèdre, le cube adouci, le dodécaèdre adouci et le rhombicosidodécaèdre.
6. Condenseur (1 ) pour caloduc selon l’une quelconque des revendications précédentes, dans lequel l’épaisseur de la paroi (3) desdits tubes (2) est supérieure à 0 mm et inférieure à 2,0 mm.
7. Procédé de fabrication d’un condenseur (1 ) pour caloduc selon l’une quelconque des revendications précédentes, ledit procédé comprenant une étape de fabrication additive.
8. Procédé de fabrication selon la revendication 7, dans lequel l’étape de fabrication additive est réalisée par stéréolithographie, par frittage sélectif par laser, par fusion sélective par laser, par fusion par faisceaux d’électrons, par dépôt de fil en fusion, par projection de matériau, par photopolymérisation ou par stratification de matériaux en feuilles et/ou plaques.
PCT/FR2022/050192 2021-02-04 2022-02-02 Condenseur pour caloduc WO2022167752A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2101045 2021-02-04
FR2101045A FR3119446B1 (fr) 2021-02-04 2021-02-04 Condenseur pour caloduc

Publications (1)

Publication Number Publication Date
WO2022167752A1 true WO2022167752A1 (fr) 2022-08-11

Family

ID=76034697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/050192 WO2022167752A1 (fr) 2021-02-04 2022-02-02 Condenseur pour caloduc

Country Status (2)

Country Link
FR (1) FR3119446B1 (fr)
WO (1) WO2022167752A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269865B1 (en) * 1997-08-22 2001-08-07 Bin-Juine Huang Network-type heat pipe device
US20190078846A1 (en) * 2017-09-14 2019-03-14 Man Zai Industrial Co., Ltd. Parallel-connected condenser and cooling device using the same
US10365047B2 (en) * 2016-06-21 2019-07-30 Ge Aviation Systems Llc Electronics cooling with multi-phase heat exchange and heat spreader

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269865B1 (en) * 1997-08-22 2001-08-07 Bin-Juine Huang Network-type heat pipe device
US10365047B2 (en) * 2016-06-21 2019-07-30 Ge Aviation Systems Llc Electronics cooling with multi-phase heat exchange and heat spreader
US20190078846A1 (en) * 2017-09-14 2019-03-14 Man Zai Industrial Co., Ltd. Parallel-connected condenser and cooling device using the same

Also Published As

Publication number Publication date
FR3119446A1 (fr) 2022-08-05
FR3119446B1 (fr) 2023-03-24

Similar Documents

Publication Publication Date Title
EP2711299B1 (fr) Structure thermomécanique adaptée pour un environnement spatial
EP2311086B1 (fr) Structure d'echange thermique et dispositif de refroidissement comportant une telle structure
EP2803085B1 (fr) Dispositif de gestion thermique passif
US20170356694A1 (en) Manufacturing method of heat conducting device
TWI329184B (en) Vapor chamber and manufacturing method thereof
FR2977121A1 (fr) Systeme de gestion thermique a materiau a volume variable
FR2527838A1 (fr) Dispositif et procede de transfert thermique entre solides, avec assistance par un gaz, pour une tranche de semi-conducteur
FR2928449A1 (fr) Dispositif d'echange de chaleur et procede de fabrication d'un element d'echange de chaleur pour un dispositif d'echange de chaleur
FR3056290B1 (fr) Dispositif de regulation thermique
FR2732453A1 (fr) Dispositif echangeur-stockeur de calories et/ou de frigories
WO2017046463A1 (fr) Réservoir de stockage de fluide liquéfié
WO2022167752A1 (fr) Condenseur pour caloduc
WO2008015314A1 (fr) Echangeur thermique
FR3052245B1 (fr) Dispositif cryogenique a echangeur compact
CN1869574A (zh) 散热芯及散热器
FR3118149A1 (fr) Module de stockage thermique a matériau a changement de phase dont la fabrication est simplifiée
FR3099564A1 (fr) Module d’échangeur de chaleur à deux circuits de fluides, notamment échangeur de chaleur de réacteur nucléaire
FR2902181A1 (fr) Conducteur thermique pour capteur solaire a tubes sous vide
WO2002011930A1 (fr) Dispositif d'echange thermique
FR2886721A1 (fr) Procede de realisation par frittage du reseau capillaire dans un tube caloduc
FR2682747A1 (fr) Echangeur de chaleur favorisant les transferts thermiques par convection.
FR2977017A1 (fr) Regenerateur de chaleur
FR3075337A1 (fr) Element intercalaire a texturation de surface, echangeur de chaleur comprenant un tel element
WO2024027962A1 (fr) Echangeur de chaleur
FR2946420A1 (fr) Refroidisseur d huile pour vehicule et procede de fabrication de celui ci

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22705448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22705448

Country of ref document: EP

Kind code of ref document: A1